Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/dsl_scan.c
108653 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24
* Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25
* Copyright 2016 Gary Mills
26
* Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
27
* Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
28
* Copyright 2019 Joyent, Inc.
29
*/
30
31
#include <sys/dsl_scan.h>
32
#include <sys/dsl_pool.h>
33
#include <sys/dsl_dataset.h>
34
#include <sys/dsl_prop.h>
35
#include <sys/dsl_dir.h>
36
#include <sys/dsl_synctask.h>
37
#include <sys/dnode.h>
38
#include <sys/dmu_tx.h>
39
#include <sys/dmu_objset.h>
40
#include <sys/arc.h>
41
#include <sys/arc_impl.h>
42
#include <sys/zap.h>
43
#include <sys/zio.h>
44
#include <sys/zfs_context.h>
45
#include <sys/fs/zfs.h>
46
#include <sys/zfs_znode.h>
47
#include <sys/spa_impl.h>
48
#include <sys/vdev_impl.h>
49
#include <sys/zil_impl.h>
50
#include <sys/zio_checksum.h>
51
#include <sys/brt.h>
52
#include <sys/ddt.h>
53
#include <sys/sa.h>
54
#include <sys/sa_impl.h>
55
#include <sys/zfeature.h>
56
#include <sys/abd.h>
57
#include <sys/range_tree.h>
58
#include <sys/dbuf.h>
59
#ifdef _KERNEL
60
#include <sys/zfs_vfsops.h>
61
#endif
62
63
/*
64
* Grand theory statement on scan queue sorting
65
*
66
* Scanning is implemented by recursively traversing all indirection levels
67
* in an object and reading all blocks referenced from said objects. This
68
* results in us approximately traversing the object from lowest logical
69
* offset to the highest. For best performance, we would want the logical
70
* blocks to be physically contiguous. However, this is frequently not the
71
* case with pools given the allocation patterns of copy-on-write filesystems.
72
* So instead, we put the I/Os into a reordering queue and issue them in a
73
* way that will most benefit physical disks (LBA-order).
74
*
75
* Queue management:
76
*
77
* Ideally, we would want to scan all metadata and queue up all block I/O
78
* prior to starting to issue it, because that allows us to do an optimal
79
* sorting job. This can however consume large amounts of memory. Therefore
80
* we continuously monitor the size of the queues and constrain them to 5%
81
* (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
82
* limit, we clear out a few of the largest extents at the head of the queues
83
* to make room for more scanning. Hopefully, these extents will be fairly
84
* large and contiguous, allowing us to approach sequential I/O throughput
85
* even without a fully sorted tree.
86
*
87
* Metadata scanning takes place in dsl_scan_visit(), which is called from
88
* dsl_scan_sync() every spa_sync(). If we have either fully scanned all
89
* metadata on the pool, or we need to make room in memory because our
90
* queues are too large, dsl_scan_visit() is postponed and
91
* scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
92
* that metadata scanning and queued I/O issuing are mutually exclusive. This
93
* allows us to provide maximum sequential I/O throughput for the majority of
94
* I/O's issued since sequential I/O performance is significantly negatively
95
* impacted if it is interleaved with random I/O.
96
*
97
* Implementation Notes
98
*
99
* One side effect of the queued scanning algorithm is that the scanning code
100
* needs to be notified whenever a block is freed. This is needed to allow
101
* the scanning code to remove these I/Os from the issuing queue. Additionally,
102
* we do not attempt to queue gang blocks to be issued sequentially since this
103
* is very hard to do and would have an extremely limited performance benefit.
104
* Instead, we simply issue gang I/Os as soon as we find them using the legacy
105
* algorithm.
106
*
107
* Backwards compatibility
108
*
109
* This new algorithm is backwards compatible with the legacy on-disk data
110
* structures (and therefore does not require a new feature flag).
111
* Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
112
* will stop scanning metadata (in logical order) and wait for all outstanding
113
* sorted I/O to complete. Once this is done, we write out a checkpoint
114
* bookmark, indicating that we have scanned everything logically before it.
115
* If the pool is imported on a machine without the new sorting algorithm,
116
* the scan simply resumes from the last checkpoint using the legacy algorithm.
117
*/
118
119
typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
120
const zbookmark_phys_t *);
121
122
static scan_cb_t dsl_scan_scrub_cb;
123
124
static int scan_ds_queue_compare(const void *a, const void *b);
125
static int scan_prefetch_queue_compare(const void *a, const void *b);
126
static void scan_ds_queue_clear(dsl_scan_t *scn);
127
static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
128
static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
129
uint64_t *txg);
130
static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
131
static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
132
static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
133
static uint64_t dsl_scan_count_data_disks(spa_t *spa);
134
static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
135
136
extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
137
static int zfs_scan_blkstats = 0;
138
139
/*
140
* 'zpool status' uses bytes processed per pass to report throughput and
141
* estimate time remaining. We define a pass to start when the scanning
142
* phase completes for a sequential resilver. Optionally, this value
143
* may be used to reset the pass statistics every N txgs to provide an
144
* estimated completion time based on currently observed performance.
145
*/
146
static uint_t zfs_scan_report_txgs = 0;
147
148
/*
149
* By default zfs will check to ensure it is not over the hard memory
150
* limit before each txg. If finer-grained control of this is needed
151
* this value can be set to 1 to enable checking before scanning each
152
* block.
153
*/
154
static int zfs_scan_strict_mem_lim = B_FALSE;
155
156
/*
157
* Maximum number of parallelly executed bytes per leaf vdev. We attempt
158
* to strike a balance here between keeping the vdev queues full of I/Os
159
* at all times and not overflowing the queues to cause long latency,
160
* which would cause long txg sync times. No matter what, we will not
161
* overload the drives with I/O, since that is protected by
162
* zfs_vdev_scrub_max_active.
163
*/
164
static uint64_t zfs_scan_vdev_limit = 16 << 20;
165
166
static uint_t zfs_scan_issue_strategy = 0;
167
168
/* don't queue & sort zios, go direct */
169
static int zfs_scan_legacy = B_FALSE;
170
static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
171
172
/*
173
* fill_weight is non-tunable at runtime, so we copy it at module init from
174
* zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
175
* break queue sorting.
176
*/
177
static uint_t zfs_scan_fill_weight = 3;
178
static uint64_t fill_weight;
179
180
/* See dsl_scan_should_clear() for details on the memory limit tunables */
181
static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
182
static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
183
184
185
/* fraction of physmem */
186
static uint_t zfs_scan_mem_lim_fact = 20;
187
188
/* fraction of mem lim above */
189
static uint_t zfs_scan_mem_lim_soft_fact = 20;
190
191
/* minimum milliseconds to scrub per txg */
192
static uint_t zfs_scrub_min_time_ms = 750;
193
194
/* minimum milliseconds to obsolete per txg */
195
static uint_t zfs_obsolete_min_time_ms = 500;
196
197
/* minimum milliseconds to free per txg */
198
static uint_t zfs_free_min_time_ms = 500;
199
200
/* minimum milliseconds to resilver per txg */
201
static uint_t zfs_resilver_min_time_ms = 1500;
202
203
static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
204
int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
205
static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
206
static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
207
static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
208
/* max number of blocks to free in a single TXG */
209
static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
210
/* max number of dedup blocks to free in a single TXG */
211
static uint64_t zfs_max_async_dedup_frees = 250000;
212
213
/*
214
* After freeing this many async ZIOs (dedup, clone, gang blocks), wait for
215
* them to complete before continuing. This prevents unbounded I/O queueing.
216
*/
217
static uint64_t zfs_async_free_zio_wait_interval = 2000;
218
219
/* set to disable resilver deferring */
220
static int zfs_resilver_disable_defer = B_FALSE;
221
222
/* Don't defer a resilver if the one in progress only got this far: */
223
static uint_t zfs_resilver_defer_percent = 10;
224
225
/*
226
* Number of TXGs to wait after importing before starting background
227
* work (async destroys, scan/scrub/resilver operations). This allows
228
* the import command and filesystem mounts to complete quickly without
229
* being delayed by background activities. The value is somewhat arbitrary
230
* since userspace triggers filesystem mounts asynchronously, but 5 TXGs
231
* provides a reasonable window for import completion in most cases.
232
*/
233
static uint_t zfs_import_defer_txgs = 5;
234
235
#define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
236
((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
237
(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
238
239
#define DSL_SCAN_IS_SCRUB(scn) \
240
((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB)
241
242
#define DSL_SCAN_IS_RESILVER(scn) \
243
((scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
244
245
/*
246
* Enable/disable the processing of the free_bpobj object.
247
*/
248
static int zfs_free_bpobj_enabled = 1;
249
250
/* Error blocks to be scrubbed in one txg. */
251
static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
252
253
/* the order has to match pool_scan_type */
254
static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
255
NULL,
256
dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
257
dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
258
};
259
260
/* In core node for the scn->scn_queue. Represents a dataset to be scanned */
261
typedef struct {
262
uint64_t sds_dsobj;
263
uint64_t sds_txg;
264
avl_node_t sds_node;
265
} scan_ds_t;
266
267
/*
268
* This controls what conditions are placed on dsl_scan_sync_state():
269
* SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
270
* SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
271
* SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
272
* write out the scn_phys_cached version.
273
* See dsl_scan_sync_state for details.
274
*/
275
typedef enum {
276
SYNC_OPTIONAL,
277
SYNC_MANDATORY,
278
SYNC_CACHED
279
} state_sync_type_t;
280
281
/*
282
* This struct represents the minimum information needed to reconstruct a
283
* zio for sequential scanning. This is useful because many of these will
284
* accumulate in the sequential IO queues before being issued, so saving
285
* memory matters here.
286
*/
287
typedef struct scan_io {
288
/* fields from blkptr_t */
289
uint64_t sio_blk_prop;
290
uint64_t sio_phys_birth;
291
uint64_t sio_birth;
292
zio_cksum_t sio_cksum;
293
uint32_t sio_nr_dvas;
294
295
/* fields from zio_t */
296
uint32_t sio_flags;
297
zbookmark_phys_t sio_zb;
298
299
/* members for queue sorting */
300
union {
301
avl_node_t sio_addr_node; /* link into issuing queue */
302
list_node_t sio_list_node; /* link for issuing to disk */
303
} sio_nodes;
304
305
/*
306
* There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
307
* depending on how many were in the original bp. Only the
308
* first DVA is really used for sorting and issuing purposes.
309
* The other DVAs (if provided) simply exist so that the zio
310
* layer can find additional copies to repair from in the
311
* event of an error. This array must go at the end of the
312
* struct to allow this for the variable number of elements.
313
*/
314
dva_t sio_dva[];
315
} scan_io_t;
316
317
#define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
318
#define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
319
#define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
320
#define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
321
#define SIO_GET_END_OFFSET(sio) \
322
(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
323
#define SIO_GET_MUSED(sio) \
324
(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
325
326
struct dsl_scan_io_queue {
327
dsl_scan_t *q_scn; /* associated dsl_scan_t */
328
vdev_t *q_vd; /* top-level vdev that this queue represents */
329
zio_t *q_zio; /* scn_zio_root child for waiting on IO */
330
331
/* trees used for sorting I/Os and extents of I/Os */
332
zfs_range_tree_t *q_exts_by_addr;
333
zfs_btree_t q_exts_by_size;
334
avl_tree_t q_sios_by_addr;
335
uint64_t q_sio_memused;
336
uint64_t q_last_ext_addr;
337
338
/* members for zio rate limiting */
339
uint64_t q_maxinflight_bytes;
340
uint64_t q_inflight_bytes;
341
kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
342
343
/* per txg statistics */
344
uint64_t q_total_seg_size_this_txg;
345
uint64_t q_segs_this_txg;
346
uint64_t q_total_zio_size_this_txg;
347
uint64_t q_zios_this_txg;
348
};
349
350
/* private data for dsl_scan_prefetch_cb() */
351
typedef struct scan_prefetch_ctx {
352
zfs_refcount_t spc_refcnt; /* refcount for memory management */
353
dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
354
boolean_t spc_root; /* is this prefetch for an objset? */
355
uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
356
uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
357
} scan_prefetch_ctx_t;
358
359
/* private data for dsl_scan_prefetch() */
360
typedef struct scan_prefetch_issue_ctx {
361
avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
362
scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
363
blkptr_t spic_bp; /* bp to prefetch */
364
zbookmark_phys_t spic_zb; /* bookmark to prefetch */
365
} scan_prefetch_issue_ctx_t;
366
367
static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
368
const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
369
static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
370
scan_io_t *sio);
371
372
static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
373
static void scan_io_queues_destroy(dsl_scan_t *scn);
374
375
static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
376
377
/* sio->sio_nr_dvas must be set so we know which cache to free from */
378
static void
379
sio_free(scan_io_t *sio)
380
{
381
ASSERT3U(sio->sio_nr_dvas, >, 0);
382
ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
383
384
kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
385
}
386
387
/* It is up to the caller to set sio->sio_nr_dvas for freeing */
388
static scan_io_t *
389
sio_alloc(unsigned short nr_dvas)
390
{
391
ASSERT3U(nr_dvas, >, 0);
392
ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
393
394
return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
395
}
396
397
void
398
scan_init(void)
399
{
400
/*
401
* This is used in ext_size_compare() to weight segments
402
* based on how sparse they are. This cannot be changed
403
* mid-scan and the tree comparison functions don't currently
404
* have a mechanism for passing additional context to the
405
* compare functions. Thus we store this value globally and
406
* we only allow it to be set at module initialization time
407
*/
408
fill_weight = zfs_scan_fill_weight;
409
410
for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
411
char name[36];
412
413
(void) snprintf(name, sizeof (name), "sio_cache_%d", i);
414
sio_cache[i] = kmem_cache_create(name,
415
(sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
416
0, NULL, NULL, NULL, NULL, NULL, 0);
417
}
418
}
419
420
void
421
scan_fini(void)
422
{
423
for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
424
kmem_cache_destroy(sio_cache[i]);
425
}
426
}
427
428
static inline boolean_t
429
dsl_scan_is_running(const dsl_scan_t *scn)
430
{
431
return (scn->scn_phys.scn_state == DSS_SCANNING);
432
}
433
434
boolean_t
435
dsl_scan_resilvering(dsl_pool_t *dp)
436
{
437
return (dsl_scan_is_running(dp->dp_scan) &&
438
dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
439
}
440
441
static inline void
442
sio2bp(const scan_io_t *sio, blkptr_t *bp)
443
{
444
memset(bp, 0, sizeof (*bp));
445
bp->blk_prop = sio->sio_blk_prop;
446
BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
447
BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
448
bp->blk_fill = 1; /* we always only work with data pointers */
449
bp->blk_cksum = sio->sio_cksum;
450
451
ASSERT3U(sio->sio_nr_dvas, >, 0);
452
ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
453
454
memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
455
}
456
457
static inline void
458
bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
459
{
460
sio->sio_blk_prop = bp->blk_prop;
461
sio->sio_phys_birth = BP_GET_RAW_PHYSICAL_BIRTH(bp);
462
sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
463
sio->sio_cksum = bp->blk_cksum;
464
sio->sio_nr_dvas = BP_GET_NDVAS(bp);
465
466
/*
467
* Copy the DVAs to the sio. We need all copies of the block so
468
* that the self healing code can use the alternate copies if the
469
* first is corrupted. We want the DVA at index dva_i to be first
470
* in the sio since this is the primary one that we want to issue.
471
*/
472
for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
473
sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
474
}
475
}
476
477
int
478
dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
479
{
480
int err;
481
dsl_scan_t *scn;
482
spa_t *spa = dp->dp_spa;
483
uint64_t f;
484
485
scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
486
scn->scn_dp = dp;
487
488
/*
489
* It's possible that we're resuming a scan after a reboot so
490
* make sure that the scan_async_destroying flag is initialized
491
* appropriately.
492
*/
493
ASSERT(!scn->scn_async_destroying);
494
scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
495
SPA_FEATURE_ASYNC_DESTROY);
496
497
/*
498
* Calculate the max number of in-flight bytes for pool-wide
499
* scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
500
* Limits for the issuing phase are done per top-level vdev and
501
* are handled separately.
502
*/
503
scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
504
zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
505
506
avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
507
offsetof(scan_ds_t, sds_node));
508
mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL);
509
avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
510
sizeof (scan_prefetch_issue_ctx_t),
511
offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
512
513
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
514
"scrub_func", sizeof (uint64_t), 1, &f);
515
if (err == 0) {
516
/*
517
* There was an old-style scrub in progress. Restart a
518
* new-style scrub from the beginning.
519
*/
520
scn->scn_restart_txg = txg;
521
zfs_dbgmsg("old-style scrub was in progress for %s; "
522
"restarting new-style scrub in txg %llu",
523
spa->spa_name,
524
(longlong_t)scn->scn_restart_txg);
525
526
/*
527
* Load the queue obj from the old location so that it
528
* can be freed by dsl_scan_done().
529
*/
530
(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
531
"scrub_queue", sizeof (uint64_t), 1,
532
&scn->scn_phys.scn_queue_obj);
533
} else {
534
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
535
DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
536
ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
537
538
if (err != 0 && err != ENOENT)
539
return (err);
540
541
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
542
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
543
&scn->scn_phys);
544
545
/*
546
* Detect if the pool contains the signature of #2094. If it
547
* does properly update the scn->scn_phys structure and notify
548
* the administrator by setting an errata for the pool.
549
*/
550
if (err == EOVERFLOW) {
551
uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
552
VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
553
VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
554
(23 * sizeof (uint64_t)));
555
556
err = zap_lookup(dp->dp_meta_objset,
557
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
558
sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
559
if (err == 0) {
560
uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
561
562
if (overflow & ~DSL_SCAN_FLAGS_MASK ||
563
scn->scn_async_destroying) {
564
spa->spa_errata =
565
ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
566
return (EOVERFLOW);
567
}
568
569
memcpy(&scn->scn_phys, zaptmp,
570
SCAN_PHYS_NUMINTS * sizeof (uint64_t));
571
scn->scn_phys.scn_flags = overflow;
572
573
/* Required scrub already in progress. */
574
if (scn->scn_phys.scn_state == DSS_FINISHED ||
575
scn->scn_phys.scn_state == DSS_CANCELED)
576
spa->spa_errata =
577
ZPOOL_ERRATA_ZOL_2094_SCRUB;
578
}
579
}
580
581
if (err == ENOENT)
582
return (0);
583
else if (err)
584
return (err);
585
586
/*
587
* We might be restarting after a reboot, so jump the issued
588
* counter to how far we've scanned. We know we're consistent
589
* up to here.
590
*/
591
scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
592
scn->scn_phys.scn_skipped;
593
594
if (dsl_scan_is_running(scn) &&
595
spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
596
/*
597
* A new-type scrub was in progress on an old
598
* pool, and the pool was accessed by old
599
* software. Restart from the beginning, since
600
* the old software may have changed the pool in
601
* the meantime.
602
*/
603
scn->scn_restart_txg = txg;
604
zfs_dbgmsg("new-style scrub for %s was modified "
605
"by old software; restarting in txg %llu",
606
spa->spa_name,
607
(longlong_t)scn->scn_restart_txg);
608
} else if (dsl_scan_resilvering(dp)) {
609
/*
610
* If a resilver is in progress and there are already
611
* errors, restart it instead of finishing this scan and
612
* then restarting it. If there haven't been any errors
613
* then remember that the incore DTL is valid.
614
*/
615
if (scn->scn_phys.scn_errors > 0) {
616
scn->scn_restart_txg = txg;
617
zfs_dbgmsg("resilver can't excise DTL_MISSING "
618
"when finished; restarting on %s in txg "
619
"%llu",
620
spa->spa_name,
621
(u_longlong_t)scn->scn_restart_txg);
622
} else {
623
/* it's safe to excise DTL when finished */
624
spa->spa_scrub_started = B_TRUE;
625
}
626
}
627
}
628
629
memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
630
631
/* reload the queue into the in-core state */
632
if (scn->scn_phys.scn_queue_obj != 0) {
633
zap_cursor_t zc;
634
zap_attribute_t *za = zap_attribute_alloc();
635
636
for (zap_cursor_init(&zc, dp->dp_meta_objset,
637
scn->scn_phys.scn_queue_obj);
638
zap_cursor_retrieve(&zc, za) == 0;
639
(void) zap_cursor_advance(&zc)) {
640
scan_ds_queue_insert(scn,
641
zfs_strtonum(za->za_name, NULL),
642
za->za_first_integer);
643
}
644
zap_cursor_fini(&zc);
645
zap_attribute_free(za);
646
}
647
648
ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
649
650
spa_scan_stat_init(spa);
651
vdev_scan_stat_init(spa->spa_root_vdev);
652
653
return (0);
654
}
655
656
void
657
dsl_scan_fini(dsl_pool_t *dp)
658
{
659
if (dp->dp_scan != NULL) {
660
dsl_scan_t *scn = dp->dp_scan;
661
662
if (scn->scn_taskq != NULL)
663
taskq_destroy(scn->scn_taskq);
664
665
scan_ds_queue_clear(scn);
666
avl_destroy(&scn->scn_queue);
667
mutex_destroy(&scn->scn_queue_lock);
668
scan_ds_prefetch_queue_clear(scn);
669
avl_destroy(&scn->scn_prefetch_queue);
670
671
kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
672
dp->dp_scan = NULL;
673
}
674
}
675
676
static boolean_t
677
dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
678
{
679
return (scn->scn_restart_txg != 0 &&
680
scn->scn_restart_txg <= tx->tx_txg);
681
}
682
683
boolean_t
684
dsl_scan_resilver_scheduled(dsl_pool_t *dp)
685
{
686
return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
687
(spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
688
}
689
690
boolean_t
691
dsl_scan_scrubbing(const dsl_pool_t *dp)
692
{
693
dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
694
695
return (scn_phys->scn_state == DSS_SCANNING &&
696
scn_phys->scn_func == POOL_SCAN_SCRUB);
697
}
698
699
boolean_t
700
dsl_errorscrubbing(const dsl_pool_t *dp)
701
{
702
dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
703
704
return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
705
errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
706
}
707
708
boolean_t
709
dsl_errorscrub_is_paused(const dsl_scan_t *scn)
710
{
711
return (dsl_errorscrubbing(scn->scn_dp) &&
712
scn->errorscrub_phys.dep_paused_flags);
713
}
714
715
boolean_t
716
dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
717
{
718
return (dsl_scan_scrubbing(scn->scn_dp) &&
719
scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
720
}
721
722
static void
723
dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
724
{
725
scn->errorscrub_phys.dep_cursor =
726
zap_cursor_serialize(&scn->errorscrub_cursor);
727
728
VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
729
DMU_POOL_DIRECTORY_OBJECT,
730
DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
731
&scn->errorscrub_phys, tx));
732
}
733
734
static void
735
dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
736
{
737
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
738
pool_scan_func_t *funcp = arg;
739
dsl_pool_t *dp = scn->scn_dp;
740
spa_t *spa = dp->dp_spa;
741
742
ASSERT(!dsl_scan_is_running(scn));
743
ASSERT(!dsl_errorscrubbing(scn->scn_dp));
744
ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
745
746
memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
747
scn->errorscrub_phys.dep_func = *funcp;
748
scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
749
scn->errorscrub_phys.dep_start_time = gethrestime_sec();
750
scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
751
scn->errorscrub_phys.dep_examined = 0;
752
scn->errorscrub_phys.dep_errors = 0;
753
scn->errorscrub_phys.dep_cursor = 0;
754
zap_cursor_init_serialized(&scn->errorscrub_cursor,
755
spa->spa_meta_objset, spa->spa_errlog_last,
756
scn->errorscrub_phys.dep_cursor);
757
758
vdev_config_dirty(spa->spa_root_vdev);
759
spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
760
761
dsl_errorscrub_sync_state(scn, tx);
762
763
spa_history_log_internal(spa, "error scrub setup", tx,
764
"func=%u mintxg=%u maxtxg=%llu",
765
*funcp, 0, (u_longlong_t)tx->tx_txg);
766
}
767
768
static int
769
dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
770
{
771
(void) arg;
772
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
773
774
if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
775
return (SET_ERROR(EBUSY));
776
}
777
778
if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
779
return (ECANCELED);
780
}
781
return (0);
782
}
783
784
/*
785
* Writes out a persistent dsl_scan_phys_t record to the pool directory.
786
* Because we can be running in the block sorting algorithm, we do not always
787
* want to write out the record, only when it is "safe" to do so. This safety
788
* condition is achieved by making sure that the sorting queues are empty
789
* (scn_queues_pending == 0). When this condition is not true, the sync'd state
790
* is inconsistent with how much actual scanning progress has been made. The
791
* kind of sync to be performed is specified by the sync_type argument. If the
792
* sync is optional, we only sync if the queues are empty. If the sync is
793
* mandatory, we do a hard ASSERT to make sure that the queues are empty. The
794
* third possible state is a "cached" sync. This is done in response to:
795
* 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
796
* destroyed, so we wouldn't be able to restart scanning from it.
797
* 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
798
* superseded by a newer snapshot.
799
* 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
800
* swapped with its clone.
801
* In all cases, a cached sync simply rewrites the last record we've written,
802
* just slightly modified. For the modifications that are performed to the
803
* last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
804
* dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
805
*/
806
static void
807
dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
808
{
809
int i;
810
spa_t *spa = scn->scn_dp->dp_spa;
811
812
ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
813
if (scn->scn_queues_pending == 0) {
814
for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
815
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
816
dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
817
818
if (q == NULL)
819
continue;
820
821
mutex_enter(&vd->vdev_scan_io_queue_lock);
822
ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
823
ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
824
NULL);
825
ASSERT3P(zfs_range_tree_first(q->q_exts_by_addr), ==,
826
NULL);
827
mutex_exit(&vd->vdev_scan_io_queue_lock);
828
}
829
830
if (scn->scn_phys.scn_queue_obj != 0)
831
scan_ds_queue_sync(scn, tx);
832
VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
833
DMU_POOL_DIRECTORY_OBJECT,
834
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
835
&scn->scn_phys, tx));
836
memcpy(&scn->scn_phys_cached, &scn->scn_phys,
837
sizeof (scn->scn_phys));
838
839
if (scn->scn_checkpointing)
840
zfs_dbgmsg("finish scan checkpoint for %s",
841
spa->spa_name);
842
843
scn->scn_checkpointing = B_FALSE;
844
scn->scn_last_checkpoint = ddi_get_lbolt();
845
} else if (sync_type == SYNC_CACHED) {
846
VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
847
DMU_POOL_DIRECTORY_OBJECT,
848
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
849
&scn->scn_phys_cached, tx));
850
}
851
}
852
853
int
854
dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
855
{
856
(void) arg;
857
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
858
vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
859
860
if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
861
dsl_errorscrubbing(scn->scn_dp))
862
return (SET_ERROR(EBUSY));
863
864
return (0);
865
}
866
867
void
868
dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
869
{
870
setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg;
871
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
872
dmu_object_type_t ot = 0;
873
dsl_pool_t *dp = scn->scn_dp;
874
spa_t *spa = dp->dp_spa;
875
876
ASSERT(!dsl_scan_is_running(scn));
877
ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE);
878
ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS);
879
memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
880
881
/*
882
* If we are starting a fresh scrub, we erase the error scrub
883
* information from disk.
884
*/
885
memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
886
dsl_errorscrub_sync_state(scn, tx);
887
888
scn->scn_phys.scn_func = setup_sync_arg->func;
889
scn->scn_phys.scn_state = DSS_SCANNING;
890
scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart;
891
if (setup_sync_arg->txgend == 0) {
892
scn->scn_phys.scn_max_txg = tx->tx_txg;
893
} else {
894
scn->scn_phys.scn_max_txg = setup_sync_arg->txgend;
895
}
896
scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
897
scn->scn_phys.scn_start_time = gethrestime_sec();
898
scn->scn_phys.scn_errors = 0;
899
scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
900
scn->scn_issued_before_pass = 0;
901
scn->scn_restart_txg = 0;
902
scn->scn_done_txg = 0;
903
scn->scn_last_checkpoint = 0;
904
scn->scn_checkpointing = B_FALSE;
905
spa_scan_stat_init(spa);
906
vdev_scan_stat_init(spa->spa_root_vdev);
907
908
if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
909
scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
910
911
/* rewrite all disk labels */
912
vdev_config_dirty(spa->spa_root_vdev);
913
914
if (vdev_resilver_needed(spa->spa_root_vdev,
915
&scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
916
nvlist_t *aux = fnvlist_alloc();
917
fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
918
"healing");
919
spa_event_notify(spa, NULL, aux,
920
ESC_ZFS_RESILVER_START);
921
nvlist_free(aux);
922
} else {
923
spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
924
}
925
926
spa->spa_scrub_started = B_TRUE;
927
/*
928
* If this is an incremental scrub, limit the DDT scrub phase
929
* to just the auto-ditto class (for correctness); the rest
930
* of the scrub should go faster using top-down pruning.
931
*/
932
if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
933
scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
934
935
/*
936
* When starting a resilver clear any existing rebuild state.
937
* This is required to prevent stale rebuild status from
938
* being reported when a rebuild is run, then a resilver and
939
* finally a scrub. In which case only the scrub status
940
* should be reported by 'zpool status'.
941
*/
942
if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
943
vdev_t *rvd = spa->spa_root_vdev;
944
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
945
vdev_t *vd = rvd->vdev_child[i];
946
vdev_rebuild_clear_sync(
947
(void *)(uintptr_t)vd->vdev_id, tx);
948
}
949
}
950
}
951
952
/* back to the generic stuff */
953
954
if (zfs_scan_blkstats) {
955
if (dp->dp_blkstats == NULL) {
956
dp->dp_blkstats =
957
vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
958
}
959
memset(&dp->dp_blkstats->zab_type, 0,
960
sizeof (dp->dp_blkstats->zab_type));
961
} else {
962
if (dp->dp_blkstats) {
963
vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
964
dp->dp_blkstats = NULL;
965
}
966
}
967
968
if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
969
ot = DMU_OT_ZAP_OTHER;
970
971
scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
972
ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
973
974
memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
975
976
ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
977
978
dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
979
980
spa_history_log_internal(spa, "scan setup", tx,
981
"func=%u mintxg=%llu maxtxg=%llu",
982
setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg,
983
(u_longlong_t)scn->scn_phys.scn_max_txg);
984
}
985
986
/*
987
* Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
988
* error scrub or resilver. Can also be called to resume a paused scrub or
989
* error scrub.
990
*/
991
int
992
dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart,
993
uint64_t txgend)
994
{
995
spa_t *spa = dp->dp_spa;
996
dsl_scan_t *scn = dp->dp_scan;
997
setup_sync_arg_t setup_sync_arg;
998
999
if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) {
1000
return (EINVAL);
1001
}
1002
1003
/*
1004
* Purge all vdev caches and probe all devices. We do this here
1005
* rather than in sync context because this requires a writer lock
1006
* on the spa_config lock, which we can't do from sync context. The
1007
* spa_scrub_reopen flag indicates that vdev_open() should not
1008
* attempt to start another scrub.
1009
*/
1010
spa_vdev_state_enter(spa, SCL_NONE);
1011
spa->spa_scrub_reopen = B_TRUE;
1012
vdev_reopen(spa->spa_root_vdev);
1013
spa->spa_scrub_reopen = B_FALSE;
1014
(void) spa_vdev_state_exit(spa, NULL, 0);
1015
1016
if (func == POOL_SCAN_RESILVER) {
1017
dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
1018
return (0);
1019
}
1020
1021
if (func == POOL_SCAN_ERRORSCRUB) {
1022
if (dsl_errorscrub_is_paused(dp->dp_scan)) {
1023
/*
1024
* got error scrub start cmd, resume paused error scrub.
1025
*/
1026
int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1027
POOL_SCRUB_NORMAL);
1028
if (err == 0) {
1029
spa_event_notify(spa, NULL, NULL,
1030
ESC_ZFS_ERRORSCRUB_RESUME);
1031
return (0);
1032
}
1033
return (SET_ERROR(err));
1034
}
1035
1036
return (dsl_sync_task(spa_name(dp->dp_spa),
1037
dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1038
&func, 0, ZFS_SPACE_CHECK_RESERVED));
1039
}
1040
1041
if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1042
/* got scrub start cmd, resume paused scrub */
1043
int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1044
POOL_SCRUB_NORMAL);
1045
if (err == 0) {
1046
spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1047
return (0);
1048
}
1049
return (SET_ERROR(err));
1050
}
1051
1052
setup_sync_arg.func = func;
1053
setup_sync_arg.txgstart = txgstart;
1054
setup_sync_arg.txgend = txgend;
1055
1056
return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1057
dsl_scan_setup_sync, &setup_sync_arg, 0,
1058
ZFS_SPACE_CHECK_EXTRA_RESERVED));
1059
}
1060
1061
static void
1062
dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1063
{
1064
dsl_pool_t *dp = scn->scn_dp;
1065
spa_t *spa = dp->dp_spa;
1066
1067
if (complete) {
1068
spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1069
spa_history_log_internal(spa, "error scrub done", tx,
1070
"errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1071
} else {
1072
spa_history_log_internal(spa, "error scrub canceled", tx,
1073
"errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1074
}
1075
1076
scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1077
spa->spa_scrub_active = B_FALSE;
1078
spa_errlog_rotate(spa);
1079
scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1080
zap_cursor_fini(&scn->errorscrub_cursor);
1081
1082
if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1083
spa->spa_errata = 0;
1084
1085
ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1086
}
1087
1088
static void
1089
dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1090
{
1091
static const char *old_names[] = {
1092
"scrub_bookmark",
1093
"scrub_ddt_bookmark",
1094
"scrub_ddt_class_max",
1095
"scrub_queue",
1096
"scrub_min_txg",
1097
"scrub_max_txg",
1098
"scrub_func",
1099
"scrub_errors",
1100
NULL
1101
};
1102
1103
dsl_pool_t *dp = scn->scn_dp;
1104
spa_t *spa = dp->dp_spa;
1105
int i;
1106
1107
/* Remove any remnants of an old-style scrub. */
1108
for (i = 0; old_names[i]; i++) {
1109
(void) zap_remove(dp->dp_meta_objset,
1110
DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1111
}
1112
1113
if (scn->scn_phys.scn_queue_obj != 0) {
1114
VERIFY0(dmu_object_free(dp->dp_meta_objset,
1115
scn->scn_phys.scn_queue_obj, tx));
1116
scn->scn_phys.scn_queue_obj = 0;
1117
}
1118
scan_ds_queue_clear(scn);
1119
scan_ds_prefetch_queue_clear(scn);
1120
1121
scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1122
1123
/*
1124
* If we were "restarted" from a stopped state, don't bother
1125
* with anything else.
1126
*/
1127
if (!dsl_scan_is_running(scn)) {
1128
ASSERT(!scn->scn_is_sorted);
1129
return;
1130
}
1131
1132
if (scn->scn_is_sorted) {
1133
scan_io_queues_destroy(scn);
1134
scn->scn_is_sorted = B_FALSE;
1135
1136
if (scn->scn_taskq != NULL) {
1137
taskq_destroy(scn->scn_taskq);
1138
scn->scn_taskq = NULL;
1139
}
1140
}
1141
1142
if (dsl_scan_restarting(scn, tx)) {
1143
spa_history_log_internal(spa, "scan aborted, restarting", tx,
1144
"errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1145
} else if (!complete) {
1146
spa_history_log_internal(spa, "scan cancelled", tx,
1147
"errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1148
} else {
1149
spa_history_log_internal(spa, "scan done", tx,
1150
"errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1151
if (DSL_SCAN_IS_SCRUB(scn)) {
1152
VERIFY0(zap_update(dp->dp_meta_objset,
1153
DMU_POOL_DIRECTORY_OBJECT,
1154
DMU_POOL_LAST_SCRUBBED_TXG,
1155
sizeof (uint64_t), 1,
1156
&scn->scn_phys.scn_max_txg, tx));
1157
spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg;
1158
}
1159
}
1160
1161
if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1162
spa->spa_scrub_active = B_FALSE;
1163
1164
/*
1165
* If the scrub/resilver completed, update all DTLs to
1166
* reflect this. Whether it succeeded or not, vacate
1167
* all temporary scrub DTLs.
1168
*
1169
* As the scrub does not currently support traversing
1170
* data that have been freed but are part of a checkpoint,
1171
* we don't mark the scrub as done in the DTLs as faults
1172
* may still exist in those vdevs.
1173
*/
1174
if (complete &&
1175
!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1176
vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1177
scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1178
1179
if (DSL_SCAN_IS_RESILVER(scn)) {
1180
nvlist_t *aux = fnvlist_alloc();
1181
fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1182
"healing");
1183
spa_event_notify(spa, NULL, aux,
1184
ESC_ZFS_RESILVER_FINISH);
1185
nvlist_free(aux);
1186
} else {
1187
spa_event_notify(spa, NULL, NULL,
1188
ESC_ZFS_SCRUB_FINISH);
1189
}
1190
} else {
1191
vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1192
0, B_TRUE, B_FALSE);
1193
}
1194
spa_errlog_rotate(spa);
1195
1196
/*
1197
* Don't clear flag until after vdev_dtl_reassess to ensure that
1198
* DTL_MISSING will get updated when possible.
1199
*/
1200
scn->scn_phys.scn_state = complete ? DSS_FINISHED :
1201
DSS_CANCELED;
1202
scn->scn_phys.scn_end_time = gethrestime_sec();
1203
spa->spa_scrub_started = B_FALSE;
1204
1205
/*
1206
* We may have finished replacing a device.
1207
* Let the async thread assess this and handle the detach.
1208
*/
1209
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1210
1211
/*
1212
* Clear any resilver_deferred flags in the config.
1213
* If there are drives that need resilvering, kick
1214
* off an asynchronous request to start resilver.
1215
* vdev_clear_resilver_deferred() may update the config
1216
* before the resilver can restart. In the event of
1217
* a crash during this period, the spa loading code
1218
* will find the drives that need to be resilvered
1219
* and start the resilver then.
1220
*/
1221
if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1222
vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1223
spa_history_log_internal(spa,
1224
"starting deferred resilver", tx, "errors=%llu",
1225
(u_longlong_t)spa_approx_errlog_size(spa));
1226
spa_async_request(spa, SPA_ASYNC_RESILVER);
1227
}
1228
1229
/* Clear recent error events (i.e. duplicate events tracking) */
1230
if (complete)
1231
zfs_ereport_clear(spa, NULL);
1232
} else {
1233
scn->scn_phys.scn_state = complete ? DSS_FINISHED :
1234
DSS_CANCELED;
1235
scn->scn_phys.scn_end_time = gethrestime_sec();
1236
}
1237
1238
spa_notify_waiters(spa);
1239
1240
if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1241
spa->spa_errata = 0;
1242
1243
ASSERT(!dsl_scan_is_running(scn));
1244
}
1245
1246
static int
1247
dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1248
{
1249
pool_scrub_cmd_t *cmd = arg;
1250
dsl_pool_t *dp = dmu_tx_pool(tx);
1251
dsl_scan_t *scn = dp->dp_scan;
1252
1253
if (*cmd == POOL_SCRUB_PAUSE) {
1254
/*
1255
* can't pause a error scrub when there is no in-progress
1256
* error scrub.
1257
*/
1258
if (!dsl_errorscrubbing(dp))
1259
return (SET_ERROR(ENOENT));
1260
1261
/* can't pause a paused error scrub */
1262
if (dsl_errorscrub_is_paused(scn))
1263
return (SET_ERROR(EBUSY));
1264
} else if (*cmd != POOL_SCRUB_NORMAL) {
1265
return (SET_ERROR(ENOTSUP));
1266
}
1267
1268
return (0);
1269
}
1270
1271
static void
1272
dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1273
{
1274
pool_scrub_cmd_t *cmd = arg;
1275
dsl_pool_t *dp = dmu_tx_pool(tx);
1276
spa_t *spa = dp->dp_spa;
1277
dsl_scan_t *scn = dp->dp_scan;
1278
1279
if (*cmd == POOL_SCRUB_PAUSE) {
1280
spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1281
scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1282
dsl_errorscrub_sync_state(scn, tx);
1283
spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1284
} else {
1285
ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1286
if (dsl_errorscrub_is_paused(scn)) {
1287
/*
1288
* We need to keep track of how much time we spend
1289
* paused per pass so that we can adjust the error scrub
1290
* rate shown in the output of 'zpool status'.
1291
*/
1292
spa->spa_scan_pass_errorscrub_spent_paused +=
1293
gethrestime_sec() -
1294
spa->spa_scan_pass_errorscrub_pause;
1295
1296
spa->spa_scan_pass_errorscrub_pause = 0;
1297
scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1298
1299
zap_cursor_init_serialized(
1300
&scn->errorscrub_cursor,
1301
spa->spa_meta_objset, spa->spa_errlog_last,
1302
scn->errorscrub_phys.dep_cursor);
1303
1304
dsl_errorscrub_sync_state(scn, tx);
1305
}
1306
}
1307
}
1308
1309
static int
1310
dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1311
{
1312
(void) arg;
1313
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1314
/* can't cancel a error scrub when there is no one in-progress */
1315
if (!dsl_errorscrubbing(scn->scn_dp))
1316
return (SET_ERROR(ENOENT));
1317
return (0);
1318
}
1319
1320
static void
1321
dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1322
{
1323
(void) arg;
1324
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1325
1326
dsl_errorscrub_done(scn, B_FALSE, tx);
1327
dsl_errorscrub_sync_state(scn, tx);
1328
spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1329
ESC_ZFS_ERRORSCRUB_ABORT);
1330
}
1331
1332
static int
1333
dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1334
{
1335
(void) arg;
1336
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1337
1338
if (!dsl_scan_is_running(scn))
1339
return (SET_ERROR(ENOENT));
1340
return (0);
1341
}
1342
1343
static void
1344
dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1345
{
1346
(void) arg;
1347
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1348
1349
dsl_scan_done(scn, B_FALSE, tx);
1350
dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1351
spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1352
}
1353
1354
int
1355
dsl_scan_cancel(dsl_pool_t *dp)
1356
{
1357
if (dsl_errorscrubbing(dp)) {
1358
return (dsl_sync_task(spa_name(dp->dp_spa),
1359
dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1360
NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1361
}
1362
return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1363
dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1364
}
1365
1366
static int
1367
dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1368
{
1369
pool_scrub_cmd_t *cmd = arg;
1370
dsl_pool_t *dp = dmu_tx_pool(tx);
1371
dsl_scan_t *scn = dp->dp_scan;
1372
1373
if (*cmd == POOL_SCRUB_PAUSE) {
1374
/* can't pause a scrub when there is no in-progress scrub */
1375
if (!dsl_scan_scrubbing(dp))
1376
return (SET_ERROR(ENOENT));
1377
1378
/* can't pause a paused scrub */
1379
if (dsl_scan_is_paused_scrub(scn))
1380
return (SET_ERROR(EBUSY));
1381
} else if (*cmd != POOL_SCRUB_NORMAL) {
1382
return (SET_ERROR(ENOTSUP));
1383
}
1384
1385
return (0);
1386
}
1387
1388
static void
1389
dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1390
{
1391
pool_scrub_cmd_t *cmd = arg;
1392
dsl_pool_t *dp = dmu_tx_pool(tx);
1393
spa_t *spa = dp->dp_spa;
1394
dsl_scan_t *scn = dp->dp_scan;
1395
1396
if (*cmd == POOL_SCRUB_PAUSE) {
1397
/* can't pause a scrub when there is no in-progress scrub */
1398
spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1399
scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1400
scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1401
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1402
spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1403
spa_notify_waiters(spa);
1404
} else {
1405
ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1406
if (dsl_scan_is_paused_scrub(scn)) {
1407
/*
1408
* We need to keep track of how much time we spend
1409
* paused per pass so that we can adjust the scrub rate
1410
* shown in the output of 'zpool status'
1411
*/
1412
spa->spa_scan_pass_scrub_spent_paused +=
1413
gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1414
spa->spa_scan_pass_scrub_pause = 0;
1415
scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1416
scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1417
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1418
}
1419
}
1420
}
1421
1422
/*
1423
* Set scrub pause/resume state if it makes sense to do so
1424
*/
1425
int
1426
dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1427
{
1428
if (dsl_errorscrubbing(dp)) {
1429
return (dsl_sync_task(spa_name(dp->dp_spa),
1430
dsl_errorscrub_pause_resume_check,
1431
dsl_errorscrub_pause_resume_sync, &cmd, 3,
1432
ZFS_SPACE_CHECK_RESERVED));
1433
}
1434
return (dsl_sync_task(spa_name(dp->dp_spa),
1435
dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1436
ZFS_SPACE_CHECK_RESERVED));
1437
}
1438
1439
1440
/* start a new scan, or restart an existing one. */
1441
void
1442
dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1443
{
1444
if (txg == 0) {
1445
dmu_tx_t *tx;
1446
tx = dmu_tx_create_dd(dp->dp_mos_dir);
1447
VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
1448
1449
txg = dmu_tx_get_txg(tx);
1450
dp->dp_scan->scn_restart_txg = txg;
1451
dmu_tx_commit(tx);
1452
} else {
1453
dp->dp_scan->scn_restart_txg = txg;
1454
}
1455
zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1456
dp->dp_spa->spa_name, (longlong_t)txg);
1457
}
1458
1459
void
1460
dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1461
{
1462
zio_free(dp->dp_spa, txg, bp);
1463
}
1464
1465
void
1466
dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1467
{
1468
ASSERT(dsl_pool_sync_context(dp));
1469
zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1470
}
1471
1472
static int
1473
scan_ds_queue_compare(const void *a, const void *b)
1474
{
1475
const scan_ds_t *sds_a = a, *sds_b = b;
1476
1477
if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1478
return (-1);
1479
if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1480
return (0);
1481
return (1);
1482
}
1483
1484
static void
1485
scan_ds_queue_clear(dsl_scan_t *scn)
1486
{
1487
void *cookie = NULL;
1488
scan_ds_t *sds;
1489
while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1490
kmem_free(sds, sizeof (*sds));
1491
}
1492
}
1493
1494
static boolean_t
1495
scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1496
{
1497
scan_ds_t srch, *sds;
1498
1499
srch.sds_dsobj = dsobj;
1500
sds = avl_find(&scn->scn_queue, &srch, NULL);
1501
if (sds != NULL && txg != NULL)
1502
*txg = sds->sds_txg;
1503
return (sds != NULL);
1504
}
1505
1506
static void
1507
scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1508
{
1509
scan_ds_t *sds;
1510
avl_index_t where;
1511
1512
sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1513
sds->sds_dsobj = dsobj;
1514
sds->sds_txg = txg;
1515
1516
VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1517
avl_insert(&scn->scn_queue, sds, where);
1518
}
1519
1520
static void
1521
scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1522
{
1523
scan_ds_t srch, *sds;
1524
1525
srch.sds_dsobj = dsobj;
1526
1527
sds = avl_find(&scn->scn_queue, &srch, NULL);
1528
VERIFY(sds != NULL);
1529
avl_remove(&scn->scn_queue, sds);
1530
kmem_free(sds, sizeof (*sds));
1531
}
1532
1533
static void
1534
scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1535
{
1536
dsl_pool_t *dp = scn->scn_dp;
1537
spa_t *spa = dp->dp_spa;
1538
dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1539
DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1540
1541
ASSERT0(scn->scn_queues_pending);
1542
ASSERT(scn->scn_phys.scn_queue_obj != 0);
1543
1544
VERIFY0(dmu_object_free(dp->dp_meta_objset,
1545
scn->scn_phys.scn_queue_obj, tx));
1546
scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1547
DMU_OT_NONE, 0, tx);
1548
for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1549
sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1550
VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1551
scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1552
sds->sds_txg, tx));
1553
}
1554
}
1555
1556
/*
1557
* Computes the memory limit state that we're currently in. A sorted scan
1558
* needs quite a bit of memory to hold the sorting queue, so we need to
1559
* reasonably constrain the size so it doesn't impact overall system
1560
* performance. We compute two limits:
1561
* 1) Hard memory limit: if the amount of memory used by the sorting
1562
* queues on a pool gets above this value, we stop the metadata
1563
* scanning portion and start issuing the queued up and sorted
1564
* I/Os to reduce memory usage.
1565
* This limit is calculated as a fraction of physmem (by default 5%).
1566
* We constrain the lower bound of the hard limit to an absolute
1567
* minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1568
* the upper bound to 5% of the total pool size - no chance we'll
1569
* ever need that much memory, but just to keep the value in check.
1570
* 2) Soft memory limit: once we hit the hard memory limit, we start
1571
* issuing I/O to reduce queue memory usage, but we don't want to
1572
* completely empty out the queues, since we might be able to find I/Os
1573
* that will fill in the gaps of our non-sequential IOs at some point
1574
* in the future. So we stop the issuing of I/Os once the amount of
1575
* memory used drops below the soft limit (at which point we stop issuing
1576
* I/O and start scanning metadata again).
1577
*
1578
* This limit is calculated by subtracting a fraction of the hard
1579
* limit from the hard limit. By default this fraction is 5%, so
1580
* the soft limit is 95% of the hard limit. We cap the size of the
1581
* difference between the hard and soft limits at an absolute
1582
* maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1583
* sufficient to not cause too frequent switching between the
1584
* metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1585
* worth of queues is about 1.2 GiB of on-pool data, so scanning
1586
* that should take at least a decent fraction of a second).
1587
*/
1588
static boolean_t
1589
dsl_scan_should_clear(dsl_scan_t *scn)
1590
{
1591
spa_t *spa = scn->scn_dp->dp_spa;
1592
vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1593
uint64_t alloc, mlim_hard, mlim_soft, mused;
1594
1595
alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1596
alloc += metaslab_class_get_alloc(spa_special_class(spa));
1597
alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1598
1599
mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1600
zfs_scan_mem_lim_min);
1601
mlim_hard = MIN(mlim_hard, alloc / 20);
1602
mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1603
zfs_scan_mem_lim_soft_max);
1604
mused = 0;
1605
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1606
vdev_t *tvd = rvd->vdev_child[i];
1607
dsl_scan_io_queue_t *queue;
1608
1609
mutex_enter(&tvd->vdev_scan_io_queue_lock);
1610
queue = tvd->vdev_scan_io_queue;
1611
if (queue != NULL) {
1612
/*
1613
* # of extents in exts_by_addr = # in exts_by_size.
1614
* B-tree efficiency is ~75%, but can be as low as 50%.
1615
*/
1616
mused += zfs_btree_numnodes(&queue->q_exts_by_size) * ((
1617
sizeof (zfs_range_seg_gap_t) + sizeof (uint64_t)) *
1618
3 / 2) + queue->q_sio_memused;
1619
}
1620
mutex_exit(&tvd->vdev_scan_io_queue_lock);
1621
}
1622
1623
dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1624
1625
if (mused == 0)
1626
ASSERT0(scn->scn_queues_pending);
1627
1628
/*
1629
* If we are above our hard limit, we need to clear out memory.
1630
* If we are below our soft limit, we need to accumulate sequential IOs.
1631
* Otherwise, we should keep doing whatever we are currently doing.
1632
*/
1633
if (mused >= mlim_hard)
1634
return (B_TRUE);
1635
else if (mused < mlim_soft)
1636
return (B_FALSE);
1637
else
1638
return (scn->scn_clearing);
1639
}
1640
1641
static boolean_t
1642
dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1643
{
1644
/* we never skip user/group accounting objects */
1645
if (zb && (int64_t)zb->zb_object < 0)
1646
return (B_FALSE);
1647
1648
if (scn->scn_suspending)
1649
return (B_TRUE); /* we're already suspending */
1650
1651
if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1652
return (B_FALSE); /* we're resuming */
1653
1654
/* We only know how to resume from level-0 and objset blocks. */
1655
if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1656
return (B_FALSE);
1657
1658
/*
1659
* We suspend if:
1660
* - we have scanned for at least the minimum time (default 1 sec
1661
* for scrub, 3 sec for resilver), and either we have sufficient
1662
* dirty data that we are starting to write more quickly
1663
* (default 30%), someone is explicitly waiting for this txg
1664
* to complete, or we have used up all of the time in the txg
1665
* timeout (default 5 sec).
1666
* or
1667
* - the spa is shutting down because this pool is being exported
1668
* or the machine is rebooting.
1669
* or
1670
* - the scan queue has reached its memory use limit
1671
*/
1672
uint64_t curr_time_ns = getlrtime();
1673
uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1674
uint64_t sync_time_ns = curr_time_ns -
1675
scn->scn_dp->dp_spa->spa_sync_starttime;
1676
uint64_t dirty_min_bytes = zfs_dirty_data_max *
1677
zfs_vdev_async_write_active_min_dirty_percent / 100;
1678
uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1679
zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1680
1681
if ((NSEC2MSEC(scan_time_ns) > mintime &&
1682
(scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1683
txg_sync_waiting(scn->scn_dp) ||
1684
NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1685
spa_shutting_down(scn->scn_dp->dp_spa) ||
1686
(zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) ||
1687
!ddt_walk_ready(scn->scn_dp->dp_spa)) {
1688
if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1689
dprintf("suspending at first available bookmark "
1690
"%llx/%llx/%llx/%llx\n",
1691
(longlong_t)zb->zb_objset,
1692
(longlong_t)zb->zb_object,
1693
(longlong_t)zb->zb_level,
1694
(longlong_t)zb->zb_blkid);
1695
SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1696
zb->zb_objset, 0, 0, 0);
1697
} else if (zb != NULL) {
1698
dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1699
(longlong_t)zb->zb_objset,
1700
(longlong_t)zb->zb_object,
1701
(longlong_t)zb->zb_level,
1702
(longlong_t)zb->zb_blkid);
1703
scn->scn_phys.scn_bookmark = *zb;
1704
} else {
1705
#ifdef ZFS_DEBUG
1706
dsl_scan_phys_t *scnp = &scn->scn_phys;
1707
dprintf("suspending at at DDT bookmark "
1708
"%llx/%llx/%llx/%llx\n",
1709
(longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1710
(longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1711
(longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1712
(longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1713
#endif
1714
}
1715
scn->scn_suspending = B_TRUE;
1716
return (B_TRUE);
1717
}
1718
return (B_FALSE);
1719
}
1720
1721
static boolean_t
1722
dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1723
{
1724
/*
1725
* We suspend if:
1726
* - we have scrubbed for at least the minimum time (default 1 sec
1727
* for error scrub), someone is explicitly waiting for this txg
1728
* to complete, or we have used up all of the time in the txg
1729
* timeout (default 5 sec).
1730
* or
1731
* - the spa is shutting down because this pool is being exported
1732
* or the machine is rebooting.
1733
*/
1734
uint64_t curr_time_ns = getlrtime();
1735
uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1736
uint64_t sync_time_ns = curr_time_ns -
1737
scn->scn_dp->dp_spa->spa_sync_starttime;
1738
int mintime = zfs_scrub_min_time_ms;
1739
1740
if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1741
(txg_sync_waiting(scn->scn_dp) ||
1742
NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1743
spa_shutting_down(scn->scn_dp->dp_spa)) {
1744
if (zb) {
1745
dprintf("error scrub suspending at bookmark "
1746
"%llx/%llx/%llx/%llx\n",
1747
(longlong_t)zb->zb_objset,
1748
(longlong_t)zb->zb_object,
1749
(longlong_t)zb->zb_level,
1750
(longlong_t)zb->zb_blkid);
1751
}
1752
return (B_TRUE);
1753
}
1754
return (B_FALSE);
1755
}
1756
1757
typedef struct zil_scan_arg {
1758
dsl_pool_t *zsa_dp;
1759
zil_header_t *zsa_zh;
1760
} zil_scan_arg_t;
1761
1762
static int
1763
dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1764
uint64_t claim_txg)
1765
{
1766
(void) zilog;
1767
zil_scan_arg_t *zsa = arg;
1768
dsl_pool_t *dp = zsa->zsa_dp;
1769
dsl_scan_t *scn = dp->dp_scan;
1770
zil_header_t *zh = zsa->zsa_zh;
1771
zbookmark_phys_t zb;
1772
1773
ASSERT(!BP_IS_REDACTED(bp));
1774
if (BP_IS_HOLE(bp) ||
1775
BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1776
return (0);
1777
1778
/*
1779
* One block ("stubby") can be allocated a long time ago; we
1780
* want to visit that one because it has been allocated
1781
* (on-disk) even if it hasn't been claimed (even though for
1782
* scrub there's nothing to do to it).
1783
*/
1784
if (claim_txg == 0 &&
1785
BP_GET_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1786
return (0);
1787
1788
SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1789
ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1790
1791
VERIFY0(scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1792
return (0);
1793
}
1794
1795
static int
1796
dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1797
uint64_t claim_txg)
1798
{
1799
(void) zilog;
1800
if (lrc->lrc_txtype == TX_WRITE) {
1801
zil_scan_arg_t *zsa = arg;
1802
dsl_pool_t *dp = zsa->zsa_dp;
1803
dsl_scan_t *scn = dp->dp_scan;
1804
zil_header_t *zh = zsa->zsa_zh;
1805
const lr_write_t *lr = (const lr_write_t *)lrc;
1806
const blkptr_t *bp = &lr->lr_blkptr;
1807
zbookmark_phys_t zb;
1808
1809
ASSERT(!BP_IS_REDACTED(bp));
1810
if (BP_IS_HOLE(bp) ||
1811
BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1812
return (0);
1813
1814
/*
1815
* birth can be < claim_txg if this record's txg is
1816
* already txg sync'ed (but this log block contains
1817
* other records that are not synced)
1818
*/
1819
if (claim_txg == 0 || BP_GET_BIRTH(bp) < claim_txg)
1820
return (0);
1821
1822
ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1823
SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1824
lr->lr_foid, ZB_ZIL_LEVEL,
1825
lr->lr_offset / BP_GET_LSIZE(bp));
1826
1827
VERIFY0(scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1828
}
1829
return (0);
1830
}
1831
1832
static void
1833
dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1834
{
1835
uint64_t claim_txg = zh->zh_claim_txg;
1836
zil_scan_arg_t zsa = { dp, zh };
1837
zilog_t *zilog;
1838
1839
ASSERT(spa_writeable(dp->dp_spa));
1840
1841
/*
1842
* We only want to visit blocks that have been claimed but not yet
1843
* replayed (or, in read-only mode, blocks that *would* be claimed).
1844
*/
1845
if (claim_txg == 0)
1846
return;
1847
1848
zilog = zil_alloc(dp->dp_meta_objset, zh);
1849
1850
(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1851
claim_txg, B_FALSE);
1852
1853
zil_free(zilog);
1854
}
1855
1856
/*
1857
* We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1858
* here is to sort the AVL tree by the order each block will be needed.
1859
*/
1860
static int
1861
scan_prefetch_queue_compare(const void *a, const void *b)
1862
{
1863
const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1864
const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1865
const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1866
1867
return (zbookmark_compare(spc_a->spc_datablkszsec,
1868
spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1869
spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1870
}
1871
1872
static void
1873
scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1874
{
1875
if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1876
zfs_refcount_destroy(&spc->spc_refcnt);
1877
kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1878
}
1879
}
1880
1881
static scan_prefetch_ctx_t *
1882
scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1883
{
1884
scan_prefetch_ctx_t *spc;
1885
1886
spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1887
zfs_refcount_create(&spc->spc_refcnt);
1888
zfs_refcount_add(&spc->spc_refcnt, tag);
1889
spc->spc_scn = scn;
1890
if (dnp != NULL) {
1891
spc->spc_datablkszsec = dnp->dn_datablkszsec;
1892
spc->spc_indblkshift = dnp->dn_indblkshift;
1893
spc->spc_root = B_FALSE;
1894
} else {
1895
spc->spc_datablkszsec = 0;
1896
spc->spc_indblkshift = 0;
1897
spc->spc_root = B_TRUE;
1898
}
1899
1900
return (spc);
1901
}
1902
1903
static void
1904
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1905
{
1906
zfs_refcount_add(&spc->spc_refcnt, tag);
1907
}
1908
1909
static void
1910
scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1911
{
1912
spa_t *spa = scn->scn_dp->dp_spa;
1913
void *cookie = NULL;
1914
scan_prefetch_issue_ctx_t *spic = NULL;
1915
1916
mutex_enter(&spa->spa_scrub_lock);
1917
while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1918
&cookie)) != NULL) {
1919
scan_prefetch_ctx_rele(spic->spic_spc, scn);
1920
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1921
}
1922
mutex_exit(&spa->spa_scrub_lock);
1923
}
1924
1925
static boolean_t
1926
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1927
const zbookmark_phys_t *zb)
1928
{
1929
zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1930
dnode_phys_t tmp_dnp;
1931
dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1932
1933
if (zb->zb_objset != last_zb->zb_objset)
1934
return (B_TRUE);
1935
if ((int64_t)zb->zb_object < 0)
1936
return (B_FALSE);
1937
1938
tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1939
tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1940
1941
if (zbookmark_subtree_completed(dnp, zb, last_zb))
1942
return (B_TRUE);
1943
1944
return (B_FALSE);
1945
}
1946
1947
static void
1948
dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1949
{
1950
avl_index_t idx;
1951
dsl_scan_t *scn = spc->spc_scn;
1952
spa_t *spa = scn->scn_dp->dp_spa;
1953
scan_prefetch_issue_ctx_t *spic;
1954
1955
if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1956
return;
1957
1958
if (BP_IS_HOLE(bp) ||
1959
BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1960
(BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1961
BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1962
return;
1963
1964
if (dsl_scan_check_prefetch_resume(spc, zb))
1965
return;
1966
1967
scan_prefetch_ctx_add_ref(spc, scn);
1968
spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1969
spic->spic_spc = spc;
1970
spic->spic_bp = *bp;
1971
spic->spic_zb = *zb;
1972
1973
/*
1974
* Add the IO to the queue of blocks to prefetch. This allows us to
1975
* prioritize blocks that we will need first for the main traversal
1976
* thread.
1977
*/
1978
mutex_enter(&spa->spa_scrub_lock);
1979
if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1980
/* this block is already queued for prefetch */
1981
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1982
scan_prefetch_ctx_rele(spc, scn);
1983
mutex_exit(&spa->spa_scrub_lock);
1984
return;
1985
}
1986
1987
avl_insert(&scn->scn_prefetch_queue, spic, idx);
1988
cv_broadcast(&spa->spa_scrub_io_cv);
1989
mutex_exit(&spa->spa_scrub_lock);
1990
}
1991
1992
static void
1993
dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1994
uint64_t objset, uint64_t object)
1995
{
1996
int i;
1997
zbookmark_phys_t zb;
1998
scan_prefetch_ctx_t *spc;
1999
2000
if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2001
return;
2002
2003
SET_BOOKMARK(&zb, objset, object, 0, 0);
2004
2005
spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
2006
2007
for (i = 0; i < dnp->dn_nblkptr; i++) {
2008
zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
2009
zb.zb_blkid = i;
2010
dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
2011
}
2012
2013
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2014
zb.zb_level = 0;
2015
zb.zb_blkid = DMU_SPILL_BLKID;
2016
dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
2017
}
2018
2019
scan_prefetch_ctx_rele(spc, FTAG);
2020
}
2021
2022
static void
2023
dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
2024
arc_buf_t *buf, void *private)
2025
{
2026
(void) zio;
2027
scan_prefetch_ctx_t *spc = private;
2028
dsl_scan_t *scn = spc->spc_scn;
2029
spa_t *spa = scn->scn_dp->dp_spa;
2030
2031
/* broadcast that the IO has completed for rate limiting purposes */
2032
mutex_enter(&spa->spa_scrub_lock);
2033
ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
2034
spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
2035
cv_broadcast(&spa->spa_scrub_io_cv);
2036
mutex_exit(&spa->spa_scrub_lock);
2037
2038
/* if there was an error or we are done prefetching, just cleanup */
2039
if (buf == NULL || scn->scn_prefetch_stop)
2040
goto out;
2041
2042
if (BP_GET_LEVEL(bp) > 0) {
2043
int i;
2044
blkptr_t *cbp;
2045
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2046
zbookmark_phys_t czb;
2047
2048
for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2049
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2050
zb->zb_level - 1, zb->zb_blkid * epb + i);
2051
dsl_scan_prefetch(spc, cbp, &czb);
2052
}
2053
} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2054
dnode_phys_t *cdnp;
2055
int i;
2056
int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2057
2058
for (i = 0, cdnp = buf->b_data; i < epb;
2059
i += cdnp->dn_extra_slots + 1,
2060
cdnp += cdnp->dn_extra_slots + 1) {
2061
dsl_scan_prefetch_dnode(scn, cdnp,
2062
zb->zb_objset, zb->zb_blkid * epb + i);
2063
}
2064
} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2065
objset_phys_t *osp = buf->b_data;
2066
2067
dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2068
zb->zb_objset, DMU_META_DNODE_OBJECT);
2069
2070
if (OBJSET_BUF_HAS_USERUSED(buf)) {
2071
if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2072
dsl_scan_prefetch_dnode(scn,
2073
&osp->os_projectused_dnode, zb->zb_objset,
2074
DMU_PROJECTUSED_OBJECT);
2075
}
2076
dsl_scan_prefetch_dnode(scn,
2077
&osp->os_groupused_dnode, zb->zb_objset,
2078
DMU_GROUPUSED_OBJECT);
2079
dsl_scan_prefetch_dnode(scn,
2080
&osp->os_userused_dnode, zb->zb_objset,
2081
DMU_USERUSED_OBJECT);
2082
}
2083
}
2084
2085
out:
2086
if (buf != NULL)
2087
arc_buf_destroy(buf, private);
2088
scan_prefetch_ctx_rele(spc, scn);
2089
}
2090
2091
static void
2092
dsl_scan_prefetch_thread(void *arg)
2093
{
2094
dsl_scan_t *scn = arg;
2095
spa_t *spa = scn->scn_dp->dp_spa;
2096
scan_prefetch_issue_ctx_t *spic;
2097
2098
/* loop until we are told to stop */
2099
while (!scn->scn_prefetch_stop) {
2100
arc_flags_t flags = ARC_FLAG_NOWAIT |
2101
ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2102
int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2103
2104
mutex_enter(&spa->spa_scrub_lock);
2105
2106
/*
2107
* Wait until we have an IO to issue and are not above our
2108
* maximum in flight limit.
2109
*/
2110
while (!scn->scn_prefetch_stop &&
2111
(avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2112
spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2113
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2114
}
2115
2116
/* recheck if we should stop since we waited for the cv */
2117
if (scn->scn_prefetch_stop) {
2118
mutex_exit(&spa->spa_scrub_lock);
2119
break;
2120
}
2121
2122
/* remove the prefetch IO from the tree */
2123
spic = avl_first(&scn->scn_prefetch_queue);
2124
spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2125
avl_remove(&scn->scn_prefetch_queue, spic);
2126
2127
mutex_exit(&spa->spa_scrub_lock);
2128
2129
if (BP_IS_PROTECTED(&spic->spic_bp)) {
2130
ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2131
BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2132
ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2133
zio_flags |= ZIO_FLAG_RAW;
2134
}
2135
2136
/* We don't need data L1 buffer since we do not prefetch L0. */
2137
blkptr_t *bp = &spic->spic_bp;
2138
if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2139
BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2140
flags |= ARC_FLAG_NO_BUF;
2141
2142
/* issue the prefetch asynchronously */
2143
(void) arc_read(scn->scn_zio_root, spa, bp,
2144
dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2145
zio_flags, &flags, &spic->spic_zb);
2146
2147
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2148
}
2149
2150
ASSERT(scn->scn_prefetch_stop);
2151
2152
/* free any prefetches we didn't get to complete */
2153
mutex_enter(&spa->spa_scrub_lock);
2154
while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2155
avl_remove(&scn->scn_prefetch_queue, spic);
2156
scan_prefetch_ctx_rele(spic->spic_spc, scn);
2157
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2158
}
2159
ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2160
mutex_exit(&spa->spa_scrub_lock);
2161
}
2162
2163
static boolean_t
2164
dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2165
const zbookmark_phys_t *zb)
2166
{
2167
/*
2168
* We never skip over user/group accounting objects (obj<0)
2169
*/
2170
if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2171
(int64_t)zb->zb_object >= 0) {
2172
/*
2173
* If we already visited this bp & everything below (in
2174
* a prior txg sync), don't bother doing it again.
2175
*/
2176
if (zbookmark_subtree_completed(dnp, zb,
2177
&scn->scn_phys.scn_bookmark))
2178
return (B_TRUE);
2179
2180
/*
2181
* If we found the block we're trying to resume from, or
2182
* we went past it, zero it out to indicate that it's OK
2183
* to start checking for suspending again.
2184
*/
2185
if (zbookmark_subtree_tbd(dnp, zb,
2186
&scn->scn_phys.scn_bookmark)) {
2187
dprintf("resuming at %llx/%llx/%llx/%llx\n",
2188
(longlong_t)zb->zb_objset,
2189
(longlong_t)zb->zb_object,
2190
(longlong_t)zb->zb_level,
2191
(longlong_t)zb->zb_blkid);
2192
memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2193
}
2194
}
2195
return (B_FALSE);
2196
}
2197
2198
static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2199
dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2200
dmu_objset_type_t ostype, dmu_tx_t *tx);
2201
inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2202
dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2203
dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2204
2205
/*
2206
* Return nonzero on i/o error.
2207
* Return new buf to write out in *bufp.
2208
*/
2209
inline __attribute__((always_inline)) static int
2210
dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2211
dnode_phys_t *dnp, const blkptr_t *bp,
2212
const zbookmark_phys_t *zb, dmu_tx_t *tx)
2213
{
2214
dsl_pool_t *dp = scn->scn_dp;
2215
spa_t *spa = dp->dp_spa;
2216
int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2217
int err;
2218
2219
ASSERT(!BP_IS_REDACTED(bp));
2220
2221
/*
2222
* There is an unlikely case of encountering dnodes with contradicting
2223
* dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2224
* or modified before commit 4254acb was merged. As it is not possible
2225
* to know which of the two is correct, report an error.
2226
*/
2227
if (dnp != NULL &&
2228
dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2229
scn->scn_phys.scn_errors++;
2230
spa_log_error(spa, zb, BP_GET_PHYSICAL_BIRTH(bp));
2231
return (SET_ERROR(EINVAL));
2232
}
2233
2234
if (BP_GET_LEVEL(bp) > 0) {
2235
arc_flags_t flags = ARC_FLAG_WAIT;
2236
int i;
2237
blkptr_t *cbp;
2238
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2239
arc_buf_t *buf;
2240
2241
err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2242
ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2243
if (err) {
2244
scn->scn_phys.scn_errors++;
2245
return (err);
2246
}
2247
for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2248
zbookmark_phys_t czb;
2249
2250
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2251
zb->zb_level - 1,
2252
zb->zb_blkid * epb + i);
2253
dsl_scan_visitbp(cbp, &czb, dnp,
2254
ds, scn, ostype, tx);
2255
}
2256
arc_buf_destroy(buf, &buf);
2257
} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2258
arc_flags_t flags = ARC_FLAG_WAIT;
2259
dnode_phys_t *cdnp;
2260
int i;
2261
int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2262
arc_buf_t *buf;
2263
2264
if (BP_IS_PROTECTED(bp)) {
2265
ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2266
zio_flags |= ZIO_FLAG_RAW;
2267
}
2268
2269
err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2270
ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2271
if (err) {
2272
scn->scn_phys.scn_errors++;
2273
return (err);
2274
}
2275
for (i = 0, cdnp = buf->b_data; i < epb;
2276
i += cdnp->dn_extra_slots + 1,
2277
cdnp += cdnp->dn_extra_slots + 1) {
2278
dsl_scan_visitdnode(scn, ds, ostype,
2279
cdnp, zb->zb_blkid * epb + i, tx);
2280
}
2281
2282
arc_buf_destroy(buf, &buf);
2283
} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2284
arc_flags_t flags = ARC_FLAG_WAIT;
2285
objset_phys_t *osp;
2286
arc_buf_t *buf;
2287
2288
err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2289
ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2290
if (err) {
2291
scn->scn_phys.scn_errors++;
2292
return (err);
2293
}
2294
2295
osp = buf->b_data;
2296
2297
dsl_scan_visitdnode(scn, ds, osp->os_type,
2298
&osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2299
2300
if (OBJSET_BUF_HAS_USERUSED(buf)) {
2301
/*
2302
* We also always visit user/group/project accounting
2303
* objects, and never skip them, even if we are
2304
* suspending. This is necessary so that the
2305
* space deltas from this txg get integrated.
2306
*/
2307
if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2308
dsl_scan_visitdnode(scn, ds, osp->os_type,
2309
&osp->os_projectused_dnode,
2310
DMU_PROJECTUSED_OBJECT, tx);
2311
dsl_scan_visitdnode(scn, ds, osp->os_type,
2312
&osp->os_groupused_dnode,
2313
DMU_GROUPUSED_OBJECT, tx);
2314
dsl_scan_visitdnode(scn, ds, osp->os_type,
2315
&osp->os_userused_dnode,
2316
DMU_USERUSED_OBJECT, tx);
2317
}
2318
arc_buf_destroy(buf, &buf);
2319
} else if (zfs_blkptr_verify(spa, bp,
2320
BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2321
/*
2322
* Sanity check the block pointer contents, this is handled
2323
* by arc_read() for the cases above.
2324
*/
2325
scn->scn_phys.scn_errors++;
2326
spa_log_error(spa, zb, BP_GET_PHYSICAL_BIRTH(bp));
2327
return (SET_ERROR(EINVAL));
2328
}
2329
2330
return (0);
2331
}
2332
2333
inline __attribute__((always_inline)) static void
2334
dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2335
dmu_objset_type_t ostype, dnode_phys_t *dnp,
2336
uint64_t object, dmu_tx_t *tx)
2337
{
2338
int j;
2339
2340
for (j = 0; j < dnp->dn_nblkptr; j++) {
2341
zbookmark_phys_t czb;
2342
2343
SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2344
dnp->dn_nlevels - 1, j);
2345
dsl_scan_visitbp(&dnp->dn_blkptr[j],
2346
&czb, dnp, ds, scn, ostype, tx);
2347
}
2348
2349
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2350
zbookmark_phys_t czb;
2351
SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2352
0, DMU_SPILL_BLKID);
2353
dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2354
&czb, dnp, ds, scn, ostype, tx);
2355
}
2356
}
2357
2358
/*
2359
* The arguments are in this order because mdb can only print the
2360
* first 5; we want them to be useful.
2361
*/
2362
static void
2363
dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2364
dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2365
dmu_objset_type_t ostype, dmu_tx_t *tx)
2366
{
2367
dsl_pool_t *dp = scn->scn_dp;
2368
2369
if (dsl_scan_check_suspend(scn, zb))
2370
return;
2371
2372
if (dsl_scan_check_resume(scn, dnp, zb))
2373
return;
2374
2375
scn->scn_visited_this_txg++;
2376
2377
if (BP_IS_HOLE(bp)) {
2378
scn->scn_holes_this_txg++;
2379
return;
2380
}
2381
2382
if (BP_IS_REDACTED(bp)) {
2383
ASSERT(dsl_dataset_feature_is_active(ds,
2384
SPA_FEATURE_REDACTED_DATASETS));
2385
return;
2386
}
2387
2388
/*
2389
* Check if this block contradicts any filesystem flags.
2390
*/
2391
spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2392
if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2393
ASSERT(dsl_dataset_feature_is_active(ds, f));
2394
2395
f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2396
if (f != SPA_FEATURE_NONE)
2397
ASSERT(dsl_dataset_feature_is_active(ds, f));
2398
2399
f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2400
if (f != SPA_FEATURE_NONE)
2401
ASSERT(dsl_dataset_feature_is_active(ds, f));
2402
2403
/*
2404
* Recurse any blocks that were written either logically or physically
2405
* at or after cur_min_txg. About logical birth we care for traversal,
2406
* looking for any changes, while about physical for the actual scan.
2407
*/
2408
if (BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2409
scn->scn_lt_min_this_txg++;
2410
return;
2411
}
2412
2413
if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2414
return;
2415
2416
/*
2417
* If dsl_scan_ddt() has already visited this block, it will have
2418
* already done any translations or scrubbing, so don't call the
2419
* callback again.
2420
*/
2421
if (ddt_class_contains(dp->dp_spa,
2422
scn->scn_phys.scn_ddt_class_max, bp)) {
2423
scn->scn_ddt_contained_this_txg++;
2424
return;
2425
}
2426
2427
/*
2428
* If this block is from the future (after cur_max_txg), then we
2429
* are doing this on behalf of a deleted snapshot, and we will
2430
* revisit the future block on the next pass of this dataset.
2431
* Don't scan it now unless we need to because something
2432
* under it was modified.
2433
*/
2434
if (BP_GET_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2435
scn->scn_gt_max_this_txg++;
2436
return;
2437
}
2438
2439
scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2440
}
2441
2442
static void
2443
dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2444
dmu_tx_t *tx)
2445
{
2446
zbookmark_phys_t zb;
2447
scan_prefetch_ctx_t *spc;
2448
2449
SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2450
ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2451
2452
if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2453
SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2454
zb.zb_objset, 0, 0, 0);
2455
} else {
2456
scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2457
}
2458
2459
scn->scn_objsets_visited_this_txg++;
2460
2461
spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2462
dsl_scan_prefetch(spc, bp, &zb);
2463
scan_prefetch_ctx_rele(spc, FTAG);
2464
2465
dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2466
2467
dprintf_ds(ds, "finished scan%s", "");
2468
}
2469
2470
static void
2471
ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2472
{
2473
if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2474
if (ds->ds_is_snapshot) {
2475
/*
2476
* Note:
2477
* - scn_cur_{min,max}_txg stays the same.
2478
* - Setting the flag is not really necessary if
2479
* scn_cur_max_txg == scn_max_txg, because there
2480
* is nothing after this snapshot that we care
2481
* about. However, we set it anyway and then
2482
* ignore it when we retraverse it in
2483
* dsl_scan_visitds().
2484
*/
2485
scn_phys->scn_bookmark.zb_objset =
2486
dsl_dataset_phys(ds)->ds_next_snap_obj;
2487
zfs_dbgmsg("destroying ds %llu on %s; currently "
2488
"traversing; reset zb_objset to %llu",
2489
(u_longlong_t)ds->ds_object,
2490
ds->ds_dir->dd_pool->dp_spa->spa_name,
2491
(u_longlong_t)dsl_dataset_phys(ds)->
2492
ds_next_snap_obj);
2493
scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2494
} else {
2495
SET_BOOKMARK(&scn_phys->scn_bookmark,
2496
ZB_DESTROYED_OBJSET, 0, 0, 0);
2497
zfs_dbgmsg("destroying ds %llu on %s; currently "
2498
"traversing; reset bookmark to -1,0,0,0",
2499
(u_longlong_t)ds->ds_object,
2500
ds->ds_dir->dd_pool->dp_spa->spa_name);
2501
}
2502
}
2503
}
2504
2505
/*
2506
* Invoked when a dataset is destroyed. We need to make sure that:
2507
*
2508
* 1) If it is the dataset that was currently being scanned, we write
2509
* a new dsl_scan_phys_t and marking the objset reference in it
2510
* as destroyed.
2511
* 2) Remove it from the work queue, if it was present.
2512
*
2513
* If the dataset was actually a snapshot, instead of marking the dataset
2514
* as destroyed, we instead substitute the next snapshot in line.
2515
*/
2516
void
2517
dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2518
{
2519
dsl_pool_t *dp = ds->ds_dir->dd_pool;
2520
dsl_scan_t *scn = dp->dp_scan;
2521
uint64_t mintxg;
2522
2523
if (!dsl_scan_is_running(scn))
2524
return;
2525
2526
ds_destroyed_scn_phys(ds, &scn->scn_phys);
2527
ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2528
2529
if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2530
scan_ds_queue_remove(scn, ds->ds_object);
2531
if (ds->ds_is_snapshot)
2532
scan_ds_queue_insert(scn,
2533
dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2534
}
2535
2536
if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2537
ds->ds_object, &mintxg) == 0) {
2538
ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2539
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2540
scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2541
if (ds->ds_is_snapshot) {
2542
/*
2543
* We keep the same mintxg; it could be >
2544
* ds_creation_txg if the previous snapshot was
2545
* deleted too.
2546
*/
2547
VERIFY(zap_add_int_key(dp->dp_meta_objset,
2548
scn->scn_phys.scn_queue_obj,
2549
dsl_dataset_phys(ds)->ds_next_snap_obj,
2550
mintxg, tx) == 0);
2551
zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2552
"replacing with %llu",
2553
(u_longlong_t)ds->ds_object,
2554
dp->dp_spa->spa_name,
2555
(u_longlong_t)dsl_dataset_phys(ds)->
2556
ds_next_snap_obj);
2557
} else {
2558
zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2559
"removing",
2560
(u_longlong_t)ds->ds_object,
2561
dp->dp_spa->spa_name);
2562
}
2563
}
2564
2565
/*
2566
* dsl_scan_sync() should be called after this, and should sync
2567
* out our changed state, but just to be safe, do it here.
2568
*/
2569
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2570
}
2571
2572
static void
2573
ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2574
{
2575
if (scn_bookmark->zb_objset == ds->ds_object) {
2576
scn_bookmark->zb_objset =
2577
dsl_dataset_phys(ds)->ds_prev_snap_obj;
2578
zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2579
"reset zb_objset to %llu",
2580
(u_longlong_t)ds->ds_object,
2581
ds->ds_dir->dd_pool->dp_spa->spa_name,
2582
(u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2583
}
2584
}
2585
2586
/*
2587
* Called when a dataset is snapshotted. If we were currently traversing
2588
* this snapshot, we reset our bookmark to point at the newly created
2589
* snapshot. We also modify our work queue to remove the old snapshot and
2590
* replace with the new one.
2591
*/
2592
void
2593
dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2594
{
2595
dsl_pool_t *dp = ds->ds_dir->dd_pool;
2596
dsl_scan_t *scn = dp->dp_scan;
2597
uint64_t mintxg;
2598
2599
if (!dsl_scan_is_running(scn))
2600
return;
2601
2602
ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2603
2604
ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2605
ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2606
2607
if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2608
scan_ds_queue_remove(scn, ds->ds_object);
2609
scan_ds_queue_insert(scn,
2610
dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2611
}
2612
2613
if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2614
ds->ds_object, &mintxg) == 0) {
2615
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2616
scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2617
VERIFY(zap_add_int_key(dp->dp_meta_objset,
2618
scn->scn_phys.scn_queue_obj,
2619
dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2620
zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2621
"replacing with %llu",
2622
(u_longlong_t)ds->ds_object,
2623
dp->dp_spa->spa_name,
2624
(u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2625
}
2626
2627
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2628
}
2629
2630
static void
2631
ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2632
zbookmark_phys_t *scn_bookmark)
2633
{
2634
if (scn_bookmark->zb_objset == ds1->ds_object) {
2635
scn_bookmark->zb_objset = ds2->ds_object;
2636
zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2637
"reset zb_objset to %llu",
2638
(u_longlong_t)ds1->ds_object,
2639
ds1->ds_dir->dd_pool->dp_spa->spa_name,
2640
(u_longlong_t)ds2->ds_object);
2641
} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2642
scn_bookmark->zb_objset = ds1->ds_object;
2643
zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2644
"reset zb_objset to %llu",
2645
(u_longlong_t)ds2->ds_object,
2646
ds2->ds_dir->dd_pool->dp_spa->spa_name,
2647
(u_longlong_t)ds1->ds_object);
2648
}
2649
}
2650
2651
/*
2652
* Called when an origin dataset and its clone are swapped. If we were
2653
* currently traversing the dataset, we need to switch to traversing the
2654
* newly promoted clone.
2655
*/
2656
void
2657
dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2658
{
2659
dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2660
dsl_scan_t *scn = dp->dp_scan;
2661
uint64_t mintxg1, mintxg2;
2662
boolean_t ds1_queued, ds2_queued;
2663
2664
if (!dsl_scan_is_running(scn))
2665
return;
2666
2667
ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2668
ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2669
2670
/*
2671
* Handle the in-memory scan queue.
2672
*/
2673
ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2674
ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2675
2676
/* Sanity checking. */
2677
if (ds1_queued) {
2678
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2679
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2680
}
2681
if (ds2_queued) {
2682
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2683
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2684
}
2685
2686
if (ds1_queued && ds2_queued) {
2687
/*
2688
* If both are queued, we don't need to do anything.
2689
* The swapping code below would not handle this case correctly,
2690
* since we can't insert ds2 if it is already there. That's
2691
* because scan_ds_queue_insert() prohibits a duplicate insert
2692
* and panics.
2693
*/
2694
} else if (ds1_queued) {
2695
scan_ds_queue_remove(scn, ds1->ds_object);
2696
scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2697
} else if (ds2_queued) {
2698
scan_ds_queue_remove(scn, ds2->ds_object);
2699
scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2700
}
2701
2702
/*
2703
* Handle the on-disk scan queue.
2704
* The on-disk state is an out-of-date version of the in-memory state,
2705
* so the in-memory and on-disk values for ds1_queued and ds2_queued may
2706
* be different. Therefore we need to apply the swap logic to the
2707
* on-disk state independently of the in-memory state.
2708
*/
2709
ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2710
scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2711
ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2712
scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2713
2714
/* Sanity checking. */
2715
if (ds1_queued) {
2716
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2717
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2718
}
2719
if (ds2_queued) {
2720
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2721
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2722
}
2723
2724
if (ds1_queued && ds2_queued) {
2725
/*
2726
* If both are queued, we don't need to do anything.
2727
* Alternatively, we could check for EEXIST from
2728
* zap_add_int_key() and back out to the original state, but
2729
* that would be more work than checking for this case upfront.
2730
*/
2731
} else if (ds1_queued) {
2732
VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2733
scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2734
VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2735
scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2736
zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2737
"replacing with %llu",
2738
(u_longlong_t)ds1->ds_object,
2739
dp->dp_spa->spa_name,
2740
(u_longlong_t)ds2->ds_object);
2741
} else if (ds2_queued) {
2742
VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2743
scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2744
VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2745
scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2746
zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2747
"replacing with %llu",
2748
(u_longlong_t)ds2->ds_object,
2749
dp->dp_spa->spa_name,
2750
(u_longlong_t)ds1->ds_object);
2751
}
2752
2753
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2754
}
2755
2756
static int
2757
enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2758
{
2759
uint64_t originobj = *(uint64_t *)arg;
2760
dsl_dataset_t *ds;
2761
int err;
2762
dsl_scan_t *scn = dp->dp_scan;
2763
2764
if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2765
return (0);
2766
2767
err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2768
if (err)
2769
return (err);
2770
2771
while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2772
dsl_dataset_t *prev;
2773
err = dsl_dataset_hold_obj(dp,
2774
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2775
2776
dsl_dataset_rele(ds, FTAG);
2777
if (err)
2778
return (err);
2779
ds = prev;
2780
}
2781
mutex_enter(&scn->scn_queue_lock);
2782
scan_ds_queue_insert(scn, ds->ds_object,
2783
dsl_dataset_phys(ds)->ds_prev_snap_txg);
2784
mutex_exit(&scn->scn_queue_lock);
2785
dsl_dataset_rele(ds, FTAG);
2786
return (0);
2787
}
2788
2789
static void
2790
dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2791
{
2792
dsl_pool_t *dp = scn->scn_dp;
2793
dsl_dataset_t *ds;
2794
2795
VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2796
2797
if (scn->scn_phys.scn_cur_min_txg >=
2798
scn->scn_phys.scn_max_txg) {
2799
/*
2800
* This can happen if this snapshot was created after the
2801
* scan started, and we already completed a previous snapshot
2802
* that was created after the scan started. This snapshot
2803
* only references blocks with:
2804
*
2805
* birth < our ds_creation_txg
2806
* cur_min_txg is no less than ds_creation_txg.
2807
* We have already visited these blocks.
2808
* or
2809
* birth > scn_max_txg
2810
* The scan requested not to visit these blocks.
2811
*
2812
* Subsequent snapshots (and clones) can reference our
2813
* blocks, or blocks with even higher birth times.
2814
* Therefore we do not need to visit them either,
2815
* so we do not add them to the work queue.
2816
*
2817
* Note that checking for cur_min_txg >= cur_max_txg
2818
* is not sufficient, because in that case we may need to
2819
* visit subsequent snapshots. This happens when min_txg > 0,
2820
* which raises cur_min_txg. In this case we will visit
2821
* this dataset but skip all of its blocks, because the
2822
* rootbp's birth time is < cur_min_txg. Then we will
2823
* add the next snapshots/clones to the work queue.
2824
*/
2825
char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2826
dsl_dataset_name(ds, dsname);
2827
zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2828
"cur_min_txg (%llu) >= max_txg (%llu)",
2829
(longlong_t)dsobj, dsname,
2830
(longlong_t)scn->scn_phys.scn_cur_min_txg,
2831
(longlong_t)scn->scn_phys.scn_max_txg);
2832
kmem_free(dsname, MAXNAMELEN);
2833
2834
goto out;
2835
}
2836
2837
/*
2838
* Only the ZIL in the head (non-snapshot) is valid. Even though
2839
* snapshots can have ZIL block pointers (which may be the same
2840
* BP as in the head), they must be ignored. In addition, $ORIGIN
2841
* doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2842
* need to look for a ZIL in it either. So we traverse the ZIL here,
2843
* rather than in scan_recurse(), because the regular snapshot
2844
* block-sharing rules don't apply to it.
2845
*/
2846
if (!dsl_dataset_is_snapshot(ds) &&
2847
(dp->dp_origin_snap == NULL ||
2848
ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2849
objset_t *os;
2850
if (dmu_objset_from_ds(ds, &os) != 0) {
2851
goto out;
2852
}
2853
dsl_scan_zil(dp, &os->os_zil_header);
2854
}
2855
2856
/*
2857
* Iterate over the bps in this ds.
2858
*/
2859
dmu_buf_will_dirty(ds->ds_dbuf, tx);
2860
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2861
dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2862
rrw_exit(&ds->ds_bp_rwlock, FTAG);
2863
2864
char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2865
dsl_dataset_name(ds, dsname);
2866
zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2867
"suspending=%u",
2868
(longlong_t)dsobj, dsname,
2869
(longlong_t)scn->scn_phys.scn_cur_min_txg,
2870
(longlong_t)scn->scn_phys.scn_cur_max_txg,
2871
(int)scn->scn_suspending);
2872
kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2873
2874
if (scn->scn_suspending)
2875
goto out;
2876
2877
/*
2878
* We've finished this pass over this dataset.
2879
*/
2880
2881
/*
2882
* If we did not completely visit this dataset, do another pass.
2883
*/
2884
if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2885
zfs_dbgmsg("incomplete pass on %s; visiting again",
2886
dp->dp_spa->spa_name);
2887
scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2888
scan_ds_queue_insert(scn, ds->ds_object,
2889
scn->scn_phys.scn_cur_max_txg);
2890
goto out;
2891
}
2892
2893
/*
2894
* Add descendant datasets to work queue.
2895
*/
2896
if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2897
scan_ds_queue_insert(scn,
2898
dsl_dataset_phys(ds)->ds_next_snap_obj,
2899
dsl_dataset_phys(ds)->ds_creation_txg);
2900
}
2901
if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2902
boolean_t usenext = B_FALSE;
2903
if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2904
uint64_t count;
2905
/*
2906
* A bug in a previous version of the code could
2907
* cause upgrade_clones_cb() to not set
2908
* ds_next_snap_obj when it should, leading to a
2909
* missing entry. Therefore we can only use the
2910
* next_clones_obj when its count is correct.
2911
*/
2912
int err = zap_count(dp->dp_meta_objset,
2913
dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2914
if (err == 0 &&
2915
count == dsl_dataset_phys(ds)->ds_num_children - 1)
2916
usenext = B_TRUE;
2917
}
2918
2919
if (usenext) {
2920
zap_cursor_t zc;
2921
zap_attribute_t *za = zap_attribute_alloc();
2922
for (zap_cursor_init(&zc, dp->dp_meta_objset,
2923
dsl_dataset_phys(ds)->ds_next_clones_obj);
2924
zap_cursor_retrieve(&zc, za) == 0;
2925
(void) zap_cursor_advance(&zc)) {
2926
scan_ds_queue_insert(scn,
2927
zfs_strtonum(za->za_name, NULL),
2928
dsl_dataset_phys(ds)->ds_creation_txg);
2929
}
2930
zap_cursor_fini(&zc);
2931
zap_attribute_free(za);
2932
} else {
2933
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2934
enqueue_clones_cb, &ds->ds_object,
2935
DS_FIND_CHILDREN));
2936
}
2937
}
2938
2939
out:
2940
dsl_dataset_rele(ds, FTAG);
2941
}
2942
2943
static int
2944
enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2945
{
2946
(void) arg;
2947
dsl_dataset_t *ds;
2948
int err;
2949
dsl_scan_t *scn = dp->dp_scan;
2950
2951
err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2952
if (err)
2953
return (err);
2954
2955
while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2956
dsl_dataset_t *prev;
2957
err = dsl_dataset_hold_obj(dp,
2958
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2959
if (err) {
2960
dsl_dataset_rele(ds, FTAG);
2961
return (err);
2962
}
2963
2964
/*
2965
* If this is a clone, we don't need to worry about it for now.
2966
*/
2967
if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2968
dsl_dataset_rele(ds, FTAG);
2969
dsl_dataset_rele(prev, FTAG);
2970
return (0);
2971
}
2972
dsl_dataset_rele(ds, FTAG);
2973
ds = prev;
2974
}
2975
2976
mutex_enter(&scn->scn_queue_lock);
2977
scan_ds_queue_insert(scn, ds->ds_object,
2978
dsl_dataset_phys(ds)->ds_prev_snap_txg);
2979
mutex_exit(&scn->scn_queue_lock);
2980
dsl_dataset_rele(ds, FTAG);
2981
return (0);
2982
}
2983
2984
void
2985
dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2986
ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
2987
{
2988
(void) tx;
2989
const ddt_key_t *ddk = &ddlwe->ddlwe_key;
2990
blkptr_t bp;
2991
zbookmark_phys_t zb = { 0 };
2992
2993
if (!dsl_scan_is_running(scn))
2994
return;
2995
2996
/*
2997
* This function is special because it is the only thing
2998
* that can add scan_io_t's to the vdev scan queues from
2999
* outside dsl_scan_sync(). For the most part this is ok
3000
* as long as it is called from within syncing context.
3001
* However, dsl_scan_sync() expects that no new sio's will
3002
* be added between when all the work for a scan is done
3003
* and the next txg when the scan is actually marked as
3004
* completed. This check ensures we do not issue new sio's
3005
* during this period.
3006
*/
3007
if (scn->scn_done_txg != 0)
3008
return;
3009
3010
for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3011
ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3012
uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v);
3013
3014
if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg)
3015
continue;
3016
ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp);
3017
3018
scn->scn_visited_this_txg++;
3019
scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
3020
}
3021
}
3022
3023
/*
3024
* Scrub/dedup interaction.
3025
*
3026
* If there are N references to a deduped block, we don't want to scrub it
3027
* N times -- ideally, we should scrub it exactly once.
3028
*
3029
* We leverage the fact that the dde's replication class (ddt_class_t)
3030
* is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
3031
* (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
3032
*
3033
* To prevent excess scrubbing, the scrub begins by walking the DDT
3034
* to find all blocks with refcnt > 1, and scrubs each of these once.
3035
* Since there are two replication classes which contain blocks with
3036
* refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
3037
* Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
3038
*
3039
* There would be nothing more to say if a block's refcnt couldn't change
3040
* during a scrub, but of course it can so we must account for changes
3041
* in a block's replication class.
3042
*
3043
* Here's an example of what can occur:
3044
*
3045
* If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
3046
* when visited during the top-down scrub phase, it will be scrubbed twice.
3047
* This negates our scrub optimization, but is otherwise harmless.
3048
*
3049
* If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
3050
* on each visit during the top-down scrub phase, it will never be scrubbed.
3051
* To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
3052
* reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
3053
* DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
3054
* while a scrub is in progress, it scrubs the block right then.
3055
*/
3056
static void
3057
dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3058
{
3059
ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3060
ddt_lightweight_entry_t ddlwe = {0};
3061
int error;
3062
uint64_t n = 0;
3063
3064
while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) {
3065
ddt_t *ddt;
3066
3067
if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3068
break;
3069
dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3070
(longlong_t)ddb->ddb_class,
3071
(longlong_t)ddb->ddb_type,
3072
(longlong_t)ddb->ddb_checksum,
3073
(longlong_t)ddb->ddb_cursor);
3074
3075
/* There should be no pending changes to the dedup table */
3076
ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3077
ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3078
3079
dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx);
3080
n++;
3081
3082
if (dsl_scan_check_suspend(scn, NULL))
3083
break;
3084
}
3085
3086
if (error == EAGAIN) {
3087
dsl_scan_check_suspend(scn, NULL);
3088
error = 0;
3089
3090
zfs_dbgmsg("waiting for ddt to become ready for scan "
3091
"on %s with class_max = %u; suspending=%u",
3092
scn->scn_dp->dp_spa->spa_name,
3093
(int)scn->scn_phys.scn_ddt_class_max,
3094
(int)scn->scn_suspending);
3095
} else
3096
zfs_dbgmsg("scanned %llu ddt entries on %s with "
3097
"class_max = %u; suspending=%u", (longlong_t)n,
3098
scn->scn_dp->dp_spa->spa_name,
3099
(int)scn->scn_phys.scn_ddt_class_max,
3100
(int)scn->scn_suspending);
3101
3102
ASSERT(error == 0 || error == ENOENT);
3103
ASSERT(error != ENOENT ||
3104
ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3105
}
3106
3107
static uint64_t
3108
dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3109
{
3110
uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3111
if (ds->ds_is_snapshot)
3112
return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3113
return (smt);
3114
}
3115
3116
static void
3117
dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3118
{
3119
scan_ds_t *sds;
3120
dsl_pool_t *dp = scn->scn_dp;
3121
3122
if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3123
scn->scn_phys.scn_ddt_class_max) {
3124
scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3125
scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3126
dsl_scan_ddt(scn, tx);
3127
if (scn->scn_suspending)
3128
return;
3129
}
3130
3131
if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3132
/* First do the MOS & ORIGIN */
3133
3134
scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3135
scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3136
dsl_scan_visit_rootbp(scn, NULL,
3137
&dp->dp_meta_rootbp, tx);
3138
if (scn->scn_suspending)
3139
return;
3140
3141
if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3142
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3143
enqueue_cb, NULL, DS_FIND_CHILDREN));
3144
} else {
3145
dsl_scan_visitds(scn,
3146
dp->dp_origin_snap->ds_object, tx);
3147
}
3148
ASSERT(!scn->scn_suspending);
3149
} else if (scn->scn_phys.scn_bookmark.zb_objset !=
3150
ZB_DESTROYED_OBJSET) {
3151
uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3152
/*
3153
* If we were suspended, continue from here. Note if the
3154
* ds we were suspended on was deleted, the zb_objset may
3155
* be -1, so we will skip this and find a new objset
3156
* below.
3157
*/
3158
dsl_scan_visitds(scn, dsobj, tx);
3159
if (scn->scn_suspending)
3160
return;
3161
}
3162
3163
/*
3164
* In case we suspended right at the end of the ds, zero the
3165
* bookmark so we don't think that we're still trying to resume.
3166
*/
3167
memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3168
3169
/*
3170
* Keep pulling things out of the dataset avl queue. Updates to the
3171
* persistent zap-object-as-queue happen only at checkpoints.
3172
*/
3173
while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3174
dsl_dataset_t *ds;
3175
uint64_t dsobj = sds->sds_dsobj;
3176
uint64_t txg = sds->sds_txg;
3177
3178
/* dequeue and free the ds from the queue */
3179
scan_ds_queue_remove(scn, dsobj);
3180
sds = NULL;
3181
3182
/* set up min / max txg */
3183
VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3184
if (txg != 0) {
3185
scn->scn_phys.scn_cur_min_txg =
3186
MAX(scn->scn_phys.scn_min_txg, txg);
3187
} else {
3188
scn->scn_phys.scn_cur_min_txg =
3189
MAX(scn->scn_phys.scn_min_txg,
3190
dsl_dataset_phys(ds)->ds_prev_snap_txg);
3191
}
3192
scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3193
dsl_dataset_rele(ds, FTAG);
3194
3195
dsl_scan_visitds(scn, dsobj, tx);
3196
if (scn->scn_suspending)
3197
return;
3198
}
3199
3200
/* No more objsets to fetch, we're done */
3201
scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3202
ASSERT0(scn->scn_suspending);
3203
}
3204
3205
static uint64_t
3206
dsl_scan_count_data_disks(spa_t *spa)
3207
{
3208
vdev_t *rvd = spa->spa_root_vdev;
3209
uint64_t i, leaves = 0;
3210
3211
for (i = 0; i < rvd->vdev_children; i++) {
3212
vdev_t *vd = rvd->vdev_child[i];
3213
if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3214
continue;
3215
leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3216
}
3217
return (leaves);
3218
}
3219
3220
static void
3221
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3222
{
3223
int i;
3224
uint64_t cur_size = 0;
3225
3226
for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3227
cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3228
}
3229
3230
q->q_total_zio_size_this_txg += cur_size;
3231
q->q_zios_this_txg++;
3232
}
3233
3234
static void
3235
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3236
uint64_t end)
3237
{
3238
q->q_total_seg_size_this_txg += end - start;
3239
q->q_segs_this_txg++;
3240
}
3241
3242
static boolean_t
3243
scan_io_queue_check_suspend(dsl_scan_t *scn)
3244
{
3245
/* See comment in dsl_scan_check_suspend() */
3246
uint64_t curr_time_ns = getlrtime();
3247
uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3248
uint64_t sync_time_ns = curr_time_ns -
3249
scn->scn_dp->dp_spa->spa_sync_starttime;
3250
uint64_t dirty_min_bytes = zfs_dirty_data_max *
3251
zfs_vdev_async_write_active_min_dirty_percent / 100;
3252
uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3253
zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3254
3255
return ((NSEC2MSEC(scan_time_ns) > mintime &&
3256
(scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3257
txg_sync_waiting(scn->scn_dp) ||
3258
NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3259
spa_shutting_down(scn->scn_dp->dp_spa));
3260
}
3261
3262
/*
3263
* Given a list of scan_io_t's in io_list, this issues the I/Os out to
3264
* disk. This consumes the io_list and frees the scan_io_t's. This is
3265
* called when emptying queues, either when we're up against the memory
3266
* limit or when we have finished scanning. Returns B_TRUE if we stopped
3267
* processing the list before we finished. Any sios that were not issued
3268
* will remain in the io_list.
3269
*/
3270
static boolean_t
3271
scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3272
{
3273
dsl_scan_t *scn = queue->q_scn;
3274
scan_io_t *sio;
3275
boolean_t suspended = B_FALSE;
3276
3277
while ((sio = list_head(io_list)) != NULL) {
3278
blkptr_t bp;
3279
3280
if (scan_io_queue_check_suspend(scn)) {
3281
suspended = B_TRUE;
3282
break;
3283
}
3284
3285
sio2bp(sio, &bp);
3286
scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3287
&sio->sio_zb, queue);
3288
(void) list_remove_head(io_list);
3289
scan_io_queues_update_zio_stats(queue, &bp);
3290
sio_free(sio);
3291
}
3292
return (suspended);
3293
}
3294
3295
/*
3296
* This function removes sios from an IO queue which reside within a given
3297
* zfs_range_seg_t and inserts them (in offset order) into a list. Note that
3298
* we only ever return a maximum of 32 sios at once. If there are more sios
3299
* to process within this segment that did not make it onto the list we
3300
* return B_TRUE and otherwise B_FALSE.
3301
*/
3302
static boolean_t
3303
scan_io_queue_gather(dsl_scan_io_queue_t *queue, zfs_range_seg_t *rs,
3304
list_t *list)
3305
{
3306
scan_io_t *srch_sio, *sio, *next_sio;
3307
avl_index_t idx;
3308
uint_t num_sios = 0;
3309
int64_t bytes_issued = 0;
3310
3311
ASSERT(rs != NULL);
3312
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3313
3314
srch_sio = sio_alloc(1);
3315
srch_sio->sio_nr_dvas = 1;
3316
SIO_SET_OFFSET(srch_sio, zfs_rs_get_start(rs, queue->q_exts_by_addr));
3317
3318
/*
3319
* The exact start of the extent might not contain any matching zios,
3320
* so if that's the case, examine the next one in the tree.
3321
*/
3322
sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3323
sio_free(srch_sio);
3324
3325
if (sio == NULL)
3326
sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3327
3328
while (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3329
queue->q_exts_by_addr) && num_sios <= 32) {
3330
ASSERT3U(SIO_GET_OFFSET(sio), >=, zfs_rs_get_start(rs,
3331
queue->q_exts_by_addr));
3332
ASSERT3U(SIO_GET_END_OFFSET(sio), <=, zfs_rs_get_end(rs,
3333
queue->q_exts_by_addr));
3334
3335
next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3336
avl_remove(&queue->q_sios_by_addr, sio);
3337
if (avl_is_empty(&queue->q_sios_by_addr))
3338
atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3339
queue->q_sio_memused -= SIO_GET_MUSED(sio);
3340
3341
bytes_issued += SIO_GET_ASIZE(sio);
3342
num_sios++;
3343
list_insert_tail(list, sio);
3344
sio = next_sio;
3345
}
3346
3347
/*
3348
* We limit the number of sios we process at once to 32 to avoid
3349
* biting off more than we can chew. If we didn't take everything
3350
* in the segment we update it to reflect the work we were able to
3351
* complete. Otherwise, we remove it from the range tree entirely.
3352
*/
3353
if (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3354
queue->q_exts_by_addr)) {
3355
zfs_range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3356
-bytes_issued);
3357
zfs_range_tree_resize_segment(queue->q_exts_by_addr, rs,
3358
SIO_GET_OFFSET(sio), zfs_rs_get_end(rs,
3359
queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3360
queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3361
return (B_TRUE);
3362
} else {
3363
uint64_t rstart = zfs_rs_get_start(rs, queue->q_exts_by_addr);
3364
uint64_t rend = zfs_rs_get_end(rs, queue->q_exts_by_addr);
3365
zfs_range_tree_remove(queue->q_exts_by_addr, rstart, rend -
3366
rstart);
3367
queue->q_last_ext_addr = -1;
3368
return (B_FALSE);
3369
}
3370
}
3371
3372
/*
3373
* This is called from the queue emptying thread and selects the next
3374
* extent from which we are to issue I/Os. The behavior of this function
3375
* depends on the state of the scan, the current memory consumption and
3376
* whether or not we are performing a scan shutdown.
3377
* 1) We select extents in an elevator algorithm (LBA-order) if the scan
3378
* needs to perform a checkpoint
3379
* 2) We select the largest available extent if we are up against the
3380
* memory limit.
3381
* 3) Otherwise we don't select any extents.
3382
*/
3383
static zfs_range_seg_t *
3384
scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3385
{
3386
dsl_scan_t *scn = queue->q_scn;
3387
zfs_range_tree_t *rt = queue->q_exts_by_addr;
3388
3389
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3390
ASSERT(scn->scn_is_sorted);
3391
3392
if (!scn->scn_checkpointing && !scn->scn_clearing)
3393
return (NULL);
3394
3395
/*
3396
* During normal clearing, we want to issue our largest segments
3397
* first, keeping IO as sequential as possible, and leaving the
3398
* smaller extents for later with the hope that they might eventually
3399
* grow to larger sequential segments. However, when the scan is
3400
* checkpointing, no new extents will be added to the sorting queue,
3401
* so the way we are sorted now is as good as it will ever get.
3402
* In this case, we instead switch to issuing extents in LBA order.
3403
*/
3404
if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3405
zfs_scan_issue_strategy == 1)
3406
return (zfs_range_tree_first(rt));
3407
3408
/*
3409
* Try to continue previous extent if it is not completed yet. After
3410
* shrink in scan_io_queue_gather() it may no longer be the best, but
3411
* otherwise we leave shorter remnant every txg.
3412
*/
3413
uint64_t start;
3414
uint64_t size = 1ULL << rt->rt_shift;
3415
zfs_range_seg_t *addr_rs;
3416
if (queue->q_last_ext_addr != -1) {
3417
start = queue->q_last_ext_addr;
3418
addr_rs = zfs_range_tree_find(rt, start, size);
3419
if (addr_rs != NULL)
3420
return (addr_rs);
3421
}
3422
3423
/*
3424
* Nothing to continue, so find new best extent.
3425
*/
3426
uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3427
if (v == NULL)
3428
return (NULL);
3429
queue->q_last_ext_addr = start = *v << rt->rt_shift;
3430
3431
/*
3432
* We need to get the original entry in the by_addr tree so we can
3433
* modify it.
3434
*/
3435
addr_rs = zfs_range_tree_find(rt, start, size);
3436
ASSERT3P(addr_rs, !=, NULL);
3437
ASSERT3U(zfs_rs_get_start(addr_rs, rt), ==, start);
3438
ASSERT3U(zfs_rs_get_end(addr_rs, rt), >, start);
3439
return (addr_rs);
3440
}
3441
3442
static void
3443
scan_io_queues_run_one(void *arg)
3444
{
3445
dsl_scan_io_queue_t *queue = arg;
3446
kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3447
boolean_t suspended = B_FALSE;
3448
zfs_range_seg_t *rs;
3449
scan_io_t *sio;
3450
zio_t *zio;
3451
list_t sio_list;
3452
3453
ASSERT(queue->q_scn->scn_is_sorted);
3454
3455
list_create(&sio_list, sizeof (scan_io_t),
3456
offsetof(scan_io_t, sio_nodes.sio_list_node));
3457
zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3458
NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3459
mutex_enter(q_lock);
3460
queue->q_zio = zio;
3461
3462
/* Calculate maximum in-flight bytes for this vdev. */
3463
queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3464
(vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3465
3466
/* reset per-queue scan statistics for this txg */
3467
queue->q_total_seg_size_this_txg = 0;
3468
queue->q_segs_this_txg = 0;
3469
queue->q_total_zio_size_this_txg = 0;
3470
queue->q_zios_this_txg = 0;
3471
3472
/* loop until we run out of time or sios */
3473
while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3474
uint64_t seg_start = 0, seg_end = 0;
3475
boolean_t more_left;
3476
3477
ASSERT(list_is_empty(&sio_list));
3478
3479
/* loop while we still have sios left to process in this rs */
3480
do {
3481
scan_io_t *first_sio, *last_sio;
3482
3483
/*
3484
* We have selected which extent needs to be
3485
* processed next. Gather up the corresponding sios.
3486
*/
3487
more_left = scan_io_queue_gather(queue, rs, &sio_list);
3488
ASSERT(!list_is_empty(&sio_list));
3489
first_sio = list_head(&sio_list);
3490
last_sio = list_tail(&sio_list);
3491
3492
seg_end = SIO_GET_END_OFFSET(last_sio);
3493
if (seg_start == 0)
3494
seg_start = SIO_GET_OFFSET(first_sio);
3495
3496
/*
3497
* Issuing sios can take a long time so drop the
3498
* queue lock. The sio queue won't be updated by
3499
* other threads since we're in syncing context so
3500
* we can be sure that our trees will remain exactly
3501
* as we left them.
3502
*/
3503
mutex_exit(q_lock);
3504
suspended = scan_io_queue_issue(queue, &sio_list);
3505
mutex_enter(q_lock);
3506
3507
if (suspended)
3508
break;
3509
} while (more_left);
3510
3511
/* update statistics for debugging purposes */
3512
scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3513
3514
if (suspended)
3515
break;
3516
}
3517
3518
/*
3519
* If we were suspended in the middle of processing,
3520
* requeue any unfinished sios and exit.
3521
*/
3522
while ((sio = list_remove_head(&sio_list)) != NULL)
3523
scan_io_queue_insert_impl(queue, sio);
3524
3525
queue->q_zio = NULL;
3526
mutex_exit(q_lock);
3527
zio_nowait(zio);
3528
list_destroy(&sio_list);
3529
}
3530
3531
/*
3532
* Performs an emptying run on all scan queues in the pool. This just
3533
* punches out one thread per top-level vdev, each of which processes
3534
* only that vdev's scan queue. We can parallelize the I/O here because
3535
* we know that each queue's I/Os only affect its own top-level vdev.
3536
*
3537
* This function waits for the queue runs to complete, and must be
3538
* called from dsl_scan_sync (or in general, syncing context).
3539
*/
3540
static void
3541
scan_io_queues_run(dsl_scan_t *scn)
3542
{
3543
spa_t *spa = scn->scn_dp->dp_spa;
3544
3545
ASSERT(scn->scn_is_sorted);
3546
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3547
3548
if (scn->scn_queues_pending == 0)
3549
return;
3550
3551
if (scn->scn_taskq == NULL) {
3552
int nthreads = spa->spa_root_vdev->vdev_children;
3553
3554
/*
3555
* We need to make this taskq *always* execute as many
3556
* threads in parallel as we have top-level vdevs and no
3557
* less, otherwise strange serialization of the calls to
3558
* scan_io_queues_run_one can occur during spa_sync runs
3559
* and that significantly impacts performance.
3560
*/
3561
scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3562
minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3563
}
3564
3565
for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3566
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3567
3568
mutex_enter(&vd->vdev_scan_io_queue_lock);
3569
if (vd->vdev_scan_io_queue != NULL) {
3570
VERIFY(taskq_dispatch(scn->scn_taskq,
3571
scan_io_queues_run_one, vd->vdev_scan_io_queue,
3572
TQ_SLEEP) != TASKQID_INVALID);
3573
}
3574
mutex_exit(&vd->vdev_scan_io_queue_lock);
3575
}
3576
3577
/*
3578
* Wait for the queues to finish issuing their IOs for this run
3579
* before we return. There may still be IOs in flight at this
3580
* point.
3581
*/
3582
taskq_wait(scn->scn_taskq);
3583
}
3584
3585
static boolean_t
3586
dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3587
{
3588
uint64_t elapsed_nanosecs;
3589
3590
if (zfs_recover)
3591
return (B_FALSE);
3592
3593
if (zfs_async_block_max_blocks != 0 &&
3594
scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3595
return (B_TRUE);
3596
}
3597
3598
if (zfs_max_async_dedup_frees != 0 &&
3599
scn->scn_async_frees_this_txg >= zfs_max_async_dedup_frees) {
3600
return (B_TRUE);
3601
}
3602
3603
elapsed_nanosecs = getlrtime() - scn->scn_sync_start_time;
3604
return (elapsed_nanosecs / (NANOSEC / 2) > zfs_txg_timeout ||
3605
(NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3606
txg_sync_waiting(scn->scn_dp)) ||
3607
spa_shutting_down(scn->scn_dp->dp_spa));
3608
}
3609
3610
static int
3611
dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3612
{
3613
dsl_scan_t *scn = arg;
3614
3615
if (!scn->scn_is_bptree ||
3616
(BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3617
if (dsl_scan_async_block_should_pause(scn))
3618
return (SET_ERROR(ERESTART));
3619
}
3620
3621
zio_t *zio = zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3622
dmu_tx_get_txg(tx), bp, 0);
3623
dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3624
-bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3625
-BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3626
scn->scn_visited_this_txg++;
3627
if (zio != NULL) {
3628
/*
3629
* zio_free_sync() returned a ZIO, meaning this is an
3630
* async I/O (dedup, clone or gang block).
3631
*/
3632
scn->scn_async_frees_this_txg++;
3633
zio_nowait(zio);
3634
3635
/*
3636
* After issuing N async ZIOs, wait for them to complete.
3637
* This makes time limits work with actual I/O completion
3638
* times, not just queuing times.
3639
*/
3640
uint64_t i = zfs_async_free_zio_wait_interval;
3641
if (i != 0 && (scn->scn_async_frees_this_txg % i) == 0) {
3642
VERIFY0(zio_wait(scn->scn_zio_root));
3643
scn->scn_zio_root = zio_root(scn->scn_dp->dp_spa, NULL,
3644
NULL, ZIO_FLAG_MUSTSUCCEED);
3645
}
3646
}
3647
return (0);
3648
}
3649
3650
static void
3651
dsl_scan_update_stats(dsl_scan_t *scn)
3652
{
3653
spa_t *spa = scn->scn_dp->dp_spa;
3654
uint64_t i;
3655
uint64_t seg_size_total = 0, zio_size_total = 0;
3656
uint64_t seg_count_total = 0, zio_count_total = 0;
3657
3658
for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3659
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3660
dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3661
3662
if (queue == NULL)
3663
continue;
3664
3665
seg_size_total += queue->q_total_seg_size_this_txg;
3666
zio_size_total += queue->q_total_zio_size_this_txg;
3667
seg_count_total += queue->q_segs_this_txg;
3668
zio_count_total += queue->q_zios_this_txg;
3669
}
3670
3671
if (seg_count_total == 0 || zio_count_total == 0) {
3672
scn->scn_avg_seg_size_this_txg = 0;
3673
scn->scn_avg_zio_size_this_txg = 0;
3674
scn->scn_segs_this_txg = 0;
3675
scn->scn_zios_this_txg = 0;
3676
return;
3677
}
3678
3679
scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3680
scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3681
scn->scn_segs_this_txg = seg_count_total;
3682
scn->scn_zios_this_txg = zio_count_total;
3683
}
3684
3685
static int
3686
bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3687
dmu_tx_t *tx)
3688
{
3689
ASSERT(!bp_freed);
3690
return (dsl_scan_free_block_cb(arg, bp, tx));
3691
}
3692
3693
static int
3694
dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3695
dmu_tx_t *tx)
3696
{
3697
ASSERT(!bp_freed);
3698
dsl_scan_t *scn = arg;
3699
const dva_t *dva = &bp->blk_dva[0];
3700
3701
if (dsl_scan_async_block_should_pause(scn))
3702
return (SET_ERROR(ERESTART));
3703
3704
spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3705
DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3706
DVA_GET_ASIZE(dva), tx);
3707
scn->scn_visited_this_txg++;
3708
return (0);
3709
}
3710
3711
boolean_t
3712
dsl_scan_active(dsl_scan_t *scn)
3713
{
3714
spa_t *spa = scn->scn_dp->dp_spa;
3715
uint64_t used = 0, comp, uncomp;
3716
boolean_t clones_left;
3717
3718
if (spa->spa_load_state != SPA_LOAD_NONE)
3719
return (B_FALSE);
3720
if (spa_shutting_down(spa))
3721
return (B_FALSE);
3722
if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3723
(scn->scn_async_destroying && !scn->scn_async_stalled))
3724
return (B_TRUE);
3725
3726
if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3727
(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3728
&used, &comp, &uncomp);
3729
}
3730
clones_left = spa_livelist_delete_check(spa);
3731
return ((used != 0) || (clones_left));
3732
}
3733
3734
boolean_t
3735
dsl_errorscrub_active(dsl_scan_t *scn)
3736
{
3737
spa_t *spa = scn->scn_dp->dp_spa;
3738
if (spa->spa_load_state != SPA_LOAD_NONE)
3739
return (B_FALSE);
3740
if (spa_shutting_down(spa))
3741
return (B_FALSE);
3742
if (dsl_errorscrubbing(scn->scn_dp))
3743
return (B_TRUE);
3744
return (B_FALSE);
3745
}
3746
3747
static boolean_t
3748
dsl_scan_check_deferred(vdev_t *vd)
3749
{
3750
boolean_t need_resilver = B_FALSE;
3751
3752
for (int c = 0; c < vd->vdev_children; c++) {
3753
need_resilver |=
3754
dsl_scan_check_deferred(vd->vdev_child[c]);
3755
}
3756
3757
if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3758
!vd->vdev_ops->vdev_op_leaf)
3759
return (need_resilver);
3760
3761
if (!vd->vdev_resilver_deferred)
3762
need_resilver = B_TRUE;
3763
3764
return (need_resilver);
3765
}
3766
3767
static boolean_t
3768
dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3769
uint64_t phys_birth)
3770
{
3771
vdev_t *vd;
3772
3773
vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3774
3775
if (vd->vdev_ops == &vdev_indirect_ops) {
3776
/*
3777
* The indirect vdev can point to multiple
3778
* vdevs. For simplicity, always create
3779
* the resilver zio_t. zio_vdev_io_start()
3780
* will bypass the child resilver i/o's if
3781
* they are on vdevs that don't have DTL's.
3782
*/
3783
return (B_TRUE);
3784
}
3785
3786
if (DVA_GET_GANG(dva)) {
3787
/*
3788
* Gang members may be spread across multiple
3789
* vdevs, so the best estimate we have is the
3790
* scrub range, which has already been checked.
3791
* XXX -- it would be better to change our
3792
* allocation policy to ensure that all
3793
* gang members reside on the same vdev.
3794
*/
3795
return (B_TRUE);
3796
}
3797
3798
/*
3799
* Check if the top-level vdev must resilver this offset.
3800
* When the offset does not intersect with a dirty leaf DTL
3801
* then it may be possible to skip the resilver IO. The psize
3802
* is provided instead of asize to simplify the check for RAIDZ.
3803
*/
3804
if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3805
return (B_FALSE);
3806
3807
/*
3808
* Check that this top-level vdev has a device under it which
3809
* is resilvering and is not deferred.
3810
*/
3811
if (!dsl_scan_check_deferred(vd))
3812
return (B_FALSE);
3813
3814
return (B_TRUE);
3815
}
3816
3817
static int
3818
dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3819
{
3820
dsl_scan_t *scn = dp->dp_scan;
3821
spa_t *spa = dp->dp_spa;
3822
int err = 0;
3823
3824
if (spa_suspend_async_destroy(spa))
3825
return (0);
3826
3827
if (zfs_free_bpobj_enabled &&
3828
spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3829
scn->scn_is_bptree = B_FALSE;
3830
scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3831
scn->scn_zio_root = zio_root(spa, NULL,
3832
NULL, ZIO_FLAG_MUSTSUCCEED);
3833
err = bpobj_iterate(&dp->dp_free_bpobj,
3834
bpobj_dsl_scan_free_block_cb, scn, tx);
3835
VERIFY0(zio_wait(scn->scn_zio_root));
3836
scn->scn_zio_root = NULL;
3837
3838
if (err != 0 && err != ERESTART)
3839
zfs_panic_recover("error %u from bpobj_iterate()", err);
3840
}
3841
3842
if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3843
ASSERT(scn->scn_async_destroying);
3844
scn->scn_is_bptree = B_TRUE;
3845
scn->scn_zio_root = zio_root(spa, NULL,
3846
NULL, ZIO_FLAG_MUSTSUCCEED);
3847
err = bptree_iterate(dp->dp_meta_objset,
3848
dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3849
VERIFY0(zio_wait(scn->scn_zio_root));
3850
scn->scn_zio_root = NULL;
3851
3852
if (err == EIO || err == ECKSUM) {
3853
err = 0;
3854
} else if (err != 0 && err != ERESTART) {
3855
zfs_panic_recover("error %u from "
3856
"traverse_dataset_destroyed()", err);
3857
}
3858
3859
if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3860
/* finished; deactivate async destroy feature */
3861
spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3862
ASSERT(!spa_feature_is_active(spa,
3863
SPA_FEATURE_ASYNC_DESTROY));
3864
VERIFY0(zap_remove(dp->dp_meta_objset,
3865
DMU_POOL_DIRECTORY_OBJECT,
3866
DMU_POOL_BPTREE_OBJ, tx));
3867
VERIFY0(bptree_free(dp->dp_meta_objset,
3868
dp->dp_bptree_obj, tx));
3869
dp->dp_bptree_obj = 0;
3870
scn->scn_async_destroying = B_FALSE;
3871
scn->scn_async_stalled = B_FALSE;
3872
} else {
3873
/*
3874
* If we didn't make progress, mark the async
3875
* destroy as stalled, so that we will not initiate
3876
* a spa_sync() on its behalf. Note that we only
3877
* check this if we are not finished, because if the
3878
* bptree had no blocks for us to visit, we can
3879
* finish without "making progress".
3880
*/
3881
scn->scn_async_stalled =
3882
(scn->scn_visited_this_txg == 0);
3883
}
3884
}
3885
if (scn->scn_visited_this_txg) {
3886
zfs_dbgmsg("freed %llu blocks in %llums from "
3887
"free_bpobj/bptree on %s in txg %llu; err=%u",
3888
(longlong_t)scn->scn_visited_this_txg,
3889
(longlong_t)
3890
NSEC2MSEC(getlrtime() - scn->scn_sync_start_time),
3891
spa->spa_name, (longlong_t)tx->tx_txg, err);
3892
scn->scn_visited_this_txg = 0;
3893
scn->scn_async_frees_this_txg = 0;
3894
3895
/*
3896
* Write out changes to the DDT and the BRT that may be required
3897
* as a result of the blocks freed. This ensures that the DDT
3898
* and the BRT are clean when a scrub/resilver runs.
3899
*/
3900
ddt_sync(spa, tx->tx_txg);
3901
brt_sync(spa, tx->tx_txg);
3902
}
3903
if (err != 0)
3904
return (err);
3905
if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3906
zfs_free_leak_on_eio &&
3907
(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3908
dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3909
dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3910
/*
3911
* We have finished background destroying, but there is still
3912
* some space left in the dp_free_dir. Transfer this leaked
3913
* space to the dp_leak_dir.
3914
*/
3915
if (dp->dp_leak_dir == NULL) {
3916
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3917
(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3918
LEAK_DIR_NAME, tx);
3919
VERIFY0(dsl_pool_open_special_dir(dp,
3920
LEAK_DIR_NAME, &dp->dp_leak_dir));
3921
rrw_exit(&dp->dp_config_rwlock, FTAG);
3922
}
3923
dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3924
dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3925
dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3926
dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3927
dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3928
-dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3929
-dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3930
-dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3931
}
3932
3933
if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3934
!spa_livelist_delete_check(spa)) {
3935
/* finished; verify that space accounting went to zero */
3936
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3937
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3938
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3939
}
3940
3941
spa_notify_waiters(spa);
3942
3943
EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3944
0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3945
DMU_POOL_OBSOLETE_BPOBJ));
3946
if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3947
ASSERT(spa_feature_is_active(dp->dp_spa,
3948
SPA_FEATURE_OBSOLETE_COUNTS));
3949
3950
scn->scn_is_bptree = B_FALSE;
3951
scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3952
err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3953
dsl_scan_obsolete_block_cb, scn, tx);
3954
if (err != 0 && err != ERESTART)
3955
zfs_panic_recover("error %u from bpobj_iterate()", err);
3956
3957
if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3958
dsl_pool_destroy_obsolete_bpobj(dp, tx);
3959
}
3960
return (0);
3961
}
3962
3963
static void
3964
name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3965
{
3966
zb->zb_objset = zfs_strtonum(buf, &buf);
3967
ASSERT(*buf == ':');
3968
zb->zb_object = zfs_strtonum(buf + 1, &buf);
3969
ASSERT(*buf == ':');
3970
zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3971
ASSERT(*buf == ':');
3972
zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3973
ASSERT(*buf == '\0');
3974
}
3975
3976
static void
3977
name_to_object(char *buf, uint64_t *obj)
3978
{
3979
*obj = zfs_strtonum(buf, &buf);
3980
ASSERT(*buf == '\0');
3981
}
3982
3983
static void
3984
read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3985
{
3986
dsl_pool_t *dp = scn->scn_dp;
3987
dsl_dataset_t *ds;
3988
objset_t *os;
3989
if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3990
return;
3991
3992
if (dmu_objset_from_ds(ds, &os) != 0) {
3993
dsl_dataset_rele(ds, FTAG);
3994
return;
3995
}
3996
3997
/*
3998
* If the key is not loaded dbuf_dnode_findbp() will error out with
3999
* EACCES. However in that case dnode_hold() will eventually call
4000
* dbuf_read()->zio_wait() which may call spa_log_error(). This will
4001
* lead to a deadlock due to us holding the mutex spa_errlist_lock.
4002
* Avoid this by checking here if the keys are loaded, if not return.
4003
* If the keys are not loaded the head_errlog feature is meaningless
4004
* as we cannot figure out the birth txg of the block pointer.
4005
*/
4006
if (dsl_dataset_get_keystatus(ds->ds_dir) ==
4007
ZFS_KEYSTATUS_UNAVAILABLE) {
4008
dsl_dataset_rele(ds, FTAG);
4009
return;
4010
}
4011
4012
dnode_t *dn;
4013
blkptr_t bp;
4014
4015
if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
4016
dsl_dataset_rele(ds, FTAG);
4017
return;
4018
}
4019
4020
rw_enter(&dn->dn_struct_rwlock, RW_READER);
4021
int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
4022
NULL);
4023
4024
if (error) {
4025
rw_exit(&dn->dn_struct_rwlock);
4026
dnode_rele(dn, FTAG);
4027
dsl_dataset_rele(ds, FTAG);
4028
return;
4029
}
4030
4031
if (!error && BP_IS_HOLE(&bp)) {
4032
rw_exit(&dn->dn_struct_rwlock);
4033
dnode_rele(dn, FTAG);
4034
dsl_dataset_rele(ds, FTAG);
4035
return;
4036
}
4037
4038
int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
4039
ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
4040
4041
/* If it's an intent log block, failure is expected. */
4042
if (zb.zb_level == ZB_ZIL_LEVEL)
4043
zio_flags |= ZIO_FLAG_SPECULATIVE;
4044
4045
ASSERT(!BP_IS_EMBEDDED(&bp));
4046
scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
4047
rw_exit(&dn->dn_struct_rwlock);
4048
dnode_rele(dn, FTAG);
4049
dsl_dataset_rele(ds, FTAG);
4050
}
4051
4052
/*
4053
* We keep track of the scrubbed error blocks in "count". This will be used
4054
* when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
4055
* function is modelled after check_filesystem().
4056
*/
4057
static int
4058
scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
4059
int *count)
4060
{
4061
dsl_dataset_t *ds;
4062
dsl_pool_t *dp = spa->spa_dsl_pool;
4063
dsl_scan_t *scn = dp->dp_scan;
4064
4065
int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
4066
if (error != 0)
4067
return (error);
4068
4069
uint64_t latest_txg;
4070
uint64_t txg_to_consider = spa->spa_syncing_txg;
4071
boolean_t check_snapshot = B_TRUE;
4072
4073
error = find_birth_txg(ds, zep, &latest_txg);
4074
4075
/*
4076
* If find_birth_txg() errors out, then err on the side of caution and
4077
* proceed. In worst case scenario scrub all objects. If zep->zb_birth
4078
* is 0 (e.g. in case of encryption with unloaded keys) also proceed to
4079
* scrub all objects.
4080
*/
4081
if (error == 0 && zep->zb_birth == latest_txg) {
4082
/* Block neither free nor re written. */
4083
zbookmark_phys_t zb;
4084
zep_to_zb(fs, zep, &zb);
4085
scn->scn_zio_root = zio_root(spa, NULL, NULL,
4086
ZIO_FLAG_CANFAIL);
4087
/* We have already acquired the config lock for spa */
4088
read_by_block_level(scn, zb);
4089
4090
(void) zio_wait(scn->scn_zio_root);
4091
scn->scn_zio_root = NULL;
4092
4093
scn->errorscrub_phys.dep_examined++;
4094
scn->errorscrub_phys.dep_to_examine--;
4095
(*count)++;
4096
if ((*count) == zfs_scrub_error_blocks_per_txg ||
4097
dsl_error_scrub_check_suspend(scn, &zb)) {
4098
dsl_dataset_rele(ds, FTAG);
4099
return (SET_ERROR(EFAULT));
4100
}
4101
4102
check_snapshot = B_FALSE;
4103
} else if (error == 0) {
4104
txg_to_consider = latest_txg;
4105
}
4106
4107
/*
4108
* Retrieve the number of snapshots if the dataset is not a snapshot.
4109
*/
4110
uint64_t snap_count = 0;
4111
if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4112
4113
error = zap_count(spa->spa_meta_objset,
4114
dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4115
4116
if (error != 0) {
4117
dsl_dataset_rele(ds, FTAG);
4118
return (error);
4119
}
4120
}
4121
4122
if (snap_count == 0) {
4123
/* Filesystem without snapshots. */
4124
dsl_dataset_rele(ds, FTAG);
4125
return (0);
4126
}
4127
4128
uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4129
uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4130
4131
dsl_dataset_rele(ds, FTAG);
4132
4133
/* Check only snapshots created from this file system. */
4134
while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4135
snap_obj_txg <= txg_to_consider) {
4136
4137
error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4138
if (error != 0)
4139
return (error);
4140
4141
if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4142
snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4143
snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4144
dsl_dataset_rele(ds, FTAG);
4145
continue;
4146
}
4147
4148
boolean_t affected = B_TRUE;
4149
if (check_snapshot) {
4150
uint64_t blk_txg;
4151
error = find_birth_txg(ds, zep, &blk_txg);
4152
4153
/*
4154
* Scrub the snapshot also when zb_birth == 0 or when
4155
* find_birth_txg() returns an error.
4156
*/
4157
affected = (error == 0 && zep->zb_birth == blk_txg) ||
4158
(error != 0) || (zep->zb_birth == 0);
4159
}
4160
4161
/* Scrub snapshots. */
4162
if (affected) {
4163
zbookmark_phys_t zb;
4164
zep_to_zb(snap_obj, zep, &zb);
4165
scn->scn_zio_root = zio_root(spa, NULL, NULL,
4166
ZIO_FLAG_CANFAIL);
4167
/* We have already acquired the config lock for spa */
4168
read_by_block_level(scn, zb);
4169
4170
(void) zio_wait(scn->scn_zio_root);
4171
scn->scn_zio_root = NULL;
4172
4173
scn->errorscrub_phys.dep_examined++;
4174
scn->errorscrub_phys.dep_to_examine--;
4175
(*count)++;
4176
if ((*count) == zfs_scrub_error_blocks_per_txg ||
4177
dsl_error_scrub_check_suspend(scn, &zb)) {
4178
dsl_dataset_rele(ds, FTAG);
4179
return (EFAULT);
4180
}
4181
}
4182
snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4183
snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4184
dsl_dataset_rele(ds, FTAG);
4185
}
4186
return (0);
4187
}
4188
4189
void
4190
dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4191
{
4192
spa_t *spa = dp->dp_spa;
4193
dsl_scan_t *scn = dp->dp_scan;
4194
4195
/*
4196
* Only process scans in sync pass 1.
4197
*/
4198
4199
if (spa_sync_pass(spa) > 1)
4200
return;
4201
4202
/*
4203
* If the spa is shutting down, then stop scanning. This will
4204
* ensure that the scan does not dirty any new data during the
4205
* shutdown phase.
4206
*/
4207
if (spa_shutting_down(spa))
4208
return;
4209
4210
if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4211
return;
4212
}
4213
4214
if (dsl_scan_resilvering(scn->scn_dp)) {
4215
/* cancel the error scrub if resilver started */
4216
dsl_scan_cancel(scn->scn_dp);
4217
return;
4218
}
4219
4220
spa->spa_scrub_active = B_TRUE;
4221
scn->scn_sync_start_time = getlrtime();
4222
4223
/*
4224
* zfs_scan_suspend_progress can be set to disable scrub progress.
4225
* See more detailed comment in dsl_scan_sync().
4226
*/
4227
if (zfs_scan_suspend_progress) {
4228
uint64_t scan_time_ns = getlrtime() - scn->scn_sync_start_time;
4229
int mintime = zfs_scrub_min_time_ms;
4230
4231
while (zfs_scan_suspend_progress &&
4232
!txg_sync_waiting(scn->scn_dp) &&
4233
!spa_shutting_down(scn->scn_dp->dp_spa) &&
4234
NSEC2MSEC(scan_time_ns) < mintime) {
4235
delay(hz);
4236
scan_time_ns = getlrtime() - scn->scn_sync_start_time;
4237
}
4238
return;
4239
}
4240
4241
int i = 0;
4242
zap_attribute_t *za;
4243
zbookmark_phys_t *zb;
4244
boolean_t limit_exceeded = B_FALSE;
4245
4246
za = zap_attribute_alloc();
4247
zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4248
4249
if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4250
for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4251
zap_cursor_advance(&scn->errorscrub_cursor)) {
4252
name_to_bookmark(za->za_name, zb);
4253
4254
scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4255
NULL, ZIO_FLAG_CANFAIL);
4256
dsl_pool_config_enter(dp, FTAG);
4257
read_by_block_level(scn, *zb);
4258
dsl_pool_config_exit(dp, FTAG);
4259
4260
(void) zio_wait(scn->scn_zio_root);
4261
scn->scn_zio_root = NULL;
4262
4263
scn->errorscrub_phys.dep_examined += 1;
4264
scn->errorscrub_phys.dep_to_examine -= 1;
4265
i++;
4266
if (i == zfs_scrub_error_blocks_per_txg ||
4267
dsl_error_scrub_check_suspend(scn, zb)) {
4268
limit_exceeded = B_TRUE;
4269
break;
4270
}
4271
}
4272
4273
if (!limit_exceeded)
4274
dsl_errorscrub_done(scn, B_TRUE, tx);
4275
4276
dsl_errorscrub_sync_state(scn, tx);
4277
zap_attribute_free(za);
4278
kmem_free(zb, sizeof (*zb));
4279
return;
4280
}
4281
4282
int error = 0;
4283
for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4284
zap_cursor_advance(&scn->errorscrub_cursor)) {
4285
4286
zap_cursor_t *head_ds_cursor;
4287
zap_attribute_t *head_ds_attr;
4288
zbookmark_err_phys_t head_ds_block;
4289
4290
head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4291
head_ds_attr = zap_attribute_alloc();
4292
4293
uint64_t head_ds_err_obj = za->za_first_integer;
4294
uint64_t head_ds;
4295
name_to_object(za->za_name, &head_ds);
4296
boolean_t config_held = B_FALSE;
4297
uint64_t top_affected_fs;
4298
4299
for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4300
head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4301
head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4302
4303
name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4304
4305
/*
4306
* In case we are called from spa_sync the pool
4307
* config is already held.
4308
*/
4309
if (!dsl_pool_config_held(dp)) {
4310
dsl_pool_config_enter(dp, FTAG);
4311
config_held = B_TRUE;
4312
}
4313
4314
error = find_top_affected_fs(spa,
4315
head_ds, &head_ds_block, &top_affected_fs);
4316
if (error)
4317
break;
4318
4319
error = scrub_filesystem(spa, top_affected_fs,
4320
&head_ds_block, &i);
4321
4322
if (error == SET_ERROR(EFAULT)) {
4323
limit_exceeded = B_TRUE;
4324
break;
4325
}
4326
}
4327
4328
zap_cursor_fini(head_ds_cursor);
4329
kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4330
zap_attribute_free(head_ds_attr);
4331
4332
if (config_held)
4333
dsl_pool_config_exit(dp, FTAG);
4334
}
4335
4336
zap_attribute_free(za);
4337
kmem_free(zb, sizeof (*zb));
4338
if (!limit_exceeded)
4339
dsl_errorscrub_done(scn, B_TRUE, tx);
4340
4341
dsl_errorscrub_sync_state(scn, tx);
4342
}
4343
4344
/*
4345
* This is the primary entry point for scans that is called from syncing
4346
* context. Scans must happen entirely during syncing context so that we
4347
* can guarantee that blocks we are currently scanning will not change out
4348
* from under us. While a scan is active, this function controls how quickly
4349
* transaction groups proceed, instead of the normal handling provided by
4350
* txg_sync_thread().
4351
*/
4352
void
4353
dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4354
{
4355
int err = 0;
4356
dsl_scan_t *scn = dp->dp_scan;
4357
spa_t *spa = dp->dp_spa;
4358
state_sync_type_t sync_type = SYNC_OPTIONAL;
4359
int restart_early = 0;
4360
4361
if (spa->spa_resilver_deferred) {
4362
uint64_t to_issue, issued;
4363
4364
if (!spa_feature_is_active(dp->dp_spa,
4365
SPA_FEATURE_RESILVER_DEFER))
4366
spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4367
4368
/*
4369
* See print_scan_scrub_resilver_status() issued/total_i
4370
* @ cmd/zpool/zpool_main.c
4371
*/
4372
to_issue =
4373
scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped;
4374
issued =
4375
scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
4376
restart_early =
4377
zfs_resilver_disable_defer ||
4378
(issued < (to_issue * zfs_resilver_defer_percent / 100));
4379
}
4380
4381
/*
4382
* Only process scans in sync pass 1.
4383
*/
4384
if (spa_sync_pass(spa) > 1)
4385
return;
4386
4387
4388
/*
4389
* Check for scn_restart_txg before checking spa_load_state, so
4390
* that we can restart an old-style scan while the pool is being
4391
* imported (see dsl_scan_init). We also restart scans if there
4392
* is a deferred resilver and the user has manually disabled
4393
* deferred resilvers via zfs_resilver_disable_defer, or if the
4394
* current scan progress is below zfs_resilver_defer_percent.
4395
*/
4396
if (dsl_scan_restarting(scn, tx) || restart_early) {
4397
setup_sync_arg_t setup_sync_arg = {
4398
.func = POOL_SCAN_SCRUB,
4399
.txgstart = 0,
4400
.txgend = 0,
4401
};
4402
dsl_scan_done(scn, B_FALSE, tx);
4403
if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4404
setup_sync_arg.func = POOL_SCAN_RESILVER;
4405
zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d",
4406
setup_sync_arg.func, dp->dp_spa->spa_name,
4407
(longlong_t)tx->tx_txg, restart_early);
4408
dsl_scan_setup_sync(&setup_sync_arg, tx);
4409
}
4410
4411
/*
4412
* If the spa is shutting down, then stop scanning. This will
4413
* ensure that the scan does not dirty any new data during the
4414
* shutdown phase.
4415
*/
4416
if (spa_shutting_down(spa))
4417
return;
4418
4419
/*
4420
* Wait a few txgs after importing before doing background work
4421
* (async destroys and scanning). This should help the import
4422
* command to complete quickly.
4423
*/
4424
if (spa->spa_syncing_txg < spa->spa_first_txg + zfs_import_defer_txgs)
4425
return;
4426
4427
/*
4428
* If the scan is inactive due to a stalled async destroy, try again.
4429
*/
4430
if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4431
return;
4432
4433
/* reset scan statistics */
4434
scn->scn_visited_this_txg = 0;
4435
scn->scn_async_frees_this_txg = 0;
4436
scn->scn_holes_this_txg = 0;
4437
scn->scn_lt_min_this_txg = 0;
4438
scn->scn_gt_max_this_txg = 0;
4439
scn->scn_ddt_contained_this_txg = 0;
4440
scn->scn_objsets_visited_this_txg = 0;
4441
scn->scn_avg_seg_size_this_txg = 0;
4442
scn->scn_segs_this_txg = 0;
4443
scn->scn_avg_zio_size_this_txg = 0;
4444
scn->scn_zios_this_txg = 0;
4445
scn->scn_suspending = B_FALSE;
4446
scn->scn_sync_start_time = getlrtime();
4447
spa->spa_scrub_active = B_TRUE;
4448
4449
/*
4450
* First process the async destroys. If we suspend, don't do
4451
* any scrubbing or resilvering. This ensures that there are no
4452
* async destroys while we are scanning, so the scan code doesn't
4453
* have to worry about traversing it. It is also faster to free the
4454
* blocks than to scrub them.
4455
*/
4456
err = dsl_process_async_destroys(dp, tx);
4457
if (err != 0)
4458
return;
4459
4460
if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4461
return;
4462
4463
/*
4464
* zfs_scan_suspend_progress can be set to disable scan progress.
4465
* We don't want to spin the txg_sync thread, so we add a delay
4466
* here to simulate the time spent doing a scan. This is mostly
4467
* useful for testing and debugging.
4468
*/
4469
if (zfs_scan_suspend_progress) {
4470
uint64_t scan_time_ns = getlrtime() - scn->scn_sync_start_time;
4471
uint_t mintime = (scn->scn_phys.scn_func ==
4472
POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4473
zfs_scrub_min_time_ms;
4474
4475
while (zfs_scan_suspend_progress &&
4476
!txg_sync_waiting(scn->scn_dp) &&
4477
!spa_shutting_down(scn->scn_dp->dp_spa) &&
4478
NSEC2MSEC(scan_time_ns) < mintime) {
4479
delay(hz);
4480
scan_time_ns = getlrtime() - scn->scn_sync_start_time;
4481
}
4482
return;
4483
}
4484
4485
/*
4486
* Disabled by default, set zfs_scan_report_txgs to report
4487
* average performance over the last zfs_scan_report_txgs TXGs.
4488
*/
4489
if (zfs_scan_report_txgs != 0 &&
4490
tx->tx_txg % zfs_scan_report_txgs == 0) {
4491
scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4492
spa_scan_stat_init(spa);
4493
}
4494
4495
/*
4496
* It is possible to switch from unsorted to sorted at any time,
4497
* but afterwards the scan will remain sorted unless reloaded from
4498
* a checkpoint after a reboot.
4499
*/
4500
if (!zfs_scan_legacy) {
4501
scn->scn_is_sorted = B_TRUE;
4502
if (scn->scn_last_checkpoint == 0)
4503
scn->scn_last_checkpoint = ddi_get_lbolt();
4504
}
4505
4506
/*
4507
* For sorted scans, determine what kind of work we will be doing
4508
* this txg based on our memory limitations and whether or not we
4509
* need to perform a checkpoint.
4510
*/
4511
if (scn->scn_is_sorted) {
4512
/*
4513
* If we are over our checkpoint interval, set scn_clearing
4514
* so that we can begin checkpointing immediately. The
4515
* checkpoint allows us to save a consistent bookmark
4516
* representing how much data we have scrubbed so far.
4517
* Otherwise, use the memory limit to determine if we should
4518
* scan for metadata or start issue scrub IOs. We accumulate
4519
* metadata until we hit our hard memory limit at which point
4520
* we issue scrub IOs until we are at our soft memory limit.
4521
*/
4522
if (scn->scn_checkpointing ||
4523
ddi_get_lbolt() - scn->scn_last_checkpoint >
4524
SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4525
if (!scn->scn_checkpointing)
4526
zfs_dbgmsg("begin scan checkpoint for %s",
4527
spa->spa_name);
4528
4529
scn->scn_checkpointing = B_TRUE;
4530
scn->scn_clearing = B_TRUE;
4531
} else {
4532
boolean_t should_clear = dsl_scan_should_clear(scn);
4533
if (should_clear && !scn->scn_clearing) {
4534
zfs_dbgmsg("begin scan clearing for %s",
4535
spa->spa_name);
4536
scn->scn_clearing = B_TRUE;
4537
} else if (!should_clear && scn->scn_clearing) {
4538
zfs_dbgmsg("finish scan clearing for %s",
4539
spa->spa_name);
4540
scn->scn_clearing = B_FALSE;
4541
}
4542
}
4543
} else {
4544
ASSERT0(scn->scn_checkpointing);
4545
ASSERT0(scn->scn_clearing);
4546
}
4547
4548
if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4549
/* Need to scan metadata for more blocks to scrub */
4550
dsl_scan_phys_t *scnp = &scn->scn_phys;
4551
taskqid_t prefetch_tqid;
4552
4553
/*
4554
* Calculate the max number of in-flight bytes for pool-wide
4555
* scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4556
* Limits for the issuing phase are done per top-level vdev and
4557
* are handled separately.
4558
*/
4559
scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4560
zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4561
4562
if (scnp->scn_ddt_bookmark.ddb_class <=
4563
scnp->scn_ddt_class_max) {
4564
ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4565
zfs_dbgmsg("doing scan sync for %s txg %llu; "
4566
"ddt bm=%llu/%llu/%llu/%llx",
4567
spa->spa_name,
4568
(longlong_t)tx->tx_txg,
4569
(longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4570
(longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4571
(longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4572
(longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4573
} else {
4574
zfs_dbgmsg("doing scan sync for %s txg %llu; "
4575
"bm=%llu/%llu/%llu/%llu",
4576
spa->spa_name,
4577
(longlong_t)tx->tx_txg,
4578
(longlong_t)scnp->scn_bookmark.zb_objset,
4579
(longlong_t)scnp->scn_bookmark.zb_object,
4580
(longlong_t)scnp->scn_bookmark.zb_level,
4581
(longlong_t)scnp->scn_bookmark.zb_blkid);
4582
}
4583
4584
scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4585
NULL, ZIO_FLAG_CANFAIL);
4586
4587
scn->scn_prefetch_stop = B_FALSE;
4588
prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4589
dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4590
ASSERT(prefetch_tqid != TASKQID_INVALID);
4591
4592
dsl_pool_config_enter(dp, FTAG);
4593
dsl_scan_visit(scn, tx);
4594
dsl_pool_config_exit(dp, FTAG);
4595
4596
mutex_enter(&dp->dp_spa->spa_scrub_lock);
4597
scn->scn_prefetch_stop = B_TRUE;
4598
cv_broadcast(&spa->spa_scrub_io_cv);
4599
mutex_exit(&dp->dp_spa->spa_scrub_lock);
4600
4601
taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4602
(void) zio_wait(scn->scn_zio_root);
4603
scn->scn_zio_root = NULL;
4604
4605
zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4606
"(%llu os's, %llu holes, %llu < mintxg, "
4607
"%llu in ddt, %llu > maxtxg)",
4608
(longlong_t)scn->scn_visited_this_txg,
4609
spa->spa_name,
4610
(longlong_t)NSEC2MSEC(getlrtime() -
4611
scn->scn_sync_start_time),
4612
(longlong_t)scn->scn_objsets_visited_this_txg,
4613
(longlong_t)scn->scn_holes_this_txg,
4614
(longlong_t)scn->scn_lt_min_this_txg,
4615
(longlong_t)scn->scn_ddt_contained_this_txg,
4616
(longlong_t)scn->scn_gt_max_this_txg);
4617
4618
if (!scn->scn_suspending) {
4619
ASSERT0(avl_numnodes(&scn->scn_queue));
4620
scn->scn_done_txg = tx->tx_txg + 1;
4621
if (scn->scn_is_sorted) {
4622
scn->scn_checkpointing = B_TRUE;
4623
scn->scn_clearing = B_TRUE;
4624
scn->scn_issued_before_pass +=
4625
spa->spa_scan_pass_issued;
4626
spa_scan_stat_init(spa);
4627
}
4628
zfs_dbgmsg("scan complete for %s txg %llu",
4629
spa->spa_name,
4630
(longlong_t)tx->tx_txg);
4631
}
4632
} else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4633
ASSERT(scn->scn_clearing);
4634
4635
/* need to issue scrubbing IOs from per-vdev queues */
4636
scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4637
NULL, ZIO_FLAG_CANFAIL);
4638
scan_io_queues_run(scn);
4639
(void) zio_wait(scn->scn_zio_root);
4640
scn->scn_zio_root = NULL;
4641
4642
/* calculate and dprintf the current memory usage */
4643
(void) dsl_scan_should_clear(scn);
4644
dsl_scan_update_stats(scn);
4645
4646
zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4647
"in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4648
(longlong_t)scn->scn_zios_this_txg,
4649
spa->spa_name,
4650
(longlong_t)scn->scn_segs_this_txg,
4651
(longlong_t)NSEC2MSEC(getlrtime() -
4652
scn->scn_sync_start_time),
4653
(longlong_t)scn->scn_avg_zio_size_this_txg,
4654
(longlong_t)scn->scn_avg_seg_size_this_txg);
4655
} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4656
/* Finished with everything. Mark the scrub as complete */
4657
zfs_dbgmsg("scan issuing complete txg %llu for %s",
4658
(longlong_t)tx->tx_txg,
4659
spa->spa_name);
4660
ASSERT3U(scn->scn_done_txg, !=, 0);
4661
ASSERT0(spa->spa_scrub_inflight);
4662
ASSERT0(scn->scn_queues_pending);
4663
dsl_scan_done(scn, B_TRUE, tx);
4664
sync_type = SYNC_MANDATORY;
4665
}
4666
4667
dsl_scan_sync_state(scn, tx, sync_type);
4668
}
4669
4670
static void
4671
count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4672
{
4673
/*
4674
* Don't count embedded bp's, since we already did the work of
4675
* scanning these when we scanned the containing block.
4676
*/
4677
if (BP_IS_EMBEDDED(bp))
4678
return;
4679
4680
/*
4681
* Update the spa's stats on how many bytes we have issued.
4682
* Sequential scrubs create a zio for each DVA of the bp. Each
4683
* of these will include all DVAs for repair purposes, but the
4684
* zio code will only try the first one unless there is an issue.
4685
* Therefore, we should only count the first DVA for these IOs.
4686
*/
4687
atomic_add_64(&spa->spa_scan_pass_issued,
4688
all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4689
}
4690
4691
static void
4692
count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4693
{
4694
if (BP_IS_EMBEDDED(bp))
4695
return;
4696
atomic_add_64(&scn->scn_phys.scn_skipped,
4697
all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4698
}
4699
4700
static void
4701
count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4702
{
4703
/*
4704
* If we resume after a reboot, zab will be NULL; don't record
4705
* incomplete stats in that case.
4706
*/
4707
if (zab == NULL)
4708
return;
4709
4710
for (int i = 0; i < 4; i++) {
4711
int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4712
int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4713
4714
if (t & DMU_OT_NEWTYPE)
4715
t = DMU_OT_OTHER;
4716
zfs_blkstat_t *zb = &zab->zab_type[l][t];
4717
int equal;
4718
4719
zb->zb_count++;
4720
zb->zb_asize += BP_GET_ASIZE(bp);
4721
zb->zb_lsize += BP_GET_LSIZE(bp);
4722
zb->zb_psize += BP_GET_PSIZE(bp);
4723
zb->zb_gangs += BP_COUNT_GANG(bp);
4724
4725
switch (BP_GET_NDVAS(bp)) {
4726
case 2:
4727
if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4728
DVA_GET_VDEV(&bp->blk_dva[1]))
4729
zb->zb_ditto_2_of_2_samevdev++;
4730
break;
4731
case 3:
4732
equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4733
DVA_GET_VDEV(&bp->blk_dva[1])) +
4734
(DVA_GET_VDEV(&bp->blk_dva[0]) ==
4735
DVA_GET_VDEV(&bp->blk_dva[2])) +
4736
(DVA_GET_VDEV(&bp->blk_dva[1]) ==
4737
DVA_GET_VDEV(&bp->blk_dva[2]));
4738
if (equal == 1)
4739
zb->zb_ditto_2_of_3_samevdev++;
4740
else if (equal == 3)
4741
zb->zb_ditto_3_of_3_samevdev++;
4742
break;
4743
}
4744
}
4745
}
4746
4747
static void
4748
scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4749
{
4750
avl_index_t idx;
4751
dsl_scan_t *scn = queue->q_scn;
4752
4753
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4754
4755
if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4756
atomic_add_64(&scn->scn_queues_pending, 1);
4757
if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4758
/* block is already scheduled for reading */
4759
sio_free(sio);
4760
return;
4761
}
4762
avl_insert(&queue->q_sios_by_addr, sio, idx);
4763
queue->q_sio_memused += SIO_GET_MUSED(sio);
4764
zfs_range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4765
SIO_GET_ASIZE(sio));
4766
}
4767
4768
/*
4769
* Given all the info we got from our metadata scanning process, we
4770
* construct a scan_io_t and insert it into the scan sorting queue. The
4771
* I/O must already be suitable for us to process. This is controlled
4772
* by dsl_scan_enqueue().
4773
*/
4774
static void
4775
scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4776
int zio_flags, const zbookmark_phys_t *zb)
4777
{
4778
scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4779
4780
ASSERT0(BP_IS_GANG(bp));
4781
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4782
4783
bp2sio(bp, sio, dva_i);
4784
sio->sio_flags = zio_flags;
4785
sio->sio_zb = *zb;
4786
4787
queue->q_last_ext_addr = -1;
4788
scan_io_queue_insert_impl(queue, sio);
4789
}
4790
4791
/*
4792
* Given a set of I/O parameters as discovered by the metadata traversal
4793
* process, attempts to place the I/O into the sorted queues (if allowed),
4794
* or immediately executes the I/O.
4795
*/
4796
static void
4797
dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4798
const zbookmark_phys_t *zb)
4799
{
4800
spa_t *spa = dp->dp_spa;
4801
4802
ASSERT(!BP_IS_EMBEDDED(bp));
4803
4804
/*
4805
* Gang blocks are hard to issue sequentially, so we just issue them
4806
* here immediately instead of queuing them.
4807
*/
4808
if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4809
scan_exec_io(dp, bp, zio_flags, zb, NULL);
4810
return;
4811
}
4812
4813
for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4814
dva_t dva;
4815
vdev_t *vdev;
4816
4817
dva = bp->blk_dva[i];
4818
vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4819
ASSERT(vdev != NULL);
4820
4821
mutex_enter(&vdev->vdev_scan_io_queue_lock);
4822
if (vdev->vdev_scan_io_queue == NULL)
4823
vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4824
ASSERT(dp->dp_scan != NULL);
4825
scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4826
i, zio_flags, zb);
4827
mutex_exit(&vdev->vdev_scan_io_queue_lock);
4828
}
4829
}
4830
4831
static int
4832
dsl_scan_scrub_cb(dsl_pool_t *dp,
4833
const blkptr_t *bp, const zbookmark_phys_t *zb)
4834
{
4835
dsl_scan_t *scn = dp->dp_scan;
4836
spa_t *spa = dp->dp_spa;
4837
uint64_t phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
4838
size_t psize = BP_GET_PSIZE(bp);
4839
boolean_t needs_io = B_FALSE;
4840
int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4841
4842
count_block(dp->dp_blkstats, bp);
4843
if (phys_birth <= scn->scn_phys.scn_min_txg ||
4844
phys_birth >= scn->scn_phys.scn_max_txg) {
4845
count_block_skipped(scn, bp, B_TRUE);
4846
return (0);
4847
}
4848
4849
/* Embedded BP's have phys_birth==0, so we reject them above. */
4850
ASSERT(!BP_IS_EMBEDDED(bp));
4851
4852
ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4853
if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4854
zio_flags |= ZIO_FLAG_SCRUB;
4855
needs_io = B_TRUE;
4856
} else {
4857
ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4858
zio_flags |= ZIO_FLAG_RESILVER;
4859
needs_io = B_FALSE;
4860
}
4861
4862
/* If it's an intent log block, failure is expected. */
4863
if (zb->zb_level == ZB_ZIL_LEVEL)
4864
zio_flags |= ZIO_FLAG_SPECULATIVE;
4865
4866
for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4867
const dva_t *dva = &bp->blk_dva[d];
4868
4869
/*
4870
* Keep track of how much data we've examined so that
4871
* zpool(8) status can make useful progress reports.
4872
*/
4873
uint64_t asize = DVA_GET_ASIZE(dva);
4874
scn->scn_phys.scn_examined += asize;
4875
spa->spa_scan_pass_exam += asize;
4876
4877
/* if it's a resilver, this may not be in the target range */
4878
if (!needs_io)
4879
needs_io = dsl_scan_need_resilver(spa, dva, psize,
4880
phys_birth);
4881
}
4882
4883
if (needs_io && !zfs_no_scrub_io) {
4884
dsl_scan_enqueue(dp, bp, zio_flags, zb);
4885
} else {
4886
count_block_skipped(scn, bp, B_TRUE);
4887
}
4888
4889
/* do not relocate this block */
4890
return (0);
4891
}
4892
4893
static void
4894
dsl_scan_scrub_done(zio_t *zio)
4895
{
4896
spa_t *spa = zio->io_spa;
4897
blkptr_t *bp = zio->io_bp;
4898
dsl_scan_io_queue_t *queue = zio->io_private;
4899
4900
abd_free(zio->io_abd);
4901
4902
if (queue == NULL) {
4903
mutex_enter(&spa->spa_scrub_lock);
4904
ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4905
spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4906
cv_broadcast(&spa->spa_scrub_io_cv);
4907
mutex_exit(&spa->spa_scrub_lock);
4908
} else {
4909
mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4910
ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4911
queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4912
cv_broadcast(&queue->q_zio_cv);
4913
mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4914
}
4915
4916
if (zio->io_error && (zio->io_error != ECKSUM ||
4917
!(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4918
if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4919
!dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4920
atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4921
->errorscrub_phys.dep_errors);
4922
} else {
4923
atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4924
.scn_errors);
4925
}
4926
}
4927
}
4928
4929
/*
4930
* Given a scanning zio's information, executes the zio. The zio need
4931
* not necessarily be only sortable, this function simply executes the
4932
* zio, no matter what it is. The optional queue argument allows the
4933
* caller to specify that they want per top level vdev IO rate limiting
4934
* instead of the legacy global limiting.
4935
*/
4936
static void
4937
scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4938
const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4939
{
4940
spa_t *spa = dp->dp_spa;
4941
dsl_scan_t *scn = dp->dp_scan;
4942
size_t size = BP_GET_PSIZE(bp);
4943
abd_t *data = abd_alloc_for_io(size, B_FALSE);
4944
zio_t *pio;
4945
4946
if (queue == NULL) {
4947
ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4948
mutex_enter(&spa->spa_scrub_lock);
4949
while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4950
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4951
spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4952
mutex_exit(&spa->spa_scrub_lock);
4953
pio = scn->scn_zio_root;
4954
} else {
4955
kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4956
4957
ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4958
mutex_enter(q_lock);
4959
while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4960
cv_wait(&queue->q_zio_cv, q_lock);
4961
queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4962
pio = queue->q_zio;
4963
mutex_exit(q_lock);
4964
}
4965
4966
ASSERT(pio != NULL);
4967
count_block_issued(spa, bp, queue == NULL);
4968
zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4969
queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4970
}
4971
4972
/*
4973
* This is the primary extent sorting algorithm. We balance two parameters:
4974
* 1) how many bytes of I/O are in an extent
4975
* 2) how well the extent is filled with I/O (as a fraction of its total size)
4976
* Since we allow extents to have gaps between their constituent I/Os, it's
4977
* possible to have a fairly large extent that contains the same amount of
4978
* I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4979
* The algorithm sorts based on a score calculated from the extent's size,
4980
* the relative fill volume (in %) and a "fill weight" parameter that controls
4981
* the split between whether we prefer larger extents or more well populated
4982
* extents:
4983
*
4984
* SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4985
*
4986
* Example:
4987
* 1) assume extsz = 64 MiB
4988
* 2) assume fill = 32 MiB (extent is half full)
4989
* 3) assume fill_weight = 3
4990
* 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4991
* SCORE = 32M + (50 * 3 * 32M) / 100
4992
* SCORE = 32M + (4800M / 100)
4993
* SCORE = 32M + 48M
4994
* ^ ^
4995
* | +--- final total relative fill-based score
4996
* +--------- final total fill-based score
4997
* SCORE = 80M
4998
*
4999
* As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
5000
* extents that are more completely filled (in a 3:2 ratio) vs just larger.
5001
* Note that as an optimization, we replace multiplication and division by
5002
* 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
5003
*
5004
* Since we do not care if one extent is only few percent better than another,
5005
* compress the score into 6 bits via binary logarithm AKA highbit64() and
5006
* put into otherwise unused due to ashift high bits of offset. This allows
5007
* to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
5008
* with single operation. Plus it makes scrubs more sequential and reduces
5009
* chances that minor extent change move it within the B-tree.
5010
*/
5011
__attribute__((always_inline)) inline
5012
static int
5013
ext_size_compare(const void *x, const void *y)
5014
{
5015
const uint64_t *a = x, *b = y;
5016
5017
return (TREE_CMP(*a, *b));
5018
}
5019
5020
ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
5021
ext_size_compare)
5022
5023
static void
5024
ext_size_create(zfs_range_tree_t *rt, void *arg)
5025
{
5026
(void) rt;
5027
zfs_btree_t *size_tree = arg;
5028
5029
zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
5030
sizeof (uint64_t));
5031
}
5032
5033
static void
5034
ext_size_destroy(zfs_range_tree_t *rt, void *arg)
5035
{
5036
(void) rt;
5037
zfs_btree_t *size_tree = arg;
5038
ASSERT0(zfs_btree_numnodes(size_tree));
5039
5040
zfs_btree_destroy(size_tree);
5041
}
5042
5043
static uint64_t
5044
ext_size_value(zfs_range_tree_t *rt, zfs_range_seg_gap_t *rsg)
5045
{
5046
(void) rt;
5047
uint64_t size = rsg->rs_end - rsg->rs_start;
5048
uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
5049
fill_weight * rsg->rs_fill) >> 7);
5050
ASSERT3U(rt->rt_shift, >=, 8);
5051
return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
5052
}
5053
5054
static void
5055
ext_size_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5056
{
5057
zfs_btree_t *size_tree = arg;
5058
ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5059
uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5060
zfs_btree_add(size_tree, &v);
5061
}
5062
5063
static void
5064
ext_size_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5065
{
5066
zfs_btree_t *size_tree = arg;
5067
ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5068
uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5069
zfs_btree_remove(size_tree, &v);
5070
}
5071
5072
static void
5073
ext_size_vacate(zfs_range_tree_t *rt, void *arg)
5074
{
5075
zfs_btree_t *size_tree = arg;
5076
zfs_btree_clear(size_tree);
5077
zfs_btree_destroy(size_tree);
5078
5079
ext_size_create(rt, arg);
5080
}
5081
5082
static const zfs_range_tree_ops_t ext_size_ops = {
5083
.rtop_create = ext_size_create,
5084
.rtop_destroy = ext_size_destroy,
5085
.rtop_add = ext_size_add,
5086
.rtop_remove = ext_size_remove,
5087
.rtop_vacate = ext_size_vacate
5088
};
5089
5090
/*
5091
* Comparator for the q_sios_by_addr tree. Sorting is simply performed
5092
* based on LBA-order (from lowest to highest).
5093
*/
5094
static int
5095
sio_addr_compare(const void *x, const void *y)
5096
{
5097
const scan_io_t *a = x, *b = y;
5098
5099
return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
5100
}
5101
5102
/* IO queues are created on demand when they are needed. */
5103
static dsl_scan_io_queue_t *
5104
scan_io_queue_create(vdev_t *vd)
5105
{
5106
dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
5107
dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
5108
5109
q->q_scn = scn;
5110
q->q_vd = vd;
5111
q->q_sio_memused = 0;
5112
q->q_last_ext_addr = -1;
5113
cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5114
q->q_exts_by_addr = zfs_range_tree_create_gap(&ext_size_ops,
5115
ZFS_RANGE_SEG_GAP, &q->q_exts_by_size, 0, vd->vdev_ashift,
5116
zfs_scan_max_ext_gap);
5117
avl_create(&q->q_sios_by_addr, sio_addr_compare,
5118
sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5119
5120
return (q);
5121
}
5122
5123
/*
5124
* Destroys a scan queue and all segments and scan_io_t's contained in it.
5125
* No further execution of I/O occurs, anything pending in the queue is
5126
* simply freed without being executed.
5127
*/
5128
void
5129
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5130
{
5131
dsl_scan_t *scn = queue->q_scn;
5132
scan_io_t *sio;
5133
void *cookie = NULL;
5134
5135
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5136
5137
if (!avl_is_empty(&queue->q_sios_by_addr))
5138
atomic_add_64(&scn->scn_queues_pending, -1);
5139
while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5140
NULL) {
5141
ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr,
5142
SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5143
queue->q_sio_memused -= SIO_GET_MUSED(sio);
5144
sio_free(sio);
5145
}
5146
5147
ASSERT0(queue->q_sio_memused);
5148
zfs_range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5149
zfs_range_tree_destroy(queue->q_exts_by_addr);
5150
avl_destroy(&queue->q_sios_by_addr);
5151
cv_destroy(&queue->q_zio_cv);
5152
5153
kmem_free(queue, sizeof (*queue));
5154
}
5155
5156
/*
5157
* Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5158
* called on behalf of vdev_top_transfer when creating or destroying
5159
* a mirror vdev due to zpool attach/detach.
5160
*/
5161
void
5162
dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5163
{
5164
mutex_enter(&svd->vdev_scan_io_queue_lock);
5165
mutex_enter(&tvd->vdev_scan_io_queue_lock);
5166
5167
VERIFY0P(tvd->vdev_scan_io_queue);
5168
tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5169
svd->vdev_scan_io_queue = NULL;
5170
if (tvd->vdev_scan_io_queue != NULL)
5171
tvd->vdev_scan_io_queue->q_vd = tvd;
5172
5173
mutex_exit(&tvd->vdev_scan_io_queue_lock);
5174
mutex_exit(&svd->vdev_scan_io_queue_lock);
5175
}
5176
5177
static void
5178
scan_io_queues_destroy(dsl_scan_t *scn)
5179
{
5180
vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5181
5182
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5183
vdev_t *tvd = rvd->vdev_child[i];
5184
5185
mutex_enter(&tvd->vdev_scan_io_queue_lock);
5186
if (tvd->vdev_scan_io_queue != NULL)
5187
dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5188
tvd->vdev_scan_io_queue = NULL;
5189
mutex_exit(&tvd->vdev_scan_io_queue_lock);
5190
}
5191
}
5192
5193
static void
5194
dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5195
{
5196
dsl_pool_t *dp = spa->spa_dsl_pool;
5197
dsl_scan_t *scn = dp->dp_scan;
5198
vdev_t *vdev;
5199
kmutex_t *q_lock;
5200
dsl_scan_io_queue_t *queue;
5201
scan_io_t *srch_sio, *sio;
5202
avl_index_t idx;
5203
uint64_t start, size;
5204
5205
vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5206
ASSERT(vdev != NULL);
5207
q_lock = &vdev->vdev_scan_io_queue_lock;
5208
queue = vdev->vdev_scan_io_queue;
5209
5210
mutex_enter(q_lock);
5211
if (queue == NULL) {
5212
mutex_exit(q_lock);
5213
return;
5214
}
5215
5216
srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5217
bp2sio(bp, srch_sio, dva_i);
5218
start = SIO_GET_OFFSET(srch_sio);
5219
size = SIO_GET_ASIZE(srch_sio);
5220
5221
/*
5222
* We can find the zio in two states:
5223
* 1) Cold, just sitting in the queue of zio's to be issued at
5224
* some point in the future. In this case, all we do is
5225
* remove the zio from the q_sios_by_addr tree, decrement
5226
* its data volume from the containing zfs_range_seg_t and
5227
* resort the q_exts_by_size tree to reflect that the
5228
* zfs_range_seg_t has lost some of its 'fill'. We don't shorten
5229
* the zfs_range_seg_t - this is usually rare enough not to be
5230
* worth the extra hassle of trying keep track of precise
5231
* extent boundaries.
5232
* 2) Hot, where the zio is currently in-flight in
5233
* dsl_scan_issue_ios. In this case, we can't simply
5234
* reach in and stop the in-flight zio's, so we instead
5235
* block the caller. Eventually, dsl_scan_issue_ios will
5236
* be done with issuing the zio's it gathered and will
5237
* signal us.
5238
*/
5239
sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5240
sio_free(srch_sio);
5241
5242
if (sio != NULL) {
5243
blkptr_t tmpbp;
5244
5245
/* Got it while it was cold in the queue */
5246
ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5247
ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5248
avl_remove(&queue->q_sios_by_addr, sio);
5249
if (avl_is_empty(&queue->q_sios_by_addr))
5250
atomic_add_64(&scn->scn_queues_pending, -1);
5251
queue->q_sio_memused -= SIO_GET_MUSED(sio);
5252
5253
ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, start,
5254
size));
5255
zfs_range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5256
5257
/* count the block as though we skipped it */
5258
sio2bp(sio, &tmpbp);
5259
count_block_skipped(scn, &tmpbp, B_FALSE);
5260
5261
sio_free(sio);
5262
}
5263
mutex_exit(q_lock);
5264
}
5265
5266
/*
5267
* Callback invoked when a zio_free() zio is executing. This needs to be
5268
* intercepted to prevent the zio from deallocating a particular portion
5269
* of disk space and it then getting reallocated and written to, while we
5270
* still have it queued up for processing.
5271
*/
5272
void
5273
dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5274
{
5275
dsl_pool_t *dp = spa->spa_dsl_pool;
5276
dsl_scan_t *scn = dp->dp_scan;
5277
5278
ASSERT(!BP_IS_EMBEDDED(bp));
5279
ASSERT(scn != NULL);
5280
if (!dsl_scan_is_running(scn))
5281
return;
5282
5283
for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5284
dsl_scan_freed_dva(spa, bp, i);
5285
}
5286
5287
/*
5288
* Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5289
* not started, start it. Otherwise, only restart if max txg in DTL range is
5290
* greater than the max txg in the current scan. If the DTL max is less than
5291
* the scan max, then the vdev has not missed any new data since the resilver
5292
* started, so a restart is not needed.
5293
*/
5294
void
5295
dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5296
{
5297
uint64_t min, max;
5298
5299
if (!vdev_resilver_needed(vd, &min, &max))
5300
return;
5301
5302
if (!dsl_scan_resilvering(dp)) {
5303
spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5304
return;
5305
}
5306
5307
if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5308
return;
5309
5310
/* restart is needed, check if it can be deferred */
5311
if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5312
vdev_defer_resilver(vd);
5313
else
5314
spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5315
}
5316
5317
ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5318
"Max bytes in flight per leaf vdev for scrubs and resilvers");
5319
5320
ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5321
"Min millisecs to scrub per txg");
5322
5323
ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5324
"Min millisecs to obsolete per txg");
5325
5326
ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5327
"Min millisecs to free per txg");
5328
5329
ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5330
"Min millisecs to resilver per txg");
5331
5332
ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5333
"Set to prevent scans from progressing");
5334
5335
ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5336
"Set to disable scrub I/O");
5337
5338
ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5339
"Set to disable scrub prefetching");
5340
5341
ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5342
"Max number of blocks freed in one txg");
5343
5344
ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5345
"Max number of dedup, clone or gang blocks freed in one txg");
5346
5347
ZFS_MODULE_PARAM(zfs, zfs_, async_free_zio_wait_interval, U64, ZMOD_RW,
5348
"Wait for pending free I/Os after issuing this many asynchronously");
5349
5350
ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5351
"Enable processing of the free_bpobj");
5352
5353
ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5354
"Enable block statistics calculation during scrub");
5355
5356
ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5357
"Fraction of RAM for scan hard limit");
5358
5359
ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5360
"IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5361
5362
ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5363
"Scrub using legacy non-sequential method");
5364
5365
ZFS_MODULE_PARAM(zfs, zfs_, import_defer_txgs, UINT, ZMOD_RW,
5366
"Number of TXGs to defer background work after pool import");
5367
5368
ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5369
"Scan progress on-disk checkpointing interval");
5370
5371
ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5372
"Max gap in bytes between sequential scrub / resilver I/Os");
5373
5374
ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5375
"Fraction of hard limit used as soft limit");
5376
5377
ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5378
"Tunable to attempt to reduce lock contention");
5379
5380
ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5381
"Tunable to adjust bias towards more filled segments during scans");
5382
5383
ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5384
"Tunable to report resilver performance over the last N txgs");
5385
5386
ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5387
"Process all resilvers immediately");
5388
5389
ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW,
5390
"Issued IO percent complete after which resilvers are deferred");
5391
5392
ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5393
"Error blocks to be scrubbed in one txg");
5394
5395