Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/zstd/lib/compress/zstdmt_compress.c
48378 views
1
/*
2
* Copyright (c) Yann Collet, Facebook, Inc.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
12
/* ====== Compiler specifics ====== */
13
#if defined(_MSC_VER)
14
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
15
#endif
16
17
18
/* ====== Constants ====== */
19
#define ZSTDMT_OVERLAPLOG_DEFAULT 0
20
21
22
/* ====== Dependencies ====== */
23
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
24
#include "../common/mem.h" /* MEM_STATIC */
25
#include "../common/pool.h" /* threadpool */
26
#include "../common/threading.h" /* mutex */
27
#include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
28
#include "zstd_ldm.h"
29
#include "zstdmt_compress.h"
30
31
/* Guards code to support resizing the SeqPool.
32
* We will want to resize the SeqPool to save memory in the future.
33
* Until then, comment the code out since it is unused.
34
*/
35
#define ZSTD_RESIZE_SEQPOOL 0
36
37
/* ====== Debug ====== */
38
#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
39
&& !defined(_MSC_VER) \
40
&& !defined(__MINGW32__)
41
42
# include <stdio.h>
43
# include <unistd.h>
44
# include <sys/times.h>
45
46
# define DEBUG_PRINTHEX(l,p,n) { \
47
unsigned debug_u; \
48
for (debug_u=0; debug_u<(n); debug_u++) \
49
RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
50
RAWLOG(l, " \n"); \
51
}
52
53
static unsigned long long GetCurrentClockTimeMicroseconds(void)
54
{
55
static clock_t _ticksPerSecond = 0;
56
if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
57
58
{ struct tms junk; clock_t newTicks = (clock_t) times(&junk);
59
return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
60
} }
61
62
#define MUTEX_WAIT_TIME_DLEVEL 6
63
#define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \
64
if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \
65
unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
66
ZSTD_pthread_mutex_lock(mutex); \
67
{ unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
68
unsigned long long const elapsedTime = (afterTime-beforeTime); \
69
if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \
70
DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
71
elapsedTime, #mutex); \
72
} } \
73
} else { \
74
ZSTD_pthread_mutex_lock(mutex); \
75
} \
76
}
77
78
#else
79
80
# define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
81
# define DEBUG_PRINTHEX(l,p,n) {}
82
83
#endif
84
85
86
/* ===== Buffer Pool ===== */
87
/* a single Buffer Pool can be invoked from multiple threads in parallel */
88
89
typedef struct buffer_s {
90
void* start;
91
size_t capacity;
92
} buffer_t;
93
94
static const buffer_t g_nullBuffer = { NULL, 0 };
95
96
typedef struct ZSTDMT_bufferPool_s {
97
ZSTD_pthread_mutex_t poolMutex;
98
size_t bufferSize;
99
unsigned totalBuffers;
100
unsigned nbBuffers;
101
ZSTD_customMem cMem;
102
buffer_t bTable[1]; /* variable size */
103
} ZSTDMT_bufferPool;
104
105
static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem)
106
{
107
ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc(
108
sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem);
109
if (bufPool==NULL) return NULL;
110
if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
111
ZSTD_customFree(bufPool, cMem);
112
return NULL;
113
}
114
bufPool->bufferSize = 64 KB;
115
bufPool->totalBuffers = maxNbBuffers;
116
bufPool->nbBuffers = 0;
117
bufPool->cMem = cMem;
118
return bufPool;
119
}
120
121
static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
122
{
123
unsigned u;
124
DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
125
if (!bufPool) return; /* compatibility with free on NULL */
126
for (u=0; u<bufPool->totalBuffers; u++) {
127
DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start);
128
ZSTD_customFree(bufPool->bTable[u].start, bufPool->cMem);
129
}
130
ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
131
ZSTD_customFree(bufPool, bufPool->cMem);
132
}
133
134
/* only works at initialization, not during compression */
135
static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
136
{
137
size_t const poolSize = sizeof(*bufPool)
138
+ (bufPool->totalBuffers - 1) * sizeof(buffer_t);
139
unsigned u;
140
size_t totalBufferSize = 0;
141
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
142
for (u=0; u<bufPool->totalBuffers; u++)
143
totalBufferSize += bufPool->bTable[u].capacity;
144
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
145
146
return poolSize + totalBufferSize;
147
}
148
149
/* ZSTDMT_setBufferSize() :
150
* all future buffers provided by this buffer pool will have _at least_ this size
151
* note : it's better for all buffers to have same size,
152
* as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
153
static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
154
{
155
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
156
DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
157
bufPool->bufferSize = bSize;
158
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
159
}
160
161
162
static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers)
163
{
164
if (srcBufPool==NULL) return NULL;
165
if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
166
return srcBufPool;
167
/* need a larger buffer pool */
168
{ ZSTD_customMem const cMem = srcBufPool->cMem;
169
size_t const bSize = srcBufPool->bufferSize; /* forward parameters */
170
ZSTDMT_bufferPool* newBufPool;
171
ZSTDMT_freeBufferPool(srcBufPool);
172
newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem);
173
if (newBufPool==NULL) return newBufPool;
174
ZSTDMT_setBufferSize(newBufPool, bSize);
175
return newBufPool;
176
}
177
}
178
179
/** ZSTDMT_getBuffer() :
180
* assumption : bufPool must be valid
181
* @return : a buffer, with start pointer and size
182
* note: allocation may fail, in this case, start==NULL and size==0 */
183
static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
184
{
185
size_t const bSize = bufPool->bufferSize;
186
DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
187
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
188
if (bufPool->nbBuffers) { /* try to use an existing buffer */
189
buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)];
190
size_t const availBufferSize = buf.capacity;
191
bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer;
192
if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
193
/* large enough, but not too much */
194
DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
195
bufPool->nbBuffers, (U32)buf.capacity);
196
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
197
return buf;
198
}
199
/* size conditions not respected : scratch this buffer, create new one */
200
DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
201
ZSTD_customFree(buf.start, bufPool->cMem);
202
}
203
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
204
/* create new buffer */
205
DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
206
{ buffer_t buffer;
207
void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
208
buffer.start = start; /* note : start can be NULL if malloc fails ! */
209
buffer.capacity = (start==NULL) ? 0 : bSize;
210
if (start==NULL) {
211
DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
212
} else {
213
DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
214
}
215
return buffer;
216
}
217
}
218
219
#if ZSTD_RESIZE_SEQPOOL
220
/** ZSTDMT_resizeBuffer() :
221
* assumption : bufPool must be valid
222
* @return : a buffer that is at least the buffer pool buffer size.
223
* If a reallocation happens, the data in the input buffer is copied.
224
*/
225
static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer)
226
{
227
size_t const bSize = bufPool->bufferSize;
228
if (buffer.capacity < bSize) {
229
void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
230
buffer_t newBuffer;
231
newBuffer.start = start;
232
newBuffer.capacity = start == NULL ? 0 : bSize;
233
if (start != NULL) {
234
assert(newBuffer.capacity >= buffer.capacity);
235
ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity);
236
DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
237
return newBuffer;
238
}
239
DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
240
}
241
return buffer;
242
}
243
#endif
244
245
/* store buffer for later re-use, up to pool capacity */
246
static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
247
{
248
DEBUGLOG(5, "ZSTDMT_releaseBuffer");
249
if (buf.start == NULL) return; /* compatible with release on NULL */
250
ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
251
if (bufPool->nbBuffers < bufPool->totalBuffers) {
252
bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */
253
DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
254
(U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
255
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
256
return;
257
}
258
ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
259
/* Reached bufferPool capacity (should not happen) */
260
DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
261
ZSTD_customFree(buf.start, bufPool->cMem);
262
}
263
264
/* We need 2 output buffers per worker since each dstBuff must be flushed after it is released.
265
* The 3 additional buffers are as follows:
266
* 1 buffer for input loading
267
* 1 buffer for "next input" when submitting current one
268
* 1 buffer stuck in queue */
269
#define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) 2*nbWorkers + 3
270
271
/* After a worker releases its rawSeqStore, it is immediately ready for reuse.
272
* So we only need one seq buffer per worker. */
273
#define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) nbWorkers
274
275
/* ===== Seq Pool Wrapper ====== */
276
277
typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
278
279
static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
280
{
281
return ZSTDMT_sizeof_bufferPool(seqPool);
282
}
283
284
static rawSeqStore_t bufferToSeq(buffer_t buffer)
285
{
286
rawSeqStore_t seq = kNullRawSeqStore;
287
seq.seq = (rawSeq*)buffer.start;
288
seq.capacity = buffer.capacity / sizeof(rawSeq);
289
return seq;
290
}
291
292
static buffer_t seqToBuffer(rawSeqStore_t seq)
293
{
294
buffer_t buffer;
295
buffer.start = seq.seq;
296
buffer.capacity = seq.capacity * sizeof(rawSeq);
297
return buffer;
298
}
299
300
static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
301
{
302
if (seqPool->bufferSize == 0) {
303
return kNullRawSeqStore;
304
}
305
return bufferToSeq(ZSTDMT_getBuffer(seqPool));
306
}
307
308
#if ZSTD_RESIZE_SEQPOOL
309
static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
310
{
311
return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
312
}
313
#endif
314
315
static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
316
{
317
ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
318
}
319
320
static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
321
{
322
ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
323
}
324
325
static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
326
{
327
ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
328
if (seqPool == NULL) return NULL;
329
ZSTDMT_setNbSeq(seqPool, 0);
330
return seqPool;
331
}
332
333
static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
334
{
335
ZSTDMT_freeBufferPool(seqPool);
336
}
337
338
static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
339
{
340
return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers));
341
}
342
343
344
/* ===== CCtx Pool ===== */
345
/* a single CCtx Pool can be invoked from multiple threads in parallel */
346
347
typedef struct {
348
ZSTD_pthread_mutex_t poolMutex;
349
int totalCCtx;
350
int availCCtx;
351
ZSTD_customMem cMem;
352
ZSTD_CCtx* cctx[1]; /* variable size */
353
} ZSTDMT_CCtxPool;
354
355
/* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
356
static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
357
{
358
int cid;
359
for (cid=0; cid<pool->totalCCtx; cid++)
360
ZSTD_freeCCtx(pool->cctx[cid]); /* note : compatible with free on NULL */
361
ZSTD_pthread_mutex_destroy(&pool->poolMutex);
362
ZSTD_customFree(pool, pool->cMem);
363
}
364
365
/* ZSTDMT_createCCtxPool() :
366
* implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
367
static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
368
ZSTD_customMem cMem)
369
{
370
ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_customCalloc(
371
sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem);
372
assert(nbWorkers > 0);
373
if (!cctxPool) return NULL;
374
if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
375
ZSTD_customFree(cctxPool, cMem);
376
return NULL;
377
}
378
cctxPool->cMem = cMem;
379
cctxPool->totalCCtx = nbWorkers;
380
cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */
381
cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem);
382
if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
383
DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
384
return cctxPool;
385
}
386
387
static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
388
int nbWorkers)
389
{
390
if (srcPool==NULL) return NULL;
391
if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */
392
/* need a larger cctx pool */
393
{ ZSTD_customMem const cMem = srcPool->cMem;
394
ZSTDMT_freeCCtxPool(srcPool);
395
return ZSTDMT_createCCtxPool(nbWorkers, cMem);
396
}
397
}
398
399
/* only works during initialization phase, not during compression */
400
static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
401
{
402
ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
403
{ unsigned const nbWorkers = cctxPool->totalCCtx;
404
size_t const poolSize = sizeof(*cctxPool)
405
+ (nbWorkers-1) * sizeof(ZSTD_CCtx*);
406
unsigned u;
407
size_t totalCCtxSize = 0;
408
for (u=0; u<nbWorkers; u++) {
409
totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]);
410
}
411
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
412
assert(nbWorkers > 0);
413
return poolSize + totalCCtxSize;
414
}
415
}
416
417
static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
418
{
419
DEBUGLOG(5, "ZSTDMT_getCCtx");
420
ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
421
if (cctxPool->availCCtx) {
422
cctxPool->availCCtx--;
423
{ ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx];
424
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
425
return cctx;
426
} }
427
ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
428
DEBUGLOG(5, "create one more CCtx");
429
return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */
430
}
431
432
static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
433
{
434
if (cctx==NULL) return; /* compatibility with release on NULL */
435
ZSTD_pthread_mutex_lock(&pool->poolMutex);
436
if (pool->availCCtx < pool->totalCCtx)
437
pool->cctx[pool->availCCtx++] = cctx;
438
else {
439
/* pool overflow : should not happen, since totalCCtx==nbWorkers */
440
DEBUGLOG(4, "CCtx pool overflow : free cctx");
441
ZSTD_freeCCtx(cctx);
442
}
443
ZSTD_pthread_mutex_unlock(&pool->poolMutex);
444
}
445
446
/* ==== Serial State ==== */
447
448
typedef struct {
449
void const* start;
450
size_t size;
451
} range_t;
452
453
typedef struct {
454
/* All variables in the struct are protected by mutex. */
455
ZSTD_pthread_mutex_t mutex;
456
ZSTD_pthread_cond_t cond;
457
ZSTD_CCtx_params params;
458
ldmState_t ldmState;
459
XXH64_state_t xxhState;
460
unsigned nextJobID;
461
/* Protects ldmWindow.
462
* Must be acquired after the main mutex when acquiring both.
463
*/
464
ZSTD_pthread_mutex_t ldmWindowMutex;
465
ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */
466
ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */
467
} serialState_t;
468
469
static int
470
ZSTDMT_serialState_reset(serialState_t* serialState,
471
ZSTDMT_seqPool* seqPool,
472
ZSTD_CCtx_params params,
473
size_t jobSize,
474
const void* dict, size_t const dictSize,
475
ZSTD_dictContentType_e dictContentType)
476
{
477
/* Adjust parameters */
478
if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
479
DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
480
ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
481
assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
482
assert(params.ldmParams.hashRateLog < 32);
483
} else {
484
ZSTD_memset(&params.ldmParams, 0, sizeof(params.ldmParams));
485
}
486
serialState->nextJobID = 0;
487
if (params.fParams.checksumFlag)
488
XXH64_reset(&serialState->xxhState, 0);
489
if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
490
ZSTD_customMem cMem = params.customMem;
491
unsigned const hashLog = params.ldmParams.hashLog;
492
size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
493
unsigned const bucketLog =
494
params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
495
unsigned const prevBucketLog =
496
serialState->params.ldmParams.hashLog -
497
serialState->params.ldmParams.bucketSizeLog;
498
size_t const numBuckets = (size_t)1 << bucketLog;
499
/* Size the seq pool tables */
500
ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
501
/* Reset the window */
502
ZSTD_window_init(&serialState->ldmState.window);
503
/* Resize tables and output space if necessary. */
504
if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
505
ZSTD_customFree(serialState->ldmState.hashTable, cMem);
506
serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem);
507
}
508
if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
509
ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
510
serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem);
511
}
512
if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
513
return 1;
514
/* Zero the tables */
515
ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize);
516
ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets);
517
518
/* Update window state and fill hash table with dict */
519
serialState->ldmState.loadedDictEnd = 0;
520
if (dictSize > 0) {
521
if (dictContentType == ZSTD_dct_rawContent) {
522
BYTE const* const dictEnd = (const BYTE*)dict + dictSize;
523
ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0);
524
ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, &params.ldmParams);
525
serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base);
526
} else {
527
/* don't even load anything */
528
}
529
}
530
531
/* Initialize serialState's copy of ldmWindow. */
532
serialState->ldmWindow = serialState->ldmState.window;
533
}
534
535
serialState->params = params;
536
serialState->params.jobSize = (U32)jobSize;
537
return 0;
538
}
539
540
static int ZSTDMT_serialState_init(serialState_t* serialState)
541
{
542
int initError = 0;
543
ZSTD_memset(serialState, 0, sizeof(*serialState));
544
initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
545
initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
546
initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
547
initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
548
return initError;
549
}
550
551
static void ZSTDMT_serialState_free(serialState_t* serialState)
552
{
553
ZSTD_customMem cMem = serialState->params.customMem;
554
ZSTD_pthread_mutex_destroy(&serialState->mutex);
555
ZSTD_pthread_cond_destroy(&serialState->cond);
556
ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
557
ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
558
ZSTD_customFree(serialState->ldmState.hashTable, cMem);
559
ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
560
}
561
562
static void ZSTDMT_serialState_update(serialState_t* serialState,
563
ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore,
564
range_t src, unsigned jobID)
565
{
566
/* Wait for our turn */
567
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
568
while (serialState->nextJobID < jobID) {
569
DEBUGLOG(5, "wait for serialState->cond");
570
ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
571
}
572
/* A future job may error and skip our job */
573
if (serialState->nextJobID == jobID) {
574
/* It is now our turn, do any processing necessary */
575
if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) {
576
size_t error;
577
assert(seqStore.seq != NULL && seqStore.pos == 0 &&
578
seqStore.size == 0 && seqStore.capacity > 0);
579
assert(src.size <= serialState->params.jobSize);
580
ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0);
581
error = ZSTD_ldm_generateSequences(
582
&serialState->ldmState, &seqStore,
583
&serialState->params.ldmParams, src.start, src.size);
584
/* We provide a large enough buffer to never fail. */
585
assert(!ZSTD_isError(error)); (void)error;
586
/* Update ldmWindow to match the ldmState.window and signal the main
587
* thread if it is waiting for a buffer.
588
*/
589
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
590
serialState->ldmWindow = serialState->ldmState.window;
591
ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
592
ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
593
}
594
if (serialState->params.fParams.checksumFlag && src.size > 0)
595
XXH64_update(&serialState->xxhState, src.start, src.size);
596
}
597
/* Now it is the next jobs turn */
598
serialState->nextJobID++;
599
ZSTD_pthread_cond_broadcast(&serialState->cond);
600
ZSTD_pthread_mutex_unlock(&serialState->mutex);
601
602
if (seqStore.size > 0) {
603
size_t const err = ZSTD_referenceExternalSequences(
604
jobCCtx, seqStore.seq, seqStore.size);
605
assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable);
606
assert(!ZSTD_isError(err));
607
(void)err;
608
}
609
}
610
611
static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState,
612
unsigned jobID, size_t cSize)
613
{
614
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
615
if (serialState->nextJobID <= jobID) {
616
assert(ZSTD_isError(cSize)); (void)cSize;
617
DEBUGLOG(5, "Skipping past job %u because of error", jobID);
618
serialState->nextJobID = jobID + 1;
619
ZSTD_pthread_cond_broadcast(&serialState->cond);
620
621
ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
622
ZSTD_window_clear(&serialState->ldmWindow);
623
ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
624
ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
625
}
626
ZSTD_pthread_mutex_unlock(&serialState->mutex);
627
628
}
629
630
631
/* ------------------------------------------ */
632
/* ===== Worker thread ===== */
633
/* ------------------------------------------ */
634
635
static const range_t kNullRange = { NULL, 0 };
636
637
typedef struct {
638
size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
639
size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
640
ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */
641
ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */
642
ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */
643
ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */
644
ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */
645
serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */
646
buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
647
range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */
648
range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */
649
unsigned jobID; /* set by mtctx, then read by worker => no barrier */
650
unsigned firstJob; /* set by mtctx, then read by worker => no barrier */
651
unsigned lastJob; /* set by mtctx, then read by worker => no barrier */
652
ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */
653
const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */
654
unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */
655
size_t dstFlushed; /* used only by mtctx */
656
unsigned frameChecksumNeeded; /* used only by mtctx */
657
} ZSTDMT_jobDescription;
658
659
#define JOB_ERROR(e) { \
660
ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \
661
job->cSize = e; \
662
ZSTD_pthread_mutex_unlock(&job->job_mutex); \
663
goto _endJob; \
664
}
665
666
/* ZSTDMT_compressionJob() is a POOL_function type */
667
static void ZSTDMT_compressionJob(void* jobDescription)
668
{
669
ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
670
ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */
671
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
672
rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
673
buffer_t dstBuff = job->dstBuff;
674
size_t lastCBlockSize = 0;
675
676
/* resources */
677
if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
678
if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */
679
dstBuff = ZSTDMT_getBuffer(job->bufPool);
680
if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
681
job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */
682
}
683
if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL)
684
JOB_ERROR(ERROR(memory_allocation));
685
686
/* Don't compute the checksum for chunks, since we compute it externally,
687
* but write it in the header.
688
*/
689
if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
690
/* Don't run LDM for the chunks, since we handle it externally */
691
jobParams.ldmParams.enableLdm = ZSTD_ps_disable;
692
/* Correct nbWorkers to 0. */
693
jobParams.nbWorkers = 0;
694
695
696
/* init */
697
if (job->cdict) {
698
size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize);
699
assert(job->firstJob); /* only allowed for first job */
700
if (ZSTD_isError(initError)) JOB_ERROR(initError);
701
} else { /* srcStart points at reloaded section */
702
U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
703
{ size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
704
if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
705
}
706
if (!job->firstJob) {
707
size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0);
708
if (ZSTD_isError(err)) JOB_ERROR(err);
709
}
710
{ size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
711
job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */
712
ZSTD_dtlm_fast,
713
NULL, /*cdict*/
714
&jobParams, pledgedSrcSize);
715
if (ZSTD_isError(initError)) JOB_ERROR(initError);
716
} }
717
718
/* Perform serial step as early as possible, but after CCtx initialization */
719
ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID);
720
721
if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */
722
size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
723
if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
724
DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
725
ZSTD_invalidateRepCodes(cctx);
726
}
727
728
/* compress */
729
{ size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
730
int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
731
const BYTE* ip = (const BYTE*) job->src.start;
732
BYTE* const ostart = (BYTE*)dstBuff.start;
733
BYTE* op = ostart;
734
BYTE* oend = op + dstBuff.capacity;
735
int chunkNb;
736
if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */
737
DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
738
assert(job->cSize == 0);
739
for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
740
size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize);
741
if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
742
ip += chunkSize;
743
op += cSize; assert(op < oend);
744
/* stats */
745
ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
746
job->cSize += cSize;
747
job->consumed = chunkSize * chunkNb;
748
DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
749
(U32)cSize, (U32)job->cSize);
750
ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */
751
ZSTD_pthread_mutex_unlock(&job->job_mutex);
752
}
753
/* last block */
754
assert(chunkSize > 0);
755
assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
756
if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
757
size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
758
size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
759
size_t const cSize = (job->lastJob) ?
760
ZSTD_compressEnd (cctx, op, oend-op, ip, lastBlockSize) :
761
ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize);
762
if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
763
lastCBlockSize = cSize;
764
} }
765
if (!job->firstJob) {
766
/* Double check that we don't have an ext-dict, because then our
767
* repcode invalidation doesn't work.
768
*/
769
assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
770
}
771
ZSTD_CCtx_trace(cctx, 0);
772
773
_endJob:
774
ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
775
if (job->prefix.size > 0)
776
DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
777
DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
778
/* release resources */
779
ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
780
ZSTDMT_releaseCCtx(job->cctxPool, cctx);
781
/* report */
782
ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
783
if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
784
job->cSize += lastCBlockSize;
785
job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */
786
ZSTD_pthread_cond_signal(&job->job_cond);
787
ZSTD_pthread_mutex_unlock(&job->job_mutex);
788
}
789
790
791
/* ------------------------------------------ */
792
/* ===== Multi-threaded compression ===== */
793
/* ------------------------------------------ */
794
795
typedef struct {
796
range_t prefix; /* read-only non-owned prefix buffer */
797
buffer_t buffer;
798
size_t filled;
799
} inBuff_t;
800
801
typedef struct {
802
BYTE* buffer; /* The round input buffer. All jobs get references
803
* to pieces of the buffer. ZSTDMT_tryGetInputRange()
804
* handles handing out job input buffers, and makes
805
* sure it doesn't overlap with any pieces still in use.
806
*/
807
size_t capacity; /* The capacity of buffer. */
808
size_t pos; /* The position of the current inBuff in the round
809
* buffer. Updated past the end if the inBuff once
810
* the inBuff is sent to the worker thread.
811
* pos <= capacity.
812
*/
813
} roundBuff_t;
814
815
static const roundBuff_t kNullRoundBuff = {NULL, 0, 0};
816
817
#define RSYNC_LENGTH 32
818
/* Don't create chunks smaller than the zstd block size.
819
* This stops us from regressing compression ratio too much,
820
* and ensures our output fits in ZSTD_compressBound().
821
*
822
* If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then
823
* ZSTD_COMPRESSBOUND() will need to be updated.
824
*/
825
#define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX
826
#define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG)
827
828
typedef struct {
829
U64 hash;
830
U64 hitMask;
831
U64 primePower;
832
} rsyncState_t;
833
834
struct ZSTDMT_CCtx_s {
835
POOL_ctx* factory;
836
ZSTDMT_jobDescription* jobs;
837
ZSTDMT_bufferPool* bufPool;
838
ZSTDMT_CCtxPool* cctxPool;
839
ZSTDMT_seqPool* seqPool;
840
ZSTD_CCtx_params params;
841
size_t targetSectionSize;
842
size_t targetPrefixSize;
843
int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
844
inBuff_t inBuff;
845
roundBuff_t roundBuff;
846
serialState_t serial;
847
rsyncState_t rsync;
848
unsigned jobIDMask;
849
unsigned doneJobID;
850
unsigned nextJobID;
851
unsigned frameEnded;
852
unsigned allJobsCompleted;
853
unsigned long long frameContentSize;
854
unsigned long long consumed;
855
unsigned long long produced;
856
ZSTD_customMem cMem;
857
ZSTD_CDict* cdictLocal;
858
const ZSTD_CDict* cdict;
859
unsigned providedFactory: 1;
860
};
861
862
static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
863
{
864
U32 jobNb;
865
if (jobTable == NULL) return;
866
for (jobNb=0; jobNb<nbJobs; jobNb++) {
867
ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
868
ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
869
}
870
ZSTD_customFree(jobTable, cMem);
871
}
872
873
/* ZSTDMT_allocJobsTable()
874
* allocate and init a job table.
875
* update *nbJobsPtr to next power of 2 value, as size of table */
876
static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
877
{
878
U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
879
U32 const nbJobs = 1 << nbJobsLog2;
880
U32 jobNb;
881
ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
882
ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
883
int initError = 0;
884
if (jobTable==NULL) return NULL;
885
*nbJobsPtr = nbJobs;
886
for (jobNb=0; jobNb<nbJobs; jobNb++) {
887
initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
888
initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
889
}
890
if (initError != 0) {
891
ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
892
return NULL;
893
}
894
return jobTable;
895
}
896
897
static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
898
U32 nbJobs = nbWorkers + 2;
899
if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */
900
ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
901
mtctx->jobIDMask = 0;
902
mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
903
if (mtctx->jobs==NULL) return ERROR(memory_allocation);
904
assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */
905
mtctx->jobIDMask = nbJobs - 1;
906
}
907
return 0;
908
}
909
910
911
/* ZSTDMT_CCtxParam_setNbWorkers():
912
* Internal use only */
913
static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
914
{
915
return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
916
}
917
918
MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
919
{
920
ZSTDMT_CCtx* mtctx;
921
U32 nbJobs = nbWorkers + 2;
922
int initError;
923
DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
924
925
if (nbWorkers < 1) return NULL;
926
nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
927
if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
928
/* invalid custom allocator */
929
return NULL;
930
931
mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem);
932
if (!mtctx) return NULL;
933
ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
934
mtctx->cMem = cMem;
935
mtctx->allJobsCompleted = 1;
936
if (pool != NULL) {
937
mtctx->factory = pool;
938
mtctx->providedFactory = 1;
939
}
940
else {
941
mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
942
mtctx->providedFactory = 0;
943
}
944
mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
945
assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */
946
mtctx->jobIDMask = nbJobs - 1;
947
mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
948
mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
949
mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
950
initError = ZSTDMT_serialState_init(&mtctx->serial);
951
mtctx->roundBuff = kNullRoundBuff;
952
if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
953
ZSTDMT_freeCCtx(mtctx);
954
return NULL;
955
}
956
DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
957
return mtctx;
958
}
959
960
ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
961
{
962
#ifdef ZSTD_MULTITHREAD
963
return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool);
964
#else
965
(void)nbWorkers;
966
(void)cMem;
967
(void)pool;
968
return NULL;
969
#endif
970
}
971
972
973
/* ZSTDMT_releaseAllJobResources() :
974
* note : ensure all workers are killed first ! */
975
static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
976
{
977
unsigned jobID;
978
DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
979
for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
980
/* Copy the mutex/cond out */
981
ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex;
982
ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond;
983
984
DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
985
ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
986
987
/* Clear the job description, but keep the mutex/cond */
988
ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID]));
989
mtctx->jobs[jobID].job_mutex = mutex;
990
mtctx->jobs[jobID].job_cond = cond;
991
}
992
mtctx->inBuff.buffer = g_nullBuffer;
993
mtctx->inBuff.filled = 0;
994
mtctx->allJobsCompleted = 1;
995
}
996
997
static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
998
{
999
DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
1000
while (mtctx->doneJobID < mtctx->nextJobID) {
1001
unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
1002
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
1003
while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
1004
DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */
1005
ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
1006
}
1007
ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
1008
mtctx->doneJobID++;
1009
}
1010
}
1011
1012
size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
1013
{
1014
if (mtctx==NULL) return 0; /* compatible with free on NULL */
1015
if (!mtctx->providedFactory)
1016
POOL_free(mtctx->factory); /* stop and free worker threads */
1017
ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */
1018
ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
1019
ZSTDMT_freeBufferPool(mtctx->bufPool);
1020
ZSTDMT_freeCCtxPool(mtctx->cctxPool);
1021
ZSTDMT_freeSeqPool(mtctx->seqPool);
1022
ZSTDMT_serialState_free(&mtctx->serial);
1023
ZSTD_freeCDict(mtctx->cdictLocal);
1024
if (mtctx->roundBuff.buffer)
1025
ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1026
ZSTD_customFree(mtctx, mtctx->cMem);
1027
return 0;
1028
}
1029
1030
size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
1031
{
1032
if (mtctx == NULL) return 0; /* supports sizeof NULL */
1033
return sizeof(*mtctx)
1034
+ POOL_sizeof(mtctx->factory)
1035
+ ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
1036
+ (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
1037
+ ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
1038
+ ZSTDMT_sizeof_seqPool(mtctx->seqPool)
1039
+ ZSTD_sizeof_CDict(mtctx->cdictLocal)
1040
+ mtctx->roundBuff.capacity;
1041
}
1042
1043
1044
/* ZSTDMT_resize() :
1045
* @return : error code if fails, 0 on success */
1046
static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
1047
{
1048
if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
1049
FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "");
1050
mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers));
1051
if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
1052
mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
1053
if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
1054
mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
1055
if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
1056
ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
1057
return 0;
1058
}
1059
1060
1061
/*! ZSTDMT_updateCParams_whileCompressing() :
1062
* Updates a selected set of compression parameters, remaining compatible with currently active frame.
1063
* New parameters will be applied to next compression job. */
1064
void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
1065
{
1066
U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */
1067
int const compressionLevel = cctxParams->compressionLevel;
1068
DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
1069
compressionLevel);
1070
mtctx->params.compressionLevel = compressionLevel;
1071
{ ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
1072
cParams.windowLog = saved_wlog;
1073
mtctx->params.cParams = cParams;
1074
}
1075
}
1076
1077
/* ZSTDMT_getFrameProgression():
1078
* tells how much data has been consumed (input) and produced (output) for current frame.
1079
* able to count progression inside worker threads.
1080
* Note : mutex will be acquired during statistics collection inside workers. */
1081
ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
1082
{
1083
ZSTD_frameProgression fps;
1084
DEBUGLOG(5, "ZSTDMT_getFrameProgression");
1085
fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
1086
fps.consumed = mtctx->consumed;
1087
fps.produced = fps.flushed = mtctx->produced;
1088
fps.currentJobID = mtctx->nextJobID;
1089
fps.nbActiveWorkers = 0;
1090
{ unsigned jobNb;
1091
unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
1092
DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
1093
mtctx->doneJobID, lastJobNb, mtctx->jobReady)
1094
for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
1095
unsigned const wJobID = jobNb & mtctx->jobIDMask;
1096
ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
1097
ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1098
{ size_t const cResult = jobPtr->cSize;
1099
size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1100
size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1101
assert(flushed <= produced);
1102
fps.ingested += jobPtr->src.size;
1103
fps.consumed += jobPtr->consumed;
1104
fps.produced += produced;
1105
fps.flushed += flushed;
1106
fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
1107
}
1108
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1109
}
1110
}
1111
return fps;
1112
}
1113
1114
1115
size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
1116
{
1117
size_t toFlush;
1118
unsigned const jobID = mtctx->doneJobID;
1119
assert(jobID <= mtctx->nextJobID);
1120
if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */
1121
1122
/* look into oldest non-fully-flushed job */
1123
{ unsigned const wJobID = jobID & mtctx->jobIDMask;
1124
ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
1125
ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1126
{ size_t const cResult = jobPtr->cSize;
1127
size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1128
size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1129
assert(flushed <= produced);
1130
assert(jobPtr->consumed <= jobPtr->src.size);
1131
toFlush = produced - flushed;
1132
/* if toFlush==0, nothing is available to flush.
1133
* However, jobID is expected to still be active:
1134
* if jobID was already completed and fully flushed,
1135
* ZSTDMT_flushProduced() should have already moved onto next job.
1136
* Therefore, some input has not yet been consumed. */
1137
if (toFlush==0) {
1138
assert(jobPtr->consumed < jobPtr->src.size);
1139
}
1140
}
1141
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1142
}
1143
1144
return toFlush;
1145
}
1146
1147
1148
/* ------------------------------------------ */
1149
/* ===== Multi-threaded compression ===== */
1150
/* ------------------------------------------ */
1151
1152
static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
1153
{
1154
unsigned jobLog;
1155
if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1156
/* In Long Range Mode, the windowLog is typically oversized.
1157
* In which case, it's preferable to determine the jobSize
1158
* based on cycleLog instead. */
1159
jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3);
1160
} else {
1161
jobLog = MAX(20, params->cParams.windowLog + 2);
1162
}
1163
return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
1164
}
1165
1166
static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
1167
{
1168
switch(strat)
1169
{
1170
case ZSTD_btultra2:
1171
return 9;
1172
case ZSTD_btultra:
1173
case ZSTD_btopt:
1174
return 8;
1175
case ZSTD_btlazy2:
1176
case ZSTD_lazy2:
1177
return 7;
1178
case ZSTD_lazy:
1179
case ZSTD_greedy:
1180
case ZSTD_dfast:
1181
case ZSTD_fast:
1182
default:;
1183
}
1184
return 6;
1185
}
1186
1187
static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
1188
{
1189
assert(0 <= ovlog && ovlog <= 9);
1190
if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
1191
return ovlog;
1192
}
1193
1194
static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
1195
{
1196
int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
1197
int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
1198
assert(0 <= overlapRLog && overlapRLog <= 8);
1199
if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1200
/* In Long Range Mode, the windowLog is typically oversized.
1201
* In which case, it's preferable to determine the jobSize
1202
* based on chainLog instead.
1203
* Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
1204
ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
1205
- overlapRLog;
1206
}
1207
assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
1208
DEBUGLOG(4, "overlapLog : %i", params->overlapLog);
1209
DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
1210
return (ovLog==0) ? 0 : (size_t)1 << ovLog;
1211
}
1212
1213
/* ====================================== */
1214
/* ======= Streaming API ======= */
1215
/* ====================================== */
1216
1217
size_t ZSTDMT_initCStream_internal(
1218
ZSTDMT_CCtx* mtctx,
1219
const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
1220
const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
1221
unsigned long long pledgedSrcSize)
1222
{
1223
DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
1224
(U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
1225
1226
/* params supposed partially fully validated at this point */
1227
assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
1228
assert(!((dict) && (cdict))); /* either dict or cdict, not both */
1229
1230
/* init */
1231
if (params.nbWorkers != mtctx->params.nbWorkers)
1232
FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , "");
1233
1234
if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
1235
if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
1236
1237
DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers);
1238
1239
if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */
1240
ZSTDMT_waitForAllJobsCompleted(mtctx);
1241
ZSTDMT_releaseAllJobResources(mtctx);
1242
mtctx->allJobsCompleted = 1;
1243
}
1244
1245
mtctx->params = params;
1246
mtctx->frameContentSize = pledgedSrcSize;
1247
if (dict) {
1248
ZSTD_freeCDict(mtctx->cdictLocal);
1249
mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
1250
ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
1251
params.cParams, mtctx->cMem);
1252
mtctx->cdict = mtctx->cdictLocal;
1253
if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
1254
} else {
1255
ZSTD_freeCDict(mtctx->cdictLocal);
1256
mtctx->cdictLocal = NULL;
1257
mtctx->cdict = cdict;
1258
}
1259
1260
mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(&params);
1261
DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
1262
mtctx->targetSectionSize = params.jobSize;
1263
if (mtctx->targetSectionSize == 0) {
1264
mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(&params);
1265
}
1266
assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
1267
1268
if (params.rsyncable) {
1269
/* Aim for the targetsectionSize as the average job size. */
1270
U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10);
1271
U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10);
1272
/* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our
1273
* expected job size is at least 4x larger. */
1274
assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2);
1275
DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
1276
mtctx->rsync.hash = 0;
1277
mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
1278
mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
1279
}
1280
if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */
1281
DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
1282
DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
1283
ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
1284
{
1285
/* If ldm is enabled we need windowSize space. */
1286
size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0;
1287
/* Two buffers of slack, plus extra space for the overlap
1288
* This is the minimum slack that LDM works with. One extra because
1289
* flush might waste up to targetSectionSize-1 bytes. Another extra
1290
* for the overlap (if > 0), then one to fill which doesn't overlap
1291
* with the LDM window.
1292
*/
1293
size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
1294
size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
1295
/* Compute the total size, and always have enough slack */
1296
size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
1297
size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
1298
size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
1299
if (mtctx->roundBuff.capacity < capacity) {
1300
if (mtctx->roundBuff.buffer)
1301
ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1302
mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem);
1303
if (mtctx->roundBuff.buffer == NULL) {
1304
mtctx->roundBuff.capacity = 0;
1305
return ERROR(memory_allocation);
1306
}
1307
mtctx->roundBuff.capacity = capacity;
1308
}
1309
}
1310
DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
1311
mtctx->roundBuff.pos = 0;
1312
mtctx->inBuff.buffer = g_nullBuffer;
1313
mtctx->inBuff.filled = 0;
1314
mtctx->inBuff.prefix = kNullRange;
1315
mtctx->doneJobID = 0;
1316
mtctx->nextJobID = 0;
1317
mtctx->frameEnded = 0;
1318
mtctx->allJobsCompleted = 0;
1319
mtctx->consumed = 0;
1320
mtctx->produced = 0;
1321
if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize,
1322
dict, dictSize, dictContentType))
1323
return ERROR(memory_allocation);
1324
return 0;
1325
}
1326
1327
1328
/* ZSTDMT_writeLastEmptyBlock()
1329
* Write a single empty block with an end-of-frame to finish a frame.
1330
* Job must be created from streaming variant.
1331
* This function is always successful if expected conditions are fulfilled.
1332
*/
1333
static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
1334
{
1335
assert(job->lastJob == 1);
1336
assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */
1337
assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */
1338
assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
1339
job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
1340
if (job->dstBuff.start == NULL) {
1341
job->cSize = ERROR(memory_allocation);
1342
return;
1343
}
1344
assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */
1345
job->src = kNullRange;
1346
job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
1347
assert(!ZSTD_isError(job->cSize));
1348
assert(job->consumed == 0);
1349
}
1350
1351
static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
1352
{
1353
unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
1354
int const endFrame = (endOp == ZSTD_e_end);
1355
1356
if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
1357
DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
1358
assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
1359
return 0;
1360
}
1361
1362
if (!mtctx->jobReady) {
1363
BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
1364
DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
1365
mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
1366
mtctx->jobs[jobID].src.start = src;
1367
mtctx->jobs[jobID].src.size = srcSize;
1368
assert(mtctx->inBuff.filled >= srcSize);
1369
mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
1370
mtctx->jobs[jobID].consumed = 0;
1371
mtctx->jobs[jobID].cSize = 0;
1372
mtctx->jobs[jobID].params = mtctx->params;
1373
mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
1374
mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
1375
mtctx->jobs[jobID].dstBuff = g_nullBuffer;
1376
mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
1377
mtctx->jobs[jobID].bufPool = mtctx->bufPool;
1378
mtctx->jobs[jobID].seqPool = mtctx->seqPool;
1379
mtctx->jobs[jobID].serial = &mtctx->serial;
1380
mtctx->jobs[jobID].jobID = mtctx->nextJobID;
1381
mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
1382
mtctx->jobs[jobID].lastJob = endFrame;
1383
mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
1384
mtctx->jobs[jobID].dstFlushed = 0;
1385
1386
/* Update the round buffer pos and clear the input buffer to be reset */
1387
mtctx->roundBuff.pos += srcSize;
1388
mtctx->inBuff.buffer = g_nullBuffer;
1389
mtctx->inBuff.filled = 0;
1390
/* Set the prefix */
1391
if (!endFrame) {
1392
size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
1393
mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
1394
mtctx->inBuff.prefix.size = newPrefixSize;
1395
} else { /* endFrame==1 => no need for another input buffer */
1396
mtctx->inBuff.prefix = kNullRange;
1397
mtctx->frameEnded = endFrame;
1398
if (mtctx->nextJobID == 0) {
1399
/* single job exception : checksum is already calculated directly within worker thread */
1400
mtctx->params.fParams.checksumFlag = 0;
1401
} }
1402
1403
if ( (srcSize == 0)
1404
&& (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
1405
DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
1406
assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */
1407
ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
1408
mtctx->nextJobID++;
1409
return 0;
1410
}
1411
}
1412
1413
DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))",
1414
mtctx->nextJobID,
1415
(U32)mtctx->jobs[jobID].src.size,
1416
mtctx->jobs[jobID].lastJob,
1417
mtctx->nextJobID,
1418
jobID);
1419
if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
1420
mtctx->nextJobID++;
1421
mtctx->jobReady = 0;
1422
} else {
1423
DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
1424
mtctx->jobReady = 1;
1425
}
1426
return 0;
1427
}
1428
1429
1430
/*! ZSTDMT_flushProduced() :
1431
* flush whatever data has been produced but not yet flushed in current job.
1432
* move to next job if current one is fully flushed.
1433
* `output` : `pos` will be updated with amount of data flushed .
1434
* `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
1435
* @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
1436
static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
1437
{
1438
unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
1439
DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
1440
blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
1441
assert(output->size >= output->pos);
1442
1443
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1444
if ( blockToFlush
1445
&& (mtctx->doneJobID < mtctx->nextJobID) ) {
1446
assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
1447
while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */
1448
if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
1449
DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
1450
mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
1451
break;
1452
}
1453
DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
1454
mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1455
ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */
1456
} }
1457
1458
/* try to flush something */
1459
{ size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */
1460
size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */
1461
size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */
1462
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1463
if (ZSTD_isError(cSize)) {
1464
DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
1465
mtctx->doneJobID, ZSTD_getErrorName(cSize));
1466
ZSTDMT_waitForAllJobsCompleted(mtctx);
1467
ZSTDMT_releaseAllJobResources(mtctx);
1468
return cSize;
1469
}
1470
/* add frame checksum if necessary (can only happen once) */
1471
assert(srcConsumed <= srcSize);
1472
if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */
1473
&& mtctx->jobs[wJobID].frameChecksumNeeded ) {
1474
U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
1475
DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
1476
MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
1477
cSize += 4;
1478
mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */
1479
mtctx->jobs[wJobID].frameChecksumNeeded = 0;
1480
}
1481
1482
if (cSize > 0) { /* compression is ongoing or completed */
1483
size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
1484
DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
1485
(U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
1486
assert(mtctx->doneJobID < mtctx->nextJobID);
1487
assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
1488
assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
1489
if (toFlush > 0) {
1490
ZSTD_memcpy((char*)output->dst + output->pos,
1491
(const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
1492
toFlush);
1493
}
1494
output->pos += toFlush;
1495
mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */
1496
1497
if ( (srcConsumed == srcSize) /* job is completed */
1498
&& (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */
1499
DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
1500
mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1501
ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
1502
DEBUGLOG(5, "dstBuffer released");
1503
mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
1504
mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */
1505
mtctx->consumed += srcSize;
1506
mtctx->produced += cSize;
1507
mtctx->doneJobID++;
1508
} }
1509
1510
/* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
1511
if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
1512
if (srcSize > srcConsumed) return 1; /* current job not completely compressed */
1513
}
1514
if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */
1515
if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */
1516
if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */
1517
mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */
1518
if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
1519
return 0; /* internal buffers fully flushed */
1520
}
1521
1522
/**
1523
* Returns the range of data used by the earliest job that is not yet complete.
1524
* If the data of the first job is broken up into two segments, we cover both
1525
* sections.
1526
*/
1527
static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
1528
{
1529
unsigned const firstJobID = mtctx->doneJobID;
1530
unsigned const lastJobID = mtctx->nextJobID;
1531
unsigned jobID;
1532
1533
for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
1534
unsigned const wJobID = jobID & mtctx->jobIDMask;
1535
size_t consumed;
1536
1537
ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1538
consumed = mtctx->jobs[wJobID].consumed;
1539
ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1540
1541
if (consumed < mtctx->jobs[wJobID].src.size) {
1542
range_t range = mtctx->jobs[wJobID].prefix;
1543
if (range.size == 0) {
1544
/* Empty prefix */
1545
range = mtctx->jobs[wJobID].src;
1546
}
1547
/* Job source in multiple segments not supported yet */
1548
assert(range.start <= mtctx->jobs[wJobID].src.start);
1549
return range;
1550
}
1551
}
1552
return kNullRange;
1553
}
1554
1555
/**
1556
* Returns non-zero iff buffer and range overlap.
1557
*/
1558
static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range)
1559
{
1560
BYTE const* const bufferStart = (BYTE const*)buffer.start;
1561
BYTE const* const rangeStart = (BYTE const*)range.start;
1562
1563
if (rangeStart == NULL || bufferStart == NULL)
1564
return 0;
1565
1566
{
1567
BYTE const* const bufferEnd = bufferStart + buffer.capacity;
1568
BYTE const* const rangeEnd = rangeStart + range.size;
1569
1570
/* Empty ranges cannot overlap */
1571
if (bufferStart == bufferEnd || rangeStart == rangeEnd)
1572
return 0;
1573
1574
return bufferStart < rangeEnd && rangeStart < bufferEnd;
1575
}
1576
}
1577
1578
static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
1579
{
1580
range_t extDict;
1581
range_t prefix;
1582
1583
DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
1584
extDict.start = window.dictBase + window.lowLimit;
1585
extDict.size = window.dictLimit - window.lowLimit;
1586
1587
prefix.start = window.base + window.dictLimit;
1588
prefix.size = window.nextSrc - (window.base + window.dictLimit);
1589
DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
1590
(size_t)extDict.start,
1591
(size_t)extDict.start + extDict.size);
1592
DEBUGLOG(5, "prefix [0x%zx, 0x%zx)",
1593
(size_t)prefix.start,
1594
(size_t)prefix.start + prefix.size);
1595
1596
return ZSTDMT_isOverlapped(buffer, extDict)
1597
|| ZSTDMT_isOverlapped(buffer, prefix);
1598
}
1599
1600
static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer)
1601
{
1602
if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) {
1603
ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
1604
DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
1605
DEBUGLOG(5, "source [0x%zx, 0x%zx)",
1606
(size_t)buffer.start,
1607
(size_t)buffer.start + buffer.capacity);
1608
ZSTD_PTHREAD_MUTEX_LOCK(mutex);
1609
while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
1610
DEBUGLOG(5, "Waiting for LDM to finish...");
1611
ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
1612
}
1613
DEBUGLOG(6, "Done waiting for LDM to finish");
1614
ZSTD_pthread_mutex_unlock(mutex);
1615
}
1616
}
1617
1618
/**
1619
* Attempts to set the inBuff to the next section to fill.
1620
* If any part of the new section is still in use we give up.
1621
* Returns non-zero if the buffer is filled.
1622
*/
1623
static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
1624
{
1625
range_t const inUse = ZSTDMT_getInputDataInUse(mtctx);
1626
size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
1627
size_t const target = mtctx->targetSectionSize;
1628
buffer_t buffer;
1629
1630
DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
1631
assert(mtctx->inBuff.buffer.start == NULL);
1632
assert(mtctx->roundBuff.capacity >= target);
1633
1634
if (spaceLeft < target) {
1635
/* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
1636
* Simply copy the prefix to the beginning in that case.
1637
*/
1638
BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
1639
size_t const prefixSize = mtctx->inBuff.prefix.size;
1640
1641
buffer.start = start;
1642
buffer.capacity = prefixSize;
1643
if (ZSTDMT_isOverlapped(buffer, inUse)) {
1644
DEBUGLOG(5, "Waiting for buffer...");
1645
return 0;
1646
}
1647
ZSTDMT_waitForLdmComplete(mtctx, buffer);
1648
ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize);
1649
mtctx->inBuff.prefix.start = start;
1650
mtctx->roundBuff.pos = prefixSize;
1651
}
1652
buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
1653
buffer.capacity = target;
1654
1655
if (ZSTDMT_isOverlapped(buffer, inUse)) {
1656
DEBUGLOG(5, "Waiting for buffer...");
1657
return 0;
1658
}
1659
assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
1660
1661
ZSTDMT_waitForLdmComplete(mtctx, buffer);
1662
1663
DEBUGLOG(5, "Using prefix range [%zx, %zx)",
1664
(size_t)mtctx->inBuff.prefix.start,
1665
(size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
1666
DEBUGLOG(5, "Using source range [%zx, %zx)",
1667
(size_t)buffer.start,
1668
(size_t)buffer.start + buffer.capacity);
1669
1670
1671
mtctx->inBuff.buffer = buffer;
1672
mtctx->inBuff.filled = 0;
1673
assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
1674
return 1;
1675
}
1676
1677
typedef struct {
1678
size_t toLoad; /* The number of bytes to load from the input. */
1679
int flush; /* Boolean declaring if we must flush because we found a synchronization point. */
1680
} syncPoint_t;
1681
1682
/**
1683
* Searches through the input for a synchronization point. If one is found, we
1684
* will instruct the caller to flush, and return the number of bytes to load.
1685
* Otherwise, we will load as many bytes as possible and instruct the caller
1686
* to continue as normal.
1687
*/
1688
static syncPoint_t
1689
findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
1690
{
1691
BYTE const* const istart = (BYTE const*)input.src + input.pos;
1692
U64 const primePower = mtctx->rsync.primePower;
1693
U64 const hitMask = mtctx->rsync.hitMask;
1694
1695
syncPoint_t syncPoint;
1696
U64 hash;
1697
BYTE const* prev;
1698
size_t pos;
1699
1700
syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
1701
syncPoint.flush = 0;
1702
if (!mtctx->params.rsyncable)
1703
/* Rsync is disabled. */
1704
return syncPoint;
1705
if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE)
1706
/* We don't emit synchronization points if it would produce too small blocks.
1707
* We don't have enough input to find a synchronization point, so don't look.
1708
*/
1709
return syncPoint;
1710
if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
1711
/* Not enough to compute the hash.
1712
* We will miss any synchronization points in this RSYNC_LENGTH byte
1713
* window. However, since it depends only in the internal buffers, if the
1714
* state is already synchronized, we will remain synchronized.
1715
* Additionally, the probability that we miss a synchronization point is
1716
* low: RSYNC_LENGTH / targetSectionSize.
1717
*/
1718
return syncPoint;
1719
/* Initialize the loop variables. */
1720
if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) {
1721
/* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions
1722
* because they can't possibly be a sync point. So we can start
1723
* part way through the input buffer.
1724
*/
1725
pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled;
1726
if (pos >= RSYNC_LENGTH) {
1727
prev = istart + pos - RSYNC_LENGTH;
1728
hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1729
} else {
1730
assert(mtctx->inBuff.filled >= RSYNC_LENGTH);
1731
prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1732
hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos));
1733
hash = ZSTD_rollingHash_append(hash, istart, pos);
1734
}
1735
} else {
1736
/* We have enough bytes buffered to initialize the hash,
1737
* and are have processed enough bytes to find a sync point.
1738
* Start scanning at the beginning of the input.
1739
*/
1740
assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE);
1741
assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH);
1742
pos = 0;
1743
prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1744
hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1745
if ((hash & hitMask) == hitMask) {
1746
/* We're already at a sync point so don't load any more until
1747
* we're able to flush this sync point.
1748
* This likely happened because the job table was full so we
1749
* couldn't add our job.
1750
*/
1751
syncPoint.toLoad = 0;
1752
syncPoint.flush = 1;
1753
return syncPoint;
1754
}
1755
}
1756
/* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
1757
* through the input. If we hit a synchronization point, then cut the
1758
* job off, and tell the compressor to flush the job. Otherwise, load
1759
* all the bytes and continue as normal.
1760
* If we go too long without a synchronization point (targetSectionSize)
1761
* then a block will be emitted anyways, but this is okay, since if we
1762
* are already synchronized we will remain synchronized.
1763
*/
1764
for (; pos < syncPoint.toLoad; ++pos) {
1765
BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
1766
assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1767
hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
1768
assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE);
1769
if ((hash & hitMask) == hitMask) {
1770
syncPoint.toLoad = pos + 1;
1771
syncPoint.flush = 1;
1772
break;
1773
}
1774
}
1775
return syncPoint;
1776
}
1777
1778
size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
1779
{
1780
size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
1781
if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
1782
return hintInSize;
1783
}
1784
1785
/** ZSTDMT_compressStream_generic() :
1786
* internal use only - exposed to be invoked from zstd_compress.c
1787
* assumption : output and input are valid (pos <= size)
1788
* @return : minimum amount of data remaining to flush, 0 if none */
1789
size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
1790
ZSTD_outBuffer* output,
1791
ZSTD_inBuffer* input,
1792
ZSTD_EndDirective endOp)
1793
{
1794
unsigned forwardInputProgress = 0;
1795
DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
1796
(U32)endOp, (U32)(input->size - input->pos));
1797
assert(output->pos <= output->size);
1798
assert(input->pos <= input->size);
1799
1800
if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
1801
/* current frame being ended. Only flush/end are allowed */
1802
return ERROR(stage_wrong);
1803
}
1804
1805
/* fill input buffer */
1806
if ( (!mtctx->jobReady)
1807
&& (input->size > input->pos) ) { /* support NULL input */
1808
if (mtctx->inBuff.buffer.start == NULL) {
1809
assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
1810
if (!ZSTDMT_tryGetInputRange(mtctx)) {
1811
/* It is only possible for this operation to fail if there are
1812
* still compression jobs ongoing.
1813
*/
1814
DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
1815
assert(mtctx->doneJobID != mtctx->nextJobID);
1816
} else
1817
DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
1818
}
1819
if (mtctx->inBuff.buffer.start != NULL) {
1820
syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input);
1821
if (syncPoint.flush && endOp == ZSTD_e_continue) {
1822
endOp = ZSTD_e_flush;
1823
}
1824
assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
1825
DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
1826
(U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
1827
ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
1828
input->pos += syncPoint.toLoad;
1829
mtctx->inBuff.filled += syncPoint.toLoad;
1830
forwardInputProgress = syncPoint.toLoad>0;
1831
}
1832
}
1833
if ((input->pos < input->size) && (endOp == ZSTD_e_end)) {
1834
/* Can't end yet because the input is not fully consumed.
1835
* We are in one of these cases:
1836
* - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job.
1837
* - We filled the input buffer: flush this job but don't end the frame.
1838
* - We hit a synchronization point: flush this job but don't end the frame.
1839
*/
1840
assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable);
1841
endOp = ZSTD_e_flush;
1842
}
1843
1844
if ( (mtctx->jobReady)
1845
|| (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */
1846
|| ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */
1847
|| ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */
1848
size_t const jobSize = mtctx->inBuff.filled;
1849
assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
1850
FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , "");
1851
}
1852
1853
/* check for potential compressed data ready to be flushed */
1854
{ size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
1855
if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */
1856
DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
1857
return remainingToFlush;
1858
}
1859
}
1860
1861