Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/openzfs/module/zstd/lib/common/xxhash.c
48774 views
1
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-only
2
/*
3
* xxHash - Fast Hash algorithm
4
* Copyright (c) 2012-2020, Yann Collet, Facebook, Inc.
5
*
6
* You can contact the author at :
7
* - xxHash homepage: http://www.xxhash.com
8
* - xxHash source repository : https://github.com/Cyan4973/xxHash
9
*
10
* This source code is licensed under both the BSD-style license (found in the
11
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
12
* in the COPYING file in the root directory of this source tree).
13
* You may select, at your option, one of the above-listed licenses.
14
*/
15
16
17
/* *************************************
18
* Tuning parameters
19
***************************************/
20
/*!XXH_FORCE_MEMORY_ACCESS :
21
* By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
22
* Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
23
* The below switch allow to select different access method for improved performance.
24
* Method 0 (default) : use `memcpy()`. Safe and portable.
25
* Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
26
* This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
27
* Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
28
* It can generate buggy code on targets which do not support unaligned memory accesses.
29
* But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
30
* See http://stackoverflow.com/a/32095106/646947 for details.
31
* Prefer these methods in priority order (0 > 1 > 2)
32
*/
33
#ifndef XXH_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
34
# if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
35
# define XXH_FORCE_MEMORY_ACCESS 2
36
# elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
37
(defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
38
defined(__ICCARM__)
39
# define XXH_FORCE_MEMORY_ACCESS 1
40
# endif
41
#endif
42
43
/*!XXH_ACCEPT_NULL_INPUT_POINTER :
44
* If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
45
* When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
46
* By default, this option is disabled. To enable it, uncomment below define :
47
*/
48
/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
49
50
/*!XXH_FORCE_NATIVE_FORMAT :
51
* By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
52
* Results are therefore identical for little-endian and big-endian CPU.
53
* This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
54
* Should endian-independence be of no importance for your application, you may set the #define below to 1,
55
* to improve speed for Big-endian CPU.
56
* This option has no impact on Little_Endian CPU.
57
*/
58
#ifndef XXH_FORCE_NATIVE_FORMAT /* can be defined externally */
59
# define XXH_FORCE_NATIVE_FORMAT 0
60
#endif
61
62
/*!XXH_FORCE_ALIGN_CHECK :
63
* This is a minor performance trick, only useful with lots of very small keys.
64
* It means : check for aligned/unaligned input.
65
* The check costs one initial branch per hash; set to 0 when the input data
66
* is guaranteed to be aligned.
67
*/
68
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
69
# if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
70
# define XXH_FORCE_ALIGN_CHECK 0
71
# else
72
# define XXH_FORCE_ALIGN_CHECK 1
73
# endif
74
#endif
75
76
77
/* *************************************
78
* Includes & Memory related functions
79
***************************************/
80
/* Modify the local functions below should you wish to use some other memory routines */
81
/* for malloc(), free() */
82
#include <stdlib.h>
83
#include <stddef.h> /* size_t */
84
static void* XXH_malloc(size_t s) { return malloc(s); }
85
static void XXH_free (void* p) { free(p); }
86
/* for memcpy() */
87
#include <string.h>
88
static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
89
90
#ifndef XXH_STATIC_LINKING_ONLY
91
# define XXH_STATIC_LINKING_ONLY
92
#endif
93
#include "xxhash.h"
94
95
96
/* *************************************
97
* Compiler Specific Options
98
***************************************/
99
#if (defined(__GNUC__) && !defined(__STRICT_ANSI__)) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
100
# define INLINE_KEYWORD inline
101
#else
102
# define INLINE_KEYWORD
103
#endif
104
105
#if defined(__GNUC__) || defined(__ICCARM__)
106
# define FORCE_INLINE_ATTR __attribute__((always_inline))
107
#elif defined(_MSC_VER)
108
# define FORCE_INLINE_ATTR __forceinline
109
#else
110
# define FORCE_INLINE_ATTR
111
#endif
112
113
#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
114
115
116
#ifdef _MSC_VER
117
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
118
#endif
119
120
121
/* *************************************
122
* Basic Types
123
***************************************/
124
#ifndef MEM_MODULE
125
# define MEM_MODULE
126
# if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
127
# include <stdint.h>
128
typedef uint8_t BYTE;
129
typedef uint16_t U16;
130
typedef uint32_t U32;
131
typedef int32_t S32;
132
typedef uint64_t U64;
133
# else
134
typedef unsigned char BYTE;
135
typedef unsigned short U16;
136
typedef unsigned int U32;
137
typedef signed int S32;
138
typedef unsigned long long U64; /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
139
# endif
140
#endif
141
142
143
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
144
145
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
146
static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
147
static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
148
149
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
150
151
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
152
/* currently only defined for gcc and icc */
153
typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
154
155
static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
156
static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
157
158
#else
159
160
/* portable and safe solution. Generally efficient.
161
* see : http://stackoverflow.com/a/32095106/646947
162
*/
163
164
static U32 XXH_read32(const void* memPtr)
165
{
166
U32 val;
167
memcpy(&val, memPtr, sizeof(val));
168
return val;
169
}
170
171
static U64 XXH_read64(const void* memPtr)
172
{
173
U64 val;
174
memcpy(&val, memPtr, sizeof(val));
175
return val;
176
}
177
178
#endif /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
179
180
181
/* ****************************************
182
* Compiler-specific Functions and Macros
183
******************************************/
184
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
185
186
/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
187
#if defined(_MSC_VER)
188
# define XXH_rotl32(x,r) _rotl(x,r)
189
# define XXH_rotl64(x,r) _rotl64(x,r)
190
#else
191
#if defined(__ICCARM__)
192
# include <intrinsics.h>
193
# define XXH_rotl32(x,r) __ROR(x,(32 - r))
194
#else
195
# define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
196
#endif
197
# define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
198
#endif
199
200
#if defined(_MSC_VER) /* Visual Studio */
201
# define XXH_swap32 _byteswap_ulong
202
# define XXH_swap64 _byteswap_uint64
203
#elif GCC_VERSION >= 403
204
# define XXH_swap32 __builtin_bswap32
205
# define XXH_swap64 __builtin_bswap64
206
#else
207
static U32 XXH_swap32 (U32 x)
208
{
209
return ((x << 24) & 0xff000000 ) |
210
((x << 8) & 0x00ff0000 ) |
211
((x >> 8) & 0x0000ff00 ) |
212
((x >> 24) & 0x000000ff );
213
}
214
static U64 XXH_swap64 (U64 x)
215
{
216
return ((x << 56) & 0xff00000000000000ULL) |
217
((x << 40) & 0x00ff000000000000ULL) |
218
((x << 24) & 0x0000ff0000000000ULL) |
219
((x << 8) & 0x000000ff00000000ULL) |
220
((x >> 8) & 0x00000000ff000000ULL) |
221
((x >> 24) & 0x0000000000ff0000ULL) |
222
((x >> 40) & 0x000000000000ff00ULL) |
223
((x >> 56) & 0x00000000000000ffULL);
224
}
225
#endif
226
227
228
/* *************************************
229
* Architecture Macros
230
***************************************/
231
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
232
233
/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
234
#ifndef XXH_CPU_LITTLE_ENDIAN
235
static const int g_one = 1;
236
# define XXH_CPU_LITTLE_ENDIAN (*(const char*)(&g_one))
237
#endif
238
239
240
/* ***************************
241
* Memory reads
242
*****************************/
243
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
244
245
FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
246
{
247
if (align==XXH_unaligned)
248
return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
249
else
250
return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
251
}
252
253
FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
254
{
255
return XXH_readLE32_align(ptr, endian, XXH_unaligned);
256
}
257
258
static U32 XXH_readBE32(const void* ptr)
259
{
260
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
261
}
262
263
FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
264
{
265
if (align==XXH_unaligned)
266
return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
267
else
268
return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
269
}
270
271
FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
272
{
273
return XXH_readLE64_align(ptr, endian, XXH_unaligned);
274
}
275
276
static U64 XXH_readBE64(const void* ptr)
277
{
278
return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
279
}
280
281
282
/* *************************************
283
* Macros
284
***************************************/
285
#define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
286
287
288
/* *************************************
289
* Constants
290
***************************************/
291
static const U32 PRIME32_1 = 2654435761U;
292
static const U32 PRIME32_2 = 2246822519U;
293
static const U32 PRIME32_3 = 3266489917U;
294
static const U32 PRIME32_4 = 668265263U;
295
static const U32 PRIME32_5 = 374761393U;
296
297
static const U64 PRIME64_1 = 11400714785074694791ULL;
298
static const U64 PRIME64_2 = 14029467366897019727ULL;
299
static const U64 PRIME64_3 = 1609587929392839161ULL;
300
static const U64 PRIME64_4 = 9650029242287828579ULL;
301
static const U64 PRIME64_5 = 2870177450012600261ULL;
302
303
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
304
305
306
/* **************************
307
* Utils
308
****************************/
309
XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
310
{
311
memcpy(dstState, srcState, sizeof(*dstState));
312
}
313
314
XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
315
{
316
memcpy(dstState, srcState, sizeof(*dstState));
317
}
318
319
320
/* ***************************
321
* Simple Hash Functions
322
*****************************/
323
324
static U32 XXH32_round(U32 seed, U32 input)
325
{
326
seed += input * PRIME32_2;
327
seed = XXH_rotl32(seed, 13);
328
seed *= PRIME32_1;
329
return seed;
330
}
331
332
FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
333
{
334
const BYTE* p = (const BYTE*)input;
335
const BYTE* bEnd = p + len;
336
U32 h32;
337
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
338
339
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
340
if (p==NULL) {
341
len=0;
342
bEnd=p=(const BYTE*)(size_t)16;
343
}
344
#endif
345
346
if (len>=16) {
347
const BYTE* const limit = bEnd - 16;
348
U32 v1 = seed + PRIME32_1 + PRIME32_2;
349
U32 v2 = seed + PRIME32_2;
350
U32 v3 = seed + 0;
351
U32 v4 = seed - PRIME32_1;
352
353
do {
354
v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
355
v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
356
v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
357
v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
358
} while (p<=limit);
359
360
h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
361
} else {
362
h32 = seed + PRIME32_5;
363
}
364
365
h32 += (U32) len;
366
367
while (p+4<=bEnd) {
368
h32 += XXH_get32bits(p) * PRIME32_3;
369
h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
370
p+=4;
371
}
372
373
while (p<bEnd) {
374
h32 += (*p) * PRIME32_5;
375
h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
376
p++;
377
}
378
379
h32 ^= h32 >> 15;
380
h32 *= PRIME32_2;
381
h32 ^= h32 >> 13;
382
h32 *= PRIME32_3;
383
h32 ^= h32 >> 16;
384
385
return h32;
386
}
387
388
389
XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
390
{
391
#if 0
392
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
393
XXH32_CREATESTATE_STATIC(state);
394
XXH32_reset(state, seed);
395
XXH32_update(state, input, len);
396
return XXH32_digest(state);
397
#else
398
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
399
400
if (XXH_FORCE_ALIGN_CHECK) {
401
if ((((size_t)input) & 3) == 0) { /* Input is 4-bytes aligned, leverage the speed benefit */
402
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
403
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
404
else
405
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
406
} }
407
408
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
409
return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
410
else
411
return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
412
#endif
413
}
414
415
416
static U64 XXH64_round(U64 acc, U64 input)
417
{
418
acc += input * PRIME64_2;
419
acc = XXH_rotl64(acc, 31);
420
acc *= PRIME64_1;
421
return acc;
422
}
423
424
static U64 XXH64_mergeRound(U64 acc, U64 val)
425
{
426
val = XXH64_round(0, val);
427
acc ^= val;
428
acc = acc * PRIME64_1 + PRIME64_4;
429
return acc;
430
}
431
432
FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
433
{
434
const BYTE* p = (const BYTE*)input;
435
const BYTE* const bEnd = p + len;
436
U64 h64;
437
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
438
439
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
440
if (p==NULL) {
441
len=0;
442
bEnd=p=(const BYTE*)(size_t)32;
443
}
444
#endif
445
446
if (len>=32) {
447
const BYTE* const limit = bEnd - 32;
448
U64 v1 = seed + PRIME64_1 + PRIME64_2;
449
U64 v2 = seed + PRIME64_2;
450
U64 v3 = seed + 0;
451
U64 v4 = seed - PRIME64_1;
452
453
do {
454
v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
455
v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
456
v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
457
v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
458
} while (p<=limit);
459
460
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
461
h64 = XXH64_mergeRound(h64, v1);
462
h64 = XXH64_mergeRound(h64, v2);
463
h64 = XXH64_mergeRound(h64, v3);
464
h64 = XXH64_mergeRound(h64, v4);
465
466
} else {
467
h64 = seed + PRIME64_5;
468
}
469
470
h64 += (U64) len;
471
472
while (p+8<=bEnd) {
473
U64 const k1 = XXH64_round(0, XXH_get64bits(p));
474
h64 ^= k1;
475
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
476
p+=8;
477
}
478
479
if (p+4<=bEnd) {
480
h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
481
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
482
p+=4;
483
}
484
485
while (p<bEnd) {
486
h64 ^= (*p) * PRIME64_5;
487
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
488
p++;
489
}
490
491
h64 ^= h64 >> 33;
492
h64 *= PRIME64_2;
493
h64 ^= h64 >> 29;
494
h64 *= PRIME64_3;
495
h64 ^= h64 >> 32;
496
497
return h64;
498
}
499
500
501
XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
502
{
503
#if 0
504
/* Simple version, good for code maintenance, but unfortunately slow for small inputs */
505
XXH64_CREATESTATE_STATIC(state);
506
XXH64_reset(state, seed);
507
XXH64_update(state, input, len);
508
return XXH64_digest(state);
509
#else
510
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
511
512
if (XXH_FORCE_ALIGN_CHECK) {
513
if ((((size_t)input) & 7)==0) { /* Input is aligned, let's leverage the speed advantage */
514
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
515
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
516
else
517
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
518
} }
519
520
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
521
return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
522
else
523
return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
524
#endif
525
}
526
527
528
/* **************************************************
529
* Advanced Hash Functions
530
****************************************************/
531
532
XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
533
{
534
return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
535
}
536
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
537
{
538
XXH_free(statePtr);
539
return XXH_OK;
540
}
541
542
XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
543
{
544
return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
545
}
546
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
547
{
548
XXH_free(statePtr);
549
return XXH_OK;
550
}
551
552
553
/*** Hash feed ***/
554
555
XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
556
{
557
XXH32_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
558
memset(&state, 0, sizeof(state)-4); /* do not write into reserved, for future removal */
559
state.v1 = seed + PRIME32_1 + PRIME32_2;
560
state.v2 = seed + PRIME32_2;
561
state.v3 = seed + 0;
562
state.v4 = seed - PRIME32_1;
563
memcpy(statePtr, &state, sizeof(state));
564
return XXH_OK;
565
}
566
567
568
XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
569
{
570
XXH64_state_t state; /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
571
memset(&state, 0, sizeof(state)-8); /* do not write into reserved, for future removal */
572
state.v1 = seed + PRIME64_1 + PRIME64_2;
573
state.v2 = seed + PRIME64_2;
574
state.v3 = seed + 0;
575
state.v4 = seed - PRIME64_1;
576
memcpy(statePtr, &state, sizeof(state));
577
return XXH_OK;
578
}
579
580
581
FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
582
{
583
const BYTE* p = (const BYTE*)input;
584
const BYTE* const bEnd = p + len;
585
586
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
587
if (input==NULL) return XXH_ERROR;
588
#endif
589
590
state->total_len_32 += (unsigned)len;
591
state->large_len |= (len>=16) | (state->total_len_32>=16);
592
593
if (state->memsize + len < 16) { /* fill in tmp buffer */
594
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
595
state->memsize += (unsigned)len;
596
return XXH_OK;
597
}
598
599
if (state->memsize) { /* some data left from previous update */
600
XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
601
{ const U32* p32 = state->mem32;
602
state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
603
state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
604
state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
605
state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
606
}
607
p += 16-state->memsize;
608
state->memsize = 0;
609
}
610
611
if (p <= bEnd-16) {
612
const BYTE* const limit = bEnd - 16;
613
U32 v1 = state->v1;
614
U32 v2 = state->v2;
615
U32 v3 = state->v3;
616
U32 v4 = state->v4;
617
618
do {
619
v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
620
v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
621
v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
622
v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
623
} while (p<=limit);
624
625
state->v1 = v1;
626
state->v2 = v2;
627
state->v3 = v3;
628
state->v4 = v4;
629
}
630
631
if (p < bEnd) {
632
XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
633
state->memsize = (unsigned)(bEnd-p);
634
}
635
636
return XXH_OK;
637
}
638
639
XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
640
{
641
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
642
643
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
644
return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
645
else
646
return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
647
}
648
649
650
651
FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
652
{
653
const BYTE * p = (const BYTE*)state->mem32;
654
const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
655
U32 h32;
656
657
if (state->large_len) {
658
h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
659
} else {
660
h32 = state->v3 /* == seed */ + PRIME32_5;
661
}
662
663
h32 += state->total_len_32;
664
665
while (p+4<=bEnd) {
666
h32 += XXH_readLE32(p, endian) * PRIME32_3;
667
h32 = XXH_rotl32(h32, 17) * PRIME32_4;
668
p+=4;
669
}
670
671
while (p<bEnd) {
672
h32 += (*p) * PRIME32_5;
673
h32 = XXH_rotl32(h32, 11) * PRIME32_1;
674
p++;
675
}
676
677
h32 ^= h32 >> 15;
678
h32 *= PRIME32_2;
679
h32 ^= h32 >> 13;
680
h32 *= PRIME32_3;
681
h32 ^= h32 >> 16;
682
683
return h32;
684
}
685
686
687
XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
688
{
689
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
690
691
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
692
return XXH32_digest_endian(state_in, XXH_littleEndian);
693
else
694
return XXH32_digest_endian(state_in, XXH_bigEndian);
695
}
696
697
698
699
/* **** XXH64 **** */
700
701
FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
702
{
703
const BYTE* p = (const BYTE*)input;
704
const BYTE* const bEnd = p + len;
705
706
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
707
if (input==NULL) return XXH_ERROR;
708
#endif
709
710
state->total_len += len;
711
712
if (state->memsize + len < 32) { /* fill in tmp buffer */
713
if (input != NULL) {
714
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
715
}
716
state->memsize += (U32)len;
717
return XXH_OK;
718
}
719
720
if (state->memsize) { /* tmp buffer is full */
721
XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
722
state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
723
state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
724
state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
725
state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
726
p += 32-state->memsize;
727
state->memsize = 0;
728
}
729
730
if (p+32 <= bEnd) {
731
const BYTE* const limit = bEnd - 32;
732
U64 v1 = state->v1;
733
U64 v2 = state->v2;
734
U64 v3 = state->v3;
735
U64 v4 = state->v4;
736
737
do {
738
v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
739
v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
740
v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
741
v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
742
} while (p<=limit);
743
744
state->v1 = v1;
745
state->v2 = v2;
746
state->v3 = v3;
747
state->v4 = v4;
748
}
749
750
if (p < bEnd) {
751
XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
752
state->memsize = (unsigned)(bEnd-p);
753
}
754
755
return XXH_OK;
756
}
757
758
XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
759
{
760
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
761
762
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
763
return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
764
else
765
return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
766
}
767
768
769
770
FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
771
{
772
const BYTE * p = (const BYTE*)state->mem64;
773
const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
774
U64 h64;
775
776
if (state->total_len >= 32) {
777
U64 const v1 = state->v1;
778
U64 const v2 = state->v2;
779
U64 const v3 = state->v3;
780
U64 const v4 = state->v4;
781
782
h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
783
h64 = XXH64_mergeRound(h64, v1);
784
h64 = XXH64_mergeRound(h64, v2);
785
h64 = XXH64_mergeRound(h64, v3);
786
h64 = XXH64_mergeRound(h64, v4);
787
} else {
788
h64 = state->v3 + PRIME64_5;
789
}
790
791
h64 += (U64) state->total_len;
792
793
while (p+8<=bEnd) {
794
U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
795
h64 ^= k1;
796
h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
797
p+=8;
798
}
799
800
if (p+4<=bEnd) {
801
h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
802
h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
803
p+=4;
804
}
805
806
while (p<bEnd) {
807
h64 ^= (*p) * PRIME64_5;
808
h64 = XXH_rotl64(h64, 11) * PRIME64_1;
809
p++;
810
}
811
812
h64 ^= h64 >> 33;
813
h64 *= PRIME64_2;
814
h64 ^= h64 >> 29;
815
h64 *= PRIME64_3;
816
h64 ^= h64 >> 32;
817
818
return h64;
819
}
820
821
822
XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
823
{
824
XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
825
826
if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
827
return XXH64_digest_endian(state_in, XXH_littleEndian);
828
else
829
return XXH64_digest_endian(state_in, XXH_bigEndian);
830
}
831
832
833
/* **************************
834
* Canonical representation
835
****************************/
836
837
/*! Default XXH result types are basic unsigned 32 and 64 bits.
838
* The canonical representation follows human-readable write convention, aka big-endian (large digits first).
839
* These functions allow transformation of hash result into and from its canonical format.
840
* This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
841
*/
842
843
XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
844
{
845
XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
846
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
847
memcpy(dst, &hash, sizeof(*dst));
848
}
849
850
XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
851
{
852
XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
853
if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
854
memcpy(dst, &hash, sizeof(*dst));
855
}
856
857
XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
858
{
859
return XXH_readBE32(src);
860
}
861
862
XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
863
{
864
return XXH_readBE64(src);
865
}
866
867