Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/dsl_dir.c
48383 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24
* Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25
* Copyright (c) 2013 Martin Matuska. All rights reserved.
26
* Copyright (c) 2014 Joyent, Inc. All rights reserved.
27
* Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28
* Copyright (c) 2016 Actifio, Inc. All rights reserved.
29
* Copyright (c) 2018, loli10K <[email protected]>. All rights reserved.
30
* Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
31
* Copyright (c) 2025, Rob Norris <[email protected]>
32
*/
33
34
#include <sys/dmu.h>
35
#include <sys/dmu_objset.h>
36
#include <sys/dmu_tx.h>
37
#include <sys/dsl_dataset.h>
38
#include <sys/dsl_dir.h>
39
#include <sys/dsl_prop.h>
40
#include <sys/dsl_synctask.h>
41
#include <sys/dsl_deleg.h>
42
#include <sys/dmu_impl.h>
43
#include <sys/spa.h>
44
#include <sys/spa_impl.h>
45
#include <sys/metaslab.h>
46
#include <sys/zap.h>
47
#include <sys/zio.h>
48
#include <sys/arc.h>
49
#include <sys/sunddi.h>
50
#include <sys/zfeature.h>
51
#include <sys/policy.h>
52
#include <sys/zfs_vfsops.h>
53
#include <sys/zfs_znode.h>
54
#include <sys/zvol.h>
55
#include <sys/zthr.h>
56
#include "zfs_namecheck.h"
57
#include "zfs_prop.h"
58
59
/*
60
* This controls if we verify the ZVOL quota or not.
61
* Currently, quotas are not implemented for ZVOLs.
62
* The quota size is the size of the ZVOL.
63
* The size of the volume already implies the ZVOL size quota.
64
* The quota mechanism can introduce a significant performance drop.
65
*/
66
static int zvol_enforce_quotas = B_TRUE;
67
68
/*
69
* Filesystem and Snapshot Limits
70
* ------------------------------
71
*
72
* These limits are used to restrict the number of filesystems and/or snapshots
73
* that can be created at a given level in the tree or below. A typical
74
* use-case is with a delegated dataset where the administrator wants to ensure
75
* that a user within the zone is not creating too many additional filesystems
76
* or snapshots, even though they're not exceeding their space quota.
77
*
78
* The filesystem and snapshot counts are stored as extensible properties. This
79
* capability is controlled by a feature flag and must be enabled to be used.
80
* Once enabled, the feature is not active until the first limit is set. At
81
* that point, future operations to create/destroy filesystems or snapshots
82
* will validate and update the counts.
83
*
84
* Because the count properties will not exist before the feature is active,
85
* the counts are updated when a limit is first set on an uninitialized
86
* dsl_dir node in the tree (The filesystem/snapshot count on a node includes
87
* all of the nested filesystems/snapshots. Thus, a new leaf node has a
88
* filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
89
* snapshot count properties on a node indicate uninitialized counts on that
90
* node.) When first setting a limit on an uninitialized node, the code starts
91
* at the filesystem with the new limit and descends into all sub-filesystems
92
* to add the count properties.
93
*
94
* In practice this is lightweight since a limit is typically set when the
95
* filesystem is created and thus has no children. Once valid, changing the
96
* limit value won't require a re-traversal since the counts are already valid.
97
* When recursively fixing the counts, if a node with a limit is encountered
98
* during the descent, the counts are known to be valid and there is no need to
99
* descend into that filesystem's children. The counts on filesystems above the
100
* one with the new limit will still be uninitialized, unless a limit is
101
* eventually set on one of those filesystems. The counts are always recursively
102
* updated when a limit is set on a dataset, unless there is already a limit.
103
* When a new limit value is set on a filesystem with an existing limit, it is
104
* possible for the new limit to be less than the current count at that level
105
* since a user who can change the limit is also allowed to exceed the limit.
106
*
107
* Once the feature is active, then whenever a filesystem or snapshot is
108
* created, the code recurses up the tree, validating the new count against the
109
* limit at each initialized level. In practice, most levels will not have a
110
* limit set. If there is a limit at any initialized level up the tree, the
111
* check must pass or the creation will fail. Likewise, when a filesystem or
112
* snapshot is destroyed, the counts are recursively adjusted all the way up
113
* the initialized nodes in the tree. Renaming a filesystem into different point
114
* in the tree will first validate, then update the counts on each branch up to
115
* the common ancestor. A receive will also validate the counts and then update
116
* them.
117
*
118
* An exception to the above behavior is that the limit is not enforced if the
119
* user has permission to modify the limit. This is primarily so that
120
* recursive snapshots in the global zone always work. We want to prevent a
121
* denial-of-service in which a lower level delegated dataset could max out its
122
* limit and thus block recursive snapshots from being taken in the global zone.
123
* Because of this, it is possible for the snapshot count to be over the limit
124
* and snapshots taken in the global zone could cause a lower level dataset to
125
* hit or exceed its limit. The administrator taking the global zone recursive
126
* snapshot should be aware of this side-effect and behave accordingly.
127
* For consistency, the filesystem limit is also not enforced if the user can
128
* modify the limit.
129
*
130
* The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
131
* and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
132
* dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
133
* dsl_dir_init_fs_ss_count().
134
*/
135
136
static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
137
138
typedef struct ddulrt_arg {
139
dsl_dir_t *ddulrta_dd;
140
uint64_t ddlrta_txg;
141
} ddulrt_arg_t;
142
143
static void
144
dsl_dir_evict_async(void *dbu)
145
{
146
dsl_dir_t *dd = dbu;
147
int t;
148
dsl_pool_t *dp __maybe_unused = dd->dd_pool;
149
150
dd->dd_dbuf = NULL;
151
152
for (t = 0; t < TXG_SIZE; t++) {
153
ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
154
ASSERT0(dd->dd_tempreserved[t]);
155
ASSERT0(dd->dd_space_towrite[t]);
156
}
157
158
if (dd->dd_parent)
159
dsl_dir_async_rele(dd->dd_parent, dd);
160
161
spa_async_close(dd->dd_pool->dp_spa, dd);
162
163
if (dsl_deadlist_is_open(&dd->dd_livelist))
164
dsl_dir_livelist_close(dd);
165
166
dsl_prop_fini(dd);
167
cv_destroy(&dd->dd_activity_cv);
168
mutex_destroy(&dd->dd_activity_lock);
169
mutex_destroy(&dd->dd_lock);
170
kmem_free(dd, sizeof (dsl_dir_t));
171
}
172
173
int
174
dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
175
const char *tail, const void *tag, dsl_dir_t **ddp)
176
{
177
dmu_buf_t *dbuf;
178
dsl_dir_t *dd;
179
dmu_object_info_t doi;
180
int err;
181
182
ASSERT(dsl_pool_config_held(dp));
183
184
err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
185
if (err != 0)
186
return (err);
187
dd = dmu_buf_get_user(dbuf);
188
189
dmu_object_info_from_db(dbuf, &doi);
190
ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
191
ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
192
193
if (dd == NULL) {
194
dsl_dir_t *winner;
195
196
dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
197
dd->dd_object = ddobj;
198
dd->dd_dbuf = dbuf;
199
dd->dd_pool = dp;
200
201
mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
202
mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
203
cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
204
dsl_prop_init(dd);
205
206
if (dsl_dir_is_zapified(dd)) {
207
err = zap_lookup(dp->dp_meta_objset,
208
ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
209
sizeof (uint64_t), 1, &dd->dd_crypto_obj);
210
if (err == 0) {
211
/* check for on-disk format errata */
212
if (dsl_dir_incompatible_encryption_version(
213
dd)) {
214
dp->dp_spa->spa_errata =
215
ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
216
}
217
} else if (err != ENOENT) {
218
goto errout;
219
}
220
}
221
222
if (dsl_dir_phys(dd)->dd_parent_obj) {
223
err = dsl_dir_hold_obj(dp,
224
dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
225
&dd->dd_parent);
226
if (err != 0)
227
goto errout;
228
if (tail) {
229
#ifdef ZFS_DEBUG
230
uint64_t foundobj;
231
232
err = zap_lookup(dp->dp_meta_objset,
233
dsl_dir_phys(dd->dd_parent)->
234
dd_child_dir_zapobj, tail,
235
sizeof (foundobj), 1, &foundobj);
236
ASSERT(err || foundobj == ddobj);
237
#endif
238
(void) strlcpy(dd->dd_myname, tail,
239
sizeof (dd->dd_myname));
240
} else {
241
err = zap_value_search(dp->dp_meta_objset,
242
dsl_dir_phys(dd->dd_parent)->
243
dd_child_dir_zapobj,
244
ddobj, 0, dd->dd_myname,
245
sizeof (dd->dd_myname));
246
}
247
if (err != 0)
248
goto errout;
249
} else {
250
(void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
251
sizeof (dd->dd_myname));
252
}
253
254
if (dsl_dir_is_clone(dd)) {
255
dmu_buf_t *origin_bonus;
256
dsl_dataset_phys_t *origin_phys;
257
258
/*
259
* We can't open the origin dataset, because
260
* that would require opening this dsl_dir.
261
* Just look at its phys directly instead.
262
*/
263
err = dmu_bonus_hold(dp->dp_meta_objset,
264
dsl_dir_phys(dd)->dd_origin_obj, FTAG,
265
&origin_bonus);
266
if (err != 0)
267
goto errout;
268
origin_phys = origin_bonus->db_data;
269
dd->dd_origin_txg =
270
origin_phys->ds_creation_txg;
271
dmu_buf_rele(origin_bonus, FTAG);
272
if (dsl_dir_is_zapified(dd)) {
273
uint64_t obj;
274
err = zap_lookup(dp->dp_meta_objset,
275
dd->dd_object, DD_FIELD_LIVELIST,
276
sizeof (uint64_t), 1, &obj);
277
if (err == 0) {
278
err = dsl_dir_livelist_open(dd, obj);
279
if (err != 0)
280
goto errout;
281
} else if (err != ENOENT)
282
goto errout;
283
}
284
}
285
286
if (dsl_dir_is_zapified(dd)) {
287
inode_timespec_t t = {0};
288
(void) zap_lookup(dp->dp_meta_objset, ddobj,
289
DD_FIELD_SNAPSHOTS_CHANGED,
290
sizeof (uint64_t),
291
sizeof (inode_timespec_t) / sizeof (uint64_t),
292
&t);
293
dd->dd_snap_cmtime = t;
294
}
295
296
dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
297
&dd->dd_dbuf);
298
winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
299
if (winner != NULL) {
300
if (dd->dd_parent)
301
dsl_dir_rele(dd->dd_parent, dd);
302
if (dsl_deadlist_is_open(&dd->dd_livelist))
303
dsl_dir_livelist_close(dd);
304
dsl_prop_fini(dd);
305
cv_destroy(&dd->dd_activity_cv);
306
mutex_destroy(&dd->dd_activity_lock);
307
mutex_destroy(&dd->dd_lock);
308
kmem_free(dd, sizeof (dsl_dir_t));
309
dd = winner;
310
} else {
311
spa_open_ref(dp->dp_spa, dd);
312
}
313
}
314
315
/*
316
* The dsl_dir_t has both open-to-close and instantiate-to-evict
317
* holds on the spa. We need the open-to-close holds because
318
* otherwise the spa_refcnt wouldn't change when we open a
319
* dir which the spa also has open, so we could incorrectly
320
* think it was OK to unload/export/destroy the pool. We need
321
* the instantiate-to-evict hold because the dsl_dir_t has a
322
* pointer to the dd_pool, which has a pointer to the spa_t.
323
*/
324
spa_open_ref(dp->dp_spa, tag);
325
ASSERT3P(dd->dd_pool, ==, dp);
326
ASSERT3U(dd->dd_object, ==, ddobj);
327
ASSERT3P(dd->dd_dbuf, ==, dbuf);
328
*ddp = dd;
329
return (0);
330
331
errout:
332
if (dd->dd_parent)
333
dsl_dir_rele(dd->dd_parent, dd);
334
if (dsl_deadlist_is_open(&dd->dd_livelist))
335
dsl_dir_livelist_close(dd);
336
dsl_prop_fini(dd);
337
cv_destroy(&dd->dd_activity_cv);
338
mutex_destroy(&dd->dd_activity_lock);
339
mutex_destroy(&dd->dd_lock);
340
kmem_free(dd, sizeof (dsl_dir_t));
341
dmu_buf_rele(dbuf, tag);
342
return (err);
343
}
344
345
void
346
dsl_dir_rele(dsl_dir_t *dd, const void *tag)
347
{
348
dprintf_dd(dd, "%s\n", "");
349
spa_close(dd->dd_pool->dp_spa, tag);
350
dmu_buf_rele(dd->dd_dbuf, tag);
351
}
352
353
/*
354
* Remove a reference to the given dsl dir that is being asynchronously
355
* released. Async releases occur from a taskq performing eviction of
356
* dsl datasets and dirs. This process is identical to a normal release
357
* with the exception of using the async API for releasing the reference on
358
* the spa.
359
*/
360
void
361
dsl_dir_async_rele(dsl_dir_t *dd, const void *tag)
362
{
363
dprintf_dd(dd, "%s\n", "");
364
spa_async_close(dd->dd_pool->dp_spa, tag);
365
dmu_buf_rele(dd->dd_dbuf, tag);
366
}
367
368
/* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
369
void
370
dsl_dir_name(dsl_dir_t *dd, char *buf)
371
{
372
if (dd->dd_parent) {
373
dsl_dir_name(dd->dd_parent, buf);
374
VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
375
ZFS_MAX_DATASET_NAME_LEN);
376
} else {
377
buf[0] = '\0';
378
}
379
if (!MUTEX_HELD(&dd->dd_lock)) {
380
/*
381
* recursive mutex so that we can use
382
* dprintf_dd() with dd_lock held
383
*/
384
mutex_enter(&dd->dd_lock);
385
VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
386
<, ZFS_MAX_DATASET_NAME_LEN);
387
mutex_exit(&dd->dd_lock);
388
} else {
389
VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
390
<, ZFS_MAX_DATASET_NAME_LEN);
391
}
392
}
393
394
/* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
395
int
396
dsl_dir_namelen(dsl_dir_t *dd)
397
{
398
int result = 0;
399
400
if (dd->dd_parent) {
401
/* parent's name + 1 for the "/" */
402
result = dsl_dir_namelen(dd->dd_parent) + 1;
403
}
404
405
if (!MUTEX_HELD(&dd->dd_lock)) {
406
/* see dsl_dir_name */
407
mutex_enter(&dd->dd_lock);
408
result += strlen(dd->dd_myname);
409
mutex_exit(&dd->dd_lock);
410
} else {
411
result += strlen(dd->dd_myname);
412
}
413
414
return (result);
415
}
416
417
static int
418
getcomponent(const char *path, char *component, const char **nextp)
419
{
420
char *p;
421
422
if ((path == NULL) || (path[0] == '\0'))
423
return (SET_ERROR(ENOENT));
424
/* This would be a good place to reserve some namespace... */
425
p = strpbrk(path, "/@");
426
if (p && (p[1] == '/' || p[1] == '@')) {
427
/* two separators in a row */
428
return (SET_ERROR(EINVAL));
429
}
430
if (p == NULL || p == path) {
431
/*
432
* if the first thing is an @ or /, it had better be an
433
* @ and it had better not have any more ats or slashes,
434
* and it had better have something after the @.
435
*/
436
if (p != NULL &&
437
(p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
438
return (SET_ERROR(EINVAL));
439
if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
440
return (SET_ERROR(ENAMETOOLONG));
441
(void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
442
p = NULL;
443
} else if (p[0] == '/') {
444
if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
445
return (SET_ERROR(ENAMETOOLONG));
446
(void) strlcpy(component, path, p - path + 1);
447
p++;
448
} else if (p[0] == '@') {
449
/*
450
* if the next separator is an @, there better not be
451
* any more slashes.
452
*/
453
if (strchr(path, '/'))
454
return (SET_ERROR(EINVAL));
455
if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
456
return (SET_ERROR(ENAMETOOLONG));
457
(void) strlcpy(component, path, p - path + 1);
458
} else {
459
panic("invalid p=%p", (void *)p);
460
}
461
*nextp = p;
462
return (0);
463
}
464
465
/*
466
* Return the dsl_dir_t, and possibly the last component which couldn't
467
* be found in *tail. The name must be in the specified dsl_pool_t. This
468
* thread must hold the dp_config_rwlock for the pool. Returns NULL if the
469
* path is bogus, or if tail==NULL and we couldn't parse the whole name.
470
* (*tail)[0] == '@' means that the last component is a snapshot.
471
*/
472
int
473
dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag,
474
dsl_dir_t **ddp, const char **tailp)
475
{
476
char *buf;
477
const char *spaname, *next, *nextnext = NULL;
478
int err;
479
dsl_dir_t *dd;
480
uint64_t ddobj;
481
482
buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
483
err = getcomponent(name, buf, &next);
484
if (err != 0)
485
goto error;
486
487
/* Make sure the name is in the specified pool. */
488
spaname = spa_name(dp->dp_spa);
489
if (strcmp(buf, spaname) != 0) {
490
err = SET_ERROR(EXDEV);
491
goto error;
492
}
493
494
ASSERT(dsl_pool_config_held(dp));
495
496
err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
497
if (err != 0) {
498
goto error;
499
}
500
501
while (next != NULL) {
502
dsl_dir_t *child_dd;
503
err = getcomponent(next, buf, &nextnext);
504
if (err != 0)
505
break;
506
ASSERT(next[0] != '\0');
507
if (next[0] == '@')
508
break;
509
dprintf("looking up %s in obj%lld\n",
510
buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj);
511
512
err = zap_lookup(dp->dp_meta_objset,
513
dsl_dir_phys(dd)->dd_child_dir_zapobj,
514
buf, sizeof (ddobj), 1, &ddobj);
515
if (err != 0) {
516
if (err == ENOENT)
517
err = 0;
518
break;
519
}
520
521
err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
522
if (err != 0)
523
break;
524
dsl_dir_rele(dd, tag);
525
dd = child_dd;
526
next = nextnext;
527
}
528
529
if (err != 0) {
530
dsl_dir_rele(dd, tag);
531
goto error;
532
}
533
534
/*
535
* It's an error if there's more than one component left, or
536
* tailp==NULL and there's any component left.
537
*/
538
if (next != NULL &&
539
(tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
540
/* bad path name */
541
dsl_dir_rele(dd, tag);
542
dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
543
err = SET_ERROR(ENOENT);
544
}
545
if (tailp != NULL)
546
*tailp = next;
547
if (err == 0)
548
*ddp = dd;
549
error:
550
kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
551
return (err);
552
}
553
554
/*
555
* If the counts are already initialized for this filesystem and its
556
* descendants then do nothing, otherwise initialize the counts.
557
*
558
* The counts on this filesystem, and those below, may be uninitialized due to
559
* either the use of a pre-existing pool which did not support the
560
* filesystem/snapshot limit feature, or one in which the feature had not yet
561
* been enabled.
562
*
563
* Recursively descend the filesystem tree and update the filesystem/snapshot
564
* counts on each filesystem below, then update the cumulative count on the
565
* current filesystem. If the filesystem already has a count set on it,
566
* then we know that its counts, and the counts on the filesystems below it,
567
* are already correct, so we don't have to update this filesystem.
568
*/
569
static void
570
dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
571
{
572
uint64_t my_fs_cnt = 0;
573
uint64_t my_ss_cnt = 0;
574
dsl_pool_t *dp = dd->dd_pool;
575
objset_t *os = dp->dp_meta_objset;
576
zap_cursor_t *zc;
577
zap_attribute_t *za;
578
dsl_dataset_t *ds;
579
580
ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
581
ASSERT(dsl_pool_config_held(dp));
582
ASSERT(dmu_tx_is_syncing(tx));
583
584
dsl_dir_zapify(dd, tx);
585
586
/*
587
* If the filesystem count has already been initialized then we
588
* don't need to recurse down any further.
589
*/
590
if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
591
return;
592
593
zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
594
za = zap_attribute_alloc();
595
596
/* Iterate my child dirs */
597
for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
598
zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
599
dsl_dir_t *chld_dd;
600
uint64_t count;
601
602
VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
603
&chld_dd));
604
605
/*
606
* Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
607
*/
608
if (chld_dd->dd_myname[0] == '$') {
609
dsl_dir_rele(chld_dd, FTAG);
610
continue;
611
}
612
613
my_fs_cnt++; /* count this child */
614
615
dsl_dir_init_fs_ss_count(chld_dd, tx);
616
617
VERIFY0(zap_lookup(os, chld_dd->dd_object,
618
DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
619
my_fs_cnt += count;
620
VERIFY0(zap_lookup(os, chld_dd->dd_object,
621
DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
622
my_ss_cnt += count;
623
624
dsl_dir_rele(chld_dd, FTAG);
625
}
626
zap_cursor_fini(zc);
627
/* Count my snapshots (we counted children's snapshots above) */
628
VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
629
dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
630
631
for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
632
zap_cursor_retrieve(zc, za) == 0;
633
zap_cursor_advance(zc)) {
634
/* Don't count temporary snapshots */
635
if (za->za_name[0] != '%')
636
my_ss_cnt++;
637
}
638
zap_cursor_fini(zc);
639
640
dsl_dataset_rele(ds, FTAG);
641
642
kmem_free(zc, sizeof (zap_cursor_t));
643
zap_attribute_free(za);
644
645
/* we're in a sync task, update counts */
646
dmu_buf_will_dirty(dd->dd_dbuf, tx);
647
VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
648
sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
649
VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
650
sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
651
}
652
653
static int
654
dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
655
{
656
char *ddname = (char *)arg;
657
dsl_pool_t *dp = dmu_tx_pool(tx);
658
dsl_dataset_t *ds;
659
dsl_dir_t *dd;
660
int error;
661
662
error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
663
if (error != 0)
664
return (error);
665
666
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
667
dsl_dataset_rele(ds, FTAG);
668
return (SET_ERROR(ENOTSUP));
669
}
670
671
dd = ds->ds_dir;
672
if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
673
dsl_dir_is_zapified(dd) &&
674
zap_contains(dp->dp_meta_objset, dd->dd_object,
675
DD_FIELD_FILESYSTEM_COUNT) == 0) {
676
dsl_dataset_rele(ds, FTAG);
677
return (SET_ERROR(EALREADY));
678
}
679
680
dsl_dataset_rele(ds, FTAG);
681
return (0);
682
}
683
684
static void
685
dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
686
{
687
char *ddname = (char *)arg;
688
dsl_pool_t *dp = dmu_tx_pool(tx);
689
dsl_dataset_t *ds;
690
spa_t *spa;
691
692
VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
693
694
spa = dsl_dataset_get_spa(ds);
695
696
if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
697
/*
698
* Since the feature was not active and we're now setting a
699
* limit, increment the feature-active counter so that the
700
* feature becomes active for the first time.
701
*
702
* We are already in a sync task so we can update the MOS.
703
*/
704
spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
705
}
706
707
/*
708
* Since we are now setting a non-UINT64_MAX limit on the filesystem,
709
* we need to ensure the counts are correct. Descend down the tree from
710
* this point and update all of the counts to be accurate.
711
*/
712
dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
713
714
dsl_dataset_rele(ds, FTAG);
715
}
716
717
/*
718
* Make sure the feature is enabled and activate it if necessary.
719
* Since we're setting a limit, ensure the on-disk counts are valid.
720
* This is only called by the ioctl path when setting a limit value.
721
*
722
* We do not need to validate the new limit, since users who can change the
723
* limit are also allowed to exceed the limit.
724
*/
725
int
726
dsl_dir_activate_fs_ss_limit(const char *ddname)
727
{
728
int error;
729
730
error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
731
dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
732
ZFS_SPACE_CHECK_RESERVED);
733
734
if (error == EALREADY)
735
error = 0;
736
737
return (error);
738
}
739
740
/*
741
* Used to determine if the filesystem_limit or snapshot_limit should be
742
* enforced. We allow the limit to be exceeded if the user has permission to
743
* write the property value. We pass in the creds that we got in the open
744
* context since we will always be the GZ root in syncing context. We also have
745
* to handle the case where we are allowed to change the limit on the current
746
* dataset, but there may be another limit in the tree above.
747
*
748
* We can never modify these two properties within a non-global zone. In
749
* addition, the other checks are modeled on zfs_secpolicy_write_perms. We
750
* can't use that function since we are already holding the dp_config_rwlock.
751
* In addition, we already have the dd and dealing with snapshots is simplified
752
* in this code.
753
*/
754
755
typedef enum {
756
ENFORCE_ALWAYS,
757
ENFORCE_NEVER,
758
ENFORCE_ABOVE
759
} enforce_res_t;
760
761
static enforce_res_t
762
dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
763
cred_t *cr)
764
{
765
enforce_res_t enforce = ENFORCE_ALWAYS;
766
uint64_t obj;
767
dsl_dataset_t *ds;
768
uint64_t zoned;
769
const char *zonedstr;
770
771
ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
772
prop == ZFS_PROP_SNAPSHOT_LIMIT);
773
774
#ifdef _KERNEL
775
if (crgetzoneid(cr) != GLOBAL_ZONEID)
776
return (ENFORCE_ALWAYS);
777
778
if (secpolicy_zfs(cr) == 0)
779
return (ENFORCE_NEVER);
780
#endif
781
782
if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
783
return (ENFORCE_ALWAYS);
784
785
ASSERT(dsl_pool_config_held(dd->dd_pool));
786
787
if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
788
return (ENFORCE_ALWAYS);
789
790
zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
791
if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
792
/* Only root can access zoned fs's from the GZ */
793
enforce = ENFORCE_ALWAYS;
794
} else {
795
if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
796
enforce = ENFORCE_ABOVE;
797
}
798
799
dsl_dataset_rele(ds, FTAG);
800
return (enforce);
801
}
802
803
/*
804
* Check if adding additional child filesystem(s) would exceed any filesystem
805
* limits or adding additional snapshot(s) would exceed any snapshot limits.
806
* The prop argument indicates which limit to check.
807
*
808
* Note that all filesystem limits up to the root (or the highest
809
* initialized) filesystem or the given ancestor must be satisfied.
810
*/
811
int
812
dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
813
dsl_dir_t *ancestor, cred_t *cr)
814
{
815
objset_t *os = dd->dd_pool->dp_meta_objset;
816
uint64_t limit, count;
817
const char *count_prop;
818
enforce_res_t enforce;
819
int err = 0;
820
821
ASSERT(dsl_pool_config_held(dd->dd_pool));
822
ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
823
prop == ZFS_PROP_SNAPSHOT_LIMIT);
824
825
if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
826
/*
827
* We don't enforce the limit for temporary snapshots. This is
828
* indicated by a NULL cred_t argument.
829
*/
830
if (cr == NULL)
831
return (0);
832
833
count_prop = DD_FIELD_SNAPSHOT_COUNT;
834
} else {
835
count_prop = DD_FIELD_FILESYSTEM_COUNT;
836
}
837
/*
838
* If we're allowed to change the limit, don't enforce the limit
839
* e.g. this can happen if a snapshot is taken by an administrative
840
* user in the global zone (i.e. a recursive snapshot by root).
841
* However, we must handle the case of delegated permissions where we
842
* are allowed to change the limit on the current dataset, but there
843
* is another limit in the tree above.
844
*/
845
enforce = dsl_enforce_ds_ss_limits(dd, prop, cr);
846
if (enforce == ENFORCE_NEVER)
847
return (0);
848
849
/*
850
* e.g. if renaming a dataset with no snapshots, count adjustment
851
* is 0.
852
*/
853
if (delta == 0)
854
return (0);
855
856
/*
857
* If an ancestor has been provided, stop checking the limit once we
858
* hit that dir. We need this during rename so that we don't overcount
859
* the check once we recurse up to the common ancestor.
860
*/
861
if (ancestor == dd)
862
return (0);
863
864
/*
865
* If we hit an uninitialized node while recursing up the tree, we can
866
* stop since we know there is no limit here (or above). The counts are
867
* not valid on this node and we know we won't touch this node's counts.
868
*/
869
if (!dsl_dir_is_zapified(dd))
870
return (0);
871
err = zap_lookup(os, dd->dd_object,
872
count_prop, sizeof (count), 1, &count);
873
if (err == ENOENT)
874
return (0);
875
if (err != 0)
876
return (err);
877
878
err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
879
B_FALSE);
880
if (err != 0)
881
return (err);
882
883
/* Is there a limit which we've hit? */
884
if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
885
return (SET_ERROR(EDQUOT));
886
887
if (dd->dd_parent != NULL)
888
err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
889
ancestor, cr);
890
891
return (err);
892
}
893
894
/*
895
* Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
896
* parents. When a new filesystem/snapshot is created, increment the count on
897
* all parents, and when a filesystem/snapshot is destroyed, decrement the
898
* count.
899
*/
900
void
901
dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
902
dmu_tx_t *tx)
903
{
904
int err;
905
objset_t *os = dd->dd_pool->dp_meta_objset;
906
uint64_t count;
907
908
ASSERT(dsl_pool_config_held(dd->dd_pool));
909
ASSERT(dmu_tx_is_syncing(tx));
910
ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
911
strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
912
913
/*
914
* We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
915
*/
916
if (dd->dd_myname[0] == '$' && strcmp(prop,
917
DD_FIELD_FILESYSTEM_COUNT) == 0) {
918
return;
919
}
920
921
/*
922
* e.g. if renaming a dataset with no snapshots, count adjustment is 0
923
*/
924
if (delta == 0)
925
return;
926
927
/*
928
* If we hit an uninitialized node while recursing up the tree, we can
929
* stop since we know the counts are not valid on this node and we
930
* know we shouldn't touch this node's counts. An uninitialized count
931
* on the node indicates that either the feature has not yet been
932
* activated or there are no limits on this part of the tree.
933
*/
934
if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
935
prop, sizeof (count), 1, &count)) == ENOENT)
936
return;
937
VERIFY0(err);
938
939
count += delta;
940
/* Use a signed verify to make sure we're not neg. */
941
VERIFY3S(count, >=, 0);
942
943
VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
944
tx));
945
946
/* Roll up this additional count into our ancestors */
947
if (dd->dd_parent != NULL)
948
dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
949
}
950
951
uint64_t
952
dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
953
dmu_tx_t *tx)
954
{
955
objset_t *mos = dp->dp_meta_objset;
956
uint64_t ddobj;
957
dsl_dir_phys_t *ddphys;
958
dmu_buf_t *dbuf;
959
960
ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
961
DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
962
if (pds) {
963
VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
964
name, sizeof (uint64_t), 1, &ddobj, tx));
965
} else {
966
/* it's the root dir */
967
VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
968
DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
969
}
970
VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
971
dmu_buf_will_dirty(dbuf, tx);
972
ddphys = dbuf->db_data;
973
974
ddphys->dd_creation_time = gethrestime_sec();
975
if (pds) {
976
ddphys->dd_parent_obj = pds->dd_object;
977
978
/* update the filesystem counts */
979
dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
980
}
981
ddphys->dd_props_zapobj = zap_create(mos,
982
DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
983
ddphys->dd_child_dir_zapobj = zap_create(mos,
984
DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
985
if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
986
ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
987
988
dmu_buf_rele(dbuf, FTAG);
989
990
return (ddobj);
991
}
992
993
boolean_t
994
dsl_dir_is_clone(dsl_dir_t *dd)
995
{
996
return (dsl_dir_phys(dd)->dd_origin_obj &&
997
(dd->dd_pool->dp_origin_snap == NULL ||
998
dsl_dir_phys(dd)->dd_origin_obj !=
999
dd->dd_pool->dp_origin_snap->ds_object));
1000
}
1001
1002
uint64_t
1003
dsl_dir_get_used(dsl_dir_t *dd)
1004
{
1005
return (dsl_dir_phys(dd)->dd_used_bytes);
1006
}
1007
1008
uint64_t
1009
dsl_dir_get_compressed(dsl_dir_t *dd)
1010
{
1011
return (dsl_dir_phys(dd)->dd_compressed_bytes);
1012
}
1013
1014
uint64_t
1015
dsl_dir_get_quota(dsl_dir_t *dd)
1016
{
1017
return (dsl_dir_phys(dd)->dd_quota);
1018
}
1019
1020
uint64_t
1021
dsl_dir_get_reservation(dsl_dir_t *dd)
1022
{
1023
return (dsl_dir_phys(dd)->dd_reserved);
1024
}
1025
1026
uint64_t
1027
dsl_dir_get_compressratio(dsl_dir_t *dd)
1028
{
1029
/* a fixed point number, 100x the ratio */
1030
return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1031
(dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1032
dsl_dir_phys(dd)->dd_compressed_bytes));
1033
}
1034
1035
uint64_t
1036
dsl_dir_get_logicalused(dsl_dir_t *dd)
1037
{
1038
return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1039
}
1040
1041
uint64_t
1042
dsl_dir_get_usedsnap(dsl_dir_t *dd)
1043
{
1044
return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1045
}
1046
1047
uint64_t
1048
dsl_dir_get_usedds(dsl_dir_t *dd)
1049
{
1050
return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1051
}
1052
1053
uint64_t
1054
dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1055
{
1056
return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1057
}
1058
1059
uint64_t
1060
dsl_dir_get_usedchild(dsl_dir_t *dd)
1061
{
1062
return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1063
dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1064
}
1065
1066
void
1067
dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1068
{
1069
dsl_dataset_t *ds;
1070
VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1071
dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1072
1073
dsl_dataset_name(ds, buf);
1074
1075
dsl_dataset_rele(ds, FTAG);
1076
}
1077
1078
int
1079
dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1080
{
1081
if (dsl_dir_is_zapified(dd)) {
1082
objset_t *os = dd->dd_pool->dp_meta_objset;
1083
return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1084
sizeof (*count), 1, count));
1085
} else {
1086
return (SET_ERROR(ENOENT));
1087
}
1088
}
1089
1090
int
1091
dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1092
{
1093
if (dsl_dir_is_zapified(dd)) {
1094
objset_t *os = dd->dd_pool->dp_meta_objset;
1095
return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1096
sizeof (*count), 1, count));
1097
} else {
1098
return (SET_ERROR(ENOENT));
1099
}
1100
}
1101
1102
void
1103
dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1104
{
1105
mutex_enter(&dd->dd_lock);
1106
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1107
dsl_dir_get_quota(dd));
1108
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1109
dsl_dir_get_reservation(dd));
1110
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1111
dsl_dir_get_logicalused(dd));
1112
if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1113
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1114
dsl_dir_get_usedsnap(dd));
1115
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1116
dsl_dir_get_usedds(dd));
1117
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1118
dsl_dir_get_usedrefreserv(dd));
1119
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1120
dsl_dir_get_usedchild(dd));
1121
}
1122
mutex_exit(&dd->dd_lock);
1123
1124
uint64_t count;
1125
if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1126
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1127
count);
1128
}
1129
if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1130
dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1131
count);
1132
}
1133
1134
if (dsl_dir_is_clone(dd)) {
1135
char buf[ZFS_MAX_DATASET_NAME_LEN];
1136
dsl_dir_get_origin(dd, buf);
1137
dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1138
}
1139
1140
}
1141
1142
void
1143
dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1144
{
1145
dsl_pool_t *dp = dd->dd_pool;
1146
1147
ASSERT(dsl_dir_phys(dd));
1148
1149
if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1150
/* up the hold count until we can be written out */
1151
dmu_buf_add_ref(dd->dd_dbuf, dd);
1152
}
1153
}
1154
1155
static int64_t
1156
parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1157
{
1158
uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1159
uint64_t new_accounted =
1160
MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1161
return (new_accounted - old_accounted);
1162
}
1163
1164
void
1165
dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1166
{
1167
ASSERT(dmu_tx_is_syncing(tx));
1168
1169
mutex_enter(&dd->dd_lock);
1170
ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
1171
dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg,
1172
(u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
1173
dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
1174
mutex_exit(&dd->dd_lock);
1175
1176
/* release the hold from dsl_dir_dirty */
1177
dmu_buf_rele(dd->dd_dbuf, dd);
1178
}
1179
1180
static uint64_t
1181
dsl_dir_space_towrite(dsl_dir_t *dd)
1182
{
1183
uint64_t space = 0;
1184
1185
ASSERT(MUTEX_HELD(&dd->dd_lock));
1186
1187
for (int i = 0; i < TXG_SIZE; i++)
1188
space += dd->dd_space_towrite[i & TXG_MASK];
1189
1190
return (space);
1191
}
1192
1193
/*
1194
* How much space would dd have available if ancestor had delta applied
1195
* to it? If ondiskonly is set, we're only interested in what's
1196
* on-disk, not estimated pending changes.
1197
*/
1198
uint64_t
1199
dsl_dir_space_available(dsl_dir_t *dd,
1200
dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1201
{
1202
uint64_t parentspace, myspace, quota, used;
1203
1204
/*
1205
* If there are no restrictions otherwise, assume we have
1206
* unlimited space available.
1207
*/
1208
quota = UINT64_MAX;
1209
parentspace = UINT64_MAX;
1210
1211
if (dd->dd_parent != NULL) {
1212
parentspace = dsl_dir_space_available(dd->dd_parent,
1213
ancestor, delta, ondiskonly);
1214
}
1215
1216
mutex_enter(&dd->dd_lock);
1217
if (dsl_dir_phys(dd)->dd_quota != 0)
1218
quota = dsl_dir_phys(dd)->dd_quota;
1219
used = dsl_dir_phys(dd)->dd_used_bytes;
1220
if (!ondiskonly)
1221
used += dsl_dir_space_towrite(dd);
1222
1223
if (dd->dd_parent == NULL) {
1224
uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1225
ZFS_SPACE_CHECK_NORMAL);
1226
quota = MIN(quota, poolsize);
1227
}
1228
1229
if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1230
/*
1231
* We have some space reserved, in addition to what our
1232
* parent gave us.
1233
*/
1234
parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1235
}
1236
1237
if (dd == ancestor) {
1238
ASSERT(delta <= 0);
1239
ASSERT(used >= -delta);
1240
used += delta;
1241
if (parentspace != UINT64_MAX)
1242
parentspace -= delta;
1243
}
1244
1245
if (used > quota) {
1246
/* over quota */
1247
myspace = 0;
1248
} else {
1249
/*
1250
* the lesser of the space provided by our parent and
1251
* the space left in our quota
1252
*/
1253
myspace = MIN(parentspace, quota - used);
1254
}
1255
1256
mutex_exit(&dd->dd_lock);
1257
1258
return (myspace);
1259
}
1260
1261
struct tempreserve {
1262
list_node_t tr_node;
1263
dsl_dir_t *tr_ds;
1264
uint64_t tr_size;
1265
};
1266
1267
static int
1268
dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1269
boolean_t ignorequota, list_t *tr_list,
1270
dmu_tx_t *tx, boolean_t first)
1271
{
1272
uint64_t txg;
1273
uint64_t quota;
1274
struct tempreserve *tr;
1275
int retval;
1276
uint64_t ext_quota;
1277
uint64_t ref_rsrv;
1278
1279
top_of_function:
1280
txg = tx->tx_txg;
1281
retval = EDQUOT;
1282
ref_rsrv = 0;
1283
1284
ASSERT3U(txg, !=, 0);
1285
ASSERT3S(asize, >, 0);
1286
1287
mutex_enter(&dd->dd_lock);
1288
1289
/*
1290
* Check against the dsl_dir's quota. We don't add in the delta
1291
* when checking for over-quota because they get one free hit.
1292
*/
1293
uint64_t est_inflight = dsl_dir_space_towrite(dd);
1294
for (int i = 0; i < TXG_SIZE; i++)
1295
est_inflight += dd->dd_tempreserved[i];
1296
uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1297
1298
/*
1299
* On the first iteration, fetch the dataset's used-on-disk and
1300
* refreservation values. Also, if checkrefquota is set, test if
1301
* allocating this space would exceed the dataset's refquota.
1302
*/
1303
if (first && tx->tx_objset) {
1304
int error;
1305
dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1306
1307
error = dsl_dataset_check_quota(ds, !netfree,
1308
asize, est_inflight, &used_on_disk, &ref_rsrv);
1309
if (error != 0) {
1310
mutex_exit(&dd->dd_lock);
1311
DMU_TX_STAT_BUMP(dmu_tx_quota);
1312
return (error);
1313
}
1314
}
1315
1316
/*
1317
* If this transaction will result in a net free of space,
1318
* we want to let it through.
1319
*/
1320
if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0 ||
1321
(tx->tx_objset && dmu_objset_type(tx->tx_objset) == DMU_OST_ZVOL &&
1322
zvol_enforce_quotas == B_FALSE))
1323
quota = UINT64_MAX;
1324
else
1325
quota = dsl_dir_phys(dd)->dd_quota;
1326
1327
/*
1328
* Adjust the quota against the actual pool size at the root
1329
* minus any outstanding deferred frees.
1330
* To ensure that it's possible to remove files from a full
1331
* pool without inducing transient overcommits, we throttle
1332
* netfree transactions against a quota that is slightly larger,
1333
* but still within the pool's allocation slop. In cases where
1334
* we're very close to full, this will allow a steady trickle of
1335
* removes to get through.
1336
*/
1337
if (dd->dd_parent == NULL) {
1338
uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1339
(netfree) ?
1340
ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1341
1342
if (avail < quota) {
1343
quota = avail;
1344
retval = SET_ERROR(ENOSPC);
1345
}
1346
}
1347
1348
/*
1349
* If they are requesting more space, and our current estimate
1350
* is over quota, they get to try again unless the actual
1351
* on-disk is over quota and there are no pending changes
1352
* or deferred frees (which may free up space for us).
1353
*/
1354
ext_quota = quota >> 5;
1355
if (quota == UINT64_MAX)
1356
ext_quota = 0;
1357
1358
if (used_on_disk >= quota) {
1359
if (retval == ENOSPC && (used_on_disk - quota) <
1360
dsl_pool_deferred_space(dd->dd_pool)) {
1361
retval = SET_ERROR(ERESTART);
1362
}
1363
/* Quota exceeded */
1364
mutex_exit(&dd->dd_lock);
1365
DMU_TX_STAT_BUMP(dmu_tx_quota);
1366
return (retval);
1367
} else if (used_on_disk + est_inflight >= quota + ext_quota) {
1368
dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1369
"quota=%lluK tr=%lluK\n",
1370
(u_longlong_t)used_on_disk>>10,
1371
(u_longlong_t)est_inflight>>10,
1372
(u_longlong_t)quota>>10, (u_longlong_t)asize>>10);
1373
mutex_exit(&dd->dd_lock);
1374
DMU_TX_STAT_BUMP(dmu_tx_quota);
1375
return (SET_ERROR(ERESTART));
1376
}
1377
1378
/* We need to up our estimated delta before dropping dd_lock */
1379
dd->dd_tempreserved[txg & TXG_MASK] += asize;
1380
1381
uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1382
asize - ref_rsrv);
1383
mutex_exit(&dd->dd_lock);
1384
1385
tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1386
tr->tr_ds = dd;
1387
tr->tr_size = asize;
1388
list_insert_tail(tr_list, tr);
1389
1390
/* see if it's OK with our parent */
1391
if (dd->dd_parent != NULL && parent_rsrv != 0) {
1392
/*
1393
* Recurse on our parent without recursion. This has been
1394
* observed to be potentially large stack usage even within
1395
* the test suite. Largest seen stack was 7632 bytes on linux.
1396
*/
1397
1398
dd = dd->dd_parent;
1399
asize = parent_rsrv;
1400
ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1401
first = B_FALSE;
1402
goto top_of_function;
1403
}
1404
1405
return (0);
1406
}
1407
1408
/*
1409
* Reserve space in this dsl_dir, to be used in this tx's txg.
1410
* After the space has been dirtied (and dsl_dir_willuse_space()
1411
* has been called), the reservation should be canceled, using
1412
* dsl_dir_tempreserve_clear().
1413
*/
1414
int
1415
dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1416
boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1417
{
1418
int err;
1419
list_t *tr_list;
1420
1421
if (asize == 0) {
1422
*tr_cookiep = NULL;
1423
return (0);
1424
}
1425
1426
tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1427
list_create(tr_list, sizeof (struct tempreserve),
1428
offsetof(struct tempreserve, tr_node));
1429
ASSERT3S(asize, >, 0);
1430
1431
err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1432
if (err == 0) {
1433
struct tempreserve *tr;
1434
1435
tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1436
tr->tr_size = lsize;
1437
list_insert_tail(tr_list, tr);
1438
} else {
1439
if (err == EAGAIN) {
1440
/*
1441
* If arc_memory_throttle() detected that pageout
1442
* is running and we are low on memory, we delay new
1443
* non-pageout transactions to give pageout an
1444
* advantage.
1445
*
1446
* It is unfortunate to be delaying while the caller's
1447
* locks are held.
1448
*/
1449
txg_delay(dd->dd_pool, tx->tx_txg,
1450
MSEC2NSEC(10), MSEC2NSEC(10));
1451
err = SET_ERROR(ERESTART);
1452
}
1453
1454
ASSERT3U(err, ==, ERESTART);
1455
}
1456
1457
if (err == 0) {
1458
err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1459
B_FALSE, tr_list, tx, B_TRUE);
1460
}
1461
1462
if (err != 0)
1463
dsl_dir_tempreserve_clear(tr_list, tx);
1464
else
1465
*tr_cookiep = tr_list;
1466
1467
return (err);
1468
}
1469
1470
/*
1471
* Clear a temporary reservation that we previously made with
1472
* dsl_dir_tempreserve_space().
1473
*/
1474
void
1475
dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1476
{
1477
int txgidx = tx->tx_txg & TXG_MASK;
1478
list_t *tr_list = tr_cookie;
1479
struct tempreserve *tr;
1480
1481
ASSERT3U(tx->tx_txg, !=, 0);
1482
1483
if (tr_cookie == NULL)
1484
return;
1485
1486
while ((tr = list_remove_head(tr_list)) != NULL) {
1487
if (tr->tr_ds) {
1488
mutex_enter(&tr->tr_ds->dd_lock);
1489
ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1490
tr->tr_size);
1491
tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1492
mutex_exit(&tr->tr_ds->dd_lock);
1493
} else {
1494
arc_tempreserve_clear(tr->tr_size);
1495
}
1496
kmem_free(tr, sizeof (struct tempreserve));
1497
}
1498
1499
kmem_free(tr_list, sizeof (list_t));
1500
}
1501
1502
/*
1503
* This should be called from open context when we think we're going to write
1504
* or free space, for example when dirtying data. Be conservative; it's okay
1505
* to write less space or free more, but we don't want to write more or free
1506
* less than the amount specified.
1507
*
1508
* NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1509
* version however it has been adjusted to use an iterative rather than
1510
* recursive algorithm to minimize stack usage.
1511
*/
1512
void
1513
dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1514
{
1515
int64_t parent_space;
1516
uint64_t est_used;
1517
1518
do {
1519
mutex_enter(&dd->dd_lock);
1520
if (space > 0)
1521
dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1522
1523
est_used = dsl_dir_space_towrite(dd) +
1524
dsl_dir_phys(dd)->dd_used_bytes;
1525
parent_space = parent_delta(dd, est_used, space);
1526
mutex_exit(&dd->dd_lock);
1527
1528
/* Make sure that we clean up dd_space_to* */
1529
dsl_dir_dirty(dd, tx);
1530
1531
dd = dd->dd_parent;
1532
space = parent_space;
1533
} while (space && dd);
1534
}
1535
1536
/* call from syncing context when we actually write/free space for this dd */
1537
void
1538
dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1539
int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1540
{
1541
int64_t accounted_delta;
1542
1543
ASSERT(dmu_tx_is_syncing(tx));
1544
ASSERT(type < DD_USED_NUM);
1545
1546
dmu_buf_will_dirty(dd->dd_dbuf, tx);
1547
1548
/*
1549
* dsl_dataset_set_refreservation_sync_impl() calls this with
1550
* dd_lock held, so that it can atomically update
1551
* ds->ds_reserved and the dsl_dir accounting, so that
1552
* dsl_dataset_check_quota() can see dataset and dir accounting
1553
* consistently.
1554
*/
1555
boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1556
if (needlock)
1557
mutex_enter(&dd->dd_lock);
1558
dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1559
accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1560
ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1561
ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1562
ASSERT(uncompressed >= 0 ||
1563
ddp->dd_uncompressed_bytes >= -uncompressed);
1564
ddp->dd_used_bytes += used;
1565
ddp->dd_uncompressed_bytes += uncompressed;
1566
ddp->dd_compressed_bytes += compressed;
1567
1568
if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1569
ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used);
1570
ddp->dd_used_breakdown[type] += used;
1571
#ifdef ZFS_DEBUG
1572
{
1573
dd_used_t t;
1574
uint64_t u = 0;
1575
for (t = 0; t < DD_USED_NUM; t++)
1576
u += ddp->dd_used_breakdown[t];
1577
ASSERT3U(u, ==, ddp->dd_used_bytes);
1578
}
1579
#endif
1580
}
1581
if (needlock)
1582
mutex_exit(&dd->dd_lock);
1583
1584
if (dd->dd_parent != NULL) {
1585
dsl_dir_diduse_transfer_space(dd->dd_parent,
1586
accounted_delta, compressed, uncompressed,
1587
used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1588
}
1589
}
1590
1591
void
1592
dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1593
dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1594
{
1595
ASSERT(dmu_tx_is_syncing(tx));
1596
ASSERT(oldtype < DD_USED_NUM);
1597
ASSERT(newtype < DD_USED_NUM);
1598
1599
dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1600
if (delta == 0 ||
1601
!(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN))
1602
return;
1603
1604
dmu_buf_will_dirty(dd->dd_dbuf, tx);
1605
mutex_enter(&dd->dd_lock);
1606
ASSERT(delta > 0 ?
1607
ddp->dd_used_breakdown[oldtype] >= delta :
1608
ddp->dd_used_breakdown[newtype] >= -delta);
1609
ASSERT(ddp->dd_used_bytes >= ABS(delta));
1610
ddp->dd_used_breakdown[oldtype] -= delta;
1611
ddp->dd_used_breakdown[newtype] += delta;
1612
mutex_exit(&dd->dd_lock);
1613
}
1614
1615
void
1616
dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used,
1617
int64_t compressed, int64_t uncompressed, int64_t tonew,
1618
dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1619
{
1620
int64_t accounted_delta;
1621
1622
ASSERT(dmu_tx_is_syncing(tx));
1623
ASSERT(oldtype < DD_USED_NUM);
1624
ASSERT(newtype < DD_USED_NUM);
1625
1626
dmu_buf_will_dirty(dd->dd_dbuf, tx);
1627
1628
mutex_enter(&dd->dd_lock);
1629
dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1630
accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1631
ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1632
ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1633
ASSERT(uncompressed >= 0 ||
1634
ddp->dd_uncompressed_bytes >= -uncompressed);
1635
ddp->dd_used_bytes += used;
1636
ddp->dd_uncompressed_bytes += uncompressed;
1637
ddp->dd_compressed_bytes += compressed;
1638
1639
if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1640
ASSERT(tonew - used <= 0 ||
1641
ddp->dd_used_breakdown[oldtype] >= tonew - used);
1642
ASSERT(tonew >= 0 ||
1643
ddp->dd_used_breakdown[newtype] >= -tonew);
1644
ddp->dd_used_breakdown[oldtype] -= tonew - used;
1645
ddp->dd_used_breakdown[newtype] += tonew;
1646
#ifdef ZFS_DEBUG
1647
{
1648
dd_used_t t;
1649
uint64_t u = 0;
1650
for (t = 0; t < DD_USED_NUM; t++)
1651
u += ddp->dd_used_breakdown[t];
1652
ASSERT3U(u, ==, ddp->dd_used_bytes);
1653
}
1654
#endif
1655
}
1656
mutex_exit(&dd->dd_lock);
1657
1658
if (dd->dd_parent != NULL) {
1659
dsl_dir_diduse_transfer_space(dd->dd_parent,
1660
accounted_delta, compressed, uncompressed,
1661
used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1662
}
1663
}
1664
1665
typedef struct dsl_dir_set_qr_arg {
1666
const char *ddsqra_name;
1667
zprop_source_t ddsqra_source;
1668
uint64_t ddsqra_value;
1669
} dsl_dir_set_qr_arg_t;
1670
1671
static int
1672
dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1673
{
1674
dsl_dir_set_qr_arg_t *ddsqra = arg;
1675
dsl_pool_t *dp = dmu_tx_pool(tx);
1676
dsl_dataset_t *ds;
1677
int error;
1678
uint64_t towrite, newval;
1679
1680
error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1681
if (error != 0)
1682
return (error);
1683
1684
error = dsl_prop_predict(ds->ds_dir, "quota",
1685
ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1686
if (error != 0) {
1687
dsl_dataset_rele(ds, FTAG);
1688
return (error);
1689
}
1690
1691
if (newval == 0) {
1692
dsl_dataset_rele(ds, FTAG);
1693
return (0);
1694
}
1695
1696
mutex_enter(&ds->ds_dir->dd_lock);
1697
/*
1698
* If we are doing the preliminary check in open context, and
1699
* there are pending changes, then don't fail it, since the
1700
* pending changes could under-estimate the amount of space to be
1701
* freed up.
1702
*/
1703
towrite = dsl_dir_space_towrite(ds->ds_dir);
1704
if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1705
(newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1706
newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1707
error = SET_ERROR(ENOSPC);
1708
}
1709
mutex_exit(&ds->ds_dir->dd_lock);
1710
dsl_dataset_rele(ds, FTAG);
1711
return (error);
1712
}
1713
1714
static void
1715
dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1716
{
1717
dsl_dir_set_qr_arg_t *ddsqra = arg;
1718
dsl_pool_t *dp = dmu_tx_pool(tx);
1719
dsl_dataset_t *ds;
1720
uint64_t newval;
1721
1722
VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1723
1724
if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1725
dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1726
ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1727
&ddsqra->ddsqra_value, tx);
1728
1729
VERIFY0(dsl_prop_get_int_ds(ds,
1730
zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1731
} else {
1732
newval = ddsqra->ddsqra_value;
1733
spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1734
zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1735
}
1736
1737
dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1738
mutex_enter(&ds->ds_dir->dd_lock);
1739
dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1740
mutex_exit(&ds->ds_dir->dd_lock);
1741
dsl_dataset_rele(ds, FTAG);
1742
}
1743
1744
int
1745
dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1746
{
1747
dsl_dir_set_qr_arg_t ddsqra;
1748
1749
ddsqra.ddsqra_name = ddname;
1750
ddsqra.ddsqra_source = source;
1751
ddsqra.ddsqra_value = quota;
1752
1753
return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1754
dsl_dir_set_quota_sync, &ddsqra, 0,
1755
ZFS_SPACE_CHECK_EXTRA_RESERVED));
1756
}
1757
1758
static int
1759
dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1760
{
1761
dsl_dir_set_qr_arg_t *ddsqra = arg;
1762
dsl_pool_t *dp = dmu_tx_pool(tx);
1763
dsl_dataset_t *ds;
1764
dsl_dir_t *dd;
1765
uint64_t newval, used, avail;
1766
int error;
1767
1768
error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1769
if (error != 0)
1770
return (error);
1771
dd = ds->ds_dir;
1772
1773
/*
1774
* If we are doing the preliminary check in open context, the
1775
* space estimates may be inaccurate.
1776
*/
1777
if (!dmu_tx_is_syncing(tx)) {
1778
dsl_dataset_rele(ds, FTAG);
1779
return (0);
1780
}
1781
1782
error = dsl_prop_predict(ds->ds_dir,
1783
zfs_prop_to_name(ZFS_PROP_RESERVATION),
1784
ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1785
if (error != 0) {
1786
dsl_dataset_rele(ds, FTAG);
1787
return (error);
1788
}
1789
1790
mutex_enter(&dd->dd_lock);
1791
used = dsl_dir_phys(dd)->dd_used_bytes;
1792
mutex_exit(&dd->dd_lock);
1793
1794
if (dd->dd_parent) {
1795
avail = dsl_dir_space_available(dd->dd_parent,
1796
NULL, 0, FALSE);
1797
} else {
1798
avail = dsl_pool_adjustedsize(dd->dd_pool,
1799
ZFS_SPACE_CHECK_NORMAL) - used;
1800
}
1801
1802
if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1803
uint64_t delta = MAX(used, newval) -
1804
MAX(used, dsl_dir_phys(dd)->dd_reserved);
1805
1806
if (delta > avail ||
1807
(dsl_dir_phys(dd)->dd_quota > 0 &&
1808
newval > dsl_dir_phys(dd)->dd_quota))
1809
error = SET_ERROR(ENOSPC);
1810
}
1811
1812
dsl_dataset_rele(ds, FTAG);
1813
return (error);
1814
}
1815
1816
void
1817
dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1818
{
1819
uint64_t used;
1820
int64_t delta;
1821
1822
dmu_buf_will_dirty(dd->dd_dbuf, tx);
1823
1824
mutex_enter(&dd->dd_lock);
1825
used = dsl_dir_phys(dd)->dd_used_bytes;
1826
delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1827
dsl_dir_phys(dd)->dd_reserved = value;
1828
1829
if (dd->dd_parent != NULL) {
1830
/* Roll up this additional usage into our ancestors */
1831
dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1832
delta, 0, 0, tx);
1833
}
1834
mutex_exit(&dd->dd_lock);
1835
}
1836
1837
static void
1838
dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1839
{
1840
dsl_dir_set_qr_arg_t *ddsqra = arg;
1841
dsl_pool_t *dp = dmu_tx_pool(tx);
1842
dsl_dataset_t *ds;
1843
uint64_t newval;
1844
1845
VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1846
1847
if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1848
dsl_prop_set_sync_impl(ds,
1849
zfs_prop_to_name(ZFS_PROP_RESERVATION),
1850
ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1851
&ddsqra->ddsqra_value, tx);
1852
1853
VERIFY0(dsl_prop_get_int_ds(ds,
1854
zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1855
} else {
1856
newval = ddsqra->ddsqra_value;
1857
spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1858
zfs_prop_to_name(ZFS_PROP_RESERVATION),
1859
(longlong_t)newval);
1860
}
1861
1862
dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1863
dsl_dataset_rele(ds, FTAG);
1864
}
1865
1866
int
1867
dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1868
uint64_t reservation)
1869
{
1870
dsl_dir_set_qr_arg_t ddsqra;
1871
1872
ddsqra.ddsqra_name = ddname;
1873
ddsqra.ddsqra_source = source;
1874
ddsqra.ddsqra_value = reservation;
1875
1876
return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1877
dsl_dir_set_reservation_sync, &ddsqra, 0,
1878
ZFS_SPACE_CHECK_EXTRA_RESERVED));
1879
}
1880
1881
static dsl_dir_t *
1882
closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1883
{
1884
for (; ds1; ds1 = ds1->dd_parent) {
1885
dsl_dir_t *dd;
1886
for (dd = ds2; dd; dd = dd->dd_parent) {
1887
if (ds1 == dd)
1888
return (dd);
1889
}
1890
}
1891
return (NULL);
1892
}
1893
1894
/*
1895
* If delta is applied to dd, how much of that delta would be applied to
1896
* ancestor? Syncing context only.
1897
*/
1898
static int64_t
1899
would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1900
{
1901
if (dd == ancestor)
1902
return (delta);
1903
1904
mutex_enter(&dd->dd_lock);
1905
delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1906
mutex_exit(&dd->dd_lock);
1907
return (would_change(dd->dd_parent, delta, ancestor));
1908
}
1909
1910
typedef struct dsl_dir_rename_arg {
1911
const char *ddra_oldname;
1912
const char *ddra_newname;
1913
cred_t *ddra_cred;
1914
} dsl_dir_rename_arg_t;
1915
1916
typedef struct dsl_valid_rename_arg {
1917
int char_delta;
1918
int nest_delta;
1919
} dsl_valid_rename_arg_t;
1920
1921
static int
1922
dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1923
{
1924
(void) dp;
1925
dsl_valid_rename_arg_t *dvra = arg;
1926
char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1927
1928
dsl_dataset_name(ds, namebuf);
1929
1930
ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1931
<, ZFS_MAX_DATASET_NAME_LEN);
1932
int namelen = strlen(namebuf) + dvra->char_delta;
1933
int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1934
1935
if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1936
return (SET_ERROR(ENAMETOOLONG));
1937
if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1938
return (SET_ERROR(ENAMETOOLONG));
1939
return (0);
1940
}
1941
1942
static int
1943
dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1944
{
1945
dsl_dir_rename_arg_t *ddra = arg;
1946
dsl_pool_t *dp = dmu_tx_pool(tx);
1947
dsl_dir_t *dd, *newparent;
1948
dsl_valid_rename_arg_t dvra;
1949
dsl_dataset_t *parentds;
1950
objset_t *parentos;
1951
const char *mynewname;
1952
int error;
1953
1954
/* target dir should exist */
1955
error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1956
if (error != 0)
1957
return (error);
1958
1959
/* new parent should exist */
1960
error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1961
&newparent, &mynewname);
1962
if (error != 0) {
1963
dsl_dir_rele(dd, FTAG);
1964
return (error);
1965
}
1966
1967
/* can't rename to different pool */
1968
if (dd->dd_pool != newparent->dd_pool) {
1969
dsl_dir_rele(newparent, FTAG);
1970
dsl_dir_rele(dd, FTAG);
1971
return (SET_ERROR(EXDEV));
1972
}
1973
1974
/* new name should not already exist */
1975
if (mynewname == NULL) {
1976
dsl_dir_rele(newparent, FTAG);
1977
dsl_dir_rele(dd, FTAG);
1978
return (SET_ERROR(EEXIST));
1979
}
1980
1981
/* can't rename below anything but filesystems (eg. no ZVOLs) */
1982
error = dsl_dataset_hold_obj(newparent->dd_pool,
1983
dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
1984
if (error != 0) {
1985
dsl_dir_rele(newparent, FTAG);
1986
dsl_dir_rele(dd, FTAG);
1987
return (error);
1988
}
1989
error = dmu_objset_from_ds(parentds, &parentos);
1990
if (error != 0) {
1991
dsl_dataset_rele(parentds, FTAG);
1992
dsl_dir_rele(newparent, FTAG);
1993
dsl_dir_rele(dd, FTAG);
1994
return (error);
1995
}
1996
if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
1997
dsl_dataset_rele(parentds, FTAG);
1998
dsl_dir_rele(newparent, FTAG);
1999
dsl_dir_rele(dd, FTAG);
2000
return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
2001
}
2002
dsl_dataset_rele(parentds, FTAG);
2003
2004
ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
2005
<, ZFS_MAX_DATASET_NAME_LEN);
2006
ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
2007
<, ZFS_MAX_DATASET_NAME_LEN);
2008
dvra.char_delta = strlen(ddra->ddra_newname)
2009
- strlen(ddra->ddra_oldname);
2010
dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
2011
- get_dataset_depth(ddra->ddra_oldname);
2012
2013
/* if the name length is growing, validate child name lengths */
2014
if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
2015
error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
2016
&dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
2017
if (error != 0) {
2018
dsl_dir_rele(newparent, FTAG);
2019
dsl_dir_rele(dd, FTAG);
2020
return (error);
2021
}
2022
}
2023
2024
if (dmu_tx_is_syncing(tx)) {
2025
if (spa_feature_is_active(dp->dp_spa,
2026
SPA_FEATURE_FS_SS_LIMIT)) {
2027
/*
2028
* Although this is the check function and we don't
2029
* normally make on-disk changes in check functions,
2030
* we need to do that here.
2031
*
2032
* Ensure this portion of the tree's counts have been
2033
* initialized in case the new parent has limits set.
2034
*/
2035
dsl_dir_init_fs_ss_count(dd, tx);
2036
}
2037
}
2038
2039
if (newparent != dd->dd_parent) {
2040
/* is there enough space? */
2041
uint64_t myspace =
2042
MAX(dsl_dir_phys(dd)->dd_used_bytes,
2043
dsl_dir_phys(dd)->dd_reserved);
2044
objset_t *os = dd->dd_pool->dp_meta_objset;
2045
uint64_t fs_cnt = 0;
2046
uint64_t ss_cnt = 0;
2047
2048
if (dsl_dir_is_zapified(dd)) {
2049
int err;
2050
2051
err = zap_lookup(os, dd->dd_object,
2052
DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2053
&fs_cnt);
2054
if (err != ENOENT && err != 0) {
2055
dsl_dir_rele(newparent, FTAG);
2056
dsl_dir_rele(dd, FTAG);
2057
return (err);
2058
}
2059
2060
/*
2061
* have to add 1 for the filesystem itself that we're
2062
* moving
2063
*/
2064
fs_cnt++;
2065
2066
err = zap_lookup(os, dd->dd_object,
2067
DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2068
&ss_cnt);
2069
if (err != ENOENT && err != 0) {
2070
dsl_dir_rele(newparent, FTAG);
2071
dsl_dir_rele(dd, FTAG);
2072
return (err);
2073
}
2074
}
2075
2076
/* check for encryption errors */
2077
error = dsl_dir_rename_crypt_check(dd, newparent);
2078
if (error != 0) {
2079
dsl_dir_rele(newparent, FTAG);
2080
dsl_dir_rele(dd, FTAG);
2081
return (SET_ERROR(EACCES));
2082
}
2083
2084
/* no rename into our descendant */
2085
if (closest_common_ancestor(dd, newparent) == dd) {
2086
dsl_dir_rele(newparent, FTAG);
2087
dsl_dir_rele(dd, FTAG);
2088
return (SET_ERROR(EINVAL));
2089
}
2090
2091
error = dsl_dir_transfer_possible(dd->dd_parent,
2092
newparent, fs_cnt, ss_cnt, myspace, ddra->ddra_cred);
2093
if (error != 0) {
2094
dsl_dir_rele(newparent, FTAG);
2095
dsl_dir_rele(dd, FTAG);
2096
return (error);
2097
}
2098
}
2099
2100
dsl_dir_rele(newparent, FTAG);
2101
dsl_dir_rele(dd, FTAG);
2102
return (0);
2103
}
2104
2105
static void
2106
dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
2107
{
2108
dsl_dir_rename_arg_t *ddra = arg;
2109
dsl_pool_t *dp = dmu_tx_pool(tx);
2110
dsl_dir_t *dd, *newparent;
2111
const char *mynewname;
2112
objset_t *mos = dp->dp_meta_objset;
2113
2114
VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2115
VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2116
&mynewname));
2117
2118
ASSERT3P(mynewname, !=, NULL);
2119
2120
/* Log this before we change the name. */
2121
spa_history_log_internal_dd(dd, "rename", tx,
2122
"-> %s", ddra->ddra_newname);
2123
2124
if (newparent != dd->dd_parent) {
2125
objset_t *os = dd->dd_pool->dp_meta_objset;
2126
uint64_t fs_cnt = 0;
2127
uint64_t ss_cnt = 0;
2128
2129
/*
2130
* We already made sure the dd counts were initialized in the
2131
* check function.
2132
*/
2133
if (spa_feature_is_active(dp->dp_spa,
2134
SPA_FEATURE_FS_SS_LIMIT)) {
2135
VERIFY0(zap_lookup(os, dd->dd_object,
2136
DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2137
&fs_cnt));
2138
/* add 1 for the filesystem itself that we're moving */
2139
fs_cnt++;
2140
2141
VERIFY0(zap_lookup(os, dd->dd_object,
2142
DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2143
&ss_cnt));
2144
}
2145
2146
dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2147
DD_FIELD_FILESYSTEM_COUNT, tx);
2148
dsl_fs_ss_count_adjust(newparent, fs_cnt,
2149
DD_FIELD_FILESYSTEM_COUNT, tx);
2150
2151
dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2152
DD_FIELD_SNAPSHOT_COUNT, tx);
2153
dsl_fs_ss_count_adjust(newparent, ss_cnt,
2154
DD_FIELD_SNAPSHOT_COUNT, tx);
2155
2156
dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2157
-dsl_dir_phys(dd)->dd_used_bytes,
2158
-dsl_dir_phys(dd)->dd_compressed_bytes,
2159
-dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2160
dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2161
dsl_dir_phys(dd)->dd_used_bytes,
2162
dsl_dir_phys(dd)->dd_compressed_bytes,
2163
dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2164
2165
if (dsl_dir_phys(dd)->dd_reserved >
2166
dsl_dir_phys(dd)->dd_used_bytes) {
2167
uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2168
dsl_dir_phys(dd)->dd_used_bytes;
2169
2170
dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2171
-unused_rsrv, 0, 0, tx);
2172
dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2173
unused_rsrv, 0, 0, tx);
2174
}
2175
}
2176
2177
dmu_buf_will_dirty(dd->dd_dbuf, tx);
2178
2179
/* remove from old parent zapobj */
2180
VERIFY0(zap_remove(mos,
2181
dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2182
dd->dd_myname, tx));
2183
2184
(void) strlcpy(dd->dd_myname, mynewname,
2185
sizeof (dd->dd_myname));
2186
dsl_dir_rele(dd->dd_parent, dd);
2187
dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2188
VERIFY0(dsl_dir_hold_obj(dp,
2189
newparent->dd_object, NULL, dd, &dd->dd_parent));
2190
2191
/* add to new parent zapobj */
2192
VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2193
dd->dd_myname, 8, 1, &dd->dd_object, tx));
2194
2195
/* TODO: A rename callback to avoid these layering violations. */
2196
zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
2197
zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
2198
ddra->ddra_newname, B_TRUE);
2199
2200
dsl_prop_notify_all(dd);
2201
2202
dsl_dir_rele(newparent, FTAG);
2203
dsl_dir_rele(dd, FTAG);
2204
}
2205
2206
int
2207
dsl_dir_rename(const char *oldname, const char *newname)
2208
{
2209
cred_t *cr = CRED();
2210
crhold(cr);
2211
2212
dsl_dir_rename_arg_t ddra;
2213
2214
ddra.ddra_oldname = oldname;
2215
ddra.ddra_newname = newname;
2216
ddra.ddra_cred = cr;
2217
2218
int err = dsl_sync_task(oldname,
2219
dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2220
3, ZFS_SPACE_CHECK_RESERVED);
2221
2222
crfree(cr);
2223
return (err);
2224
}
2225
2226
int
2227
dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2228
uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
2229
cred_t *cr)
2230
{
2231
dsl_dir_t *ancestor;
2232
int64_t adelta;
2233
uint64_t avail;
2234
int err;
2235
2236
ancestor = closest_common_ancestor(sdd, tdd);
2237
adelta = would_change(sdd, -space, ancestor);
2238
avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2239
if (avail < space)
2240
return (SET_ERROR(ENOSPC));
2241
2242
err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2243
ancestor, cr);
2244
if (err != 0)
2245
return (err);
2246
err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2247
ancestor, cr);
2248
if (err != 0)
2249
return (err);
2250
2251
return (0);
2252
}
2253
2254
inode_timespec_t
2255
dsl_dir_snap_cmtime(dsl_dir_t *dd)
2256
{
2257
inode_timespec_t t;
2258
2259
mutex_enter(&dd->dd_lock);
2260
t = dd->dd_snap_cmtime;
2261
mutex_exit(&dd->dd_lock);
2262
2263
return (t);
2264
}
2265
2266
void
2267
dsl_dir_snap_cmtime_update(dsl_dir_t *dd, dmu_tx_t *tx)
2268
{
2269
dsl_pool_t *dp = dmu_tx_pool(tx);
2270
inode_timespec_t t;
2271
gethrestime(&t);
2272
2273
mutex_enter(&dd->dd_lock);
2274
dd->dd_snap_cmtime = t;
2275
if (spa_feature_is_enabled(dp->dp_spa,
2276
SPA_FEATURE_EXTENSIBLE_DATASET)) {
2277
objset_t *mos = dd->dd_pool->dp_meta_objset;
2278
uint64_t ddobj = dd->dd_object;
2279
dsl_dir_zapify(dd, tx);
2280
VERIFY0(zap_update(mos, ddobj,
2281
DD_FIELD_SNAPSHOTS_CHANGED,
2282
sizeof (uint64_t),
2283
sizeof (inode_timespec_t) / sizeof (uint64_t),
2284
&t, tx));
2285
}
2286
mutex_exit(&dd->dd_lock);
2287
}
2288
2289
void
2290
dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2291
{
2292
objset_t *mos = dd->dd_pool->dp_meta_objset;
2293
dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2294
}
2295
2296
boolean_t
2297
dsl_dir_is_zapified(dsl_dir_t *dd)
2298
{
2299
dmu_object_info_t doi;
2300
2301
dmu_object_info_from_db(dd->dd_dbuf, &doi);
2302
return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2303
}
2304
2305
int
2306
dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
2307
{
2308
objset_t *mos = dd->dd_pool->dp_meta_objset;
2309
ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
2310
SPA_FEATURE_LIVELIST));
2311
int err = dsl_deadlist_open(&dd->dd_livelist, mos, obj);
2312
if (err != 0)
2313
return (err);
2314
bplist_create(&dd->dd_pending_allocs);
2315
bplist_create(&dd->dd_pending_frees);
2316
return (0);
2317
}
2318
2319
void
2320
dsl_dir_livelist_close(dsl_dir_t *dd)
2321
{
2322
dsl_deadlist_close(&dd->dd_livelist);
2323
bplist_destroy(&dd->dd_pending_allocs);
2324
bplist_destroy(&dd->dd_pending_frees);
2325
}
2326
2327
void
2328
dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
2329
{
2330
uint64_t obj;
2331
dsl_pool_t *dp = dmu_tx_pool(tx);
2332
spa_t *spa = dp->dp_spa;
2333
livelist_condense_entry_t to_condense = spa->spa_to_condense;
2334
2335
if (!dsl_deadlist_is_open(&dd->dd_livelist))
2336
return;
2337
2338
/*
2339
* If the livelist being removed is set to be condensed, stop the
2340
* condense zthr and indicate the cancellation in the spa_to_condense
2341
* struct in case the condense no-wait synctask has already started
2342
*/
2343
zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
2344
if (ll_condense_thread != NULL &&
2345
(to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
2346
/*
2347
* We use zthr_wait_cycle_done instead of zthr_cancel
2348
* because we don't want to destroy the zthr, just have
2349
* it skip its current task.
2350
*/
2351
spa->spa_to_condense.cancelled = B_TRUE;
2352
zthr_wait_cycle_done(ll_condense_thread);
2353
/*
2354
* If we've returned from zthr_wait_cycle_done without
2355
* clearing the to_condense data structure it's either
2356
* because the no-wait synctask has started (which is
2357
* indicated by 'syncing' field of to_condense) and we
2358
* can expect it to clear to_condense on its own.
2359
* Otherwise, we returned before the zthr ran. The
2360
* checkfunc will now fail as cancelled == B_TRUE so we
2361
* can safely NULL out ds, allowing a different dir's
2362
* livelist to be condensed.
2363
*
2364
* We can be sure that the to_condense struct will not
2365
* be repopulated at this stage because both this
2366
* function and dsl_livelist_try_condense execute in
2367
* syncing context.
2368
*/
2369
if ((spa->spa_to_condense.ds != NULL) &&
2370
!spa->spa_to_condense.syncing) {
2371
dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
2372
spa);
2373
spa->spa_to_condense.ds = NULL;
2374
}
2375
}
2376
2377
dsl_dir_livelist_close(dd);
2378
VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
2379
DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
2380
VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
2381
DD_FIELD_LIVELIST, tx));
2382
if (total) {
2383
dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
2384
spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2385
}
2386
}
2387
2388
static int
2389
dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
2390
zfs_wait_activity_t activity, boolean_t *in_progress)
2391
{
2392
int error = 0;
2393
2394
ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
2395
2396
switch (activity) {
2397
case ZFS_WAIT_DELETEQ: {
2398
#ifdef _KERNEL
2399
objset_t *os;
2400
error = dmu_objset_from_ds(ds, &os);
2401
if (error != 0)
2402
break;
2403
2404
mutex_enter(&os->os_user_ptr_lock);
2405
void *user = dmu_objset_get_user(os);
2406
mutex_exit(&os->os_user_ptr_lock);
2407
if (dmu_objset_type(os) != DMU_OST_ZFS ||
2408
user == NULL || zfs_get_vfs_flag_unmounted(os)) {
2409
*in_progress = B_FALSE;
2410
return (0);
2411
}
2412
2413
uint64_t readonly = B_FALSE;
2414
error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
2415
NULL);
2416
2417
if (error != 0)
2418
break;
2419
2420
if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
2421
*in_progress = B_FALSE;
2422
return (0);
2423
}
2424
2425
uint64_t count, unlinked_obj;
2426
error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
2427
&unlinked_obj);
2428
if (error != 0) {
2429
dsl_dataset_rele(ds, FTAG);
2430
break;
2431
}
2432
error = zap_count(os, unlinked_obj, &count);
2433
2434
if (error == 0)
2435
*in_progress = (count != 0);
2436
break;
2437
#else
2438
/*
2439
* The delete queue is ZPL specific, and libzpool doesn't have
2440
* it. It doesn't make sense to wait for it.
2441
*/
2442
(void) ds;
2443
*in_progress = B_FALSE;
2444
break;
2445
#endif
2446
}
2447
default:
2448
panic("unrecognized value for activity %d", activity);
2449
}
2450
2451
return (error);
2452
}
2453
2454
int
2455
dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
2456
boolean_t *waited)
2457
{
2458
int error = 0;
2459
boolean_t in_progress;
2460
dsl_pool_t *dp = dd->dd_pool;
2461
for (;;) {
2462
dsl_pool_config_enter(dp, FTAG);
2463
error = dsl_dir_activity_in_progress(dd, ds, activity,
2464
&in_progress);
2465
dsl_pool_config_exit(dp, FTAG);
2466
if (error != 0 || !in_progress)
2467
break;
2468
2469
*waited = B_TRUE;
2470
2471
if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
2472
0 || dd->dd_activity_cancelled) {
2473
error = SET_ERROR(EINTR);
2474
break;
2475
}
2476
}
2477
return (error);
2478
}
2479
2480
void
2481
dsl_dir_cancel_waiters(dsl_dir_t *dd)
2482
{
2483
mutex_enter(&dd->dd_activity_lock);
2484
dd->dd_activity_cancelled = B_TRUE;
2485
cv_broadcast(&dd->dd_activity_cv);
2486
while (dd->dd_activity_waiters > 0)
2487
cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
2488
mutex_exit(&dd->dd_activity_lock);
2489
}
2490
2491
#if defined(_KERNEL)
2492
EXPORT_SYMBOL(dsl_dir_set_quota);
2493
EXPORT_SYMBOL(dsl_dir_set_reservation);
2494
#endif
2495
2496
ZFS_MODULE_PARAM(zfs, , zvol_enforce_quotas, INT, ZMOD_RW,
2497
"Enable strict ZVOL quota enforcment");
2498
2499