Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/zstd/lib/compress/zstd_lazy.c
48378 views
1
/*
2
* Copyright (c) Yann Collet, Facebook, Inc.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
#include "zstd_compress_internal.h"
12
#include "zstd_lazy.h"
13
14
15
/*-*************************************
16
* Binary Tree search
17
***************************************/
18
19
static void
20
ZSTD_updateDUBT(ZSTD_matchState_t* ms,
21
const BYTE* ip, const BYTE* iend,
22
U32 mls)
23
{
24
const ZSTD_compressionParameters* const cParams = &ms->cParams;
25
U32* const hashTable = ms->hashTable;
26
U32 const hashLog = cParams->hashLog;
27
28
U32* const bt = ms->chainTable;
29
U32 const btLog = cParams->chainLog - 1;
30
U32 const btMask = (1 << btLog) - 1;
31
32
const BYTE* const base = ms->window.base;
33
U32 const target = (U32)(ip - base);
34
U32 idx = ms->nextToUpdate;
35
36
if (idx != target)
37
DEBUGLOG(7, "ZSTD_updateDUBT, from %u to %u (dictLimit:%u)",
38
idx, target, ms->window.dictLimit);
39
assert(ip + 8 <= iend); /* condition for ZSTD_hashPtr */
40
(void)iend;
41
42
assert(idx >= ms->window.dictLimit); /* condition for valid base+idx */
43
for ( ; idx < target ; idx++) {
44
size_t const h = ZSTD_hashPtr(base + idx, hashLog, mls); /* assumption : ip + 8 <= iend */
45
U32 const matchIndex = hashTable[h];
46
47
U32* const nextCandidatePtr = bt + 2*(idx&btMask);
48
U32* const sortMarkPtr = nextCandidatePtr + 1;
49
50
DEBUGLOG(8, "ZSTD_updateDUBT: insert %u", idx);
51
hashTable[h] = idx; /* Update Hash Table */
52
*nextCandidatePtr = matchIndex; /* update BT like a chain */
53
*sortMarkPtr = ZSTD_DUBT_UNSORTED_MARK;
54
}
55
ms->nextToUpdate = target;
56
}
57
58
59
/** ZSTD_insertDUBT1() :
60
* sort one already inserted but unsorted position
61
* assumption : curr >= btlow == (curr - btmask)
62
* doesn't fail */
63
static void
64
ZSTD_insertDUBT1(const ZSTD_matchState_t* ms,
65
U32 curr, const BYTE* inputEnd,
66
U32 nbCompares, U32 btLow,
67
const ZSTD_dictMode_e dictMode)
68
{
69
const ZSTD_compressionParameters* const cParams = &ms->cParams;
70
U32* const bt = ms->chainTable;
71
U32 const btLog = cParams->chainLog - 1;
72
U32 const btMask = (1 << btLog) - 1;
73
size_t commonLengthSmaller=0, commonLengthLarger=0;
74
const BYTE* const base = ms->window.base;
75
const BYTE* const dictBase = ms->window.dictBase;
76
const U32 dictLimit = ms->window.dictLimit;
77
const BYTE* const ip = (curr>=dictLimit) ? base + curr : dictBase + curr;
78
const BYTE* const iend = (curr>=dictLimit) ? inputEnd : dictBase + dictLimit;
79
const BYTE* const dictEnd = dictBase + dictLimit;
80
const BYTE* const prefixStart = base + dictLimit;
81
const BYTE* match;
82
U32* smallerPtr = bt + 2*(curr&btMask);
83
U32* largerPtr = smallerPtr + 1;
84
U32 matchIndex = *smallerPtr; /* this candidate is unsorted : next sorted candidate is reached through *smallerPtr, while *largerPtr contains previous unsorted candidate (which is already saved and can be overwritten) */
85
U32 dummy32; /* to be nullified at the end */
86
U32 const windowValid = ms->window.lowLimit;
87
U32 const maxDistance = 1U << cParams->windowLog;
88
U32 const windowLow = (curr - windowValid > maxDistance) ? curr - maxDistance : windowValid;
89
90
91
DEBUGLOG(8, "ZSTD_insertDUBT1(%u) (dictLimit=%u, lowLimit=%u)",
92
curr, dictLimit, windowLow);
93
assert(curr >= btLow);
94
assert(ip < iend); /* condition for ZSTD_count */
95
96
for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
97
U32* const nextPtr = bt + 2*(matchIndex & btMask);
98
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
99
assert(matchIndex < curr);
100
/* note : all candidates are now supposed sorted,
101
* but it's still possible to have nextPtr[1] == ZSTD_DUBT_UNSORTED_MARK
102
* when a real index has the same value as ZSTD_DUBT_UNSORTED_MARK */
103
104
if ( (dictMode != ZSTD_extDict)
105
|| (matchIndex+matchLength >= dictLimit) /* both in current segment*/
106
|| (curr < dictLimit) /* both in extDict */) {
107
const BYTE* const mBase = ( (dictMode != ZSTD_extDict)
108
|| (matchIndex+matchLength >= dictLimit)) ?
109
base : dictBase;
110
assert( (matchIndex+matchLength >= dictLimit) /* might be wrong if extDict is incorrectly set to 0 */
111
|| (curr < dictLimit) );
112
match = mBase + matchIndex;
113
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
114
} else {
115
match = dictBase + matchIndex;
116
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
117
if (matchIndex+matchLength >= dictLimit)
118
match = base + matchIndex; /* preparation for next read of match[matchLength] */
119
}
120
121
DEBUGLOG(8, "ZSTD_insertDUBT1: comparing %u with %u : found %u common bytes ",
122
curr, matchIndex, (U32)matchLength);
123
124
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
125
break; /* drop , to guarantee consistency ; miss a bit of compression, but other solutions can corrupt tree */
126
}
127
128
if (match[matchLength] < ip[matchLength]) { /* necessarily within buffer */
129
/* match is smaller than current */
130
*smallerPtr = matchIndex; /* update smaller idx */
131
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
132
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop searching */
133
DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is smaller : next => %u",
134
matchIndex, btLow, nextPtr[1]);
135
smallerPtr = nextPtr+1; /* new "candidate" => larger than match, which was smaller than target */
136
matchIndex = nextPtr[1]; /* new matchIndex, larger than previous and closer to current */
137
} else {
138
/* match is larger than current */
139
*largerPtr = matchIndex;
140
commonLengthLarger = matchLength;
141
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop searching */
142
DEBUGLOG(8, "ZSTD_insertDUBT1: %u (>btLow=%u) is larger => %u",
143
matchIndex, btLow, nextPtr[0]);
144
largerPtr = nextPtr;
145
matchIndex = nextPtr[0];
146
} }
147
148
*smallerPtr = *largerPtr = 0;
149
}
150
151
152
static size_t
153
ZSTD_DUBT_findBetterDictMatch (
154
const ZSTD_matchState_t* ms,
155
const BYTE* const ip, const BYTE* const iend,
156
size_t* offsetPtr,
157
size_t bestLength,
158
U32 nbCompares,
159
U32 const mls,
160
const ZSTD_dictMode_e dictMode)
161
{
162
const ZSTD_matchState_t * const dms = ms->dictMatchState;
163
const ZSTD_compressionParameters* const dmsCParams = &dms->cParams;
164
const U32 * const dictHashTable = dms->hashTable;
165
U32 const hashLog = dmsCParams->hashLog;
166
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
167
U32 dictMatchIndex = dictHashTable[h];
168
169
const BYTE* const base = ms->window.base;
170
const BYTE* const prefixStart = base + ms->window.dictLimit;
171
U32 const curr = (U32)(ip-base);
172
const BYTE* const dictBase = dms->window.base;
173
const BYTE* const dictEnd = dms->window.nextSrc;
174
U32 const dictHighLimit = (U32)(dms->window.nextSrc - dms->window.base);
175
U32 const dictLowLimit = dms->window.lowLimit;
176
U32 const dictIndexDelta = ms->window.lowLimit - dictHighLimit;
177
178
U32* const dictBt = dms->chainTable;
179
U32 const btLog = dmsCParams->chainLog - 1;
180
U32 const btMask = (1 << btLog) - 1;
181
U32 const btLow = (btMask >= dictHighLimit - dictLowLimit) ? dictLowLimit : dictHighLimit - btMask;
182
183
size_t commonLengthSmaller=0, commonLengthLarger=0;
184
185
(void)dictMode;
186
assert(dictMode == ZSTD_dictMatchState);
187
188
for (; nbCompares && (dictMatchIndex > dictLowLimit); --nbCompares) {
189
U32* const nextPtr = dictBt + 2*(dictMatchIndex & btMask);
190
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
191
const BYTE* match = dictBase + dictMatchIndex;
192
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
193
if (dictMatchIndex+matchLength >= dictHighLimit)
194
match = base + dictMatchIndex + dictIndexDelta; /* to prepare for next usage of match[matchLength] */
195
196
if (matchLength > bestLength) {
197
U32 matchIndex = dictMatchIndex + dictIndexDelta;
198
if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) ) {
199
DEBUGLOG(9, "ZSTD_DUBT_findBetterDictMatch(%u) : found better match length %u -> %u and offsetCode %u -> %u (dictMatchIndex %u, matchIndex %u)",
200
curr, (U32)bestLength, (U32)matchLength, (U32)*offsetPtr, STORE_OFFSET(curr - matchIndex), dictMatchIndex, matchIndex);
201
bestLength = matchLength, *offsetPtr = STORE_OFFSET(curr - matchIndex);
202
}
203
if (ip+matchLength == iend) { /* reached end of input : ip[matchLength] is not valid, no way to know if it's larger or smaller than match */
204
break; /* drop, to guarantee consistency (miss a little bit of compression) */
205
}
206
}
207
208
if (match[matchLength] < ip[matchLength]) {
209
if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
210
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
211
dictMatchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
212
} else {
213
/* match is larger than current */
214
if (dictMatchIndex <= btLow) { break; } /* beyond tree size, stop the search */
215
commonLengthLarger = matchLength;
216
dictMatchIndex = nextPtr[0];
217
}
218
}
219
220
if (bestLength >= MINMATCH) {
221
U32 const mIndex = curr - (U32)STORED_OFFSET(*offsetPtr); (void)mIndex;
222
DEBUGLOG(8, "ZSTD_DUBT_findBetterDictMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
223
curr, (U32)bestLength, (U32)*offsetPtr, mIndex);
224
}
225
return bestLength;
226
227
}
228
229
230
static size_t
231
ZSTD_DUBT_findBestMatch(ZSTD_matchState_t* ms,
232
const BYTE* const ip, const BYTE* const iend,
233
size_t* offsetPtr,
234
U32 const mls,
235
const ZSTD_dictMode_e dictMode)
236
{
237
const ZSTD_compressionParameters* const cParams = &ms->cParams;
238
U32* const hashTable = ms->hashTable;
239
U32 const hashLog = cParams->hashLog;
240
size_t const h = ZSTD_hashPtr(ip, hashLog, mls);
241
U32 matchIndex = hashTable[h];
242
243
const BYTE* const base = ms->window.base;
244
U32 const curr = (U32)(ip-base);
245
U32 const windowLow = ZSTD_getLowestMatchIndex(ms, curr, cParams->windowLog);
246
247
U32* const bt = ms->chainTable;
248
U32 const btLog = cParams->chainLog - 1;
249
U32 const btMask = (1 << btLog) - 1;
250
U32 const btLow = (btMask >= curr) ? 0 : curr - btMask;
251
U32 const unsortLimit = MAX(btLow, windowLow);
252
253
U32* nextCandidate = bt + 2*(matchIndex&btMask);
254
U32* unsortedMark = bt + 2*(matchIndex&btMask) + 1;
255
U32 nbCompares = 1U << cParams->searchLog;
256
U32 nbCandidates = nbCompares;
257
U32 previousCandidate = 0;
258
259
DEBUGLOG(7, "ZSTD_DUBT_findBestMatch (%u) ", curr);
260
assert(ip <= iend-8); /* required for h calculation */
261
assert(dictMode != ZSTD_dedicatedDictSearch);
262
263
/* reach end of unsorted candidates list */
264
while ( (matchIndex > unsortLimit)
265
&& (*unsortedMark == ZSTD_DUBT_UNSORTED_MARK)
266
&& (nbCandidates > 1) ) {
267
DEBUGLOG(8, "ZSTD_DUBT_findBestMatch: candidate %u is unsorted",
268
matchIndex);
269
*unsortedMark = previousCandidate; /* the unsortedMark becomes a reversed chain, to move up back to original position */
270
previousCandidate = matchIndex;
271
matchIndex = *nextCandidate;
272
nextCandidate = bt + 2*(matchIndex&btMask);
273
unsortedMark = bt + 2*(matchIndex&btMask) + 1;
274
nbCandidates --;
275
}
276
277
/* nullify last candidate if it's still unsorted
278
* simplification, detrimental to compression ratio, beneficial for speed */
279
if ( (matchIndex > unsortLimit)
280
&& (*unsortedMark==ZSTD_DUBT_UNSORTED_MARK) ) {
281
DEBUGLOG(7, "ZSTD_DUBT_findBestMatch: nullify last unsorted candidate %u",
282
matchIndex);
283
*nextCandidate = *unsortedMark = 0;
284
}
285
286
/* batch sort stacked candidates */
287
matchIndex = previousCandidate;
288
while (matchIndex) { /* will end on matchIndex == 0 */
289
U32* const nextCandidateIdxPtr = bt + 2*(matchIndex&btMask) + 1;
290
U32 const nextCandidateIdx = *nextCandidateIdxPtr;
291
ZSTD_insertDUBT1(ms, matchIndex, iend,
292
nbCandidates, unsortLimit, dictMode);
293
matchIndex = nextCandidateIdx;
294
nbCandidates++;
295
}
296
297
/* find longest match */
298
{ size_t commonLengthSmaller = 0, commonLengthLarger = 0;
299
const BYTE* const dictBase = ms->window.dictBase;
300
const U32 dictLimit = ms->window.dictLimit;
301
const BYTE* const dictEnd = dictBase + dictLimit;
302
const BYTE* const prefixStart = base + dictLimit;
303
U32* smallerPtr = bt + 2*(curr&btMask);
304
U32* largerPtr = bt + 2*(curr&btMask) + 1;
305
U32 matchEndIdx = curr + 8 + 1;
306
U32 dummy32; /* to be nullified at the end */
307
size_t bestLength = 0;
308
309
matchIndex = hashTable[h];
310
hashTable[h] = curr; /* Update Hash Table */
311
312
for (; nbCompares && (matchIndex > windowLow); --nbCompares) {
313
U32* const nextPtr = bt + 2*(matchIndex & btMask);
314
size_t matchLength = MIN(commonLengthSmaller, commonLengthLarger); /* guaranteed minimum nb of common bytes */
315
const BYTE* match;
316
317
if ((dictMode != ZSTD_extDict) || (matchIndex+matchLength >= dictLimit)) {
318
match = base + matchIndex;
319
matchLength += ZSTD_count(ip+matchLength, match+matchLength, iend);
320
} else {
321
match = dictBase + matchIndex;
322
matchLength += ZSTD_count_2segments(ip+matchLength, match+matchLength, iend, dictEnd, prefixStart);
323
if (matchIndex+matchLength >= dictLimit)
324
match = base + matchIndex; /* to prepare for next usage of match[matchLength] */
325
}
326
327
if (matchLength > bestLength) {
328
if (matchLength > matchEndIdx - matchIndex)
329
matchEndIdx = matchIndex + (U32)matchLength;
330
if ( (4*(int)(matchLength-bestLength)) > (int)(ZSTD_highbit32(curr-matchIndex+1) - ZSTD_highbit32((U32)offsetPtr[0]+1)) )
331
bestLength = matchLength, *offsetPtr = STORE_OFFSET(curr - matchIndex);
332
if (ip+matchLength == iend) { /* equal : no way to know if inf or sup */
333
if (dictMode == ZSTD_dictMatchState) {
334
nbCompares = 0; /* in addition to avoiding checking any
335
* further in this loop, make sure we
336
* skip checking in the dictionary. */
337
}
338
break; /* drop, to guarantee consistency (miss a little bit of compression) */
339
}
340
}
341
342
if (match[matchLength] < ip[matchLength]) {
343
/* match is smaller than current */
344
*smallerPtr = matchIndex; /* update smaller idx */
345
commonLengthSmaller = matchLength; /* all smaller will now have at least this guaranteed common length */
346
if (matchIndex <= btLow) { smallerPtr=&dummy32; break; } /* beyond tree size, stop the search */
347
smallerPtr = nextPtr+1; /* new "smaller" => larger of match */
348
matchIndex = nextPtr[1]; /* new matchIndex larger than previous (closer to current) */
349
} else {
350
/* match is larger than current */
351
*largerPtr = matchIndex;
352
commonLengthLarger = matchLength;
353
if (matchIndex <= btLow) { largerPtr=&dummy32; break; } /* beyond tree size, stop the search */
354
largerPtr = nextPtr;
355
matchIndex = nextPtr[0];
356
} }
357
358
*smallerPtr = *largerPtr = 0;
359
360
assert(nbCompares <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
361
if (dictMode == ZSTD_dictMatchState && nbCompares) {
362
bestLength = ZSTD_DUBT_findBetterDictMatch(
363
ms, ip, iend,
364
offsetPtr, bestLength, nbCompares,
365
mls, dictMode);
366
}
367
368
assert(matchEndIdx > curr+8); /* ensure nextToUpdate is increased */
369
ms->nextToUpdate = matchEndIdx - 8; /* skip repetitive patterns */
370
if (bestLength >= MINMATCH) {
371
U32 const mIndex = curr - (U32)STORED_OFFSET(*offsetPtr); (void)mIndex;
372
DEBUGLOG(8, "ZSTD_DUBT_findBestMatch(%u) : found match of length %u and offsetCode %u (pos %u)",
373
curr, (U32)bestLength, (U32)*offsetPtr, mIndex);
374
}
375
return bestLength;
376
}
377
}
378
379
380
/** ZSTD_BtFindBestMatch() : Tree updater, providing best match */
381
FORCE_INLINE_TEMPLATE size_t
382
ZSTD_BtFindBestMatch( ZSTD_matchState_t* ms,
383
const BYTE* const ip, const BYTE* const iLimit,
384
size_t* offsetPtr,
385
const U32 mls /* template */,
386
const ZSTD_dictMode_e dictMode)
387
{
388
DEBUGLOG(7, "ZSTD_BtFindBestMatch");
389
if (ip < ms->window.base + ms->nextToUpdate) return 0; /* skipped area */
390
ZSTD_updateDUBT(ms, ip, iLimit, mls);
391
return ZSTD_DUBT_findBestMatch(ms, ip, iLimit, offsetPtr, mls, dictMode);
392
}
393
394
/***********************************
395
* Dedicated dict search
396
***********************************/
397
398
void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip)
399
{
400
const BYTE* const base = ms->window.base;
401
U32 const target = (U32)(ip - base);
402
U32* const hashTable = ms->hashTable;
403
U32* const chainTable = ms->chainTable;
404
U32 const chainSize = 1 << ms->cParams.chainLog;
405
U32 idx = ms->nextToUpdate;
406
U32 const minChain = chainSize < target - idx ? target - chainSize : idx;
407
U32 const bucketSize = 1 << ZSTD_LAZY_DDSS_BUCKET_LOG;
408
U32 const cacheSize = bucketSize - 1;
409
U32 const chainAttempts = (1 << ms->cParams.searchLog) - cacheSize;
410
U32 const chainLimit = chainAttempts > 255 ? 255 : chainAttempts;
411
412
/* We know the hashtable is oversized by a factor of `bucketSize`.
413
* We are going to temporarily pretend `bucketSize == 1`, keeping only a
414
* single entry. We will use the rest of the space to construct a temporary
415
* chaintable.
416
*/
417
U32 const hashLog = ms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
418
U32* const tmpHashTable = hashTable;
419
U32* const tmpChainTable = hashTable + ((size_t)1 << hashLog);
420
U32 const tmpChainSize = (U32)((1 << ZSTD_LAZY_DDSS_BUCKET_LOG) - 1) << hashLog;
421
U32 const tmpMinChain = tmpChainSize < target ? target - tmpChainSize : idx;
422
U32 hashIdx;
423
424
assert(ms->cParams.chainLog <= 24);
425
assert(ms->cParams.hashLog > ms->cParams.chainLog);
426
assert(idx != 0);
427
assert(tmpMinChain <= minChain);
428
429
/* fill conventional hash table and conventional chain table */
430
for ( ; idx < target; idx++) {
431
U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch);
432
if (idx >= tmpMinChain) {
433
tmpChainTable[idx - tmpMinChain] = hashTable[h];
434
}
435
tmpHashTable[h] = idx;
436
}
437
438
/* sort chains into ddss chain table */
439
{
440
U32 chainPos = 0;
441
for (hashIdx = 0; hashIdx < (1U << hashLog); hashIdx++) {
442
U32 count;
443
U32 countBeyondMinChain = 0;
444
U32 i = tmpHashTable[hashIdx];
445
for (count = 0; i >= tmpMinChain && count < cacheSize; count++) {
446
/* skip through the chain to the first position that won't be
447
* in the hash cache bucket */
448
if (i < minChain) {
449
countBeyondMinChain++;
450
}
451
i = tmpChainTable[i - tmpMinChain];
452
}
453
if (count == cacheSize) {
454
for (count = 0; count < chainLimit;) {
455
if (i < minChain) {
456
if (!i || ++countBeyondMinChain > cacheSize) {
457
/* only allow pulling `cacheSize` number of entries
458
* into the cache or chainTable beyond `minChain`,
459
* to replace the entries pulled out of the
460
* chainTable into the cache. This lets us reach
461
* back further without increasing the total number
462
* of entries in the chainTable, guaranteeing the
463
* DDSS chain table will fit into the space
464
* allocated for the regular one. */
465
break;
466
}
467
}
468
chainTable[chainPos++] = i;
469
count++;
470
if (i < tmpMinChain) {
471
break;
472
}
473
i = tmpChainTable[i - tmpMinChain];
474
}
475
} else {
476
count = 0;
477
}
478
if (count) {
479
tmpHashTable[hashIdx] = ((chainPos - count) << 8) + count;
480
} else {
481
tmpHashTable[hashIdx] = 0;
482
}
483
}
484
assert(chainPos <= chainSize); /* I believe this is guaranteed... */
485
}
486
487
/* move chain pointers into the last entry of each hash bucket */
488
for (hashIdx = (1 << hashLog); hashIdx; ) {
489
U32 const bucketIdx = --hashIdx << ZSTD_LAZY_DDSS_BUCKET_LOG;
490
U32 const chainPackedPointer = tmpHashTable[hashIdx];
491
U32 i;
492
for (i = 0; i < cacheSize; i++) {
493
hashTable[bucketIdx + i] = 0;
494
}
495
hashTable[bucketIdx + bucketSize - 1] = chainPackedPointer;
496
}
497
498
/* fill the buckets of the hash table */
499
for (idx = ms->nextToUpdate; idx < target; idx++) {
500
U32 const h = (U32)ZSTD_hashPtr(base + idx, hashLog, ms->cParams.minMatch)
501
<< ZSTD_LAZY_DDSS_BUCKET_LOG;
502
U32 i;
503
/* Shift hash cache down 1. */
504
for (i = cacheSize - 1; i; i--)
505
hashTable[h + i] = hashTable[h + i - 1];
506
hashTable[h] = idx;
507
}
508
509
ms->nextToUpdate = target;
510
}
511
512
/* Returns the longest match length found in the dedicated dict search structure.
513
* If none are longer than the argument ml, then ml will be returned.
514
*/
515
FORCE_INLINE_TEMPLATE
516
size_t ZSTD_dedicatedDictSearch_lazy_search(size_t* offsetPtr, size_t ml, U32 nbAttempts,
517
const ZSTD_matchState_t* const dms,
518
const BYTE* const ip, const BYTE* const iLimit,
519
const BYTE* const prefixStart, const U32 curr,
520
const U32 dictLimit, const size_t ddsIdx) {
521
const U32 ddsLowestIndex = dms->window.dictLimit;
522
const BYTE* const ddsBase = dms->window.base;
523
const BYTE* const ddsEnd = dms->window.nextSrc;
524
const U32 ddsSize = (U32)(ddsEnd - ddsBase);
525
const U32 ddsIndexDelta = dictLimit - ddsSize;
526
const U32 bucketSize = (1 << ZSTD_LAZY_DDSS_BUCKET_LOG);
527
const U32 bucketLimit = nbAttempts < bucketSize - 1 ? nbAttempts : bucketSize - 1;
528
U32 ddsAttempt;
529
U32 matchIndex;
530
531
for (ddsAttempt = 0; ddsAttempt < bucketSize - 1; ddsAttempt++) {
532
PREFETCH_L1(ddsBase + dms->hashTable[ddsIdx + ddsAttempt]);
533
}
534
535
{
536
U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
537
U32 const chainIndex = chainPackedPointer >> 8;
538
539
PREFETCH_L1(&dms->chainTable[chainIndex]);
540
}
541
542
for (ddsAttempt = 0; ddsAttempt < bucketLimit; ddsAttempt++) {
543
size_t currentMl=0;
544
const BYTE* match;
545
matchIndex = dms->hashTable[ddsIdx + ddsAttempt];
546
match = ddsBase + matchIndex;
547
548
if (!matchIndex) {
549
return ml;
550
}
551
552
/* guaranteed by table construction */
553
(void)ddsLowestIndex;
554
assert(matchIndex >= ddsLowestIndex);
555
assert(match+4 <= ddsEnd);
556
if (MEM_read32(match) == MEM_read32(ip)) {
557
/* assumption : matchIndex <= dictLimit-4 (by table construction) */
558
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
559
}
560
561
/* save best solution */
562
if (currentMl > ml) {
563
ml = currentMl;
564
*offsetPtr = STORE_OFFSET(curr - (matchIndex + ddsIndexDelta));
565
if (ip+currentMl == iLimit) {
566
/* best possible, avoids read overflow on next attempt */
567
return ml;
568
}
569
}
570
}
571
572
{
573
U32 const chainPackedPointer = dms->hashTable[ddsIdx + bucketSize - 1];
574
U32 chainIndex = chainPackedPointer >> 8;
575
U32 const chainLength = chainPackedPointer & 0xFF;
576
U32 const chainAttempts = nbAttempts - ddsAttempt;
577
U32 const chainLimit = chainAttempts > chainLength ? chainLength : chainAttempts;
578
U32 chainAttempt;
579
580
for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++) {
581
PREFETCH_L1(ddsBase + dms->chainTable[chainIndex + chainAttempt]);
582
}
583
584
for (chainAttempt = 0 ; chainAttempt < chainLimit; chainAttempt++, chainIndex++) {
585
size_t currentMl=0;
586
const BYTE* match;
587
matchIndex = dms->chainTable[chainIndex];
588
match = ddsBase + matchIndex;
589
590
/* guaranteed by table construction */
591
assert(matchIndex >= ddsLowestIndex);
592
assert(match+4 <= ddsEnd);
593
if (MEM_read32(match) == MEM_read32(ip)) {
594
/* assumption : matchIndex <= dictLimit-4 (by table construction) */
595
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, ddsEnd, prefixStart) + 4;
596
}
597
598
/* save best solution */
599
if (currentMl > ml) {
600
ml = currentMl;
601
*offsetPtr = STORE_OFFSET(curr - (matchIndex + ddsIndexDelta));
602
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
603
}
604
}
605
}
606
return ml;
607
}
608
609
610
/* *********************************
611
* Hash Chain
612
***********************************/
613
#define NEXT_IN_CHAIN(d, mask) chainTable[(d) & (mask)]
614
615
/* Update chains up to ip (excluded)
616
Assumption : always within prefix (i.e. not within extDict) */
617
FORCE_INLINE_TEMPLATE U32 ZSTD_insertAndFindFirstIndex_internal(
618
ZSTD_matchState_t* ms,
619
const ZSTD_compressionParameters* const cParams,
620
const BYTE* ip, U32 const mls)
621
{
622
U32* const hashTable = ms->hashTable;
623
const U32 hashLog = cParams->hashLog;
624
U32* const chainTable = ms->chainTable;
625
const U32 chainMask = (1 << cParams->chainLog) - 1;
626
const BYTE* const base = ms->window.base;
627
const U32 target = (U32)(ip - base);
628
U32 idx = ms->nextToUpdate;
629
630
while(idx < target) { /* catch up */
631
size_t const h = ZSTD_hashPtr(base+idx, hashLog, mls);
632
NEXT_IN_CHAIN(idx, chainMask) = hashTable[h];
633
hashTable[h] = idx;
634
idx++;
635
}
636
637
ms->nextToUpdate = target;
638
return hashTable[ZSTD_hashPtr(ip, hashLog, mls)];
639
}
640
641
U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip) {
642
const ZSTD_compressionParameters* const cParams = &ms->cParams;
643
return ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, ms->cParams.minMatch);
644
}
645
646
/* inlining is important to hardwire a hot branch (template emulation) */
647
FORCE_INLINE_TEMPLATE
648
size_t ZSTD_HcFindBestMatch(
649
ZSTD_matchState_t* ms,
650
const BYTE* const ip, const BYTE* const iLimit,
651
size_t* offsetPtr,
652
const U32 mls, const ZSTD_dictMode_e dictMode)
653
{
654
const ZSTD_compressionParameters* const cParams = &ms->cParams;
655
U32* const chainTable = ms->chainTable;
656
const U32 chainSize = (1 << cParams->chainLog);
657
const U32 chainMask = chainSize-1;
658
const BYTE* const base = ms->window.base;
659
const BYTE* const dictBase = ms->window.dictBase;
660
const U32 dictLimit = ms->window.dictLimit;
661
const BYTE* const prefixStart = base + dictLimit;
662
const BYTE* const dictEnd = dictBase + dictLimit;
663
const U32 curr = (U32)(ip-base);
664
const U32 maxDistance = 1U << cParams->windowLog;
665
const U32 lowestValid = ms->window.lowLimit;
666
const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
667
const U32 isDictionary = (ms->loadedDictEnd != 0);
668
const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
669
const U32 minChain = curr > chainSize ? curr - chainSize : 0;
670
U32 nbAttempts = 1U << cParams->searchLog;
671
size_t ml=4-1;
672
673
const ZSTD_matchState_t* const dms = ms->dictMatchState;
674
const U32 ddsHashLog = dictMode == ZSTD_dedicatedDictSearch
675
? dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
676
const size_t ddsIdx = dictMode == ZSTD_dedicatedDictSearch
677
? ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG : 0;
678
679
U32 matchIndex;
680
681
if (dictMode == ZSTD_dedicatedDictSearch) {
682
const U32* entry = &dms->hashTable[ddsIdx];
683
PREFETCH_L1(entry);
684
}
685
686
/* HC4 match finder */
687
matchIndex = ZSTD_insertAndFindFirstIndex_internal(ms, cParams, ip, mls);
688
689
for ( ; (matchIndex>=lowLimit) & (nbAttempts>0) ; nbAttempts--) {
690
size_t currentMl=0;
691
if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
692
const BYTE* const match = base + matchIndex;
693
assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */
694
if (match[ml] == ip[ml]) /* potentially better */
695
currentMl = ZSTD_count(ip, match, iLimit);
696
} else {
697
const BYTE* const match = dictBase + matchIndex;
698
assert(match+4 <= dictEnd);
699
if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
700
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
701
}
702
703
/* save best solution */
704
if (currentMl > ml) {
705
ml = currentMl;
706
*offsetPtr = STORE_OFFSET(curr - matchIndex);
707
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
708
}
709
710
if (matchIndex <= minChain) break;
711
matchIndex = NEXT_IN_CHAIN(matchIndex, chainMask);
712
}
713
714
assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
715
if (dictMode == ZSTD_dedicatedDictSearch) {
716
ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts, dms,
717
ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
718
} else if (dictMode == ZSTD_dictMatchState) {
719
const U32* const dmsChainTable = dms->chainTable;
720
const U32 dmsChainSize = (1 << dms->cParams.chainLog);
721
const U32 dmsChainMask = dmsChainSize - 1;
722
const U32 dmsLowestIndex = dms->window.dictLimit;
723
const BYTE* const dmsBase = dms->window.base;
724
const BYTE* const dmsEnd = dms->window.nextSrc;
725
const U32 dmsSize = (U32)(dmsEnd - dmsBase);
726
const U32 dmsIndexDelta = dictLimit - dmsSize;
727
const U32 dmsMinChain = dmsSize > dmsChainSize ? dmsSize - dmsChainSize : 0;
728
729
matchIndex = dms->hashTable[ZSTD_hashPtr(ip, dms->cParams.hashLog, mls)];
730
731
for ( ; (matchIndex>=dmsLowestIndex) & (nbAttempts>0) ; nbAttempts--) {
732
size_t currentMl=0;
733
const BYTE* const match = dmsBase + matchIndex;
734
assert(match+4 <= dmsEnd);
735
if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
736
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
737
738
/* save best solution */
739
if (currentMl > ml) {
740
ml = currentMl;
741
assert(curr > matchIndex + dmsIndexDelta);
742
*offsetPtr = STORE_OFFSET(curr - (matchIndex + dmsIndexDelta));
743
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
744
}
745
746
if (matchIndex <= dmsMinChain) break;
747
748
matchIndex = dmsChainTable[matchIndex & dmsChainMask];
749
}
750
}
751
752
return ml;
753
}
754
755
/* *********************************
756
* (SIMD) Row-based matchfinder
757
***********************************/
758
/* Constants for row-based hash */
759
#define ZSTD_ROW_HASH_TAG_OFFSET 16 /* byte offset of hashes in the match state's tagTable from the beginning of a row */
760
#define ZSTD_ROW_HASH_TAG_BITS 8 /* nb bits to use for the tag */
761
#define ZSTD_ROW_HASH_TAG_MASK ((1u << ZSTD_ROW_HASH_TAG_BITS) - 1)
762
#define ZSTD_ROW_HASH_MAX_ENTRIES 64 /* absolute maximum number of entries per row, for all configurations */
763
764
#define ZSTD_ROW_HASH_CACHE_MASK (ZSTD_ROW_HASH_CACHE_SIZE - 1)
765
766
typedef U64 ZSTD_VecMask; /* Clarifies when we are interacting with a U64 representing a mask of matches */
767
768
/* ZSTD_VecMask_next():
769
* Starting from the LSB, returns the idx of the next non-zero bit.
770
* Basically counting the nb of trailing zeroes.
771
*/
772
static U32 ZSTD_VecMask_next(ZSTD_VecMask val) {
773
assert(val != 0);
774
# if defined(_MSC_VER) && defined(_WIN64)
775
if (val != 0) {
776
unsigned long r;
777
_BitScanForward64(&r, val);
778
return (U32)(r);
779
} else {
780
/* Should not reach this code path */
781
__assume(0);
782
}
783
# elif (defined(__GNUC__) && ((__GNUC__ > 3) || ((__GNUC__ == 3) && (__GNUC_MINOR__ >= 4))))
784
if (sizeof(size_t) == 4) {
785
U32 mostSignificantWord = (U32)(val >> 32);
786
U32 leastSignificantWord = (U32)val;
787
if (leastSignificantWord == 0) {
788
return 32 + (U32)__builtin_ctz(mostSignificantWord);
789
} else {
790
return (U32)__builtin_ctz(leastSignificantWord);
791
}
792
} else {
793
return (U32)__builtin_ctzll(val);
794
}
795
# else
796
/* Software ctz version: http://aggregate.org/MAGIC/#Trailing%20Zero%20Count
797
* and: https://stackoverflow.com/questions/2709430/count-number-of-bits-in-a-64-bit-long-big-integer
798
*/
799
val = ~val & (val - 1ULL); /* Lowest set bit mask */
800
val = val - ((val >> 1) & 0x5555555555555555);
801
val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
802
return (U32)((((val + (val >> 4)) & 0xF0F0F0F0F0F0F0FULL) * 0x101010101010101ULL) >> 56);
803
# endif
804
}
805
806
/* ZSTD_rotateRight_*():
807
* Rotates a bitfield to the right by "count" bits.
808
* https://en.wikipedia.org/w/index.php?title=Circular_shift&oldid=991635599#Implementing_circular_shifts
809
*/
810
FORCE_INLINE_TEMPLATE
811
U64 ZSTD_rotateRight_U64(U64 const value, U32 count) {
812
assert(count < 64);
813
count &= 0x3F; /* for fickle pattern recognition */
814
return (value >> count) | (U64)(value << ((0U - count) & 0x3F));
815
}
816
817
FORCE_INLINE_TEMPLATE
818
U32 ZSTD_rotateRight_U32(U32 const value, U32 count) {
819
assert(count < 32);
820
count &= 0x1F; /* for fickle pattern recognition */
821
return (value >> count) | (U32)(value << ((0U - count) & 0x1F));
822
}
823
824
FORCE_INLINE_TEMPLATE
825
U16 ZSTD_rotateRight_U16(U16 const value, U32 count) {
826
assert(count < 16);
827
count &= 0x0F; /* for fickle pattern recognition */
828
return (value >> count) | (U16)(value << ((0U - count) & 0x0F));
829
}
830
831
/* ZSTD_row_nextIndex():
832
* Returns the next index to insert at within a tagTable row, and updates the "head"
833
* value to reflect the update. Essentially cycles backwards from [0, {entries per row})
834
*/
835
FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextIndex(BYTE* const tagRow, U32 const rowMask) {
836
U32 const next = (*tagRow - 1) & rowMask;
837
*tagRow = (BYTE)next;
838
return next;
839
}
840
841
/* ZSTD_isAligned():
842
* Checks that a pointer is aligned to "align" bytes which must be a power of 2.
843
*/
844
MEM_STATIC int ZSTD_isAligned(void const* ptr, size_t align) {
845
assert((align & (align - 1)) == 0);
846
return (((size_t)ptr) & (align - 1)) == 0;
847
}
848
849
/* ZSTD_row_prefetch():
850
* Performs prefetching for the hashTable and tagTable at a given row.
851
*/
852
FORCE_INLINE_TEMPLATE void ZSTD_row_prefetch(U32 const* hashTable, U16 const* tagTable, U32 const relRow, U32 const rowLog) {
853
PREFETCH_L1(hashTable + relRow);
854
if (rowLog >= 5) {
855
PREFETCH_L1(hashTable + relRow + 16);
856
/* Note: prefetching more of the hash table does not appear to be beneficial for 128-entry rows */
857
}
858
PREFETCH_L1(tagTable + relRow);
859
if (rowLog == 6) {
860
PREFETCH_L1(tagTable + relRow + 32);
861
}
862
assert(rowLog == 4 || rowLog == 5 || rowLog == 6);
863
assert(ZSTD_isAligned(hashTable + relRow, 64)); /* prefetched hash row always 64-byte aligned */
864
assert(ZSTD_isAligned(tagTable + relRow, (size_t)1 << rowLog)); /* prefetched tagRow sits on correct multiple of bytes (32,64,128) */
865
}
866
867
/* ZSTD_row_fillHashCache():
868
* Fill up the hash cache starting at idx, prefetching up to ZSTD_ROW_HASH_CACHE_SIZE entries,
869
* but not beyond iLimit.
870
*/
871
FORCE_INLINE_TEMPLATE void ZSTD_row_fillHashCache(ZSTD_matchState_t* ms, const BYTE* base,
872
U32 const rowLog, U32 const mls,
873
U32 idx, const BYTE* const iLimit)
874
{
875
U32 const* const hashTable = ms->hashTable;
876
U16 const* const tagTable = ms->tagTable;
877
U32 const hashLog = ms->rowHashLog;
878
U32 const maxElemsToPrefetch = (base + idx) > iLimit ? 0 : (U32)(iLimit - (base + idx) + 1);
879
U32 const lim = idx + MIN(ZSTD_ROW_HASH_CACHE_SIZE, maxElemsToPrefetch);
880
881
for (; idx < lim; ++idx) {
882
U32 const hash = (U32)ZSTD_hashPtr(base + idx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
883
U32 const row = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
884
ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
885
ms->hashCache[idx & ZSTD_ROW_HASH_CACHE_MASK] = hash;
886
}
887
888
DEBUGLOG(6, "ZSTD_row_fillHashCache(): [%u %u %u %u %u %u %u %u]", ms->hashCache[0], ms->hashCache[1],
889
ms->hashCache[2], ms->hashCache[3], ms->hashCache[4],
890
ms->hashCache[5], ms->hashCache[6], ms->hashCache[7]);
891
}
892
893
/* ZSTD_row_nextCachedHash():
894
* Returns the hash of base + idx, and replaces the hash in the hash cache with the byte at
895
* base + idx + ZSTD_ROW_HASH_CACHE_SIZE. Also prefetches the appropriate rows from hashTable and tagTable.
896
*/
897
FORCE_INLINE_TEMPLATE U32 ZSTD_row_nextCachedHash(U32* cache, U32 const* hashTable,
898
U16 const* tagTable, BYTE const* base,
899
U32 idx, U32 const hashLog,
900
U32 const rowLog, U32 const mls)
901
{
902
U32 const newHash = (U32)ZSTD_hashPtr(base+idx+ZSTD_ROW_HASH_CACHE_SIZE, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
903
U32 const row = (newHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
904
ZSTD_row_prefetch(hashTable, tagTable, row, rowLog);
905
{ U32 const hash = cache[idx & ZSTD_ROW_HASH_CACHE_MASK];
906
cache[idx & ZSTD_ROW_HASH_CACHE_MASK] = newHash;
907
return hash;
908
}
909
}
910
911
/* ZSTD_row_update_internalImpl():
912
* Updates the hash table with positions starting from updateStartIdx until updateEndIdx.
913
*/
914
FORCE_INLINE_TEMPLATE void ZSTD_row_update_internalImpl(ZSTD_matchState_t* ms,
915
U32 updateStartIdx, U32 const updateEndIdx,
916
U32 const mls, U32 const rowLog,
917
U32 const rowMask, U32 const useCache)
918
{
919
U32* const hashTable = ms->hashTable;
920
U16* const tagTable = ms->tagTable;
921
U32 const hashLog = ms->rowHashLog;
922
const BYTE* const base = ms->window.base;
923
924
DEBUGLOG(6, "ZSTD_row_update_internalImpl(): updateStartIdx=%u, updateEndIdx=%u", updateStartIdx, updateEndIdx);
925
for (; updateStartIdx < updateEndIdx; ++updateStartIdx) {
926
U32 const hash = useCache ? ZSTD_row_nextCachedHash(ms->hashCache, hashTable, tagTable, base, updateStartIdx, hashLog, rowLog, mls)
927
: (U32)ZSTD_hashPtr(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
928
U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
929
U32* const row = hashTable + relRow;
930
BYTE* tagRow = (BYTE*)(tagTable + relRow); /* Though tagTable is laid out as a table of U16, each tag is only 1 byte.
931
Explicit cast allows us to get exact desired position within each row */
932
U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
933
934
assert(hash == ZSTD_hashPtr(base + updateStartIdx, hashLog + ZSTD_ROW_HASH_TAG_BITS, mls));
935
((BYTE*)tagRow)[pos + ZSTD_ROW_HASH_TAG_OFFSET] = hash & ZSTD_ROW_HASH_TAG_MASK;
936
row[pos] = updateStartIdx;
937
}
938
}
939
940
/* ZSTD_row_update_internal():
941
* Inserts the byte at ip into the appropriate position in the hash table, and updates ms->nextToUpdate.
942
* Skips sections of long matches as is necessary.
943
*/
944
FORCE_INLINE_TEMPLATE void ZSTD_row_update_internal(ZSTD_matchState_t* ms, const BYTE* ip,
945
U32 const mls, U32 const rowLog,
946
U32 const rowMask, U32 const useCache)
947
{
948
U32 idx = ms->nextToUpdate;
949
const BYTE* const base = ms->window.base;
950
const U32 target = (U32)(ip - base);
951
const U32 kSkipThreshold = 384;
952
const U32 kMaxMatchStartPositionsToUpdate = 96;
953
const U32 kMaxMatchEndPositionsToUpdate = 32;
954
955
if (useCache) {
956
/* Only skip positions when using hash cache, i.e.
957
* if we are loading a dict, don't skip anything.
958
* If we decide to skip, then we only update a set number
959
* of positions at the beginning and end of the match.
960
*/
961
if (UNLIKELY(target - idx > kSkipThreshold)) {
962
U32 const bound = idx + kMaxMatchStartPositionsToUpdate;
963
ZSTD_row_update_internalImpl(ms, idx, bound, mls, rowLog, rowMask, useCache);
964
idx = target - kMaxMatchEndPositionsToUpdate;
965
ZSTD_row_fillHashCache(ms, base, rowLog, mls, idx, ip+1);
966
}
967
}
968
assert(target >= idx);
969
ZSTD_row_update_internalImpl(ms, idx, target, mls, rowLog, rowMask, useCache);
970
ms->nextToUpdate = target;
971
}
972
973
/* ZSTD_row_update():
974
* External wrapper for ZSTD_row_update_internal(). Used for filling the hashtable during dictionary
975
* processing.
976
*/
977
void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip) {
978
const U32 rowLog = BOUNDED(4, ms->cParams.searchLog, 6);
979
const U32 rowMask = (1u << rowLog) - 1;
980
const U32 mls = MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */);
981
982
DEBUGLOG(5, "ZSTD_row_update(), rowLog=%u", rowLog);
983
ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 0 /* dont use cache */);
984
}
985
986
#if defined(ZSTD_ARCH_X86_SSE2)
987
FORCE_INLINE_TEMPLATE ZSTD_VecMask
988
ZSTD_row_getSSEMask(int nbChunks, const BYTE* const src, const BYTE tag, const U32 head)
989
{
990
const __m128i comparisonMask = _mm_set1_epi8((char)tag);
991
int matches[4] = {0};
992
int i;
993
assert(nbChunks == 1 || nbChunks == 2 || nbChunks == 4);
994
for (i=0; i<nbChunks; i++) {
995
const __m128i chunk = _mm_loadu_si128((const __m128i*)(const void*)(src + 16*i));
996
const __m128i equalMask = _mm_cmpeq_epi8(chunk, comparisonMask);
997
matches[i] = _mm_movemask_epi8(equalMask);
998
}
999
if (nbChunks == 1) return ZSTD_rotateRight_U16((U16)matches[0], head);
1000
if (nbChunks == 2) return ZSTD_rotateRight_U32((U32)matches[1] << 16 | (U32)matches[0], head);
1001
assert(nbChunks == 4);
1002
return ZSTD_rotateRight_U64((U64)matches[3] << 48 | (U64)matches[2] << 32 | (U64)matches[1] << 16 | (U64)matches[0], head);
1003
}
1004
#endif
1005
1006
/* Returns a ZSTD_VecMask (U32) that has the nth bit set to 1 if the newly-computed "tag" matches
1007
* the hash at the nth position in a row of the tagTable.
1008
* Each row is a circular buffer beginning at the value of "head". So we must rotate the "matches" bitfield
1009
* to match up with the actual layout of the entries within the hashTable */
1010
FORCE_INLINE_TEMPLATE ZSTD_VecMask
1011
ZSTD_row_getMatchMask(const BYTE* const tagRow, const BYTE tag, const U32 head, const U32 rowEntries)
1012
{
1013
const BYTE* const src = tagRow + ZSTD_ROW_HASH_TAG_OFFSET;
1014
assert((rowEntries == 16) || (rowEntries == 32) || rowEntries == 64);
1015
assert(rowEntries <= ZSTD_ROW_HASH_MAX_ENTRIES);
1016
1017
#if defined(ZSTD_ARCH_X86_SSE2)
1018
1019
return ZSTD_row_getSSEMask(rowEntries / 16, src, tag, head);
1020
1021
#else /* SW or NEON-LE */
1022
1023
# if defined(ZSTD_ARCH_ARM_NEON)
1024
/* This NEON path only works for little endian - otherwise use SWAR below */
1025
if (MEM_isLittleEndian()) {
1026
if (rowEntries == 16) {
1027
const uint8x16_t chunk = vld1q_u8(src);
1028
const uint16x8_t equalMask = vreinterpretq_u16_u8(vceqq_u8(chunk, vdupq_n_u8(tag)));
1029
const uint16x8_t t0 = vshlq_n_u16(equalMask, 7);
1030
const uint32x4_t t1 = vreinterpretq_u32_u16(vsriq_n_u16(t0, t0, 14));
1031
const uint64x2_t t2 = vreinterpretq_u64_u32(vshrq_n_u32(t1, 14));
1032
const uint8x16_t t3 = vreinterpretq_u8_u64(vsraq_n_u64(t2, t2, 28));
1033
const U16 hi = (U16)vgetq_lane_u8(t3, 8);
1034
const U16 lo = (U16)vgetq_lane_u8(t3, 0);
1035
return ZSTD_rotateRight_U16((hi << 8) | lo, head);
1036
} else if (rowEntries == 32) {
1037
const uint16x8x2_t chunk = vld2q_u16((const U16*)(const void*)src);
1038
const uint8x16_t chunk0 = vreinterpretq_u8_u16(chunk.val[0]);
1039
const uint8x16_t chunk1 = vreinterpretq_u8_u16(chunk.val[1]);
1040
const uint8x16_t equalMask0 = vceqq_u8(chunk0, vdupq_n_u8(tag));
1041
const uint8x16_t equalMask1 = vceqq_u8(chunk1, vdupq_n_u8(tag));
1042
const int8x8_t pack0 = vqmovn_s16(vreinterpretq_s16_u8(equalMask0));
1043
const int8x8_t pack1 = vqmovn_s16(vreinterpretq_s16_u8(equalMask1));
1044
const uint8x8_t t0 = vreinterpret_u8_s8(pack0);
1045
const uint8x8_t t1 = vreinterpret_u8_s8(pack1);
1046
const uint8x8_t t2 = vsri_n_u8(t1, t0, 2);
1047
const uint8x8x2_t t3 = vuzp_u8(t2, t0);
1048
const uint8x8_t t4 = vsri_n_u8(t3.val[1], t3.val[0], 4);
1049
const U32 matches = vget_lane_u32(vreinterpret_u32_u8(t4), 0);
1050
return ZSTD_rotateRight_U32(matches, head);
1051
} else { /* rowEntries == 64 */
1052
const uint8x16x4_t chunk = vld4q_u8(src);
1053
const uint8x16_t dup = vdupq_n_u8(tag);
1054
const uint8x16_t cmp0 = vceqq_u8(chunk.val[0], dup);
1055
const uint8x16_t cmp1 = vceqq_u8(chunk.val[1], dup);
1056
const uint8x16_t cmp2 = vceqq_u8(chunk.val[2], dup);
1057
const uint8x16_t cmp3 = vceqq_u8(chunk.val[3], dup);
1058
1059
const uint8x16_t t0 = vsriq_n_u8(cmp1, cmp0, 1);
1060
const uint8x16_t t1 = vsriq_n_u8(cmp3, cmp2, 1);
1061
const uint8x16_t t2 = vsriq_n_u8(t1, t0, 2);
1062
const uint8x16_t t3 = vsriq_n_u8(t2, t2, 4);
1063
const uint8x8_t t4 = vshrn_n_u16(vreinterpretq_u16_u8(t3), 4);
1064
const U64 matches = vget_lane_u64(vreinterpret_u64_u8(t4), 0);
1065
return ZSTD_rotateRight_U64(matches, head);
1066
}
1067
}
1068
# endif /* ZSTD_ARCH_ARM_NEON */
1069
/* SWAR */
1070
{ const size_t chunkSize = sizeof(size_t);
1071
const size_t shiftAmount = ((chunkSize * 8) - chunkSize);
1072
const size_t xFF = ~((size_t)0);
1073
const size_t x01 = xFF / 0xFF;
1074
const size_t x80 = x01 << 7;
1075
const size_t splatChar = tag * x01;
1076
ZSTD_VecMask matches = 0;
1077
int i = rowEntries - chunkSize;
1078
assert((sizeof(size_t) == 4) || (sizeof(size_t) == 8));
1079
if (MEM_isLittleEndian()) { /* runtime check so have two loops */
1080
const size_t extractMagic = (xFF / 0x7F) >> chunkSize;
1081
do {
1082
size_t chunk = MEM_readST(&src[i]);
1083
chunk ^= splatChar;
1084
chunk = (((chunk | x80) - x01) | chunk) & x80;
1085
matches <<= chunkSize;
1086
matches |= (chunk * extractMagic) >> shiftAmount;
1087
i -= chunkSize;
1088
} while (i >= 0);
1089
} else { /* big endian: reverse bits during extraction */
1090
const size_t msb = xFF ^ (xFF >> 1);
1091
const size_t extractMagic = (msb / 0x1FF) | msb;
1092
do {
1093
size_t chunk = MEM_readST(&src[i]);
1094
chunk ^= splatChar;
1095
chunk = (((chunk | x80) - x01) | chunk) & x80;
1096
matches <<= chunkSize;
1097
matches |= ((chunk >> 7) * extractMagic) >> shiftAmount;
1098
i -= chunkSize;
1099
} while (i >= 0);
1100
}
1101
matches = ~matches;
1102
if (rowEntries == 16) {
1103
return ZSTD_rotateRight_U16((U16)matches, head);
1104
} else if (rowEntries == 32) {
1105
return ZSTD_rotateRight_U32((U32)matches, head);
1106
} else {
1107
return ZSTD_rotateRight_U64((U64)matches, head);
1108
}
1109
}
1110
#endif
1111
}
1112
1113
/* The high-level approach of the SIMD row based match finder is as follows:
1114
* - Figure out where to insert the new entry:
1115
* - Generate a hash from a byte along with an additional 1-byte "short hash". The additional byte is our "tag"
1116
* - The hashTable is effectively split into groups or "rows" of 16 or 32 entries of U32, and the hash determines
1117
* which row to insert into.
1118
* - Determine the correct position within the row to insert the entry into. Each row of 16 or 32 can
1119
* be considered as a circular buffer with a "head" index that resides in the tagTable.
1120
* - Also insert the "tag" into the equivalent row and position in the tagTable.
1121
* - Note: The tagTable has 17 or 33 1-byte entries per row, due to 16 or 32 tags, and 1 "head" entry.
1122
* The 17 or 33 entry rows are spaced out to occur every 32 or 64 bytes, respectively,
1123
* for alignment/performance reasons, leaving some bytes unused.
1124
* - Use SIMD to efficiently compare the tags in the tagTable to the 1-byte "short hash" and
1125
* generate a bitfield that we can cycle through to check the collisions in the hash table.
1126
* - Pick the longest match.
1127
*/
1128
FORCE_INLINE_TEMPLATE
1129
size_t ZSTD_RowFindBestMatch(
1130
ZSTD_matchState_t* ms,
1131
const BYTE* const ip, const BYTE* const iLimit,
1132
size_t* offsetPtr,
1133
const U32 mls, const ZSTD_dictMode_e dictMode,
1134
const U32 rowLog)
1135
{
1136
U32* const hashTable = ms->hashTable;
1137
U16* const tagTable = ms->tagTable;
1138
U32* const hashCache = ms->hashCache;
1139
const U32 hashLog = ms->rowHashLog;
1140
const ZSTD_compressionParameters* const cParams = &ms->cParams;
1141
const BYTE* const base = ms->window.base;
1142
const BYTE* const dictBase = ms->window.dictBase;
1143
const U32 dictLimit = ms->window.dictLimit;
1144
const BYTE* const prefixStart = base + dictLimit;
1145
const BYTE* const dictEnd = dictBase + dictLimit;
1146
const U32 curr = (U32)(ip-base);
1147
const U32 maxDistance = 1U << cParams->windowLog;
1148
const U32 lowestValid = ms->window.lowLimit;
1149
const U32 withinMaxDistance = (curr - lowestValid > maxDistance) ? curr - maxDistance : lowestValid;
1150
const U32 isDictionary = (ms->loadedDictEnd != 0);
1151
const U32 lowLimit = isDictionary ? lowestValid : withinMaxDistance;
1152
const U32 rowEntries = (1U << rowLog);
1153
const U32 rowMask = rowEntries - 1;
1154
const U32 cappedSearchLog = MIN(cParams->searchLog, rowLog); /* nb of searches is capped at nb entries per row */
1155
U32 nbAttempts = 1U << cappedSearchLog;
1156
size_t ml=4-1;
1157
1158
/* DMS/DDS variables that may be referenced laster */
1159
const ZSTD_matchState_t* const dms = ms->dictMatchState;
1160
1161
/* Initialize the following variables to satisfy static analyzer */
1162
size_t ddsIdx = 0;
1163
U32 ddsExtraAttempts = 0; /* cctx hash tables are limited in searches, but allow extra searches into DDS */
1164
U32 dmsTag = 0;
1165
U32* dmsRow = NULL;
1166
BYTE* dmsTagRow = NULL;
1167
1168
if (dictMode == ZSTD_dedicatedDictSearch) {
1169
const U32 ddsHashLog = dms->cParams.hashLog - ZSTD_LAZY_DDSS_BUCKET_LOG;
1170
{ /* Prefetch DDS hashtable entry */
1171
ddsIdx = ZSTD_hashPtr(ip, ddsHashLog, mls) << ZSTD_LAZY_DDSS_BUCKET_LOG;
1172
PREFETCH_L1(&dms->hashTable[ddsIdx]);
1173
}
1174
ddsExtraAttempts = cParams->searchLog > rowLog ? 1U << (cParams->searchLog - rowLog) : 0;
1175
}
1176
1177
if (dictMode == ZSTD_dictMatchState) {
1178
/* Prefetch DMS rows */
1179
U32* const dmsHashTable = dms->hashTable;
1180
U16* const dmsTagTable = dms->tagTable;
1181
U32 const dmsHash = (U32)ZSTD_hashPtr(ip, dms->rowHashLog + ZSTD_ROW_HASH_TAG_BITS, mls);
1182
U32 const dmsRelRow = (dmsHash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
1183
dmsTag = dmsHash & ZSTD_ROW_HASH_TAG_MASK;
1184
dmsTagRow = (BYTE*)(dmsTagTable + dmsRelRow);
1185
dmsRow = dmsHashTable + dmsRelRow;
1186
ZSTD_row_prefetch(dmsHashTable, dmsTagTable, dmsRelRow, rowLog);
1187
}
1188
1189
/* Update the hashTable and tagTable up to (but not including) ip */
1190
ZSTD_row_update_internal(ms, ip, mls, rowLog, rowMask, 1 /* useCache */);
1191
{ /* Get the hash for ip, compute the appropriate row */
1192
U32 const hash = ZSTD_row_nextCachedHash(hashCache, hashTable, tagTable, base, curr, hashLog, rowLog, mls);
1193
U32 const relRow = (hash >> ZSTD_ROW_HASH_TAG_BITS) << rowLog;
1194
U32 const tag = hash & ZSTD_ROW_HASH_TAG_MASK;
1195
U32* const row = hashTable + relRow;
1196
BYTE* tagRow = (BYTE*)(tagTable + relRow);
1197
U32 const head = *tagRow & rowMask;
1198
U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
1199
size_t numMatches = 0;
1200
size_t currMatch = 0;
1201
ZSTD_VecMask matches = ZSTD_row_getMatchMask(tagRow, (BYTE)tag, head, rowEntries);
1202
1203
/* Cycle through the matches and prefetch */
1204
for (; (matches > 0) && (nbAttempts > 0); --nbAttempts, matches &= (matches - 1)) {
1205
U32 const matchPos = (head + ZSTD_VecMask_next(matches)) & rowMask;
1206
U32 const matchIndex = row[matchPos];
1207
assert(numMatches < rowEntries);
1208
if (matchIndex < lowLimit)
1209
break;
1210
if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
1211
PREFETCH_L1(base + matchIndex);
1212
} else {
1213
PREFETCH_L1(dictBase + matchIndex);
1214
}
1215
matchBuffer[numMatches++] = matchIndex;
1216
}
1217
1218
/* Speed opt: insert current byte into hashtable too. This allows us to avoid one iteration of the loop
1219
in ZSTD_row_update_internal() at the next search. */
1220
{
1221
U32 const pos = ZSTD_row_nextIndex(tagRow, rowMask);
1222
tagRow[pos + ZSTD_ROW_HASH_TAG_OFFSET] = (BYTE)tag;
1223
row[pos] = ms->nextToUpdate++;
1224
}
1225
1226
/* Return the longest match */
1227
for (; currMatch < numMatches; ++currMatch) {
1228
U32 const matchIndex = matchBuffer[currMatch];
1229
size_t currentMl=0;
1230
assert(matchIndex < curr);
1231
assert(matchIndex >= lowLimit);
1232
1233
if ((dictMode != ZSTD_extDict) || matchIndex >= dictLimit) {
1234
const BYTE* const match = base + matchIndex;
1235
assert(matchIndex >= dictLimit); /* ensures this is true if dictMode != ZSTD_extDict */
1236
if (match[ml] == ip[ml]) /* potentially better */
1237
currentMl = ZSTD_count(ip, match, iLimit);
1238
} else {
1239
const BYTE* const match = dictBase + matchIndex;
1240
assert(match+4 <= dictEnd);
1241
if (MEM_read32(match) == MEM_read32(ip)) /* assumption : matchIndex <= dictLimit-4 (by table construction) */
1242
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dictEnd, prefixStart) + 4;
1243
}
1244
1245
/* Save best solution */
1246
if (currentMl > ml) {
1247
ml = currentMl;
1248
*offsetPtr = STORE_OFFSET(curr - matchIndex);
1249
if (ip+currentMl == iLimit) break; /* best possible, avoids read overflow on next attempt */
1250
}
1251
}
1252
}
1253
1254
assert(nbAttempts <= (1U << ZSTD_SEARCHLOG_MAX)); /* Check we haven't underflowed. */
1255
if (dictMode == ZSTD_dedicatedDictSearch) {
1256
ml = ZSTD_dedicatedDictSearch_lazy_search(offsetPtr, ml, nbAttempts + ddsExtraAttempts, dms,
1257
ip, iLimit, prefixStart, curr, dictLimit, ddsIdx);
1258
} else if (dictMode == ZSTD_dictMatchState) {
1259
/* TODO: Measure and potentially add prefetching to DMS */
1260
const U32 dmsLowestIndex = dms->window.dictLimit;
1261
const BYTE* const dmsBase = dms->window.base;
1262
const BYTE* const dmsEnd = dms->window.nextSrc;
1263
const U32 dmsSize = (U32)(dmsEnd - dmsBase);
1264
const U32 dmsIndexDelta = dictLimit - dmsSize;
1265
1266
{ U32 const head = *dmsTagRow & rowMask;
1267
U32 matchBuffer[ZSTD_ROW_HASH_MAX_ENTRIES];
1268
size_t numMatches = 0;
1269
size_t currMatch = 0;
1270
ZSTD_VecMask matches = ZSTD_row_getMatchMask(dmsTagRow, (BYTE)dmsTag, head, rowEntries);
1271
1272
for (; (matches > 0) && (nbAttempts > 0); --nbAttempts, matches &= (matches - 1)) {
1273
U32 const matchPos = (head + ZSTD_VecMask_next(matches)) & rowMask;
1274
U32 const matchIndex = dmsRow[matchPos];
1275
if (matchIndex < dmsLowestIndex)
1276
break;
1277
PREFETCH_L1(dmsBase + matchIndex);
1278
matchBuffer[numMatches++] = matchIndex;
1279
}
1280
1281
/* Return the longest match */
1282
for (; currMatch < numMatches; ++currMatch) {
1283
U32 const matchIndex = matchBuffer[currMatch];
1284
size_t currentMl=0;
1285
assert(matchIndex >= dmsLowestIndex);
1286
assert(matchIndex < curr);
1287
1288
{ const BYTE* const match = dmsBase + matchIndex;
1289
assert(match+4 <= dmsEnd);
1290
if (MEM_read32(match) == MEM_read32(ip))
1291
currentMl = ZSTD_count_2segments(ip+4, match+4, iLimit, dmsEnd, prefixStart) + 4;
1292
}
1293
1294
if (currentMl > ml) {
1295
ml = currentMl;
1296
assert(curr > matchIndex + dmsIndexDelta);
1297
*offsetPtr = STORE_OFFSET(curr - (matchIndex + dmsIndexDelta));
1298
if (ip+currentMl == iLimit) break;
1299
}
1300
}
1301
}
1302
}
1303
return ml;
1304
}
1305
1306
1307
typedef size_t (*searchMax_f)(
1308
ZSTD_matchState_t* ms,
1309
const BYTE* ip, const BYTE* iLimit, size_t* offsetPtr);
1310
1311
/**
1312
* This struct contains the functions necessary for lazy to search.
1313
* Currently, that is only searchMax. However, it is still valuable to have the
1314
* VTable because this makes it easier to add more functions to the VTable later.
1315
*
1316
* TODO: The start of the search function involves loading and calculating a
1317
* bunch of constants from the ZSTD_matchState_t. These computations could be
1318
* done in an initialization function, and saved somewhere in the match state.
1319
* Then we could pass a pointer to the saved state instead of the match state,
1320
* and avoid duplicate computations.
1321
*
1322
* TODO: Move the match re-winding into searchMax. This improves compression
1323
* ratio, and unlocks further simplifications with the next TODO.
1324
*
1325
* TODO: Try moving the repcode search into searchMax. After the re-winding
1326
* and repcode search are in searchMax, there is no more logic in the match
1327
* finder loop that requires knowledge about the dictMode. So we should be
1328
* able to avoid force inlining it, and we can join the extDict loop with
1329
* the single segment loop. It should go in searchMax instead of its own
1330
* function to avoid having multiple virtual function calls per search.
1331
*/
1332
typedef struct {
1333
searchMax_f searchMax;
1334
} ZSTD_LazyVTable;
1335
1336
#define GEN_ZSTD_BT_VTABLE(dictMode, mls) \
1337
static size_t ZSTD_BtFindBestMatch_##dictMode##_##mls( \
1338
ZSTD_matchState_t* ms, \
1339
const BYTE* ip, const BYTE* const iLimit, \
1340
size_t* offsetPtr) \
1341
{ \
1342
assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
1343
return ZSTD_BtFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \
1344
} \
1345
static const ZSTD_LazyVTable ZSTD_BtVTable_##dictMode##_##mls = { \
1346
ZSTD_BtFindBestMatch_##dictMode##_##mls \
1347
};
1348
1349
#define GEN_ZSTD_HC_VTABLE(dictMode, mls) \
1350
static size_t ZSTD_HcFindBestMatch_##dictMode##_##mls( \
1351
ZSTD_matchState_t* ms, \
1352
const BYTE* ip, const BYTE* const iLimit, \
1353
size_t* offsetPtr) \
1354
{ \
1355
assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
1356
return ZSTD_HcFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode); \
1357
} \
1358
static const ZSTD_LazyVTable ZSTD_HcVTable_##dictMode##_##mls = { \
1359
ZSTD_HcFindBestMatch_##dictMode##_##mls \
1360
};
1361
1362
#define GEN_ZSTD_ROW_VTABLE(dictMode, mls, rowLog) \
1363
static size_t ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog( \
1364
ZSTD_matchState_t* ms, \
1365
const BYTE* ip, const BYTE* const iLimit, \
1366
size_t* offsetPtr) \
1367
{ \
1368
assert(MAX(4, MIN(6, ms->cParams.minMatch)) == mls); \
1369
assert(MAX(4, MIN(6, ms->cParams.searchLog)) == rowLog); \
1370
return ZSTD_RowFindBestMatch(ms, ip, iLimit, offsetPtr, mls, ZSTD_##dictMode, rowLog); \
1371
} \
1372
static const ZSTD_LazyVTable ZSTD_RowVTable_##dictMode##_##mls##_##rowLog = { \
1373
ZSTD_RowFindBestMatch_##dictMode##_##mls##_##rowLog \
1374
};
1375
1376
#define ZSTD_FOR_EACH_ROWLOG(X, dictMode, mls) \
1377
X(dictMode, mls, 4) \
1378
X(dictMode, mls, 5) \
1379
X(dictMode, mls, 6)
1380
1381
#define ZSTD_FOR_EACH_MLS_ROWLOG(X, dictMode) \
1382
ZSTD_FOR_EACH_ROWLOG(X, dictMode, 4) \
1383
ZSTD_FOR_EACH_ROWLOG(X, dictMode, 5) \
1384
ZSTD_FOR_EACH_ROWLOG(X, dictMode, 6)
1385
1386
#define ZSTD_FOR_EACH_MLS(X, dictMode) \
1387
X(dictMode, 4) \
1388
X(dictMode, 5) \
1389
X(dictMode, 6)
1390
1391
#define ZSTD_FOR_EACH_DICT_MODE(X, ...) \
1392
X(__VA_ARGS__, noDict) \
1393
X(__VA_ARGS__, extDict) \
1394
X(__VA_ARGS__, dictMatchState) \
1395
X(__VA_ARGS__, dedicatedDictSearch)
1396
1397
/* Generate Row VTables for each combination of (dictMode, mls, rowLog) */
1398
ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS_ROWLOG, GEN_ZSTD_ROW_VTABLE)
1399
/* Generate Binary Tree VTables for each combination of (dictMode, mls) */
1400
ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_BT_VTABLE)
1401
/* Generate Hash Chain VTables for each combination of (dictMode, mls) */
1402
ZSTD_FOR_EACH_DICT_MODE(ZSTD_FOR_EACH_MLS, GEN_ZSTD_HC_VTABLE)
1403
1404
#define GEN_ZSTD_BT_VTABLE_ARRAY(dictMode) \
1405
{ \
1406
&ZSTD_BtVTable_##dictMode##_4, \
1407
&ZSTD_BtVTable_##dictMode##_5, \
1408
&ZSTD_BtVTable_##dictMode##_6 \
1409
}
1410
1411
#define GEN_ZSTD_HC_VTABLE_ARRAY(dictMode) \
1412
{ \
1413
&ZSTD_HcVTable_##dictMode##_4, \
1414
&ZSTD_HcVTable_##dictMode##_5, \
1415
&ZSTD_HcVTable_##dictMode##_6 \
1416
}
1417
1418
#define GEN_ZSTD_ROW_VTABLE_ARRAY_(dictMode, mls) \
1419
{ \
1420
&ZSTD_RowVTable_##dictMode##_##mls##_4, \
1421
&ZSTD_RowVTable_##dictMode##_##mls##_5, \
1422
&ZSTD_RowVTable_##dictMode##_##mls##_6 \
1423
}
1424
1425
#define GEN_ZSTD_ROW_VTABLE_ARRAY(dictMode) \
1426
{ \
1427
GEN_ZSTD_ROW_VTABLE_ARRAY_(dictMode, 4), \
1428
GEN_ZSTD_ROW_VTABLE_ARRAY_(dictMode, 5), \
1429
GEN_ZSTD_ROW_VTABLE_ARRAY_(dictMode, 6) \
1430
}
1431
1432
#define GEN_ZSTD_VTABLE_ARRAY(X) \
1433
{ \
1434
X(noDict), \
1435
X(extDict), \
1436
X(dictMatchState), \
1437
X(dedicatedDictSearch) \
1438
}
1439
1440
/* *******************************
1441
* Common parser - lazy strategy
1442
*********************************/
1443
typedef enum { search_hashChain=0, search_binaryTree=1, search_rowHash=2 } searchMethod_e;
1444
1445
/**
1446
* This table is indexed first by the four ZSTD_dictMode_e values, and then
1447
* by the two searchMethod_e values. NULLs are placed for configurations
1448
* that should never occur (extDict modes go to the other implementation
1449
* below and there is no DDSS for binary tree search yet).
1450
*/
1451
1452
static ZSTD_LazyVTable const*
1453
ZSTD_selectLazyVTable(ZSTD_matchState_t const* ms, searchMethod_e searchMethod, ZSTD_dictMode_e dictMode)
1454
{
1455
/* Fill the Hc/Bt VTable arrays with the right functions for the (dictMode, mls) combination. */
1456
ZSTD_LazyVTable const* const hcVTables[4][3] = GEN_ZSTD_VTABLE_ARRAY(GEN_ZSTD_HC_VTABLE_ARRAY);
1457
ZSTD_LazyVTable const* const btVTables[4][3] = GEN_ZSTD_VTABLE_ARRAY(GEN_ZSTD_BT_VTABLE_ARRAY);
1458
/* Fill the Row VTable array with the right functions for the (dictMode, mls, rowLog) combination. */
1459
ZSTD_LazyVTable const* const rowVTables[4][3][3] = GEN_ZSTD_VTABLE_ARRAY(GEN_ZSTD_ROW_VTABLE_ARRAY);
1460
1461
U32 const mls = MAX(4, MIN(6, ms->cParams.minMatch));
1462
U32 const rowLog = MAX(4, MIN(6, ms->cParams.searchLog));
1463
switch (searchMethod) {
1464
case search_hashChain:
1465
return hcVTables[dictMode][mls - 4];
1466
case search_binaryTree:
1467
return btVTables[dictMode][mls - 4];
1468
case search_rowHash:
1469
return rowVTables[dictMode][mls - 4][rowLog - 4];
1470
default:
1471
return NULL;
1472
}
1473
}
1474
1475
FORCE_INLINE_TEMPLATE size_t
1476
ZSTD_compressBlock_lazy_generic(
1477
ZSTD_matchState_t* ms, seqStore_t* seqStore,
1478
U32 rep[ZSTD_REP_NUM],
1479
const void* src, size_t srcSize,
1480
const searchMethod_e searchMethod, const U32 depth,
1481
ZSTD_dictMode_e const dictMode)
1482
{
1483
const BYTE* const istart = (const BYTE*)src;
1484
const BYTE* ip = istart;
1485
const BYTE* anchor = istart;
1486
const BYTE* const iend = istart + srcSize;
1487
const BYTE* const ilimit = (searchMethod == search_rowHash) ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
1488
const BYTE* const base = ms->window.base;
1489
const U32 prefixLowestIndex = ms->window.dictLimit;
1490
const BYTE* const prefixLowest = base + prefixLowestIndex;
1491
1492
searchMax_f const searchMax = ZSTD_selectLazyVTable(ms, searchMethod, dictMode)->searchMax;
1493
U32 offset_1 = rep[0], offset_2 = rep[1], savedOffset=0;
1494
1495
const int isDMS = dictMode == ZSTD_dictMatchState;
1496
const int isDDS = dictMode == ZSTD_dedicatedDictSearch;
1497
const int isDxS = isDMS || isDDS;
1498
const ZSTD_matchState_t* const dms = ms->dictMatchState;
1499
const U32 dictLowestIndex = isDxS ? dms->window.dictLimit : 0;
1500
const BYTE* const dictBase = isDxS ? dms->window.base : NULL;
1501
const BYTE* const dictLowest = isDxS ? dictBase + dictLowestIndex : NULL;
1502
const BYTE* const dictEnd = isDxS ? dms->window.nextSrc : NULL;
1503
const U32 dictIndexDelta = isDxS ?
1504
prefixLowestIndex - (U32)(dictEnd - dictBase) :
1505
0;
1506
const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictLowest));
1507
1508
assert(searchMax != NULL);
1509
1510
DEBUGLOG(5, "ZSTD_compressBlock_lazy_generic (dictMode=%u) (searchFunc=%u)", (U32)dictMode, (U32)searchMethod);
1511
ip += (dictAndPrefixLength == 0);
1512
if (dictMode == ZSTD_noDict) {
1513
U32 const curr = (U32)(ip - base);
1514
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, ms->cParams.windowLog);
1515
U32 const maxRep = curr - windowLow;
1516
if (offset_2 > maxRep) savedOffset = offset_2, offset_2 = 0;
1517
if (offset_1 > maxRep) savedOffset = offset_1, offset_1 = 0;
1518
}
1519
if (isDxS) {
1520
/* dictMatchState repCode checks don't currently handle repCode == 0
1521
* disabling. */
1522
assert(offset_1 <= dictAndPrefixLength);
1523
assert(offset_2 <= dictAndPrefixLength);
1524
}
1525
1526
if (searchMethod == search_rowHash) {
1527
const U32 rowLog = MAX(4, MIN(6, ms->cParams.searchLog));
1528
ZSTD_row_fillHashCache(ms, base, rowLog,
1529
MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */),
1530
ms->nextToUpdate, ilimit);
1531
}
1532
1533
/* Match Loop */
1534
#if defined(__GNUC__) && defined(__x86_64__)
1535
/* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
1536
* code alignment is perturbed. To fix the instability align the loop on 32-bytes.
1537
*/
1538
__asm__(".p2align 5");
1539
#endif
1540
while (ip < ilimit) {
1541
size_t matchLength=0;
1542
size_t offcode=STORE_REPCODE_1;
1543
const BYTE* start=ip+1;
1544
DEBUGLOG(7, "search baseline (depth 0)");
1545
1546
/* check repCode */
1547
if (isDxS) {
1548
const U32 repIndex = (U32)(ip - base) + 1 - offset_1;
1549
const BYTE* repMatch = ((dictMode == ZSTD_dictMatchState || dictMode == ZSTD_dedicatedDictSearch)
1550
&& repIndex < prefixLowestIndex) ?
1551
dictBase + (repIndex - dictIndexDelta) :
1552
base + repIndex;
1553
if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
1554
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
1555
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1556
matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1557
if (depth==0) goto _storeSequence;
1558
}
1559
}
1560
if ( dictMode == ZSTD_noDict
1561
&& ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1)))) {
1562
matchLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
1563
if (depth==0) goto _storeSequence;
1564
}
1565
1566
/* first search (depth 0) */
1567
{ size_t offsetFound = 999999999;
1568
size_t const ml2 = searchMax(ms, ip, iend, &offsetFound);
1569
if (ml2 > matchLength)
1570
matchLength = ml2, start = ip, offcode=offsetFound;
1571
}
1572
1573
if (matchLength < 4) {
1574
ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */
1575
continue;
1576
}
1577
1578
/* let's try to find a better solution */
1579
if (depth>=1)
1580
while (ip<ilimit) {
1581
DEBUGLOG(7, "search depth 1");
1582
ip ++;
1583
if ( (dictMode == ZSTD_noDict)
1584
&& (offcode) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
1585
size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
1586
int const gain2 = (int)(mlRep * 3);
1587
int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
1588
if ((mlRep >= 4) && (gain2 > gain1))
1589
matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip;
1590
}
1591
if (isDxS) {
1592
const U32 repIndex = (U32)(ip - base) - offset_1;
1593
const BYTE* repMatch = repIndex < prefixLowestIndex ?
1594
dictBase + (repIndex - dictIndexDelta) :
1595
base + repIndex;
1596
if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
1597
&& (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1598
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1599
size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1600
int const gain2 = (int)(mlRep * 3);
1601
int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
1602
if ((mlRep >= 4) && (gain2 > gain1))
1603
matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip;
1604
}
1605
}
1606
{ size_t offset2=999999999;
1607
size_t const ml2 = searchMax(ms, ip, iend, &offset2);
1608
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2))); /* raw approx */
1609
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 4);
1610
if ((ml2 >= 4) && (gain2 > gain1)) {
1611
matchLength = ml2, offcode = offset2, start = ip;
1612
continue; /* search a better one */
1613
} }
1614
1615
/* let's find an even better one */
1616
if ((depth==2) && (ip<ilimit)) {
1617
DEBUGLOG(7, "search depth 2");
1618
ip ++;
1619
if ( (dictMode == ZSTD_noDict)
1620
&& (offcode) && ((offset_1>0) & (MEM_read32(ip) == MEM_read32(ip - offset_1)))) {
1621
size_t const mlRep = ZSTD_count(ip+4, ip+4-offset_1, iend) + 4;
1622
int const gain2 = (int)(mlRep * 4);
1623
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
1624
if ((mlRep >= 4) && (gain2 > gain1))
1625
matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip;
1626
}
1627
if (isDxS) {
1628
const U32 repIndex = (U32)(ip - base) - offset_1;
1629
const BYTE* repMatch = repIndex < prefixLowestIndex ?
1630
dictBase + (repIndex - dictIndexDelta) :
1631
base + repIndex;
1632
if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
1633
&& (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1634
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
1635
size_t const mlRep = ZSTD_count_2segments(ip+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
1636
int const gain2 = (int)(mlRep * 4);
1637
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
1638
if ((mlRep >= 4) && (gain2 > gain1))
1639
matchLength = mlRep, offcode = STORE_REPCODE_1, start = ip;
1640
}
1641
}
1642
{ size_t offset2=999999999;
1643
size_t const ml2 = searchMax(ms, ip, iend, &offset2);
1644
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2))); /* raw approx */
1645
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 7);
1646
if ((ml2 >= 4) && (gain2 > gain1)) {
1647
matchLength = ml2, offcode = offset2, start = ip;
1648
continue;
1649
} } }
1650
break; /* nothing found : store previous solution */
1651
}
1652
1653
/* NOTE:
1654
* Pay attention that `start[-value]` can lead to strange undefined behavior
1655
* notably if `value` is unsigned, resulting in a large positive `-value`.
1656
*/
1657
/* catch up */
1658
if (STORED_IS_OFFSET(offcode)) {
1659
if (dictMode == ZSTD_noDict) {
1660
while ( ((start > anchor) & (start - STORED_OFFSET(offcode) > prefixLowest))
1661
&& (start[-1] == (start-STORED_OFFSET(offcode))[-1]) ) /* only search for offset within prefix */
1662
{ start--; matchLength++; }
1663
}
1664
if (isDxS) {
1665
U32 const matchIndex = (U32)((size_t)(start-base) - STORED_OFFSET(offcode));
1666
const BYTE* match = (matchIndex < prefixLowestIndex) ? dictBase + matchIndex - dictIndexDelta : base + matchIndex;
1667
const BYTE* const mStart = (matchIndex < prefixLowestIndex) ? dictLowest : prefixLowest;
1668
while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
1669
}
1670
offset_2 = offset_1; offset_1 = (U32)STORED_OFFSET(offcode);
1671
}
1672
/* store sequence */
1673
_storeSequence:
1674
{ size_t const litLength = (size_t)(start - anchor);
1675
ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offcode, matchLength);
1676
anchor = ip = start + matchLength;
1677
}
1678
1679
/* check immediate repcode */
1680
if (isDxS) {
1681
while (ip <= ilimit) {
1682
U32 const current2 = (U32)(ip-base);
1683
U32 const repIndex = current2 - offset_2;
1684
const BYTE* repMatch = repIndex < prefixLowestIndex ?
1685
dictBase - dictIndexDelta + repIndex :
1686
base + repIndex;
1687
if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex) >= 3 /* intentional overflow */)
1688
&& (MEM_read32(repMatch) == MEM_read32(ip)) ) {
1689
const BYTE* const repEnd2 = repIndex < prefixLowestIndex ? dictEnd : iend;
1690
matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd2, prefixLowest) + 4;
1691
offcode = offset_2; offset_2 = offset_1; offset_1 = (U32)offcode; /* swap offset_2 <=> offset_1 */
1692
ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, matchLength);
1693
ip += matchLength;
1694
anchor = ip;
1695
continue;
1696
}
1697
break;
1698
}
1699
}
1700
1701
if (dictMode == ZSTD_noDict) {
1702
while ( ((ip <= ilimit) & (offset_2>0))
1703
&& (MEM_read32(ip) == MEM_read32(ip - offset_2)) ) {
1704
/* store sequence */
1705
matchLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
1706
offcode = offset_2; offset_2 = offset_1; offset_1 = (U32)offcode; /* swap repcodes */
1707
ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, matchLength);
1708
ip += matchLength;
1709
anchor = ip;
1710
continue; /* faster when present ... (?) */
1711
} } }
1712
1713
/* Save reps for next block */
1714
rep[0] = offset_1 ? offset_1 : savedOffset;
1715
rep[1] = offset_2 ? offset_2 : savedOffset;
1716
1717
/* Return the last literals size */
1718
return (size_t)(iend - anchor);
1719
}
1720
1721
1722
size_t ZSTD_compressBlock_btlazy2(
1723
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1724
void const* src, size_t srcSize)
1725
{
1726
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_noDict);
1727
}
1728
1729
size_t ZSTD_compressBlock_lazy2(
1730
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1731
void const* src, size_t srcSize)
1732
{
1733
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_noDict);
1734
}
1735
1736
size_t ZSTD_compressBlock_lazy(
1737
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1738
void const* src, size_t srcSize)
1739
{
1740
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_noDict);
1741
}
1742
1743
size_t ZSTD_compressBlock_greedy(
1744
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1745
void const* src, size_t srcSize)
1746
{
1747
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_noDict);
1748
}
1749
1750
size_t ZSTD_compressBlock_btlazy2_dictMatchState(
1751
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1752
void const* src, size_t srcSize)
1753
{
1754
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2, ZSTD_dictMatchState);
1755
}
1756
1757
size_t ZSTD_compressBlock_lazy2_dictMatchState(
1758
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1759
void const* src, size_t srcSize)
1760
{
1761
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dictMatchState);
1762
}
1763
1764
size_t ZSTD_compressBlock_lazy_dictMatchState(
1765
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1766
void const* src, size_t srcSize)
1767
{
1768
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dictMatchState);
1769
}
1770
1771
size_t ZSTD_compressBlock_greedy_dictMatchState(
1772
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1773
void const* src, size_t srcSize)
1774
{
1775
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dictMatchState);
1776
}
1777
1778
1779
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
1780
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1781
void const* src, size_t srcSize)
1782
{
1783
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2, ZSTD_dedicatedDictSearch);
1784
}
1785
1786
size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
1787
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1788
void const* src, size_t srcSize)
1789
{
1790
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1, ZSTD_dedicatedDictSearch);
1791
}
1792
1793
size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
1794
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1795
void const* src, size_t srcSize)
1796
{
1797
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0, ZSTD_dedicatedDictSearch);
1798
}
1799
1800
/* Row-based matchfinder */
1801
size_t ZSTD_compressBlock_lazy2_row(
1802
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1803
void const* src, size_t srcSize)
1804
{
1805
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_noDict);
1806
}
1807
1808
size_t ZSTD_compressBlock_lazy_row(
1809
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1810
void const* src, size_t srcSize)
1811
{
1812
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_noDict);
1813
}
1814
1815
size_t ZSTD_compressBlock_greedy_row(
1816
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1817
void const* src, size_t srcSize)
1818
{
1819
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_noDict);
1820
}
1821
1822
size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
1823
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1824
void const* src, size_t srcSize)
1825
{
1826
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dictMatchState);
1827
}
1828
1829
size_t ZSTD_compressBlock_lazy_dictMatchState_row(
1830
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1831
void const* src, size_t srcSize)
1832
{
1833
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dictMatchState);
1834
}
1835
1836
size_t ZSTD_compressBlock_greedy_dictMatchState_row(
1837
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1838
void const* src, size_t srcSize)
1839
{
1840
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dictMatchState);
1841
}
1842
1843
1844
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
1845
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1846
void const* src, size_t srcSize)
1847
{
1848
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2, ZSTD_dedicatedDictSearch);
1849
}
1850
1851
size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
1852
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1853
void const* src, size_t srcSize)
1854
{
1855
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1, ZSTD_dedicatedDictSearch);
1856
}
1857
1858
size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
1859
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
1860
void const* src, size_t srcSize)
1861
{
1862
return ZSTD_compressBlock_lazy_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0, ZSTD_dedicatedDictSearch);
1863
}
1864
1865
FORCE_INLINE_TEMPLATE
1866
size_t ZSTD_compressBlock_lazy_extDict_generic(
1867
ZSTD_matchState_t* ms, seqStore_t* seqStore,
1868
U32 rep[ZSTD_REP_NUM],
1869
const void* src, size_t srcSize,
1870
const searchMethod_e searchMethod, const U32 depth)
1871
{
1872
const BYTE* const istart = (const BYTE*)src;
1873
const BYTE* ip = istart;
1874
const BYTE* anchor = istart;
1875
const BYTE* const iend = istart + srcSize;
1876
const BYTE* const ilimit = searchMethod == search_rowHash ? iend - 8 - ZSTD_ROW_HASH_CACHE_SIZE : iend - 8;
1877
const BYTE* const base = ms->window.base;
1878
const U32 dictLimit = ms->window.dictLimit;
1879
const BYTE* const prefixStart = base + dictLimit;
1880
const BYTE* const dictBase = ms->window.dictBase;
1881
const BYTE* const dictEnd = dictBase + dictLimit;
1882
const BYTE* const dictStart = dictBase + ms->window.lowLimit;
1883
const U32 windowLog = ms->cParams.windowLog;
1884
const U32 rowLog = ms->cParams.searchLog < 5 ? 4 : 5;
1885
1886
searchMax_f const searchMax = ZSTD_selectLazyVTable(ms, searchMethod, ZSTD_extDict)->searchMax;
1887
U32 offset_1 = rep[0], offset_2 = rep[1];
1888
1889
DEBUGLOG(5, "ZSTD_compressBlock_lazy_extDict_generic (searchFunc=%u)", (U32)searchMethod);
1890
1891
/* init */
1892
ip += (ip == prefixStart);
1893
if (searchMethod == search_rowHash) {
1894
ZSTD_row_fillHashCache(ms, base, rowLog,
1895
MIN(ms->cParams.minMatch, 6 /* mls caps out at 6 */),
1896
ms->nextToUpdate, ilimit);
1897
}
1898
1899
/* Match Loop */
1900
#if defined(__GNUC__) && defined(__x86_64__)
1901
/* I've measured random a 5% speed loss on levels 5 & 6 (greedy) when the
1902
* code alignment is perturbed. To fix the instability align the loop on 32-bytes.
1903
*/
1904
__asm__(".p2align 5");
1905
#endif
1906
while (ip < ilimit) {
1907
size_t matchLength=0;
1908
size_t offcode=STORE_REPCODE_1;
1909
const BYTE* start=ip+1;
1910
U32 curr = (U32)(ip-base);
1911
1912
/* check repCode */
1913
{ const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr+1, windowLog);
1914
const U32 repIndex = (U32)(curr+1 - offset_1);
1915
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
1916
const BYTE* const repMatch = repBase + repIndex;
1917
if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow */
1918
& (offset_1 <= curr+1 - windowLow) ) /* note: we are searching at curr+1 */
1919
if (MEM_read32(ip+1) == MEM_read32(repMatch)) {
1920
/* repcode detected we should take it */
1921
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
1922
matchLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repEnd, prefixStart) + 4;
1923
if (depth==0) goto _storeSequence;
1924
} }
1925
1926
/* first search (depth 0) */
1927
{ size_t offsetFound = 999999999;
1928
size_t const ml2 = searchMax(ms, ip, iend, &offsetFound);
1929
if (ml2 > matchLength)
1930
matchLength = ml2, start = ip, offcode=offsetFound;
1931
}
1932
1933
if (matchLength < 4) {
1934
ip += ((ip-anchor) >> kSearchStrength) + 1; /* jump faster over incompressible sections */
1935
continue;
1936
}
1937
1938
/* let's try to find a better solution */
1939
if (depth>=1)
1940
while (ip<ilimit) {
1941
ip ++;
1942
curr++;
1943
/* check repCode */
1944
if (offcode) {
1945
const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
1946
const U32 repIndex = (U32)(curr - offset_1);
1947
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
1948
const BYTE* const repMatch = repBase + repIndex;
1949
if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */
1950
& (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
1951
if (MEM_read32(ip) == MEM_read32(repMatch)) {
1952
/* repcode detected */
1953
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
1954
size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
1955
int const gain2 = (int)(repLength * 3);
1956
int const gain1 = (int)(matchLength*3 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
1957
if ((repLength >= 4) && (gain2 > gain1))
1958
matchLength = repLength, offcode = STORE_REPCODE_1, start = ip;
1959
} }
1960
1961
/* search match, depth 1 */
1962
{ size_t offset2=999999999;
1963
size_t const ml2 = searchMax(ms, ip, iend, &offset2);
1964
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2))); /* raw approx */
1965
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 4);
1966
if ((ml2 >= 4) && (gain2 > gain1)) {
1967
matchLength = ml2, offcode = offset2, start = ip;
1968
continue; /* search a better one */
1969
} }
1970
1971
/* let's find an even better one */
1972
if ((depth==2) && (ip<ilimit)) {
1973
ip ++;
1974
curr++;
1975
/* check repCode */
1976
if (offcode) {
1977
const U32 windowLow = ZSTD_getLowestMatchIndex(ms, curr, windowLog);
1978
const U32 repIndex = (U32)(curr - offset_1);
1979
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
1980
const BYTE* const repMatch = repBase + repIndex;
1981
if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */
1982
& (offset_1 <= curr - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
1983
if (MEM_read32(ip) == MEM_read32(repMatch)) {
1984
/* repcode detected */
1985
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
1986
size_t const repLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
1987
int const gain2 = (int)(repLength * 4);
1988
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 1);
1989
if ((repLength >= 4) && (gain2 > gain1))
1990
matchLength = repLength, offcode = STORE_REPCODE_1, start = ip;
1991
} }
1992
1993
/* search match, depth 2 */
1994
{ size_t offset2=999999999;
1995
size_t const ml2 = searchMax(ms, ip, iend, &offset2);
1996
int const gain2 = (int)(ml2*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offset2))); /* raw approx */
1997
int const gain1 = (int)(matchLength*4 - ZSTD_highbit32((U32)STORED_TO_OFFBASE(offcode)) + 7);
1998
if ((ml2 >= 4) && (gain2 > gain1)) {
1999
matchLength = ml2, offcode = offset2, start = ip;
2000
continue;
2001
} } }
2002
break; /* nothing found : store previous solution */
2003
}
2004
2005
/* catch up */
2006
if (STORED_IS_OFFSET(offcode)) {
2007
U32 const matchIndex = (U32)((size_t)(start-base) - STORED_OFFSET(offcode));
2008
const BYTE* match = (matchIndex < dictLimit) ? dictBase + matchIndex : base + matchIndex;
2009
const BYTE* const mStart = (matchIndex < dictLimit) ? dictStart : prefixStart;
2010
while ((start>anchor) && (match>mStart) && (start[-1] == match[-1])) { start--; match--; matchLength++; } /* catch up */
2011
offset_2 = offset_1; offset_1 = (U32)STORED_OFFSET(offcode);
2012
}
2013
2014
/* store sequence */
2015
_storeSequence:
2016
{ size_t const litLength = (size_t)(start - anchor);
2017
ZSTD_storeSeq(seqStore, litLength, anchor, iend, (U32)offcode, matchLength);
2018
anchor = ip = start + matchLength;
2019
}
2020
2021
/* check immediate repcode */
2022
while (ip <= ilimit) {
2023
const U32 repCurrent = (U32)(ip-base);
2024
const U32 windowLow = ZSTD_getLowestMatchIndex(ms, repCurrent, windowLog);
2025
const U32 repIndex = repCurrent - offset_2;
2026
const BYTE* const repBase = repIndex < dictLimit ? dictBase : base;
2027
const BYTE* const repMatch = repBase + repIndex;
2028
if ( ((U32)((dictLimit-1) - repIndex) >= 3) /* intentional overflow : do not test positions overlapping 2 memory segments */
2029
& (offset_2 <= repCurrent - windowLow) ) /* equivalent to `curr > repIndex >= windowLow` */
2030
if (MEM_read32(ip) == MEM_read32(repMatch)) {
2031
/* repcode detected we should take it */
2032
const BYTE* const repEnd = repIndex < dictLimit ? dictEnd : iend;
2033
matchLength = ZSTD_count_2segments(ip+4, repMatch+4, iend, repEnd, prefixStart) + 4;
2034
offcode = offset_2; offset_2 = offset_1; offset_1 = (U32)offcode; /* swap offset history */
2035
ZSTD_storeSeq(seqStore, 0, anchor, iend, STORE_REPCODE_1, matchLength);
2036
ip += matchLength;
2037
anchor = ip;
2038
continue; /* faster when present ... (?) */
2039
}
2040
break;
2041
} }
2042
2043
/* Save reps for next block */
2044
rep[0] = offset_1;
2045
rep[1] = offset_2;
2046
2047
/* Return the last literals size */
2048
return (size_t)(iend - anchor);
2049
}
2050
2051
2052
size_t ZSTD_compressBlock_greedy_extDict(
2053
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2054
void const* src, size_t srcSize)
2055
{
2056
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 0);
2057
}
2058
2059
size_t ZSTD_compressBlock_lazy_extDict(
2060
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2061
void const* src, size_t srcSize)
2062
2063
{
2064
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 1);
2065
}
2066
2067
size_t ZSTD_compressBlock_lazy2_extDict(
2068
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2069
void const* src, size_t srcSize)
2070
2071
{
2072
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_hashChain, 2);
2073
}
2074
2075
size_t ZSTD_compressBlock_btlazy2_extDict(
2076
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2077
void const* src, size_t srcSize)
2078
2079
{
2080
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_binaryTree, 2);
2081
}
2082
2083
size_t ZSTD_compressBlock_greedy_extDict_row(
2084
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2085
void const* src, size_t srcSize)
2086
{
2087
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 0);
2088
}
2089
2090
size_t ZSTD_compressBlock_lazy_extDict_row(
2091
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2092
void const* src, size_t srcSize)
2093
2094
{
2095
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 1);
2096
}
2097
2098
size_t ZSTD_compressBlock_lazy2_extDict_row(
2099
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
2100
void const* src, size_t srcSize)
2101
2102
{
2103
return ZSTD_compressBlock_lazy_extDict_generic(ms, seqStore, rep, src, srcSize, search_rowHash, 2);
2104
}
2105
2106