Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/zstd/lib/compress/zstd_compress_internal.h
48378 views
1
/*
2
* Copyright (c) Yann Collet, Facebook, Inc.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
/* This header contains definitions
12
* that shall **only** be used by modules within lib/compress.
13
*/
14
15
#ifndef ZSTD_COMPRESS_H
16
#define ZSTD_COMPRESS_H
17
18
/*-*************************************
19
* Dependencies
20
***************************************/
21
#include "../common/zstd_internal.h"
22
#include "zstd_cwksp.h"
23
#ifdef ZSTD_MULTITHREAD
24
# include "zstdmt_compress.h"
25
#endif
26
27
#if defined (__cplusplus)
28
extern "C" {
29
#endif
30
31
/*-*************************************
32
* Constants
33
***************************************/
34
#define kSearchStrength 8
35
#define HASH_READ_SIZE 8
36
#define ZSTD_DUBT_UNSORTED_MARK 1 /* For btlazy2 strategy, index ZSTD_DUBT_UNSORTED_MARK==1 means "unsorted".
37
It could be confused for a real successor at index "1", if sorted as larger than its predecessor.
38
It's not a big deal though : candidate will just be sorted again.
39
Additionally, candidate position 1 will be lost.
40
But candidate 1 cannot hide a large tree of candidates, so it's a minimal loss.
41
The benefit is that ZSTD_DUBT_UNSORTED_MARK cannot be mishandled after table re-use with a different strategy.
42
This constant is required by ZSTD_compressBlock_btlazy2() and ZSTD_reduceTable_internal() */
43
44
45
/*-*************************************
46
* Context memory management
47
***************************************/
48
typedef enum { ZSTDcs_created=0, ZSTDcs_init, ZSTDcs_ongoing, ZSTDcs_ending } ZSTD_compressionStage_e;
49
typedef enum { zcss_init=0, zcss_load, zcss_flush } ZSTD_cStreamStage;
50
51
typedef struct ZSTD_prefixDict_s {
52
const void* dict;
53
size_t dictSize;
54
ZSTD_dictContentType_e dictContentType;
55
} ZSTD_prefixDict;
56
57
typedef struct {
58
void* dictBuffer;
59
void const* dict;
60
size_t dictSize;
61
ZSTD_dictContentType_e dictContentType;
62
ZSTD_CDict* cdict;
63
} ZSTD_localDict;
64
65
typedef struct {
66
HUF_CElt CTable[HUF_CTABLE_SIZE_ST(255)];
67
HUF_repeat repeatMode;
68
} ZSTD_hufCTables_t;
69
70
typedef struct {
71
FSE_CTable offcodeCTable[FSE_CTABLE_SIZE_U32(OffFSELog, MaxOff)];
72
FSE_CTable matchlengthCTable[FSE_CTABLE_SIZE_U32(MLFSELog, MaxML)];
73
FSE_CTable litlengthCTable[FSE_CTABLE_SIZE_U32(LLFSELog, MaxLL)];
74
FSE_repeat offcode_repeatMode;
75
FSE_repeat matchlength_repeatMode;
76
FSE_repeat litlength_repeatMode;
77
} ZSTD_fseCTables_t;
78
79
typedef struct {
80
ZSTD_hufCTables_t huf;
81
ZSTD_fseCTables_t fse;
82
} ZSTD_entropyCTables_t;
83
84
/***********************************************
85
* Entropy buffer statistics structs and funcs *
86
***********************************************/
87
/** ZSTD_hufCTablesMetadata_t :
88
* Stores Literals Block Type for a super-block in hType, and
89
* huffman tree description in hufDesBuffer.
90
* hufDesSize refers to the size of huffman tree description in bytes.
91
* This metadata is populated in ZSTD_buildBlockEntropyStats_literals() */
92
typedef struct {
93
symbolEncodingType_e hType;
94
BYTE hufDesBuffer[ZSTD_MAX_HUF_HEADER_SIZE];
95
size_t hufDesSize;
96
} ZSTD_hufCTablesMetadata_t;
97
98
/** ZSTD_fseCTablesMetadata_t :
99
* Stores symbol compression modes for a super-block in {ll, ol, ml}Type, and
100
* fse tables in fseTablesBuffer.
101
* fseTablesSize refers to the size of fse tables in bytes.
102
* This metadata is populated in ZSTD_buildBlockEntropyStats_sequences() */
103
typedef struct {
104
symbolEncodingType_e llType;
105
symbolEncodingType_e ofType;
106
symbolEncodingType_e mlType;
107
BYTE fseTablesBuffer[ZSTD_MAX_FSE_HEADERS_SIZE];
108
size_t fseTablesSize;
109
size_t lastCountSize; /* This is to account for bug in 1.3.4. More detail in ZSTD_entropyCompressSeqStore_internal() */
110
} ZSTD_fseCTablesMetadata_t;
111
112
typedef struct {
113
ZSTD_hufCTablesMetadata_t hufMetadata;
114
ZSTD_fseCTablesMetadata_t fseMetadata;
115
} ZSTD_entropyCTablesMetadata_t;
116
117
/** ZSTD_buildBlockEntropyStats() :
118
* Builds entropy for the block.
119
* @return : 0 on success or error code */
120
size_t ZSTD_buildBlockEntropyStats(seqStore_t* seqStorePtr,
121
const ZSTD_entropyCTables_t* prevEntropy,
122
ZSTD_entropyCTables_t* nextEntropy,
123
const ZSTD_CCtx_params* cctxParams,
124
ZSTD_entropyCTablesMetadata_t* entropyMetadata,
125
void* workspace, size_t wkspSize);
126
127
/*********************************
128
* Compression internals structs *
129
*********************************/
130
131
typedef struct {
132
U32 off; /* Offset sumtype code for the match, using ZSTD_storeSeq() format */
133
U32 len; /* Raw length of match */
134
} ZSTD_match_t;
135
136
typedef struct {
137
U32 offset; /* Offset of sequence */
138
U32 litLength; /* Length of literals prior to match */
139
U32 matchLength; /* Raw length of match */
140
} rawSeq;
141
142
typedef struct {
143
rawSeq* seq; /* The start of the sequences */
144
size_t pos; /* The index in seq where reading stopped. pos <= size. */
145
size_t posInSequence; /* The position within the sequence at seq[pos] where reading
146
stopped. posInSequence <= seq[pos].litLength + seq[pos].matchLength */
147
size_t size; /* The number of sequences. <= capacity. */
148
size_t capacity; /* The capacity starting from `seq` pointer */
149
} rawSeqStore_t;
150
151
UNUSED_ATTR static const rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0, 0};
152
153
typedef struct {
154
int price;
155
U32 off;
156
U32 mlen;
157
U32 litlen;
158
U32 rep[ZSTD_REP_NUM];
159
} ZSTD_optimal_t;
160
161
typedef enum { zop_dynamic=0, zop_predef } ZSTD_OptPrice_e;
162
163
typedef struct {
164
/* All tables are allocated inside cctx->workspace by ZSTD_resetCCtx_internal() */
165
unsigned* litFreq; /* table of literals statistics, of size 256 */
166
unsigned* litLengthFreq; /* table of litLength statistics, of size (MaxLL+1) */
167
unsigned* matchLengthFreq; /* table of matchLength statistics, of size (MaxML+1) */
168
unsigned* offCodeFreq; /* table of offCode statistics, of size (MaxOff+1) */
169
ZSTD_match_t* matchTable; /* list of found matches, of size ZSTD_OPT_NUM+1 */
170
ZSTD_optimal_t* priceTable; /* All positions tracked by optimal parser, of size ZSTD_OPT_NUM+1 */
171
172
U32 litSum; /* nb of literals */
173
U32 litLengthSum; /* nb of litLength codes */
174
U32 matchLengthSum; /* nb of matchLength codes */
175
U32 offCodeSum; /* nb of offset codes */
176
U32 litSumBasePrice; /* to compare to log2(litfreq) */
177
U32 litLengthSumBasePrice; /* to compare to log2(llfreq) */
178
U32 matchLengthSumBasePrice;/* to compare to log2(mlfreq) */
179
U32 offCodeSumBasePrice; /* to compare to log2(offreq) */
180
ZSTD_OptPrice_e priceType; /* prices can be determined dynamically, or follow a pre-defined cost structure */
181
const ZSTD_entropyCTables_t* symbolCosts; /* pre-calculated dictionary statistics */
182
ZSTD_paramSwitch_e literalCompressionMode;
183
} optState_t;
184
185
typedef struct {
186
ZSTD_entropyCTables_t entropy;
187
U32 rep[ZSTD_REP_NUM];
188
} ZSTD_compressedBlockState_t;
189
190
typedef struct {
191
BYTE const* nextSrc; /* next block here to continue on current prefix */
192
BYTE const* base; /* All regular indexes relative to this position */
193
BYTE const* dictBase; /* extDict indexes relative to this position */
194
U32 dictLimit; /* below that point, need extDict */
195
U32 lowLimit; /* below that point, no more valid data */
196
U32 nbOverflowCorrections; /* Number of times overflow correction has run since
197
* ZSTD_window_init(). Useful for debugging coredumps
198
* and for ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY.
199
*/
200
} ZSTD_window_t;
201
202
#define ZSTD_WINDOW_START_INDEX 2
203
204
typedef struct ZSTD_matchState_t ZSTD_matchState_t;
205
206
#define ZSTD_ROW_HASH_CACHE_SIZE 8 /* Size of prefetching hash cache for row-based matchfinder */
207
208
struct ZSTD_matchState_t {
209
ZSTD_window_t window; /* State for window round buffer management */
210
U32 loadedDictEnd; /* index of end of dictionary, within context's referential.
211
* When loadedDictEnd != 0, a dictionary is in use, and still valid.
212
* This relies on a mechanism to set loadedDictEnd=0 when dictionary is no longer within distance.
213
* Such mechanism is provided within ZSTD_window_enforceMaxDist() and ZSTD_checkDictValidity().
214
* When dict referential is copied into active context (i.e. not attached),
215
* loadedDictEnd == dictSize, since referential starts from zero.
216
*/
217
U32 nextToUpdate; /* index from which to continue table update */
218
U32 hashLog3; /* dispatch table for matches of len==3 : larger == faster, more memory */
219
220
U32 rowHashLog; /* For row-based matchfinder: Hashlog based on nb of rows in the hashTable.*/
221
U16* tagTable; /* For row-based matchFinder: A row-based table containing the hashes and head index. */
222
U32 hashCache[ZSTD_ROW_HASH_CACHE_SIZE]; /* For row-based matchFinder: a cache of hashes to improve speed */
223
224
U32* hashTable;
225
U32* hashTable3;
226
U32* chainTable;
227
228
U32 forceNonContiguous; /* Non-zero if we should force non-contiguous load for the next window update. */
229
230
int dedicatedDictSearch; /* Indicates whether this matchState is using the
231
* dedicated dictionary search structure.
232
*/
233
optState_t opt; /* optimal parser state */
234
const ZSTD_matchState_t* dictMatchState;
235
ZSTD_compressionParameters cParams;
236
const rawSeqStore_t* ldmSeqStore;
237
};
238
239
typedef struct {
240
ZSTD_compressedBlockState_t* prevCBlock;
241
ZSTD_compressedBlockState_t* nextCBlock;
242
ZSTD_matchState_t matchState;
243
} ZSTD_blockState_t;
244
245
typedef struct {
246
U32 offset;
247
U32 checksum;
248
} ldmEntry_t;
249
250
typedef struct {
251
BYTE const* split;
252
U32 hash;
253
U32 checksum;
254
ldmEntry_t* bucket;
255
} ldmMatchCandidate_t;
256
257
#define LDM_BATCH_SIZE 64
258
259
typedef struct {
260
ZSTD_window_t window; /* State for the window round buffer management */
261
ldmEntry_t* hashTable;
262
U32 loadedDictEnd;
263
BYTE* bucketOffsets; /* Next position in bucket to insert entry */
264
size_t splitIndices[LDM_BATCH_SIZE];
265
ldmMatchCandidate_t matchCandidates[LDM_BATCH_SIZE];
266
} ldmState_t;
267
268
typedef struct {
269
ZSTD_paramSwitch_e enableLdm; /* ZSTD_ps_enable to enable LDM. ZSTD_ps_auto by default */
270
U32 hashLog; /* Log size of hashTable */
271
U32 bucketSizeLog; /* Log bucket size for collision resolution, at most 8 */
272
U32 minMatchLength; /* Minimum match length */
273
U32 hashRateLog; /* Log number of entries to skip */
274
U32 windowLog; /* Window log for the LDM */
275
} ldmParams_t;
276
277
typedef struct {
278
int collectSequences;
279
ZSTD_Sequence* seqStart;
280
size_t seqIndex;
281
size_t maxSequences;
282
} SeqCollector;
283
284
struct ZSTD_CCtx_params_s {
285
ZSTD_format_e format;
286
ZSTD_compressionParameters cParams;
287
ZSTD_frameParameters fParams;
288
289
int compressionLevel;
290
int forceWindow; /* force back-references to respect limit of
291
* 1<<wLog, even for dictionary */
292
size_t targetCBlockSize; /* Tries to fit compressed block size to be around targetCBlockSize.
293
* No target when targetCBlockSize == 0.
294
* There is no guarantee on compressed block size */
295
int srcSizeHint; /* User's best guess of source size.
296
* Hint is not valid when srcSizeHint == 0.
297
* There is no guarantee that hint is close to actual source size */
298
299
ZSTD_dictAttachPref_e attachDictPref;
300
ZSTD_paramSwitch_e literalCompressionMode;
301
302
/* Multithreading: used to pass parameters to mtctx */
303
int nbWorkers;
304
size_t jobSize;
305
int overlapLog;
306
int rsyncable;
307
308
/* Long distance matching parameters */
309
ldmParams_t ldmParams;
310
311
/* Dedicated dict search algorithm trigger */
312
int enableDedicatedDictSearch;
313
314
/* Input/output buffer modes */
315
ZSTD_bufferMode_e inBufferMode;
316
ZSTD_bufferMode_e outBufferMode;
317
318
/* Sequence compression API */
319
ZSTD_sequenceFormat_e blockDelimiters;
320
int validateSequences;
321
322
/* Block splitting */
323
ZSTD_paramSwitch_e useBlockSplitter;
324
325
/* Param for deciding whether to use row-based matchfinder */
326
ZSTD_paramSwitch_e useRowMatchFinder;
327
328
/* Always load a dictionary in ext-dict mode (not prefix mode)? */
329
int deterministicRefPrefix;
330
331
/* Internal use, for createCCtxParams() and freeCCtxParams() only */
332
ZSTD_customMem customMem;
333
}; /* typedef'd to ZSTD_CCtx_params within "zstd.h" */
334
335
#define COMPRESS_SEQUENCES_WORKSPACE_SIZE (sizeof(unsigned) * (MaxSeq + 2))
336
#define ENTROPY_WORKSPACE_SIZE (HUF_WORKSPACE_SIZE + COMPRESS_SEQUENCES_WORKSPACE_SIZE)
337
338
/**
339
* Indicates whether this compression proceeds directly from user-provided
340
* source buffer to user-provided destination buffer (ZSTDb_not_buffered), or
341
* whether the context needs to buffer the input/output (ZSTDb_buffered).
342
*/
343
typedef enum {
344
ZSTDb_not_buffered,
345
ZSTDb_buffered
346
} ZSTD_buffered_policy_e;
347
348
/**
349
* Struct that contains all elements of block splitter that should be allocated
350
* in a wksp.
351
*/
352
#define ZSTD_MAX_NB_BLOCK_SPLITS 196
353
typedef struct {
354
seqStore_t fullSeqStoreChunk;
355
seqStore_t firstHalfSeqStore;
356
seqStore_t secondHalfSeqStore;
357
seqStore_t currSeqStore;
358
seqStore_t nextSeqStore;
359
360
U32 partitions[ZSTD_MAX_NB_BLOCK_SPLITS];
361
ZSTD_entropyCTablesMetadata_t entropyMetadata;
362
} ZSTD_blockSplitCtx;
363
364
struct ZSTD_CCtx_s {
365
ZSTD_compressionStage_e stage;
366
int cParamsChanged; /* == 1 if cParams(except wlog) or compression level are changed in requestedParams. Triggers transmission of new params to ZSTDMT (if available) then reset to 0. */
367
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
368
ZSTD_CCtx_params requestedParams;
369
ZSTD_CCtx_params appliedParams;
370
ZSTD_CCtx_params simpleApiParams; /* Param storage used by the simple API - not sticky. Must only be used in top-level simple API functions for storage. */
371
U32 dictID;
372
size_t dictContentSize;
373
374
ZSTD_cwksp workspace; /* manages buffer for dynamic allocations */
375
size_t blockSize;
376
unsigned long long pledgedSrcSizePlusOne; /* this way, 0 (default) == unknown */
377
unsigned long long consumedSrcSize;
378
unsigned long long producedCSize;
379
XXH64_state_t xxhState;
380
ZSTD_customMem customMem;
381
ZSTD_threadPool* pool;
382
size_t staticSize;
383
SeqCollector seqCollector;
384
int isFirstBlock;
385
int initialized;
386
387
seqStore_t seqStore; /* sequences storage ptrs */
388
ldmState_t ldmState; /* long distance matching state */
389
rawSeq* ldmSequences; /* Storage for the ldm output sequences */
390
size_t maxNbLdmSequences;
391
rawSeqStore_t externSeqStore; /* Mutable reference to external sequences */
392
ZSTD_blockState_t blockState;
393
U32* entropyWorkspace; /* entropy workspace of ENTROPY_WORKSPACE_SIZE bytes */
394
395
/* Whether we are streaming or not */
396
ZSTD_buffered_policy_e bufferedPolicy;
397
398
/* streaming */
399
char* inBuff;
400
size_t inBuffSize;
401
size_t inToCompress;
402
size_t inBuffPos;
403
size_t inBuffTarget;
404
char* outBuff;
405
size_t outBuffSize;
406
size_t outBuffContentSize;
407
size_t outBuffFlushedSize;
408
ZSTD_cStreamStage streamStage;
409
U32 frameEnded;
410
411
/* Stable in/out buffer verification */
412
ZSTD_inBuffer expectedInBuffer;
413
size_t expectedOutBufferSize;
414
415
/* Dictionary */
416
ZSTD_localDict localDict;
417
const ZSTD_CDict* cdict;
418
ZSTD_prefixDict prefixDict; /* single-usage dictionary */
419
420
/* Multi-threading */
421
#ifdef ZSTD_MULTITHREAD
422
ZSTDMT_CCtx* mtctx;
423
#endif
424
425
/* Tracing */
426
#if ZSTD_TRACE
427
ZSTD_TraceCtx traceCtx;
428
#endif
429
430
/* Workspace for block splitter */
431
ZSTD_blockSplitCtx blockSplitCtx;
432
};
433
434
typedef enum { ZSTD_dtlm_fast, ZSTD_dtlm_full } ZSTD_dictTableLoadMethod_e;
435
436
typedef enum {
437
ZSTD_noDict = 0,
438
ZSTD_extDict = 1,
439
ZSTD_dictMatchState = 2,
440
ZSTD_dedicatedDictSearch = 3
441
} ZSTD_dictMode_e;
442
443
typedef enum {
444
ZSTD_cpm_noAttachDict = 0, /* Compression with ZSTD_noDict or ZSTD_extDict.
445
* In this mode we use both the srcSize and the dictSize
446
* when selecting and adjusting parameters.
447
*/
448
ZSTD_cpm_attachDict = 1, /* Compression with ZSTD_dictMatchState or ZSTD_dedicatedDictSearch.
449
* In this mode we only take the srcSize into account when selecting
450
* and adjusting parameters.
451
*/
452
ZSTD_cpm_createCDict = 2, /* Creating a CDict.
453
* In this mode we take both the source size and the dictionary size
454
* into account when selecting and adjusting the parameters.
455
*/
456
ZSTD_cpm_unknown = 3, /* ZSTD_getCParams, ZSTD_getParams, ZSTD_adjustParams.
457
* We don't know what these parameters are for. We default to the legacy
458
* behavior of taking both the source size and the dict size into account
459
* when selecting and adjusting parameters.
460
*/
461
} ZSTD_cParamMode_e;
462
463
typedef size_t (*ZSTD_blockCompressor) (
464
ZSTD_matchState_t* bs, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
465
void const* src, size_t srcSize);
466
ZSTD_blockCompressor ZSTD_selectBlockCompressor(ZSTD_strategy strat, ZSTD_paramSwitch_e rowMatchfinderMode, ZSTD_dictMode_e dictMode);
467
468
469
MEM_STATIC U32 ZSTD_LLcode(U32 litLength)
470
{
471
static const BYTE LL_Code[64] = { 0, 1, 2, 3, 4, 5, 6, 7,
472
8, 9, 10, 11, 12, 13, 14, 15,
473
16, 16, 17, 17, 18, 18, 19, 19,
474
20, 20, 20, 20, 21, 21, 21, 21,
475
22, 22, 22, 22, 22, 22, 22, 22,
476
23, 23, 23, 23, 23, 23, 23, 23,
477
24, 24, 24, 24, 24, 24, 24, 24,
478
24, 24, 24, 24, 24, 24, 24, 24 };
479
static const U32 LL_deltaCode = 19;
480
return (litLength > 63) ? ZSTD_highbit32(litLength) + LL_deltaCode : LL_Code[litLength];
481
}
482
483
/* ZSTD_MLcode() :
484
* note : mlBase = matchLength - MINMATCH;
485
* because it's the format it's stored in seqStore->sequences */
486
MEM_STATIC U32 ZSTD_MLcode(U32 mlBase)
487
{
488
static const BYTE ML_Code[128] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
489
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
490
32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 36, 36, 37, 37, 37, 37,
491
38, 38, 38, 38, 38, 38, 38, 38, 39, 39, 39, 39, 39, 39, 39, 39,
492
40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40,
493
41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41,
494
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42,
495
42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 };
496
static const U32 ML_deltaCode = 36;
497
return (mlBase > 127) ? ZSTD_highbit32(mlBase) + ML_deltaCode : ML_Code[mlBase];
498
}
499
500
/* ZSTD_cParam_withinBounds:
501
* @return 1 if value is within cParam bounds,
502
* 0 otherwise */
503
MEM_STATIC int ZSTD_cParam_withinBounds(ZSTD_cParameter cParam, int value)
504
{
505
ZSTD_bounds const bounds = ZSTD_cParam_getBounds(cParam);
506
if (ZSTD_isError(bounds.error)) return 0;
507
if (value < bounds.lowerBound) return 0;
508
if (value > bounds.upperBound) return 0;
509
return 1;
510
}
511
512
/* ZSTD_noCompressBlock() :
513
* Writes uncompressed block to dst buffer from given src.
514
* Returns the size of the block */
515
MEM_STATIC size_t ZSTD_noCompressBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize, U32 lastBlock)
516
{
517
U32 const cBlockHeader24 = lastBlock + (((U32)bt_raw)<<1) + (U32)(srcSize << 3);
518
RETURN_ERROR_IF(srcSize + ZSTD_blockHeaderSize > dstCapacity,
519
dstSize_tooSmall, "dst buf too small for uncompressed block");
520
MEM_writeLE24(dst, cBlockHeader24);
521
ZSTD_memcpy((BYTE*)dst + ZSTD_blockHeaderSize, src, srcSize);
522
return ZSTD_blockHeaderSize + srcSize;
523
}
524
525
MEM_STATIC size_t ZSTD_rleCompressBlock (void* dst, size_t dstCapacity, BYTE src, size_t srcSize, U32 lastBlock)
526
{
527
BYTE* const op = (BYTE*)dst;
528
U32 const cBlockHeader = lastBlock + (((U32)bt_rle)<<1) + (U32)(srcSize << 3);
529
RETURN_ERROR_IF(dstCapacity < 4, dstSize_tooSmall, "");
530
MEM_writeLE24(op, cBlockHeader);
531
op[3] = src;
532
return 4;
533
}
534
535
536
/* ZSTD_minGain() :
537
* minimum compression required
538
* to generate a compress block or a compressed literals section.
539
* note : use same formula for both situations */
540
MEM_STATIC size_t ZSTD_minGain(size_t srcSize, ZSTD_strategy strat)
541
{
542
U32 const minlog = (strat>=ZSTD_btultra) ? (U32)(strat) - 1 : 6;
543
ZSTD_STATIC_ASSERT(ZSTD_btultra == 8);
544
assert(ZSTD_cParam_withinBounds(ZSTD_c_strategy, strat));
545
return (srcSize >> minlog) + 2;
546
}
547
548
MEM_STATIC int ZSTD_literalsCompressionIsDisabled(const ZSTD_CCtx_params* cctxParams)
549
{
550
switch (cctxParams->literalCompressionMode) {
551
case ZSTD_ps_enable:
552
return 0;
553
case ZSTD_ps_disable:
554
return 1;
555
default:
556
assert(0 /* impossible: pre-validated */);
557
ZSTD_FALLTHROUGH;
558
case ZSTD_ps_auto:
559
return (cctxParams->cParams.strategy == ZSTD_fast) && (cctxParams->cParams.targetLength > 0);
560
}
561
}
562
563
/*! ZSTD_safecopyLiterals() :
564
* memcpy() function that won't read beyond more than WILDCOPY_OVERLENGTH bytes past ilimit_w.
565
* Only called when the sequence ends past ilimit_w, so it only needs to be optimized for single
566
* large copies.
567
*/
568
static void
569
ZSTD_safecopyLiterals(BYTE* op, BYTE const* ip, BYTE const* const iend, BYTE const* ilimit_w)
570
{
571
assert(iend > ilimit_w);
572
if (ip <= ilimit_w) {
573
ZSTD_wildcopy(op, ip, ilimit_w - ip, ZSTD_no_overlap);
574
op += ilimit_w - ip;
575
ip = ilimit_w;
576
}
577
while (ip < iend) *op++ = *ip++;
578
}
579
580
#define ZSTD_REP_MOVE (ZSTD_REP_NUM-1)
581
#define STORE_REPCODE_1 STORE_REPCODE(1)
582
#define STORE_REPCODE_2 STORE_REPCODE(2)
583
#define STORE_REPCODE_3 STORE_REPCODE(3)
584
#define STORE_REPCODE(r) (assert((r)>=1), assert((r)<=3), (r)-1)
585
#define STORE_OFFSET(o) (assert((o)>0), o + ZSTD_REP_MOVE)
586
#define STORED_IS_OFFSET(o) ((o) > ZSTD_REP_MOVE)
587
#define STORED_IS_REPCODE(o) ((o) <= ZSTD_REP_MOVE)
588
#define STORED_OFFSET(o) (assert(STORED_IS_OFFSET(o)), (o)-ZSTD_REP_MOVE)
589
#define STORED_REPCODE(o) (assert(STORED_IS_REPCODE(o)), (o)+1) /* returns ID 1,2,3 */
590
#define STORED_TO_OFFBASE(o) ((o)+1)
591
#define OFFBASE_TO_STORED(o) ((o)-1)
592
593
/*! ZSTD_storeSeq() :
594
* Store a sequence (litlen, litPtr, offCode and matchLength) into seqStore_t.
595
* @offBase_minus1 : Users should use employ macros STORE_REPCODE_X and STORE_OFFSET().
596
* @matchLength : must be >= MINMATCH
597
* Allowed to overread literals up to litLimit.
598
*/
599
HINT_INLINE UNUSED_ATTR void
600
ZSTD_storeSeq(seqStore_t* seqStorePtr,
601
size_t litLength, const BYTE* literals, const BYTE* litLimit,
602
U32 offBase_minus1,
603
size_t matchLength)
604
{
605
BYTE const* const litLimit_w = litLimit - WILDCOPY_OVERLENGTH;
606
BYTE const* const litEnd = literals + litLength;
607
#if defined(DEBUGLEVEL) && (DEBUGLEVEL >= 6)
608
static const BYTE* g_start = NULL;
609
if (g_start==NULL) g_start = (const BYTE*)literals; /* note : index only works for compression within a single segment */
610
{ U32 const pos = (U32)((const BYTE*)literals - g_start);
611
DEBUGLOG(6, "Cpos%7u :%3u literals, match%4u bytes at offCode%7u",
612
pos, (U32)litLength, (U32)matchLength, (U32)offBase_minus1);
613
}
614
#endif
615
assert((size_t)(seqStorePtr->sequences - seqStorePtr->sequencesStart) < seqStorePtr->maxNbSeq);
616
/* copy Literals */
617
assert(seqStorePtr->maxNbLit <= 128 KB);
618
assert(seqStorePtr->lit + litLength <= seqStorePtr->litStart + seqStorePtr->maxNbLit);
619
assert(literals + litLength <= litLimit);
620
if (litEnd <= litLimit_w) {
621
/* Common case we can use wildcopy.
622
* First copy 16 bytes, because literals are likely short.
623
*/
624
assert(WILDCOPY_OVERLENGTH >= 16);
625
ZSTD_copy16(seqStorePtr->lit, literals);
626
if (litLength > 16) {
627
ZSTD_wildcopy(seqStorePtr->lit+16, literals+16, (ptrdiff_t)litLength-16, ZSTD_no_overlap);
628
}
629
} else {
630
ZSTD_safecopyLiterals(seqStorePtr->lit, literals, litEnd, litLimit_w);
631
}
632
seqStorePtr->lit += litLength;
633
634
/* literal Length */
635
if (litLength>0xFFFF) {
636
assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */
637
seqStorePtr->longLengthType = ZSTD_llt_literalLength;
638
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
639
}
640
seqStorePtr->sequences[0].litLength = (U16)litLength;
641
642
/* match offset */
643
seqStorePtr->sequences[0].offBase = STORED_TO_OFFBASE(offBase_minus1);
644
645
/* match Length */
646
assert(matchLength >= MINMATCH);
647
{ size_t const mlBase = matchLength - MINMATCH;
648
if (mlBase>0xFFFF) {
649
assert(seqStorePtr->longLengthType == ZSTD_llt_none); /* there can only be a single long length */
650
seqStorePtr->longLengthType = ZSTD_llt_matchLength;
651
seqStorePtr->longLengthPos = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
652
}
653
seqStorePtr->sequences[0].mlBase = (U16)mlBase;
654
}
655
656
seqStorePtr->sequences++;
657
}
658
659
/* ZSTD_updateRep() :
660
* updates in-place @rep (array of repeat offsets)
661
* @offBase_minus1 : sum-type, with same numeric representation as ZSTD_storeSeq()
662
*/
663
MEM_STATIC void
664
ZSTD_updateRep(U32 rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0)
665
{
666
if (STORED_IS_OFFSET(offBase_minus1)) { /* full offset */
667
rep[2] = rep[1];
668
rep[1] = rep[0];
669
rep[0] = STORED_OFFSET(offBase_minus1);
670
} else { /* repcode */
671
U32 const repCode = STORED_REPCODE(offBase_minus1) - 1 + ll0;
672
if (repCode > 0) { /* note : if repCode==0, no change */
673
U32 const currentOffset = (repCode==ZSTD_REP_NUM) ? (rep[0] - 1) : rep[repCode];
674
rep[2] = (repCode >= 2) ? rep[1] : rep[2];
675
rep[1] = rep[0];
676
rep[0] = currentOffset;
677
} else { /* repCode == 0 */
678
/* nothing to do */
679
}
680
}
681
}
682
683
typedef struct repcodes_s {
684
U32 rep[3];
685
} repcodes_t;
686
687
MEM_STATIC repcodes_t
688
ZSTD_newRep(U32 const rep[ZSTD_REP_NUM], U32 const offBase_minus1, U32 const ll0)
689
{
690
repcodes_t newReps;
691
ZSTD_memcpy(&newReps, rep, sizeof(newReps));
692
ZSTD_updateRep(newReps.rep, offBase_minus1, ll0);
693
return newReps;
694
}
695
696
697
/*-*************************************
698
* Match length counter
699
***************************************/
700
static unsigned ZSTD_NbCommonBytes (size_t val)
701
{
702
if (MEM_isLittleEndian()) {
703
if (MEM_64bits()) {
704
# if defined(_MSC_VER) && defined(_WIN64)
705
# if STATIC_BMI2
706
return _tzcnt_u64(val) >> 3;
707
# else
708
if (val != 0) {
709
unsigned long r;
710
_BitScanForward64(&r, (U64)val);
711
return (unsigned)(r >> 3);
712
} else {
713
/* Should not reach this code path */
714
__assume(0);
715
}
716
# endif
717
# elif defined(__GNUC__) && (__GNUC__ >= 4)
718
return (__builtin_ctzll((U64)val) >> 3);
719
# else
720
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2,
721
0, 3, 1, 3, 1, 4, 2, 7,
722
0, 2, 3, 6, 1, 5, 3, 5,
723
1, 3, 4, 4, 2, 5, 6, 7,
724
7, 0, 1, 2, 3, 3, 4, 6,
725
2, 6, 5, 5, 3, 4, 5, 6,
726
7, 1, 2, 4, 6, 4, 4, 5,
727
7, 2, 6, 5, 7, 6, 7, 7 };
728
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
729
# endif
730
} else { /* 32 bits */
731
# if defined(_MSC_VER)
732
if (val != 0) {
733
unsigned long r;
734
_BitScanForward(&r, (U32)val);
735
return (unsigned)(r >> 3);
736
} else {
737
/* Should not reach this code path */
738
__assume(0);
739
}
740
# elif defined(__GNUC__) && (__GNUC__ >= 3)
741
return (__builtin_ctz((U32)val) >> 3);
742
# else
743
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0,
744
3, 2, 2, 1, 3, 2, 0, 1,
745
3, 3, 1, 2, 2, 2, 2, 0,
746
3, 1, 2, 0, 1, 0, 1, 1 };
747
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
748
# endif
749
}
750
} else { /* Big Endian CPU */
751
if (MEM_64bits()) {
752
# if defined(_MSC_VER) && defined(_WIN64)
753
# if STATIC_BMI2
754
return _lzcnt_u64(val) >> 3;
755
# else
756
if (val != 0) {
757
unsigned long r;
758
_BitScanReverse64(&r, (U64)val);
759
return (unsigned)(r >> 3);
760
} else {
761
/* Should not reach this code path */
762
__assume(0);
763
}
764
# endif
765
# elif defined(__GNUC__) && (__GNUC__ >= 4)
766
return (__builtin_clzll(val) >> 3);
767
# else
768
unsigned r;
769
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
770
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
771
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
772
r += (!val);
773
return r;
774
# endif
775
} else { /* 32 bits */
776
# if defined(_MSC_VER)
777
if (val != 0) {
778
unsigned long r;
779
_BitScanReverse(&r, (unsigned long)val);
780
return (unsigned)(r >> 3);
781
} else {
782
/* Should not reach this code path */
783
__assume(0);
784
}
785
# elif defined(__GNUC__) && (__GNUC__ >= 3)
786
return (__builtin_clz((U32)val) >> 3);
787
# else
788
unsigned r;
789
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
790
r += (!val);
791
return r;
792
# endif
793
} }
794
}
795
796
797
MEM_STATIC size_t ZSTD_count(const BYTE* pIn, const BYTE* pMatch, const BYTE* const pInLimit)
798
{
799
const BYTE* const pStart = pIn;
800
const BYTE* const pInLoopLimit = pInLimit - (sizeof(size_t)-1);
801
802
if (pIn < pInLoopLimit) {
803
{ size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
804
if (diff) return ZSTD_NbCommonBytes(diff); }
805
pIn+=sizeof(size_t); pMatch+=sizeof(size_t);
806
while (pIn < pInLoopLimit) {
807
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
808
if (!diff) { pIn+=sizeof(size_t); pMatch+=sizeof(size_t); continue; }
809
pIn += ZSTD_NbCommonBytes(diff);
810
return (size_t)(pIn - pStart);
811
} }
812
if (MEM_64bits() && (pIn<(pInLimit-3)) && (MEM_read32(pMatch) == MEM_read32(pIn))) { pIn+=4; pMatch+=4; }
813
if ((pIn<(pInLimit-1)) && (MEM_read16(pMatch) == MEM_read16(pIn))) { pIn+=2; pMatch+=2; }
814
if ((pIn<pInLimit) && (*pMatch == *pIn)) pIn++;
815
return (size_t)(pIn - pStart);
816
}
817
818
/** ZSTD_count_2segments() :
819
* can count match length with `ip` & `match` in 2 different segments.
820
* convention : on reaching mEnd, match count continue starting from iStart
821
*/
822
MEM_STATIC size_t
823
ZSTD_count_2segments(const BYTE* ip, const BYTE* match,
824
const BYTE* iEnd, const BYTE* mEnd, const BYTE* iStart)
825
{
826
const BYTE* const vEnd = MIN( ip + (mEnd - match), iEnd);
827
size_t const matchLength = ZSTD_count(ip, match, vEnd);
828
if (match + matchLength != mEnd) return matchLength;
829
DEBUGLOG(7, "ZSTD_count_2segments: found a 2-parts match (current length==%zu)", matchLength);
830
DEBUGLOG(7, "distance from match beginning to end dictionary = %zi", mEnd - match);
831
DEBUGLOG(7, "distance from current pos to end buffer = %zi", iEnd - ip);
832
DEBUGLOG(7, "next byte : ip==%02X, istart==%02X", ip[matchLength], *iStart);
833
DEBUGLOG(7, "final match length = %zu", matchLength + ZSTD_count(ip+matchLength, iStart, iEnd));
834
return matchLength + ZSTD_count(ip+matchLength, iStart, iEnd);
835
}
836
837
838
/*-*************************************
839
* Hashes
840
***************************************/
841
static const U32 prime3bytes = 506832829U;
842
static U32 ZSTD_hash3(U32 u, U32 h) { return ((u << (32-24)) * prime3bytes) >> (32-h) ; }
843
MEM_STATIC size_t ZSTD_hash3Ptr(const void* ptr, U32 h) { return ZSTD_hash3(MEM_readLE32(ptr), h); } /* only in zstd_opt.h */
844
845
static const U32 prime4bytes = 2654435761U;
846
static U32 ZSTD_hash4(U32 u, U32 h) { return (u * prime4bytes) >> (32-h) ; }
847
static size_t ZSTD_hash4Ptr(const void* ptr, U32 h) { return ZSTD_hash4(MEM_read32(ptr), h); }
848
849
static const U64 prime5bytes = 889523592379ULL;
850
static size_t ZSTD_hash5(U64 u, U32 h) { return (size_t)(((u << (64-40)) * prime5bytes) >> (64-h)) ; }
851
static size_t ZSTD_hash5Ptr(const void* p, U32 h) { return ZSTD_hash5(MEM_readLE64(p), h); }
852
853
static const U64 prime6bytes = 227718039650203ULL;
854
static size_t ZSTD_hash6(U64 u, U32 h) { return (size_t)(((u << (64-48)) * prime6bytes) >> (64-h)) ; }
855
static size_t ZSTD_hash6Ptr(const void* p, U32 h) { return ZSTD_hash6(MEM_readLE64(p), h); }
856
857
static const U64 prime7bytes = 58295818150454627ULL;
858
static size_t ZSTD_hash7(U64 u, U32 h) { return (size_t)(((u << (64-56)) * prime7bytes) >> (64-h)) ; }
859
static size_t ZSTD_hash7Ptr(const void* p, U32 h) { return ZSTD_hash7(MEM_readLE64(p), h); }
860
861
static const U64 prime8bytes = 0xCF1BBCDCB7A56463ULL;
862
static size_t ZSTD_hash8(U64 u, U32 h) { return (size_t)(((u) * prime8bytes) >> (64-h)) ; }
863
static size_t ZSTD_hash8Ptr(const void* p, U32 h) { return ZSTD_hash8(MEM_readLE64(p), h); }
864
865
MEM_STATIC FORCE_INLINE_ATTR
866
size_t ZSTD_hashPtr(const void* p, U32 hBits, U32 mls)
867
{
868
switch(mls)
869
{
870
default:
871
case 4: return ZSTD_hash4Ptr(p, hBits);
872
case 5: return ZSTD_hash5Ptr(p, hBits);
873
case 6: return ZSTD_hash6Ptr(p, hBits);
874
case 7: return ZSTD_hash7Ptr(p, hBits);
875
case 8: return ZSTD_hash8Ptr(p, hBits);
876
}
877
}
878
879
/** ZSTD_ipow() :
880
* Return base^exponent.
881
*/
882
static U64 ZSTD_ipow(U64 base, U64 exponent)
883
{
884
U64 power = 1;
885
while (exponent) {
886
if (exponent & 1) power *= base;
887
exponent >>= 1;
888
base *= base;
889
}
890
return power;
891
}
892
893
#define ZSTD_ROLL_HASH_CHAR_OFFSET 10
894
895
/** ZSTD_rollingHash_append() :
896
* Add the buffer to the hash value.
897
*/
898
static U64 ZSTD_rollingHash_append(U64 hash, void const* buf, size_t size)
899
{
900
BYTE const* istart = (BYTE const*)buf;
901
size_t pos;
902
for (pos = 0; pos < size; ++pos) {
903
hash *= prime8bytes;
904
hash += istart[pos] + ZSTD_ROLL_HASH_CHAR_OFFSET;
905
}
906
return hash;
907
}
908
909
/** ZSTD_rollingHash_compute() :
910
* Compute the rolling hash value of the buffer.
911
*/
912
MEM_STATIC U64 ZSTD_rollingHash_compute(void const* buf, size_t size)
913
{
914
return ZSTD_rollingHash_append(0, buf, size);
915
}
916
917
/** ZSTD_rollingHash_primePower() :
918
* Compute the primePower to be passed to ZSTD_rollingHash_rotate() for a hash
919
* over a window of length bytes.
920
*/
921
MEM_STATIC U64 ZSTD_rollingHash_primePower(U32 length)
922
{
923
return ZSTD_ipow(prime8bytes, length - 1);
924
}
925
926
/** ZSTD_rollingHash_rotate() :
927
* Rotate the rolling hash by one byte.
928
*/
929
MEM_STATIC U64 ZSTD_rollingHash_rotate(U64 hash, BYTE toRemove, BYTE toAdd, U64 primePower)
930
{
931
hash -= (toRemove + ZSTD_ROLL_HASH_CHAR_OFFSET) * primePower;
932
hash *= prime8bytes;
933
hash += toAdd + ZSTD_ROLL_HASH_CHAR_OFFSET;
934
return hash;
935
}
936
937
/*-*************************************
938
* Round buffer management
939
***************************************/
940
#if (ZSTD_WINDOWLOG_MAX_64 > 31)
941
# error "ZSTD_WINDOWLOG_MAX is too large : would overflow ZSTD_CURRENT_MAX"
942
#endif
943
/* Max current allowed */
944
#define ZSTD_CURRENT_MAX ((3U << 29) + (1U << ZSTD_WINDOWLOG_MAX))
945
/* Maximum chunk size before overflow correction needs to be called again */
946
#define ZSTD_CHUNKSIZE_MAX \
947
( ((U32)-1) /* Maximum ending current index */ \
948
- ZSTD_CURRENT_MAX) /* Maximum beginning lowLimit */
949
950
/**
951
* ZSTD_window_clear():
952
* Clears the window containing the history by simply setting it to empty.
953
*/
954
MEM_STATIC void ZSTD_window_clear(ZSTD_window_t* window)
955
{
956
size_t const endT = (size_t)(window->nextSrc - window->base);
957
U32 const end = (U32)endT;
958
959
window->lowLimit = end;
960
window->dictLimit = end;
961
}
962
963
MEM_STATIC U32 ZSTD_window_isEmpty(ZSTD_window_t const window)
964
{
965
return window.dictLimit == ZSTD_WINDOW_START_INDEX &&
966
window.lowLimit == ZSTD_WINDOW_START_INDEX &&
967
(window.nextSrc - window.base) == ZSTD_WINDOW_START_INDEX;
968
}
969
970
/**
971
* ZSTD_window_hasExtDict():
972
* Returns non-zero if the window has a non-empty extDict.
973
*/
974
MEM_STATIC U32 ZSTD_window_hasExtDict(ZSTD_window_t const window)
975
{
976
return window.lowLimit < window.dictLimit;
977
}
978
979
/**
980
* ZSTD_matchState_dictMode():
981
* Inspects the provided matchState and figures out what dictMode should be
982
* passed to the compressor.
983
*/
984
MEM_STATIC ZSTD_dictMode_e ZSTD_matchState_dictMode(const ZSTD_matchState_t *ms)
985
{
986
return ZSTD_window_hasExtDict(ms->window) ?
987
ZSTD_extDict :
988
ms->dictMatchState != NULL ?
989
(ms->dictMatchState->dedicatedDictSearch ? ZSTD_dedicatedDictSearch : ZSTD_dictMatchState) :
990
ZSTD_noDict;
991
}
992
993
/* Defining this macro to non-zero tells zstd to run the overflow correction
994
* code much more frequently. This is very inefficient, and should only be
995
* used for tests and fuzzers.
996
*/
997
#ifndef ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY
998
# ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
999
# define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 1
1000
# else
1001
# define ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY 0
1002
# endif
1003
#endif
1004
1005
/**
1006
* ZSTD_window_canOverflowCorrect():
1007
* Returns non-zero if the indices are large enough for overflow correction
1008
* to work correctly without impacting compression ratio.
1009
*/
1010
MEM_STATIC U32 ZSTD_window_canOverflowCorrect(ZSTD_window_t const window,
1011
U32 cycleLog,
1012
U32 maxDist,
1013
U32 loadedDictEnd,
1014
void const* src)
1015
{
1016
U32 const cycleSize = 1u << cycleLog;
1017
U32 const curr = (U32)((BYTE const*)src - window.base);
1018
U32 const minIndexToOverflowCorrect = cycleSize
1019
+ MAX(maxDist, cycleSize)
1020
+ ZSTD_WINDOW_START_INDEX;
1021
1022
/* Adjust the min index to backoff the overflow correction frequency,
1023
* so we don't waste too much CPU in overflow correction. If this
1024
* computation overflows we don't really care, we just need to make
1025
* sure it is at least minIndexToOverflowCorrect.
1026
*/
1027
U32 const adjustment = window.nbOverflowCorrections + 1;
1028
U32 const adjustedIndex = MAX(minIndexToOverflowCorrect * adjustment,
1029
minIndexToOverflowCorrect);
1030
U32 const indexLargeEnough = curr > adjustedIndex;
1031
1032
/* Only overflow correct early if the dictionary is invalidated already,
1033
* so we don't hurt compression ratio.
1034
*/
1035
U32 const dictionaryInvalidated = curr > maxDist + loadedDictEnd;
1036
1037
return indexLargeEnough && dictionaryInvalidated;
1038
}
1039
1040
/**
1041
* ZSTD_window_needOverflowCorrection():
1042
* Returns non-zero if the indices are getting too large and need overflow
1043
* protection.
1044
*/
1045
MEM_STATIC U32 ZSTD_window_needOverflowCorrection(ZSTD_window_t const window,
1046
U32 cycleLog,
1047
U32 maxDist,
1048
U32 loadedDictEnd,
1049
void const* src,
1050
void const* srcEnd)
1051
{
1052
U32 const curr = (U32)((BYTE const*)srcEnd - window.base);
1053
if (ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) {
1054
if (ZSTD_window_canOverflowCorrect(window, cycleLog, maxDist, loadedDictEnd, src)) {
1055
return 1;
1056
}
1057
}
1058
return curr > ZSTD_CURRENT_MAX;
1059
}
1060
1061
/**
1062
* ZSTD_window_correctOverflow():
1063
* Reduces the indices to protect from index overflow.
1064
* Returns the correction made to the indices, which must be applied to every
1065
* stored index.
1066
*
1067
* The least significant cycleLog bits of the indices must remain the same,
1068
* which may be 0. Every index up to maxDist in the past must be valid.
1069
*/
1070
MEM_STATIC U32 ZSTD_window_correctOverflow(ZSTD_window_t* window, U32 cycleLog,
1071
U32 maxDist, void const* src)
1072
{
1073
/* preemptive overflow correction:
1074
* 1. correction is large enough:
1075
* lowLimit > (3<<29) ==> current > 3<<29 + 1<<windowLog
1076
* 1<<windowLog <= newCurrent < 1<<chainLog + 1<<windowLog
1077
*
1078
* current - newCurrent
1079
* > (3<<29 + 1<<windowLog) - (1<<windowLog + 1<<chainLog)
1080
* > (3<<29) - (1<<chainLog)
1081
* > (3<<29) - (1<<30) (NOTE: chainLog <= 30)
1082
* > 1<<29
1083
*
1084
* 2. (ip+ZSTD_CHUNKSIZE_MAX - cctx->base) doesn't overflow:
1085
* After correction, current is less than (1<<chainLog + 1<<windowLog).
1086
* In 64-bit mode we are safe, because we have 64-bit ptrdiff_t.
1087
* In 32-bit mode we are safe, because (chainLog <= 29), so
1088
* ip+ZSTD_CHUNKSIZE_MAX - cctx->base < 1<<32.
1089
* 3. (cctx->lowLimit + 1<<windowLog) < 1<<32:
1090
* windowLog <= 31 ==> 3<<29 + 1<<windowLog < 7<<29 < 1<<32.
1091
*/
1092
U32 const cycleSize = 1u << cycleLog;
1093
U32 const cycleMask = cycleSize - 1;
1094
U32 const curr = (U32)((BYTE const*)src - window->base);
1095
U32 const currentCycle = curr & cycleMask;
1096
/* Ensure newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX. */
1097
U32 const currentCycleCorrection = currentCycle < ZSTD_WINDOW_START_INDEX
1098
? MAX(cycleSize, ZSTD_WINDOW_START_INDEX)
1099
: 0;
1100
U32 const newCurrent = currentCycle
1101
+ currentCycleCorrection
1102
+ MAX(maxDist, cycleSize);
1103
U32 const correction = curr - newCurrent;
1104
/* maxDist must be a power of two so that:
1105
* (newCurrent & cycleMask) == (curr & cycleMask)
1106
* This is required to not corrupt the chains / binary tree.
1107
*/
1108
assert((maxDist & (maxDist - 1)) == 0);
1109
assert((curr & cycleMask) == (newCurrent & cycleMask));
1110
assert(curr > newCurrent);
1111
if (!ZSTD_WINDOW_OVERFLOW_CORRECT_FREQUENTLY) {
1112
/* Loose bound, should be around 1<<29 (see above) */
1113
assert(correction > 1<<28);
1114
}
1115
1116
window->base += correction;
1117
window->dictBase += correction;
1118
if (window->lowLimit < correction + ZSTD_WINDOW_START_INDEX) {
1119
window->lowLimit = ZSTD_WINDOW_START_INDEX;
1120
} else {
1121
window->lowLimit -= correction;
1122
}
1123
if (window->dictLimit < correction + ZSTD_WINDOW_START_INDEX) {
1124
window->dictLimit = ZSTD_WINDOW_START_INDEX;
1125
} else {
1126
window->dictLimit -= correction;
1127
}
1128
1129
/* Ensure we can still reference the full window. */
1130
assert(newCurrent >= maxDist);
1131
assert(newCurrent - maxDist >= ZSTD_WINDOW_START_INDEX);
1132
/* Ensure that lowLimit and dictLimit didn't underflow. */
1133
assert(window->lowLimit <= newCurrent);
1134
assert(window->dictLimit <= newCurrent);
1135
1136
++window->nbOverflowCorrections;
1137
1138
DEBUGLOG(4, "Correction of 0x%x bytes to lowLimit=0x%x", correction,
1139
window->lowLimit);
1140
return correction;
1141
}
1142
1143
/**
1144
* ZSTD_window_enforceMaxDist():
1145
* Updates lowLimit so that:
1146
* (srcEnd - base) - lowLimit == maxDist + loadedDictEnd
1147
*
1148
* It ensures index is valid as long as index >= lowLimit.
1149
* This must be called before a block compression call.
1150
*
1151
* loadedDictEnd is only defined if a dictionary is in use for current compression.
1152
* As the name implies, loadedDictEnd represents the index at end of dictionary.
1153
* The value lies within context's referential, it can be directly compared to blockEndIdx.
1154
*
1155
* If loadedDictEndPtr is NULL, no dictionary is in use, and we use loadedDictEnd == 0.
1156
* If loadedDictEndPtr is not NULL, we set it to zero after updating lowLimit.
1157
* This is because dictionaries are allowed to be referenced fully
1158
* as long as the last byte of the dictionary is in the window.
1159
* Once input has progressed beyond window size, dictionary cannot be referenced anymore.
1160
*
1161
* In normal dict mode, the dictionary lies between lowLimit and dictLimit.
1162
* In dictMatchState mode, lowLimit and dictLimit are the same,
1163
* and the dictionary is below them.
1164
* forceWindow and dictMatchState are therefore incompatible.
1165
*/
1166
MEM_STATIC void
1167
ZSTD_window_enforceMaxDist(ZSTD_window_t* window,
1168
const void* blockEnd,
1169
U32 maxDist,
1170
U32* loadedDictEndPtr,
1171
const ZSTD_matchState_t** dictMatchStatePtr)
1172
{
1173
U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
1174
U32 const loadedDictEnd = (loadedDictEndPtr != NULL) ? *loadedDictEndPtr : 0;
1175
DEBUGLOG(5, "ZSTD_window_enforceMaxDist: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
1176
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
1177
1178
/* - When there is no dictionary : loadedDictEnd == 0.
1179
In which case, the test (blockEndIdx > maxDist) is merely to avoid
1180
overflowing next operation `newLowLimit = blockEndIdx - maxDist`.
1181
- When there is a standard dictionary :
1182
Index referential is copied from the dictionary,
1183
which means it starts from 0.
1184
In which case, loadedDictEnd == dictSize,
1185
and it makes sense to compare `blockEndIdx > maxDist + dictSize`
1186
since `blockEndIdx` also starts from zero.
1187
- When there is an attached dictionary :
1188
loadedDictEnd is expressed within the referential of the context,
1189
so it can be directly compared against blockEndIdx.
1190
*/
1191
if (blockEndIdx > maxDist + loadedDictEnd) {
1192
U32 const newLowLimit = blockEndIdx - maxDist;
1193
if (window->lowLimit < newLowLimit) window->lowLimit = newLowLimit;
1194
if (window->dictLimit < window->lowLimit) {
1195
DEBUGLOG(5, "Update dictLimit to match lowLimit, from %u to %u",
1196
(unsigned)window->dictLimit, (unsigned)window->lowLimit);
1197
window->dictLimit = window->lowLimit;
1198
}
1199
/* On reaching window size, dictionaries are invalidated */
1200
if (loadedDictEndPtr) *loadedDictEndPtr = 0;
1201
if (dictMatchStatePtr) *dictMatchStatePtr = NULL;
1202
}
1203
}
1204
1205
/* Similar to ZSTD_window_enforceMaxDist(),
1206
* but only invalidates dictionary
1207
* when input progresses beyond window size.
1208
* assumption : loadedDictEndPtr and dictMatchStatePtr are valid (non NULL)
1209
* loadedDictEnd uses same referential as window->base
1210
* maxDist is the window size */
1211
MEM_STATIC void
1212
ZSTD_checkDictValidity(const ZSTD_window_t* window,
1213
const void* blockEnd,
1214
U32 maxDist,
1215
U32* loadedDictEndPtr,
1216
const ZSTD_matchState_t** dictMatchStatePtr)
1217
{
1218
assert(loadedDictEndPtr != NULL);
1219
assert(dictMatchStatePtr != NULL);
1220
{ U32 const blockEndIdx = (U32)((BYTE const*)blockEnd - window->base);
1221
U32 const loadedDictEnd = *loadedDictEndPtr;
1222
DEBUGLOG(5, "ZSTD_checkDictValidity: blockEndIdx=%u, maxDist=%u, loadedDictEnd=%u",
1223
(unsigned)blockEndIdx, (unsigned)maxDist, (unsigned)loadedDictEnd);
1224
assert(blockEndIdx >= loadedDictEnd);
1225
1226
if (blockEndIdx > loadedDictEnd + maxDist) {
1227
/* On reaching window size, dictionaries are invalidated.
1228
* For simplification, if window size is reached anywhere within next block,
1229
* the dictionary is invalidated for the full block.
1230
*/
1231
DEBUGLOG(6, "invalidating dictionary for current block (distance > windowSize)");
1232
*loadedDictEndPtr = 0;
1233
*dictMatchStatePtr = NULL;
1234
} else {
1235
if (*loadedDictEndPtr != 0) {
1236
DEBUGLOG(6, "dictionary considered valid for current block");
1237
} } }
1238
}
1239
1240
MEM_STATIC void ZSTD_window_init(ZSTD_window_t* window) {
1241
ZSTD_memset(window, 0, sizeof(*window));
1242
window->base = (BYTE const*)" ";
1243
window->dictBase = (BYTE const*)" ";
1244
ZSTD_STATIC_ASSERT(ZSTD_DUBT_UNSORTED_MARK < ZSTD_WINDOW_START_INDEX); /* Start above ZSTD_DUBT_UNSORTED_MARK */
1245
window->dictLimit = ZSTD_WINDOW_START_INDEX; /* start from >0, so that 1st position is valid */
1246
window->lowLimit = ZSTD_WINDOW_START_INDEX; /* it ensures first and later CCtx usages compress the same */
1247
window->nextSrc = window->base + ZSTD_WINDOW_START_INDEX; /* see issue #1241 */
1248
window->nbOverflowCorrections = 0;
1249
}
1250
1251
/**
1252
* ZSTD_window_update():
1253
* Updates the window by appending [src, src + srcSize) to the window.
1254
* If it is not contiguous, the current prefix becomes the extDict, and we
1255
* forget about the extDict. Handles overlap of the prefix and extDict.
1256
* Returns non-zero if the segment is contiguous.
1257
*/
1258
MEM_STATIC U32 ZSTD_window_update(ZSTD_window_t* window,
1259
void const* src, size_t srcSize,
1260
int forceNonContiguous)
1261
{
1262
BYTE const* const ip = (BYTE const*)src;
1263
U32 contiguous = 1;
1264
DEBUGLOG(5, "ZSTD_window_update");
1265
if (srcSize == 0)
1266
return contiguous;
1267
assert(window->base != NULL);
1268
assert(window->dictBase != NULL);
1269
/* Check if blocks follow each other */
1270
if (src != window->nextSrc || forceNonContiguous) {
1271
/* not contiguous */
1272
size_t const distanceFromBase = (size_t)(window->nextSrc - window->base);
1273
DEBUGLOG(5, "Non contiguous blocks, new segment starts at %u", window->dictLimit);
1274
window->lowLimit = window->dictLimit;
1275
assert(distanceFromBase == (size_t)(U32)distanceFromBase); /* should never overflow */
1276
window->dictLimit = (U32)distanceFromBase;
1277
window->dictBase = window->base;
1278
window->base = ip - distanceFromBase;
1279
/* ms->nextToUpdate = window->dictLimit; */
1280
if (window->dictLimit - window->lowLimit < HASH_READ_SIZE) window->lowLimit = window->dictLimit; /* too small extDict */
1281
contiguous = 0;
1282
}
1283
window->nextSrc = ip + srcSize;
1284
/* if input and dictionary overlap : reduce dictionary (area presumed modified by input) */
1285
if ( (ip+srcSize > window->dictBase + window->lowLimit)
1286
& (ip < window->dictBase + window->dictLimit)) {
1287
ptrdiff_t const highInputIdx = (ip + srcSize) - window->dictBase;
1288
U32 const lowLimitMax = (highInputIdx > (ptrdiff_t)window->dictLimit) ? window->dictLimit : (U32)highInputIdx;
1289
window->lowLimit = lowLimitMax;
1290
DEBUGLOG(5, "Overlapping extDict and input : new lowLimit = %u", window->lowLimit);
1291
}
1292
return contiguous;
1293
}
1294
1295
/**
1296
* Returns the lowest allowed match index. It may either be in the ext-dict or the prefix.
1297
*/
1298
MEM_STATIC U32 ZSTD_getLowestMatchIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
1299
{
1300
U32 const maxDistance = 1U << windowLog;
1301
U32 const lowestValid = ms->window.lowLimit;
1302
U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
1303
U32 const isDictionary = (ms->loadedDictEnd != 0);
1304
/* When using a dictionary the entire dictionary is valid if a single byte of the dictionary
1305
* is within the window. We invalidate the dictionary (and set loadedDictEnd to 0) when it isn't
1306
* valid for the entire block. So this check is sufficient to find the lowest valid match index.
1307
*/
1308
U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
1309
return matchLowest;
1310
}
1311
1312
/**
1313
* Returns the lowest allowed match index in the prefix.
1314
*/
1315
MEM_STATIC U32 ZSTD_getLowestPrefixIndex(const ZSTD_matchState_t* ms, U32 curr, unsigned windowLog)
1316
{
1317
U32 const maxDistance = 1U << windowLog;
1318
U32 const lowestValid = ms->window.dictLimit;
1319
U32 const withinWindow = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
1320
U32 const isDictionary = (ms->loadedDictEnd != 0);
1321
/* When computing the lowest prefix index we need to take the dictionary into account to handle
1322
* the edge case where the dictionary and the source are contiguous in memory.
1323
*/
1324
U32 const matchLowest = isDictionary ? lowestValid : withinWindow;
1325
return matchLowest;
1326
}
1327
1328
1329
1330
/* debug functions */
1331
#if (DEBUGLEVEL>=2)
1332
1333
MEM_STATIC double ZSTD_fWeight(U32 rawStat)
1334
{
1335
U32 const fp_accuracy = 8;
1336
U32 const fp_multiplier = (1 << fp_accuracy);
1337
U32 const newStat = rawStat + 1;
1338
U32 const hb = ZSTD_highbit32(newStat);
1339
U32 const BWeight = hb * fp_multiplier;
1340
U32 const FWeight = (newStat << fp_accuracy) >> hb;
1341
U32 const weight = BWeight + FWeight;
1342
assert(hb + fp_accuracy < 31);
1343
return (double)weight / fp_multiplier;
1344
}
1345
1346
/* display a table content,
1347
* listing each element, its frequency, and its predicted bit cost */
1348
MEM_STATIC void ZSTD_debugTable(const U32* table, U32 max)
1349
{
1350
unsigned u, sum;
1351
for (u=0, sum=0; u<=max; u++) sum += table[u];
1352
DEBUGLOG(2, "total nb elts: %u", sum);
1353
for (u=0; u<=max; u++) {
1354
DEBUGLOG(2, "%2u: %5u (%.2f)",
1355
u, table[u], ZSTD_fWeight(sum) - ZSTD_fWeight(table[u]) );
1356
}
1357
}
1358
1359
#endif
1360
1361
1362
#if defined (__cplusplus)
1363
}
1364
#endif
1365
1366
/* ===============================================================
1367
* Shared internal declarations
1368
* These prototypes may be called from sources not in lib/compress
1369
* =============================================================== */
1370
1371
/* ZSTD_loadCEntropy() :
1372
* dict : must point at beginning of a valid zstd dictionary.
1373
* return : size of dictionary header (size of magic number + dict ID + entropy tables)
1374
* assumptions : magic number supposed already checked
1375
* and dictSize >= 8 */
1376
size_t ZSTD_loadCEntropy(ZSTD_compressedBlockState_t* bs, void* workspace,
1377
const void* const dict, size_t dictSize);
1378
1379
void ZSTD_reset_compressedBlockState(ZSTD_compressedBlockState_t* bs);
1380
1381
/* ==============================================================
1382
* Private declarations
1383
* These prototypes shall only be called from within lib/compress
1384
* ============================================================== */
1385
1386
/* ZSTD_getCParamsFromCCtxParams() :
1387
* cParams are built depending on compressionLevel, src size hints,
1388
* LDM and manually set compression parameters.
1389
* Note: srcSizeHint == 0 means 0!
1390
*/
1391
ZSTD_compressionParameters ZSTD_getCParamsFromCCtxParams(
1392
const ZSTD_CCtx_params* CCtxParams, U64 srcSizeHint, size_t dictSize, ZSTD_cParamMode_e mode);
1393
1394
/*! ZSTD_initCStream_internal() :
1395
* Private use only. Init streaming operation.
1396
* expects params to be valid.
1397
* must receive dict, or cdict, or none, but not both.
1398
* @return : 0, or an error code */
1399
size_t ZSTD_initCStream_internal(ZSTD_CStream* zcs,
1400
const void* dict, size_t dictSize,
1401
const ZSTD_CDict* cdict,
1402
const ZSTD_CCtx_params* params, unsigned long long pledgedSrcSize);
1403
1404
void ZSTD_resetSeqStore(seqStore_t* ssPtr);
1405
1406
/*! ZSTD_getCParamsFromCDict() :
1407
* as the name implies */
1408
ZSTD_compressionParameters ZSTD_getCParamsFromCDict(const ZSTD_CDict* cdict);
1409
1410
/* ZSTD_compressBegin_advanced_internal() :
1411
* Private use only. To be called from zstdmt_compress.c. */
1412
size_t ZSTD_compressBegin_advanced_internal(ZSTD_CCtx* cctx,
1413
const void* dict, size_t dictSize,
1414
ZSTD_dictContentType_e dictContentType,
1415
ZSTD_dictTableLoadMethod_e dtlm,
1416
const ZSTD_CDict* cdict,
1417
const ZSTD_CCtx_params* params,
1418
unsigned long long pledgedSrcSize);
1419
1420
/* ZSTD_compress_advanced_internal() :
1421
* Private use only. To be called from zstdmt_compress.c. */
1422
size_t ZSTD_compress_advanced_internal(ZSTD_CCtx* cctx,
1423
void* dst, size_t dstCapacity,
1424
const void* src, size_t srcSize,
1425
const void* dict,size_t dictSize,
1426
const ZSTD_CCtx_params* params);
1427
1428
1429
/* ZSTD_writeLastEmptyBlock() :
1430
* output an empty Block with end-of-frame mark to complete a frame
1431
* @return : size of data written into `dst` (== ZSTD_blockHeaderSize (defined in zstd_internal.h))
1432
* or an error code if `dstCapacity` is too small (<ZSTD_blockHeaderSize)
1433
*/
1434
size_t ZSTD_writeLastEmptyBlock(void* dst, size_t dstCapacity);
1435
1436
1437
/* ZSTD_referenceExternalSequences() :
1438
* Must be called before starting a compression operation.
1439
* seqs must parse a prefix of the source.
1440
* This cannot be used when long range matching is enabled.
1441
* Zstd will use these sequences, and pass the literals to a secondary block
1442
* compressor.
1443
* @return : An error code on failure.
1444
* NOTE: seqs are not verified! Invalid sequences can cause out-of-bounds memory
1445
* access and data corruption.
1446
*/
1447
size_t ZSTD_referenceExternalSequences(ZSTD_CCtx* cctx, rawSeq* seq, size_t nbSeq);
1448
1449
/** ZSTD_cycleLog() :
1450
* condition for correct operation : hashLog > 1 */
1451
/* Begin FreeBSD - This symbol is needed by dll-linked CLI zstd(1). */
1452
ZSTDLIB_API
1453
/* End FreeBSD */
1454
U32 ZSTD_cycleLog(U32 hashLog, ZSTD_strategy strat);
1455
1456
/** ZSTD_CCtx_trace() :
1457
* Trace the end of a compression call.
1458
*/
1459
void ZSTD_CCtx_trace(ZSTD_CCtx* cctx, size_t extraCSize);
1460
1461
#endif /* ZSTD_COMPRESS_H */
1462
1463