Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zfs/dsl_scan.c
48383 views
1
// SPDX-License-Identifier: CDDL-1.0
2
/*
3
* CDDL HEADER START
4
*
5
* The contents of this file are subject to the terms of the
6
* Common Development and Distribution License (the "License").
7
* You may not use this file except in compliance with the License.
8
*
9
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10
* or https://opensource.org/licenses/CDDL-1.0.
11
* See the License for the specific language governing permissions
12
* and limitations under the License.
13
*
14
* When distributing Covered Code, include this CDDL HEADER in each
15
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16
* If applicable, add the following below this CDDL HEADER, with the
17
* fields enclosed by brackets "[]" replaced with your own identifying
18
* information: Portions Copyright [yyyy] [name of copyright owner]
19
*
20
* CDDL HEADER END
21
*/
22
/*
23
* Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24
* Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25
* Copyright 2016 Gary Mills
26
* Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
27
* Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
28
* Copyright 2019 Joyent, Inc.
29
*/
30
31
#include <sys/dsl_scan.h>
32
#include <sys/dsl_pool.h>
33
#include <sys/dsl_dataset.h>
34
#include <sys/dsl_prop.h>
35
#include <sys/dsl_dir.h>
36
#include <sys/dsl_synctask.h>
37
#include <sys/dnode.h>
38
#include <sys/dmu_tx.h>
39
#include <sys/dmu_objset.h>
40
#include <sys/arc.h>
41
#include <sys/arc_impl.h>
42
#include <sys/zap.h>
43
#include <sys/zio.h>
44
#include <sys/zfs_context.h>
45
#include <sys/fs/zfs.h>
46
#include <sys/zfs_znode.h>
47
#include <sys/spa_impl.h>
48
#include <sys/vdev_impl.h>
49
#include <sys/zil_impl.h>
50
#include <sys/zio_checksum.h>
51
#include <sys/brt.h>
52
#include <sys/ddt.h>
53
#include <sys/sa.h>
54
#include <sys/sa_impl.h>
55
#include <sys/zfeature.h>
56
#include <sys/abd.h>
57
#include <sys/range_tree.h>
58
#include <sys/dbuf.h>
59
#ifdef _KERNEL
60
#include <sys/zfs_vfsops.h>
61
#endif
62
63
/*
64
* Grand theory statement on scan queue sorting
65
*
66
* Scanning is implemented by recursively traversing all indirection levels
67
* in an object and reading all blocks referenced from said objects. This
68
* results in us approximately traversing the object from lowest logical
69
* offset to the highest. For best performance, we would want the logical
70
* blocks to be physically contiguous. However, this is frequently not the
71
* case with pools given the allocation patterns of copy-on-write filesystems.
72
* So instead, we put the I/Os into a reordering queue and issue them in a
73
* way that will most benefit physical disks (LBA-order).
74
*
75
* Queue management:
76
*
77
* Ideally, we would want to scan all metadata and queue up all block I/O
78
* prior to starting to issue it, because that allows us to do an optimal
79
* sorting job. This can however consume large amounts of memory. Therefore
80
* we continuously monitor the size of the queues and constrain them to 5%
81
* (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
82
* limit, we clear out a few of the largest extents at the head of the queues
83
* to make room for more scanning. Hopefully, these extents will be fairly
84
* large and contiguous, allowing us to approach sequential I/O throughput
85
* even without a fully sorted tree.
86
*
87
* Metadata scanning takes place in dsl_scan_visit(), which is called from
88
* dsl_scan_sync() every spa_sync(). If we have either fully scanned all
89
* metadata on the pool, or we need to make room in memory because our
90
* queues are too large, dsl_scan_visit() is postponed and
91
* scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
92
* that metadata scanning and queued I/O issuing are mutually exclusive. This
93
* allows us to provide maximum sequential I/O throughput for the majority of
94
* I/O's issued since sequential I/O performance is significantly negatively
95
* impacted if it is interleaved with random I/O.
96
*
97
* Implementation Notes
98
*
99
* One side effect of the queued scanning algorithm is that the scanning code
100
* needs to be notified whenever a block is freed. This is needed to allow
101
* the scanning code to remove these I/Os from the issuing queue. Additionally,
102
* we do not attempt to queue gang blocks to be issued sequentially since this
103
* is very hard to do and would have an extremely limited performance benefit.
104
* Instead, we simply issue gang I/Os as soon as we find them using the legacy
105
* algorithm.
106
*
107
* Backwards compatibility
108
*
109
* This new algorithm is backwards compatible with the legacy on-disk data
110
* structures (and therefore does not require a new feature flag).
111
* Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
112
* will stop scanning metadata (in logical order) and wait for all outstanding
113
* sorted I/O to complete. Once this is done, we write out a checkpoint
114
* bookmark, indicating that we have scanned everything logically before it.
115
* If the pool is imported on a machine without the new sorting algorithm,
116
* the scan simply resumes from the last checkpoint using the legacy algorithm.
117
*/
118
119
typedef int (scan_cb_t)(dsl_pool_t *, const blkptr_t *,
120
const zbookmark_phys_t *);
121
122
static scan_cb_t dsl_scan_scrub_cb;
123
124
static int scan_ds_queue_compare(const void *a, const void *b);
125
static int scan_prefetch_queue_compare(const void *a, const void *b);
126
static void scan_ds_queue_clear(dsl_scan_t *scn);
127
static void scan_ds_prefetch_queue_clear(dsl_scan_t *scn);
128
static boolean_t scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj,
129
uint64_t *txg);
130
static void scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg);
131
static void scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj);
132
static void scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx);
133
static uint64_t dsl_scan_count_data_disks(spa_t *spa);
134
static void read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb);
135
136
extern uint_t zfs_vdev_async_write_active_min_dirty_percent;
137
static int zfs_scan_blkstats = 0;
138
139
/*
140
* 'zpool status' uses bytes processed per pass to report throughput and
141
* estimate time remaining. We define a pass to start when the scanning
142
* phase completes for a sequential resilver. Optionally, this value
143
* may be used to reset the pass statistics every N txgs to provide an
144
* estimated completion time based on currently observed performance.
145
*/
146
static uint_t zfs_scan_report_txgs = 0;
147
148
/*
149
* By default zfs will check to ensure it is not over the hard memory
150
* limit before each txg. If finer-grained control of this is needed
151
* this value can be set to 1 to enable checking before scanning each
152
* block.
153
*/
154
static int zfs_scan_strict_mem_lim = B_FALSE;
155
156
/*
157
* Maximum number of parallelly executed bytes per leaf vdev. We attempt
158
* to strike a balance here between keeping the vdev queues full of I/Os
159
* at all times and not overflowing the queues to cause long latency,
160
* which would cause long txg sync times. No matter what, we will not
161
* overload the drives with I/O, since that is protected by
162
* zfs_vdev_scrub_max_active.
163
*/
164
static uint64_t zfs_scan_vdev_limit = 16 << 20;
165
166
static uint_t zfs_scan_issue_strategy = 0;
167
168
/* don't queue & sort zios, go direct */
169
static int zfs_scan_legacy = B_FALSE;
170
static uint64_t zfs_scan_max_ext_gap = 2 << 20; /* in bytes */
171
172
/*
173
* fill_weight is non-tunable at runtime, so we copy it at module init from
174
* zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
175
* break queue sorting.
176
*/
177
static uint_t zfs_scan_fill_weight = 3;
178
static uint64_t fill_weight;
179
180
/* See dsl_scan_should_clear() for details on the memory limit tunables */
181
static const uint64_t zfs_scan_mem_lim_min = 16 << 20; /* bytes */
182
static const uint64_t zfs_scan_mem_lim_soft_max = 128 << 20; /* bytes */
183
184
185
/* fraction of physmem */
186
static uint_t zfs_scan_mem_lim_fact = 20;
187
188
/* fraction of mem lim above */
189
static uint_t zfs_scan_mem_lim_soft_fact = 20;
190
191
/* minimum milliseconds to scrub per txg */
192
static uint_t zfs_scrub_min_time_ms = 1000;
193
194
/* minimum milliseconds to obsolete per txg */
195
static uint_t zfs_obsolete_min_time_ms = 500;
196
197
/* minimum milliseconds to free per txg */
198
static uint_t zfs_free_min_time_ms = 1000;
199
200
/* minimum milliseconds to resilver per txg */
201
static uint_t zfs_resilver_min_time_ms = 3000;
202
203
static uint_t zfs_scan_checkpoint_intval = 7200; /* in seconds */
204
int zfs_scan_suspend_progress = 0; /* set to prevent scans from progressing */
205
static int zfs_no_scrub_io = B_FALSE; /* set to disable scrub i/o */
206
static int zfs_no_scrub_prefetch = B_FALSE; /* set to disable scrub prefetch */
207
static const ddt_class_t zfs_scrub_ddt_class_max = DDT_CLASS_DUPLICATE;
208
/* max number of blocks to free in a single TXG */
209
static uint64_t zfs_async_block_max_blocks = UINT64_MAX;
210
/* max number of dedup blocks to free in a single TXG */
211
static uint64_t zfs_max_async_dedup_frees = 100000;
212
213
/* set to disable resilver deferring */
214
static int zfs_resilver_disable_defer = B_FALSE;
215
216
/* Don't defer a resilver if the one in progress only got this far: */
217
static uint_t zfs_resilver_defer_percent = 10;
218
219
/*
220
* We wait a few txgs after importing a pool to begin scanning so that
221
* the import / mounting code isn't held up by scrub / resilver IO.
222
* Unfortunately, it is a bit difficult to determine exactly how long
223
* this will take since userspace will trigger fs mounts asynchronously
224
* and the kernel will create zvol minors asynchronously. As a result,
225
* the value provided here is a bit arbitrary, but represents a
226
* reasonable estimate of how many txgs it will take to finish fully
227
* importing a pool
228
*/
229
#define SCAN_IMPORT_WAIT_TXGS 5
230
231
#define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
232
((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
233
(scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
234
235
#define DSL_SCAN_IS_SCRUB(scn) \
236
((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB)
237
238
#define DSL_SCAN_IS_RESILVER(scn) \
239
((scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
240
241
/*
242
* Enable/disable the processing of the free_bpobj object.
243
*/
244
static int zfs_free_bpobj_enabled = 1;
245
246
/* Error blocks to be scrubbed in one txg. */
247
static uint_t zfs_scrub_error_blocks_per_txg = 1 << 12;
248
249
/* the order has to match pool_scan_type */
250
static scan_cb_t *scan_funcs[POOL_SCAN_FUNCS] = {
251
NULL,
252
dsl_scan_scrub_cb, /* POOL_SCAN_SCRUB */
253
dsl_scan_scrub_cb, /* POOL_SCAN_RESILVER */
254
};
255
256
/* In core node for the scn->scn_queue. Represents a dataset to be scanned */
257
typedef struct {
258
uint64_t sds_dsobj;
259
uint64_t sds_txg;
260
avl_node_t sds_node;
261
} scan_ds_t;
262
263
/*
264
* This controls what conditions are placed on dsl_scan_sync_state():
265
* SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
266
* SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
267
* SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
268
* write out the scn_phys_cached version.
269
* See dsl_scan_sync_state for details.
270
*/
271
typedef enum {
272
SYNC_OPTIONAL,
273
SYNC_MANDATORY,
274
SYNC_CACHED
275
} state_sync_type_t;
276
277
/*
278
* This struct represents the minimum information needed to reconstruct a
279
* zio for sequential scanning. This is useful because many of these will
280
* accumulate in the sequential IO queues before being issued, so saving
281
* memory matters here.
282
*/
283
typedef struct scan_io {
284
/* fields from blkptr_t */
285
uint64_t sio_blk_prop;
286
uint64_t sio_phys_birth;
287
uint64_t sio_birth;
288
zio_cksum_t sio_cksum;
289
uint32_t sio_nr_dvas;
290
291
/* fields from zio_t */
292
uint32_t sio_flags;
293
zbookmark_phys_t sio_zb;
294
295
/* members for queue sorting */
296
union {
297
avl_node_t sio_addr_node; /* link into issuing queue */
298
list_node_t sio_list_node; /* link for issuing to disk */
299
} sio_nodes;
300
301
/*
302
* There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
303
* depending on how many were in the original bp. Only the
304
* first DVA is really used for sorting and issuing purposes.
305
* The other DVAs (if provided) simply exist so that the zio
306
* layer can find additional copies to repair from in the
307
* event of an error. This array must go at the end of the
308
* struct to allow this for the variable number of elements.
309
*/
310
dva_t sio_dva[];
311
} scan_io_t;
312
313
#define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
314
#define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
315
#define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
316
#define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
317
#define SIO_GET_END_OFFSET(sio) \
318
(SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
319
#define SIO_GET_MUSED(sio) \
320
(sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
321
322
struct dsl_scan_io_queue {
323
dsl_scan_t *q_scn; /* associated dsl_scan_t */
324
vdev_t *q_vd; /* top-level vdev that this queue represents */
325
zio_t *q_zio; /* scn_zio_root child for waiting on IO */
326
327
/* trees used for sorting I/Os and extents of I/Os */
328
zfs_range_tree_t *q_exts_by_addr;
329
zfs_btree_t q_exts_by_size;
330
avl_tree_t q_sios_by_addr;
331
uint64_t q_sio_memused;
332
uint64_t q_last_ext_addr;
333
334
/* members for zio rate limiting */
335
uint64_t q_maxinflight_bytes;
336
uint64_t q_inflight_bytes;
337
kcondvar_t q_zio_cv; /* used under vd->vdev_scan_io_queue_lock */
338
339
/* per txg statistics */
340
uint64_t q_total_seg_size_this_txg;
341
uint64_t q_segs_this_txg;
342
uint64_t q_total_zio_size_this_txg;
343
uint64_t q_zios_this_txg;
344
};
345
346
/* private data for dsl_scan_prefetch_cb() */
347
typedef struct scan_prefetch_ctx {
348
zfs_refcount_t spc_refcnt; /* refcount for memory management */
349
dsl_scan_t *spc_scn; /* dsl_scan_t for the pool */
350
boolean_t spc_root; /* is this prefetch for an objset? */
351
uint8_t spc_indblkshift; /* dn_indblkshift of current dnode */
352
uint16_t spc_datablkszsec; /* dn_idatablkszsec of current dnode */
353
} scan_prefetch_ctx_t;
354
355
/* private data for dsl_scan_prefetch() */
356
typedef struct scan_prefetch_issue_ctx {
357
avl_node_t spic_avl_node; /* link into scn->scn_prefetch_queue */
358
scan_prefetch_ctx_t *spic_spc; /* spc for the callback */
359
blkptr_t spic_bp; /* bp to prefetch */
360
zbookmark_phys_t spic_zb; /* bookmark to prefetch */
361
} scan_prefetch_issue_ctx_t;
362
363
static void scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
364
const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue);
365
static void scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue,
366
scan_io_t *sio);
367
368
static dsl_scan_io_queue_t *scan_io_queue_create(vdev_t *vd);
369
static void scan_io_queues_destroy(dsl_scan_t *scn);
370
371
static kmem_cache_t *sio_cache[SPA_DVAS_PER_BP];
372
373
/* sio->sio_nr_dvas must be set so we know which cache to free from */
374
static void
375
sio_free(scan_io_t *sio)
376
{
377
ASSERT3U(sio->sio_nr_dvas, >, 0);
378
ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
379
380
kmem_cache_free(sio_cache[sio->sio_nr_dvas - 1], sio);
381
}
382
383
/* It is up to the caller to set sio->sio_nr_dvas for freeing */
384
static scan_io_t *
385
sio_alloc(unsigned short nr_dvas)
386
{
387
ASSERT3U(nr_dvas, >, 0);
388
ASSERT3U(nr_dvas, <=, SPA_DVAS_PER_BP);
389
390
return (kmem_cache_alloc(sio_cache[nr_dvas - 1], KM_SLEEP));
391
}
392
393
void
394
scan_init(void)
395
{
396
/*
397
* This is used in ext_size_compare() to weight segments
398
* based on how sparse they are. This cannot be changed
399
* mid-scan and the tree comparison functions don't currently
400
* have a mechanism for passing additional context to the
401
* compare functions. Thus we store this value globally and
402
* we only allow it to be set at module initialization time
403
*/
404
fill_weight = zfs_scan_fill_weight;
405
406
for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
407
char name[36];
408
409
(void) snprintf(name, sizeof (name), "sio_cache_%d", i);
410
sio_cache[i] = kmem_cache_create(name,
411
(sizeof (scan_io_t) + ((i + 1) * sizeof (dva_t))),
412
0, NULL, NULL, NULL, NULL, NULL, 0);
413
}
414
}
415
416
void
417
scan_fini(void)
418
{
419
for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
420
kmem_cache_destroy(sio_cache[i]);
421
}
422
}
423
424
static inline boolean_t
425
dsl_scan_is_running(const dsl_scan_t *scn)
426
{
427
return (scn->scn_phys.scn_state == DSS_SCANNING);
428
}
429
430
boolean_t
431
dsl_scan_resilvering(dsl_pool_t *dp)
432
{
433
return (dsl_scan_is_running(dp->dp_scan) &&
434
dp->dp_scan->scn_phys.scn_func == POOL_SCAN_RESILVER);
435
}
436
437
static inline void
438
sio2bp(const scan_io_t *sio, blkptr_t *bp)
439
{
440
memset(bp, 0, sizeof (*bp));
441
bp->blk_prop = sio->sio_blk_prop;
442
BP_SET_PHYSICAL_BIRTH(bp, sio->sio_phys_birth);
443
BP_SET_LOGICAL_BIRTH(bp, sio->sio_birth);
444
bp->blk_fill = 1; /* we always only work with data pointers */
445
bp->blk_cksum = sio->sio_cksum;
446
447
ASSERT3U(sio->sio_nr_dvas, >, 0);
448
ASSERT3U(sio->sio_nr_dvas, <=, SPA_DVAS_PER_BP);
449
450
memcpy(bp->blk_dva, sio->sio_dva, sio->sio_nr_dvas * sizeof (dva_t));
451
}
452
453
static inline void
454
bp2sio(const blkptr_t *bp, scan_io_t *sio, int dva_i)
455
{
456
sio->sio_blk_prop = bp->blk_prop;
457
sio->sio_phys_birth = BP_GET_RAW_PHYSICAL_BIRTH(bp);
458
sio->sio_birth = BP_GET_LOGICAL_BIRTH(bp);
459
sio->sio_cksum = bp->blk_cksum;
460
sio->sio_nr_dvas = BP_GET_NDVAS(bp);
461
462
/*
463
* Copy the DVAs to the sio. We need all copies of the block so
464
* that the self healing code can use the alternate copies if the
465
* first is corrupted. We want the DVA at index dva_i to be first
466
* in the sio since this is the primary one that we want to issue.
467
*/
468
for (int i = 0, j = dva_i; i < sio->sio_nr_dvas; i++, j++) {
469
sio->sio_dva[i] = bp->blk_dva[j % sio->sio_nr_dvas];
470
}
471
}
472
473
int
474
dsl_scan_init(dsl_pool_t *dp, uint64_t txg)
475
{
476
int err;
477
dsl_scan_t *scn;
478
spa_t *spa = dp->dp_spa;
479
uint64_t f;
480
481
scn = dp->dp_scan = kmem_zalloc(sizeof (dsl_scan_t), KM_SLEEP);
482
scn->scn_dp = dp;
483
484
/*
485
* It's possible that we're resuming a scan after a reboot so
486
* make sure that the scan_async_destroying flag is initialized
487
* appropriately.
488
*/
489
ASSERT(!scn->scn_async_destroying);
490
scn->scn_async_destroying = spa_feature_is_active(dp->dp_spa,
491
SPA_FEATURE_ASYNC_DESTROY);
492
493
/*
494
* Calculate the max number of in-flight bytes for pool-wide
495
* scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
496
* Limits for the issuing phase are done per top-level vdev and
497
* are handled separately.
498
*/
499
scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
500
zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
501
502
avl_create(&scn->scn_queue, scan_ds_queue_compare, sizeof (scan_ds_t),
503
offsetof(scan_ds_t, sds_node));
504
mutex_init(&scn->scn_queue_lock, NULL, MUTEX_DEFAULT, NULL);
505
avl_create(&scn->scn_prefetch_queue, scan_prefetch_queue_compare,
506
sizeof (scan_prefetch_issue_ctx_t),
507
offsetof(scan_prefetch_issue_ctx_t, spic_avl_node));
508
509
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
510
"scrub_func", sizeof (uint64_t), 1, &f);
511
if (err == 0) {
512
/*
513
* There was an old-style scrub in progress. Restart a
514
* new-style scrub from the beginning.
515
*/
516
scn->scn_restart_txg = txg;
517
zfs_dbgmsg("old-style scrub was in progress for %s; "
518
"restarting new-style scrub in txg %llu",
519
spa->spa_name,
520
(longlong_t)scn->scn_restart_txg);
521
522
/*
523
* Load the queue obj from the old location so that it
524
* can be freed by dsl_scan_done().
525
*/
526
(void) zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
527
"scrub_queue", sizeof (uint64_t), 1,
528
&scn->scn_phys.scn_queue_obj);
529
} else {
530
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
531
DMU_POOL_ERRORSCRUB, sizeof (uint64_t),
532
ERRORSCRUB_PHYS_NUMINTS, &scn->errorscrub_phys);
533
534
if (err != 0 && err != ENOENT)
535
return (err);
536
537
err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
538
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
539
&scn->scn_phys);
540
541
/*
542
* Detect if the pool contains the signature of #2094. If it
543
* does properly update the scn->scn_phys structure and notify
544
* the administrator by setting an errata for the pool.
545
*/
546
if (err == EOVERFLOW) {
547
uint64_t zaptmp[SCAN_PHYS_NUMINTS + 1];
548
VERIFY3S(SCAN_PHYS_NUMINTS, ==, 24);
549
VERIFY3S(offsetof(dsl_scan_phys_t, scn_flags), ==,
550
(23 * sizeof (uint64_t)));
551
552
err = zap_lookup(dp->dp_meta_objset,
553
DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SCAN,
554
sizeof (uint64_t), SCAN_PHYS_NUMINTS + 1, &zaptmp);
555
if (err == 0) {
556
uint64_t overflow = zaptmp[SCAN_PHYS_NUMINTS];
557
558
if (overflow & ~DSL_SCAN_FLAGS_MASK ||
559
scn->scn_async_destroying) {
560
spa->spa_errata =
561
ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY;
562
return (EOVERFLOW);
563
}
564
565
memcpy(&scn->scn_phys, zaptmp,
566
SCAN_PHYS_NUMINTS * sizeof (uint64_t));
567
scn->scn_phys.scn_flags = overflow;
568
569
/* Required scrub already in progress. */
570
if (scn->scn_phys.scn_state == DSS_FINISHED ||
571
scn->scn_phys.scn_state == DSS_CANCELED)
572
spa->spa_errata =
573
ZPOOL_ERRATA_ZOL_2094_SCRUB;
574
}
575
}
576
577
if (err == ENOENT)
578
return (0);
579
else if (err)
580
return (err);
581
582
/*
583
* We might be restarting after a reboot, so jump the issued
584
* counter to how far we've scanned. We know we're consistent
585
* up to here.
586
*/
587
scn->scn_issued_before_pass = scn->scn_phys.scn_examined -
588
scn->scn_phys.scn_skipped;
589
590
if (dsl_scan_is_running(scn) &&
591
spa_prev_software_version(dp->dp_spa) < SPA_VERSION_SCAN) {
592
/*
593
* A new-type scrub was in progress on an old
594
* pool, and the pool was accessed by old
595
* software. Restart from the beginning, since
596
* the old software may have changed the pool in
597
* the meantime.
598
*/
599
scn->scn_restart_txg = txg;
600
zfs_dbgmsg("new-style scrub for %s was modified "
601
"by old software; restarting in txg %llu",
602
spa->spa_name,
603
(longlong_t)scn->scn_restart_txg);
604
} else if (dsl_scan_resilvering(dp)) {
605
/*
606
* If a resilver is in progress and there are already
607
* errors, restart it instead of finishing this scan and
608
* then restarting it. If there haven't been any errors
609
* then remember that the incore DTL is valid.
610
*/
611
if (scn->scn_phys.scn_errors > 0) {
612
scn->scn_restart_txg = txg;
613
zfs_dbgmsg("resilver can't excise DTL_MISSING "
614
"when finished; restarting on %s in txg "
615
"%llu",
616
spa->spa_name,
617
(u_longlong_t)scn->scn_restart_txg);
618
} else {
619
/* it's safe to excise DTL when finished */
620
spa->spa_scrub_started = B_TRUE;
621
}
622
}
623
}
624
625
memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
626
627
/* reload the queue into the in-core state */
628
if (scn->scn_phys.scn_queue_obj != 0) {
629
zap_cursor_t zc;
630
zap_attribute_t *za = zap_attribute_alloc();
631
632
for (zap_cursor_init(&zc, dp->dp_meta_objset,
633
scn->scn_phys.scn_queue_obj);
634
zap_cursor_retrieve(&zc, za) == 0;
635
(void) zap_cursor_advance(&zc)) {
636
scan_ds_queue_insert(scn,
637
zfs_strtonum(za->za_name, NULL),
638
za->za_first_integer);
639
}
640
zap_cursor_fini(&zc);
641
zap_attribute_free(za);
642
}
643
644
ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
645
646
spa_scan_stat_init(spa);
647
vdev_scan_stat_init(spa->spa_root_vdev);
648
649
return (0);
650
}
651
652
void
653
dsl_scan_fini(dsl_pool_t *dp)
654
{
655
if (dp->dp_scan != NULL) {
656
dsl_scan_t *scn = dp->dp_scan;
657
658
if (scn->scn_taskq != NULL)
659
taskq_destroy(scn->scn_taskq);
660
661
scan_ds_queue_clear(scn);
662
avl_destroy(&scn->scn_queue);
663
mutex_destroy(&scn->scn_queue_lock);
664
scan_ds_prefetch_queue_clear(scn);
665
avl_destroy(&scn->scn_prefetch_queue);
666
667
kmem_free(dp->dp_scan, sizeof (dsl_scan_t));
668
dp->dp_scan = NULL;
669
}
670
}
671
672
static boolean_t
673
dsl_scan_restarting(dsl_scan_t *scn, dmu_tx_t *tx)
674
{
675
return (scn->scn_restart_txg != 0 &&
676
scn->scn_restart_txg <= tx->tx_txg);
677
}
678
679
boolean_t
680
dsl_scan_resilver_scheduled(dsl_pool_t *dp)
681
{
682
return ((dp->dp_scan && dp->dp_scan->scn_restart_txg != 0) ||
683
(spa_async_tasks(dp->dp_spa) & SPA_ASYNC_RESILVER));
684
}
685
686
boolean_t
687
dsl_scan_scrubbing(const dsl_pool_t *dp)
688
{
689
dsl_scan_phys_t *scn_phys = &dp->dp_scan->scn_phys;
690
691
return (scn_phys->scn_state == DSS_SCANNING &&
692
scn_phys->scn_func == POOL_SCAN_SCRUB);
693
}
694
695
boolean_t
696
dsl_errorscrubbing(const dsl_pool_t *dp)
697
{
698
dsl_errorscrub_phys_t *errorscrub_phys = &dp->dp_scan->errorscrub_phys;
699
700
return (errorscrub_phys->dep_state == DSS_ERRORSCRUBBING &&
701
errorscrub_phys->dep_func == POOL_SCAN_ERRORSCRUB);
702
}
703
704
boolean_t
705
dsl_errorscrub_is_paused(const dsl_scan_t *scn)
706
{
707
return (dsl_errorscrubbing(scn->scn_dp) &&
708
scn->errorscrub_phys.dep_paused_flags);
709
}
710
711
boolean_t
712
dsl_scan_is_paused_scrub(const dsl_scan_t *scn)
713
{
714
return (dsl_scan_scrubbing(scn->scn_dp) &&
715
scn->scn_phys.scn_flags & DSF_SCRUB_PAUSED);
716
}
717
718
static void
719
dsl_errorscrub_sync_state(dsl_scan_t *scn, dmu_tx_t *tx)
720
{
721
scn->errorscrub_phys.dep_cursor =
722
zap_cursor_serialize(&scn->errorscrub_cursor);
723
724
VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
725
DMU_POOL_DIRECTORY_OBJECT,
726
DMU_POOL_ERRORSCRUB, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS,
727
&scn->errorscrub_phys, tx));
728
}
729
730
static void
731
dsl_errorscrub_setup_sync(void *arg, dmu_tx_t *tx)
732
{
733
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
734
pool_scan_func_t *funcp = arg;
735
dsl_pool_t *dp = scn->scn_dp;
736
spa_t *spa = dp->dp_spa;
737
738
ASSERT(!dsl_scan_is_running(scn));
739
ASSERT(!dsl_errorscrubbing(scn->scn_dp));
740
ASSERT(*funcp > POOL_SCAN_NONE && *funcp < POOL_SCAN_FUNCS);
741
742
memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
743
scn->errorscrub_phys.dep_func = *funcp;
744
scn->errorscrub_phys.dep_state = DSS_ERRORSCRUBBING;
745
scn->errorscrub_phys.dep_start_time = gethrestime_sec();
746
scn->errorscrub_phys.dep_to_examine = spa_get_last_errlog_size(spa);
747
scn->errorscrub_phys.dep_examined = 0;
748
scn->errorscrub_phys.dep_errors = 0;
749
scn->errorscrub_phys.dep_cursor = 0;
750
zap_cursor_init_serialized(&scn->errorscrub_cursor,
751
spa->spa_meta_objset, spa->spa_errlog_last,
752
scn->errorscrub_phys.dep_cursor);
753
754
vdev_config_dirty(spa->spa_root_vdev);
755
spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_START);
756
757
dsl_errorscrub_sync_state(scn, tx);
758
759
spa_history_log_internal(spa, "error scrub setup", tx,
760
"func=%u mintxg=%u maxtxg=%llu",
761
*funcp, 0, (u_longlong_t)tx->tx_txg);
762
}
763
764
static int
765
dsl_errorscrub_setup_check(void *arg, dmu_tx_t *tx)
766
{
767
(void) arg;
768
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
769
770
if (dsl_scan_is_running(scn) || (dsl_errorscrubbing(scn->scn_dp))) {
771
return (SET_ERROR(EBUSY));
772
}
773
774
if (spa_get_last_errlog_size(scn->scn_dp->dp_spa) == 0) {
775
return (ECANCELED);
776
}
777
return (0);
778
}
779
780
/*
781
* Writes out a persistent dsl_scan_phys_t record to the pool directory.
782
* Because we can be running in the block sorting algorithm, we do not always
783
* want to write out the record, only when it is "safe" to do so. This safety
784
* condition is achieved by making sure that the sorting queues are empty
785
* (scn_queues_pending == 0). When this condition is not true, the sync'd state
786
* is inconsistent with how much actual scanning progress has been made. The
787
* kind of sync to be performed is specified by the sync_type argument. If the
788
* sync is optional, we only sync if the queues are empty. If the sync is
789
* mandatory, we do a hard ASSERT to make sure that the queues are empty. The
790
* third possible state is a "cached" sync. This is done in response to:
791
* 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
792
* destroyed, so we wouldn't be able to restart scanning from it.
793
* 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
794
* superseded by a newer snapshot.
795
* 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
796
* swapped with its clone.
797
* In all cases, a cached sync simply rewrites the last record we've written,
798
* just slightly modified. For the modifications that are performed to the
799
* last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
800
* dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
801
*/
802
static void
803
dsl_scan_sync_state(dsl_scan_t *scn, dmu_tx_t *tx, state_sync_type_t sync_type)
804
{
805
int i;
806
spa_t *spa = scn->scn_dp->dp_spa;
807
808
ASSERT(sync_type != SYNC_MANDATORY || scn->scn_queues_pending == 0);
809
if (scn->scn_queues_pending == 0) {
810
for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
811
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
812
dsl_scan_io_queue_t *q = vd->vdev_scan_io_queue;
813
814
if (q == NULL)
815
continue;
816
817
mutex_enter(&vd->vdev_scan_io_queue_lock);
818
ASSERT3P(avl_first(&q->q_sios_by_addr), ==, NULL);
819
ASSERT3P(zfs_btree_first(&q->q_exts_by_size, NULL), ==,
820
NULL);
821
ASSERT3P(zfs_range_tree_first(q->q_exts_by_addr), ==,
822
NULL);
823
mutex_exit(&vd->vdev_scan_io_queue_lock);
824
}
825
826
if (scn->scn_phys.scn_queue_obj != 0)
827
scan_ds_queue_sync(scn, tx);
828
VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
829
DMU_POOL_DIRECTORY_OBJECT,
830
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
831
&scn->scn_phys, tx));
832
memcpy(&scn->scn_phys_cached, &scn->scn_phys,
833
sizeof (scn->scn_phys));
834
835
if (scn->scn_checkpointing)
836
zfs_dbgmsg("finish scan checkpoint for %s",
837
spa->spa_name);
838
839
scn->scn_checkpointing = B_FALSE;
840
scn->scn_last_checkpoint = ddi_get_lbolt();
841
} else if (sync_type == SYNC_CACHED) {
842
VERIFY0(zap_update(scn->scn_dp->dp_meta_objset,
843
DMU_POOL_DIRECTORY_OBJECT,
844
DMU_POOL_SCAN, sizeof (uint64_t), SCAN_PHYS_NUMINTS,
845
&scn->scn_phys_cached, tx));
846
}
847
}
848
849
int
850
dsl_scan_setup_check(void *arg, dmu_tx_t *tx)
851
{
852
(void) arg;
853
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
854
vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
855
856
if (dsl_scan_is_running(scn) || vdev_rebuild_active(rvd) ||
857
dsl_errorscrubbing(scn->scn_dp))
858
return (SET_ERROR(EBUSY));
859
860
return (0);
861
}
862
863
void
864
dsl_scan_setup_sync(void *arg, dmu_tx_t *tx)
865
{
866
setup_sync_arg_t *setup_sync_arg = (setup_sync_arg_t *)arg;
867
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
868
dmu_object_type_t ot = 0;
869
dsl_pool_t *dp = scn->scn_dp;
870
spa_t *spa = dp->dp_spa;
871
872
ASSERT(!dsl_scan_is_running(scn));
873
ASSERT3U(setup_sync_arg->func, >, POOL_SCAN_NONE);
874
ASSERT3U(setup_sync_arg->func, <, POOL_SCAN_FUNCS);
875
memset(&scn->scn_phys, 0, sizeof (scn->scn_phys));
876
877
/*
878
* If we are starting a fresh scrub, we erase the error scrub
879
* information from disk.
880
*/
881
memset(&scn->errorscrub_phys, 0, sizeof (scn->errorscrub_phys));
882
dsl_errorscrub_sync_state(scn, tx);
883
884
scn->scn_phys.scn_func = setup_sync_arg->func;
885
scn->scn_phys.scn_state = DSS_SCANNING;
886
scn->scn_phys.scn_min_txg = setup_sync_arg->txgstart;
887
if (setup_sync_arg->txgend == 0) {
888
scn->scn_phys.scn_max_txg = tx->tx_txg;
889
} else {
890
scn->scn_phys.scn_max_txg = setup_sync_arg->txgend;
891
}
892
scn->scn_phys.scn_ddt_class_max = DDT_CLASSES - 1; /* the entire DDT */
893
scn->scn_phys.scn_start_time = gethrestime_sec();
894
scn->scn_phys.scn_errors = 0;
895
scn->scn_phys.scn_to_examine = spa->spa_root_vdev->vdev_stat.vs_alloc;
896
scn->scn_issued_before_pass = 0;
897
scn->scn_restart_txg = 0;
898
scn->scn_done_txg = 0;
899
scn->scn_last_checkpoint = 0;
900
scn->scn_checkpointing = B_FALSE;
901
spa_scan_stat_init(spa);
902
vdev_scan_stat_init(spa->spa_root_vdev);
903
904
if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
905
scn->scn_phys.scn_ddt_class_max = zfs_scrub_ddt_class_max;
906
907
/* rewrite all disk labels */
908
vdev_config_dirty(spa->spa_root_vdev);
909
910
if (vdev_resilver_needed(spa->spa_root_vdev,
911
&scn->scn_phys.scn_min_txg, &scn->scn_phys.scn_max_txg)) {
912
nvlist_t *aux = fnvlist_alloc();
913
fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
914
"healing");
915
spa_event_notify(spa, NULL, aux,
916
ESC_ZFS_RESILVER_START);
917
nvlist_free(aux);
918
} else {
919
spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_START);
920
}
921
922
spa->spa_scrub_started = B_TRUE;
923
/*
924
* If this is an incremental scrub, limit the DDT scrub phase
925
* to just the auto-ditto class (for correctness); the rest
926
* of the scrub should go faster using top-down pruning.
927
*/
928
if (scn->scn_phys.scn_min_txg > TXG_INITIAL)
929
scn->scn_phys.scn_ddt_class_max = DDT_CLASS_DITTO;
930
931
/*
932
* When starting a resilver clear any existing rebuild state.
933
* This is required to prevent stale rebuild status from
934
* being reported when a rebuild is run, then a resilver and
935
* finally a scrub. In which case only the scrub status
936
* should be reported by 'zpool status'.
937
*/
938
if (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) {
939
vdev_t *rvd = spa->spa_root_vdev;
940
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
941
vdev_t *vd = rvd->vdev_child[i];
942
vdev_rebuild_clear_sync(
943
(void *)(uintptr_t)vd->vdev_id, tx);
944
}
945
}
946
}
947
948
/* back to the generic stuff */
949
950
if (zfs_scan_blkstats) {
951
if (dp->dp_blkstats == NULL) {
952
dp->dp_blkstats =
953
vmem_alloc(sizeof (zfs_all_blkstats_t), KM_SLEEP);
954
}
955
memset(&dp->dp_blkstats->zab_type, 0,
956
sizeof (dp->dp_blkstats->zab_type));
957
} else {
958
if (dp->dp_blkstats) {
959
vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
960
dp->dp_blkstats = NULL;
961
}
962
}
963
964
if (spa_version(spa) < SPA_VERSION_DSL_SCRUB)
965
ot = DMU_OT_ZAP_OTHER;
966
967
scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset,
968
ot ? ot : DMU_OT_SCAN_QUEUE, DMU_OT_NONE, 0, tx);
969
970
memcpy(&scn->scn_phys_cached, &scn->scn_phys, sizeof (scn->scn_phys));
971
972
ddt_walk_init(spa, scn->scn_phys.scn_max_txg);
973
974
dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
975
976
spa_history_log_internal(spa, "scan setup", tx,
977
"func=%u mintxg=%llu maxtxg=%llu",
978
setup_sync_arg->func, (u_longlong_t)scn->scn_phys.scn_min_txg,
979
(u_longlong_t)scn->scn_phys.scn_max_txg);
980
}
981
982
/*
983
* Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
984
* error scrub or resilver. Can also be called to resume a paused scrub or
985
* error scrub.
986
*/
987
int
988
dsl_scan(dsl_pool_t *dp, pool_scan_func_t func, uint64_t txgstart,
989
uint64_t txgend)
990
{
991
spa_t *spa = dp->dp_spa;
992
dsl_scan_t *scn = dp->dp_scan;
993
setup_sync_arg_t setup_sync_arg;
994
995
if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0)) {
996
return (EINVAL);
997
}
998
999
/*
1000
* Purge all vdev caches and probe all devices. We do this here
1001
* rather than in sync context because this requires a writer lock
1002
* on the spa_config lock, which we can't do from sync context. The
1003
* spa_scrub_reopen flag indicates that vdev_open() should not
1004
* attempt to start another scrub.
1005
*/
1006
spa_vdev_state_enter(spa, SCL_NONE);
1007
spa->spa_scrub_reopen = B_TRUE;
1008
vdev_reopen(spa->spa_root_vdev);
1009
spa->spa_scrub_reopen = B_FALSE;
1010
(void) spa_vdev_state_exit(spa, NULL, 0);
1011
1012
if (func == POOL_SCAN_RESILVER) {
1013
dsl_scan_restart_resilver(spa->spa_dsl_pool, 0);
1014
return (0);
1015
}
1016
1017
if (func == POOL_SCAN_ERRORSCRUB) {
1018
if (dsl_errorscrub_is_paused(dp->dp_scan)) {
1019
/*
1020
* got error scrub start cmd, resume paused error scrub.
1021
*/
1022
int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1023
POOL_SCRUB_NORMAL);
1024
if (err == 0) {
1025
spa_event_notify(spa, NULL, NULL,
1026
ESC_ZFS_ERRORSCRUB_RESUME);
1027
return (0);
1028
}
1029
return (SET_ERROR(err));
1030
}
1031
1032
return (dsl_sync_task(spa_name(dp->dp_spa),
1033
dsl_errorscrub_setup_check, dsl_errorscrub_setup_sync,
1034
&func, 0, ZFS_SPACE_CHECK_RESERVED));
1035
}
1036
1037
if (func == POOL_SCAN_SCRUB && dsl_scan_is_paused_scrub(scn)) {
1038
/* got scrub start cmd, resume paused scrub */
1039
int err = dsl_scrub_set_pause_resume(scn->scn_dp,
1040
POOL_SCRUB_NORMAL);
1041
if (err == 0) {
1042
spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_RESUME);
1043
return (0);
1044
}
1045
return (SET_ERROR(err));
1046
}
1047
1048
setup_sync_arg.func = func;
1049
setup_sync_arg.txgstart = txgstart;
1050
setup_sync_arg.txgend = txgend;
1051
1052
return (dsl_sync_task(spa_name(spa), dsl_scan_setup_check,
1053
dsl_scan_setup_sync, &setup_sync_arg, 0,
1054
ZFS_SPACE_CHECK_EXTRA_RESERVED));
1055
}
1056
1057
static void
1058
dsl_errorscrub_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1059
{
1060
dsl_pool_t *dp = scn->scn_dp;
1061
spa_t *spa = dp->dp_spa;
1062
1063
if (complete) {
1064
spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_FINISH);
1065
spa_history_log_internal(spa, "error scrub done", tx,
1066
"errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1067
} else {
1068
spa_history_log_internal(spa, "error scrub canceled", tx,
1069
"errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1070
}
1071
1072
scn->errorscrub_phys.dep_state = complete ? DSS_FINISHED : DSS_CANCELED;
1073
spa->spa_scrub_active = B_FALSE;
1074
spa_errlog_rotate(spa);
1075
scn->errorscrub_phys.dep_end_time = gethrestime_sec();
1076
zap_cursor_fini(&scn->errorscrub_cursor);
1077
1078
if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1079
spa->spa_errata = 0;
1080
1081
ASSERT(!dsl_errorscrubbing(scn->scn_dp));
1082
}
1083
1084
static void
1085
dsl_scan_done(dsl_scan_t *scn, boolean_t complete, dmu_tx_t *tx)
1086
{
1087
static const char *old_names[] = {
1088
"scrub_bookmark",
1089
"scrub_ddt_bookmark",
1090
"scrub_ddt_class_max",
1091
"scrub_queue",
1092
"scrub_min_txg",
1093
"scrub_max_txg",
1094
"scrub_func",
1095
"scrub_errors",
1096
NULL
1097
};
1098
1099
dsl_pool_t *dp = scn->scn_dp;
1100
spa_t *spa = dp->dp_spa;
1101
int i;
1102
1103
/* Remove any remnants of an old-style scrub. */
1104
for (i = 0; old_names[i]; i++) {
1105
(void) zap_remove(dp->dp_meta_objset,
1106
DMU_POOL_DIRECTORY_OBJECT, old_names[i], tx);
1107
}
1108
1109
if (scn->scn_phys.scn_queue_obj != 0) {
1110
VERIFY0(dmu_object_free(dp->dp_meta_objset,
1111
scn->scn_phys.scn_queue_obj, tx));
1112
scn->scn_phys.scn_queue_obj = 0;
1113
}
1114
scan_ds_queue_clear(scn);
1115
scan_ds_prefetch_queue_clear(scn);
1116
1117
scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1118
1119
/*
1120
* If we were "restarted" from a stopped state, don't bother
1121
* with anything else.
1122
*/
1123
if (!dsl_scan_is_running(scn)) {
1124
ASSERT(!scn->scn_is_sorted);
1125
return;
1126
}
1127
1128
if (scn->scn_is_sorted) {
1129
scan_io_queues_destroy(scn);
1130
scn->scn_is_sorted = B_FALSE;
1131
1132
if (scn->scn_taskq != NULL) {
1133
taskq_destroy(scn->scn_taskq);
1134
scn->scn_taskq = NULL;
1135
}
1136
}
1137
1138
if (dsl_scan_restarting(scn, tx)) {
1139
spa_history_log_internal(spa, "scan aborted, restarting", tx,
1140
"errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1141
} else if (!complete) {
1142
spa_history_log_internal(spa, "scan cancelled", tx,
1143
"errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1144
} else {
1145
spa_history_log_internal(spa, "scan done", tx,
1146
"errors=%llu", (u_longlong_t)spa_approx_errlog_size(spa));
1147
if (DSL_SCAN_IS_SCRUB(scn)) {
1148
VERIFY0(zap_update(dp->dp_meta_objset,
1149
DMU_POOL_DIRECTORY_OBJECT,
1150
DMU_POOL_LAST_SCRUBBED_TXG,
1151
sizeof (uint64_t), 1,
1152
&scn->scn_phys.scn_max_txg, tx));
1153
spa->spa_scrubbed_last_txg = scn->scn_phys.scn_max_txg;
1154
}
1155
}
1156
1157
if (DSL_SCAN_IS_SCRUB_RESILVER(scn)) {
1158
spa->spa_scrub_active = B_FALSE;
1159
1160
/*
1161
* If the scrub/resilver completed, update all DTLs to
1162
* reflect this. Whether it succeeded or not, vacate
1163
* all temporary scrub DTLs.
1164
*
1165
* As the scrub does not currently support traversing
1166
* data that have been freed but are part of a checkpoint,
1167
* we don't mark the scrub as done in the DTLs as faults
1168
* may still exist in those vdevs.
1169
*/
1170
if (complete &&
1171
!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1172
vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1173
scn->scn_phys.scn_max_txg, B_TRUE, B_FALSE);
1174
1175
if (DSL_SCAN_IS_RESILVER(scn)) {
1176
nvlist_t *aux = fnvlist_alloc();
1177
fnvlist_add_string(aux, ZFS_EV_RESILVER_TYPE,
1178
"healing");
1179
spa_event_notify(spa, NULL, aux,
1180
ESC_ZFS_RESILVER_FINISH);
1181
nvlist_free(aux);
1182
} else {
1183
spa_event_notify(spa, NULL, NULL,
1184
ESC_ZFS_SCRUB_FINISH);
1185
}
1186
} else {
1187
vdev_dtl_reassess(spa->spa_root_vdev, tx->tx_txg,
1188
0, B_TRUE, B_FALSE);
1189
}
1190
spa_errlog_rotate(spa);
1191
1192
/*
1193
* Don't clear flag until after vdev_dtl_reassess to ensure that
1194
* DTL_MISSING will get updated when possible.
1195
*/
1196
scn->scn_phys.scn_state = complete ? DSS_FINISHED :
1197
DSS_CANCELED;
1198
scn->scn_phys.scn_end_time = gethrestime_sec();
1199
spa->spa_scrub_started = B_FALSE;
1200
1201
/*
1202
* We may have finished replacing a device.
1203
* Let the async thread assess this and handle the detach.
1204
*/
1205
spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
1206
1207
/*
1208
* Clear any resilver_deferred flags in the config.
1209
* If there are drives that need resilvering, kick
1210
* off an asynchronous request to start resilver.
1211
* vdev_clear_resilver_deferred() may update the config
1212
* before the resilver can restart. In the event of
1213
* a crash during this period, the spa loading code
1214
* will find the drives that need to be resilvered
1215
* and start the resilver then.
1216
*/
1217
if (spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER) &&
1218
vdev_clear_resilver_deferred(spa->spa_root_vdev, tx)) {
1219
spa_history_log_internal(spa,
1220
"starting deferred resilver", tx, "errors=%llu",
1221
(u_longlong_t)spa_approx_errlog_size(spa));
1222
spa_async_request(spa, SPA_ASYNC_RESILVER);
1223
}
1224
1225
/* Clear recent error events (i.e. duplicate events tracking) */
1226
if (complete)
1227
zfs_ereport_clear(spa, NULL);
1228
} else {
1229
scn->scn_phys.scn_state = complete ? DSS_FINISHED :
1230
DSS_CANCELED;
1231
scn->scn_phys.scn_end_time = gethrestime_sec();
1232
}
1233
1234
spa_notify_waiters(spa);
1235
1236
if (spa->spa_errata == ZPOOL_ERRATA_ZOL_2094_SCRUB)
1237
spa->spa_errata = 0;
1238
1239
ASSERT(!dsl_scan_is_running(scn));
1240
}
1241
1242
static int
1243
dsl_errorscrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1244
{
1245
pool_scrub_cmd_t *cmd = arg;
1246
dsl_pool_t *dp = dmu_tx_pool(tx);
1247
dsl_scan_t *scn = dp->dp_scan;
1248
1249
if (*cmd == POOL_SCRUB_PAUSE) {
1250
/*
1251
* can't pause a error scrub when there is no in-progress
1252
* error scrub.
1253
*/
1254
if (!dsl_errorscrubbing(dp))
1255
return (SET_ERROR(ENOENT));
1256
1257
/* can't pause a paused error scrub */
1258
if (dsl_errorscrub_is_paused(scn))
1259
return (SET_ERROR(EBUSY));
1260
} else if (*cmd != POOL_SCRUB_NORMAL) {
1261
return (SET_ERROR(ENOTSUP));
1262
}
1263
1264
return (0);
1265
}
1266
1267
static void
1268
dsl_errorscrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1269
{
1270
pool_scrub_cmd_t *cmd = arg;
1271
dsl_pool_t *dp = dmu_tx_pool(tx);
1272
spa_t *spa = dp->dp_spa;
1273
dsl_scan_t *scn = dp->dp_scan;
1274
1275
if (*cmd == POOL_SCRUB_PAUSE) {
1276
spa->spa_scan_pass_errorscrub_pause = gethrestime_sec();
1277
scn->errorscrub_phys.dep_paused_flags = B_TRUE;
1278
dsl_errorscrub_sync_state(scn, tx);
1279
spa_event_notify(spa, NULL, NULL, ESC_ZFS_ERRORSCRUB_PAUSED);
1280
} else {
1281
ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1282
if (dsl_errorscrub_is_paused(scn)) {
1283
/*
1284
* We need to keep track of how much time we spend
1285
* paused per pass so that we can adjust the error scrub
1286
* rate shown in the output of 'zpool status'.
1287
*/
1288
spa->spa_scan_pass_errorscrub_spent_paused +=
1289
gethrestime_sec() -
1290
spa->spa_scan_pass_errorscrub_pause;
1291
1292
spa->spa_scan_pass_errorscrub_pause = 0;
1293
scn->errorscrub_phys.dep_paused_flags = B_FALSE;
1294
1295
zap_cursor_init_serialized(
1296
&scn->errorscrub_cursor,
1297
spa->spa_meta_objset, spa->spa_errlog_last,
1298
scn->errorscrub_phys.dep_cursor);
1299
1300
dsl_errorscrub_sync_state(scn, tx);
1301
}
1302
}
1303
}
1304
1305
static int
1306
dsl_errorscrub_cancel_check(void *arg, dmu_tx_t *tx)
1307
{
1308
(void) arg;
1309
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1310
/* can't cancel a error scrub when there is no one in-progress */
1311
if (!dsl_errorscrubbing(scn->scn_dp))
1312
return (SET_ERROR(ENOENT));
1313
return (0);
1314
}
1315
1316
static void
1317
dsl_errorscrub_cancel_sync(void *arg, dmu_tx_t *tx)
1318
{
1319
(void) arg;
1320
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1321
1322
dsl_errorscrub_done(scn, B_FALSE, tx);
1323
dsl_errorscrub_sync_state(scn, tx);
1324
spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL,
1325
ESC_ZFS_ERRORSCRUB_ABORT);
1326
}
1327
1328
static int
1329
dsl_scan_cancel_check(void *arg, dmu_tx_t *tx)
1330
{
1331
(void) arg;
1332
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1333
1334
if (!dsl_scan_is_running(scn))
1335
return (SET_ERROR(ENOENT));
1336
return (0);
1337
}
1338
1339
static void
1340
dsl_scan_cancel_sync(void *arg, dmu_tx_t *tx)
1341
{
1342
(void) arg;
1343
dsl_scan_t *scn = dmu_tx_pool(tx)->dp_scan;
1344
1345
dsl_scan_done(scn, B_FALSE, tx);
1346
dsl_scan_sync_state(scn, tx, SYNC_MANDATORY);
1347
spa_event_notify(scn->scn_dp->dp_spa, NULL, NULL, ESC_ZFS_SCRUB_ABORT);
1348
}
1349
1350
int
1351
dsl_scan_cancel(dsl_pool_t *dp)
1352
{
1353
if (dsl_errorscrubbing(dp)) {
1354
return (dsl_sync_task(spa_name(dp->dp_spa),
1355
dsl_errorscrub_cancel_check, dsl_errorscrub_cancel_sync,
1356
NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1357
}
1358
return (dsl_sync_task(spa_name(dp->dp_spa), dsl_scan_cancel_check,
1359
dsl_scan_cancel_sync, NULL, 3, ZFS_SPACE_CHECK_RESERVED));
1360
}
1361
1362
static int
1363
dsl_scrub_pause_resume_check(void *arg, dmu_tx_t *tx)
1364
{
1365
pool_scrub_cmd_t *cmd = arg;
1366
dsl_pool_t *dp = dmu_tx_pool(tx);
1367
dsl_scan_t *scn = dp->dp_scan;
1368
1369
if (*cmd == POOL_SCRUB_PAUSE) {
1370
/* can't pause a scrub when there is no in-progress scrub */
1371
if (!dsl_scan_scrubbing(dp))
1372
return (SET_ERROR(ENOENT));
1373
1374
/* can't pause a paused scrub */
1375
if (dsl_scan_is_paused_scrub(scn))
1376
return (SET_ERROR(EBUSY));
1377
} else if (*cmd != POOL_SCRUB_NORMAL) {
1378
return (SET_ERROR(ENOTSUP));
1379
}
1380
1381
return (0);
1382
}
1383
1384
static void
1385
dsl_scrub_pause_resume_sync(void *arg, dmu_tx_t *tx)
1386
{
1387
pool_scrub_cmd_t *cmd = arg;
1388
dsl_pool_t *dp = dmu_tx_pool(tx);
1389
spa_t *spa = dp->dp_spa;
1390
dsl_scan_t *scn = dp->dp_scan;
1391
1392
if (*cmd == POOL_SCRUB_PAUSE) {
1393
/* can't pause a scrub when there is no in-progress scrub */
1394
spa->spa_scan_pass_scrub_pause = gethrestime_sec();
1395
scn->scn_phys.scn_flags |= DSF_SCRUB_PAUSED;
1396
scn->scn_phys_cached.scn_flags |= DSF_SCRUB_PAUSED;
1397
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1398
spa_event_notify(spa, NULL, NULL, ESC_ZFS_SCRUB_PAUSED);
1399
spa_notify_waiters(spa);
1400
} else {
1401
ASSERT3U(*cmd, ==, POOL_SCRUB_NORMAL);
1402
if (dsl_scan_is_paused_scrub(scn)) {
1403
/*
1404
* We need to keep track of how much time we spend
1405
* paused per pass so that we can adjust the scrub rate
1406
* shown in the output of 'zpool status'
1407
*/
1408
spa->spa_scan_pass_scrub_spent_paused +=
1409
gethrestime_sec() - spa->spa_scan_pass_scrub_pause;
1410
spa->spa_scan_pass_scrub_pause = 0;
1411
scn->scn_phys.scn_flags &= ~DSF_SCRUB_PAUSED;
1412
scn->scn_phys_cached.scn_flags &= ~DSF_SCRUB_PAUSED;
1413
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
1414
}
1415
}
1416
}
1417
1418
/*
1419
* Set scrub pause/resume state if it makes sense to do so
1420
*/
1421
int
1422
dsl_scrub_set_pause_resume(const dsl_pool_t *dp, pool_scrub_cmd_t cmd)
1423
{
1424
if (dsl_errorscrubbing(dp)) {
1425
return (dsl_sync_task(spa_name(dp->dp_spa),
1426
dsl_errorscrub_pause_resume_check,
1427
dsl_errorscrub_pause_resume_sync, &cmd, 3,
1428
ZFS_SPACE_CHECK_RESERVED));
1429
}
1430
return (dsl_sync_task(spa_name(dp->dp_spa),
1431
dsl_scrub_pause_resume_check, dsl_scrub_pause_resume_sync, &cmd, 3,
1432
ZFS_SPACE_CHECK_RESERVED));
1433
}
1434
1435
1436
/* start a new scan, or restart an existing one. */
1437
void
1438
dsl_scan_restart_resilver(dsl_pool_t *dp, uint64_t txg)
1439
{
1440
if (txg == 0) {
1441
dmu_tx_t *tx;
1442
tx = dmu_tx_create_dd(dp->dp_mos_dir);
1443
VERIFY0(dmu_tx_assign(tx, DMU_TX_WAIT | DMU_TX_SUSPEND));
1444
1445
txg = dmu_tx_get_txg(tx);
1446
dp->dp_scan->scn_restart_txg = txg;
1447
dmu_tx_commit(tx);
1448
} else {
1449
dp->dp_scan->scn_restart_txg = txg;
1450
}
1451
zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1452
dp->dp_spa->spa_name, (longlong_t)txg);
1453
}
1454
1455
void
1456
dsl_free(dsl_pool_t *dp, uint64_t txg, const blkptr_t *bp)
1457
{
1458
zio_free(dp->dp_spa, txg, bp);
1459
}
1460
1461
void
1462
dsl_free_sync(zio_t *pio, dsl_pool_t *dp, uint64_t txg, const blkptr_t *bpp)
1463
{
1464
ASSERT(dsl_pool_sync_context(dp));
1465
zio_nowait(zio_free_sync(pio, dp->dp_spa, txg, bpp, pio->io_flags));
1466
}
1467
1468
static int
1469
scan_ds_queue_compare(const void *a, const void *b)
1470
{
1471
const scan_ds_t *sds_a = a, *sds_b = b;
1472
1473
if (sds_a->sds_dsobj < sds_b->sds_dsobj)
1474
return (-1);
1475
if (sds_a->sds_dsobj == sds_b->sds_dsobj)
1476
return (0);
1477
return (1);
1478
}
1479
1480
static void
1481
scan_ds_queue_clear(dsl_scan_t *scn)
1482
{
1483
void *cookie = NULL;
1484
scan_ds_t *sds;
1485
while ((sds = avl_destroy_nodes(&scn->scn_queue, &cookie)) != NULL) {
1486
kmem_free(sds, sizeof (*sds));
1487
}
1488
}
1489
1490
static boolean_t
1491
scan_ds_queue_contains(dsl_scan_t *scn, uint64_t dsobj, uint64_t *txg)
1492
{
1493
scan_ds_t srch, *sds;
1494
1495
srch.sds_dsobj = dsobj;
1496
sds = avl_find(&scn->scn_queue, &srch, NULL);
1497
if (sds != NULL && txg != NULL)
1498
*txg = sds->sds_txg;
1499
return (sds != NULL);
1500
}
1501
1502
static void
1503
scan_ds_queue_insert(dsl_scan_t *scn, uint64_t dsobj, uint64_t txg)
1504
{
1505
scan_ds_t *sds;
1506
avl_index_t where;
1507
1508
sds = kmem_zalloc(sizeof (*sds), KM_SLEEP);
1509
sds->sds_dsobj = dsobj;
1510
sds->sds_txg = txg;
1511
1512
VERIFY3P(avl_find(&scn->scn_queue, sds, &where), ==, NULL);
1513
avl_insert(&scn->scn_queue, sds, where);
1514
}
1515
1516
static void
1517
scan_ds_queue_remove(dsl_scan_t *scn, uint64_t dsobj)
1518
{
1519
scan_ds_t srch, *sds;
1520
1521
srch.sds_dsobj = dsobj;
1522
1523
sds = avl_find(&scn->scn_queue, &srch, NULL);
1524
VERIFY(sds != NULL);
1525
avl_remove(&scn->scn_queue, sds);
1526
kmem_free(sds, sizeof (*sds));
1527
}
1528
1529
static void
1530
scan_ds_queue_sync(dsl_scan_t *scn, dmu_tx_t *tx)
1531
{
1532
dsl_pool_t *dp = scn->scn_dp;
1533
spa_t *spa = dp->dp_spa;
1534
dmu_object_type_t ot = (spa_version(spa) >= SPA_VERSION_DSL_SCRUB) ?
1535
DMU_OT_SCAN_QUEUE : DMU_OT_ZAP_OTHER;
1536
1537
ASSERT0(scn->scn_queues_pending);
1538
ASSERT(scn->scn_phys.scn_queue_obj != 0);
1539
1540
VERIFY0(dmu_object_free(dp->dp_meta_objset,
1541
scn->scn_phys.scn_queue_obj, tx));
1542
scn->scn_phys.scn_queue_obj = zap_create(dp->dp_meta_objset, ot,
1543
DMU_OT_NONE, 0, tx);
1544
for (scan_ds_t *sds = avl_first(&scn->scn_queue);
1545
sds != NULL; sds = AVL_NEXT(&scn->scn_queue, sds)) {
1546
VERIFY0(zap_add_int_key(dp->dp_meta_objset,
1547
scn->scn_phys.scn_queue_obj, sds->sds_dsobj,
1548
sds->sds_txg, tx));
1549
}
1550
}
1551
1552
/*
1553
* Computes the memory limit state that we're currently in. A sorted scan
1554
* needs quite a bit of memory to hold the sorting queue, so we need to
1555
* reasonably constrain the size so it doesn't impact overall system
1556
* performance. We compute two limits:
1557
* 1) Hard memory limit: if the amount of memory used by the sorting
1558
* queues on a pool gets above this value, we stop the metadata
1559
* scanning portion and start issuing the queued up and sorted
1560
* I/Os to reduce memory usage.
1561
* This limit is calculated as a fraction of physmem (by default 5%).
1562
* We constrain the lower bound of the hard limit to an absolute
1563
* minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1564
* the upper bound to 5% of the total pool size - no chance we'll
1565
* ever need that much memory, but just to keep the value in check.
1566
* 2) Soft memory limit: once we hit the hard memory limit, we start
1567
* issuing I/O to reduce queue memory usage, but we don't want to
1568
* completely empty out the queues, since we might be able to find I/Os
1569
* that will fill in the gaps of our non-sequential IOs at some point
1570
* in the future. So we stop the issuing of I/Os once the amount of
1571
* memory used drops below the soft limit (at which point we stop issuing
1572
* I/O and start scanning metadata again).
1573
*
1574
* This limit is calculated by subtracting a fraction of the hard
1575
* limit from the hard limit. By default this fraction is 5%, so
1576
* the soft limit is 95% of the hard limit. We cap the size of the
1577
* difference between the hard and soft limits at an absolute
1578
* maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1579
* sufficient to not cause too frequent switching between the
1580
* metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1581
* worth of queues is about 1.2 GiB of on-pool data, so scanning
1582
* that should take at least a decent fraction of a second).
1583
*/
1584
static boolean_t
1585
dsl_scan_should_clear(dsl_scan_t *scn)
1586
{
1587
spa_t *spa = scn->scn_dp->dp_spa;
1588
vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
1589
uint64_t alloc, mlim_hard, mlim_soft, mused;
1590
1591
alloc = metaslab_class_get_alloc(spa_normal_class(spa));
1592
alloc += metaslab_class_get_alloc(spa_special_class(spa));
1593
alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
1594
1595
mlim_hard = MAX((physmem / zfs_scan_mem_lim_fact) * PAGESIZE,
1596
zfs_scan_mem_lim_min);
1597
mlim_hard = MIN(mlim_hard, alloc / 20);
1598
mlim_soft = mlim_hard - MIN(mlim_hard / zfs_scan_mem_lim_soft_fact,
1599
zfs_scan_mem_lim_soft_max);
1600
mused = 0;
1601
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1602
vdev_t *tvd = rvd->vdev_child[i];
1603
dsl_scan_io_queue_t *queue;
1604
1605
mutex_enter(&tvd->vdev_scan_io_queue_lock);
1606
queue = tvd->vdev_scan_io_queue;
1607
if (queue != NULL) {
1608
/*
1609
* # of extents in exts_by_addr = # in exts_by_size.
1610
* B-tree efficiency is ~75%, but can be as low as 50%.
1611
*/
1612
mused += zfs_btree_numnodes(&queue->q_exts_by_size) * ((
1613
sizeof (zfs_range_seg_gap_t) + sizeof (uint64_t)) *
1614
3 / 2) + queue->q_sio_memused;
1615
}
1616
mutex_exit(&tvd->vdev_scan_io_queue_lock);
1617
}
1618
1619
dprintf("current scan memory usage: %llu bytes\n", (longlong_t)mused);
1620
1621
if (mused == 0)
1622
ASSERT0(scn->scn_queues_pending);
1623
1624
/*
1625
* If we are above our hard limit, we need to clear out memory.
1626
* If we are below our soft limit, we need to accumulate sequential IOs.
1627
* Otherwise, we should keep doing whatever we are currently doing.
1628
*/
1629
if (mused >= mlim_hard)
1630
return (B_TRUE);
1631
else if (mused < mlim_soft)
1632
return (B_FALSE);
1633
else
1634
return (scn->scn_clearing);
1635
}
1636
1637
static boolean_t
1638
dsl_scan_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1639
{
1640
/* we never skip user/group accounting objects */
1641
if (zb && (int64_t)zb->zb_object < 0)
1642
return (B_FALSE);
1643
1644
if (scn->scn_suspending)
1645
return (B_TRUE); /* we're already suspending */
1646
1647
if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark))
1648
return (B_FALSE); /* we're resuming */
1649
1650
/* We only know how to resume from level-0 and objset blocks. */
1651
if (zb && (zb->zb_level != 0 && zb->zb_level != ZB_ROOT_LEVEL))
1652
return (B_FALSE);
1653
1654
/*
1655
* We suspend if:
1656
* - we have scanned for at least the minimum time (default 1 sec
1657
* for scrub, 3 sec for resilver), and either we have sufficient
1658
* dirty data that we are starting to write more quickly
1659
* (default 30%), someone is explicitly waiting for this txg
1660
* to complete, or we have used up all of the time in the txg
1661
* timeout (default 5 sec).
1662
* or
1663
* - the spa is shutting down because this pool is being exported
1664
* or the machine is rebooting.
1665
* or
1666
* - the scan queue has reached its memory use limit
1667
*/
1668
uint64_t curr_time_ns = gethrtime();
1669
uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
1670
uint64_t sync_time_ns = curr_time_ns -
1671
scn->scn_dp->dp_spa->spa_sync_starttime;
1672
uint64_t dirty_min_bytes = zfs_dirty_data_max *
1673
zfs_vdev_async_write_active_min_dirty_percent / 100;
1674
uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
1675
zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
1676
1677
if ((NSEC2MSEC(scan_time_ns) > mintime &&
1678
(scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
1679
txg_sync_waiting(scn->scn_dp) ||
1680
NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1681
spa_shutting_down(scn->scn_dp->dp_spa) ||
1682
(zfs_scan_strict_mem_lim && dsl_scan_should_clear(scn)) ||
1683
!ddt_walk_ready(scn->scn_dp->dp_spa)) {
1684
if (zb && zb->zb_level == ZB_ROOT_LEVEL) {
1685
dprintf("suspending at first available bookmark "
1686
"%llx/%llx/%llx/%llx\n",
1687
(longlong_t)zb->zb_objset,
1688
(longlong_t)zb->zb_object,
1689
(longlong_t)zb->zb_level,
1690
(longlong_t)zb->zb_blkid);
1691
SET_BOOKMARK(&scn->scn_phys.scn_bookmark,
1692
zb->zb_objset, 0, 0, 0);
1693
} else if (zb != NULL) {
1694
dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1695
(longlong_t)zb->zb_objset,
1696
(longlong_t)zb->zb_object,
1697
(longlong_t)zb->zb_level,
1698
(longlong_t)zb->zb_blkid);
1699
scn->scn_phys.scn_bookmark = *zb;
1700
} else {
1701
#ifdef ZFS_DEBUG
1702
dsl_scan_phys_t *scnp = &scn->scn_phys;
1703
dprintf("suspending at at DDT bookmark "
1704
"%llx/%llx/%llx/%llx\n",
1705
(longlong_t)scnp->scn_ddt_bookmark.ddb_class,
1706
(longlong_t)scnp->scn_ddt_bookmark.ddb_type,
1707
(longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
1708
(longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
1709
#endif
1710
}
1711
scn->scn_suspending = B_TRUE;
1712
return (B_TRUE);
1713
}
1714
return (B_FALSE);
1715
}
1716
1717
static boolean_t
1718
dsl_error_scrub_check_suspend(dsl_scan_t *scn, const zbookmark_phys_t *zb)
1719
{
1720
/*
1721
* We suspend if:
1722
* - we have scrubbed for at least the minimum time (default 1 sec
1723
* for error scrub), someone is explicitly waiting for this txg
1724
* to complete, or we have used up all of the time in the txg
1725
* timeout (default 5 sec).
1726
* or
1727
* - the spa is shutting down because this pool is being exported
1728
* or the machine is rebooting.
1729
*/
1730
uint64_t curr_time_ns = gethrtime();
1731
uint64_t error_scrub_time_ns = curr_time_ns - scn->scn_sync_start_time;
1732
uint64_t sync_time_ns = curr_time_ns -
1733
scn->scn_dp->dp_spa->spa_sync_starttime;
1734
int mintime = zfs_scrub_min_time_ms;
1735
1736
if ((NSEC2MSEC(error_scrub_time_ns) > mintime &&
1737
(txg_sync_waiting(scn->scn_dp) ||
1738
NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
1739
spa_shutting_down(scn->scn_dp->dp_spa)) {
1740
if (zb) {
1741
dprintf("error scrub suspending at bookmark "
1742
"%llx/%llx/%llx/%llx\n",
1743
(longlong_t)zb->zb_objset,
1744
(longlong_t)zb->zb_object,
1745
(longlong_t)zb->zb_level,
1746
(longlong_t)zb->zb_blkid);
1747
}
1748
return (B_TRUE);
1749
}
1750
return (B_FALSE);
1751
}
1752
1753
typedef struct zil_scan_arg {
1754
dsl_pool_t *zsa_dp;
1755
zil_header_t *zsa_zh;
1756
} zil_scan_arg_t;
1757
1758
static int
1759
dsl_scan_zil_block(zilog_t *zilog, const blkptr_t *bp, void *arg,
1760
uint64_t claim_txg)
1761
{
1762
(void) zilog;
1763
zil_scan_arg_t *zsa = arg;
1764
dsl_pool_t *dp = zsa->zsa_dp;
1765
dsl_scan_t *scn = dp->dp_scan;
1766
zil_header_t *zh = zsa->zsa_zh;
1767
zbookmark_phys_t zb;
1768
1769
ASSERT(!BP_IS_REDACTED(bp));
1770
if (BP_IS_HOLE(bp) ||
1771
BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1772
return (0);
1773
1774
/*
1775
* One block ("stubby") can be allocated a long time ago; we
1776
* want to visit that one because it has been allocated
1777
* (on-disk) even if it hasn't been claimed (even though for
1778
* scrub there's nothing to do to it).
1779
*/
1780
if (claim_txg == 0 &&
1781
BP_GET_BIRTH(bp) >= spa_min_claim_txg(dp->dp_spa))
1782
return (0);
1783
1784
SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1785
ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
1786
1787
VERIFY0(scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1788
return (0);
1789
}
1790
1791
static int
1792
dsl_scan_zil_record(zilog_t *zilog, const lr_t *lrc, void *arg,
1793
uint64_t claim_txg)
1794
{
1795
(void) zilog;
1796
if (lrc->lrc_txtype == TX_WRITE) {
1797
zil_scan_arg_t *zsa = arg;
1798
dsl_pool_t *dp = zsa->zsa_dp;
1799
dsl_scan_t *scn = dp->dp_scan;
1800
zil_header_t *zh = zsa->zsa_zh;
1801
const lr_write_t *lr = (const lr_write_t *)lrc;
1802
const blkptr_t *bp = &lr->lr_blkptr;
1803
zbookmark_phys_t zb;
1804
1805
ASSERT(!BP_IS_REDACTED(bp));
1806
if (BP_IS_HOLE(bp) ||
1807
BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg)
1808
return (0);
1809
1810
/*
1811
* birth can be < claim_txg if this record's txg is
1812
* already txg sync'ed (but this log block contains
1813
* other records that are not synced)
1814
*/
1815
if (claim_txg == 0 || BP_GET_BIRTH(bp) < claim_txg)
1816
return (0);
1817
1818
ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
1819
SET_BOOKMARK(&zb, zh->zh_log.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1820
lr->lr_foid, ZB_ZIL_LEVEL,
1821
lr->lr_offset / BP_GET_LSIZE(bp));
1822
1823
VERIFY0(scan_funcs[scn->scn_phys.scn_func](dp, bp, &zb));
1824
}
1825
return (0);
1826
}
1827
1828
static void
1829
dsl_scan_zil(dsl_pool_t *dp, zil_header_t *zh)
1830
{
1831
uint64_t claim_txg = zh->zh_claim_txg;
1832
zil_scan_arg_t zsa = { dp, zh };
1833
zilog_t *zilog;
1834
1835
ASSERT(spa_writeable(dp->dp_spa));
1836
1837
/*
1838
* We only want to visit blocks that have been claimed but not yet
1839
* replayed (or, in read-only mode, blocks that *would* be claimed).
1840
*/
1841
if (claim_txg == 0)
1842
return;
1843
1844
zilog = zil_alloc(dp->dp_meta_objset, zh);
1845
1846
(void) zil_parse(zilog, dsl_scan_zil_block, dsl_scan_zil_record, &zsa,
1847
claim_txg, B_FALSE);
1848
1849
zil_free(zilog);
1850
}
1851
1852
/*
1853
* We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1854
* here is to sort the AVL tree by the order each block will be needed.
1855
*/
1856
static int
1857
scan_prefetch_queue_compare(const void *a, const void *b)
1858
{
1859
const scan_prefetch_issue_ctx_t *spic_a = a, *spic_b = b;
1860
const scan_prefetch_ctx_t *spc_a = spic_a->spic_spc;
1861
const scan_prefetch_ctx_t *spc_b = spic_b->spic_spc;
1862
1863
return (zbookmark_compare(spc_a->spc_datablkszsec,
1864
spc_a->spc_indblkshift, spc_b->spc_datablkszsec,
1865
spc_b->spc_indblkshift, &spic_a->spic_zb, &spic_b->spic_zb));
1866
}
1867
1868
static void
1869
scan_prefetch_ctx_rele(scan_prefetch_ctx_t *spc, const void *tag)
1870
{
1871
if (zfs_refcount_remove(&spc->spc_refcnt, tag) == 0) {
1872
zfs_refcount_destroy(&spc->spc_refcnt);
1873
kmem_free(spc, sizeof (scan_prefetch_ctx_t));
1874
}
1875
}
1876
1877
static scan_prefetch_ctx_t *
1878
scan_prefetch_ctx_create(dsl_scan_t *scn, dnode_phys_t *dnp, const void *tag)
1879
{
1880
scan_prefetch_ctx_t *spc;
1881
1882
spc = kmem_alloc(sizeof (scan_prefetch_ctx_t), KM_SLEEP);
1883
zfs_refcount_create(&spc->spc_refcnt);
1884
zfs_refcount_add(&spc->spc_refcnt, tag);
1885
spc->spc_scn = scn;
1886
if (dnp != NULL) {
1887
spc->spc_datablkszsec = dnp->dn_datablkszsec;
1888
spc->spc_indblkshift = dnp->dn_indblkshift;
1889
spc->spc_root = B_FALSE;
1890
} else {
1891
spc->spc_datablkszsec = 0;
1892
spc->spc_indblkshift = 0;
1893
spc->spc_root = B_TRUE;
1894
}
1895
1896
return (spc);
1897
}
1898
1899
static void
1900
scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t *spc, const void *tag)
1901
{
1902
zfs_refcount_add(&spc->spc_refcnt, tag);
1903
}
1904
1905
static void
1906
scan_ds_prefetch_queue_clear(dsl_scan_t *scn)
1907
{
1908
spa_t *spa = scn->scn_dp->dp_spa;
1909
void *cookie = NULL;
1910
scan_prefetch_issue_ctx_t *spic = NULL;
1911
1912
mutex_enter(&spa->spa_scrub_lock);
1913
while ((spic = avl_destroy_nodes(&scn->scn_prefetch_queue,
1914
&cookie)) != NULL) {
1915
scan_prefetch_ctx_rele(spic->spic_spc, scn);
1916
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1917
}
1918
mutex_exit(&spa->spa_scrub_lock);
1919
}
1920
1921
static boolean_t
1922
dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t *spc,
1923
const zbookmark_phys_t *zb)
1924
{
1925
zbookmark_phys_t *last_zb = &spc->spc_scn->scn_prefetch_bookmark;
1926
dnode_phys_t tmp_dnp;
1927
dnode_phys_t *dnp = (spc->spc_root) ? NULL : &tmp_dnp;
1928
1929
if (zb->zb_objset != last_zb->zb_objset)
1930
return (B_TRUE);
1931
if ((int64_t)zb->zb_object < 0)
1932
return (B_FALSE);
1933
1934
tmp_dnp.dn_datablkszsec = spc->spc_datablkszsec;
1935
tmp_dnp.dn_indblkshift = spc->spc_indblkshift;
1936
1937
if (zbookmark_subtree_completed(dnp, zb, last_zb))
1938
return (B_TRUE);
1939
1940
return (B_FALSE);
1941
}
1942
1943
static void
1944
dsl_scan_prefetch(scan_prefetch_ctx_t *spc, blkptr_t *bp, zbookmark_phys_t *zb)
1945
{
1946
avl_index_t idx;
1947
dsl_scan_t *scn = spc->spc_scn;
1948
spa_t *spa = scn->scn_dp->dp_spa;
1949
scan_prefetch_issue_ctx_t *spic;
1950
1951
if (zfs_no_scrub_prefetch || BP_IS_REDACTED(bp))
1952
return;
1953
1954
if (BP_IS_HOLE(bp) ||
1955
BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg ||
1956
(BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
1957
BP_GET_TYPE(bp) != DMU_OT_OBJSET))
1958
return;
1959
1960
if (dsl_scan_check_prefetch_resume(spc, zb))
1961
return;
1962
1963
scan_prefetch_ctx_add_ref(spc, scn);
1964
spic = kmem_alloc(sizeof (scan_prefetch_issue_ctx_t), KM_SLEEP);
1965
spic->spic_spc = spc;
1966
spic->spic_bp = *bp;
1967
spic->spic_zb = *zb;
1968
1969
/*
1970
* Add the IO to the queue of blocks to prefetch. This allows us to
1971
* prioritize blocks that we will need first for the main traversal
1972
* thread.
1973
*/
1974
mutex_enter(&spa->spa_scrub_lock);
1975
if (avl_find(&scn->scn_prefetch_queue, spic, &idx) != NULL) {
1976
/* this block is already queued for prefetch */
1977
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
1978
scan_prefetch_ctx_rele(spc, scn);
1979
mutex_exit(&spa->spa_scrub_lock);
1980
return;
1981
}
1982
1983
avl_insert(&scn->scn_prefetch_queue, spic, idx);
1984
cv_broadcast(&spa->spa_scrub_io_cv);
1985
mutex_exit(&spa->spa_scrub_lock);
1986
}
1987
1988
static void
1989
dsl_scan_prefetch_dnode(dsl_scan_t *scn, dnode_phys_t *dnp,
1990
uint64_t objset, uint64_t object)
1991
{
1992
int i;
1993
zbookmark_phys_t zb;
1994
scan_prefetch_ctx_t *spc;
1995
1996
if (dnp->dn_nblkptr == 0 && !(dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1997
return;
1998
1999
SET_BOOKMARK(&zb, objset, object, 0, 0);
2000
2001
spc = scan_prefetch_ctx_create(scn, dnp, FTAG);
2002
2003
for (i = 0; i < dnp->dn_nblkptr; i++) {
2004
zb.zb_level = BP_GET_LEVEL(&dnp->dn_blkptr[i]);
2005
zb.zb_blkid = i;
2006
dsl_scan_prefetch(spc, &dnp->dn_blkptr[i], &zb);
2007
}
2008
2009
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2010
zb.zb_level = 0;
2011
zb.zb_blkid = DMU_SPILL_BLKID;
2012
dsl_scan_prefetch(spc, DN_SPILL_BLKPTR(dnp), &zb);
2013
}
2014
2015
scan_prefetch_ctx_rele(spc, FTAG);
2016
}
2017
2018
static void
2019
dsl_scan_prefetch_cb(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
2020
arc_buf_t *buf, void *private)
2021
{
2022
(void) zio;
2023
scan_prefetch_ctx_t *spc = private;
2024
dsl_scan_t *scn = spc->spc_scn;
2025
spa_t *spa = scn->scn_dp->dp_spa;
2026
2027
/* broadcast that the IO has completed for rate limiting purposes */
2028
mutex_enter(&spa->spa_scrub_lock);
2029
ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
2030
spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
2031
cv_broadcast(&spa->spa_scrub_io_cv);
2032
mutex_exit(&spa->spa_scrub_lock);
2033
2034
/* if there was an error or we are done prefetching, just cleanup */
2035
if (buf == NULL || scn->scn_prefetch_stop)
2036
goto out;
2037
2038
if (BP_GET_LEVEL(bp) > 0) {
2039
int i;
2040
blkptr_t *cbp;
2041
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2042
zbookmark_phys_t czb;
2043
2044
for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2045
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2046
zb->zb_level - 1, zb->zb_blkid * epb + i);
2047
dsl_scan_prefetch(spc, cbp, &czb);
2048
}
2049
} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2050
dnode_phys_t *cdnp;
2051
int i;
2052
int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2053
2054
for (i = 0, cdnp = buf->b_data; i < epb;
2055
i += cdnp->dn_extra_slots + 1,
2056
cdnp += cdnp->dn_extra_slots + 1) {
2057
dsl_scan_prefetch_dnode(scn, cdnp,
2058
zb->zb_objset, zb->zb_blkid * epb + i);
2059
}
2060
} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2061
objset_phys_t *osp = buf->b_data;
2062
2063
dsl_scan_prefetch_dnode(scn, &osp->os_meta_dnode,
2064
zb->zb_objset, DMU_META_DNODE_OBJECT);
2065
2066
if (OBJSET_BUF_HAS_USERUSED(buf)) {
2067
if (OBJSET_BUF_HAS_PROJECTUSED(buf)) {
2068
dsl_scan_prefetch_dnode(scn,
2069
&osp->os_projectused_dnode, zb->zb_objset,
2070
DMU_PROJECTUSED_OBJECT);
2071
}
2072
dsl_scan_prefetch_dnode(scn,
2073
&osp->os_groupused_dnode, zb->zb_objset,
2074
DMU_GROUPUSED_OBJECT);
2075
dsl_scan_prefetch_dnode(scn,
2076
&osp->os_userused_dnode, zb->zb_objset,
2077
DMU_USERUSED_OBJECT);
2078
}
2079
}
2080
2081
out:
2082
if (buf != NULL)
2083
arc_buf_destroy(buf, private);
2084
scan_prefetch_ctx_rele(spc, scn);
2085
}
2086
2087
static void
2088
dsl_scan_prefetch_thread(void *arg)
2089
{
2090
dsl_scan_t *scn = arg;
2091
spa_t *spa = scn->scn_dp->dp_spa;
2092
scan_prefetch_issue_ctx_t *spic;
2093
2094
/* loop until we are told to stop */
2095
while (!scn->scn_prefetch_stop) {
2096
arc_flags_t flags = ARC_FLAG_NOWAIT |
2097
ARC_FLAG_PRESCIENT_PREFETCH | ARC_FLAG_PREFETCH;
2098
int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2099
2100
mutex_enter(&spa->spa_scrub_lock);
2101
2102
/*
2103
* Wait until we have an IO to issue and are not above our
2104
* maximum in flight limit.
2105
*/
2106
while (!scn->scn_prefetch_stop &&
2107
(avl_numnodes(&scn->scn_prefetch_queue) == 0 ||
2108
spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)) {
2109
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2110
}
2111
2112
/* recheck if we should stop since we waited for the cv */
2113
if (scn->scn_prefetch_stop) {
2114
mutex_exit(&spa->spa_scrub_lock);
2115
break;
2116
}
2117
2118
/* remove the prefetch IO from the tree */
2119
spic = avl_first(&scn->scn_prefetch_queue);
2120
spa->spa_scrub_inflight += BP_GET_PSIZE(&spic->spic_bp);
2121
avl_remove(&scn->scn_prefetch_queue, spic);
2122
2123
mutex_exit(&spa->spa_scrub_lock);
2124
2125
if (BP_IS_PROTECTED(&spic->spic_bp)) {
2126
ASSERT(BP_GET_TYPE(&spic->spic_bp) == DMU_OT_DNODE ||
2127
BP_GET_TYPE(&spic->spic_bp) == DMU_OT_OBJSET);
2128
ASSERT3U(BP_GET_LEVEL(&spic->spic_bp), ==, 0);
2129
zio_flags |= ZIO_FLAG_RAW;
2130
}
2131
2132
/* We don't need data L1 buffer since we do not prefetch L0. */
2133
blkptr_t *bp = &spic->spic_bp;
2134
if (BP_GET_LEVEL(bp) == 1 && BP_GET_TYPE(bp) != DMU_OT_DNODE &&
2135
BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2136
flags |= ARC_FLAG_NO_BUF;
2137
2138
/* issue the prefetch asynchronously */
2139
(void) arc_read(scn->scn_zio_root, spa, bp,
2140
dsl_scan_prefetch_cb, spic->spic_spc, ZIO_PRIORITY_SCRUB,
2141
zio_flags, &flags, &spic->spic_zb);
2142
2143
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2144
}
2145
2146
ASSERT(scn->scn_prefetch_stop);
2147
2148
/* free any prefetches we didn't get to complete */
2149
mutex_enter(&spa->spa_scrub_lock);
2150
while ((spic = avl_first(&scn->scn_prefetch_queue)) != NULL) {
2151
avl_remove(&scn->scn_prefetch_queue, spic);
2152
scan_prefetch_ctx_rele(spic->spic_spc, scn);
2153
kmem_free(spic, sizeof (scan_prefetch_issue_ctx_t));
2154
}
2155
ASSERT0(avl_numnodes(&scn->scn_prefetch_queue));
2156
mutex_exit(&spa->spa_scrub_lock);
2157
}
2158
2159
static boolean_t
2160
dsl_scan_check_resume(dsl_scan_t *scn, const dnode_phys_t *dnp,
2161
const zbookmark_phys_t *zb)
2162
{
2163
/*
2164
* We never skip over user/group accounting objects (obj<0)
2165
*/
2166
if (!ZB_IS_ZERO(&scn->scn_phys.scn_bookmark) &&
2167
(int64_t)zb->zb_object >= 0) {
2168
/*
2169
* If we already visited this bp & everything below (in
2170
* a prior txg sync), don't bother doing it again.
2171
*/
2172
if (zbookmark_subtree_completed(dnp, zb,
2173
&scn->scn_phys.scn_bookmark))
2174
return (B_TRUE);
2175
2176
/*
2177
* If we found the block we're trying to resume from, or
2178
* we went past it, zero it out to indicate that it's OK
2179
* to start checking for suspending again.
2180
*/
2181
if (zbookmark_subtree_tbd(dnp, zb,
2182
&scn->scn_phys.scn_bookmark)) {
2183
dprintf("resuming at %llx/%llx/%llx/%llx\n",
2184
(longlong_t)zb->zb_objset,
2185
(longlong_t)zb->zb_object,
2186
(longlong_t)zb->zb_level,
2187
(longlong_t)zb->zb_blkid);
2188
memset(&scn->scn_phys.scn_bookmark, 0, sizeof (*zb));
2189
}
2190
}
2191
return (B_FALSE);
2192
}
2193
2194
static void dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2195
dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2196
dmu_objset_type_t ostype, dmu_tx_t *tx);
2197
inline __attribute__((always_inline)) static void dsl_scan_visitdnode(
2198
dsl_scan_t *, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2199
dnode_phys_t *dnp, uint64_t object, dmu_tx_t *tx);
2200
2201
/*
2202
* Return nonzero on i/o error.
2203
* Return new buf to write out in *bufp.
2204
*/
2205
inline __attribute__((always_inline)) static int
2206
dsl_scan_recurse(dsl_scan_t *scn, dsl_dataset_t *ds, dmu_objset_type_t ostype,
2207
dnode_phys_t *dnp, const blkptr_t *bp,
2208
const zbookmark_phys_t *zb, dmu_tx_t *tx)
2209
{
2210
dsl_pool_t *dp = scn->scn_dp;
2211
spa_t *spa = dp->dp_spa;
2212
int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCAN_THREAD;
2213
int err;
2214
2215
ASSERT(!BP_IS_REDACTED(bp));
2216
2217
/*
2218
* There is an unlikely case of encountering dnodes with contradicting
2219
* dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2220
* or modified before commit 4254acb was merged. As it is not possible
2221
* to know which of the two is correct, report an error.
2222
*/
2223
if (dnp != NULL &&
2224
dnp->dn_bonuslen > DN_MAX_BONUS_LEN(dnp)) {
2225
scn->scn_phys.scn_errors++;
2226
spa_log_error(spa, zb, BP_GET_PHYSICAL_BIRTH(bp));
2227
return (SET_ERROR(EINVAL));
2228
}
2229
2230
if (BP_GET_LEVEL(bp) > 0) {
2231
arc_flags_t flags = ARC_FLAG_WAIT;
2232
int i;
2233
blkptr_t *cbp;
2234
int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2235
arc_buf_t *buf;
2236
2237
err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2238
ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2239
if (err) {
2240
scn->scn_phys.scn_errors++;
2241
return (err);
2242
}
2243
for (i = 0, cbp = buf->b_data; i < epb; i++, cbp++) {
2244
zbookmark_phys_t czb;
2245
2246
SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2247
zb->zb_level - 1,
2248
zb->zb_blkid * epb + i);
2249
dsl_scan_visitbp(cbp, &czb, dnp,
2250
ds, scn, ostype, tx);
2251
}
2252
arc_buf_destroy(buf, &buf);
2253
} else if (BP_GET_TYPE(bp) == DMU_OT_DNODE) {
2254
arc_flags_t flags = ARC_FLAG_WAIT;
2255
dnode_phys_t *cdnp;
2256
int i;
2257
int epb = BP_GET_LSIZE(bp) >> DNODE_SHIFT;
2258
arc_buf_t *buf;
2259
2260
if (BP_IS_PROTECTED(bp)) {
2261
ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
2262
zio_flags |= ZIO_FLAG_RAW;
2263
}
2264
2265
err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2266
ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2267
if (err) {
2268
scn->scn_phys.scn_errors++;
2269
return (err);
2270
}
2271
for (i = 0, cdnp = buf->b_data; i < epb;
2272
i += cdnp->dn_extra_slots + 1,
2273
cdnp += cdnp->dn_extra_slots + 1) {
2274
dsl_scan_visitdnode(scn, ds, ostype,
2275
cdnp, zb->zb_blkid * epb + i, tx);
2276
}
2277
2278
arc_buf_destroy(buf, &buf);
2279
} else if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
2280
arc_flags_t flags = ARC_FLAG_WAIT;
2281
objset_phys_t *osp;
2282
arc_buf_t *buf;
2283
2284
err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2285
ZIO_PRIORITY_SCRUB, zio_flags, &flags, zb);
2286
if (err) {
2287
scn->scn_phys.scn_errors++;
2288
return (err);
2289
}
2290
2291
osp = buf->b_data;
2292
2293
dsl_scan_visitdnode(scn, ds, osp->os_type,
2294
&osp->os_meta_dnode, DMU_META_DNODE_OBJECT, tx);
2295
2296
if (OBJSET_BUF_HAS_USERUSED(buf)) {
2297
/*
2298
* We also always visit user/group/project accounting
2299
* objects, and never skip them, even if we are
2300
* suspending. This is necessary so that the
2301
* space deltas from this txg get integrated.
2302
*/
2303
if (OBJSET_BUF_HAS_PROJECTUSED(buf))
2304
dsl_scan_visitdnode(scn, ds, osp->os_type,
2305
&osp->os_projectused_dnode,
2306
DMU_PROJECTUSED_OBJECT, tx);
2307
dsl_scan_visitdnode(scn, ds, osp->os_type,
2308
&osp->os_groupused_dnode,
2309
DMU_GROUPUSED_OBJECT, tx);
2310
dsl_scan_visitdnode(scn, ds, osp->os_type,
2311
&osp->os_userused_dnode,
2312
DMU_USERUSED_OBJECT, tx);
2313
}
2314
arc_buf_destroy(buf, &buf);
2315
} else if (zfs_blkptr_verify(spa, bp,
2316
BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2317
/*
2318
* Sanity check the block pointer contents, this is handled
2319
* by arc_read() for the cases above.
2320
*/
2321
scn->scn_phys.scn_errors++;
2322
spa_log_error(spa, zb, BP_GET_PHYSICAL_BIRTH(bp));
2323
return (SET_ERROR(EINVAL));
2324
}
2325
2326
return (0);
2327
}
2328
2329
inline __attribute__((always_inline)) static void
2330
dsl_scan_visitdnode(dsl_scan_t *scn, dsl_dataset_t *ds,
2331
dmu_objset_type_t ostype, dnode_phys_t *dnp,
2332
uint64_t object, dmu_tx_t *tx)
2333
{
2334
int j;
2335
2336
for (j = 0; j < dnp->dn_nblkptr; j++) {
2337
zbookmark_phys_t czb;
2338
2339
SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2340
dnp->dn_nlevels - 1, j);
2341
dsl_scan_visitbp(&dnp->dn_blkptr[j],
2342
&czb, dnp, ds, scn, ostype, tx);
2343
}
2344
2345
if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
2346
zbookmark_phys_t czb;
2347
SET_BOOKMARK(&czb, ds ? ds->ds_object : 0, object,
2348
0, DMU_SPILL_BLKID);
2349
dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp),
2350
&czb, dnp, ds, scn, ostype, tx);
2351
}
2352
}
2353
2354
/*
2355
* The arguments are in this order because mdb can only print the
2356
* first 5; we want them to be useful.
2357
*/
2358
static void
2359
dsl_scan_visitbp(const blkptr_t *bp, const zbookmark_phys_t *zb,
2360
dnode_phys_t *dnp, dsl_dataset_t *ds, dsl_scan_t *scn,
2361
dmu_objset_type_t ostype, dmu_tx_t *tx)
2362
{
2363
dsl_pool_t *dp = scn->scn_dp;
2364
2365
if (dsl_scan_check_suspend(scn, zb))
2366
return;
2367
2368
if (dsl_scan_check_resume(scn, dnp, zb))
2369
return;
2370
2371
scn->scn_visited_this_txg++;
2372
2373
if (BP_IS_HOLE(bp)) {
2374
scn->scn_holes_this_txg++;
2375
return;
2376
}
2377
2378
if (BP_IS_REDACTED(bp)) {
2379
ASSERT(dsl_dataset_feature_is_active(ds,
2380
SPA_FEATURE_REDACTED_DATASETS));
2381
return;
2382
}
2383
2384
/*
2385
* Check if this block contradicts any filesystem flags.
2386
*/
2387
spa_feature_t f = SPA_FEATURE_LARGE_BLOCKS;
2388
if (BP_GET_LSIZE(bp) > SPA_OLD_MAXBLOCKSIZE)
2389
ASSERT(dsl_dataset_feature_is_active(ds, f));
2390
2391
f = zio_checksum_to_feature(BP_GET_CHECKSUM(bp));
2392
if (f != SPA_FEATURE_NONE)
2393
ASSERT(dsl_dataset_feature_is_active(ds, f));
2394
2395
f = zio_compress_to_feature(BP_GET_COMPRESS(bp));
2396
if (f != SPA_FEATURE_NONE)
2397
ASSERT(dsl_dataset_feature_is_active(ds, f));
2398
2399
/*
2400
* Recurse any blocks that were written either logically or physically
2401
* at or after cur_min_txg. About logical birth we care for traversal,
2402
* looking for any changes, while about physical for the actual scan.
2403
*/
2404
if (BP_GET_BIRTH(bp) <= scn->scn_phys.scn_cur_min_txg) {
2405
scn->scn_lt_min_this_txg++;
2406
return;
2407
}
2408
2409
if (dsl_scan_recurse(scn, ds, ostype, dnp, bp, zb, tx) != 0)
2410
return;
2411
2412
/*
2413
* If dsl_scan_ddt() has already visited this block, it will have
2414
* already done any translations or scrubbing, so don't call the
2415
* callback again.
2416
*/
2417
if (ddt_class_contains(dp->dp_spa,
2418
scn->scn_phys.scn_ddt_class_max, bp)) {
2419
scn->scn_ddt_contained_this_txg++;
2420
return;
2421
}
2422
2423
/*
2424
* If this block is from the future (after cur_max_txg), then we
2425
* are doing this on behalf of a deleted snapshot, and we will
2426
* revisit the future block on the next pass of this dataset.
2427
* Don't scan it now unless we need to because something
2428
* under it was modified.
2429
*/
2430
if (BP_GET_PHYSICAL_BIRTH(bp) > scn->scn_phys.scn_cur_max_txg) {
2431
scn->scn_gt_max_this_txg++;
2432
return;
2433
}
2434
2435
scan_funcs[scn->scn_phys.scn_func](dp, bp, zb);
2436
}
2437
2438
static void
2439
dsl_scan_visit_rootbp(dsl_scan_t *scn, dsl_dataset_t *ds, blkptr_t *bp,
2440
dmu_tx_t *tx)
2441
{
2442
zbookmark_phys_t zb;
2443
scan_prefetch_ctx_t *spc;
2444
2445
SET_BOOKMARK(&zb, ds ? ds->ds_object : DMU_META_OBJSET,
2446
ZB_ROOT_OBJECT, ZB_ROOT_LEVEL, ZB_ROOT_BLKID);
2447
2448
if (ZB_IS_ZERO(&scn->scn_phys.scn_bookmark)) {
2449
SET_BOOKMARK(&scn->scn_prefetch_bookmark,
2450
zb.zb_objset, 0, 0, 0);
2451
} else {
2452
scn->scn_prefetch_bookmark = scn->scn_phys.scn_bookmark;
2453
}
2454
2455
scn->scn_objsets_visited_this_txg++;
2456
2457
spc = scan_prefetch_ctx_create(scn, NULL, FTAG);
2458
dsl_scan_prefetch(spc, bp, &zb);
2459
scan_prefetch_ctx_rele(spc, FTAG);
2460
2461
dsl_scan_visitbp(bp, &zb, NULL, ds, scn, DMU_OST_NONE, tx);
2462
2463
dprintf_ds(ds, "finished scan%s", "");
2464
}
2465
2466
static void
2467
ds_destroyed_scn_phys(dsl_dataset_t *ds, dsl_scan_phys_t *scn_phys)
2468
{
2469
if (scn_phys->scn_bookmark.zb_objset == ds->ds_object) {
2470
if (ds->ds_is_snapshot) {
2471
/*
2472
* Note:
2473
* - scn_cur_{min,max}_txg stays the same.
2474
* - Setting the flag is not really necessary if
2475
* scn_cur_max_txg == scn_max_txg, because there
2476
* is nothing after this snapshot that we care
2477
* about. However, we set it anyway and then
2478
* ignore it when we retraverse it in
2479
* dsl_scan_visitds().
2480
*/
2481
scn_phys->scn_bookmark.zb_objset =
2482
dsl_dataset_phys(ds)->ds_next_snap_obj;
2483
zfs_dbgmsg("destroying ds %llu on %s; currently "
2484
"traversing; reset zb_objset to %llu",
2485
(u_longlong_t)ds->ds_object,
2486
ds->ds_dir->dd_pool->dp_spa->spa_name,
2487
(u_longlong_t)dsl_dataset_phys(ds)->
2488
ds_next_snap_obj);
2489
scn_phys->scn_flags |= DSF_VISIT_DS_AGAIN;
2490
} else {
2491
SET_BOOKMARK(&scn_phys->scn_bookmark,
2492
ZB_DESTROYED_OBJSET, 0, 0, 0);
2493
zfs_dbgmsg("destroying ds %llu on %s; currently "
2494
"traversing; reset bookmark to -1,0,0,0",
2495
(u_longlong_t)ds->ds_object,
2496
ds->ds_dir->dd_pool->dp_spa->spa_name);
2497
}
2498
}
2499
}
2500
2501
/*
2502
* Invoked when a dataset is destroyed. We need to make sure that:
2503
*
2504
* 1) If it is the dataset that was currently being scanned, we write
2505
* a new dsl_scan_phys_t and marking the objset reference in it
2506
* as destroyed.
2507
* 2) Remove it from the work queue, if it was present.
2508
*
2509
* If the dataset was actually a snapshot, instead of marking the dataset
2510
* as destroyed, we instead substitute the next snapshot in line.
2511
*/
2512
void
2513
dsl_scan_ds_destroyed(dsl_dataset_t *ds, dmu_tx_t *tx)
2514
{
2515
dsl_pool_t *dp = ds->ds_dir->dd_pool;
2516
dsl_scan_t *scn = dp->dp_scan;
2517
uint64_t mintxg;
2518
2519
if (!dsl_scan_is_running(scn))
2520
return;
2521
2522
ds_destroyed_scn_phys(ds, &scn->scn_phys);
2523
ds_destroyed_scn_phys(ds, &scn->scn_phys_cached);
2524
2525
if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2526
scan_ds_queue_remove(scn, ds->ds_object);
2527
if (ds->ds_is_snapshot)
2528
scan_ds_queue_insert(scn,
2529
dsl_dataset_phys(ds)->ds_next_snap_obj, mintxg);
2530
}
2531
2532
if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2533
ds->ds_object, &mintxg) == 0) {
2534
ASSERT3U(dsl_dataset_phys(ds)->ds_num_children, <=, 1);
2535
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2536
scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2537
if (ds->ds_is_snapshot) {
2538
/*
2539
* We keep the same mintxg; it could be >
2540
* ds_creation_txg if the previous snapshot was
2541
* deleted too.
2542
*/
2543
VERIFY(zap_add_int_key(dp->dp_meta_objset,
2544
scn->scn_phys.scn_queue_obj,
2545
dsl_dataset_phys(ds)->ds_next_snap_obj,
2546
mintxg, tx) == 0);
2547
zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2548
"replacing with %llu",
2549
(u_longlong_t)ds->ds_object,
2550
dp->dp_spa->spa_name,
2551
(u_longlong_t)dsl_dataset_phys(ds)->
2552
ds_next_snap_obj);
2553
} else {
2554
zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2555
"removing",
2556
(u_longlong_t)ds->ds_object,
2557
dp->dp_spa->spa_name);
2558
}
2559
}
2560
2561
/*
2562
* dsl_scan_sync() should be called after this, and should sync
2563
* out our changed state, but just to be safe, do it here.
2564
*/
2565
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2566
}
2567
2568
static void
2569
ds_snapshotted_bookmark(dsl_dataset_t *ds, zbookmark_phys_t *scn_bookmark)
2570
{
2571
if (scn_bookmark->zb_objset == ds->ds_object) {
2572
scn_bookmark->zb_objset =
2573
dsl_dataset_phys(ds)->ds_prev_snap_obj;
2574
zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2575
"reset zb_objset to %llu",
2576
(u_longlong_t)ds->ds_object,
2577
ds->ds_dir->dd_pool->dp_spa->spa_name,
2578
(u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2579
}
2580
}
2581
2582
/*
2583
* Called when a dataset is snapshotted. If we were currently traversing
2584
* this snapshot, we reset our bookmark to point at the newly created
2585
* snapshot. We also modify our work queue to remove the old snapshot and
2586
* replace with the new one.
2587
*/
2588
void
2589
dsl_scan_ds_snapshotted(dsl_dataset_t *ds, dmu_tx_t *tx)
2590
{
2591
dsl_pool_t *dp = ds->ds_dir->dd_pool;
2592
dsl_scan_t *scn = dp->dp_scan;
2593
uint64_t mintxg;
2594
2595
if (!dsl_scan_is_running(scn))
2596
return;
2597
2598
ASSERT(dsl_dataset_phys(ds)->ds_prev_snap_obj != 0);
2599
2600
ds_snapshotted_bookmark(ds, &scn->scn_phys.scn_bookmark);
2601
ds_snapshotted_bookmark(ds, &scn->scn_phys_cached.scn_bookmark);
2602
2603
if (scan_ds_queue_contains(scn, ds->ds_object, &mintxg)) {
2604
scan_ds_queue_remove(scn, ds->ds_object);
2605
scan_ds_queue_insert(scn,
2606
dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg);
2607
}
2608
2609
if (zap_lookup_int_key(dp->dp_meta_objset, scn->scn_phys.scn_queue_obj,
2610
ds->ds_object, &mintxg) == 0) {
2611
VERIFY3U(0, ==, zap_remove_int(dp->dp_meta_objset,
2612
scn->scn_phys.scn_queue_obj, ds->ds_object, tx));
2613
VERIFY(zap_add_int_key(dp->dp_meta_objset,
2614
scn->scn_phys.scn_queue_obj,
2615
dsl_dataset_phys(ds)->ds_prev_snap_obj, mintxg, tx) == 0);
2616
zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2617
"replacing with %llu",
2618
(u_longlong_t)ds->ds_object,
2619
dp->dp_spa->spa_name,
2620
(u_longlong_t)dsl_dataset_phys(ds)->ds_prev_snap_obj);
2621
}
2622
2623
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2624
}
2625
2626
static void
2627
ds_clone_swapped_bookmark(dsl_dataset_t *ds1, dsl_dataset_t *ds2,
2628
zbookmark_phys_t *scn_bookmark)
2629
{
2630
if (scn_bookmark->zb_objset == ds1->ds_object) {
2631
scn_bookmark->zb_objset = ds2->ds_object;
2632
zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2633
"reset zb_objset to %llu",
2634
(u_longlong_t)ds1->ds_object,
2635
ds1->ds_dir->dd_pool->dp_spa->spa_name,
2636
(u_longlong_t)ds2->ds_object);
2637
} else if (scn_bookmark->zb_objset == ds2->ds_object) {
2638
scn_bookmark->zb_objset = ds1->ds_object;
2639
zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2640
"reset zb_objset to %llu",
2641
(u_longlong_t)ds2->ds_object,
2642
ds2->ds_dir->dd_pool->dp_spa->spa_name,
2643
(u_longlong_t)ds1->ds_object);
2644
}
2645
}
2646
2647
/*
2648
* Called when an origin dataset and its clone are swapped. If we were
2649
* currently traversing the dataset, we need to switch to traversing the
2650
* newly promoted clone.
2651
*/
2652
void
2653
dsl_scan_ds_clone_swapped(dsl_dataset_t *ds1, dsl_dataset_t *ds2, dmu_tx_t *tx)
2654
{
2655
dsl_pool_t *dp = ds1->ds_dir->dd_pool;
2656
dsl_scan_t *scn = dp->dp_scan;
2657
uint64_t mintxg1, mintxg2;
2658
boolean_t ds1_queued, ds2_queued;
2659
2660
if (!dsl_scan_is_running(scn))
2661
return;
2662
2663
ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys.scn_bookmark);
2664
ds_clone_swapped_bookmark(ds1, ds2, &scn->scn_phys_cached.scn_bookmark);
2665
2666
/*
2667
* Handle the in-memory scan queue.
2668
*/
2669
ds1_queued = scan_ds_queue_contains(scn, ds1->ds_object, &mintxg1);
2670
ds2_queued = scan_ds_queue_contains(scn, ds2->ds_object, &mintxg2);
2671
2672
/* Sanity checking. */
2673
if (ds1_queued) {
2674
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2675
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2676
}
2677
if (ds2_queued) {
2678
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2679
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2680
}
2681
2682
if (ds1_queued && ds2_queued) {
2683
/*
2684
* If both are queued, we don't need to do anything.
2685
* The swapping code below would not handle this case correctly,
2686
* since we can't insert ds2 if it is already there. That's
2687
* because scan_ds_queue_insert() prohibits a duplicate insert
2688
* and panics.
2689
*/
2690
} else if (ds1_queued) {
2691
scan_ds_queue_remove(scn, ds1->ds_object);
2692
scan_ds_queue_insert(scn, ds2->ds_object, mintxg1);
2693
} else if (ds2_queued) {
2694
scan_ds_queue_remove(scn, ds2->ds_object);
2695
scan_ds_queue_insert(scn, ds1->ds_object, mintxg2);
2696
}
2697
2698
/*
2699
* Handle the on-disk scan queue.
2700
* The on-disk state is an out-of-date version of the in-memory state,
2701
* so the in-memory and on-disk values for ds1_queued and ds2_queued may
2702
* be different. Therefore we need to apply the swap logic to the
2703
* on-disk state independently of the in-memory state.
2704
*/
2705
ds1_queued = zap_lookup_int_key(dp->dp_meta_objset,
2706
scn->scn_phys.scn_queue_obj, ds1->ds_object, &mintxg1) == 0;
2707
ds2_queued = zap_lookup_int_key(dp->dp_meta_objset,
2708
scn->scn_phys.scn_queue_obj, ds2->ds_object, &mintxg2) == 0;
2709
2710
/* Sanity checking. */
2711
if (ds1_queued) {
2712
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2713
ASSERT3U(mintxg1, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2714
}
2715
if (ds2_queued) {
2716
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds1)->ds_prev_snap_txg);
2717
ASSERT3U(mintxg2, ==, dsl_dataset_phys(ds2)->ds_prev_snap_txg);
2718
}
2719
2720
if (ds1_queued && ds2_queued) {
2721
/*
2722
* If both are queued, we don't need to do anything.
2723
* Alternatively, we could check for EEXIST from
2724
* zap_add_int_key() and back out to the original state, but
2725
* that would be more work than checking for this case upfront.
2726
*/
2727
} else if (ds1_queued) {
2728
VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2729
scn->scn_phys.scn_queue_obj, ds1->ds_object, tx));
2730
VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2731
scn->scn_phys.scn_queue_obj, ds2->ds_object, mintxg1, tx));
2732
zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2733
"replacing with %llu",
2734
(u_longlong_t)ds1->ds_object,
2735
dp->dp_spa->spa_name,
2736
(u_longlong_t)ds2->ds_object);
2737
} else if (ds2_queued) {
2738
VERIFY3S(0, ==, zap_remove_int(dp->dp_meta_objset,
2739
scn->scn_phys.scn_queue_obj, ds2->ds_object, tx));
2740
VERIFY3S(0, ==, zap_add_int_key(dp->dp_meta_objset,
2741
scn->scn_phys.scn_queue_obj, ds1->ds_object, mintxg2, tx));
2742
zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2743
"replacing with %llu",
2744
(u_longlong_t)ds2->ds_object,
2745
dp->dp_spa->spa_name,
2746
(u_longlong_t)ds1->ds_object);
2747
}
2748
2749
dsl_scan_sync_state(scn, tx, SYNC_CACHED);
2750
}
2751
2752
static int
2753
enqueue_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2754
{
2755
uint64_t originobj = *(uint64_t *)arg;
2756
dsl_dataset_t *ds;
2757
int err;
2758
dsl_scan_t *scn = dp->dp_scan;
2759
2760
if (dsl_dir_phys(hds->ds_dir)->dd_origin_obj != originobj)
2761
return (0);
2762
2763
err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2764
if (err)
2765
return (err);
2766
2767
while (dsl_dataset_phys(ds)->ds_prev_snap_obj != originobj) {
2768
dsl_dataset_t *prev;
2769
err = dsl_dataset_hold_obj(dp,
2770
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2771
2772
dsl_dataset_rele(ds, FTAG);
2773
if (err)
2774
return (err);
2775
ds = prev;
2776
}
2777
mutex_enter(&scn->scn_queue_lock);
2778
scan_ds_queue_insert(scn, ds->ds_object,
2779
dsl_dataset_phys(ds)->ds_prev_snap_txg);
2780
mutex_exit(&scn->scn_queue_lock);
2781
dsl_dataset_rele(ds, FTAG);
2782
return (0);
2783
}
2784
2785
static void
2786
dsl_scan_visitds(dsl_scan_t *scn, uint64_t dsobj, dmu_tx_t *tx)
2787
{
2788
dsl_pool_t *dp = scn->scn_dp;
2789
dsl_dataset_t *ds;
2790
2791
VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
2792
2793
if (scn->scn_phys.scn_cur_min_txg >=
2794
scn->scn_phys.scn_max_txg) {
2795
/*
2796
* This can happen if this snapshot was created after the
2797
* scan started, and we already completed a previous snapshot
2798
* that was created after the scan started. This snapshot
2799
* only references blocks with:
2800
*
2801
* birth < our ds_creation_txg
2802
* cur_min_txg is no less than ds_creation_txg.
2803
* We have already visited these blocks.
2804
* or
2805
* birth > scn_max_txg
2806
* The scan requested not to visit these blocks.
2807
*
2808
* Subsequent snapshots (and clones) can reference our
2809
* blocks, or blocks with even higher birth times.
2810
* Therefore we do not need to visit them either,
2811
* so we do not add them to the work queue.
2812
*
2813
* Note that checking for cur_min_txg >= cur_max_txg
2814
* is not sufficient, because in that case we may need to
2815
* visit subsequent snapshots. This happens when min_txg > 0,
2816
* which raises cur_min_txg. In this case we will visit
2817
* this dataset but skip all of its blocks, because the
2818
* rootbp's birth time is < cur_min_txg. Then we will
2819
* add the next snapshots/clones to the work queue.
2820
*/
2821
char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2822
dsl_dataset_name(ds, dsname);
2823
zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2824
"cur_min_txg (%llu) >= max_txg (%llu)",
2825
(longlong_t)dsobj, dsname,
2826
(longlong_t)scn->scn_phys.scn_cur_min_txg,
2827
(longlong_t)scn->scn_phys.scn_max_txg);
2828
kmem_free(dsname, MAXNAMELEN);
2829
2830
goto out;
2831
}
2832
2833
/*
2834
* Only the ZIL in the head (non-snapshot) is valid. Even though
2835
* snapshots can have ZIL block pointers (which may be the same
2836
* BP as in the head), they must be ignored. In addition, $ORIGIN
2837
* doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2838
* need to look for a ZIL in it either. So we traverse the ZIL here,
2839
* rather than in scan_recurse(), because the regular snapshot
2840
* block-sharing rules don't apply to it.
2841
*/
2842
if (!dsl_dataset_is_snapshot(ds) &&
2843
(dp->dp_origin_snap == NULL ||
2844
ds->ds_dir != dp->dp_origin_snap->ds_dir)) {
2845
objset_t *os;
2846
if (dmu_objset_from_ds(ds, &os) != 0) {
2847
goto out;
2848
}
2849
dsl_scan_zil(dp, &os->os_zil_header);
2850
}
2851
2852
/*
2853
* Iterate over the bps in this ds.
2854
*/
2855
dmu_buf_will_dirty(ds->ds_dbuf, tx);
2856
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2857
dsl_scan_visit_rootbp(scn, ds, &dsl_dataset_phys(ds)->ds_bp, tx);
2858
rrw_exit(&ds->ds_bp_rwlock, FTAG);
2859
2860
char *dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
2861
dsl_dataset_name(ds, dsname);
2862
zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2863
"suspending=%u",
2864
(longlong_t)dsobj, dsname,
2865
(longlong_t)scn->scn_phys.scn_cur_min_txg,
2866
(longlong_t)scn->scn_phys.scn_cur_max_txg,
2867
(int)scn->scn_suspending);
2868
kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
2869
2870
if (scn->scn_suspending)
2871
goto out;
2872
2873
/*
2874
* We've finished this pass over this dataset.
2875
*/
2876
2877
/*
2878
* If we did not completely visit this dataset, do another pass.
2879
*/
2880
if (scn->scn_phys.scn_flags & DSF_VISIT_DS_AGAIN) {
2881
zfs_dbgmsg("incomplete pass on %s; visiting again",
2882
dp->dp_spa->spa_name);
2883
scn->scn_phys.scn_flags &= ~DSF_VISIT_DS_AGAIN;
2884
scan_ds_queue_insert(scn, ds->ds_object,
2885
scn->scn_phys.scn_cur_max_txg);
2886
goto out;
2887
}
2888
2889
/*
2890
* Add descendant datasets to work queue.
2891
*/
2892
if (dsl_dataset_phys(ds)->ds_next_snap_obj != 0) {
2893
scan_ds_queue_insert(scn,
2894
dsl_dataset_phys(ds)->ds_next_snap_obj,
2895
dsl_dataset_phys(ds)->ds_creation_txg);
2896
}
2897
if (dsl_dataset_phys(ds)->ds_num_children > 1) {
2898
boolean_t usenext = B_FALSE;
2899
if (dsl_dataset_phys(ds)->ds_next_clones_obj != 0) {
2900
uint64_t count;
2901
/*
2902
* A bug in a previous version of the code could
2903
* cause upgrade_clones_cb() to not set
2904
* ds_next_snap_obj when it should, leading to a
2905
* missing entry. Therefore we can only use the
2906
* next_clones_obj when its count is correct.
2907
*/
2908
int err = zap_count(dp->dp_meta_objset,
2909
dsl_dataset_phys(ds)->ds_next_clones_obj, &count);
2910
if (err == 0 &&
2911
count == dsl_dataset_phys(ds)->ds_num_children - 1)
2912
usenext = B_TRUE;
2913
}
2914
2915
if (usenext) {
2916
zap_cursor_t zc;
2917
zap_attribute_t *za = zap_attribute_alloc();
2918
for (zap_cursor_init(&zc, dp->dp_meta_objset,
2919
dsl_dataset_phys(ds)->ds_next_clones_obj);
2920
zap_cursor_retrieve(&zc, za) == 0;
2921
(void) zap_cursor_advance(&zc)) {
2922
scan_ds_queue_insert(scn,
2923
zfs_strtonum(za->za_name, NULL),
2924
dsl_dataset_phys(ds)->ds_creation_txg);
2925
}
2926
zap_cursor_fini(&zc);
2927
zap_attribute_free(za);
2928
} else {
2929
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2930
enqueue_clones_cb, &ds->ds_object,
2931
DS_FIND_CHILDREN));
2932
}
2933
}
2934
2935
out:
2936
dsl_dataset_rele(ds, FTAG);
2937
}
2938
2939
static int
2940
enqueue_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
2941
{
2942
(void) arg;
2943
dsl_dataset_t *ds;
2944
int err;
2945
dsl_scan_t *scn = dp->dp_scan;
2946
2947
err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
2948
if (err)
2949
return (err);
2950
2951
while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
2952
dsl_dataset_t *prev;
2953
err = dsl_dataset_hold_obj(dp,
2954
dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
2955
if (err) {
2956
dsl_dataset_rele(ds, FTAG);
2957
return (err);
2958
}
2959
2960
/*
2961
* If this is a clone, we don't need to worry about it for now.
2962
*/
2963
if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object) {
2964
dsl_dataset_rele(ds, FTAG);
2965
dsl_dataset_rele(prev, FTAG);
2966
return (0);
2967
}
2968
dsl_dataset_rele(ds, FTAG);
2969
ds = prev;
2970
}
2971
2972
mutex_enter(&scn->scn_queue_lock);
2973
scan_ds_queue_insert(scn, ds->ds_object,
2974
dsl_dataset_phys(ds)->ds_prev_snap_txg);
2975
mutex_exit(&scn->scn_queue_lock);
2976
dsl_dataset_rele(ds, FTAG);
2977
return (0);
2978
}
2979
2980
void
2981
dsl_scan_ddt_entry(dsl_scan_t *scn, enum zio_checksum checksum,
2982
ddt_t *ddt, ddt_lightweight_entry_t *ddlwe, dmu_tx_t *tx)
2983
{
2984
(void) tx;
2985
const ddt_key_t *ddk = &ddlwe->ddlwe_key;
2986
blkptr_t bp;
2987
zbookmark_phys_t zb = { 0 };
2988
2989
if (!dsl_scan_is_running(scn))
2990
return;
2991
2992
/*
2993
* This function is special because it is the only thing
2994
* that can add scan_io_t's to the vdev scan queues from
2995
* outside dsl_scan_sync(). For the most part this is ok
2996
* as long as it is called from within syncing context.
2997
* However, dsl_scan_sync() expects that no new sio's will
2998
* be added between when all the work for a scan is done
2999
* and the next txg when the scan is actually marked as
3000
* completed. This check ensures we do not issue new sio's
3001
* during this period.
3002
*/
3003
if (scn->scn_done_txg != 0)
3004
return;
3005
3006
for (int p = 0; p < DDT_NPHYS(ddt); p++) {
3007
ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
3008
uint64_t phys_birth = ddt_phys_birth(&ddlwe->ddlwe_phys, v);
3009
3010
if (phys_birth == 0 || phys_birth > scn->scn_phys.scn_max_txg)
3011
continue;
3012
ddt_bp_create(checksum, ddk, &ddlwe->ddlwe_phys, v, &bp);
3013
3014
scn->scn_visited_this_txg++;
3015
scan_funcs[scn->scn_phys.scn_func](scn->scn_dp, &bp, &zb);
3016
}
3017
}
3018
3019
/*
3020
* Scrub/dedup interaction.
3021
*
3022
* If there are N references to a deduped block, we don't want to scrub it
3023
* N times -- ideally, we should scrub it exactly once.
3024
*
3025
* We leverage the fact that the dde's replication class (ddt_class_t)
3026
* is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
3027
* (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
3028
*
3029
* To prevent excess scrubbing, the scrub begins by walking the DDT
3030
* to find all blocks with refcnt > 1, and scrubs each of these once.
3031
* Since there are two replication classes which contain blocks with
3032
* refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
3033
* Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
3034
*
3035
* There would be nothing more to say if a block's refcnt couldn't change
3036
* during a scrub, but of course it can so we must account for changes
3037
* in a block's replication class.
3038
*
3039
* Here's an example of what can occur:
3040
*
3041
* If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
3042
* when visited during the top-down scrub phase, it will be scrubbed twice.
3043
* This negates our scrub optimization, but is otherwise harmless.
3044
*
3045
* If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
3046
* on each visit during the top-down scrub phase, it will never be scrubbed.
3047
* To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
3048
* reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
3049
* DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
3050
* while a scrub is in progress, it scrubs the block right then.
3051
*/
3052
static void
3053
dsl_scan_ddt(dsl_scan_t *scn, dmu_tx_t *tx)
3054
{
3055
ddt_bookmark_t *ddb = &scn->scn_phys.scn_ddt_bookmark;
3056
ddt_lightweight_entry_t ddlwe = {0};
3057
int error;
3058
uint64_t n = 0;
3059
3060
while ((error = ddt_walk(scn->scn_dp->dp_spa, ddb, &ddlwe)) == 0) {
3061
ddt_t *ddt;
3062
3063
if (ddb->ddb_class > scn->scn_phys.scn_ddt_class_max)
3064
break;
3065
dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3066
(longlong_t)ddb->ddb_class,
3067
(longlong_t)ddb->ddb_type,
3068
(longlong_t)ddb->ddb_checksum,
3069
(longlong_t)ddb->ddb_cursor);
3070
3071
/* There should be no pending changes to the dedup table */
3072
ddt = scn->scn_dp->dp_spa->spa_ddt[ddb->ddb_checksum];
3073
ASSERT(avl_first(&ddt->ddt_tree) == NULL);
3074
3075
dsl_scan_ddt_entry(scn, ddb->ddb_checksum, ddt, &ddlwe, tx);
3076
n++;
3077
3078
if (dsl_scan_check_suspend(scn, NULL))
3079
break;
3080
}
3081
3082
if (error == EAGAIN) {
3083
dsl_scan_check_suspend(scn, NULL);
3084
error = 0;
3085
3086
zfs_dbgmsg("waiting for ddt to become ready for scan "
3087
"on %s with class_max = %u; suspending=%u",
3088
scn->scn_dp->dp_spa->spa_name,
3089
(int)scn->scn_phys.scn_ddt_class_max,
3090
(int)scn->scn_suspending);
3091
} else
3092
zfs_dbgmsg("scanned %llu ddt entries on %s with "
3093
"class_max = %u; suspending=%u", (longlong_t)n,
3094
scn->scn_dp->dp_spa->spa_name,
3095
(int)scn->scn_phys.scn_ddt_class_max,
3096
(int)scn->scn_suspending);
3097
3098
ASSERT(error == 0 || error == ENOENT);
3099
ASSERT(error != ENOENT ||
3100
ddb->ddb_class > scn->scn_phys.scn_ddt_class_max);
3101
}
3102
3103
static uint64_t
3104
dsl_scan_ds_maxtxg(dsl_dataset_t *ds)
3105
{
3106
uint64_t smt = ds->ds_dir->dd_pool->dp_scan->scn_phys.scn_max_txg;
3107
if (ds->ds_is_snapshot)
3108
return (MIN(smt, dsl_dataset_phys(ds)->ds_creation_txg));
3109
return (smt);
3110
}
3111
3112
static void
3113
dsl_scan_visit(dsl_scan_t *scn, dmu_tx_t *tx)
3114
{
3115
scan_ds_t *sds;
3116
dsl_pool_t *dp = scn->scn_dp;
3117
3118
if (scn->scn_phys.scn_ddt_bookmark.ddb_class <=
3119
scn->scn_phys.scn_ddt_class_max) {
3120
scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3121
scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3122
dsl_scan_ddt(scn, tx);
3123
if (scn->scn_suspending)
3124
return;
3125
}
3126
3127
if (scn->scn_phys.scn_bookmark.zb_objset == DMU_META_OBJSET) {
3128
/* First do the MOS & ORIGIN */
3129
3130
scn->scn_phys.scn_cur_min_txg = scn->scn_phys.scn_min_txg;
3131
scn->scn_phys.scn_cur_max_txg = scn->scn_phys.scn_max_txg;
3132
dsl_scan_visit_rootbp(scn, NULL,
3133
&dp->dp_meta_rootbp, tx);
3134
if (scn->scn_suspending)
3135
return;
3136
3137
if (spa_version(dp->dp_spa) < SPA_VERSION_DSL_SCRUB) {
3138
VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3139
enqueue_cb, NULL, DS_FIND_CHILDREN));
3140
} else {
3141
dsl_scan_visitds(scn,
3142
dp->dp_origin_snap->ds_object, tx);
3143
}
3144
ASSERT(!scn->scn_suspending);
3145
} else if (scn->scn_phys.scn_bookmark.zb_objset !=
3146
ZB_DESTROYED_OBJSET) {
3147
uint64_t dsobj = scn->scn_phys.scn_bookmark.zb_objset;
3148
/*
3149
* If we were suspended, continue from here. Note if the
3150
* ds we were suspended on was deleted, the zb_objset may
3151
* be -1, so we will skip this and find a new objset
3152
* below.
3153
*/
3154
dsl_scan_visitds(scn, dsobj, tx);
3155
if (scn->scn_suspending)
3156
return;
3157
}
3158
3159
/*
3160
* In case we suspended right at the end of the ds, zero the
3161
* bookmark so we don't think that we're still trying to resume.
3162
*/
3163
memset(&scn->scn_phys.scn_bookmark, 0, sizeof (zbookmark_phys_t));
3164
3165
/*
3166
* Keep pulling things out of the dataset avl queue. Updates to the
3167
* persistent zap-object-as-queue happen only at checkpoints.
3168
*/
3169
while ((sds = avl_first(&scn->scn_queue)) != NULL) {
3170
dsl_dataset_t *ds;
3171
uint64_t dsobj = sds->sds_dsobj;
3172
uint64_t txg = sds->sds_txg;
3173
3174
/* dequeue and free the ds from the queue */
3175
scan_ds_queue_remove(scn, dsobj);
3176
sds = NULL;
3177
3178
/* set up min / max txg */
3179
VERIFY3U(0, ==, dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
3180
if (txg != 0) {
3181
scn->scn_phys.scn_cur_min_txg =
3182
MAX(scn->scn_phys.scn_min_txg, txg);
3183
} else {
3184
scn->scn_phys.scn_cur_min_txg =
3185
MAX(scn->scn_phys.scn_min_txg,
3186
dsl_dataset_phys(ds)->ds_prev_snap_txg);
3187
}
3188
scn->scn_phys.scn_cur_max_txg = dsl_scan_ds_maxtxg(ds);
3189
dsl_dataset_rele(ds, FTAG);
3190
3191
dsl_scan_visitds(scn, dsobj, tx);
3192
if (scn->scn_suspending)
3193
return;
3194
}
3195
3196
/* No more objsets to fetch, we're done */
3197
scn->scn_phys.scn_bookmark.zb_objset = ZB_DESTROYED_OBJSET;
3198
ASSERT0(scn->scn_suspending);
3199
}
3200
3201
static uint64_t
3202
dsl_scan_count_data_disks(spa_t *spa)
3203
{
3204
vdev_t *rvd = spa->spa_root_vdev;
3205
uint64_t i, leaves = 0;
3206
3207
for (i = 0; i < rvd->vdev_children; i++) {
3208
vdev_t *vd = rvd->vdev_child[i];
3209
if (vd->vdev_islog || vd->vdev_isspare || vd->vdev_isl2cache)
3210
continue;
3211
leaves += vdev_get_ndisks(vd) - vdev_get_nparity(vd);
3212
}
3213
return (leaves);
3214
}
3215
3216
static void
3217
scan_io_queues_update_zio_stats(dsl_scan_io_queue_t *q, const blkptr_t *bp)
3218
{
3219
int i;
3220
uint64_t cur_size = 0;
3221
3222
for (i = 0; i < BP_GET_NDVAS(bp); i++) {
3223
cur_size += DVA_GET_ASIZE(&bp->blk_dva[i]);
3224
}
3225
3226
q->q_total_zio_size_this_txg += cur_size;
3227
q->q_zios_this_txg++;
3228
}
3229
3230
static void
3231
scan_io_queues_update_seg_stats(dsl_scan_io_queue_t *q, uint64_t start,
3232
uint64_t end)
3233
{
3234
q->q_total_seg_size_this_txg += end - start;
3235
q->q_segs_this_txg++;
3236
}
3237
3238
static boolean_t
3239
scan_io_queue_check_suspend(dsl_scan_t *scn)
3240
{
3241
/* See comment in dsl_scan_check_suspend() */
3242
uint64_t curr_time_ns = gethrtime();
3243
uint64_t scan_time_ns = curr_time_ns - scn->scn_sync_start_time;
3244
uint64_t sync_time_ns = curr_time_ns -
3245
scn->scn_dp->dp_spa->spa_sync_starttime;
3246
uint64_t dirty_min_bytes = zfs_dirty_data_max *
3247
zfs_vdev_async_write_active_min_dirty_percent / 100;
3248
uint_t mintime = (scn->scn_phys.scn_func == POOL_SCAN_RESILVER) ?
3249
zfs_resilver_min_time_ms : zfs_scrub_min_time_ms;
3250
3251
return ((NSEC2MSEC(scan_time_ns) > mintime &&
3252
(scn->scn_dp->dp_dirty_total >= dirty_min_bytes ||
3253
txg_sync_waiting(scn->scn_dp) ||
3254
NSEC2SEC(sync_time_ns) >= zfs_txg_timeout)) ||
3255
spa_shutting_down(scn->scn_dp->dp_spa));
3256
}
3257
3258
/*
3259
* Given a list of scan_io_t's in io_list, this issues the I/Os out to
3260
* disk. This consumes the io_list and frees the scan_io_t's. This is
3261
* called when emptying queues, either when we're up against the memory
3262
* limit or when we have finished scanning. Returns B_TRUE if we stopped
3263
* processing the list before we finished. Any sios that were not issued
3264
* will remain in the io_list.
3265
*/
3266
static boolean_t
3267
scan_io_queue_issue(dsl_scan_io_queue_t *queue, list_t *io_list)
3268
{
3269
dsl_scan_t *scn = queue->q_scn;
3270
scan_io_t *sio;
3271
boolean_t suspended = B_FALSE;
3272
3273
while ((sio = list_head(io_list)) != NULL) {
3274
blkptr_t bp;
3275
3276
if (scan_io_queue_check_suspend(scn)) {
3277
suspended = B_TRUE;
3278
break;
3279
}
3280
3281
sio2bp(sio, &bp);
3282
scan_exec_io(scn->scn_dp, &bp, sio->sio_flags,
3283
&sio->sio_zb, queue);
3284
(void) list_remove_head(io_list);
3285
scan_io_queues_update_zio_stats(queue, &bp);
3286
sio_free(sio);
3287
}
3288
return (suspended);
3289
}
3290
3291
/*
3292
* This function removes sios from an IO queue which reside within a given
3293
* zfs_range_seg_t and inserts them (in offset order) into a list. Note that
3294
* we only ever return a maximum of 32 sios at once. If there are more sios
3295
* to process within this segment that did not make it onto the list we
3296
* return B_TRUE and otherwise B_FALSE.
3297
*/
3298
static boolean_t
3299
scan_io_queue_gather(dsl_scan_io_queue_t *queue, zfs_range_seg_t *rs,
3300
list_t *list)
3301
{
3302
scan_io_t *srch_sio, *sio, *next_sio;
3303
avl_index_t idx;
3304
uint_t num_sios = 0;
3305
int64_t bytes_issued = 0;
3306
3307
ASSERT(rs != NULL);
3308
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3309
3310
srch_sio = sio_alloc(1);
3311
srch_sio->sio_nr_dvas = 1;
3312
SIO_SET_OFFSET(srch_sio, zfs_rs_get_start(rs, queue->q_exts_by_addr));
3313
3314
/*
3315
* The exact start of the extent might not contain any matching zios,
3316
* so if that's the case, examine the next one in the tree.
3317
*/
3318
sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
3319
sio_free(srch_sio);
3320
3321
if (sio == NULL)
3322
sio = avl_nearest(&queue->q_sios_by_addr, idx, AVL_AFTER);
3323
3324
while (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3325
queue->q_exts_by_addr) && num_sios <= 32) {
3326
ASSERT3U(SIO_GET_OFFSET(sio), >=, zfs_rs_get_start(rs,
3327
queue->q_exts_by_addr));
3328
ASSERT3U(SIO_GET_END_OFFSET(sio), <=, zfs_rs_get_end(rs,
3329
queue->q_exts_by_addr));
3330
3331
next_sio = AVL_NEXT(&queue->q_sios_by_addr, sio);
3332
avl_remove(&queue->q_sios_by_addr, sio);
3333
if (avl_is_empty(&queue->q_sios_by_addr))
3334
atomic_add_64(&queue->q_scn->scn_queues_pending, -1);
3335
queue->q_sio_memused -= SIO_GET_MUSED(sio);
3336
3337
bytes_issued += SIO_GET_ASIZE(sio);
3338
num_sios++;
3339
list_insert_tail(list, sio);
3340
sio = next_sio;
3341
}
3342
3343
/*
3344
* We limit the number of sios we process at once to 32 to avoid
3345
* biting off more than we can chew. If we didn't take everything
3346
* in the segment we update it to reflect the work we were able to
3347
* complete. Otherwise, we remove it from the range tree entirely.
3348
*/
3349
if (sio != NULL && SIO_GET_OFFSET(sio) < zfs_rs_get_end(rs,
3350
queue->q_exts_by_addr)) {
3351
zfs_range_tree_adjust_fill(queue->q_exts_by_addr, rs,
3352
-bytes_issued);
3353
zfs_range_tree_resize_segment(queue->q_exts_by_addr, rs,
3354
SIO_GET_OFFSET(sio), zfs_rs_get_end(rs,
3355
queue->q_exts_by_addr) - SIO_GET_OFFSET(sio));
3356
queue->q_last_ext_addr = SIO_GET_OFFSET(sio);
3357
return (B_TRUE);
3358
} else {
3359
uint64_t rstart = zfs_rs_get_start(rs, queue->q_exts_by_addr);
3360
uint64_t rend = zfs_rs_get_end(rs, queue->q_exts_by_addr);
3361
zfs_range_tree_remove(queue->q_exts_by_addr, rstart, rend -
3362
rstart);
3363
queue->q_last_ext_addr = -1;
3364
return (B_FALSE);
3365
}
3366
}
3367
3368
/*
3369
* This is called from the queue emptying thread and selects the next
3370
* extent from which we are to issue I/Os. The behavior of this function
3371
* depends on the state of the scan, the current memory consumption and
3372
* whether or not we are performing a scan shutdown.
3373
* 1) We select extents in an elevator algorithm (LBA-order) if the scan
3374
* needs to perform a checkpoint
3375
* 2) We select the largest available extent if we are up against the
3376
* memory limit.
3377
* 3) Otherwise we don't select any extents.
3378
*/
3379
static zfs_range_seg_t *
3380
scan_io_queue_fetch_ext(dsl_scan_io_queue_t *queue)
3381
{
3382
dsl_scan_t *scn = queue->q_scn;
3383
zfs_range_tree_t *rt = queue->q_exts_by_addr;
3384
3385
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
3386
ASSERT(scn->scn_is_sorted);
3387
3388
if (!scn->scn_checkpointing && !scn->scn_clearing)
3389
return (NULL);
3390
3391
/*
3392
* During normal clearing, we want to issue our largest segments
3393
* first, keeping IO as sequential as possible, and leaving the
3394
* smaller extents for later with the hope that they might eventually
3395
* grow to larger sequential segments. However, when the scan is
3396
* checkpointing, no new extents will be added to the sorting queue,
3397
* so the way we are sorted now is as good as it will ever get.
3398
* In this case, we instead switch to issuing extents in LBA order.
3399
*/
3400
if ((zfs_scan_issue_strategy < 1 && scn->scn_checkpointing) ||
3401
zfs_scan_issue_strategy == 1)
3402
return (zfs_range_tree_first(rt));
3403
3404
/*
3405
* Try to continue previous extent if it is not completed yet. After
3406
* shrink in scan_io_queue_gather() it may no longer be the best, but
3407
* otherwise we leave shorter remnant every txg.
3408
*/
3409
uint64_t start;
3410
uint64_t size = 1ULL << rt->rt_shift;
3411
zfs_range_seg_t *addr_rs;
3412
if (queue->q_last_ext_addr != -1) {
3413
start = queue->q_last_ext_addr;
3414
addr_rs = zfs_range_tree_find(rt, start, size);
3415
if (addr_rs != NULL)
3416
return (addr_rs);
3417
}
3418
3419
/*
3420
* Nothing to continue, so find new best extent.
3421
*/
3422
uint64_t *v = zfs_btree_first(&queue->q_exts_by_size, NULL);
3423
if (v == NULL)
3424
return (NULL);
3425
queue->q_last_ext_addr = start = *v << rt->rt_shift;
3426
3427
/*
3428
* We need to get the original entry in the by_addr tree so we can
3429
* modify it.
3430
*/
3431
addr_rs = zfs_range_tree_find(rt, start, size);
3432
ASSERT3P(addr_rs, !=, NULL);
3433
ASSERT3U(zfs_rs_get_start(addr_rs, rt), ==, start);
3434
ASSERT3U(zfs_rs_get_end(addr_rs, rt), >, start);
3435
return (addr_rs);
3436
}
3437
3438
static void
3439
scan_io_queues_run_one(void *arg)
3440
{
3441
dsl_scan_io_queue_t *queue = arg;
3442
kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
3443
boolean_t suspended = B_FALSE;
3444
zfs_range_seg_t *rs;
3445
scan_io_t *sio;
3446
zio_t *zio;
3447
list_t sio_list;
3448
3449
ASSERT(queue->q_scn->scn_is_sorted);
3450
3451
list_create(&sio_list, sizeof (scan_io_t),
3452
offsetof(scan_io_t, sio_nodes.sio_list_node));
3453
zio = zio_null(queue->q_scn->scn_zio_root, queue->q_scn->scn_dp->dp_spa,
3454
NULL, NULL, NULL, ZIO_FLAG_CANFAIL);
3455
mutex_enter(q_lock);
3456
queue->q_zio = zio;
3457
3458
/* Calculate maximum in-flight bytes for this vdev. */
3459
queue->q_maxinflight_bytes = MAX(1, zfs_scan_vdev_limit *
3460
(vdev_get_ndisks(queue->q_vd) - vdev_get_nparity(queue->q_vd)));
3461
3462
/* reset per-queue scan statistics for this txg */
3463
queue->q_total_seg_size_this_txg = 0;
3464
queue->q_segs_this_txg = 0;
3465
queue->q_total_zio_size_this_txg = 0;
3466
queue->q_zios_this_txg = 0;
3467
3468
/* loop until we run out of time or sios */
3469
while ((rs = scan_io_queue_fetch_ext(queue)) != NULL) {
3470
uint64_t seg_start = 0, seg_end = 0;
3471
boolean_t more_left;
3472
3473
ASSERT(list_is_empty(&sio_list));
3474
3475
/* loop while we still have sios left to process in this rs */
3476
do {
3477
scan_io_t *first_sio, *last_sio;
3478
3479
/*
3480
* We have selected which extent needs to be
3481
* processed next. Gather up the corresponding sios.
3482
*/
3483
more_left = scan_io_queue_gather(queue, rs, &sio_list);
3484
ASSERT(!list_is_empty(&sio_list));
3485
first_sio = list_head(&sio_list);
3486
last_sio = list_tail(&sio_list);
3487
3488
seg_end = SIO_GET_END_OFFSET(last_sio);
3489
if (seg_start == 0)
3490
seg_start = SIO_GET_OFFSET(first_sio);
3491
3492
/*
3493
* Issuing sios can take a long time so drop the
3494
* queue lock. The sio queue won't be updated by
3495
* other threads since we're in syncing context so
3496
* we can be sure that our trees will remain exactly
3497
* as we left them.
3498
*/
3499
mutex_exit(q_lock);
3500
suspended = scan_io_queue_issue(queue, &sio_list);
3501
mutex_enter(q_lock);
3502
3503
if (suspended)
3504
break;
3505
} while (more_left);
3506
3507
/* update statistics for debugging purposes */
3508
scan_io_queues_update_seg_stats(queue, seg_start, seg_end);
3509
3510
if (suspended)
3511
break;
3512
}
3513
3514
/*
3515
* If we were suspended in the middle of processing,
3516
* requeue any unfinished sios and exit.
3517
*/
3518
while ((sio = list_remove_head(&sio_list)) != NULL)
3519
scan_io_queue_insert_impl(queue, sio);
3520
3521
queue->q_zio = NULL;
3522
mutex_exit(q_lock);
3523
zio_nowait(zio);
3524
list_destroy(&sio_list);
3525
}
3526
3527
/*
3528
* Performs an emptying run on all scan queues in the pool. This just
3529
* punches out one thread per top-level vdev, each of which processes
3530
* only that vdev's scan queue. We can parallelize the I/O here because
3531
* we know that each queue's I/Os only affect its own top-level vdev.
3532
*
3533
* This function waits for the queue runs to complete, and must be
3534
* called from dsl_scan_sync (or in general, syncing context).
3535
*/
3536
static void
3537
scan_io_queues_run(dsl_scan_t *scn)
3538
{
3539
spa_t *spa = scn->scn_dp->dp_spa;
3540
3541
ASSERT(scn->scn_is_sorted);
3542
ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3543
3544
if (scn->scn_queues_pending == 0)
3545
return;
3546
3547
if (scn->scn_taskq == NULL) {
3548
int nthreads = spa->spa_root_vdev->vdev_children;
3549
3550
/*
3551
* We need to make this taskq *always* execute as many
3552
* threads in parallel as we have top-level vdevs and no
3553
* less, otherwise strange serialization of the calls to
3554
* scan_io_queues_run_one can occur during spa_sync runs
3555
* and that significantly impacts performance.
3556
*/
3557
scn->scn_taskq = taskq_create("dsl_scan_iss", nthreads,
3558
minclsyspri, nthreads, nthreads, TASKQ_PREPOPULATE);
3559
}
3560
3561
for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3562
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3563
3564
mutex_enter(&vd->vdev_scan_io_queue_lock);
3565
if (vd->vdev_scan_io_queue != NULL) {
3566
VERIFY(taskq_dispatch(scn->scn_taskq,
3567
scan_io_queues_run_one, vd->vdev_scan_io_queue,
3568
TQ_SLEEP) != TASKQID_INVALID);
3569
}
3570
mutex_exit(&vd->vdev_scan_io_queue_lock);
3571
}
3572
3573
/*
3574
* Wait for the queues to finish issuing their IOs for this run
3575
* before we return. There may still be IOs in flight at this
3576
* point.
3577
*/
3578
taskq_wait(scn->scn_taskq);
3579
}
3580
3581
static boolean_t
3582
dsl_scan_async_block_should_pause(dsl_scan_t *scn)
3583
{
3584
uint64_t elapsed_nanosecs;
3585
3586
if (zfs_recover)
3587
return (B_FALSE);
3588
3589
if (zfs_async_block_max_blocks != 0 &&
3590
scn->scn_visited_this_txg >= zfs_async_block_max_blocks) {
3591
return (B_TRUE);
3592
}
3593
3594
if (zfs_max_async_dedup_frees != 0 &&
3595
scn->scn_dedup_frees_this_txg >= zfs_max_async_dedup_frees) {
3596
return (B_TRUE);
3597
}
3598
3599
elapsed_nanosecs = gethrtime() - scn->scn_sync_start_time;
3600
return (elapsed_nanosecs / NANOSEC > zfs_txg_timeout ||
3601
(NSEC2MSEC(elapsed_nanosecs) > scn->scn_async_block_min_time_ms &&
3602
txg_sync_waiting(scn->scn_dp)) ||
3603
spa_shutting_down(scn->scn_dp->dp_spa));
3604
}
3605
3606
static int
3607
dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
3608
{
3609
dsl_scan_t *scn = arg;
3610
3611
if (!scn->scn_is_bptree ||
3612
(BP_GET_LEVEL(bp) == 0 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)) {
3613
if (dsl_scan_async_block_should_pause(scn))
3614
return (SET_ERROR(ERESTART));
3615
}
3616
3617
zio_nowait(zio_free_sync(scn->scn_zio_root, scn->scn_dp->dp_spa,
3618
dmu_tx_get_txg(tx), bp, 0));
3619
dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
3620
-bp_get_dsize_sync(scn->scn_dp->dp_spa, bp),
3621
-BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
3622
scn->scn_visited_this_txg++;
3623
if (BP_GET_DEDUP(bp))
3624
scn->scn_dedup_frees_this_txg++;
3625
return (0);
3626
}
3627
3628
static void
3629
dsl_scan_update_stats(dsl_scan_t *scn)
3630
{
3631
spa_t *spa = scn->scn_dp->dp_spa;
3632
uint64_t i;
3633
uint64_t seg_size_total = 0, zio_size_total = 0;
3634
uint64_t seg_count_total = 0, zio_count_total = 0;
3635
3636
for (i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
3637
vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
3638
dsl_scan_io_queue_t *queue = vd->vdev_scan_io_queue;
3639
3640
if (queue == NULL)
3641
continue;
3642
3643
seg_size_total += queue->q_total_seg_size_this_txg;
3644
zio_size_total += queue->q_total_zio_size_this_txg;
3645
seg_count_total += queue->q_segs_this_txg;
3646
zio_count_total += queue->q_zios_this_txg;
3647
}
3648
3649
if (seg_count_total == 0 || zio_count_total == 0) {
3650
scn->scn_avg_seg_size_this_txg = 0;
3651
scn->scn_avg_zio_size_this_txg = 0;
3652
scn->scn_segs_this_txg = 0;
3653
scn->scn_zios_this_txg = 0;
3654
return;
3655
}
3656
3657
scn->scn_avg_seg_size_this_txg = seg_size_total / seg_count_total;
3658
scn->scn_avg_zio_size_this_txg = zio_size_total / zio_count_total;
3659
scn->scn_segs_this_txg = seg_count_total;
3660
scn->scn_zios_this_txg = zio_count_total;
3661
}
3662
3663
static int
3664
bpobj_dsl_scan_free_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3665
dmu_tx_t *tx)
3666
{
3667
ASSERT(!bp_freed);
3668
return (dsl_scan_free_block_cb(arg, bp, tx));
3669
}
3670
3671
static int
3672
dsl_scan_obsolete_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3673
dmu_tx_t *tx)
3674
{
3675
ASSERT(!bp_freed);
3676
dsl_scan_t *scn = arg;
3677
const dva_t *dva = &bp->blk_dva[0];
3678
3679
if (dsl_scan_async_block_should_pause(scn))
3680
return (SET_ERROR(ERESTART));
3681
3682
spa_vdev_indirect_mark_obsolete(scn->scn_dp->dp_spa,
3683
DVA_GET_VDEV(dva), DVA_GET_OFFSET(dva),
3684
DVA_GET_ASIZE(dva), tx);
3685
scn->scn_visited_this_txg++;
3686
return (0);
3687
}
3688
3689
boolean_t
3690
dsl_scan_active(dsl_scan_t *scn)
3691
{
3692
spa_t *spa = scn->scn_dp->dp_spa;
3693
uint64_t used = 0, comp, uncomp;
3694
boolean_t clones_left;
3695
3696
if (spa->spa_load_state != SPA_LOAD_NONE)
3697
return (B_FALSE);
3698
if (spa_shutting_down(spa))
3699
return (B_FALSE);
3700
if ((dsl_scan_is_running(scn) && !dsl_scan_is_paused_scrub(scn)) ||
3701
(scn->scn_async_destroying && !scn->scn_async_stalled))
3702
return (B_TRUE);
3703
3704
if (spa_version(scn->scn_dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
3705
(void) bpobj_space(&scn->scn_dp->dp_free_bpobj,
3706
&used, &comp, &uncomp);
3707
}
3708
clones_left = spa_livelist_delete_check(spa);
3709
return ((used != 0) || (clones_left));
3710
}
3711
3712
boolean_t
3713
dsl_errorscrub_active(dsl_scan_t *scn)
3714
{
3715
spa_t *spa = scn->scn_dp->dp_spa;
3716
if (spa->spa_load_state != SPA_LOAD_NONE)
3717
return (B_FALSE);
3718
if (spa_shutting_down(spa))
3719
return (B_FALSE);
3720
if (dsl_errorscrubbing(scn->scn_dp))
3721
return (B_TRUE);
3722
return (B_FALSE);
3723
}
3724
3725
static boolean_t
3726
dsl_scan_check_deferred(vdev_t *vd)
3727
{
3728
boolean_t need_resilver = B_FALSE;
3729
3730
for (int c = 0; c < vd->vdev_children; c++) {
3731
need_resilver |=
3732
dsl_scan_check_deferred(vd->vdev_child[c]);
3733
}
3734
3735
if (!vdev_is_concrete(vd) || vd->vdev_aux ||
3736
!vd->vdev_ops->vdev_op_leaf)
3737
return (need_resilver);
3738
3739
if (!vd->vdev_resilver_deferred)
3740
need_resilver = B_TRUE;
3741
3742
return (need_resilver);
3743
}
3744
3745
static boolean_t
3746
dsl_scan_need_resilver(spa_t *spa, const dva_t *dva, size_t psize,
3747
uint64_t phys_birth)
3748
{
3749
vdev_t *vd;
3750
3751
vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3752
3753
if (vd->vdev_ops == &vdev_indirect_ops) {
3754
/*
3755
* The indirect vdev can point to multiple
3756
* vdevs. For simplicity, always create
3757
* the resilver zio_t. zio_vdev_io_start()
3758
* will bypass the child resilver i/o's if
3759
* they are on vdevs that don't have DTL's.
3760
*/
3761
return (B_TRUE);
3762
}
3763
3764
if (DVA_GET_GANG(dva)) {
3765
/*
3766
* Gang members may be spread across multiple
3767
* vdevs, so the best estimate we have is the
3768
* scrub range, which has already been checked.
3769
* XXX -- it would be better to change our
3770
* allocation policy to ensure that all
3771
* gang members reside on the same vdev.
3772
*/
3773
return (B_TRUE);
3774
}
3775
3776
/*
3777
* Check if the top-level vdev must resilver this offset.
3778
* When the offset does not intersect with a dirty leaf DTL
3779
* then it may be possible to skip the resilver IO. The psize
3780
* is provided instead of asize to simplify the check for RAIDZ.
3781
*/
3782
if (!vdev_dtl_need_resilver(vd, dva, psize, phys_birth))
3783
return (B_FALSE);
3784
3785
/*
3786
* Check that this top-level vdev has a device under it which
3787
* is resilvering and is not deferred.
3788
*/
3789
if (!dsl_scan_check_deferred(vd))
3790
return (B_FALSE);
3791
3792
return (B_TRUE);
3793
}
3794
3795
static int
3796
dsl_process_async_destroys(dsl_pool_t *dp, dmu_tx_t *tx)
3797
{
3798
dsl_scan_t *scn = dp->dp_scan;
3799
spa_t *spa = dp->dp_spa;
3800
int err = 0;
3801
3802
if (spa_suspend_async_destroy(spa))
3803
return (0);
3804
3805
if (zfs_free_bpobj_enabled &&
3806
spa_version(spa) >= SPA_VERSION_DEADLISTS) {
3807
scn->scn_is_bptree = B_FALSE;
3808
scn->scn_async_block_min_time_ms = zfs_free_min_time_ms;
3809
scn->scn_zio_root = zio_root(spa, NULL,
3810
NULL, ZIO_FLAG_MUSTSUCCEED);
3811
err = bpobj_iterate(&dp->dp_free_bpobj,
3812
bpobj_dsl_scan_free_block_cb, scn, tx);
3813
VERIFY0(zio_wait(scn->scn_zio_root));
3814
scn->scn_zio_root = NULL;
3815
3816
if (err != 0 && err != ERESTART)
3817
zfs_panic_recover("error %u from bpobj_iterate()", err);
3818
}
3819
3820
if (err == 0 && spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
3821
ASSERT(scn->scn_async_destroying);
3822
scn->scn_is_bptree = B_TRUE;
3823
scn->scn_zio_root = zio_root(spa, NULL,
3824
NULL, ZIO_FLAG_MUSTSUCCEED);
3825
err = bptree_iterate(dp->dp_meta_objset,
3826
dp->dp_bptree_obj, B_TRUE, dsl_scan_free_block_cb, scn, tx);
3827
VERIFY0(zio_wait(scn->scn_zio_root));
3828
scn->scn_zio_root = NULL;
3829
3830
if (err == EIO || err == ECKSUM) {
3831
err = 0;
3832
} else if (err != 0 && err != ERESTART) {
3833
zfs_panic_recover("error %u from "
3834
"traverse_dataset_destroyed()", err);
3835
}
3836
3837
if (bptree_is_empty(dp->dp_meta_objset, dp->dp_bptree_obj)) {
3838
/* finished; deactivate async destroy feature */
3839
spa_feature_decr(spa, SPA_FEATURE_ASYNC_DESTROY, tx);
3840
ASSERT(!spa_feature_is_active(spa,
3841
SPA_FEATURE_ASYNC_DESTROY));
3842
VERIFY0(zap_remove(dp->dp_meta_objset,
3843
DMU_POOL_DIRECTORY_OBJECT,
3844
DMU_POOL_BPTREE_OBJ, tx));
3845
VERIFY0(bptree_free(dp->dp_meta_objset,
3846
dp->dp_bptree_obj, tx));
3847
dp->dp_bptree_obj = 0;
3848
scn->scn_async_destroying = B_FALSE;
3849
scn->scn_async_stalled = B_FALSE;
3850
} else {
3851
/*
3852
* If we didn't make progress, mark the async
3853
* destroy as stalled, so that we will not initiate
3854
* a spa_sync() on its behalf. Note that we only
3855
* check this if we are not finished, because if the
3856
* bptree had no blocks for us to visit, we can
3857
* finish without "making progress".
3858
*/
3859
scn->scn_async_stalled =
3860
(scn->scn_visited_this_txg == 0);
3861
}
3862
}
3863
if (scn->scn_visited_this_txg) {
3864
zfs_dbgmsg("freed %llu blocks in %llums from "
3865
"free_bpobj/bptree on %s in txg %llu; err=%u",
3866
(longlong_t)scn->scn_visited_this_txg,
3867
(longlong_t)
3868
NSEC2MSEC(gethrtime() - scn->scn_sync_start_time),
3869
spa->spa_name, (longlong_t)tx->tx_txg, err);
3870
scn->scn_visited_this_txg = 0;
3871
scn->scn_dedup_frees_this_txg = 0;
3872
3873
/*
3874
* Write out changes to the DDT and the BRT that may be required
3875
* as a result of the blocks freed. This ensures that the DDT
3876
* and the BRT are clean when a scrub/resilver runs.
3877
*/
3878
ddt_sync(spa, tx->tx_txg);
3879
brt_sync(spa, tx->tx_txg);
3880
}
3881
if (err != 0)
3882
return (err);
3883
if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3884
zfs_free_leak_on_eio &&
3885
(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes != 0 ||
3886
dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes != 0 ||
3887
dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes != 0)) {
3888
/*
3889
* We have finished background destroying, but there is still
3890
* some space left in the dp_free_dir. Transfer this leaked
3891
* space to the dp_leak_dir.
3892
*/
3893
if (dp->dp_leak_dir == NULL) {
3894
rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
3895
(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
3896
LEAK_DIR_NAME, tx);
3897
VERIFY0(dsl_pool_open_special_dir(dp,
3898
LEAK_DIR_NAME, &dp->dp_leak_dir));
3899
rrw_exit(&dp->dp_config_rwlock, FTAG);
3900
}
3901
dsl_dir_diduse_space(dp->dp_leak_dir, DD_USED_HEAD,
3902
dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3903
dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3904
dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3905
dsl_dir_diduse_space(dp->dp_free_dir, DD_USED_HEAD,
3906
-dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes,
3907
-dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes,
3908
-dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes, tx);
3909
}
3910
3911
if (dp->dp_free_dir != NULL && !scn->scn_async_destroying &&
3912
!spa_livelist_delete_check(spa)) {
3913
/* finished; verify that space accounting went to zero */
3914
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_used_bytes);
3915
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_compressed_bytes);
3916
ASSERT0(dsl_dir_phys(dp->dp_free_dir)->dd_uncompressed_bytes);
3917
}
3918
3919
spa_notify_waiters(spa);
3920
3921
EQUIV(bpobj_is_open(&dp->dp_obsolete_bpobj),
3922
0 == zap_contains(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3923
DMU_POOL_OBSOLETE_BPOBJ));
3924
if (err == 0 && bpobj_is_open(&dp->dp_obsolete_bpobj)) {
3925
ASSERT(spa_feature_is_active(dp->dp_spa,
3926
SPA_FEATURE_OBSOLETE_COUNTS));
3927
3928
scn->scn_is_bptree = B_FALSE;
3929
scn->scn_async_block_min_time_ms = zfs_obsolete_min_time_ms;
3930
err = bpobj_iterate(&dp->dp_obsolete_bpobj,
3931
dsl_scan_obsolete_block_cb, scn, tx);
3932
if (err != 0 && err != ERESTART)
3933
zfs_panic_recover("error %u from bpobj_iterate()", err);
3934
3935
if (bpobj_is_empty(&dp->dp_obsolete_bpobj))
3936
dsl_pool_destroy_obsolete_bpobj(dp, tx);
3937
}
3938
return (0);
3939
}
3940
3941
static void
3942
name_to_bookmark(char *buf, zbookmark_phys_t *zb)
3943
{
3944
zb->zb_objset = zfs_strtonum(buf, &buf);
3945
ASSERT(*buf == ':');
3946
zb->zb_object = zfs_strtonum(buf + 1, &buf);
3947
ASSERT(*buf == ':');
3948
zb->zb_level = (int)zfs_strtonum(buf + 1, &buf);
3949
ASSERT(*buf == ':');
3950
zb->zb_blkid = zfs_strtonum(buf + 1, &buf);
3951
ASSERT(*buf == '\0');
3952
}
3953
3954
static void
3955
name_to_object(char *buf, uint64_t *obj)
3956
{
3957
*obj = zfs_strtonum(buf, &buf);
3958
ASSERT(*buf == '\0');
3959
}
3960
3961
static void
3962
read_by_block_level(dsl_scan_t *scn, zbookmark_phys_t zb)
3963
{
3964
dsl_pool_t *dp = scn->scn_dp;
3965
dsl_dataset_t *ds;
3966
objset_t *os;
3967
if (dsl_dataset_hold_obj(dp, zb.zb_objset, FTAG, &ds) != 0)
3968
return;
3969
3970
if (dmu_objset_from_ds(ds, &os) != 0) {
3971
dsl_dataset_rele(ds, FTAG);
3972
return;
3973
}
3974
3975
/*
3976
* If the key is not loaded dbuf_dnode_findbp() will error out with
3977
* EACCES. However in that case dnode_hold() will eventually call
3978
* dbuf_read()->zio_wait() which may call spa_log_error(). This will
3979
* lead to a deadlock due to us holding the mutex spa_errlist_lock.
3980
* Avoid this by checking here if the keys are loaded, if not return.
3981
* If the keys are not loaded the head_errlog feature is meaningless
3982
* as we cannot figure out the birth txg of the block pointer.
3983
*/
3984
if (dsl_dataset_get_keystatus(ds->ds_dir) ==
3985
ZFS_KEYSTATUS_UNAVAILABLE) {
3986
dsl_dataset_rele(ds, FTAG);
3987
return;
3988
}
3989
3990
dnode_t *dn;
3991
blkptr_t bp;
3992
3993
if (dnode_hold(os, zb.zb_object, FTAG, &dn) != 0) {
3994
dsl_dataset_rele(ds, FTAG);
3995
return;
3996
}
3997
3998
rw_enter(&dn->dn_struct_rwlock, RW_READER);
3999
int error = dbuf_dnode_findbp(dn, zb.zb_level, zb.zb_blkid, &bp, NULL,
4000
NULL);
4001
4002
if (error) {
4003
rw_exit(&dn->dn_struct_rwlock);
4004
dnode_rele(dn, FTAG);
4005
dsl_dataset_rele(ds, FTAG);
4006
return;
4007
}
4008
4009
if (!error && BP_IS_HOLE(&bp)) {
4010
rw_exit(&dn->dn_struct_rwlock);
4011
dnode_rele(dn, FTAG);
4012
dsl_dataset_rele(ds, FTAG);
4013
return;
4014
}
4015
4016
int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW |
4017
ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB;
4018
4019
/* If it's an intent log block, failure is expected. */
4020
if (zb.zb_level == ZB_ZIL_LEVEL)
4021
zio_flags |= ZIO_FLAG_SPECULATIVE;
4022
4023
ASSERT(!BP_IS_EMBEDDED(&bp));
4024
scan_exec_io(dp, &bp, zio_flags, &zb, NULL);
4025
rw_exit(&dn->dn_struct_rwlock);
4026
dnode_rele(dn, FTAG);
4027
dsl_dataset_rele(ds, FTAG);
4028
}
4029
4030
/*
4031
* We keep track of the scrubbed error blocks in "count". This will be used
4032
* when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
4033
* function is modelled after check_filesystem().
4034
*/
4035
static int
4036
scrub_filesystem(spa_t *spa, uint64_t fs, zbookmark_err_phys_t *zep,
4037
int *count)
4038
{
4039
dsl_dataset_t *ds;
4040
dsl_pool_t *dp = spa->spa_dsl_pool;
4041
dsl_scan_t *scn = dp->dp_scan;
4042
4043
int error = dsl_dataset_hold_obj(dp, fs, FTAG, &ds);
4044
if (error != 0)
4045
return (error);
4046
4047
uint64_t latest_txg;
4048
uint64_t txg_to_consider = spa->spa_syncing_txg;
4049
boolean_t check_snapshot = B_TRUE;
4050
4051
error = find_birth_txg(ds, zep, &latest_txg);
4052
4053
/*
4054
* If find_birth_txg() errors out, then err on the side of caution and
4055
* proceed. In worst case scenario scrub all objects. If zep->zb_birth
4056
* is 0 (e.g. in case of encryption with unloaded keys) also proceed to
4057
* scrub all objects.
4058
*/
4059
if (error == 0 && zep->zb_birth == latest_txg) {
4060
/* Block neither free nor re written. */
4061
zbookmark_phys_t zb;
4062
zep_to_zb(fs, zep, &zb);
4063
scn->scn_zio_root = zio_root(spa, NULL, NULL,
4064
ZIO_FLAG_CANFAIL);
4065
/* We have already acquired the config lock for spa */
4066
read_by_block_level(scn, zb);
4067
4068
(void) zio_wait(scn->scn_zio_root);
4069
scn->scn_zio_root = NULL;
4070
4071
scn->errorscrub_phys.dep_examined++;
4072
scn->errorscrub_phys.dep_to_examine--;
4073
(*count)++;
4074
if ((*count) == zfs_scrub_error_blocks_per_txg ||
4075
dsl_error_scrub_check_suspend(scn, &zb)) {
4076
dsl_dataset_rele(ds, FTAG);
4077
return (SET_ERROR(EFAULT));
4078
}
4079
4080
check_snapshot = B_FALSE;
4081
} else if (error == 0) {
4082
txg_to_consider = latest_txg;
4083
}
4084
4085
/*
4086
* Retrieve the number of snapshots if the dataset is not a snapshot.
4087
*/
4088
uint64_t snap_count = 0;
4089
if (dsl_dataset_phys(ds)->ds_snapnames_zapobj != 0) {
4090
4091
error = zap_count(spa->spa_meta_objset,
4092
dsl_dataset_phys(ds)->ds_snapnames_zapobj, &snap_count);
4093
4094
if (error != 0) {
4095
dsl_dataset_rele(ds, FTAG);
4096
return (error);
4097
}
4098
}
4099
4100
if (snap_count == 0) {
4101
/* Filesystem without snapshots. */
4102
dsl_dataset_rele(ds, FTAG);
4103
return (0);
4104
}
4105
4106
uint64_t snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4107
uint64_t snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4108
4109
dsl_dataset_rele(ds, FTAG);
4110
4111
/* Check only snapshots created from this file system. */
4112
while (snap_obj != 0 && zep->zb_birth < snap_obj_txg &&
4113
snap_obj_txg <= txg_to_consider) {
4114
4115
error = dsl_dataset_hold_obj(dp, snap_obj, FTAG, &ds);
4116
if (error != 0)
4117
return (error);
4118
4119
if (dsl_dir_phys(ds->ds_dir)->dd_head_dataset_obj != fs) {
4120
snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4121
snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4122
dsl_dataset_rele(ds, FTAG);
4123
continue;
4124
}
4125
4126
boolean_t affected = B_TRUE;
4127
if (check_snapshot) {
4128
uint64_t blk_txg;
4129
error = find_birth_txg(ds, zep, &blk_txg);
4130
4131
/*
4132
* Scrub the snapshot also when zb_birth == 0 or when
4133
* find_birth_txg() returns an error.
4134
*/
4135
affected = (error == 0 && zep->zb_birth == blk_txg) ||
4136
(error != 0) || (zep->zb_birth == 0);
4137
}
4138
4139
/* Scrub snapshots. */
4140
if (affected) {
4141
zbookmark_phys_t zb;
4142
zep_to_zb(snap_obj, zep, &zb);
4143
scn->scn_zio_root = zio_root(spa, NULL, NULL,
4144
ZIO_FLAG_CANFAIL);
4145
/* We have already acquired the config lock for spa */
4146
read_by_block_level(scn, zb);
4147
4148
(void) zio_wait(scn->scn_zio_root);
4149
scn->scn_zio_root = NULL;
4150
4151
scn->errorscrub_phys.dep_examined++;
4152
scn->errorscrub_phys.dep_to_examine--;
4153
(*count)++;
4154
if ((*count) == zfs_scrub_error_blocks_per_txg ||
4155
dsl_error_scrub_check_suspend(scn, &zb)) {
4156
dsl_dataset_rele(ds, FTAG);
4157
return (EFAULT);
4158
}
4159
}
4160
snap_obj_txg = dsl_dataset_phys(ds)->ds_prev_snap_txg;
4161
snap_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
4162
dsl_dataset_rele(ds, FTAG);
4163
}
4164
return (0);
4165
}
4166
4167
void
4168
dsl_errorscrub_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4169
{
4170
spa_t *spa = dp->dp_spa;
4171
dsl_scan_t *scn = dp->dp_scan;
4172
4173
/*
4174
* Only process scans in sync pass 1.
4175
*/
4176
4177
if (spa_sync_pass(spa) > 1)
4178
return;
4179
4180
/*
4181
* If the spa is shutting down, then stop scanning. This will
4182
* ensure that the scan does not dirty any new data during the
4183
* shutdown phase.
4184
*/
4185
if (spa_shutting_down(spa))
4186
return;
4187
4188
if (!dsl_errorscrub_active(scn) || dsl_errorscrub_is_paused(scn)) {
4189
return;
4190
}
4191
4192
if (dsl_scan_resilvering(scn->scn_dp)) {
4193
/* cancel the error scrub if resilver started */
4194
dsl_scan_cancel(scn->scn_dp);
4195
return;
4196
}
4197
4198
spa->spa_scrub_active = B_TRUE;
4199
scn->scn_sync_start_time = gethrtime();
4200
4201
/*
4202
* zfs_scan_suspend_progress can be set to disable scrub progress.
4203
* See more detailed comment in dsl_scan_sync().
4204
*/
4205
if (zfs_scan_suspend_progress) {
4206
uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4207
int mintime = zfs_scrub_min_time_ms;
4208
4209
while (zfs_scan_suspend_progress &&
4210
!txg_sync_waiting(scn->scn_dp) &&
4211
!spa_shutting_down(scn->scn_dp->dp_spa) &&
4212
NSEC2MSEC(scan_time_ns) < mintime) {
4213
delay(hz);
4214
scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4215
}
4216
return;
4217
}
4218
4219
int i = 0;
4220
zap_attribute_t *za;
4221
zbookmark_phys_t *zb;
4222
boolean_t limit_exceeded = B_FALSE;
4223
4224
za = zap_attribute_alloc();
4225
zb = kmem_zalloc(sizeof (zbookmark_phys_t), KM_SLEEP);
4226
4227
if (!spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
4228
for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4229
zap_cursor_advance(&scn->errorscrub_cursor)) {
4230
name_to_bookmark(za->za_name, zb);
4231
4232
scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4233
NULL, ZIO_FLAG_CANFAIL);
4234
dsl_pool_config_enter(dp, FTAG);
4235
read_by_block_level(scn, *zb);
4236
dsl_pool_config_exit(dp, FTAG);
4237
4238
(void) zio_wait(scn->scn_zio_root);
4239
scn->scn_zio_root = NULL;
4240
4241
scn->errorscrub_phys.dep_examined += 1;
4242
scn->errorscrub_phys.dep_to_examine -= 1;
4243
i++;
4244
if (i == zfs_scrub_error_blocks_per_txg ||
4245
dsl_error_scrub_check_suspend(scn, zb)) {
4246
limit_exceeded = B_TRUE;
4247
break;
4248
}
4249
}
4250
4251
if (!limit_exceeded)
4252
dsl_errorscrub_done(scn, B_TRUE, tx);
4253
4254
dsl_errorscrub_sync_state(scn, tx);
4255
zap_attribute_free(za);
4256
kmem_free(zb, sizeof (*zb));
4257
return;
4258
}
4259
4260
int error = 0;
4261
for (; zap_cursor_retrieve(&scn->errorscrub_cursor, za) == 0;
4262
zap_cursor_advance(&scn->errorscrub_cursor)) {
4263
4264
zap_cursor_t *head_ds_cursor;
4265
zap_attribute_t *head_ds_attr;
4266
zbookmark_err_phys_t head_ds_block;
4267
4268
head_ds_cursor = kmem_zalloc(sizeof (zap_cursor_t), KM_SLEEP);
4269
head_ds_attr = zap_attribute_alloc();
4270
4271
uint64_t head_ds_err_obj = za->za_first_integer;
4272
uint64_t head_ds;
4273
name_to_object(za->za_name, &head_ds);
4274
boolean_t config_held = B_FALSE;
4275
uint64_t top_affected_fs;
4276
4277
for (zap_cursor_init(head_ds_cursor, spa->spa_meta_objset,
4278
head_ds_err_obj); zap_cursor_retrieve(head_ds_cursor,
4279
head_ds_attr) == 0; zap_cursor_advance(head_ds_cursor)) {
4280
4281
name_to_errphys(head_ds_attr->za_name, &head_ds_block);
4282
4283
/*
4284
* In case we are called from spa_sync the pool
4285
* config is already held.
4286
*/
4287
if (!dsl_pool_config_held(dp)) {
4288
dsl_pool_config_enter(dp, FTAG);
4289
config_held = B_TRUE;
4290
}
4291
4292
error = find_top_affected_fs(spa,
4293
head_ds, &head_ds_block, &top_affected_fs);
4294
if (error)
4295
break;
4296
4297
error = scrub_filesystem(spa, top_affected_fs,
4298
&head_ds_block, &i);
4299
4300
if (error == SET_ERROR(EFAULT)) {
4301
limit_exceeded = B_TRUE;
4302
break;
4303
}
4304
}
4305
4306
zap_cursor_fini(head_ds_cursor);
4307
kmem_free(head_ds_cursor, sizeof (*head_ds_cursor));
4308
zap_attribute_free(head_ds_attr);
4309
4310
if (config_held)
4311
dsl_pool_config_exit(dp, FTAG);
4312
}
4313
4314
zap_attribute_free(za);
4315
kmem_free(zb, sizeof (*zb));
4316
if (!limit_exceeded)
4317
dsl_errorscrub_done(scn, B_TRUE, tx);
4318
4319
dsl_errorscrub_sync_state(scn, tx);
4320
}
4321
4322
/*
4323
* This is the primary entry point for scans that is called from syncing
4324
* context. Scans must happen entirely during syncing context so that we
4325
* can guarantee that blocks we are currently scanning will not change out
4326
* from under us. While a scan is active, this function controls how quickly
4327
* transaction groups proceed, instead of the normal handling provided by
4328
* txg_sync_thread().
4329
*/
4330
void
4331
dsl_scan_sync(dsl_pool_t *dp, dmu_tx_t *tx)
4332
{
4333
int err = 0;
4334
dsl_scan_t *scn = dp->dp_scan;
4335
spa_t *spa = dp->dp_spa;
4336
state_sync_type_t sync_type = SYNC_OPTIONAL;
4337
int restart_early = 0;
4338
4339
if (spa->spa_resilver_deferred) {
4340
uint64_t to_issue, issued;
4341
4342
if (!spa_feature_is_active(dp->dp_spa,
4343
SPA_FEATURE_RESILVER_DEFER))
4344
spa_feature_incr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
4345
4346
/*
4347
* See print_scan_scrub_resilver_status() issued/total_i
4348
* @ cmd/zpool/zpool_main.c
4349
*/
4350
to_issue =
4351
scn->scn_phys.scn_to_examine - scn->scn_phys.scn_skipped;
4352
issued =
4353
scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
4354
restart_early =
4355
zfs_resilver_disable_defer ||
4356
(issued < (to_issue * zfs_resilver_defer_percent / 100));
4357
}
4358
4359
/*
4360
* Only process scans in sync pass 1.
4361
*/
4362
if (spa_sync_pass(spa) > 1)
4363
return;
4364
4365
4366
/*
4367
* Check for scn_restart_txg before checking spa_load_state, so
4368
* that we can restart an old-style scan while the pool is being
4369
* imported (see dsl_scan_init). We also restart scans if there
4370
* is a deferred resilver and the user has manually disabled
4371
* deferred resilvers via zfs_resilver_disable_defer, or if the
4372
* current scan progress is below zfs_resilver_defer_percent.
4373
*/
4374
if (dsl_scan_restarting(scn, tx) || restart_early) {
4375
setup_sync_arg_t setup_sync_arg = {
4376
.func = POOL_SCAN_SCRUB,
4377
.txgstart = 0,
4378
.txgend = 0,
4379
};
4380
dsl_scan_done(scn, B_FALSE, tx);
4381
if (vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4382
setup_sync_arg.func = POOL_SCAN_RESILVER;
4383
zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d",
4384
setup_sync_arg.func, dp->dp_spa->spa_name,
4385
(longlong_t)tx->tx_txg, restart_early);
4386
dsl_scan_setup_sync(&setup_sync_arg, tx);
4387
}
4388
4389
/*
4390
* If the spa is shutting down, then stop scanning. This will
4391
* ensure that the scan does not dirty any new data during the
4392
* shutdown phase.
4393
*/
4394
if (spa_shutting_down(spa))
4395
return;
4396
4397
/*
4398
* If the scan is inactive due to a stalled async destroy, try again.
4399
*/
4400
if (!scn->scn_async_stalled && !dsl_scan_active(scn))
4401
return;
4402
4403
/* reset scan statistics */
4404
scn->scn_visited_this_txg = 0;
4405
scn->scn_dedup_frees_this_txg = 0;
4406
scn->scn_holes_this_txg = 0;
4407
scn->scn_lt_min_this_txg = 0;
4408
scn->scn_gt_max_this_txg = 0;
4409
scn->scn_ddt_contained_this_txg = 0;
4410
scn->scn_objsets_visited_this_txg = 0;
4411
scn->scn_avg_seg_size_this_txg = 0;
4412
scn->scn_segs_this_txg = 0;
4413
scn->scn_avg_zio_size_this_txg = 0;
4414
scn->scn_zios_this_txg = 0;
4415
scn->scn_suspending = B_FALSE;
4416
scn->scn_sync_start_time = gethrtime();
4417
spa->spa_scrub_active = B_TRUE;
4418
4419
/*
4420
* First process the async destroys. If we suspend, don't do
4421
* any scrubbing or resilvering. This ensures that there are no
4422
* async destroys while we are scanning, so the scan code doesn't
4423
* have to worry about traversing it. It is also faster to free the
4424
* blocks than to scrub them.
4425
*/
4426
err = dsl_process_async_destroys(dp, tx);
4427
if (err != 0)
4428
return;
4429
4430
if (!dsl_scan_is_running(scn) || dsl_scan_is_paused_scrub(scn))
4431
return;
4432
4433
/*
4434
* Wait a few txgs after importing to begin scanning so that
4435
* we can get the pool imported quickly.
4436
*/
4437
if (spa->spa_syncing_txg < spa->spa_first_txg + SCAN_IMPORT_WAIT_TXGS)
4438
return;
4439
4440
/*
4441
* zfs_scan_suspend_progress can be set to disable scan progress.
4442
* We don't want to spin the txg_sync thread, so we add a delay
4443
* here to simulate the time spent doing a scan. This is mostly
4444
* useful for testing and debugging.
4445
*/
4446
if (zfs_scan_suspend_progress) {
4447
uint64_t scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4448
uint_t mintime = (scn->scn_phys.scn_func ==
4449
POOL_SCAN_RESILVER) ? zfs_resilver_min_time_ms :
4450
zfs_scrub_min_time_ms;
4451
4452
while (zfs_scan_suspend_progress &&
4453
!txg_sync_waiting(scn->scn_dp) &&
4454
!spa_shutting_down(scn->scn_dp->dp_spa) &&
4455
NSEC2MSEC(scan_time_ns) < mintime) {
4456
delay(hz);
4457
scan_time_ns = gethrtime() - scn->scn_sync_start_time;
4458
}
4459
return;
4460
}
4461
4462
/*
4463
* Disabled by default, set zfs_scan_report_txgs to report
4464
* average performance over the last zfs_scan_report_txgs TXGs.
4465
*/
4466
if (zfs_scan_report_txgs != 0 &&
4467
tx->tx_txg % zfs_scan_report_txgs == 0) {
4468
scn->scn_issued_before_pass += spa->spa_scan_pass_issued;
4469
spa_scan_stat_init(spa);
4470
}
4471
4472
/*
4473
* It is possible to switch from unsorted to sorted at any time,
4474
* but afterwards the scan will remain sorted unless reloaded from
4475
* a checkpoint after a reboot.
4476
*/
4477
if (!zfs_scan_legacy) {
4478
scn->scn_is_sorted = B_TRUE;
4479
if (scn->scn_last_checkpoint == 0)
4480
scn->scn_last_checkpoint = ddi_get_lbolt();
4481
}
4482
4483
/*
4484
* For sorted scans, determine what kind of work we will be doing
4485
* this txg based on our memory limitations and whether or not we
4486
* need to perform a checkpoint.
4487
*/
4488
if (scn->scn_is_sorted) {
4489
/*
4490
* If we are over our checkpoint interval, set scn_clearing
4491
* so that we can begin checkpointing immediately. The
4492
* checkpoint allows us to save a consistent bookmark
4493
* representing how much data we have scrubbed so far.
4494
* Otherwise, use the memory limit to determine if we should
4495
* scan for metadata or start issue scrub IOs. We accumulate
4496
* metadata until we hit our hard memory limit at which point
4497
* we issue scrub IOs until we are at our soft memory limit.
4498
*/
4499
if (scn->scn_checkpointing ||
4500
ddi_get_lbolt() - scn->scn_last_checkpoint >
4501
SEC_TO_TICK(zfs_scan_checkpoint_intval)) {
4502
if (!scn->scn_checkpointing)
4503
zfs_dbgmsg("begin scan checkpoint for %s",
4504
spa->spa_name);
4505
4506
scn->scn_checkpointing = B_TRUE;
4507
scn->scn_clearing = B_TRUE;
4508
} else {
4509
boolean_t should_clear = dsl_scan_should_clear(scn);
4510
if (should_clear && !scn->scn_clearing) {
4511
zfs_dbgmsg("begin scan clearing for %s",
4512
spa->spa_name);
4513
scn->scn_clearing = B_TRUE;
4514
} else if (!should_clear && scn->scn_clearing) {
4515
zfs_dbgmsg("finish scan clearing for %s",
4516
spa->spa_name);
4517
scn->scn_clearing = B_FALSE;
4518
}
4519
}
4520
} else {
4521
ASSERT0(scn->scn_checkpointing);
4522
ASSERT0(scn->scn_clearing);
4523
}
4524
4525
if (!scn->scn_clearing && scn->scn_done_txg == 0) {
4526
/* Need to scan metadata for more blocks to scrub */
4527
dsl_scan_phys_t *scnp = &scn->scn_phys;
4528
taskqid_t prefetch_tqid;
4529
4530
/*
4531
* Calculate the max number of in-flight bytes for pool-wide
4532
* scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4533
* Limits for the issuing phase are done per top-level vdev and
4534
* are handled separately.
4535
*/
4536
scn->scn_maxinflight_bytes = MIN(arc_c_max / 4, MAX(1ULL << 20,
4537
zfs_scan_vdev_limit * dsl_scan_count_data_disks(spa)));
4538
4539
if (scnp->scn_ddt_bookmark.ddb_class <=
4540
scnp->scn_ddt_class_max) {
4541
ASSERT(ZB_IS_ZERO(&scnp->scn_bookmark));
4542
zfs_dbgmsg("doing scan sync for %s txg %llu; "
4543
"ddt bm=%llu/%llu/%llu/%llx",
4544
spa->spa_name,
4545
(longlong_t)tx->tx_txg,
4546
(longlong_t)scnp->scn_ddt_bookmark.ddb_class,
4547
(longlong_t)scnp->scn_ddt_bookmark.ddb_type,
4548
(longlong_t)scnp->scn_ddt_bookmark.ddb_checksum,
4549
(longlong_t)scnp->scn_ddt_bookmark.ddb_cursor);
4550
} else {
4551
zfs_dbgmsg("doing scan sync for %s txg %llu; "
4552
"bm=%llu/%llu/%llu/%llu",
4553
spa->spa_name,
4554
(longlong_t)tx->tx_txg,
4555
(longlong_t)scnp->scn_bookmark.zb_objset,
4556
(longlong_t)scnp->scn_bookmark.zb_object,
4557
(longlong_t)scnp->scn_bookmark.zb_level,
4558
(longlong_t)scnp->scn_bookmark.zb_blkid);
4559
}
4560
4561
scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4562
NULL, ZIO_FLAG_CANFAIL);
4563
4564
scn->scn_prefetch_stop = B_FALSE;
4565
prefetch_tqid = taskq_dispatch(dp->dp_sync_taskq,
4566
dsl_scan_prefetch_thread, scn, TQ_SLEEP);
4567
ASSERT(prefetch_tqid != TASKQID_INVALID);
4568
4569
dsl_pool_config_enter(dp, FTAG);
4570
dsl_scan_visit(scn, tx);
4571
dsl_pool_config_exit(dp, FTAG);
4572
4573
mutex_enter(&dp->dp_spa->spa_scrub_lock);
4574
scn->scn_prefetch_stop = B_TRUE;
4575
cv_broadcast(&spa->spa_scrub_io_cv);
4576
mutex_exit(&dp->dp_spa->spa_scrub_lock);
4577
4578
taskq_wait_id(dp->dp_sync_taskq, prefetch_tqid);
4579
(void) zio_wait(scn->scn_zio_root);
4580
scn->scn_zio_root = NULL;
4581
4582
zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4583
"(%llu os's, %llu holes, %llu < mintxg, "
4584
"%llu in ddt, %llu > maxtxg)",
4585
(longlong_t)scn->scn_visited_this_txg,
4586
spa->spa_name,
4587
(longlong_t)NSEC2MSEC(gethrtime() -
4588
scn->scn_sync_start_time),
4589
(longlong_t)scn->scn_objsets_visited_this_txg,
4590
(longlong_t)scn->scn_holes_this_txg,
4591
(longlong_t)scn->scn_lt_min_this_txg,
4592
(longlong_t)scn->scn_ddt_contained_this_txg,
4593
(longlong_t)scn->scn_gt_max_this_txg);
4594
4595
if (!scn->scn_suspending) {
4596
ASSERT0(avl_numnodes(&scn->scn_queue));
4597
scn->scn_done_txg = tx->tx_txg + 1;
4598
if (scn->scn_is_sorted) {
4599
scn->scn_checkpointing = B_TRUE;
4600
scn->scn_clearing = B_TRUE;
4601
scn->scn_issued_before_pass +=
4602
spa->spa_scan_pass_issued;
4603
spa_scan_stat_init(spa);
4604
}
4605
zfs_dbgmsg("scan complete for %s txg %llu",
4606
spa->spa_name,
4607
(longlong_t)tx->tx_txg);
4608
}
4609
} else if (scn->scn_is_sorted && scn->scn_queues_pending != 0) {
4610
ASSERT(scn->scn_clearing);
4611
4612
/* need to issue scrubbing IOs from per-vdev queues */
4613
scn->scn_zio_root = zio_root(dp->dp_spa, NULL,
4614
NULL, ZIO_FLAG_CANFAIL);
4615
scan_io_queues_run(scn);
4616
(void) zio_wait(scn->scn_zio_root);
4617
scn->scn_zio_root = NULL;
4618
4619
/* calculate and dprintf the current memory usage */
4620
(void) dsl_scan_should_clear(scn);
4621
dsl_scan_update_stats(scn);
4622
4623
zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4624
"in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4625
(longlong_t)scn->scn_zios_this_txg,
4626
spa->spa_name,
4627
(longlong_t)scn->scn_segs_this_txg,
4628
(longlong_t)NSEC2MSEC(gethrtime() -
4629
scn->scn_sync_start_time),
4630
(longlong_t)scn->scn_avg_zio_size_this_txg,
4631
(longlong_t)scn->scn_avg_seg_size_this_txg);
4632
} else if (scn->scn_done_txg != 0 && scn->scn_done_txg <= tx->tx_txg) {
4633
/* Finished with everything. Mark the scrub as complete */
4634
zfs_dbgmsg("scan issuing complete txg %llu for %s",
4635
(longlong_t)tx->tx_txg,
4636
spa->spa_name);
4637
ASSERT3U(scn->scn_done_txg, !=, 0);
4638
ASSERT0(spa->spa_scrub_inflight);
4639
ASSERT0(scn->scn_queues_pending);
4640
dsl_scan_done(scn, B_TRUE, tx);
4641
sync_type = SYNC_MANDATORY;
4642
}
4643
4644
dsl_scan_sync_state(scn, tx, sync_type);
4645
}
4646
4647
static void
4648
count_block_issued(spa_t *spa, const blkptr_t *bp, boolean_t all)
4649
{
4650
/*
4651
* Don't count embedded bp's, since we already did the work of
4652
* scanning these when we scanned the containing block.
4653
*/
4654
if (BP_IS_EMBEDDED(bp))
4655
return;
4656
4657
/*
4658
* Update the spa's stats on how many bytes we have issued.
4659
* Sequential scrubs create a zio for each DVA of the bp. Each
4660
* of these will include all DVAs for repair purposes, but the
4661
* zio code will only try the first one unless there is an issue.
4662
* Therefore, we should only count the first DVA for these IOs.
4663
*/
4664
atomic_add_64(&spa->spa_scan_pass_issued,
4665
all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4666
}
4667
4668
static void
4669
count_block_skipped(dsl_scan_t *scn, const blkptr_t *bp, boolean_t all)
4670
{
4671
if (BP_IS_EMBEDDED(bp))
4672
return;
4673
atomic_add_64(&scn->scn_phys.scn_skipped,
4674
all ? BP_GET_ASIZE(bp) : DVA_GET_ASIZE(&bp->blk_dva[0]));
4675
}
4676
4677
static void
4678
count_block(zfs_all_blkstats_t *zab, const blkptr_t *bp)
4679
{
4680
/*
4681
* If we resume after a reboot, zab will be NULL; don't record
4682
* incomplete stats in that case.
4683
*/
4684
if (zab == NULL)
4685
return;
4686
4687
for (int i = 0; i < 4; i++) {
4688
int l = (i < 2) ? BP_GET_LEVEL(bp) : DN_MAX_LEVELS;
4689
int t = (i & 1) ? BP_GET_TYPE(bp) : DMU_OT_TOTAL;
4690
4691
if (t & DMU_OT_NEWTYPE)
4692
t = DMU_OT_OTHER;
4693
zfs_blkstat_t *zb = &zab->zab_type[l][t];
4694
int equal;
4695
4696
zb->zb_count++;
4697
zb->zb_asize += BP_GET_ASIZE(bp);
4698
zb->zb_lsize += BP_GET_LSIZE(bp);
4699
zb->zb_psize += BP_GET_PSIZE(bp);
4700
zb->zb_gangs += BP_COUNT_GANG(bp);
4701
4702
switch (BP_GET_NDVAS(bp)) {
4703
case 2:
4704
if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4705
DVA_GET_VDEV(&bp->blk_dva[1]))
4706
zb->zb_ditto_2_of_2_samevdev++;
4707
break;
4708
case 3:
4709
equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
4710
DVA_GET_VDEV(&bp->blk_dva[1])) +
4711
(DVA_GET_VDEV(&bp->blk_dva[0]) ==
4712
DVA_GET_VDEV(&bp->blk_dva[2])) +
4713
(DVA_GET_VDEV(&bp->blk_dva[1]) ==
4714
DVA_GET_VDEV(&bp->blk_dva[2]));
4715
if (equal == 1)
4716
zb->zb_ditto_2_of_3_samevdev++;
4717
else if (equal == 3)
4718
zb->zb_ditto_3_of_3_samevdev++;
4719
break;
4720
}
4721
}
4722
}
4723
4724
static void
4725
scan_io_queue_insert_impl(dsl_scan_io_queue_t *queue, scan_io_t *sio)
4726
{
4727
avl_index_t idx;
4728
dsl_scan_t *scn = queue->q_scn;
4729
4730
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4731
4732
if (unlikely(avl_is_empty(&queue->q_sios_by_addr)))
4733
atomic_add_64(&scn->scn_queues_pending, 1);
4734
if (avl_find(&queue->q_sios_by_addr, sio, &idx) != NULL) {
4735
/* block is already scheduled for reading */
4736
sio_free(sio);
4737
return;
4738
}
4739
avl_insert(&queue->q_sios_by_addr, sio, idx);
4740
queue->q_sio_memused += SIO_GET_MUSED(sio);
4741
zfs_range_tree_add(queue->q_exts_by_addr, SIO_GET_OFFSET(sio),
4742
SIO_GET_ASIZE(sio));
4743
}
4744
4745
/*
4746
* Given all the info we got from our metadata scanning process, we
4747
* construct a scan_io_t and insert it into the scan sorting queue. The
4748
* I/O must already be suitable for us to process. This is controlled
4749
* by dsl_scan_enqueue().
4750
*/
4751
static void
4752
scan_io_queue_insert(dsl_scan_io_queue_t *queue, const blkptr_t *bp, int dva_i,
4753
int zio_flags, const zbookmark_phys_t *zb)
4754
{
4755
scan_io_t *sio = sio_alloc(BP_GET_NDVAS(bp));
4756
4757
ASSERT0(BP_IS_GANG(bp));
4758
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
4759
4760
bp2sio(bp, sio, dva_i);
4761
sio->sio_flags = zio_flags;
4762
sio->sio_zb = *zb;
4763
4764
queue->q_last_ext_addr = -1;
4765
scan_io_queue_insert_impl(queue, sio);
4766
}
4767
4768
/*
4769
* Given a set of I/O parameters as discovered by the metadata traversal
4770
* process, attempts to place the I/O into the sorted queues (if allowed),
4771
* or immediately executes the I/O.
4772
*/
4773
static void
4774
dsl_scan_enqueue(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4775
const zbookmark_phys_t *zb)
4776
{
4777
spa_t *spa = dp->dp_spa;
4778
4779
ASSERT(!BP_IS_EMBEDDED(bp));
4780
4781
/*
4782
* Gang blocks are hard to issue sequentially, so we just issue them
4783
* here immediately instead of queuing them.
4784
*/
4785
if (!dp->dp_scan->scn_is_sorted || BP_IS_GANG(bp)) {
4786
scan_exec_io(dp, bp, zio_flags, zb, NULL);
4787
return;
4788
}
4789
4790
for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4791
dva_t dva;
4792
vdev_t *vdev;
4793
4794
dva = bp->blk_dva[i];
4795
vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&dva));
4796
ASSERT(vdev != NULL);
4797
4798
mutex_enter(&vdev->vdev_scan_io_queue_lock);
4799
if (vdev->vdev_scan_io_queue == NULL)
4800
vdev->vdev_scan_io_queue = scan_io_queue_create(vdev);
4801
ASSERT(dp->dp_scan != NULL);
4802
scan_io_queue_insert(vdev->vdev_scan_io_queue, bp,
4803
i, zio_flags, zb);
4804
mutex_exit(&vdev->vdev_scan_io_queue_lock);
4805
}
4806
}
4807
4808
static int
4809
dsl_scan_scrub_cb(dsl_pool_t *dp,
4810
const blkptr_t *bp, const zbookmark_phys_t *zb)
4811
{
4812
dsl_scan_t *scn = dp->dp_scan;
4813
spa_t *spa = dp->dp_spa;
4814
uint64_t phys_birth = BP_GET_PHYSICAL_BIRTH(bp);
4815
size_t psize = BP_GET_PSIZE(bp);
4816
boolean_t needs_io = B_FALSE;
4817
int zio_flags = ZIO_FLAG_SCAN_THREAD | ZIO_FLAG_RAW | ZIO_FLAG_CANFAIL;
4818
4819
count_block(dp->dp_blkstats, bp);
4820
if (phys_birth <= scn->scn_phys.scn_min_txg ||
4821
phys_birth >= scn->scn_phys.scn_max_txg) {
4822
count_block_skipped(scn, bp, B_TRUE);
4823
return (0);
4824
}
4825
4826
/* Embedded BP's have phys_birth==0, so we reject them above. */
4827
ASSERT(!BP_IS_EMBEDDED(bp));
4828
4829
ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn));
4830
if (scn->scn_phys.scn_func == POOL_SCAN_SCRUB) {
4831
zio_flags |= ZIO_FLAG_SCRUB;
4832
needs_io = B_TRUE;
4833
} else {
4834
ASSERT3U(scn->scn_phys.scn_func, ==, POOL_SCAN_RESILVER);
4835
zio_flags |= ZIO_FLAG_RESILVER;
4836
needs_io = B_FALSE;
4837
}
4838
4839
/* If it's an intent log block, failure is expected. */
4840
if (zb->zb_level == ZB_ZIL_LEVEL)
4841
zio_flags |= ZIO_FLAG_SPECULATIVE;
4842
4843
for (int d = 0; d < BP_GET_NDVAS(bp); d++) {
4844
const dva_t *dva = &bp->blk_dva[d];
4845
4846
/*
4847
* Keep track of how much data we've examined so that
4848
* zpool(8) status can make useful progress reports.
4849
*/
4850
uint64_t asize = DVA_GET_ASIZE(dva);
4851
scn->scn_phys.scn_examined += asize;
4852
spa->spa_scan_pass_exam += asize;
4853
4854
/* if it's a resilver, this may not be in the target range */
4855
if (!needs_io)
4856
needs_io = dsl_scan_need_resilver(spa, dva, psize,
4857
phys_birth);
4858
}
4859
4860
if (needs_io && !zfs_no_scrub_io) {
4861
dsl_scan_enqueue(dp, bp, zio_flags, zb);
4862
} else {
4863
count_block_skipped(scn, bp, B_TRUE);
4864
}
4865
4866
/* do not relocate this block */
4867
return (0);
4868
}
4869
4870
static void
4871
dsl_scan_scrub_done(zio_t *zio)
4872
{
4873
spa_t *spa = zio->io_spa;
4874
blkptr_t *bp = zio->io_bp;
4875
dsl_scan_io_queue_t *queue = zio->io_private;
4876
4877
abd_free(zio->io_abd);
4878
4879
if (queue == NULL) {
4880
mutex_enter(&spa->spa_scrub_lock);
4881
ASSERT3U(spa->spa_scrub_inflight, >=, BP_GET_PSIZE(bp));
4882
spa->spa_scrub_inflight -= BP_GET_PSIZE(bp);
4883
cv_broadcast(&spa->spa_scrub_io_cv);
4884
mutex_exit(&spa->spa_scrub_lock);
4885
} else {
4886
mutex_enter(&queue->q_vd->vdev_scan_io_queue_lock);
4887
ASSERT3U(queue->q_inflight_bytes, >=, BP_GET_PSIZE(bp));
4888
queue->q_inflight_bytes -= BP_GET_PSIZE(bp);
4889
cv_broadcast(&queue->q_zio_cv);
4890
mutex_exit(&queue->q_vd->vdev_scan_io_queue_lock);
4891
}
4892
4893
if (zio->io_error && (zio->io_error != ECKSUM ||
4894
!(zio->io_flags & ZIO_FLAG_SPECULATIVE))) {
4895
if (dsl_errorscrubbing(spa->spa_dsl_pool) &&
4896
!dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan)) {
4897
atomic_inc_64(&spa->spa_dsl_pool->dp_scan
4898
->errorscrub_phys.dep_errors);
4899
} else {
4900
atomic_inc_64(&spa->spa_dsl_pool->dp_scan->scn_phys
4901
.scn_errors);
4902
}
4903
}
4904
}
4905
4906
/*
4907
* Given a scanning zio's information, executes the zio. The zio need
4908
* not necessarily be only sortable, this function simply executes the
4909
* zio, no matter what it is. The optional queue argument allows the
4910
* caller to specify that they want per top level vdev IO rate limiting
4911
* instead of the legacy global limiting.
4912
*/
4913
static void
4914
scan_exec_io(dsl_pool_t *dp, const blkptr_t *bp, int zio_flags,
4915
const zbookmark_phys_t *zb, dsl_scan_io_queue_t *queue)
4916
{
4917
spa_t *spa = dp->dp_spa;
4918
dsl_scan_t *scn = dp->dp_scan;
4919
size_t size = BP_GET_PSIZE(bp);
4920
abd_t *data = abd_alloc_for_io(size, B_FALSE);
4921
zio_t *pio;
4922
4923
if (queue == NULL) {
4924
ASSERT3U(scn->scn_maxinflight_bytes, >, 0);
4925
mutex_enter(&spa->spa_scrub_lock);
4926
while (spa->spa_scrub_inflight >= scn->scn_maxinflight_bytes)
4927
cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
4928
spa->spa_scrub_inflight += BP_GET_PSIZE(bp);
4929
mutex_exit(&spa->spa_scrub_lock);
4930
pio = scn->scn_zio_root;
4931
} else {
4932
kmutex_t *q_lock = &queue->q_vd->vdev_scan_io_queue_lock;
4933
4934
ASSERT3U(queue->q_maxinflight_bytes, >, 0);
4935
mutex_enter(q_lock);
4936
while (queue->q_inflight_bytes >= queue->q_maxinflight_bytes)
4937
cv_wait(&queue->q_zio_cv, q_lock);
4938
queue->q_inflight_bytes += BP_GET_PSIZE(bp);
4939
pio = queue->q_zio;
4940
mutex_exit(q_lock);
4941
}
4942
4943
ASSERT(pio != NULL);
4944
count_block_issued(spa, bp, queue == NULL);
4945
zio_nowait(zio_read(pio, spa, bp, data, size, dsl_scan_scrub_done,
4946
queue, ZIO_PRIORITY_SCRUB, zio_flags, zb));
4947
}
4948
4949
/*
4950
* This is the primary extent sorting algorithm. We balance two parameters:
4951
* 1) how many bytes of I/O are in an extent
4952
* 2) how well the extent is filled with I/O (as a fraction of its total size)
4953
* Since we allow extents to have gaps between their constituent I/Os, it's
4954
* possible to have a fairly large extent that contains the same amount of
4955
* I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4956
* The algorithm sorts based on a score calculated from the extent's size,
4957
* the relative fill volume (in %) and a "fill weight" parameter that controls
4958
* the split between whether we prefer larger extents or more well populated
4959
* extents:
4960
*
4961
* SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4962
*
4963
* Example:
4964
* 1) assume extsz = 64 MiB
4965
* 2) assume fill = 32 MiB (extent is half full)
4966
* 3) assume fill_weight = 3
4967
* 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4968
* SCORE = 32M + (50 * 3 * 32M) / 100
4969
* SCORE = 32M + (4800M / 100)
4970
* SCORE = 32M + 48M
4971
* ^ ^
4972
* | +--- final total relative fill-based score
4973
* +--------- final total fill-based score
4974
* SCORE = 80M
4975
*
4976
* As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4977
* extents that are more completely filled (in a 3:2 ratio) vs just larger.
4978
* Note that as an optimization, we replace multiplication and division by
4979
* 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4980
*
4981
* Since we do not care if one extent is only few percent better than another,
4982
* compress the score into 6 bits via binary logarithm AKA highbit64() and
4983
* put into otherwise unused due to ashift high bits of offset. This allows
4984
* to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4985
* with single operation. Plus it makes scrubs more sequential and reduces
4986
* chances that minor extent change move it within the B-tree.
4987
*/
4988
__attribute__((always_inline)) inline
4989
static int
4990
ext_size_compare(const void *x, const void *y)
4991
{
4992
const uint64_t *a = x, *b = y;
4993
4994
return (TREE_CMP(*a, *b));
4995
}
4996
4997
ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf, uint64_t,
4998
ext_size_compare)
4999
5000
static void
5001
ext_size_create(zfs_range_tree_t *rt, void *arg)
5002
{
5003
(void) rt;
5004
zfs_btree_t *size_tree = arg;
5005
5006
zfs_btree_create(size_tree, ext_size_compare, ext_size_find_in_buf,
5007
sizeof (uint64_t));
5008
}
5009
5010
static void
5011
ext_size_destroy(zfs_range_tree_t *rt, void *arg)
5012
{
5013
(void) rt;
5014
zfs_btree_t *size_tree = arg;
5015
ASSERT0(zfs_btree_numnodes(size_tree));
5016
5017
zfs_btree_destroy(size_tree);
5018
}
5019
5020
static uint64_t
5021
ext_size_value(zfs_range_tree_t *rt, zfs_range_seg_gap_t *rsg)
5022
{
5023
(void) rt;
5024
uint64_t size = rsg->rs_end - rsg->rs_start;
5025
uint64_t score = rsg->rs_fill + ((((rsg->rs_fill << 7) / size) *
5026
fill_weight * rsg->rs_fill) >> 7);
5027
ASSERT3U(rt->rt_shift, >=, 8);
5028
return (((uint64_t)(64 - highbit64(score)) << 56) | rsg->rs_start);
5029
}
5030
5031
static void
5032
ext_size_add(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5033
{
5034
zfs_btree_t *size_tree = arg;
5035
ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5036
uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5037
zfs_btree_add(size_tree, &v);
5038
}
5039
5040
static void
5041
ext_size_remove(zfs_range_tree_t *rt, zfs_range_seg_t *rs, void *arg)
5042
{
5043
zfs_btree_t *size_tree = arg;
5044
ASSERT3U(rt->rt_type, ==, ZFS_RANGE_SEG_GAP);
5045
uint64_t v = ext_size_value(rt, (zfs_range_seg_gap_t *)rs);
5046
zfs_btree_remove(size_tree, &v);
5047
}
5048
5049
static void
5050
ext_size_vacate(zfs_range_tree_t *rt, void *arg)
5051
{
5052
zfs_btree_t *size_tree = arg;
5053
zfs_btree_clear(size_tree);
5054
zfs_btree_destroy(size_tree);
5055
5056
ext_size_create(rt, arg);
5057
}
5058
5059
static const zfs_range_tree_ops_t ext_size_ops = {
5060
.rtop_create = ext_size_create,
5061
.rtop_destroy = ext_size_destroy,
5062
.rtop_add = ext_size_add,
5063
.rtop_remove = ext_size_remove,
5064
.rtop_vacate = ext_size_vacate
5065
};
5066
5067
/*
5068
* Comparator for the q_sios_by_addr tree. Sorting is simply performed
5069
* based on LBA-order (from lowest to highest).
5070
*/
5071
static int
5072
sio_addr_compare(const void *x, const void *y)
5073
{
5074
const scan_io_t *a = x, *b = y;
5075
5076
return (TREE_CMP(SIO_GET_OFFSET(a), SIO_GET_OFFSET(b)));
5077
}
5078
5079
/* IO queues are created on demand when they are needed. */
5080
static dsl_scan_io_queue_t *
5081
scan_io_queue_create(vdev_t *vd)
5082
{
5083
dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
5084
dsl_scan_io_queue_t *q = kmem_zalloc(sizeof (*q), KM_SLEEP);
5085
5086
q->q_scn = scn;
5087
q->q_vd = vd;
5088
q->q_sio_memused = 0;
5089
q->q_last_ext_addr = -1;
5090
cv_init(&q->q_zio_cv, NULL, CV_DEFAULT, NULL);
5091
q->q_exts_by_addr = zfs_range_tree_create_gap(&ext_size_ops,
5092
ZFS_RANGE_SEG_GAP, &q->q_exts_by_size, 0, vd->vdev_ashift,
5093
zfs_scan_max_ext_gap);
5094
avl_create(&q->q_sios_by_addr, sio_addr_compare,
5095
sizeof (scan_io_t), offsetof(scan_io_t, sio_nodes.sio_addr_node));
5096
5097
return (q);
5098
}
5099
5100
/*
5101
* Destroys a scan queue and all segments and scan_io_t's contained in it.
5102
* No further execution of I/O occurs, anything pending in the queue is
5103
* simply freed without being executed.
5104
*/
5105
void
5106
dsl_scan_io_queue_destroy(dsl_scan_io_queue_t *queue)
5107
{
5108
dsl_scan_t *scn = queue->q_scn;
5109
scan_io_t *sio;
5110
void *cookie = NULL;
5111
5112
ASSERT(MUTEX_HELD(&queue->q_vd->vdev_scan_io_queue_lock));
5113
5114
if (!avl_is_empty(&queue->q_sios_by_addr))
5115
atomic_add_64(&scn->scn_queues_pending, -1);
5116
while ((sio = avl_destroy_nodes(&queue->q_sios_by_addr, &cookie)) !=
5117
NULL) {
5118
ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr,
5119
SIO_GET_OFFSET(sio), SIO_GET_ASIZE(sio)));
5120
queue->q_sio_memused -= SIO_GET_MUSED(sio);
5121
sio_free(sio);
5122
}
5123
5124
ASSERT0(queue->q_sio_memused);
5125
zfs_range_tree_vacate(queue->q_exts_by_addr, NULL, queue);
5126
zfs_range_tree_destroy(queue->q_exts_by_addr);
5127
avl_destroy(&queue->q_sios_by_addr);
5128
cv_destroy(&queue->q_zio_cv);
5129
5130
kmem_free(queue, sizeof (*queue));
5131
}
5132
5133
/*
5134
* Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5135
* called on behalf of vdev_top_transfer when creating or destroying
5136
* a mirror vdev due to zpool attach/detach.
5137
*/
5138
void
5139
dsl_scan_io_queue_vdev_xfer(vdev_t *svd, vdev_t *tvd)
5140
{
5141
mutex_enter(&svd->vdev_scan_io_queue_lock);
5142
mutex_enter(&tvd->vdev_scan_io_queue_lock);
5143
5144
VERIFY0P(tvd->vdev_scan_io_queue);
5145
tvd->vdev_scan_io_queue = svd->vdev_scan_io_queue;
5146
svd->vdev_scan_io_queue = NULL;
5147
if (tvd->vdev_scan_io_queue != NULL)
5148
tvd->vdev_scan_io_queue->q_vd = tvd;
5149
5150
mutex_exit(&tvd->vdev_scan_io_queue_lock);
5151
mutex_exit(&svd->vdev_scan_io_queue_lock);
5152
}
5153
5154
static void
5155
scan_io_queues_destroy(dsl_scan_t *scn)
5156
{
5157
vdev_t *rvd = scn->scn_dp->dp_spa->spa_root_vdev;
5158
5159
for (uint64_t i = 0; i < rvd->vdev_children; i++) {
5160
vdev_t *tvd = rvd->vdev_child[i];
5161
5162
mutex_enter(&tvd->vdev_scan_io_queue_lock);
5163
if (tvd->vdev_scan_io_queue != NULL)
5164
dsl_scan_io_queue_destroy(tvd->vdev_scan_io_queue);
5165
tvd->vdev_scan_io_queue = NULL;
5166
mutex_exit(&tvd->vdev_scan_io_queue_lock);
5167
}
5168
}
5169
5170
static void
5171
dsl_scan_freed_dva(spa_t *spa, const blkptr_t *bp, int dva_i)
5172
{
5173
dsl_pool_t *dp = spa->spa_dsl_pool;
5174
dsl_scan_t *scn = dp->dp_scan;
5175
vdev_t *vdev;
5176
kmutex_t *q_lock;
5177
dsl_scan_io_queue_t *queue;
5178
scan_io_t *srch_sio, *sio;
5179
avl_index_t idx;
5180
uint64_t start, size;
5181
5182
vdev = vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[dva_i]));
5183
ASSERT(vdev != NULL);
5184
q_lock = &vdev->vdev_scan_io_queue_lock;
5185
queue = vdev->vdev_scan_io_queue;
5186
5187
mutex_enter(q_lock);
5188
if (queue == NULL) {
5189
mutex_exit(q_lock);
5190
return;
5191
}
5192
5193
srch_sio = sio_alloc(BP_GET_NDVAS(bp));
5194
bp2sio(bp, srch_sio, dva_i);
5195
start = SIO_GET_OFFSET(srch_sio);
5196
size = SIO_GET_ASIZE(srch_sio);
5197
5198
/*
5199
* We can find the zio in two states:
5200
* 1) Cold, just sitting in the queue of zio's to be issued at
5201
* some point in the future. In this case, all we do is
5202
* remove the zio from the q_sios_by_addr tree, decrement
5203
* its data volume from the containing zfs_range_seg_t and
5204
* resort the q_exts_by_size tree to reflect that the
5205
* zfs_range_seg_t has lost some of its 'fill'. We don't shorten
5206
* the zfs_range_seg_t - this is usually rare enough not to be
5207
* worth the extra hassle of trying keep track of precise
5208
* extent boundaries.
5209
* 2) Hot, where the zio is currently in-flight in
5210
* dsl_scan_issue_ios. In this case, we can't simply
5211
* reach in and stop the in-flight zio's, so we instead
5212
* block the caller. Eventually, dsl_scan_issue_ios will
5213
* be done with issuing the zio's it gathered and will
5214
* signal us.
5215
*/
5216
sio = avl_find(&queue->q_sios_by_addr, srch_sio, &idx);
5217
sio_free(srch_sio);
5218
5219
if (sio != NULL) {
5220
blkptr_t tmpbp;
5221
5222
/* Got it while it was cold in the queue */
5223
ASSERT3U(start, ==, SIO_GET_OFFSET(sio));
5224
ASSERT3U(size, ==, SIO_GET_ASIZE(sio));
5225
avl_remove(&queue->q_sios_by_addr, sio);
5226
if (avl_is_empty(&queue->q_sios_by_addr))
5227
atomic_add_64(&scn->scn_queues_pending, -1);
5228
queue->q_sio_memused -= SIO_GET_MUSED(sio);
5229
5230
ASSERT(zfs_range_tree_contains(queue->q_exts_by_addr, start,
5231
size));
5232
zfs_range_tree_remove_fill(queue->q_exts_by_addr, start, size);
5233
5234
/* count the block as though we skipped it */
5235
sio2bp(sio, &tmpbp);
5236
count_block_skipped(scn, &tmpbp, B_FALSE);
5237
5238
sio_free(sio);
5239
}
5240
mutex_exit(q_lock);
5241
}
5242
5243
/*
5244
* Callback invoked when a zio_free() zio is executing. This needs to be
5245
* intercepted to prevent the zio from deallocating a particular portion
5246
* of disk space and it then getting reallocated and written to, while we
5247
* still have it queued up for processing.
5248
*/
5249
void
5250
dsl_scan_freed(spa_t *spa, const blkptr_t *bp)
5251
{
5252
dsl_pool_t *dp = spa->spa_dsl_pool;
5253
dsl_scan_t *scn = dp->dp_scan;
5254
5255
ASSERT(!BP_IS_EMBEDDED(bp));
5256
ASSERT(scn != NULL);
5257
if (!dsl_scan_is_running(scn))
5258
return;
5259
5260
for (int i = 0; i < BP_GET_NDVAS(bp); i++)
5261
dsl_scan_freed_dva(spa, bp, i);
5262
}
5263
5264
/*
5265
* Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5266
* not started, start it. Otherwise, only restart if max txg in DTL range is
5267
* greater than the max txg in the current scan. If the DTL max is less than
5268
* the scan max, then the vdev has not missed any new data since the resilver
5269
* started, so a restart is not needed.
5270
*/
5271
void
5272
dsl_scan_assess_vdev(dsl_pool_t *dp, vdev_t *vd)
5273
{
5274
uint64_t min, max;
5275
5276
if (!vdev_resilver_needed(vd, &min, &max))
5277
return;
5278
5279
if (!dsl_scan_resilvering(dp)) {
5280
spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5281
return;
5282
}
5283
5284
if (max <= dp->dp_scan->scn_phys.scn_max_txg)
5285
return;
5286
5287
/* restart is needed, check if it can be deferred */
5288
if (spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER))
5289
vdev_defer_resilver(vd);
5290
else
5291
spa_async_request(dp->dp_spa, SPA_ASYNC_RESILVER);
5292
}
5293
5294
ZFS_MODULE_PARAM(zfs, zfs_, scan_vdev_limit, U64, ZMOD_RW,
5295
"Max bytes in flight per leaf vdev for scrubs and resilvers");
5296
5297
ZFS_MODULE_PARAM(zfs, zfs_, scrub_min_time_ms, UINT, ZMOD_RW,
5298
"Min millisecs to scrub per txg");
5299
5300
ZFS_MODULE_PARAM(zfs, zfs_, obsolete_min_time_ms, UINT, ZMOD_RW,
5301
"Min millisecs to obsolete per txg");
5302
5303
ZFS_MODULE_PARAM(zfs, zfs_, free_min_time_ms, UINT, ZMOD_RW,
5304
"Min millisecs to free per txg");
5305
5306
ZFS_MODULE_PARAM(zfs, zfs_, resilver_min_time_ms, UINT, ZMOD_RW,
5307
"Min millisecs to resilver per txg");
5308
5309
ZFS_MODULE_PARAM(zfs, zfs_, scan_suspend_progress, INT, ZMOD_RW,
5310
"Set to prevent scans from progressing");
5311
5312
ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_io, INT, ZMOD_RW,
5313
"Set to disable scrub I/O");
5314
5315
ZFS_MODULE_PARAM(zfs, zfs_, no_scrub_prefetch, INT, ZMOD_RW,
5316
"Set to disable scrub prefetching");
5317
5318
ZFS_MODULE_PARAM(zfs, zfs_, async_block_max_blocks, U64, ZMOD_RW,
5319
"Max number of blocks freed in one txg");
5320
5321
ZFS_MODULE_PARAM(zfs, zfs_, max_async_dedup_frees, U64, ZMOD_RW,
5322
"Max number of dedup blocks freed in one txg");
5323
5324
ZFS_MODULE_PARAM(zfs, zfs_, free_bpobj_enabled, INT, ZMOD_RW,
5325
"Enable processing of the free_bpobj");
5326
5327
ZFS_MODULE_PARAM(zfs, zfs_, scan_blkstats, INT, ZMOD_RW,
5328
"Enable block statistics calculation during scrub");
5329
5330
ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_fact, UINT, ZMOD_RW,
5331
"Fraction of RAM for scan hard limit");
5332
5333
ZFS_MODULE_PARAM(zfs, zfs_, scan_issue_strategy, UINT, ZMOD_RW,
5334
"IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5335
5336
ZFS_MODULE_PARAM(zfs, zfs_, scan_legacy, INT, ZMOD_RW,
5337
"Scrub using legacy non-sequential method");
5338
5339
ZFS_MODULE_PARAM(zfs, zfs_, scan_checkpoint_intval, UINT, ZMOD_RW,
5340
"Scan progress on-disk checkpointing interval");
5341
5342
ZFS_MODULE_PARAM(zfs, zfs_, scan_max_ext_gap, U64, ZMOD_RW,
5343
"Max gap in bytes between sequential scrub / resilver I/Os");
5344
5345
ZFS_MODULE_PARAM(zfs, zfs_, scan_mem_lim_soft_fact, UINT, ZMOD_RW,
5346
"Fraction of hard limit used as soft limit");
5347
5348
ZFS_MODULE_PARAM(zfs, zfs_, scan_strict_mem_lim, INT, ZMOD_RW,
5349
"Tunable to attempt to reduce lock contention");
5350
5351
ZFS_MODULE_PARAM(zfs, zfs_, scan_fill_weight, UINT, ZMOD_RW,
5352
"Tunable to adjust bias towards more filled segments during scans");
5353
5354
ZFS_MODULE_PARAM(zfs, zfs_, scan_report_txgs, UINT, ZMOD_RW,
5355
"Tunable to report resilver performance over the last N txgs");
5356
5357
ZFS_MODULE_PARAM(zfs, zfs_, resilver_disable_defer, INT, ZMOD_RW,
5358
"Process all resilvers immediately");
5359
5360
ZFS_MODULE_PARAM(zfs, zfs_, resilver_defer_percent, UINT, ZMOD_RW,
5361
"Issued IO percent complete after which resilvers are deferred");
5362
5363
ZFS_MODULE_PARAM(zfs, zfs_, scrub_error_blocks_per_txg, UINT, ZMOD_RW,
5364
"Error blocks to be scrubbed in one txg");
5365
5366