Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/xz-embedded/linux/lib/xz/xz_dec_lzma2.c
48521 views
1
/*
2
* LZMA2 decoder
3
*
4
* Authors: Lasse Collin <[email protected]>
5
* Igor Pavlov <https://7-zip.org/>
6
*
7
* This file has been put into the public domain.
8
* You can do whatever you want with this file.
9
*/
10
11
#include "xz_private.h"
12
#include "xz_lzma2.h"
13
14
/*
15
* Range decoder initialization eats the first five bytes of each LZMA chunk.
16
*/
17
#define RC_INIT_BYTES 5
18
19
/*
20
* Minimum number of usable input buffer to safely decode one LZMA symbol.
21
* The worst case is that we decode 22 bits using probabilities and 26
22
* direct bits. This may decode at maximum of 20 bytes of input. However,
23
* lzma_main() does an extra normalization before returning, thus we
24
* need to put 21 here.
25
*/
26
#define LZMA_IN_REQUIRED 21
27
28
/*
29
* Dictionary (history buffer)
30
*
31
* These are always true:
32
* start <= pos <= full <= end
33
* pos <= limit <= end
34
*
35
* In multi-call mode, also these are true:
36
* end == size
37
* size <= size_max
38
* allocated <= size
39
*
40
* Most of these variables are size_t to support single-call mode,
41
* in which the dictionary variables address the actual output
42
* buffer directly.
43
*/
44
struct dictionary {
45
/* Beginning of the history buffer */
46
uint8_t *buf;
47
48
/* Old position in buf (before decoding more data) */
49
size_t start;
50
51
/* Position in buf */
52
size_t pos;
53
54
/*
55
* How full dictionary is. This is used to detect corrupt input that
56
* would read beyond the beginning of the uncompressed stream.
57
*/
58
size_t full;
59
60
/* Write limit; we don't write to buf[limit] or later bytes. */
61
size_t limit;
62
63
/*
64
* End of the dictionary buffer. In multi-call mode, this is
65
* the same as the dictionary size. In single-call mode, this
66
* indicates the size of the output buffer.
67
*/
68
size_t end;
69
70
/*
71
* Size of the dictionary as specified in Block Header. This is used
72
* together with "full" to detect corrupt input that would make us
73
* read beyond the beginning of the uncompressed stream.
74
*/
75
uint32_t size;
76
77
/*
78
* Maximum allowed dictionary size in multi-call mode.
79
* This is ignored in single-call mode.
80
*/
81
uint32_t size_max;
82
83
/*
84
* Amount of memory currently allocated for the dictionary.
85
* This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
86
* size_max is always the same as the allocated size.)
87
*/
88
uint32_t allocated;
89
90
/* Operation mode */
91
enum xz_mode mode;
92
};
93
94
/* Range decoder */
95
struct rc_dec {
96
uint32_t range;
97
uint32_t code;
98
99
/*
100
* Number of initializing bytes remaining to be read
101
* by rc_read_init().
102
*/
103
uint32_t init_bytes_left;
104
105
/*
106
* Buffer from which we read our input. It can be either
107
* temp.buf or the caller-provided input buffer.
108
*/
109
const uint8_t *in;
110
size_t in_pos;
111
size_t in_limit;
112
};
113
114
/* Probabilities for a length decoder. */
115
struct lzma_len_dec {
116
/* Probability of match length being at least 10 */
117
uint16_t choice;
118
119
/* Probability of match length being at least 18 */
120
uint16_t choice2;
121
122
/* Probabilities for match lengths 2-9 */
123
uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
124
125
/* Probabilities for match lengths 10-17 */
126
uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
127
128
/* Probabilities for match lengths 18-273 */
129
uint16_t high[LEN_HIGH_SYMBOLS];
130
};
131
132
struct lzma_dec {
133
/* Distances of latest four matches */
134
uint32_t rep0;
135
uint32_t rep1;
136
uint32_t rep2;
137
uint32_t rep3;
138
139
/* Types of the most recently seen LZMA symbols */
140
enum lzma_state state;
141
142
/*
143
* Length of a match. This is updated so that dict_repeat can
144
* be called again to finish repeating the whole match.
145
*/
146
uint32_t len;
147
148
/*
149
* LZMA properties or related bit masks (number of literal
150
* context bits, a mask derived from the number of literal
151
* position bits, and a mask derived from the number
152
* position bits)
153
*/
154
uint32_t lc;
155
uint32_t literal_pos_mask; /* (1 << lp) - 1 */
156
uint32_t pos_mask; /* (1 << pb) - 1 */
157
158
/* If 1, it's a match. Otherwise it's a single 8-bit literal. */
159
uint16_t is_match[STATES][POS_STATES_MAX];
160
161
/* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
162
uint16_t is_rep[STATES];
163
164
/*
165
* If 0, distance of a repeated match is rep0.
166
* Otherwise check is_rep1.
167
*/
168
uint16_t is_rep0[STATES];
169
170
/*
171
* If 0, distance of a repeated match is rep1.
172
* Otherwise check is_rep2.
173
*/
174
uint16_t is_rep1[STATES];
175
176
/* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
177
uint16_t is_rep2[STATES];
178
179
/*
180
* If 1, the repeated match has length of one byte. Otherwise
181
* the length is decoded from rep_len_decoder.
182
*/
183
uint16_t is_rep0_long[STATES][POS_STATES_MAX];
184
185
/*
186
* Probability tree for the highest two bits of the match
187
* distance. There is a separate probability tree for match
188
* lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
189
*/
190
uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
191
192
/*
193
* Probility trees for additional bits for match distance
194
* when the distance is in the range [4, 127].
195
*/
196
uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
197
198
/*
199
* Probability tree for the lowest four bits of a match
200
* distance that is equal to or greater than 128.
201
*/
202
uint16_t dist_align[ALIGN_SIZE];
203
204
/* Length of a normal match */
205
struct lzma_len_dec match_len_dec;
206
207
/* Length of a repeated match */
208
struct lzma_len_dec rep_len_dec;
209
210
/* Probabilities of literals */
211
uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
212
};
213
214
struct lzma2_dec {
215
/* Position in xz_dec_lzma2_run(). */
216
enum lzma2_seq {
217
SEQ_CONTROL,
218
SEQ_UNCOMPRESSED_1,
219
SEQ_UNCOMPRESSED_2,
220
SEQ_COMPRESSED_0,
221
SEQ_COMPRESSED_1,
222
SEQ_PROPERTIES,
223
SEQ_LZMA_PREPARE,
224
SEQ_LZMA_RUN,
225
SEQ_COPY
226
} sequence;
227
228
/* Next position after decoding the compressed size of the chunk. */
229
enum lzma2_seq next_sequence;
230
231
/* Uncompressed size of LZMA chunk (2 MiB at maximum) */
232
uint32_t uncompressed;
233
234
/*
235
* Compressed size of LZMA chunk or compressed/uncompressed
236
* size of uncompressed chunk (64 KiB at maximum)
237
*/
238
uint32_t compressed;
239
240
/*
241
* True if dictionary reset is needed. This is false before
242
* the first chunk (LZMA or uncompressed).
243
*/
244
bool need_dict_reset;
245
246
/*
247
* True if new LZMA properties are needed. This is false
248
* before the first LZMA chunk.
249
*/
250
bool need_props;
251
252
#ifdef XZ_DEC_MICROLZMA
253
bool pedantic_microlzma;
254
#endif
255
};
256
257
struct xz_dec_lzma2 {
258
/*
259
* The order below is important on x86 to reduce code size and
260
* it shouldn't hurt on other platforms. Everything up to and
261
* including lzma.pos_mask are in the first 128 bytes on x86-32,
262
* which allows using smaller instructions to access those
263
* variables. On x86-64, fewer variables fit into the first 128
264
* bytes, but this is still the best order without sacrificing
265
* the readability by splitting the structures.
266
*/
267
struct rc_dec rc;
268
struct dictionary dict;
269
struct lzma2_dec lzma2;
270
struct lzma_dec lzma;
271
272
/*
273
* Temporary buffer which holds small number of input bytes between
274
* decoder calls. See lzma2_lzma() for details.
275
*/
276
struct {
277
uint32_t size;
278
uint8_t buf[3 * LZMA_IN_REQUIRED];
279
} temp;
280
};
281
282
/**************
283
* Dictionary *
284
**************/
285
286
/*
287
* Reset the dictionary state. When in single-call mode, set up the beginning
288
* of the dictionary to point to the actual output buffer.
289
*/
290
static void dict_reset(struct dictionary *dict, struct xz_buf *b)
291
{
292
if (DEC_IS_SINGLE(dict->mode)) {
293
dict->buf = b->out + b->out_pos;
294
dict->end = b->out_size - b->out_pos;
295
}
296
297
dict->start = 0;
298
dict->pos = 0;
299
dict->limit = 0;
300
dict->full = 0;
301
}
302
303
/* Set dictionary write limit */
304
static void dict_limit(struct dictionary *dict, size_t out_max)
305
{
306
if (dict->end - dict->pos <= out_max)
307
dict->limit = dict->end;
308
else
309
dict->limit = dict->pos + out_max;
310
}
311
312
/* Return true if at least one byte can be written into the dictionary. */
313
static inline bool dict_has_space(const struct dictionary *dict)
314
{
315
return dict->pos < dict->limit;
316
}
317
318
/*
319
* Get a byte from the dictionary at the given distance. The distance is
320
* assumed to valid, or as a special case, zero when the dictionary is
321
* still empty. This special case is needed for single-call decoding to
322
* avoid writing a '\0' to the end of the destination buffer.
323
*/
324
static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
325
{
326
size_t offset = dict->pos - dist - 1;
327
328
if (dist >= dict->pos)
329
offset += dict->end;
330
331
return dict->full > 0 ? dict->buf[offset] : 0;
332
}
333
334
/*
335
* Put one byte into the dictionary. It is assumed that there is space for it.
336
*/
337
static inline void dict_put(struct dictionary *dict, uint8_t byte)
338
{
339
dict->buf[dict->pos++] = byte;
340
341
if (dict->full < dict->pos)
342
dict->full = dict->pos;
343
}
344
345
/*
346
* Repeat given number of bytes from the given distance. If the distance is
347
* invalid, false is returned. On success, true is returned and *len is
348
* updated to indicate how many bytes were left to be repeated.
349
*/
350
static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
351
{
352
size_t back;
353
uint32_t left;
354
355
if (dist >= dict->full || dist >= dict->size)
356
return false;
357
358
left = min_t(size_t, dict->limit - dict->pos, *len);
359
*len -= left;
360
361
back = dict->pos - dist - 1;
362
if (dist >= dict->pos)
363
back += dict->end;
364
365
do {
366
dict->buf[dict->pos++] = dict->buf[back++];
367
if (back == dict->end)
368
back = 0;
369
} while (--left > 0);
370
371
if (dict->full < dict->pos)
372
dict->full = dict->pos;
373
374
return true;
375
}
376
377
/* Copy uncompressed data as is from input to dictionary and output buffers. */
378
static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
379
uint32_t *left)
380
{
381
size_t copy_size;
382
383
while (*left > 0 && b->in_pos < b->in_size
384
&& b->out_pos < b->out_size) {
385
copy_size = min(b->in_size - b->in_pos,
386
b->out_size - b->out_pos);
387
if (copy_size > dict->end - dict->pos)
388
copy_size = dict->end - dict->pos;
389
if (copy_size > *left)
390
copy_size = *left;
391
392
*left -= copy_size;
393
394
/*
395
* If doing in-place decompression in single-call mode and the
396
* uncompressed size of the file is larger than the caller
397
* thought (i.e. it is invalid input!), the buffers below may
398
* overlap and cause undefined behavior with memcpy().
399
* With valid inputs memcpy() would be fine here.
400
*/
401
memmove(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
402
dict->pos += copy_size;
403
404
if (dict->full < dict->pos)
405
dict->full = dict->pos;
406
407
if (DEC_IS_MULTI(dict->mode)) {
408
if (dict->pos == dict->end)
409
dict->pos = 0;
410
411
/*
412
* Like above but for multi-call mode: use memmove()
413
* to avoid undefined behavior with invalid input.
414
*/
415
memmove(b->out + b->out_pos, b->in + b->in_pos,
416
copy_size);
417
}
418
419
dict->start = dict->pos;
420
421
b->out_pos += copy_size;
422
b->in_pos += copy_size;
423
}
424
}
425
426
#ifdef XZ_DEC_MICROLZMA
427
# define DICT_FLUSH_SUPPORTS_SKIPPING true
428
#else
429
# define DICT_FLUSH_SUPPORTS_SKIPPING false
430
#endif
431
432
/*
433
* Flush pending data from dictionary to b->out. It is assumed that there is
434
* enough space in b->out. This is guaranteed because caller uses dict_limit()
435
* before decoding data into the dictionary.
436
*/
437
static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
438
{
439
size_t copy_size = dict->pos - dict->start;
440
441
if (DEC_IS_MULTI(dict->mode)) {
442
if (dict->pos == dict->end)
443
dict->pos = 0;
444
445
/*
446
* These buffers cannot overlap even if doing in-place
447
* decompression because in multi-call mode dict->buf
448
* has been allocated by us in this file; it's not
449
* provided by the caller like in single-call mode.
450
*
451
* With MicroLZMA, b->out can be NULL to skip bytes that
452
* the caller doesn't need. This cannot be done with XZ
453
* because it would break BCJ filters.
454
*/
455
if (!DICT_FLUSH_SUPPORTS_SKIPPING || b->out != NULL)
456
memcpy(b->out + b->out_pos, dict->buf + dict->start,
457
copy_size);
458
}
459
460
dict->start = dict->pos;
461
b->out_pos += copy_size;
462
return copy_size;
463
}
464
465
/*****************
466
* Range decoder *
467
*****************/
468
469
/* Reset the range decoder. */
470
static void rc_reset(struct rc_dec *rc)
471
{
472
rc->range = (uint32_t)-1;
473
rc->code = 0;
474
rc->init_bytes_left = RC_INIT_BYTES;
475
}
476
477
/*
478
* Read the first five initial bytes into rc->code if they haven't been
479
* read already. (Yes, the first byte gets completely ignored.)
480
*/
481
static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b)
482
{
483
while (rc->init_bytes_left > 0) {
484
if (b->in_pos == b->in_size)
485
return false;
486
487
rc->code = (rc->code << 8) + b->in[b->in_pos++];
488
--rc->init_bytes_left;
489
}
490
491
return true;
492
}
493
494
/* Return true if there may not be enough input for the next decoding loop. */
495
static inline bool rc_limit_exceeded(const struct rc_dec *rc)
496
{
497
return rc->in_pos > rc->in_limit;
498
}
499
500
/*
501
* Return true if it is possible (from point of view of range decoder) that
502
* we have reached the end of the LZMA chunk.
503
*/
504
static inline bool rc_is_finished(const struct rc_dec *rc)
505
{
506
return rc->code == 0;
507
}
508
509
/* Read the next input byte if needed. */
510
static __always_inline void rc_normalize(struct rc_dec *rc)
511
{
512
if (rc->range < RC_TOP_VALUE) {
513
rc->range <<= RC_SHIFT_BITS;
514
rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
515
}
516
}
517
518
/*
519
* Decode one bit. In some versions, this function has been split in three
520
* functions so that the compiler is supposed to be able to more easily avoid
521
* an extra branch. In this particular version of the LZMA decoder, this
522
* doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
523
* on x86). Using a non-split version results in nicer looking code too.
524
*
525
* NOTE: This must return an int. Do not make it return a bool or the speed
526
* of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
527
* and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
528
*/
529
static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
530
{
531
uint32_t bound;
532
int bit;
533
534
rc_normalize(rc);
535
bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
536
if (rc->code < bound) {
537
rc->range = bound;
538
*prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
539
bit = 0;
540
} else {
541
rc->range -= bound;
542
rc->code -= bound;
543
*prob -= *prob >> RC_MOVE_BITS;
544
bit = 1;
545
}
546
547
return bit;
548
}
549
550
/* Decode a bittree starting from the most significant bit. */
551
static __always_inline uint32_t rc_bittree(struct rc_dec *rc,
552
uint16_t *probs, uint32_t limit)
553
{
554
uint32_t symbol = 1;
555
556
do {
557
if (rc_bit(rc, &probs[symbol]))
558
symbol = (symbol << 1) + 1;
559
else
560
symbol <<= 1;
561
} while (symbol < limit);
562
563
return symbol;
564
}
565
566
/* Decode a bittree starting from the least significant bit. */
567
static __always_inline void rc_bittree_reverse(struct rc_dec *rc,
568
uint16_t *probs,
569
uint32_t *dest, uint32_t limit)
570
{
571
uint32_t symbol = 1;
572
uint32_t i = 0;
573
574
do {
575
if (rc_bit(rc, &probs[symbol])) {
576
symbol = (symbol << 1) + 1;
577
*dest += 1 << i;
578
} else {
579
symbol <<= 1;
580
}
581
} while (++i < limit);
582
}
583
584
/* Decode direct bits (fixed fifty-fifty probability) */
585
static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
586
{
587
uint32_t mask;
588
589
do {
590
rc_normalize(rc);
591
rc->range >>= 1;
592
rc->code -= rc->range;
593
mask = (uint32_t)0 - (rc->code >> 31);
594
rc->code += rc->range & mask;
595
*dest = (*dest << 1) + (mask + 1);
596
} while (--limit > 0);
597
}
598
599
/********
600
* LZMA *
601
********/
602
603
/* Get pointer to literal coder probability array. */
604
static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
605
{
606
uint32_t prev_byte = dict_get(&s->dict, 0);
607
uint32_t low = prev_byte >> (8 - s->lzma.lc);
608
uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
609
return s->lzma.literal[low + high];
610
}
611
612
/* Decode a literal (one 8-bit byte) */
613
static void lzma_literal(struct xz_dec_lzma2 *s)
614
{
615
uint16_t *probs;
616
uint32_t symbol;
617
uint32_t match_byte;
618
uint32_t match_bit;
619
uint32_t offset;
620
uint32_t i;
621
622
probs = lzma_literal_probs(s);
623
624
if (lzma_state_is_literal(s->lzma.state)) {
625
symbol = rc_bittree(&s->rc, probs, 0x100);
626
} else {
627
symbol = 1;
628
match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
629
offset = 0x100;
630
631
do {
632
match_bit = match_byte & offset;
633
match_byte <<= 1;
634
i = offset + match_bit + symbol;
635
636
if (rc_bit(&s->rc, &probs[i])) {
637
symbol = (symbol << 1) + 1;
638
offset &= match_bit;
639
} else {
640
symbol <<= 1;
641
offset &= ~match_bit;
642
}
643
} while (symbol < 0x100);
644
}
645
646
dict_put(&s->dict, (uint8_t)symbol);
647
lzma_state_literal(&s->lzma.state);
648
}
649
650
/* Decode the length of the match into s->lzma.len. */
651
static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
652
uint32_t pos_state)
653
{
654
uint16_t *probs;
655
uint32_t limit;
656
657
if (!rc_bit(&s->rc, &l->choice)) {
658
probs = l->low[pos_state];
659
limit = LEN_LOW_SYMBOLS;
660
s->lzma.len = MATCH_LEN_MIN;
661
} else {
662
if (!rc_bit(&s->rc, &l->choice2)) {
663
probs = l->mid[pos_state];
664
limit = LEN_MID_SYMBOLS;
665
s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
666
} else {
667
probs = l->high;
668
limit = LEN_HIGH_SYMBOLS;
669
s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
670
+ LEN_MID_SYMBOLS;
671
}
672
}
673
674
s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
675
}
676
677
/* Decode a match. The distance will be stored in s->lzma.rep0. */
678
static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
679
{
680
uint16_t *probs;
681
uint32_t dist_slot;
682
uint32_t limit;
683
684
lzma_state_match(&s->lzma.state);
685
686
s->lzma.rep3 = s->lzma.rep2;
687
s->lzma.rep2 = s->lzma.rep1;
688
s->lzma.rep1 = s->lzma.rep0;
689
690
lzma_len(s, &s->lzma.match_len_dec, pos_state);
691
692
probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
693
dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
694
695
if (dist_slot < DIST_MODEL_START) {
696
s->lzma.rep0 = dist_slot;
697
} else {
698
limit = (dist_slot >> 1) - 1;
699
s->lzma.rep0 = 2 + (dist_slot & 1);
700
701
if (dist_slot < DIST_MODEL_END) {
702
s->lzma.rep0 <<= limit;
703
probs = s->lzma.dist_special + s->lzma.rep0
704
- dist_slot - 1;
705
rc_bittree_reverse(&s->rc, probs,
706
&s->lzma.rep0, limit);
707
} else {
708
rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
709
s->lzma.rep0 <<= ALIGN_BITS;
710
rc_bittree_reverse(&s->rc, s->lzma.dist_align,
711
&s->lzma.rep0, ALIGN_BITS);
712
}
713
}
714
}
715
716
/*
717
* Decode a repeated match. The distance is one of the four most recently
718
* seen matches. The distance will be stored in s->lzma.rep0.
719
*/
720
static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
721
{
722
uint32_t tmp;
723
724
if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
725
if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
726
s->lzma.state][pos_state])) {
727
lzma_state_short_rep(&s->lzma.state);
728
s->lzma.len = 1;
729
return;
730
}
731
} else {
732
if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
733
tmp = s->lzma.rep1;
734
} else {
735
if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
736
tmp = s->lzma.rep2;
737
} else {
738
tmp = s->lzma.rep3;
739
s->lzma.rep3 = s->lzma.rep2;
740
}
741
742
s->lzma.rep2 = s->lzma.rep1;
743
}
744
745
s->lzma.rep1 = s->lzma.rep0;
746
s->lzma.rep0 = tmp;
747
}
748
749
lzma_state_long_rep(&s->lzma.state);
750
lzma_len(s, &s->lzma.rep_len_dec, pos_state);
751
}
752
753
/* LZMA decoder core */
754
static bool lzma_main(struct xz_dec_lzma2 *s)
755
{
756
uint32_t pos_state;
757
758
/*
759
* If the dictionary was reached during the previous call, try to
760
* finish the possibly pending repeat in the dictionary.
761
*/
762
if (dict_has_space(&s->dict) && s->lzma.len > 0)
763
dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
764
765
/*
766
* Decode more LZMA symbols. One iteration may consume up to
767
* LZMA_IN_REQUIRED - 1 bytes.
768
*/
769
while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
770
pos_state = s->dict.pos & s->lzma.pos_mask;
771
772
if (!rc_bit(&s->rc, &s->lzma.is_match[
773
s->lzma.state][pos_state])) {
774
lzma_literal(s);
775
} else {
776
if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
777
lzma_rep_match(s, pos_state);
778
else
779
lzma_match(s, pos_state);
780
781
if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
782
return false;
783
}
784
}
785
786
/*
787
* Having the range decoder always normalized when we are outside
788
* this function makes it easier to correctly handle end of the chunk.
789
*/
790
rc_normalize(&s->rc);
791
792
return true;
793
}
794
795
/*
796
* Reset the LZMA decoder and range decoder state. Dictionary is not reset
797
* here, because LZMA state may be reset without resetting the dictionary.
798
*/
799
static void lzma_reset(struct xz_dec_lzma2 *s)
800
{
801
uint16_t *probs;
802
size_t i;
803
804
s->lzma.state = STATE_LIT_LIT;
805
s->lzma.rep0 = 0;
806
s->lzma.rep1 = 0;
807
s->lzma.rep2 = 0;
808
s->lzma.rep3 = 0;
809
s->lzma.len = 0;
810
811
/*
812
* All probabilities are initialized to the same value. This hack
813
* makes the code smaller by avoiding a separate loop for each
814
* probability array.
815
*
816
* This could be optimized so that only that part of literal
817
* probabilities that are actually required. In the common case
818
* we would write 12 KiB less.
819
*/
820
probs = s->lzma.is_match[0];
821
for (i = 0; i < PROBS_TOTAL; ++i)
822
probs[i] = RC_BIT_MODEL_TOTAL / 2;
823
824
rc_reset(&s->rc);
825
}
826
827
/*
828
* Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
829
* from the decoded lp and pb values. On success, the LZMA decoder state is
830
* reset and true is returned.
831
*/
832
static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
833
{
834
if (props > (4 * 5 + 4) * 9 + 8)
835
return false;
836
837
s->lzma.pos_mask = 0;
838
while (props >= 9 * 5) {
839
props -= 9 * 5;
840
++s->lzma.pos_mask;
841
}
842
843
s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
844
845
s->lzma.literal_pos_mask = 0;
846
while (props >= 9) {
847
props -= 9;
848
++s->lzma.literal_pos_mask;
849
}
850
851
s->lzma.lc = props;
852
853
if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
854
return false;
855
856
s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
857
858
lzma_reset(s);
859
860
return true;
861
}
862
863
/*********
864
* LZMA2 *
865
*********/
866
867
/*
868
* The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
869
* been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
870
* wrapper function takes care of making the LZMA decoder's assumption safe.
871
*
872
* As long as there is plenty of input left to be decoded in the current LZMA
873
* chunk, we decode directly from the caller-supplied input buffer until
874
* there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
875
* s->temp.buf, which (hopefully) gets filled on the next call to this
876
* function. We decode a few bytes from the temporary buffer so that we can
877
* continue decoding from the caller-supplied input buffer again.
878
*/
879
static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
880
{
881
size_t in_avail;
882
uint32_t tmp;
883
884
in_avail = b->in_size - b->in_pos;
885
if (s->temp.size > 0 || s->lzma2.compressed == 0) {
886
tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
887
if (tmp > s->lzma2.compressed - s->temp.size)
888
tmp = s->lzma2.compressed - s->temp.size;
889
if (tmp > in_avail)
890
tmp = in_avail;
891
892
memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
893
894
if (s->temp.size + tmp == s->lzma2.compressed) {
895
memzero(s->temp.buf + s->temp.size + tmp,
896
sizeof(s->temp.buf)
897
- s->temp.size - tmp);
898
s->rc.in_limit = s->temp.size + tmp;
899
} else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
900
s->temp.size += tmp;
901
b->in_pos += tmp;
902
return true;
903
} else {
904
s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
905
}
906
907
s->rc.in = s->temp.buf;
908
s->rc.in_pos = 0;
909
910
if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
911
return false;
912
913
s->lzma2.compressed -= s->rc.in_pos;
914
915
if (s->rc.in_pos < s->temp.size) {
916
s->temp.size -= s->rc.in_pos;
917
memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
918
s->temp.size);
919
return true;
920
}
921
922
b->in_pos += s->rc.in_pos - s->temp.size;
923
s->temp.size = 0;
924
}
925
926
in_avail = b->in_size - b->in_pos;
927
if (in_avail >= LZMA_IN_REQUIRED) {
928
s->rc.in = b->in;
929
s->rc.in_pos = b->in_pos;
930
931
if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
932
s->rc.in_limit = b->in_pos + s->lzma2.compressed;
933
else
934
s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
935
936
if (!lzma_main(s))
937
return false;
938
939
in_avail = s->rc.in_pos - b->in_pos;
940
if (in_avail > s->lzma2.compressed)
941
return false;
942
943
s->lzma2.compressed -= in_avail;
944
b->in_pos = s->rc.in_pos;
945
}
946
947
in_avail = b->in_size - b->in_pos;
948
if (in_avail < LZMA_IN_REQUIRED) {
949
if (in_avail > s->lzma2.compressed)
950
in_avail = s->lzma2.compressed;
951
952
memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
953
s->temp.size = in_avail;
954
b->in_pos += in_avail;
955
}
956
957
return true;
958
}
959
960
/*
961
* Take care of the LZMA2 control layer, and forward the job of actual LZMA
962
* decoding or copying of uncompressed chunks to other functions.
963
*/
964
XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
965
struct xz_buf *b)
966
{
967
uint32_t tmp;
968
969
while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
970
switch (s->lzma2.sequence) {
971
case SEQ_CONTROL:
972
/*
973
* LZMA2 control byte
974
*
975
* Exact values:
976
* 0x00 End marker
977
* 0x01 Dictionary reset followed by
978
* an uncompressed chunk
979
* 0x02 Uncompressed chunk (no dictionary reset)
980
*
981
* Highest three bits (s->control & 0xE0):
982
* 0xE0 Dictionary reset, new properties and state
983
* reset, followed by LZMA compressed chunk
984
* 0xC0 New properties and state reset, followed
985
* by LZMA compressed chunk (no dictionary
986
* reset)
987
* 0xA0 State reset using old properties,
988
* followed by LZMA compressed chunk (no
989
* dictionary reset)
990
* 0x80 LZMA chunk (no dictionary or state reset)
991
*
992
* For LZMA compressed chunks, the lowest five bits
993
* (s->control & 1F) are the highest bits of the
994
* uncompressed size (bits 16-20).
995
*
996
* A new LZMA2 stream must begin with a dictionary
997
* reset. The first LZMA chunk must set new
998
* properties and reset the LZMA state.
999
*
1000
* Values that don't match anything described above
1001
* are invalid and we return XZ_DATA_ERROR.
1002
*/
1003
tmp = b->in[b->in_pos++];
1004
1005
if (tmp == 0x00)
1006
return XZ_STREAM_END;
1007
1008
if (tmp >= 0xE0 || tmp == 0x01) {
1009
s->lzma2.need_props = true;
1010
s->lzma2.need_dict_reset = false;
1011
dict_reset(&s->dict, b);
1012
} else if (s->lzma2.need_dict_reset) {
1013
return XZ_DATA_ERROR;
1014
}
1015
1016
if (tmp >= 0x80) {
1017
s->lzma2.uncompressed = (tmp & 0x1F) << 16;
1018
s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
1019
1020
if (tmp >= 0xC0) {
1021
/*
1022
* When there are new properties,
1023
* state reset is done at
1024
* SEQ_PROPERTIES.
1025
*/
1026
s->lzma2.need_props = false;
1027
s->lzma2.next_sequence
1028
= SEQ_PROPERTIES;
1029
1030
} else if (s->lzma2.need_props) {
1031
return XZ_DATA_ERROR;
1032
1033
} else {
1034
s->lzma2.next_sequence
1035
= SEQ_LZMA_PREPARE;
1036
if (tmp >= 0xA0)
1037
lzma_reset(s);
1038
}
1039
} else {
1040
if (tmp > 0x02)
1041
return XZ_DATA_ERROR;
1042
1043
s->lzma2.sequence = SEQ_COMPRESSED_0;
1044
s->lzma2.next_sequence = SEQ_COPY;
1045
}
1046
1047
break;
1048
1049
case SEQ_UNCOMPRESSED_1:
1050
s->lzma2.uncompressed
1051
+= (uint32_t)b->in[b->in_pos++] << 8;
1052
s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
1053
break;
1054
1055
case SEQ_UNCOMPRESSED_2:
1056
s->lzma2.uncompressed
1057
+= (uint32_t)b->in[b->in_pos++] + 1;
1058
s->lzma2.sequence = SEQ_COMPRESSED_0;
1059
break;
1060
1061
case SEQ_COMPRESSED_0:
1062
s->lzma2.compressed
1063
= (uint32_t)b->in[b->in_pos++] << 8;
1064
s->lzma2.sequence = SEQ_COMPRESSED_1;
1065
break;
1066
1067
case SEQ_COMPRESSED_1:
1068
s->lzma2.compressed
1069
+= (uint32_t)b->in[b->in_pos++] + 1;
1070
s->lzma2.sequence = s->lzma2.next_sequence;
1071
break;
1072
1073
case SEQ_PROPERTIES:
1074
if (!lzma_props(s, b->in[b->in_pos++]))
1075
return XZ_DATA_ERROR;
1076
1077
s->lzma2.sequence = SEQ_LZMA_PREPARE;
1078
1079
/* Fall through */
1080
1081
case SEQ_LZMA_PREPARE:
1082
if (s->lzma2.compressed < RC_INIT_BYTES)
1083
return XZ_DATA_ERROR;
1084
1085
if (!rc_read_init(&s->rc, b))
1086
return XZ_OK;
1087
1088
s->lzma2.compressed -= RC_INIT_BYTES;
1089
s->lzma2.sequence = SEQ_LZMA_RUN;
1090
1091
/* Fall through */
1092
1093
case SEQ_LZMA_RUN:
1094
/*
1095
* Set dictionary limit to indicate how much we want
1096
* to be encoded at maximum. Decode new data into the
1097
* dictionary. Flush the new data from dictionary to
1098
* b->out. Check if we finished decoding this chunk.
1099
* In case the dictionary got full but we didn't fill
1100
* the output buffer yet, we may run this loop
1101
* multiple times without changing s->lzma2.sequence.
1102
*/
1103
dict_limit(&s->dict, min_t(size_t,
1104
b->out_size - b->out_pos,
1105
s->lzma2.uncompressed));
1106
if (!lzma2_lzma(s, b))
1107
return XZ_DATA_ERROR;
1108
1109
s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1110
1111
if (s->lzma2.uncompressed == 0) {
1112
if (s->lzma2.compressed > 0 || s->lzma.len > 0
1113
|| !rc_is_finished(&s->rc))
1114
return XZ_DATA_ERROR;
1115
1116
rc_reset(&s->rc);
1117
s->lzma2.sequence = SEQ_CONTROL;
1118
1119
} else if (b->out_pos == b->out_size
1120
|| (b->in_pos == b->in_size
1121
&& s->temp.size
1122
< s->lzma2.compressed)) {
1123
return XZ_OK;
1124
}
1125
1126
break;
1127
1128
case SEQ_COPY:
1129
dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
1130
if (s->lzma2.compressed > 0)
1131
return XZ_OK;
1132
1133
s->lzma2.sequence = SEQ_CONTROL;
1134
break;
1135
}
1136
}
1137
1138
return XZ_OK;
1139
}
1140
1141
XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
1142
uint32_t dict_max)
1143
{
1144
struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
1145
if (s == NULL)
1146
return NULL;
1147
1148
s->dict.mode = mode;
1149
s->dict.size_max = dict_max;
1150
1151
if (DEC_IS_PREALLOC(mode)) {
1152
s->dict.buf = vmalloc(dict_max);
1153
if (s->dict.buf == NULL) {
1154
kfree(s);
1155
return NULL;
1156
}
1157
} else if (DEC_IS_DYNALLOC(mode)) {
1158
s->dict.buf = NULL;
1159
s->dict.allocated = 0;
1160
}
1161
1162
return s;
1163
}
1164
1165
XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
1166
{
1167
/* This limits dictionary size to 3 GiB to keep parsing simpler. */
1168
if (props > 39)
1169
return XZ_OPTIONS_ERROR;
1170
1171
s->dict.size = 2 + (props & 1);
1172
s->dict.size <<= (props >> 1) + 11;
1173
1174
if (DEC_IS_MULTI(s->dict.mode)) {
1175
if (s->dict.size > s->dict.size_max)
1176
return XZ_MEMLIMIT_ERROR;
1177
1178
s->dict.end = s->dict.size;
1179
1180
if (DEC_IS_DYNALLOC(s->dict.mode)) {
1181
if (s->dict.allocated < s->dict.size) {
1182
s->dict.allocated = s->dict.size;
1183
vfree(s->dict.buf);
1184
s->dict.buf = vmalloc(s->dict.size);
1185
if (s->dict.buf == NULL) {
1186
s->dict.allocated = 0;
1187
return XZ_MEM_ERROR;
1188
}
1189
}
1190
}
1191
}
1192
1193
s->lzma2.sequence = SEQ_CONTROL;
1194
s->lzma2.need_dict_reset = true;
1195
1196
s->temp.size = 0;
1197
1198
return XZ_OK;
1199
}
1200
1201
XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
1202
{
1203
if (DEC_IS_MULTI(s->dict.mode))
1204
vfree(s->dict.buf);
1205
1206
kfree(s);
1207
}
1208
1209
#ifdef XZ_DEC_MICROLZMA
1210
/* This is a wrapper struct to have a nice struct name in the public API. */
1211
struct xz_dec_microlzma {
1212
struct xz_dec_lzma2 s;
1213
};
1214
1215
enum xz_ret xz_dec_microlzma_run(struct xz_dec_microlzma *s_ptr,
1216
struct xz_buf *b)
1217
{
1218
struct xz_dec_lzma2 *s = &s_ptr->s;
1219
1220
/*
1221
* sequence is SEQ_PROPERTIES before the first input byte,
1222
* SEQ_LZMA_PREPARE until a total of five bytes have been read,
1223
* and SEQ_LZMA_RUN for the rest of the input stream.
1224
*/
1225
if (s->lzma2.sequence != SEQ_LZMA_RUN) {
1226
if (s->lzma2.sequence == SEQ_PROPERTIES) {
1227
/* One byte is needed for the props. */
1228
if (b->in_pos >= b->in_size)
1229
return XZ_OK;
1230
1231
/*
1232
* Don't increment b->in_pos here. The same byte is
1233
* also passed to rc_read_init() which will ignore it.
1234
*/
1235
if (!lzma_props(s, ~b->in[b->in_pos]))
1236
return XZ_DATA_ERROR;
1237
1238
s->lzma2.sequence = SEQ_LZMA_PREPARE;
1239
}
1240
1241
/*
1242
* xz_dec_microlzma_reset() doesn't validate the compressed
1243
* size so we do it here. We have to limit the maximum size
1244
* to avoid integer overflows in lzma2_lzma(). 3 GiB is a nice
1245
* round number and much more than users of this code should
1246
* ever need.
1247
*/
1248
if (s->lzma2.compressed < RC_INIT_BYTES
1249
|| s->lzma2.compressed > (3U << 30))
1250
return XZ_DATA_ERROR;
1251
1252
if (!rc_read_init(&s->rc, b))
1253
return XZ_OK;
1254
1255
s->lzma2.compressed -= RC_INIT_BYTES;
1256
s->lzma2.sequence = SEQ_LZMA_RUN;
1257
1258
dict_reset(&s->dict, b);
1259
}
1260
1261
/* This is to allow increasing b->out_size between calls. */
1262
if (DEC_IS_SINGLE(s->dict.mode))
1263
s->dict.end = b->out_size - b->out_pos;
1264
1265
while (true) {
1266
dict_limit(&s->dict, min_t(size_t, b->out_size - b->out_pos,
1267
s->lzma2.uncompressed));
1268
1269
if (!lzma2_lzma(s, b))
1270
return XZ_DATA_ERROR;
1271
1272
s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1273
1274
if (s->lzma2.uncompressed == 0) {
1275
if (s->lzma2.pedantic_microlzma) {
1276
if (s->lzma2.compressed > 0 || s->lzma.len > 0
1277
|| !rc_is_finished(&s->rc))
1278
return XZ_DATA_ERROR;
1279
}
1280
1281
return XZ_STREAM_END;
1282
}
1283
1284
if (b->out_pos == b->out_size)
1285
return XZ_OK;
1286
1287
if (b->in_pos == b->in_size
1288
&& s->temp.size < s->lzma2.compressed)
1289
return XZ_OK;
1290
}
1291
}
1292
1293
struct xz_dec_microlzma *xz_dec_microlzma_alloc(enum xz_mode mode,
1294
uint32_t dict_size)
1295
{
1296
struct xz_dec_microlzma *s;
1297
1298
/* Restrict dict_size to the same range as in the LZMA2 code. */
1299
if (dict_size < 4096 || dict_size > (3U << 30))
1300
return NULL;
1301
1302
s = kmalloc(sizeof(*s), GFP_KERNEL);
1303
if (s == NULL)
1304
return NULL;
1305
1306
s->s.dict.mode = mode;
1307
s->s.dict.size = dict_size;
1308
1309
if (DEC_IS_MULTI(mode)) {
1310
s->s.dict.end = dict_size;
1311
1312
s->s.dict.buf = vmalloc(dict_size);
1313
if (s->s.dict.buf == NULL) {
1314
kfree(s);
1315
return NULL;
1316
}
1317
}
1318
1319
return s;
1320
}
1321
1322
void xz_dec_microlzma_reset(struct xz_dec_microlzma *s, uint32_t comp_size,
1323
uint32_t uncomp_size, int uncomp_size_is_exact)
1324
{
1325
/*
1326
* comp_size is validated in xz_dec_microlzma_run().
1327
* uncomp_size can safely be anything.
1328
*/
1329
s->s.lzma2.compressed = comp_size;
1330
s->s.lzma2.uncompressed = uncomp_size;
1331
s->s.lzma2.pedantic_microlzma = uncomp_size_is_exact;
1332
1333
s->s.lzma2.sequence = SEQ_PROPERTIES;
1334
s->s.temp.size = 0;
1335
}
1336
1337
void xz_dec_microlzma_end(struct xz_dec_microlzma *s)
1338
{
1339
if (DEC_IS_MULTI(s->s.dict.mode))
1340
vfree(s->s.dict.buf);
1341
1342
kfree(s);
1343
}
1344
#endif
1345
1346