Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/dsl_crypt.c
48383 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* This file and its contents are supplied under the terms of the
6
* Common Development and Distribution License ("CDDL"), version 1.0.
7
* You may only use this file in accordance with the terms of version
8
* 1.0 of the CDDL.
9
*
10
* A full copy of the text of the CDDL should have accompanied this
11
* source. A copy of the CDDL is also available via the Internet at
12
* http://www.illumos.org/license/CDDL.
13
*
14
* CDDL HEADER END
15
*/
16
17
/*
18
* Copyright (c) 2017, Datto, Inc. All rights reserved.
19
* Copyright (c) 2018 by Delphix. All rights reserved.
20
*/
21
22
#include <sys/dsl_crypt.h>
23
#include <sys/dsl_pool.h>
24
#include <sys/zap.h>
25
#include <sys/zil.h>
26
#include <sys/dsl_dir.h>
27
#include <sys/dsl_prop.h>
28
#include <sys/spa_impl.h>
29
#include <sys/dmu_objset.h>
30
#include <sys/zvol.h>
31
32
/*
33
* This file's primary purpose is for managing master encryption keys in
34
* memory and on disk. For more info on how these keys are used, see the
35
* block comment in zio_crypt.c.
36
*
37
* All master keys are stored encrypted on disk in the form of the DSL
38
* Crypto Key ZAP object. The binary key data in this object is always
39
* randomly generated and is encrypted with the user's wrapping key. This
40
* layer of indirection allows the user to change their key without
41
* needing to re-encrypt the entire dataset. The ZAP also holds on to the
42
* (non-encrypted) encryption algorithm identifier, IV, and MAC needed to
43
* safely decrypt the master key. For more info on the user's key see the
44
* block comment in libzfs_crypto.c
45
*
46
* In-memory encryption keys are managed through the spa_keystore. The
47
* keystore consists of 3 AVL trees, which are as follows:
48
*
49
* The Wrapping Key Tree:
50
* The wrapping key (wkey) tree stores the user's keys that are fed into the
51
* kernel through 'zfs load-key' and related commands. Datasets inherit their
52
* parent's wkey by default, so these structures are refcounted. The wrapping
53
* keys remain in memory until they are explicitly unloaded (with
54
* "zfs unload-key"). Unloading is only possible when no datasets are using
55
* them (refcount=0).
56
*
57
* The DSL Crypto Key Tree:
58
* The DSL Crypto Keys (DCK) are the in-memory representation of decrypted
59
* master keys. They are used by the functions in zio_crypt.c to perform
60
* encryption, decryption, and authentication. Snapshots and clones of a given
61
* dataset will share a DSL Crypto Key, so they are also refcounted. Once the
62
* refcount on a key hits zero, it is immediately zeroed out and freed.
63
*
64
* The Crypto Key Mapping Tree:
65
* The zio layer needs to lookup master keys by their dataset object id. Since
66
* the DSL Crypto Keys can belong to multiple datasets, we maintain a tree of
67
* dsl_key_mapping_t's which essentially just map the dataset object id to its
68
* appropriate DSL Crypto Key. The management for creating and destroying these
69
* mappings hooks into the code for owning and disowning datasets. Usually,
70
* there will only be one active dataset owner, but there are times
71
* (particularly during dataset creation and destruction) when this may not be
72
* true or the dataset may not be initialized enough to own. As a result, this
73
* object is also refcounted.
74
*/
75
76
/*
77
* This tunable allows datasets to be raw received even if the stream does
78
* not include IVset guids or if the guids don't match. This is used as part
79
* of the resolution for ZPOOL_ERRATA_ZOL_8308_ENCRYPTION.
80
*/
81
int zfs_disable_ivset_guid_check = 0;
82
83
static void
84
dsl_wrapping_key_hold(dsl_wrapping_key_t *wkey, const void *tag)
85
{
86
(void) zfs_refcount_add(&wkey->wk_refcnt, tag);
87
}
88
89
static void
90
dsl_wrapping_key_rele(dsl_wrapping_key_t *wkey, const void *tag)
91
{
92
(void) zfs_refcount_remove(&wkey->wk_refcnt, tag);
93
}
94
95
static void
96
dsl_wrapping_key_free(dsl_wrapping_key_t *wkey)
97
{
98
ASSERT0(zfs_refcount_count(&wkey->wk_refcnt));
99
100
if (wkey->wk_key.ck_data) {
101
memset(wkey->wk_key.ck_data, 0,
102
CRYPTO_BITS2BYTES(wkey->wk_key.ck_length));
103
kmem_free(wkey->wk_key.ck_data,
104
CRYPTO_BITS2BYTES(wkey->wk_key.ck_length));
105
}
106
107
zfs_refcount_destroy(&wkey->wk_refcnt);
108
kmem_free(wkey, sizeof (dsl_wrapping_key_t));
109
}
110
111
static void
112
dsl_wrapping_key_create(uint8_t *wkeydata, zfs_keyformat_t keyformat,
113
uint64_t salt, uint64_t iters, dsl_wrapping_key_t **wkey_out)
114
{
115
dsl_wrapping_key_t *wkey;
116
117
/* allocate the wrapping key */
118
wkey = kmem_alloc(sizeof (dsl_wrapping_key_t), KM_SLEEP);
119
120
/* allocate and initialize the underlying crypto key */
121
wkey->wk_key.ck_data = kmem_alloc(WRAPPING_KEY_LEN, KM_SLEEP);
122
123
wkey->wk_key.ck_length = CRYPTO_BYTES2BITS(WRAPPING_KEY_LEN);
124
memcpy(wkey->wk_key.ck_data, wkeydata, WRAPPING_KEY_LEN);
125
126
/* initialize the rest of the struct */
127
zfs_refcount_create(&wkey->wk_refcnt);
128
wkey->wk_keyformat = keyformat;
129
wkey->wk_salt = salt;
130
wkey->wk_iters = iters;
131
132
*wkey_out = wkey;
133
}
134
135
int
136
dsl_crypto_params_create_nvlist(dcp_cmd_t cmd, nvlist_t *props,
137
nvlist_t *crypto_args, dsl_crypto_params_t **dcp_out)
138
{
139
int ret;
140
uint64_t crypt = ZIO_CRYPT_INHERIT;
141
uint64_t keyformat = ZFS_KEYFORMAT_NONE;
142
uint64_t salt = 0, iters = 0;
143
dsl_crypto_params_t *dcp = NULL;
144
dsl_wrapping_key_t *wkey = NULL;
145
uint8_t *wkeydata = NULL;
146
uint_t wkeydata_len = 0;
147
const char *keylocation = NULL;
148
149
dcp = kmem_zalloc(sizeof (dsl_crypto_params_t), KM_SLEEP);
150
dcp->cp_cmd = cmd;
151
152
/* get relevant arguments from the nvlists */
153
if (props != NULL) {
154
(void) nvlist_lookup_uint64(props,
155
zfs_prop_to_name(ZFS_PROP_ENCRYPTION), &crypt);
156
(void) nvlist_lookup_uint64(props,
157
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), &keyformat);
158
(void) nvlist_lookup_string(props,
159
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &keylocation);
160
(void) nvlist_lookup_uint64(props,
161
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), &salt);
162
(void) nvlist_lookup_uint64(props,
163
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), &iters);
164
165
dcp->cp_crypt = crypt;
166
}
167
168
if (crypto_args != NULL) {
169
(void) nvlist_lookup_uint8_array(crypto_args, "wkeydata",
170
&wkeydata, &wkeydata_len);
171
}
172
173
/* check for valid command */
174
if (dcp->cp_cmd >= DCP_CMD_MAX) {
175
ret = SET_ERROR(EINVAL);
176
goto error;
177
} else {
178
dcp->cp_cmd = cmd;
179
}
180
181
/* check for valid crypt */
182
if (dcp->cp_crypt >= ZIO_CRYPT_FUNCTIONS) {
183
ret = SET_ERROR(EINVAL);
184
goto error;
185
} else {
186
dcp->cp_crypt = crypt;
187
}
188
189
/* check for valid keyformat */
190
if (keyformat >= ZFS_KEYFORMAT_FORMATS) {
191
ret = SET_ERROR(EINVAL);
192
goto error;
193
}
194
195
/* check for a valid keylocation (of any kind) and copy it in */
196
if (keylocation != NULL) {
197
if (!zfs_prop_valid_keylocation(keylocation, B_FALSE)) {
198
ret = SET_ERROR(EINVAL);
199
goto error;
200
}
201
202
dcp->cp_keylocation = spa_strdup(keylocation);
203
}
204
205
/* check wrapping key length, if given */
206
if (wkeydata != NULL && wkeydata_len != WRAPPING_KEY_LEN) {
207
ret = SET_ERROR(EINVAL);
208
goto error;
209
}
210
211
/* if the user asked for the default crypt, determine that now */
212
if (dcp->cp_crypt == ZIO_CRYPT_ON)
213
dcp->cp_crypt = ZIO_CRYPT_ON_VALUE;
214
215
/* create the wrapping key from the raw data */
216
if (wkeydata != NULL) {
217
/* create the wrapping key with the verified parameters */
218
dsl_wrapping_key_create(wkeydata, keyformat, salt,
219
iters, &wkey);
220
dcp->cp_wkey = wkey;
221
}
222
223
/*
224
* Remove the encryption properties from the nvlist since they are not
225
* maintained through the DSL.
226
*/
227
(void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_ENCRYPTION));
228
(void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_KEYFORMAT));
229
(void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT));
230
(void) nvlist_remove_all(props,
231
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS));
232
233
*dcp_out = dcp;
234
235
return (0);
236
237
error:
238
kmem_free(dcp, sizeof (dsl_crypto_params_t));
239
*dcp_out = NULL;
240
return (ret);
241
}
242
243
void
244
dsl_crypto_params_free(dsl_crypto_params_t *dcp, boolean_t unload)
245
{
246
if (dcp == NULL)
247
return;
248
249
if (dcp->cp_keylocation != NULL)
250
spa_strfree(dcp->cp_keylocation);
251
if (unload && dcp->cp_wkey != NULL)
252
dsl_wrapping_key_free(dcp->cp_wkey);
253
254
kmem_free(dcp, sizeof (dsl_crypto_params_t));
255
}
256
257
static int
258
spa_crypto_key_compare(const void *a, const void *b)
259
{
260
const dsl_crypto_key_t *dcka = a;
261
const dsl_crypto_key_t *dckb = b;
262
263
if (dcka->dck_obj < dckb->dck_obj)
264
return (-1);
265
if (dcka->dck_obj > dckb->dck_obj)
266
return (1);
267
return (0);
268
}
269
270
/*
271
* this compares a crypto key based on zk_guid. See comment on
272
* spa_crypto_key_compare for more information.
273
*/
274
boolean_t
275
dmu_objset_crypto_key_equal(objset_t *osa, objset_t *osb)
276
{
277
dsl_crypto_key_t *dcka = NULL;
278
dsl_crypto_key_t *dckb = NULL;
279
uint64_t obja, objb;
280
boolean_t equal;
281
spa_t *spa;
282
283
spa = dmu_objset_spa(osa);
284
if (spa != dmu_objset_spa(osb))
285
return (B_FALSE);
286
obja = dmu_objset_ds(osa)->ds_object;
287
objb = dmu_objset_ds(osb)->ds_object;
288
289
if (spa_keystore_lookup_key(spa, obja, FTAG, &dcka) != 0)
290
return (B_FALSE);
291
if (spa_keystore_lookup_key(spa, objb, FTAG, &dckb) != 0) {
292
spa_keystore_dsl_key_rele(spa, dcka, FTAG);
293
return (B_FALSE);
294
}
295
296
equal = (dcka->dck_key.zk_guid == dckb->dck_key.zk_guid);
297
298
spa_keystore_dsl_key_rele(spa, dcka, FTAG);
299
spa_keystore_dsl_key_rele(spa, dckb, FTAG);
300
301
return (equal);
302
}
303
304
static int
305
spa_key_mapping_compare(const void *a, const void *b)
306
{
307
const dsl_key_mapping_t *kma = a;
308
const dsl_key_mapping_t *kmb = b;
309
310
if (kma->km_dsobj < kmb->km_dsobj)
311
return (-1);
312
if (kma->km_dsobj > kmb->km_dsobj)
313
return (1);
314
return (0);
315
}
316
317
static int
318
spa_wkey_compare(const void *a, const void *b)
319
{
320
const dsl_wrapping_key_t *wka = a;
321
const dsl_wrapping_key_t *wkb = b;
322
323
if (wka->wk_ddobj < wkb->wk_ddobj)
324
return (-1);
325
if (wka->wk_ddobj > wkb->wk_ddobj)
326
return (1);
327
return (0);
328
}
329
330
void
331
spa_keystore_init(spa_keystore_t *sk)
332
{
333
rw_init(&sk->sk_dk_lock, NULL, RW_DEFAULT, NULL);
334
rw_init(&sk->sk_km_lock, NULL, RW_DEFAULT, NULL);
335
rw_init(&sk->sk_wkeys_lock, NULL, RW_DEFAULT, NULL);
336
avl_create(&sk->sk_dsl_keys, spa_crypto_key_compare,
337
sizeof (dsl_crypto_key_t),
338
offsetof(dsl_crypto_key_t, dck_avl_link));
339
avl_create(&sk->sk_key_mappings, spa_key_mapping_compare,
340
sizeof (dsl_key_mapping_t),
341
offsetof(dsl_key_mapping_t, km_avl_link));
342
avl_create(&sk->sk_wkeys, spa_wkey_compare, sizeof (dsl_wrapping_key_t),
343
offsetof(dsl_wrapping_key_t, wk_avl_link));
344
}
345
346
void
347
spa_keystore_fini(spa_keystore_t *sk)
348
{
349
dsl_wrapping_key_t *wkey;
350
void *cookie = NULL;
351
352
ASSERT(avl_is_empty(&sk->sk_dsl_keys));
353
ASSERT(avl_is_empty(&sk->sk_key_mappings));
354
355
while ((wkey = avl_destroy_nodes(&sk->sk_wkeys, &cookie)) != NULL)
356
dsl_wrapping_key_free(wkey);
357
358
avl_destroy(&sk->sk_wkeys);
359
avl_destroy(&sk->sk_key_mappings);
360
avl_destroy(&sk->sk_dsl_keys);
361
rw_destroy(&sk->sk_wkeys_lock);
362
rw_destroy(&sk->sk_km_lock);
363
rw_destroy(&sk->sk_dk_lock);
364
}
365
366
static int
367
dsl_dir_get_encryption_root_ddobj(dsl_dir_t *dd, uint64_t *rddobj)
368
{
369
if (dd->dd_crypto_obj == 0)
370
return (SET_ERROR(ENOENT));
371
372
return (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
373
DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1, rddobj));
374
}
375
376
static int
377
dsl_dir_get_encryption_version(dsl_dir_t *dd, uint64_t *version)
378
{
379
*version = 0;
380
381
if (dd->dd_crypto_obj == 0)
382
return (SET_ERROR(ENOENT));
383
384
/* version 0 is implied by ENOENT */
385
(void) zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
386
DSL_CRYPTO_KEY_VERSION, 8, 1, version);
387
388
return (0);
389
}
390
391
boolean_t
392
dsl_dir_incompatible_encryption_version(dsl_dir_t *dd)
393
{
394
int ret;
395
uint64_t version = 0;
396
397
ret = dsl_dir_get_encryption_version(dd, &version);
398
if (ret != 0)
399
return (B_FALSE);
400
401
return (version != ZIO_CRYPT_KEY_CURRENT_VERSION);
402
}
403
404
static int
405
spa_keystore_wkey_hold_ddobj_impl(spa_t *spa, uint64_t ddobj,
406
const void *tag, dsl_wrapping_key_t **wkey_out)
407
{
408
int ret;
409
dsl_wrapping_key_t search_wkey;
410
dsl_wrapping_key_t *found_wkey;
411
412
ASSERT(RW_LOCK_HELD(&spa->spa_keystore.sk_wkeys_lock));
413
414
/* init the search wrapping key */
415
search_wkey.wk_ddobj = ddobj;
416
417
/* lookup the wrapping key */
418
found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, &search_wkey, NULL);
419
if (!found_wkey) {
420
ret = SET_ERROR(ENOENT);
421
goto error;
422
}
423
424
/* increment the refcount */
425
dsl_wrapping_key_hold(found_wkey, tag);
426
427
*wkey_out = found_wkey;
428
return (0);
429
430
error:
431
*wkey_out = NULL;
432
return (ret);
433
}
434
435
static int
436
spa_keystore_wkey_hold_dd(spa_t *spa, dsl_dir_t *dd, const void *tag,
437
dsl_wrapping_key_t **wkey_out)
438
{
439
int ret;
440
dsl_wrapping_key_t *wkey;
441
uint64_t rddobj;
442
boolean_t locked = B_FALSE;
443
444
if (!RW_WRITE_HELD(&spa->spa_keystore.sk_wkeys_lock)) {
445
rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_READER);
446
locked = B_TRUE;
447
}
448
449
/* get the ddobj that the keylocation property was inherited from */
450
ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
451
if (ret != 0)
452
goto error;
453
454
/* lookup the wkey in the avl tree */
455
ret = spa_keystore_wkey_hold_ddobj_impl(spa, rddobj, tag, &wkey);
456
if (ret != 0)
457
goto error;
458
459
/* unlock the wkey tree if we locked it */
460
if (locked)
461
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
462
463
*wkey_out = wkey;
464
return (0);
465
466
error:
467
if (locked)
468
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
469
470
*wkey_out = NULL;
471
return (ret);
472
}
473
474
int
475
dsl_crypto_can_set_keylocation(const char *dsname, const char *keylocation)
476
{
477
int ret = 0;
478
dsl_dir_t *dd = NULL;
479
dsl_pool_t *dp = NULL;
480
uint64_t rddobj;
481
482
/* hold the dsl dir */
483
ret = dsl_pool_hold(dsname, FTAG, &dp);
484
if (ret != 0)
485
goto out;
486
487
ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL);
488
if (ret != 0) {
489
dd = NULL;
490
goto out;
491
}
492
493
/* if dd is not encrypted, the value may only be "none" */
494
if (dd->dd_crypto_obj == 0) {
495
if (strcmp(keylocation, "none") != 0) {
496
ret = SET_ERROR(EACCES);
497
goto out;
498
}
499
500
ret = 0;
501
goto out;
502
}
503
504
/* check for a valid keylocation for encrypted datasets */
505
if (!zfs_prop_valid_keylocation(keylocation, B_TRUE)) {
506
ret = SET_ERROR(EINVAL);
507
goto out;
508
}
509
510
/* check that this is an encryption root */
511
ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
512
if (ret != 0)
513
goto out;
514
515
if (rddobj != dd->dd_object) {
516
ret = SET_ERROR(EACCES);
517
goto out;
518
}
519
520
dsl_dir_rele(dd, FTAG);
521
dsl_pool_rele(dp, FTAG);
522
523
return (0);
524
525
out:
526
if (dd != NULL)
527
dsl_dir_rele(dd, FTAG);
528
if (dp != NULL)
529
dsl_pool_rele(dp, FTAG);
530
531
return (ret);
532
}
533
534
static void
535
dsl_crypto_key_free(dsl_crypto_key_t *dck)
536
{
537
ASSERT0(zfs_refcount_count(&dck->dck_holds));
538
539
/* destroy the zio_crypt_key_t */
540
zio_crypt_key_destroy(&dck->dck_key);
541
542
/* free the refcount, wrapping key, and lock */
543
zfs_refcount_destroy(&dck->dck_holds);
544
if (dck->dck_wkey)
545
dsl_wrapping_key_rele(dck->dck_wkey, dck);
546
547
/* free the key */
548
kmem_free(dck, sizeof (dsl_crypto_key_t));
549
}
550
551
static void
552
dsl_crypto_key_rele(dsl_crypto_key_t *dck, const void *tag)
553
{
554
if (zfs_refcount_remove(&dck->dck_holds, tag) == 0)
555
dsl_crypto_key_free(dck);
556
}
557
558
static int
559
dsl_crypto_key_open(objset_t *mos, dsl_wrapping_key_t *wkey,
560
uint64_t dckobj, const void *tag, dsl_crypto_key_t **dck_out)
561
{
562
int ret;
563
uint64_t crypt = 0, guid = 0, version = 0;
564
uint8_t raw_keydata[MASTER_KEY_MAX_LEN];
565
uint8_t raw_hmac_keydata[SHA512_HMAC_KEYLEN];
566
uint8_t iv[WRAPPING_IV_LEN];
567
uint8_t mac[WRAPPING_MAC_LEN];
568
dsl_crypto_key_t *dck;
569
570
/* allocate and initialize the key */
571
dck = kmem_zalloc(sizeof (dsl_crypto_key_t), KM_SLEEP);
572
573
/* fetch all of the values we need from the ZAP */
574
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1,
575
&crypt);
576
if (ret != 0)
577
goto error;
578
579
/* handle a future crypto suite that we don't support */
580
if (crypt >= ZIO_CRYPT_FUNCTIONS) {
581
ret = (SET_ERROR(ZFS_ERR_CRYPTO_NOTSUP));
582
goto error;
583
}
584
585
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1, &guid);
586
if (ret != 0)
587
goto error;
588
589
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1,
590
MASTER_KEY_MAX_LEN, raw_keydata);
591
if (ret != 0)
592
goto error;
593
594
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1,
595
SHA512_HMAC_KEYLEN, raw_hmac_keydata);
596
if (ret != 0)
597
goto error;
598
599
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN,
600
iv);
601
if (ret != 0)
602
goto error;
603
604
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN,
605
mac);
606
if (ret != 0)
607
goto error;
608
609
/* the initial on-disk format for encryption did not have a version */
610
(void) zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_VERSION, 8, 1, &version);
611
612
/*
613
* Unwrap the keys. If there is an error return EACCES to indicate
614
* an authentication failure.
615
*/
616
ret = zio_crypt_key_unwrap(&wkey->wk_key, crypt, version, guid,
617
raw_keydata, raw_hmac_keydata, iv, mac, &dck->dck_key);
618
if (ret != 0) {
619
ret = SET_ERROR(EACCES);
620
goto error;
621
}
622
623
/* finish initializing the dsl_crypto_key_t */
624
zfs_refcount_create(&dck->dck_holds);
625
dsl_wrapping_key_hold(wkey, dck);
626
dck->dck_wkey = wkey;
627
dck->dck_obj = dckobj;
628
zfs_refcount_add(&dck->dck_holds, tag);
629
630
*dck_out = dck;
631
return (0);
632
633
error:
634
if (dck != NULL) {
635
memset(dck, 0, sizeof (dsl_crypto_key_t));
636
kmem_free(dck, sizeof (dsl_crypto_key_t));
637
}
638
639
*dck_out = NULL;
640
return (ret);
641
}
642
643
static int
644
spa_keystore_dsl_key_hold_impl(spa_t *spa, uint64_t dckobj, const void *tag,
645
dsl_crypto_key_t **dck_out)
646
{
647
int ret;
648
dsl_crypto_key_t search_dck;
649
dsl_crypto_key_t *found_dck;
650
651
ASSERT(RW_LOCK_HELD(&spa->spa_keystore.sk_dk_lock));
652
653
/* init the search key */
654
search_dck.dck_obj = dckobj;
655
656
/* find the matching key in the keystore */
657
found_dck = avl_find(&spa->spa_keystore.sk_dsl_keys, &search_dck, NULL);
658
if (!found_dck) {
659
ret = SET_ERROR(ENOENT);
660
goto error;
661
}
662
663
/* increment the refcount */
664
zfs_refcount_add(&found_dck->dck_holds, tag);
665
666
*dck_out = found_dck;
667
return (0);
668
669
error:
670
*dck_out = NULL;
671
return (ret);
672
}
673
674
static int
675
spa_keystore_dsl_key_hold_dd(spa_t *spa, dsl_dir_t *dd, const void *tag,
676
dsl_crypto_key_t **dck_out)
677
{
678
int ret;
679
avl_index_t where;
680
dsl_crypto_key_t *dck_io = NULL, *dck_ks = NULL;
681
dsl_wrapping_key_t *wkey = NULL;
682
uint64_t dckobj = dd->dd_crypto_obj;
683
684
/* Lookup the key in the tree of currently loaded keys */
685
rw_enter(&spa->spa_keystore.sk_dk_lock, RW_READER);
686
ret = spa_keystore_dsl_key_hold_impl(spa, dckobj, tag, &dck_ks);
687
rw_exit(&spa->spa_keystore.sk_dk_lock);
688
if (ret == 0) {
689
*dck_out = dck_ks;
690
return (0);
691
}
692
693
/* Lookup the wrapping key from the keystore */
694
ret = spa_keystore_wkey_hold_dd(spa, dd, FTAG, &wkey);
695
if (ret != 0) {
696
*dck_out = NULL;
697
return (SET_ERROR(EACCES));
698
}
699
700
/* Read the key from disk */
701
ret = dsl_crypto_key_open(spa->spa_meta_objset, wkey, dckobj,
702
tag, &dck_io);
703
if (ret != 0) {
704
dsl_wrapping_key_rele(wkey, FTAG);
705
*dck_out = NULL;
706
return (ret);
707
}
708
709
/*
710
* Add the key to the keystore. It may already exist if it was
711
* added while performing the read from disk. In this case discard
712
* it and return the key from the keystore.
713
*/
714
rw_enter(&spa->spa_keystore.sk_dk_lock, RW_WRITER);
715
ret = spa_keystore_dsl_key_hold_impl(spa, dckobj, tag, &dck_ks);
716
if (ret != 0) {
717
avl_find(&spa->spa_keystore.sk_dsl_keys, dck_io, &where);
718
avl_insert(&spa->spa_keystore.sk_dsl_keys, dck_io, where);
719
*dck_out = dck_io;
720
} else {
721
dsl_crypto_key_rele(dck_io, tag);
722
*dck_out = dck_ks;
723
}
724
725
/* Release the wrapping key (the dsl key now has a reference to it) */
726
dsl_wrapping_key_rele(wkey, FTAG);
727
rw_exit(&spa->spa_keystore.sk_dk_lock);
728
729
return (0);
730
}
731
732
void
733
spa_keystore_dsl_key_rele(spa_t *spa, dsl_crypto_key_t *dck, const void *tag)
734
{
735
rw_enter(&spa->spa_keystore.sk_dk_lock, RW_WRITER);
736
737
if (zfs_refcount_remove(&dck->dck_holds, tag) == 0) {
738
avl_remove(&spa->spa_keystore.sk_dsl_keys, dck);
739
dsl_crypto_key_free(dck);
740
}
741
742
rw_exit(&spa->spa_keystore.sk_dk_lock);
743
}
744
745
int
746
spa_keystore_load_wkey_impl(spa_t *spa, dsl_wrapping_key_t *wkey)
747
{
748
int ret;
749
avl_index_t where;
750
dsl_wrapping_key_t *found_wkey;
751
752
rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
753
754
/* insert the wrapping key into the keystore */
755
found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, wkey, &where);
756
if (found_wkey != NULL) {
757
ret = SET_ERROR(EEXIST);
758
goto error_unlock;
759
}
760
avl_insert(&spa->spa_keystore.sk_wkeys, wkey, where);
761
762
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
763
764
return (0);
765
766
error_unlock:
767
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
768
return (ret);
769
}
770
771
int
772
spa_keystore_load_wkey(const char *dsname, dsl_crypto_params_t *dcp,
773
boolean_t noop)
774
{
775
int ret;
776
dsl_dir_t *dd = NULL;
777
dsl_crypto_key_t *dck = NULL;
778
dsl_wrapping_key_t *wkey = dcp->cp_wkey;
779
dsl_pool_t *dp = NULL;
780
uint64_t rddobj, keyformat, salt, iters;
781
782
/*
783
* We don't validate the wrapping key's keyformat, salt, or iters
784
* since they will never be needed after the DCK has been wrapped.
785
*/
786
if (dcp->cp_wkey == NULL ||
787
dcp->cp_cmd != DCP_CMD_NONE ||
788
dcp->cp_crypt != ZIO_CRYPT_INHERIT ||
789
dcp->cp_keylocation != NULL)
790
return (SET_ERROR(EINVAL));
791
792
ret = dsl_pool_hold(dsname, FTAG, &dp);
793
if (ret != 0)
794
goto error;
795
796
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) {
797
ret = SET_ERROR(ENOTSUP);
798
goto error;
799
}
800
801
/* hold the dsl dir */
802
ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL);
803
if (ret != 0) {
804
dd = NULL;
805
goto error;
806
}
807
808
/* confirm that dd is the encryption root */
809
ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
810
if (ret != 0 || rddobj != dd->dd_object) {
811
ret = SET_ERROR(EINVAL);
812
goto error;
813
}
814
815
/* initialize the wkey's ddobj */
816
wkey->wk_ddobj = dd->dd_object;
817
818
/* verify that the wkey is correct by opening its dsl key */
819
ret = dsl_crypto_key_open(dp->dp_meta_objset, wkey,
820
dd->dd_crypto_obj, FTAG, &dck);
821
if (ret != 0)
822
goto error;
823
824
/* initialize the wkey encryption parameters from the DSL Crypto Key */
825
ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj,
826
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &keyformat);
827
if (ret != 0)
828
goto error;
829
830
ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj,
831
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &salt);
832
if (ret != 0)
833
goto error;
834
835
ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj,
836
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &iters);
837
if (ret != 0)
838
goto error;
839
840
ASSERT3U(keyformat, <, ZFS_KEYFORMAT_FORMATS);
841
ASSERT3U(keyformat, !=, ZFS_KEYFORMAT_NONE);
842
IMPLY(keyformat == ZFS_KEYFORMAT_PASSPHRASE, iters != 0);
843
IMPLY(keyformat == ZFS_KEYFORMAT_PASSPHRASE, salt != 0);
844
IMPLY(keyformat != ZFS_KEYFORMAT_PASSPHRASE, iters == 0);
845
IMPLY(keyformat != ZFS_KEYFORMAT_PASSPHRASE, salt == 0);
846
847
wkey->wk_keyformat = keyformat;
848
wkey->wk_salt = salt;
849
wkey->wk_iters = iters;
850
851
/*
852
* At this point we have verified the wkey and confirmed that it can
853
* be used to decrypt a DSL Crypto Key. We can simply cleanup and
854
* return if this is all the user wanted to do.
855
*/
856
if (noop)
857
goto error;
858
859
/* insert the wrapping key into the keystore */
860
ret = spa_keystore_load_wkey_impl(dp->dp_spa, wkey);
861
if (ret != 0)
862
goto error;
863
864
dsl_crypto_key_rele(dck, FTAG);
865
dsl_dir_rele(dd, FTAG);
866
dsl_pool_rele(dp, FTAG);
867
868
/* create any zvols under this ds */
869
zvol_create_minors(dsname);
870
871
return (0);
872
873
error:
874
if (dck != NULL)
875
dsl_crypto_key_rele(dck, FTAG);
876
if (dd != NULL)
877
dsl_dir_rele(dd, FTAG);
878
if (dp != NULL)
879
dsl_pool_rele(dp, FTAG);
880
881
return (ret);
882
}
883
884
int
885
spa_keystore_unload_wkey_impl(spa_t *spa, uint64_t ddobj)
886
{
887
int ret;
888
dsl_wrapping_key_t search_wkey;
889
dsl_wrapping_key_t *found_wkey;
890
891
/* init the search wrapping key */
892
search_wkey.wk_ddobj = ddobj;
893
894
rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
895
896
/* remove the wrapping key from the keystore */
897
found_wkey = avl_find(&spa->spa_keystore.sk_wkeys,
898
&search_wkey, NULL);
899
if (!found_wkey) {
900
ret = SET_ERROR(EACCES);
901
goto error_unlock;
902
} else if (zfs_refcount_count(&found_wkey->wk_refcnt) != 0) {
903
ret = SET_ERROR(EBUSY);
904
goto error_unlock;
905
}
906
avl_remove(&spa->spa_keystore.sk_wkeys, found_wkey);
907
908
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
909
910
/* free the wrapping key */
911
dsl_wrapping_key_free(found_wkey);
912
913
return (0);
914
915
error_unlock:
916
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
917
return (ret);
918
}
919
920
int
921
spa_keystore_unload_wkey(const char *dsname)
922
{
923
int ret = 0;
924
dsl_dir_t *dd = NULL;
925
dsl_pool_t *dp = NULL;
926
spa_t *spa = NULL;
927
928
ret = spa_open(dsname, &spa, FTAG);
929
if (ret != 0)
930
return (ret);
931
932
/*
933
* Wait for any outstanding txg IO to complete, releasing any
934
* remaining references on the wkey.
935
*/
936
if (spa_mode(spa) != SPA_MODE_READ)
937
txg_wait_synced(spa->spa_dsl_pool, 0);
938
939
spa_close(spa, FTAG);
940
941
/* hold the dsl dir */
942
ret = dsl_pool_hold(dsname, FTAG, &dp);
943
if (ret != 0)
944
goto error;
945
946
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) {
947
ret = (SET_ERROR(ENOTSUP));
948
goto error;
949
}
950
951
ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL);
952
if (ret != 0) {
953
dd = NULL;
954
goto error;
955
}
956
957
/* unload the wkey */
958
ret = spa_keystore_unload_wkey_impl(dp->dp_spa, dd->dd_object);
959
if (ret != 0)
960
goto error;
961
962
dsl_dir_rele(dd, FTAG);
963
dsl_pool_rele(dp, FTAG);
964
965
/* remove any zvols under this ds */
966
zvol_remove_minors(dp->dp_spa, dsname, B_TRUE);
967
968
return (0);
969
970
error:
971
if (dd != NULL)
972
dsl_dir_rele(dd, FTAG);
973
if (dp != NULL)
974
dsl_pool_rele(dp, FTAG);
975
976
return (ret);
977
}
978
979
void
980
key_mapping_add_ref(dsl_key_mapping_t *km, const void *tag)
981
{
982
ASSERT3U(zfs_refcount_count(&km->km_refcnt), >=, 1);
983
zfs_refcount_add(&km->km_refcnt, tag);
984
}
985
986
/*
987
* The locking here is a little tricky to ensure we don't cause unnecessary
988
* performance problems. We want to release a key mapping whenever someone
989
* decrements the refcount to 0, but freeing the mapping requires removing
990
* it from the spa_keystore, which requires holding sk_km_lock as a writer.
991
* Most of the time we don't want to hold this lock as a writer, since the
992
* same lock is held as a reader for each IO that needs to encrypt / decrypt
993
* data for any dataset and in practice we will only actually free the
994
* mapping after unmounting a dataset.
995
*/
996
void
997
key_mapping_rele(spa_t *spa, dsl_key_mapping_t *km, const void *tag)
998
{
999
ASSERT3U(zfs_refcount_count(&km->km_refcnt), >=, 1);
1000
1001
if (zfs_refcount_remove(&km->km_refcnt, tag) != 0)
1002
return;
1003
1004
/*
1005
* We think we are going to need to free the mapping. Add a
1006
* reference to prevent most other releasers from thinking
1007
* this might be their responsibility. This is inherently
1008
* racy, so we will confirm that we are legitimately the
1009
* last holder once we have the sk_km_lock as a writer.
1010
*/
1011
zfs_refcount_add(&km->km_refcnt, FTAG);
1012
1013
rw_enter(&spa->spa_keystore.sk_km_lock, RW_WRITER);
1014
if (zfs_refcount_remove(&km->km_refcnt, FTAG) != 0) {
1015
rw_exit(&spa->spa_keystore.sk_km_lock);
1016
return;
1017
}
1018
1019
avl_remove(&spa->spa_keystore.sk_key_mappings, km);
1020
rw_exit(&spa->spa_keystore.sk_km_lock);
1021
1022
spa_keystore_dsl_key_rele(spa, km->km_key, km);
1023
zfs_refcount_destroy(&km->km_refcnt);
1024
kmem_free(km, sizeof (dsl_key_mapping_t));
1025
}
1026
1027
int
1028
spa_keystore_create_mapping(spa_t *spa, dsl_dataset_t *ds, const void *tag,
1029
dsl_key_mapping_t **km_out)
1030
{
1031
int ret;
1032
avl_index_t where;
1033
dsl_key_mapping_t *km, *found_km;
1034
boolean_t should_free = B_FALSE;
1035
1036
/* Allocate and initialize the mapping */
1037
km = kmem_zalloc(sizeof (dsl_key_mapping_t), KM_SLEEP);
1038
zfs_refcount_create(&km->km_refcnt);
1039
1040
ret = spa_keystore_dsl_key_hold_dd(spa, ds->ds_dir, km, &km->km_key);
1041
if (ret != 0) {
1042
zfs_refcount_destroy(&km->km_refcnt);
1043
kmem_free(km, sizeof (dsl_key_mapping_t));
1044
1045
if (km_out != NULL)
1046
*km_out = NULL;
1047
return (ret);
1048
}
1049
1050
km->km_dsobj = ds->ds_object;
1051
1052
rw_enter(&spa->spa_keystore.sk_km_lock, RW_WRITER);
1053
1054
/*
1055
* If a mapping already exists, simply increment its refcount and
1056
* cleanup the one we made. We want to allocate / free outside of
1057
* the lock because this lock is also used by the zio layer to lookup
1058
* key mappings. Otherwise, use the one we created. Normally, there will
1059
* only be one active reference at a time (the objset owner), but there
1060
* are times when there could be multiple async users.
1061
*/
1062
found_km = avl_find(&spa->spa_keystore.sk_key_mappings, km, &where);
1063
if (found_km != NULL) {
1064
should_free = B_TRUE;
1065
zfs_refcount_add(&found_km->km_refcnt, tag);
1066
if (km_out != NULL)
1067
*km_out = found_km;
1068
} else {
1069
zfs_refcount_add(&km->km_refcnt, tag);
1070
avl_insert(&spa->spa_keystore.sk_key_mappings, km, where);
1071
if (km_out != NULL)
1072
*km_out = km;
1073
}
1074
1075
rw_exit(&spa->spa_keystore.sk_km_lock);
1076
1077
if (should_free) {
1078
spa_keystore_dsl_key_rele(spa, km->km_key, km);
1079
zfs_refcount_destroy(&km->km_refcnt);
1080
kmem_free(km, sizeof (dsl_key_mapping_t));
1081
}
1082
1083
return (0);
1084
}
1085
1086
int
1087
spa_keystore_remove_mapping(spa_t *spa, uint64_t dsobj, const void *tag)
1088
{
1089
int ret;
1090
dsl_key_mapping_t search_km;
1091
dsl_key_mapping_t *found_km;
1092
1093
/* init the search key mapping */
1094
search_km.km_dsobj = dsobj;
1095
1096
rw_enter(&spa->spa_keystore.sk_km_lock, RW_READER);
1097
1098
/* find the matching mapping */
1099
found_km = avl_find(&spa->spa_keystore.sk_key_mappings,
1100
&search_km, NULL);
1101
if (found_km == NULL) {
1102
ret = SET_ERROR(ENOENT);
1103
goto error_unlock;
1104
}
1105
1106
rw_exit(&spa->spa_keystore.sk_km_lock);
1107
1108
key_mapping_rele(spa, found_km, tag);
1109
1110
return (0);
1111
1112
error_unlock:
1113
rw_exit(&spa->spa_keystore.sk_km_lock);
1114
return (ret);
1115
}
1116
1117
/*
1118
* This function is primarily used by the zio and arc layer to lookup
1119
* DSL Crypto Keys for encryption. Callers must release the key with
1120
* spa_keystore_dsl_key_rele(). The function may also be called with
1121
* dck_out == NULL and tag == NULL to simply check that a key exists
1122
* without getting a reference to it.
1123
*/
1124
int
1125
spa_keystore_lookup_key(spa_t *spa, uint64_t dsobj, const void *tag,
1126
dsl_crypto_key_t **dck_out)
1127
{
1128
int ret;
1129
dsl_key_mapping_t search_km;
1130
dsl_key_mapping_t *found_km;
1131
1132
ASSERT((tag != NULL && dck_out != NULL) ||
1133
(tag == NULL && dck_out == NULL));
1134
1135
/* init the search key mapping */
1136
search_km.km_dsobj = dsobj;
1137
1138
rw_enter(&spa->spa_keystore.sk_km_lock, RW_READER);
1139
1140
/* remove the mapping from the tree */
1141
found_km = avl_find(&spa->spa_keystore.sk_key_mappings, &search_km,
1142
NULL);
1143
if (found_km == NULL) {
1144
ret = SET_ERROR(ENOENT);
1145
goto error_unlock;
1146
}
1147
1148
if (found_km && tag)
1149
zfs_refcount_add(&found_km->km_key->dck_holds, tag);
1150
1151
rw_exit(&spa->spa_keystore.sk_km_lock);
1152
1153
if (dck_out != NULL)
1154
*dck_out = found_km->km_key;
1155
return (0);
1156
1157
error_unlock:
1158
rw_exit(&spa->spa_keystore.sk_km_lock);
1159
1160
if (dck_out != NULL)
1161
*dck_out = NULL;
1162
return (ret);
1163
}
1164
1165
static int
1166
dmu_objset_check_wkey_loaded(dsl_dir_t *dd)
1167
{
1168
int ret;
1169
dsl_wrapping_key_t *wkey = NULL;
1170
1171
ret = spa_keystore_wkey_hold_dd(dd->dd_pool->dp_spa, dd, FTAG,
1172
&wkey);
1173
if (ret != 0)
1174
return (SET_ERROR(EACCES));
1175
1176
dsl_wrapping_key_rele(wkey, FTAG);
1177
1178
return (0);
1179
}
1180
1181
zfs_keystatus_t
1182
dsl_dataset_get_keystatus(dsl_dir_t *dd)
1183
{
1184
/* check if this dd has a has a dsl key */
1185
if (dd->dd_crypto_obj == 0)
1186
return (ZFS_KEYSTATUS_NONE);
1187
1188
return (dmu_objset_check_wkey_loaded(dd) == 0 ?
1189
ZFS_KEYSTATUS_AVAILABLE : ZFS_KEYSTATUS_UNAVAILABLE);
1190
}
1191
1192
static int
1193
dsl_dir_get_crypt(dsl_dir_t *dd, uint64_t *crypt)
1194
{
1195
if (dd->dd_crypto_obj == 0) {
1196
*crypt = ZIO_CRYPT_OFF;
1197
return (0);
1198
}
1199
1200
return (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
1201
DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1, crypt));
1202
}
1203
1204
static void
1205
dsl_crypto_key_sync_impl(objset_t *mos, uint64_t dckobj, uint64_t crypt,
1206
uint64_t root_ddobj, uint64_t guid, uint8_t *iv, uint8_t *mac,
1207
uint8_t *keydata, uint8_t *hmac_keydata, uint64_t keyformat,
1208
uint64_t salt, uint64_t iters, dmu_tx_t *tx)
1209
{
1210
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1,
1211
&crypt, tx));
1212
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1,
1213
&root_ddobj, tx));
1214
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1,
1215
&guid, tx));
1216
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN,
1217
iv, tx));
1218
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN,
1219
mac, tx));
1220
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1,
1221
MASTER_KEY_MAX_LEN, keydata, tx));
1222
VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1,
1223
SHA512_HMAC_KEYLEN, hmac_keydata, tx));
1224
VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_KEYFORMAT),
1225
8, 1, &keyformat, tx));
1226
VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
1227
8, 1, &salt, tx));
1228
VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
1229
8, 1, &iters, tx));
1230
}
1231
1232
static void
1233
dsl_crypto_key_sync(dsl_crypto_key_t *dck, dmu_tx_t *tx)
1234
{
1235
zio_crypt_key_t *key = &dck->dck_key;
1236
dsl_wrapping_key_t *wkey = dck->dck_wkey;
1237
uint8_t keydata[MASTER_KEY_MAX_LEN];
1238
uint8_t hmac_keydata[SHA512_HMAC_KEYLEN];
1239
uint8_t iv[WRAPPING_IV_LEN];
1240
uint8_t mac[WRAPPING_MAC_LEN];
1241
1242
ASSERT(dmu_tx_is_syncing(tx));
1243
ASSERT3U(key->zk_crypt, <, ZIO_CRYPT_FUNCTIONS);
1244
1245
/* encrypt and store the keys along with the IV and MAC */
1246
VERIFY0(zio_crypt_key_wrap(&dck->dck_wkey->wk_key, key, iv, mac,
1247
keydata, hmac_keydata));
1248
1249
/* update the ZAP with the obtained values */
1250
dsl_crypto_key_sync_impl(tx->tx_pool->dp_meta_objset, dck->dck_obj,
1251
key->zk_crypt, wkey->wk_ddobj, key->zk_guid, iv, mac, keydata,
1252
hmac_keydata, wkey->wk_keyformat, wkey->wk_salt, wkey->wk_iters,
1253
tx);
1254
}
1255
1256
typedef struct spa_keystore_change_key_args {
1257
const char *skcka_dsname;
1258
dsl_crypto_params_t *skcka_cp;
1259
} spa_keystore_change_key_args_t;
1260
1261
static int
1262
spa_keystore_change_key_check(void *arg, dmu_tx_t *tx)
1263
{
1264
int ret;
1265
dsl_dir_t *dd = NULL;
1266
dsl_pool_t *dp = dmu_tx_pool(tx);
1267
spa_keystore_change_key_args_t *skcka = arg;
1268
dsl_crypto_params_t *dcp = skcka->skcka_cp;
1269
uint64_t rddobj;
1270
1271
/* check for the encryption feature */
1272
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) {
1273
ret = SET_ERROR(ENOTSUP);
1274
goto error;
1275
}
1276
1277
/* check for valid key change command */
1278
if (dcp->cp_cmd != DCP_CMD_NEW_KEY &&
1279
dcp->cp_cmd != DCP_CMD_INHERIT &&
1280
dcp->cp_cmd != DCP_CMD_FORCE_NEW_KEY &&
1281
dcp->cp_cmd != DCP_CMD_FORCE_INHERIT) {
1282
ret = SET_ERROR(EINVAL);
1283
goto error;
1284
}
1285
1286
/* hold the dd */
1287
ret = dsl_dir_hold(dp, skcka->skcka_dsname, FTAG, &dd, NULL);
1288
if (ret != 0) {
1289
dd = NULL;
1290
goto error;
1291
}
1292
1293
/* verify that the dataset is encrypted */
1294
if (dd->dd_crypto_obj == 0) {
1295
ret = SET_ERROR(EINVAL);
1296
goto error;
1297
}
1298
1299
/* clones must always use their origin's key */
1300
if (dsl_dir_is_clone(dd)) {
1301
ret = SET_ERROR(EINVAL);
1302
goto error;
1303
}
1304
1305
/* lookup the ddobj we are inheriting the keylocation from */
1306
ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
1307
if (ret != 0)
1308
goto error;
1309
1310
/* Handle inheritance */
1311
if (dcp->cp_cmd == DCP_CMD_INHERIT ||
1312
dcp->cp_cmd == DCP_CMD_FORCE_INHERIT) {
1313
/* no other encryption params should be given */
1314
if (dcp->cp_crypt != ZIO_CRYPT_INHERIT ||
1315
dcp->cp_keylocation != NULL ||
1316
dcp->cp_wkey != NULL) {
1317
ret = SET_ERROR(EINVAL);
1318
goto error;
1319
}
1320
1321
/* check that this is an encryption root */
1322
if (dd->dd_object != rddobj) {
1323
ret = SET_ERROR(EINVAL);
1324
goto error;
1325
}
1326
1327
/* check that the parent is encrypted */
1328
if (dd->dd_parent->dd_crypto_obj == 0) {
1329
ret = SET_ERROR(EINVAL);
1330
goto error;
1331
}
1332
1333
/* if we are rewrapping check that both keys are loaded */
1334
if (dcp->cp_cmd == DCP_CMD_INHERIT) {
1335
ret = dmu_objset_check_wkey_loaded(dd);
1336
if (ret != 0)
1337
goto error;
1338
1339
ret = dmu_objset_check_wkey_loaded(dd->dd_parent);
1340
if (ret != 0)
1341
goto error;
1342
}
1343
1344
dsl_dir_rele(dd, FTAG);
1345
return (0);
1346
}
1347
1348
/* handle forcing an encryption root without rewrapping */
1349
if (dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY) {
1350
/* no other encryption params should be given */
1351
if (dcp->cp_crypt != ZIO_CRYPT_INHERIT ||
1352
dcp->cp_keylocation != NULL ||
1353
dcp->cp_wkey != NULL) {
1354
ret = SET_ERROR(EINVAL);
1355
goto error;
1356
}
1357
1358
/* check that this is not an encryption root */
1359
if (dd->dd_object == rddobj) {
1360
ret = SET_ERROR(EINVAL);
1361
goto error;
1362
}
1363
1364
dsl_dir_rele(dd, FTAG);
1365
return (0);
1366
}
1367
1368
/* crypt cannot be changed after creation */
1369
if (dcp->cp_crypt != ZIO_CRYPT_INHERIT) {
1370
ret = SET_ERROR(EINVAL);
1371
goto error;
1372
}
1373
1374
/* we are not inheritting our parent's wkey so we need one ourselves */
1375
if (dcp->cp_wkey == NULL) {
1376
ret = SET_ERROR(EINVAL);
1377
goto error;
1378
}
1379
1380
/* check for a valid keyformat for the new wrapping key */
1381
if (dcp->cp_wkey->wk_keyformat >= ZFS_KEYFORMAT_FORMATS ||
1382
dcp->cp_wkey->wk_keyformat == ZFS_KEYFORMAT_NONE) {
1383
ret = SET_ERROR(EINVAL);
1384
goto error;
1385
}
1386
1387
/*
1388
* If this dataset is not currently an encryption root we need a new
1389
* keylocation for this dataset's new wrapping key. Otherwise we can
1390
* just keep the one we already had.
1391
*/
1392
if (dd->dd_object != rddobj && dcp->cp_keylocation == NULL) {
1393
ret = SET_ERROR(EINVAL);
1394
goto error;
1395
}
1396
1397
/* check that the keylocation is valid if it is not NULL */
1398
if (dcp->cp_keylocation != NULL &&
1399
!zfs_prop_valid_keylocation(dcp->cp_keylocation, B_TRUE)) {
1400
ret = SET_ERROR(EINVAL);
1401
goto error;
1402
}
1403
1404
/* passphrases require pbkdf2 salt and iters */
1405
if (dcp->cp_wkey->wk_keyformat == ZFS_KEYFORMAT_PASSPHRASE) {
1406
if (dcp->cp_wkey->wk_salt == 0 ||
1407
dcp->cp_wkey->wk_iters < MIN_PBKDF2_ITERATIONS) {
1408
ret = SET_ERROR(EINVAL);
1409
goto error;
1410
}
1411
} else {
1412
if (dcp->cp_wkey->wk_salt != 0 || dcp->cp_wkey->wk_iters != 0) {
1413
ret = SET_ERROR(EINVAL);
1414
goto error;
1415
}
1416
}
1417
1418
/* make sure the dd's wkey is loaded */
1419
ret = dmu_objset_check_wkey_loaded(dd);
1420
if (ret != 0)
1421
goto error;
1422
1423
dsl_dir_rele(dd, FTAG);
1424
1425
return (0);
1426
1427
error:
1428
if (dd != NULL)
1429
dsl_dir_rele(dd, FTAG);
1430
1431
return (ret);
1432
}
1433
1434
/*
1435
* This function deals with the intricacies of updating wrapping
1436
* key references and encryption roots recursively in the event
1437
* of a call to 'zfs change-key' or 'zfs promote'. The 'skip'
1438
* parameter should always be set to B_FALSE when called
1439
* externally.
1440
*/
1441
static void
1442
spa_keystore_change_key_sync_impl(uint64_t rddobj, uint64_t ddobj,
1443
uint64_t new_rddobj, dsl_wrapping_key_t *wkey, boolean_t skip,
1444
dmu_tx_t *tx)
1445
{
1446
int ret;
1447
zap_cursor_t *zc;
1448
zap_attribute_t *za;
1449
dsl_pool_t *dp = dmu_tx_pool(tx);
1450
dsl_dir_t *dd = NULL;
1451
dsl_crypto_key_t *dck = NULL;
1452
uint64_t curr_rddobj;
1453
1454
ASSERT(RW_WRITE_HELD(&dp->dp_spa->spa_keystore.sk_wkeys_lock));
1455
1456
/* hold the dd */
1457
VERIFY0(dsl_dir_hold_obj(dp, ddobj, NULL, FTAG, &dd));
1458
1459
/* ignore special dsl dirs */
1460
if (dd->dd_myname[0] == '$' || dd->dd_myname[0] == '%') {
1461
dsl_dir_rele(dd, FTAG);
1462
return;
1463
}
1464
1465
ret = dsl_dir_get_encryption_root_ddobj(dd, &curr_rddobj);
1466
VERIFY(ret == 0 || ret == ENOENT);
1467
1468
/*
1469
* Stop recursing if this dsl dir didn't inherit from the root
1470
* or if this dd is a clone.
1471
*/
1472
if (ret == ENOENT ||
1473
(!skip && (curr_rddobj != rddobj || dsl_dir_is_clone(dd)))) {
1474
dsl_dir_rele(dd, FTAG);
1475
return;
1476
}
1477
1478
/*
1479
* If we don't have a wrapping key just update the dck to reflect the
1480
* new encryption root. Otherwise rewrap the entire dck and re-sync it
1481
* to disk. If skip is set, we don't do any of this work.
1482
*/
1483
if (!skip) {
1484
if (wkey == NULL) {
1485
VERIFY0(zap_update(dp->dp_meta_objset,
1486
dd->dd_crypto_obj,
1487
DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1,
1488
&new_rddobj, tx));
1489
} else {
1490
VERIFY0(spa_keystore_dsl_key_hold_dd(dp->dp_spa, dd,
1491
FTAG, &dck));
1492
dsl_wrapping_key_hold(wkey, dck);
1493
dsl_wrapping_key_rele(dck->dck_wkey, dck);
1494
dck->dck_wkey = wkey;
1495
dsl_crypto_key_sync(dck, tx);
1496
spa_keystore_dsl_key_rele(dp->dp_spa, dck, FTAG);
1497
}
1498
}
1499
1500
zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1501
za = zap_attribute_alloc();
1502
1503
/* Recurse into all child dsl dirs. */
1504
for (zap_cursor_init(zc, dp->dp_meta_objset,
1505
dsl_dir_phys(dd)->dd_child_dir_zapobj);
1506
zap_cursor_retrieve(zc, za) == 0;
1507
zap_cursor_advance(zc)) {
1508
spa_keystore_change_key_sync_impl(rddobj,
1509
za->za_first_integer, new_rddobj, wkey, B_FALSE, tx);
1510
}
1511
zap_cursor_fini(zc);
1512
1513
/*
1514
* Recurse into all dsl dirs of clones. We utilize the skip parameter
1515
* here so that we don't attempt to process the clones directly. This
1516
* is because the clone and its origin share the same dck, which has
1517
* already been updated.
1518
*/
1519
for (zap_cursor_init(zc, dp->dp_meta_objset,
1520
dsl_dir_phys(dd)->dd_clones);
1521
zap_cursor_retrieve(zc, za) == 0;
1522
zap_cursor_advance(zc)) {
1523
dsl_dataset_t *clone;
1524
1525
VERIFY0(dsl_dataset_hold_obj(dp, za->za_first_integer,
1526
FTAG, &clone));
1527
spa_keystore_change_key_sync_impl(rddobj,
1528
clone->ds_dir->dd_object, new_rddobj, wkey, B_TRUE, tx);
1529
dsl_dataset_rele(clone, FTAG);
1530
}
1531
zap_cursor_fini(zc);
1532
1533
zap_attribute_free(za);
1534
kmem_free(zc, sizeof (zap_cursor_t));
1535
1536
dsl_dir_rele(dd, FTAG);
1537
}
1538
1539
static void
1540
spa_keystore_change_key_sync(void *arg, dmu_tx_t *tx)
1541
{
1542
dsl_dataset_t *ds;
1543
avl_index_t where;
1544
dsl_pool_t *dp = dmu_tx_pool(tx);
1545
spa_t *spa = dp->dp_spa;
1546
spa_keystore_change_key_args_t *skcka = arg;
1547
dsl_crypto_params_t *dcp = skcka->skcka_cp;
1548
dsl_wrapping_key_t *wkey = NULL, *found_wkey;
1549
dsl_wrapping_key_t wkey_search;
1550
const char *keylocation = dcp->cp_keylocation;
1551
uint64_t rddobj, new_rddobj;
1552
1553
/* create and initialize the wrapping key */
1554
VERIFY0(dsl_dataset_hold(dp, skcka->skcka_dsname, FTAG, &ds));
1555
ASSERT(!ds->ds_is_snapshot);
1556
1557
if (dcp->cp_cmd == DCP_CMD_NEW_KEY ||
1558
dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY) {
1559
/*
1560
* We are changing to a new wkey. Set additional properties
1561
* which can be sent along with this ioctl. Note that this
1562
* command can set keylocation even if it can't normally be
1563
* set via 'zfs set' due to a non-local keylocation.
1564
*/
1565
if (dcp->cp_cmd == DCP_CMD_NEW_KEY) {
1566
wkey = dcp->cp_wkey;
1567
wkey->wk_ddobj = ds->ds_dir->dd_object;
1568
} else {
1569
keylocation = "prompt";
1570
}
1571
1572
if (keylocation != NULL) {
1573
dsl_prop_set_sync_impl(ds,
1574
zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
1575
ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1,
1576
keylocation, tx);
1577
}
1578
1579
VERIFY0(dsl_dir_get_encryption_root_ddobj(ds->ds_dir, &rddobj));
1580
new_rddobj = ds->ds_dir->dd_object;
1581
} else {
1582
/*
1583
* We are inheritting the parent's wkey. Unset any local
1584
* keylocation and grab a reference to the wkey.
1585
*/
1586
if (dcp->cp_cmd == DCP_CMD_INHERIT) {
1587
VERIFY0(spa_keystore_wkey_hold_dd(spa,
1588
ds->ds_dir->dd_parent, FTAG, &wkey));
1589
}
1590
1591
dsl_prop_set_sync_impl(ds,
1592
zfs_prop_to_name(ZFS_PROP_KEYLOCATION), ZPROP_SRC_NONE,
1593
0, 0, NULL, tx);
1594
1595
rddobj = ds->ds_dir->dd_object;
1596
VERIFY0(dsl_dir_get_encryption_root_ddobj(ds->ds_dir->dd_parent,
1597
&new_rddobj));
1598
}
1599
1600
if (wkey == NULL) {
1601
ASSERT(dcp->cp_cmd == DCP_CMD_FORCE_INHERIT ||
1602
dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY);
1603
}
1604
1605
rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
1606
1607
/* recurse through all children and rewrap their keys */
1608
spa_keystore_change_key_sync_impl(rddobj, ds->ds_dir->dd_object,
1609
new_rddobj, wkey, B_FALSE, tx);
1610
1611
/*
1612
* All references to the old wkey should be released now (if it
1613
* existed). Replace the wrapping key.
1614
*/
1615
wkey_search.wk_ddobj = ds->ds_dir->dd_object;
1616
found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, &wkey_search, NULL);
1617
if (found_wkey != NULL) {
1618
ASSERT0(zfs_refcount_count(&found_wkey->wk_refcnt));
1619
avl_remove(&spa->spa_keystore.sk_wkeys, found_wkey);
1620
dsl_wrapping_key_free(found_wkey);
1621
}
1622
1623
if (dcp->cp_cmd == DCP_CMD_NEW_KEY) {
1624
avl_find(&spa->spa_keystore.sk_wkeys, wkey, &where);
1625
avl_insert(&spa->spa_keystore.sk_wkeys, wkey, where);
1626
} else if (wkey != NULL) {
1627
dsl_wrapping_key_rele(wkey, FTAG);
1628
}
1629
1630
rw_exit(&spa->spa_keystore.sk_wkeys_lock);
1631
1632
dsl_dataset_rele(ds, FTAG);
1633
}
1634
1635
int
1636
spa_keystore_change_key(const char *dsname, dsl_crypto_params_t *dcp)
1637
{
1638
spa_keystore_change_key_args_t skcka;
1639
1640
/* initialize the args struct */
1641
skcka.skcka_dsname = dsname;
1642
skcka.skcka_cp = dcp;
1643
1644
/*
1645
* Perform the actual work in syncing context. The blocks modified
1646
* here could be calculated but it would require holding the pool
1647
* lock and traversing all of the datasets that will have their keys
1648
* changed.
1649
*/
1650
return (dsl_sync_task(dsname, spa_keystore_change_key_check,
1651
spa_keystore_change_key_sync, &skcka, 15,
1652
ZFS_SPACE_CHECK_RESERVED));
1653
}
1654
1655
int
1656
dsl_dir_rename_crypt_check(dsl_dir_t *dd, dsl_dir_t *newparent)
1657
{
1658
int ret;
1659
uint64_t curr_rddobj, parent_rddobj;
1660
1661
if (dd->dd_crypto_obj == 0)
1662
return (0);
1663
1664
ret = dsl_dir_get_encryption_root_ddobj(dd, &curr_rddobj);
1665
if (ret != 0)
1666
goto error;
1667
1668
/*
1669
* if this is not an encryption root, we must make sure we are not
1670
* moving dd to a new encryption root
1671
*/
1672
if (dd->dd_object != curr_rddobj) {
1673
ret = dsl_dir_get_encryption_root_ddobj(newparent,
1674
&parent_rddobj);
1675
if (ret != 0)
1676
goto error;
1677
1678
if (parent_rddobj != curr_rddobj) {
1679
ret = SET_ERROR(EACCES);
1680
goto error;
1681
}
1682
}
1683
1684
return (0);
1685
1686
error:
1687
return (ret);
1688
}
1689
1690
/*
1691
* Check to make sure that a promote from targetdd to origindd will not require
1692
* any key rewraps.
1693
*/
1694
int
1695
dsl_dataset_promote_crypt_check(dsl_dir_t *target, dsl_dir_t *origin)
1696
{
1697
int ret;
1698
uint64_t rddobj, op_rddobj, tp_rddobj;
1699
1700
/* If the dataset is not encrypted we don't need to check anything */
1701
if (origin->dd_crypto_obj == 0)
1702
return (0);
1703
1704
/*
1705
* If we are not changing the first origin snapshot in a chain
1706
* the encryption root won't change either.
1707
*/
1708
if (dsl_dir_is_clone(origin))
1709
return (0);
1710
1711
/*
1712
* If the origin is the encryption root we will update
1713
* the DSL Crypto Key to point to the target instead.
1714
*/
1715
ret = dsl_dir_get_encryption_root_ddobj(origin, &rddobj);
1716
if (ret != 0)
1717
return (ret);
1718
1719
if (rddobj == origin->dd_object)
1720
return (0);
1721
1722
/*
1723
* The origin is inheriting its encryption root from its parent.
1724
* Check that the parent of the target has the same encryption root.
1725
*/
1726
ret = dsl_dir_get_encryption_root_ddobj(origin->dd_parent, &op_rddobj);
1727
if (ret == ENOENT)
1728
return (SET_ERROR(EACCES));
1729
else if (ret != 0)
1730
return (ret);
1731
1732
ret = dsl_dir_get_encryption_root_ddobj(target->dd_parent, &tp_rddobj);
1733
if (ret == ENOENT)
1734
return (SET_ERROR(EACCES));
1735
else if (ret != 0)
1736
return (ret);
1737
1738
if (op_rddobj != tp_rddobj)
1739
return (SET_ERROR(EACCES));
1740
1741
return (0);
1742
}
1743
1744
void
1745
dsl_dataset_promote_crypt_sync(dsl_dir_t *target, dsl_dir_t *origin,
1746
dmu_tx_t *tx)
1747
{
1748
uint64_t rddobj;
1749
dsl_pool_t *dp = target->dd_pool;
1750
dsl_dataset_t *targetds;
1751
dsl_dataset_t *originds;
1752
char *keylocation;
1753
1754
if (origin->dd_crypto_obj == 0)
1755
return;
1756
if (dsl_dir_is_clone(origin))
1757
return;
1758
1759
VERIFY0(dsl_dir_get_encryption_root_ddobj(origin, &rddobj));
1760
1761
if (rddobj != origin->dd_object)
1762
return;
1763
1764
/*
1765
* If the target is being promoted to the encryption root update the
1766
* DSL Crypto Key and keylocation to reflect that. We also need to
1767
* update the DSL Crypto Keys of all children inheritting their
1768
* encryption root to point to the new target. Otherwise, the check
1769
* function ensured that the encryption root will not change.
1770
*/
1771
keylocation = kmem_alloc(ZAP_MAXVALUELEN, KM_SLEEP);
1772
1773
VERIFY0(dsl_dataset_hold_obj(dp,
1774
dsl_dir_phys(target)->dd_head_dataset_obj, FTAG, &targetds));
1775
VERIFY0(dsl_dataset_hold_obj(dp,
1776
dsl_dir_phys(origin)->dd_head_dataset_obj, FTAG, &originds));
1777
1778
VERIFY0(dsl_prop_get_dd(origin, zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
1779
1, ZAP_MAXVALUELEN, keylocation, NULL, B_FALSE));
1780
dsl_prop_set_sync_impl(targetds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
1781
ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1, keylocation, tx);
1782
dsl_prop_set_sync_impl(originds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
1783
ZPROP_SRC_NONE, 0, 0, NULL, tx);
1784
1785
rw_enter(&dp->dp_spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
1786
spa_keystore_change_key_sync_impl(rddobj, origin->dd_object,
1787
target->dd_object, NULL, B_FALSE, tx);
1788
rw_exit(&dp->dp_spa->spa_keystore.sk_wkeys_lock);
1789
1790
dsl_dataset_rele(targetds, FTAG);
1791
dsl_dataset_rele(originds, FTAG);
1792
kmem_free(keylocation, ZAP_MAXVALUELEN);
1793
}
1794
1795
int
1796
dmu_objset_create_crypt_check(dsl_dir_t *parentdd, dsl_crypto_params_t *dcp,
1797
boolean_t *will_encrypt)
1798
{
1799
int ret;
1800
uint64_t pcrypt, crypt;
1801
dsl_crypto_params_t dummy_dcp = { 0 };
1802
1803
if (will_encrypt != NULL)
1804
*will_encrypt = B_FALSE;
1805
1806
if (dcp == NULL)
1807
dcp = &dummy_dcp;
1808
1809
if (dcp->cp_cmd != DCP_CMD_NONE)
1810
return (SET_ERROR(EINVAL));
1811
1812
if (parentdd != NULL) {
1813
ret = dsl_dir_get_crypt(parentdd, &pcrypt);
1814
if (ret != 0)
1815
return (ret);
1816
} else {
1817
pcrypt = ZIO_CRYPT_OFF;
1818
}
1819
1820
crypt = (dcp->cp_crypt == ZIO_CRYPT_INHERIT) ? pcrypt : dcp->cp_crypt;
1821
1822
ASSERT3U(pcrypt, !=, ZIO_CRYPT_INHERIT);
1823
ASSERT3U(crypt, !=, ZIO_CRYPT_INHERIT);
1824
1825
/* check for valid dcp with no encryption (inherited or local) */
1826
if (crypt == ZIO_CRYPT_OFF) {
1827
/* Must not specify encryption params */
1828
if (dcp->cp_wkey != NULL ||
1829
(dcp->cp_keylocation != NULL &&
1830
strcmp(dcp->cp_keylocation, "none") != 0))
1831
return (SET_ERROR(EINVAL));
1832
1833
return (0);
1834
}
1835
1836
if (will_encrypt != NULL)
1837
*will_encrypt = B_TRUE;
1838
1839
/*
1840
* We will now definitely be encrypting. Check the feature flag. When
1841
* creating the pool the caller will check this for us since we won't
1842
* technically have the feature activated yet.
1843
*/
1844
if (parentdd != NULL &&
1845
!spa_feature_is_enabled(parentdd->dd_pool->dp_spa,
1846
SPA_FEATURE_ENCRYPTION)) {
1847
return (SET_ERROR(EOPNOTSUPP));
1848
}
1849
1850
/* Check for errata #4 (encryption enabled, bookmark_v2 disabled) */
1851
if (parentdd != NULL &&
1852
!spa_feature_is_enabled(parentdd->dd_pool->dp_spa,
1853
SPA_FEATURE_BOOKMARK_V2)) {
1854
return (SET_ERROR(EOPNOTSUPP));
1855
}
1856
1857
/* handle inheritance */
1858
if (dcp->cp_wkey == NULL) {
1859
ASSERT3P(parentdd, !=, NULL);
1860
1861
/* key must be fully unspecified */
1862
if (dcp->cp_keylocation != NULL)
1863
return (SET_ERROR(EINVAL));
1864
1865
/* parent must have a key to inherit */
1866
if (pcrypt == ZIO_CRYPT_OFF)
1867
return (SET_ERROR(EINVAL));
1868
1869
/* check for parent key */
1870
ret = dmu_objset_check_wkey_loaded(parentdd);
1871
if (ret != 0)
1872
return (ret);
1873
1874
return (0);
1875
}
1876
1877
/* At this point we should have a fully specified key. Check location */
1878
if (dcp->cp_keylocation == NULL ||
1879
!zfs_prop_valid_keylocation(dcp->cp_keylocation, B_TRUE))
1880
return (SET_ERROR(EINVAL));
1881
1882
/* Must have fully specified keyformat */
1883
switch (dcp->cp_wkey->wk_keyformat) {
1884
case ZFS_KEYFORMAT_HEX:
1885
case ZFS_KEYFORMAT_RAW:
1886
/* requires no pbkdf2 iters and salt */
1887
if (dcp->cp_wkey->wk_salt != 0 || dcp->cp_wkey->wk_iters != 0)
1888
return (SET_ERROR(EINVAL));
1889
break;
1890
case ZFS_KEYFORMAT_PASSPHRASE:
1891
/* requires pbkdf2 iters and salt */
1892
if (dcp->cp_wkey->wk_salt == 0 ||
1893
dcp->cp_wkey->wk_iters < MIN_PBKDF2_ITERATIONS)
1894
return (SET_ERROR(EINVAL));
1895
break;
1896
case ZFS_KEYFORMAT_NONE:
1897
default:
1898
/* keyformat must be specified and valid */
1899
return (SET_ERROR(EINVAL));
1900
}
1901
1902
return (0);
1903
}
1904
1905
void
1906
dsl_dataset_create_crypt_sync(uint64_t dsobj, dsl_dir_t *dd,
1907
dsl_dataset_t *origin, dsl_crypto_params_t *dcp, dmu_tx_t *tx)
1908
{
1909
dsl_pool_t *dp = dd->dd_pool;
1910
uint64_t crypt;
1911
dsl_wrapping_key_t *wkey;
1912
1913
/* clones always use their origin's wrapping key */
1914
if (dsl_dir_is_clone(dd)) {
1915
ASSERT0P(dcp);
1916
1917
/*
1918
* If this is an encrypted clone we just need to clone the
1919
* dck into dd. Zapify the dd so we can do that.
1920
*/
1921
if (origin->ds_dir->dd_crypto_obj != 0) {
1922
dmu_buf_will_dirty(dd->dd_dbuf, tx);
1923
dsl_dir_zapify(dd, tx);
1924
1925
dd->dd_crypto_obj =
1926
dsl_crypto_key_clone_sync(origin->ds_dir, tx);
1927
VERIFY0(zap_add(dp->dp_meta_objset, dd->dd_object,
1928
DD_FIELD_CRYPTO_KEY_OBJ, sizeof (uint64_t), 1,
1929
&dd->dd_crypto_obj, tx));
1930
}
1931
1932
return;
1933
}
1934
1935
/*
1936
* A NULL dcp at this point indicates this is the origin dataset
1937
* which does not have an objset to encrypt. Raw receives will handle
1938
* encryption separately later. In both cases we can simply return.
1939
*/
1940
if (dcp == NULL || dcp->cp_cmd == DCP_CMD_RAW_RECV)
1941
return;
1942
1943
crypt = dcp->cp_crypt;
1944
wkey = dcp->cp_wkey;
1945
1946
/* figure out the effective crypt */
1947
if (crypt == ZIO_CRYPT_INHERIT && dd->dd_parent != NULL)
1948
VERIFY0(dsl_dir_get_crypt(dd->dd_parent, &crypt));
1949
1950
/* if we aren't doing encryption just return */
1951
if (crypt == ZIO_CRYPT_OFF || crypt == ZIO_CRYPT_INHERIT)
1952
return;
1953
1954
/* zapify the dd so that we can add the crypto key obj to it */
1955
dmu_buf_will_dirty(dd->dd_dbuf, tx);
1956
dsl_dir_zapify(dd, tx);
1957
1958
/* use the new key if given or inherit from the parent */
1959
if (wkey == NULL) {
1960
VERIFY0(spa_keystore_wkey_hold_dd(dp->dp_spa,
1961
dd->dd_parent, FTAG, &wkey));
1962
} else {
1963
wkey->wk_ddobj = dd->dd_object;
1964
}
1965
1966
ASSERT3P(wkey, !=, NULL);
1967
1968
/* Create or clone the DSL crypto key and activate the feature */
1969
dd->dd_crypto_obj = dsl_crypto_key_create_sync(crypt, wkey, tx);
1970
VERIFY0(zap_add(dp->dp_meta_objset, dd->dd_object,
1971
DD_FIELD_CRYPTO_KEY_OBJ, sizeof (uint64_t), 1, &dd->dd_crypto_obj,
1972
tx));
1973
dsl_dataset_activate_feature(dsobj, SPA_FEATURE_ENCRYPTION,
1974
(void *)B_TRUE, tx);
1975
1976
/*
1977
* If we inherited the wrapping key we release our reference now.
1978
* Otherwise, this is a new key and we need to load it into the
1979
* keystore.
1980
*/
1981
if (dcp->cp_wkey == NULL) {
1982
dsl_wrapping_key_rele(wkey, FTAG);
1983
} else {
1984
VERIFY0(spa_keystore_load_wkey_impl(dp->dp_spa, wkey));
1985
}
1986
}
1987
1988
typedef struct dsl_crypto_recv_key_arg {
1989
uint64_t dcrka_dsobj;
1990
uint64_t dcrka_fromobj;
1991
dmu_objset_type_t dcrka_ostype;
1992
nvlist_t *dcrka_nvl;
1993
boolean_t dcrka_do_key;
1994
} dsl_crypto_recv_key_arg_t;
1995
1996
static int
1997
dsl_crypto_recv_raw_objset_check(dsl_dataset_t *ds, dsl_dataset_t *fromds,
1998
dmu_objset_type_t ostype, nvlist_t *nvl, dmu_tx_t *tx)
1999
{
2000
int ret;
2001
objset_t *os;
2002
dnode_t *mdn;
2003
uint8_t *buf = NULL;
2004
uint_t len;
2005
uint64_t intval, nlevels, blksz, ibs;
2006
uint64_t nblkptr, maxblkid;
2007
2008
if (ostype != DMU_OST_ZFS && ostype != DMU_OST_ZVOL)
2009
return (SET_ERROR(EINVAL));
2010
2011
/* raw receives also need info about the structure of the metadnode */
2012
ret = nvlist_lookup_uint64(nvl, "mdn_compress", &intval);
2013
if (ret != 0 || intval >= ZIO_COMPRESS_LEGACY_FUNCTIONS)
2014
return (SET_ERROR(EINVAL));
2015
2016
ret = nvlist_lookup_uint64(nvl, "mdn_checksum", &intval);
2017
if (ret != 0 || intval >= ZIO_CHECKSUM_LEGACY_FUNCTIONS)
2018
return (SET_ERROR(EINVAL));
2019
2020
ret = nvlist_lookup_uint64(nvl, "mdn_nlevels", &nlevels);
2021
if (ret != 0 || nlevels > DN_MAX_LEVELS)
2022
return (SET_ERROR(EINVAL));
2023
2024
ret = nvlist_lookup_uint64(nvl, "mdn_blksz", &blksz);
2025
if (ret != 0 || blksz < SPA_MINBLOCKSIZE)
2026
return (SET_ERROR(EINVAL));
2027
else if (blksz > spa_maxblocksize(tx->tx_pool->dp_spa))
2028
return (SET_ERROR(ENOTSUP));
2029
2030
ret = nvlist_lookup_uint64(nvl, "mdn_indblkshift", &ibs);
2031
if (ret != 0 || ibs < DN_MIN_INDBLKSHIFT || ibs > DN_MAX_INDBLKSHIFT)
2032
return (SET_ERROR(ENOTSUP));
2033
2034
ret = nvlist_lookup_uint64(nvl, "mdn_nblkptr", &nblkptr);
2035
if (ret != 0 || nblkptr != DN_MAX_NBLKPTR)
2036
return (SET_ERROR(ENOTSUP));
2037
2038
ret = nvlist_lookup_uint64(nvl, "mdn_maxblkid", &maxblkid);
2039
if (ret != 0)
2040
return (SET_ERROR(EINVAL));
2041
2042
ret = nvlist_lookup_uint8_array(nvl, "portable_mac", &buf, &len);
2043
if (ret != 0 || len != ZIO_OBJSET_MAC_LEN)
2044
return (SET_ERROR(EINVAL));
2045
2046
ret = dmu_objset_from_ds(ds, &os);
2047
if (ret != 0)
2048
return (ret);
2049
2050
mdn = DMU_META_DNODE(os);
2051
2052
/*
2053
* If we already created the objset, make sure its unchangeable
2054
* properties match the ones received in the nvlist.
2055
*/
2056
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2057
if (!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) &&
2058
(mdn->dn_nlevels != nlevels || mdn->dn_datablksz != blksz ||
2059
mdn->dn_indblkshift != ibs || mdn->dn_nblkptr != nblkptr)) {
2060
rrw_exit(&ds->ds_bp_rwlock, FTAG);
2061
return (SET_ERROR(EINVAL));
2062
}
2063
rrw_exit(&ds->ds_bp_rwlock, FTAG);
2064
2065
/*
2066
* Check that the ivset guid of the fromds matches the one from the
2067
* send stream. Older versions of the encryption code did not have
2068
* an ivset guid on the from dataset and did not send one in the
2069
* stream. For these streams we provide the
2070
* zfs_disable_ivset_guid_check tunable to allow these datasets to
2071
* be received with a generated ivset guid.
2072
*/
2073
if (fromds != NULL && !zfs_disable_ivset_guid_check) {
2074
uint64_t from_ivset_guid = 0;
2075
intval = 0;
2076
2077
(void) nvlist_lookup_uint64(nvl, "from_ivset_guid", &intval);
2078
(void) zap_lookup(tx->tx_pool->dp_meta_objset,
2079
fromds->ds_object, DS_FIELD_IVSET_GUID,
2080
sizeof (from_ivset_guid), 1, &from_ivset_guid);
2081
2082
if (intval == 0 || from_ivset_guid == 0)
2083
return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISSING));
2084
2085
if (intval != from_ivset_guid)
2086
return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISMATCH));
2087
}
2088
2089
return (0);
2090
}
2091
2092
static void
2093
dsl_crypto_recv_raw_objset_sync(dsl_dataset_t *ds, dmu_objset_type_t ostype,
2094
nvlist_t *nvl, dmu_tx_t *tx)
2095
{
2096
dsl_pool_t *dp = tx->tx_pool;
2097
objset_t *os;
2098
dnode_t *mdn;
2099
zio_t *zio;
2100
uint8_t *portable_mac;
2101
uint_t len;
2102
uint64_t compress, checksum, nlevels, blksz, ibs, maxblkid;
2103
boolean_t newds = B_FALSE;
2104
2105
VERIFY0(dmu_objset_from_ds(ds, &os));
2106
mdn = DMU_META_DNODE(os);
2107
2108
/*
2109
* Fetch the values we need from the nvlist. "to_ivset_guid" must
2110
* be set on the snapshot, which doesn't exist yet. The receive
2111
* code will take care of this for us later.
2112
*/
2113
compress = fnvlist_lookup_uint64(nvl, "mdn_compress");
2114
checksum = fnvlist_lookup_uint64(nvl, "mdn_checksum");
2115
nlevels = fnvlist_lookup_uint64(nvl, "mdn_nlevels");
2116
blksz = fnvlist_lookup_uint64(nvl, "mdn_blksz");
2117
ibs = fnvlist_lookup_uint64(nvl, "mdn_indblkshift");
2118
maxblkid = fnvlist_lookup_uint64(nvl, "mdn_maxblkid");
2119
VERIFY0(nvlist_lookup_uint8_array(nvl, "portable_mac", &portable_mac,
2120
&len));
2121
2122
/* if we haven't created an objset for the ds yet, do that now */
2123
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2124
if (BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2125
(void) dmu_objset_create_impl_dnstats(dp->dp_spa, ds,
2126
dsl_dataset_get_blkptr(ds), ostype, nlevels, blksz,
2127
ibs, tx);
2128
newds = B_TRUE;
2129
}
2130
rrw_exit(&ds->ds_bp_rwlock, FTAG);
2131
2132
/*
2133
* Set the portable MAC. The local MAC will always be zero since the
2134
* incoming data will all be portable and user accounting will be
2135
* deferred until the next mount. Afterwards, flag the os to be
2136
* written out raw next time.
2137
*/
2138
arc_release(os->os_phys_buf, &os->os_phys_buf);
2139
memcpy(os->os_phys->os_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN);
2140
memset(os->os_phys->os_local_mac, 0, ZIO_OBJSET_MAC_LEN);
2141
os->os_flags &= ~OBJSET_FLAG_USERACCOUNTING_COMPLETE;
2142
os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
2143
2144
/* set metadnode compression and checksum */
2145
mdn->dn_compress = compress;
2146
mdn->dn_checksum = checksum;
2147
2148
rw_enter(&mdn->dn_struct_rwlock, RW_WRITER);
2149
dnode_new_blkid(mdn, maxblkid, tx, B_FALSE, B_TRUE);
2150
rw_exit(&mdn->dn_struct_rwlock);
2151
2152
/*
2153
* We can't normally dirty the dataset in syncing context unless
2154
* we are creating a new dataset. In this case, we perform a
2155
* pseudo txg sync here instead.
2156
*/
2157
if (newds) {
2158
dsl_dataset_dirty(ds, tx);
2159
} else {
2160
zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
2161
dsl_dataset_sync(ds, zio, tx);
2162
VERIFY0(zio_wait(zio));
2163
dsl_dataset_sync_done(ds, tx);
2164
}
2165
}
2166
2167
int
2168
dsl_crypto_recv_raw_key_check(dsl_dataset_t *ds, nvlist_t *nvl, dmu_tx_t *tx)
2169
{
2170
int ret;
2171
objset_t *mos = tx->tx_pool->dp_meta_objset;
2172
uint8_t *buf = NULL;
2173
uint_t len;
2174
uint64_t intval, key_guid, version;
2175
boolean_t is_passphrase = B_FALSE;
2176
2177
ASSERT(dsl_dataset_phys(ds)->ds_flags & DS_FLAG_INCONSISTENT);
2178
2179
/*
2180
* Read and check all the encryption values from the nvlist. We need
2181
* all of the fields of a DSL Crypto Key, as well as a fully specified
2182
* wrapping key.
2183
*/
2184
ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE, &intval);
2185
if (ret != 0 || intval <= ZIO_CRYPT_OFF)
2186
return (SET_ERROR(EINVAL));
2187
2188
/*
2189
* Flag a future crypto suite that we don't support differently, so
2190
* we can return a more useful error to the user.
2191
*/
2192
if (intval >= ZIO_CRYPT_FUNCTIONS)
2193
return (SET_ERROR(ZFS_ERR_CRYPTO_NOTSUP));
2194
2195
ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_GUID, &intval);
2196
if (ret != 0)
2197
return (SET_ERROR(EINVAL));
2198
2199
/*
2200
* If this is an incremental receive make sure the given key guid
2201
* matches the one we already have.
2202
*/
2203
if (ds->ds_dir->dd_crypto_obj != 0) {
2204
ret = zap_lookup(mos, ds->ds_dir->dd_crypto_obj,
2205
DSL_CRYPTO_KEY_GUID, 8, 1, &key_guid);
2206
if (ret != 0)
2207
return (ret);
2208
if (intval != key_guid)
2209
return (SET_ERROR(EACCES));
2210
}
2211
2212
ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY,
2213
&buf, &len);
2214
if (ret != 0 || len != MASTER_KEY_MAX_LEN)
2215
return (SET_ERROR(EINVAL));
2216
2217
ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY,
2218
&buf, &len);
2219
if (ret != 0 || len != SHA512_HMAC_KEYLEN)
2220
return (SET_ERROR(EINVAL));
2221
2222
ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_IV, &buf, &len);
2223
if (ret != 0 || len != WRAPPING_IV_LEN)
2224
return (SET_ERROR(EINVAL));
2225
2226
ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, &buf, &len);
2227
if (ret != 0 || len != WRAPPING_MAC_LEN)
2228
return (SET_ERROR(EINVAL));
2229
2230
/*
2231
* We don't support receiving old on-disk formats. The version 0
2232
* implementation protected several fields in an objset that were
2233
* not always portable during a raw receive. As a result, we call
2234
* the old version an on-disk errata #3.
2235
*/
2236
ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_VERSION, &version);
2237
if (ret != 0 || version != ZIO_CRYPT_KEY_CURRENT_VERSION)
2238
return (SET_ERROR(ENOTSUP));
2239
2240
ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_KEYFORMAT),
2241
&intval);
2242
if (ret != 0 || intval >= ZFS_KEYFORMAT_FORMATS ||
2243
intval == ZFS_KEYFORMAT_NONE)
2244
return (SET_ERROR(EINVAL));
2245
2246
is_passphrase = (intval == ZFS_KEYFORMAT_PASSPHRASE);
2247
2248
/*
2249
* for raw receives we allow any number of pbkdf2iters since there
2250
* won't be a chance for the user to change it.
2251
*/
2252
ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
2253
&intval);
2254
if (ret != 0 || (is_passphrase == (intval == 0)))
2255
return (SET_ERROR(EINVAL));
2256
2257
ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
2258
&intval);
2259
if (ret != 0 || (is_passphrase == (intval == 0)))
2260
return (SET_ERROR(EINVAL));
2261
2262
return (0);
2263
}
2264
2265
void
2266
dsl_crypto_recv_raw_key_sync(dsl_dataset_t *ds, nvlist_t *nvl, dmu_tx_t *tx)
2267
{
2268
dsl_pool_t *dp = tx->tx_pool;
2269
objset_t *mos = dp->dp_meta_objset;
2270
dsl_dir_t *dd = ds->ds_dir;
2271
uint_t len;
2272
uint64_t rddobj, one = 1;
2273
uint8_t *keydata, *hmac_keydata, *iv, *mac;
2274
uint64_t crypt, key_guid, keyformat, iters, salt;
2275
uint64_t version = ZIO_CRYPT_KEY_CURRENT_VERSION;
2276
const char *keylocation = "prompt";
2277
2278
/* lookup the values we need to create the DSL Crypto Key */
2279
crypt = fnvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE);
2280
key_guid = fnvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_GUID);
2281
keyformat = fnvlist_lookup_uint64(nvl,
2282
zfs_prop_to_name(ZFS_PROP_KEYFORMAT));
2283
iters = fnvlist_lookup_uint64(nvl,
2284
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS));
2285
salt = fnvlist_lookup_uint64(nvl,
2286
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT));
2287
VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY,
2288
&keydata, &len));
2289
VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY,
2290
&hmac_keydata, &len));
2291
VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_IV, &iv, &len));
2292
VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, &mac, &len));
2293
2294
/* if this is a new dataset setup the DSL Crypto Key. */
2295
if (dd->dd_crypto_obj == 0) {
2296
/* zapify the dsl dir so we can add the key object to it */
2297
dmu_buf_will_dirty(dd->dd_dbuf, tx);
2298
dsl_dir_zapify(dd, tx);
2299
2300
/* create the DSL Crypto Key on disk and activate the feature */
2301
dd->dd_crypto_obj = zap_create(mos,
2302
DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
2303
VERIFY0(zap_update(tx->tx_pool->dp_meta_objset,
2304
dd->dd_crypto_obj, DSL_CRYPTO_KEY_REFCOUNT,
2305
sizeof (uint64_t), 1, &one, tx));
2306
VERIFY0(zap_update(tx->tx_pool->dp_meta_objset,
2307
dd->dd_crypto_obj, DSL_CRYPTO_KEY_VERSION,
2308
sizeof (uint64_t), 1, &version, tx));
2309
2310
dsl_dataset_activate_feature(ds->ds_object,
2311
SPA_FEATURE_ENCRYPTION, (void *)B_TRUE, tx);
2312
ds->ds_feature[SPA_FEATURE_ENCRYPTION] = (void *)B_TRUE;
2313
2314
/* save the dd_crypto_obj on disk */
2315
VERIFY0(zap_add(mos, dd->dd_object, DD_FIELD_CRYPTO_KEY_OBJ,
2316
sizeof (uint64_t), 1, &dd->dd_crypto_obj, tx));
2317
2318
/*
2319
* Set the keylocation to prompt by default. If keylocation
2320
* has been provided via the properties, this will be overridden
2321
* later.
2322
*/
2323
dsl_prop_set_sync_impl(ds,
2324
zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
2325
ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1,
2326
keylocation, tx);
2327
2328
rddobj = dd->dd_object;
2329
} else {
2330
VERIFY0(dsl_dir_get_encryption_root_ddobj(dd, &rddobj));
2331
}
2332
2333
/* sync the key data to the ZAP object on disk */
2334
dsl_crypto_key_sync_impl(mos, dd->dd_crypto_obj, crypt,
2335
rddobj, key_guid, iv, mac, keydata, hmac_keydata, keyformat, salt,
2336
iters, tx);
2337
}
2338
2339
static int
2340
dsl_crypto_recv_key_check(void *arg, dmu_tx_t *tx)
2341
{
2342
int ret;
2343
dsl_crypto_recv_key_arg_t *dcrka = arg;
2344
dsl_dataset_t *ds = NULL, *fromds = NULL;
2345
2346
ret = dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_dsobj,
2347
FTAG, &ds);
2348
if (ret != 0)
2349
goto out;
2350
2351
if (dcrka->dcrka_fromobj != 0) {
2352
ret = dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_fromobj,
2353
FTAG, &fromds);
2354
if (ret != 0)
2355
goto out;
2356
}
2357
2358
ret = dsl_crypto_recv_raw_objset_check(ds, fromds,
2359
dcrka->dcrka_ostype, dcrka->dcrka_nvl, tx);
2360
if (ret != 0)
2361
goto out;
2362
2363
/*
2364
* We run this check even if we won't be doing this part of
2365
* the receive now so that we don't make the user wait until
2366
* the receive finishes to fail.
2367
*/
2368
ret = dsl_crypto_recv_raw_key_check(ds, dcrka->dcrka_nvl, tx);
2369
if (ret != 0)
2370
goto out;
2371
2372
out:
2373
if (ds != NULL)
2374
dsl_dataset_rele(ds, FTAG);
2375
if (fromds != NULL)
2376
dsl_dataset_rele(fromds, FTAG);
2377
return (ret);
2378
}
2379
2380
static void
2381
dsl_crypto_recv_key_sync(void *arg, dmu_tx_t *tx)
2382
{
2383
dsl_crypto_recv_key_arg_t *dcrka = arg;
2384
dsl_dataset_t *ds;
2385
2386
VERIFY0(dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_dsobj,
2387
FTAG, &ds));
2388
dsl_crypto_recv_raw_objset_sync(ds, dcrka->dcrka_ostype,
2389
dcrka->dcrka_nvl, tx);
2390
if (dcrka->dcrka_do_key)
2391
dsl_crypto_recv_raw_key_sync(ds, dcrka->dcrka_nvl, tx);
2392
dsl_dataset_rele(ds, FTAG);
2393
}
2394
2395
/*
2396
* This function is used to sync an nvlist representing a DSL Crypto Key and
2397
* the associated encryption parameters. The key will be written exactly as is
2398
* without wrapping it.
2399
*/
2400
int
2401
dsl_crypto_recv_raw(const char *poolname, uint64_t dsobj, uint64_t fromobj,
2402
dmu_objset_type_t ostype, nvlist_t *nvl, boolean_t do_key)
2403
{
2404
dsl_crypto_recv_key_arg_t dcrka;
2405
2406
dcrka.dcrka_dsobj = dsobj;
2407
dcrka.dcrka_fromobj = fromobj;
2408
dcrka.dcrka_ostype = ostype;
2409
dcrka.dcrka_nvl = nvl;
2410
dcrka.dcrka_do_key = do_key;
2411
2412
return (dsl_sync_task(poolname, dsl_crypto_recv_key_check,
2413
dsl_crypto_recv_key_sync, &dcrka, 1, ZFS_SPACE_CHECK_NORMAL));
2414
}
2415
2416
int
2417
dsl_crypto_populate_key_nvlist(objset_t *os, uint64_t from_ivset_guid,
2418
nvlist_t **nvl_out)
2419
{
2420
int ret;
2421
dsl_dataset_t *ds = os->os_dsl_dataset;
2422
dnode_t *mdn;
2423
uint64_t rddobj;
2424
nvlist_t *nvl = NULL;
2425
uint64_t dckobj = ds->ds_dir->dd_crypto_obj;
2426
dsl_dir_t *rdd = NULL;
2427
dsl_pool_t *dp = ds->ds_dir->dd_pool;
2428
objset_t *mos = dp->dp_meta_objset;
2429
uint64_t crypt = 0, key_guid = 0, format = 0;
2430
uint64_t iters = 0, salt = 0, version = 0;
2431
uint64_t to_ivset_guid = 0;
2432
uint8_t raw_keydata[MASTER_KEY_MAX_LEN];
2433
uint8_t raw_hmac_keydata[SHA512_HMAC_KEYLEN];
2434
uint8_t iv[WRAPPING_IV_LEN];
2435
uint8_t mac[WRAPPING_MAC_LEN];
2436
2437
ASSERT(dckobj != 0);
2438
2439
mdn = DMU_META_DNODE(os);
2440
2441
nvl = fnvlist_alloc();
2442
2443
/* lookup values from the DSL Crypto Key */
2444
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1,
2445
&crypt);
2446
if (ret != 0)
2447
goto error;
2448
2449
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1, &key_guid);
2450
if (ret != 0)
2451
goto error;
2452
2453
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1,
2454
MASTER_KEY_MAX_LEN, raw_keydata);
2455
if (ret != 0)
2456
goto error;
2457
2458
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1,
2459
SHA512_HMAC_KEYLEN, raw_hmac_keydata);
2460
if (ret != 0)
2461
goto error;
2462
2463
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN,
2464
iv);
2465
if (ret != 0)
2466
goto error;
2467
2468
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN,
2469
mac);
2470
if (ret != 0)
2471
goto error;
2472
2473
/* see zfs_disable_ivset_guid_check tunable for errata info */
2474
ret = zap_lookup(mos, ds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2475
&to_ivset_guid);
2476
if (ret != 0)
2477
ASSERT3U(dp->dp_spa->spa_errata, !=, 0);
2478
2479
/*
2480
* We don't support raw sends of legacy on-disk formats. See the
2481
* comment in dsl_crypto_recv_key_check() for details.
2482
*/
2483
ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_VERSION, 8, 1, &version);
2484
if (ret != 0 || version != ZIO_CRYPT_KEY_CURRENT_VERSION) {
2485
dp->dp_spa->spa_errata = ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
2486
ret = SET_ERROR(ENOTSUP);
2487
goto error;
2488
}
2489
2490
/*
2491
* Lookup wrapping key properties. An early version of the code did
2492
* not correctly add these values to the wrapping key or the DSL
2493
* Crypto Key on disk for non encryption roots, so to be safe we
2494
* always take the slightly circuitous route of looking it up from
2495
* the encryption root's key.
2496
*/
2497
ret = dsl_dir_get_encryption_root_ddobj(ds->ds_dir, &rddobj);
2498
if (ret != 0)
2499
goto error;
2500
2501
dsl_pool_config_enter(dp, FTAG);
2502
2503
ret = dsl_dir_hold_obj(dp, rddobj, NULL, FTAG, &rdd);
2504
if (ret != 0)
2505
goto error_unlock;
2506
2507
ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj,
2508
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &format);
2509
if (ret != 0)
2510
goto error_unlock;
2511
2512
if (format == ZFS_KEYFORMAT_PASSPHRASE) {
2513
ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj,
2514
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &iters);
2515
if (ret != 0)
2516
goto error_unlock;
2517
2518
ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj,
2519
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &salt);
2520
if (ret != 0)
2521
goto error_unlock;
2522
}
2523
2524
dsl_dir_rele(rdd, FTAG);
2525
dsl_pool_config_exit(dp, FTAG);
2526
2527
fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE, crypt);
2528
fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_GUID, key_guid);
2529
fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_VERSION, version);
2530
VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY,
2531
raw_keydata, MASTER_KEY_MAX_LEN));
2532
VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY,
2533
raw_hmac_keydata, SHA512_HMAC_KEYLEN));
2534
VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_IV, iv,
2535
WRAPPING_IV_LEN));
2536
VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, mac,
2537
WRAPPING_MAC_LEN));
2538
VERIFY0(nvlist_add_uint8_array(nvl, "portable_mac",
2539
os->os_phys->os_portable_mac, ZIO_OBJSET_MAC_LEN));
2540
fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), format);
2541
fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), iters);
2542
fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), salt);
2543
fnvlist_add_uint64(nvl, "mdn_checksum", mdn->dn_checksum);
2544
fnvlist_add_uint64(nvl, "mdn_compress", mdn->dn_compress);
2545
fnvlist_add_uint64(nvl, "mdn_nlevels", mdn->dn_nlevels);
2546
fnvlist_add_uint64(nvl, "mdn_blksz", mdn->dn_datablksz);
2547
fnvlist_add_uint64(nvl, "mdn_indblkshift", mdn->dn_indblkshift);
2548
fnvlist_add_uint64(nvl, "mdn_nblkptr", mdn->dn_nblkptr);
2549
fnvlist_add_uint64(nvl, "mdn_maxblkid", mdn->dn_maxblkid);
2550
fnvlist_add_uint64(nvl, "to_ivset_guid", to_ivset_guid);
2551
fnvlist_add_uint64(nvl, "from_ivset_guid", from_ivset_guid);
2552
2553
*nvl_out = nvl;
2554
return (0);
2555
2556
error_unlock:
2557
dsl_pool_config_exit(dp, FTAG);
2558
error:
2559
if (rdd != NULL)
2560
dsl_dir_rele(rdd, FTAG);
2561
nvlist_free(nvl);
2562
2563
*nvl_out = NULL;
2564
return (ret);
2565
}
2566
2567
uint64_t
2568
dsl_crypto_key_create_sync(uint64_t crypt, dsl_wrapping_key_t *wkey,
2569
dmu_tx_t *tx)
2570
{
2571
dsl_crypto_key_t dck;
2572
uint64_t version = ZIO_CRYPT_KEY_CURRENT_VERSION;
2573
uint64_t one = 1ULL;
2574
2575
ASSERT(dmu_tx_is_syncing(tx));
2576
ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
2577
ASSERT3U(crypt, >, ZIO_CRYPT_OFF);
2578
2579
/* create the DSL Crypto Key ZAP object */
2580
dck.dck_obj = zap_create(tx->tx_pool->dp_meta_objset,
2581
DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
2582
2583
/* fill in the key (on the stack) and sync it to disk */
2584
dck.dck_wkey = wkey;
2585
VERIFY0(zio_crypt_key_init(crypt, &dck.dck_key));
2586
2587
dsl_crypto_key_sync(&dck, tx);
2588
VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, dck.dck_obj,
2589
DSL_CRYPTO_KEY_REFCOUNT, sizeof (uint64_t), 1, &one, tx));
2590
VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, dck.dck_obj,
2591
DSL_CRYPTO_KEY_VERSION, sizeof (uint64_t), 1, &version, tx));
2592
2593
zio_crypt_key_destroy(&dck.dck_key);
2594
memset(&dck.dck_key, 0, sizeof (zio_crypt_key_t));
2595
2596
return (dck.dck_obj);
2597
}
2598
2599
uint64_t
2600
dsl_crypto_key_clone_sync(dsl_dir_t *origindd, dmu_tx_t *tx)
2601
{
2602
objset_t *mos = tx->tx_pool->dp_meta_objset;
2603
2604
ASSERT(dmu_tx_is_syncing(tx));
2605
2606
VERIFY0(zap_increment(mos, origindd->dd_crypto_obj,
2607
DSL_CRYPTO_KEY_REFCOUNT, 1, tx));
2608
2609
return (origindd->dd_crypto_obj);
2610
}
2611
2612
void
2613
dsl_crypto_key_destroy_sync(uint64_t dckobj, dmu_tx_t *tx)
2614
{
2615
objset_t *mos = tx->tx_pool->dp_meta_objset;
2616
uint64_t refcnt;
2617
2618
/* Decrement the refcount, destroy if this is the last reference */
2619
VERIFY0(zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_REFCOUNT,
2620
sizeof (uint64_t), 1, &refcnt));
2621
2622
if (refcnt != 1) {
2623
VERIFY0(zap_increment(mos, dckobj, DSL_CRYPTO_KEY_REFCOUNT,
2624
-1, tx));
2625
} else {
2626
VERIFY0(zap_destroy(mos, dckobj, tx));
2627
}
2628
}
2629
2630
void
2631
dsl_dataset_crypt_stats(dsl_dataset_t *ds, nvlist_t *nv)
2632
{
2633
uint64_t intval;
2634
dsl_dir_t *dd = ds->ds_dir;
2635
dsl_dir_t *enc_root;
2636
char buf[ZFS_MAX_DATASET_NAME_LEN];
2637
2638
if (dd->dd_crypto_obj == 0)
2639
return;
2640
2641
intval = dsl_dataset_get_keystatus(dd);
2642
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEYSTATUS, intval);
2643
2644
if (dsl_dir_get_crypt(dd, &intval) == 0)
2645
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_ENCRYPTION, intval);
2646
if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
2647
DSL_CRYPTO_KEY_GUID, 8, 1, &intval) == 0) {
2648
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEY_GUID, intval);
2649
}
2650
if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
2651
zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &intval) == 0) {
2652
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEYFORMAT, intval);
2653
}
2654
if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
2655
zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &intval) == 0) {
2656
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_PBKDF2_SALT, intval);
2657
}
2658
if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
2659
zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &intval) == 0) {
2660
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_PBKDF2_ITERS, intval);
2661
}
2662
if (zap_lookup(dd->dd_pool->dp_meta_objset, ds->ds_object,
2663
DS_FIELD_IVSET_GUID, 8, 1, &intval) == 0) {
2664
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_IVSET_GUID, intval);
2665
}
2666
2667
if (dsl_dir_get_encryption_root_ddobj(dd, &intval) == 0) {
2668
if (dsl_dir_hold_obj(dd->dd_pool, intval, NULL, FTAG,
2669
&enc_root) == 0) {
2670
dsl_dir_name(enc_root, buf);
2671
dsl_dir_rele(enc_root, FTAG);
2672
dsl_prop_nvlist_add_string(nv,
2673
ZFS_PROP_ENCRYPTION_ROOT, buf);
2674
}
2675
}
2676
}
2677
2678
int
2679
spa_crypt_get_salt(spa_t *spa, uint64_t dsobj, uint8_t *salt)
2680
{
2681
int ret;
2682
dsl_crypto_key_t *dck = NULL;
2683
2684
/* look up the key from the spa's keystore */
2685
ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
2686
if (ret != 0)
2687
goto error;
2688
2689
ret = zio_crypt_key_get_salt(&dck->dck_key, salt);
2690
if (ret != 0)
2691
goto error;
2692
2693
spa_keystore_dsl_key_rele(spa, dck, FTAG);
2694
return (0);
2695
2696
error:
2697
if (dck != NULL)
2698
spa_keystore_dsl_key_rele(spa, dck, FTAG);
2699
return (ret);
2700
}
2701
2702
/*
2703
* Objset blocks are a special case for MAC generation. These blocks have 2
2704
* 256-bit MACs which are embedded within the block itself, rather than a
2705
* single 128 bit MAC. As a result, this function handles encoding and decoding
2706
* the MACs on its own, unlike other functions in this file.
2707
*/
2708
int
2709
spa_do_crypt_objset_mac_abd(boolean_t generate, spa_t *spa, uint64_t dsobj,
2710
abd_t *abd, uint_t datalen, boolean_t byteswap)
2711
{
2712
int ret;
2713
dsl_crypto_key_t *dck = NULL;
2714
void *buf = abd_borrow_buf_copy(abd, datalen);
2715
objset_phys_t *osp = buf;
2716
uint8_t portable_mac[ZIO_OBJSET_MAC_LEN];
2717
uint8_t local_mac[ZIO_OBJSET_MAC_LEN];
2718
const uint8_t zeroed_mac[ZIO_OBJSET_MAC_LEN] = {0};
2719
2720
/* look up the key from the spa's keystore */
2721
ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
2722
if (ret != 0)
2723
goto error;
2724
2725
/* calculate both HMACs */
2726
ret = zio_crypt_do_objset_hmacs(&dck->dck_key, buf, datalen,
2727
byteswap, portable_mac, local_mac);
2728
if (ret != 0)
2729
goto error;
2730
2731
spa_keystore_dsl_key_rele(spa, dck, FTAG);
2732
2733
/* if we are generating encode the HMACs in the objset_phys_t */
2734
if (generate) {
2735
memcpy(osp->os_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN);
2736
memcpy(osp->os_local_mac, local_mac, ZIO_OBJSET_MAC_LEN);
2737
abd_return_buf_copy(abd, buf, datalen);
2738
return (0);
2739
}
2740
2741
if (memcmp(portable_mac, osp->os_portable_mac,
2742
ZIO_OBJSET_MAC_LEN) != 0) {
2743
abd_return_buf(abd, buf, datalen);
2744
return (SET_ERROR(ECKSUM));
2745
}
2746
if (memcmp(local_mac, osp->os_local_mac, ZIO_OBJSET_MAC_LEN) != 0) {
2747
/*
2748
* If the MAC is zeroed out, we failed to decrypt it.
2749
* This should only arise, at least on Linux,
2750
* if we hit edge case handling for useraccounting, since we
2751
* shouldn't get here without bailing out on error earlier
2752
* otherwise.
2753
*
2754
* So if we're in that case, we can just fall through and
2755
* special-casing noticing that it's zero will handle it
2756
* elsewhere, since we can just regenerate it.
2757
*/
2758
if (memcmp(local_mac, zeroed_mac, ZIO_OBJSET_MAC_LEN) != 0) {
2759
abd_return_buf(abd, buf, datalen);
2760
return (SET_ERROR(ECKSUM));
2761
}
2762
}
2763
2764
abd_return_buf(abd, buf, datalen);
2765
2766
return (0);
2767
2768
error:
2769
if (dck != NULL)
2770
spa_keystore_dsl_key_rele(spa, dck, FTAG);
2771
abd_return_buf(abd, buf, datalen);
2772
return (ret);
2773
}
2774
2775
int
2776
spa_do_crypt_mac_abd(boolean_t generate, spa_t *spa, uint64_t dsobj, abd_t *abd,
2777
uint_t datalen, uint8_t *mac)
2778
{
2779
int ret;
2780
dsl_crypto_key_t *dck = NULL;
2781
uint8_t *buf = abd_borrow_buf_copy(abd, datalen);
2782
uint8_t digestbuf[ZIO_DATA_MAC_LEN];
2783
2784
/* look up the key from the spa's keystore */
2785
ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
2786
if (ret != 0)
2787
goto error;
2788
2789
/* perform the hmac */
2790
ret = zio_crypt_do_hmac(&dck->dck_key, buf, datalen,
2791
digestbuf, ZIO_DATA_MAC_LEN);
2792
if (ret != 0)
2793
goto error;
2794
2795
abd_return_buf(abd, buf, datalen);
2796
spa_keystore_dsl_key_rele(spa, dck, FTAG);
2797
2798
/*
2799
* Truncate and fill in mac buffer if we were asked to generate a MAC.
2800
* Otherwise verify that the MAC matched what we expected.
2801
*/
2802
if (generate) {
2803
memcpy(mac, digestbuf, ZIO_DATA_MAC_LEN);
2804
return (0);
2805
}
2806
2807
if (memcmp(digestbuf, mac, ZIO_DATA_MAC_LEN) != 0)
2808
return (SET_ERROR(ECKSUM));
2809
2810
return (0);
2811
2812
error:
2813
if (dck != NULL)
2814
spa_keystore_dsl_key_rele(spa, dck, FTAG);
2815
abd_return_buf(abd, buf, datalen);
2816
return (ret);
2817
}
2818
2819
/*
2820
* This function serves as a multiplexer for encryption and decryption of
2821
* all blocks (except the L2ARC). For encryption, it will populate the IV,
2822
* salt, MAC, and cabd (the ciphertext). On decryption it will simply use
2823
* these fields to populate pabd (the plaintext).
2824
*/
2825
int
2826
spa_do_crypt_abd(boolean_t encrypt, spa_t *spa, const zbookmark_phys_t *zb,
2827
dmu_object_type_t ot, boolean_t dedup, boolean_t bswap, uint8_t *salt,
2828
uint8_t *iv, uint8_t *mac, uint_t datalen, abd_t *pabd, abd_t *cabd,
2829
boolean_t *no_crypt)
2830
{
2831
int ret;
2832
dsl_crypto_key_t *dck = NULL;
2833
uint8_t *plainbuf = NULL, *cipherbuf = NULL;
2834
2835
ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
2836
2837
/* look up the key from the spa's keystore */
2838
ret = spa_keystore_lookup_key(spa, zb->zb_objset, FTAG, &dck);
2839
if (ret != 0) {
2840
ret = SET_ERROR(EACCES);
2841
return (ret);
2842
}
2843
2844
if (encrypt) {
2845
plainbuf = abd_borrow_buf_copy(pabd, datalen);
2846
cipherbuf = abd_borrow_buf(cabd, datalen);
2847
} else {
2848
plainbuf = abd_borrow_buf(pabd, datalen);
2849
cipherbuf = abd_borrow_buf_copy(cabd, datalen);
2850
}
2851
2852
/*
2853
* Both encryption and decryption functions need a salt for key
2854
* generation and an IV. When encrypting a non-dedup block, we
2855
* generate the salt and IV randomly to be stored by the caller. Dedup
2856
* blocks perform a (more expensive) HMAC of the plaintext to obtain
2857
* the salt and the IV. ZIL blocks have their salt and IV generated
2858
* at allocation time in zio_alloc_zil(). On decryption, we simply use
2859
* the provided values.
2860
*/
2861
if (encrypt && ot != DMU_OT_INTENT_LOG && !dedup) {
2862
ret = zio_crypt_key_get_salt(&dck->dck_key, salt);
2863
if (ret != 0)
2864
goto error;
2865
2866
ret = zio_crypt_generate_iv(iv);
2867
if (ret != 0)
2868
goto error;
2869
} else if (encrypt && dedup) {
2870
ret = zio_crypt_generate_iv_salt_dedup(&dck->dck_key,
2871
plainbuf, datalen, iv, salt);
2872
if (ret != 0)
2873
goto error;
2874
}
2875
2876
/* call lower level function to perform encryption / decryption */
2877
ret = zio_do_crypt_data(encrypt, &dck->dck_key, ot, bswap, salt, iv,
2878
mac, datalen, plainbuf, cipherbuf, no_crypt);
2879
2880
/*
2881
* Handle injected decryption faults. Unfortunately, we cannot inject
2882
* faults for dnode blocks because we might trigger the panic in
2883
* dbuf_prepare_encrypted_dnode_leaf(), which exists because syncing
2884
* context is not prepared to handle malicious decryption failures.
2885
*/
2886
if (zio_injection_enabled && !encrypt && ot != DMU_OT_DNODE && ret == 0)
2887
ret = zio_handle_decrypt_injection(spa, zb, ot, ECKSUM);
2888
if (ret != 0)
2889
goto error;
2890
2891
if (encrypt) {
2892
abd_return_buf(pabd, plainbuf, datalen);
2893
abd_return_buf_copy(cabd, cipherbuf, datalen);
2894
} else {
2895
abd_return_buf_copy(pabd, plainbuf, datalen);
2896
abd_return_buf(cabd, cipherbuf, datalen);
2897
}
2898
2899
spa_keystore_dsl_key_rele(spa, dck, FTAG);
2900
2901
return (0);
2902
2903
error:
2904
if (encrypt) {
2905
/* zero out any state we might have changed while encrypting */
2906
memset(salt, 0, ZIO_DATA_SALT_LEN);
2907
memset(iv, 0, ZIO_DATA_IV_LEN);
2908
memset(mac, 0, ZIO_DATA_MAC_LEN);
2909
abd_return_buf(pabd, plainbuf, datalen);
2910
abd_return_buf_copy(cabd, cipherbuf, datalen);
2911
} else {
2912
abd_return_buf_copy(pabd, plainbuf, datalen);
2913
abd_return_buf(cabd, cipherbuf, datalen);
2914
}
2915
2916
spa_keystore_dsl_key_rele(spa, dck, FTAG);
2917
2918
return (ret);
2919
}
2920
2921
ZFS_MODULE_PARAM(zfs, zfs_, disable_ivset_guid_check, INT, ZMOD_RW,
2922
"Set to allow raw receives without IVset guids");
2923
2924