Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/zstd/lib/decompress/huf_decompress.c
48375 views
1
/* ******************************************************************
2
* huff0 huffman decoder,
3
* part of Finite State Entropy library
4
* Copyright (c) Yann Collet, Facebook, Inc.
5
*
6
* You can contact the author at :
7
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
8
*
9
* This source code is licensed under both the BSD-style license (found in the
10
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
11
* in the COPYING file in the root directory of this source tree).
12
* You may select, at your option, one of the above-listed licenses.
13
****************************************************************** */
14
15
/* **************************************************************
16
* Dependencies
17
****************************************************************/
18
#include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset */
19
#include "../common/compiler.h"
20
#include "../common/bitstream.h" /* BIT_* */
21
#include "../common/fse.h" /* to compress headers */
22
#define HUF_STATIC_LINKING_ONLY
23
#include "../common/huf.h"
24
#include "../common/error_private.h"
25
#include "../common/zstd_internal.h"
26
27
/* **************************************************************
28
* Constants
29
****************************************************************/
30
31
#define HUF_DECODER_FAST_TABLELOG 11
32
33
/* **************************************************************
34
* Macros
35
****************************************************************/
36
37
/* These two optional macros force the use one way or another of the two
38
* Huffman decompression implementations. You can't force in both directions
39
* at the same time.
40
*/
41
#if defined(HUF_FORCE_DECOMPRESS_X1) && \
42
defined(HUF_FORCE_DECOMPRESS_X2)
43
#error "Cannot force the use of the X1 and X2 decoders at the same time!"
44
#endif
45
46
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && DYNAMIC_BMI2
47
# define HUF_ASM_X86_64_BMI2_ATTRS BMI2_TARGET_ATTRIBUTE
48
#else
49
# define HUF_ASM_X86_64_BMI2_ATTRS
50
#endif
51
52
#ifdef __cplusplus
53
# define HUF_EXTERN_C extern "C"
54
#else
55
# define HUF_EXTERN_C
56
#endif
57
#define HUF_ASM_DECL HUF_EXTERN_C
58
59
#if DYNAMIC_BMI2 || (ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__))
60
# define HUF_NEED_BMI2_FUNCTION 1
61
#else
62
# define HUF_NEED_BMI2_FUNCTION 0
63
#endif
64
65
#if !(ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__))
66
# define HUF_NEED_DEFAULT_FUNCTION 1
67
#else
68
# define HUF_NEED_DEFAULT_FUNCTION 0
69
#endif
70
71
/* **************************************************************
72
* Error Management
73
****************************************************************/
74
#define HUF_isError ERR_isError
75
76
77
/* **************************************************************
78
* Byte alignment for workSpace management
79
****************************************************************/
80
#define HUF_ALIGN(x, a) HUF_ALIGN_MASK((x), (a) - 1)
81
#define HUF_ALIGN_MASK(x, mask) (((x) + (mask)) & ~(mask))
82
83
84
/* **************************************************************
85
* BMI2 Variant Wrappers
86
****************************************************************/
87
#if DYNAMIC_BMI2
88
89
#define HUF_DGEN(fn) \
90
\
91
static size_t fn##_default( \
92
void* dst, size_t dstSize, \
93
const void* cSrc, size_t cSrcSize, \
94
const HUF_DTable* DTable) \
95
{ \
96
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
97
} \
98
\
99
static BMI2_TARGET_ATTRIBUTE size_t fn##_bmi2( \
100
void* dst, size_t dstSize, \
101
const void* cSrc, size_t cSrcSize, \
102
const HUF_DTable* DTable) \
103
{ \
104
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
105
} \
106
\
107
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
108
size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
109
{ \
110
if (bmi2) { \
111
return fn##_bmi2(dst, dstSize, cSrc, cSrcSize, DTable); \
112
} \
113
return fn##_default(dst, dstSize, cSrc, cSrcSize, DTable); \
114
}
115
116
#else
117
118
#define HUF_DGEN(fn) \
119
static size_t fn(void* dst, size_t dstSize, void const* cSrc, \
120
size_t cSrcSize, HUF_DTable const* DTable, int bmi2) \
121
{ \
122
(void)bmi2; \
123
return fn##_body(dst, dstSize, cSrc, cSrcSize, DTable); \
124
}
125
126
#endif
127
128
129
/*-***************************/
130
/* generic DTableDesc */
131
/*-***************************/
132
typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc;
133
134
static DTableDesc HUF_getDTableDesc(const HUF_DTable* table)
135
{
136
DTableDesc dtd;
137
ZSTD_memcpy(&dtd, table, sizeof(dtd));
138
return dtd;
139
}
140
141
#if ZSTD_ENABLE_ASM_X86_64_BMI2
142
143
static size_t HUF_initDStream(BYTE const* ip) {
144
BYTE const lastByte = ip[7];
145
size_t const bitsConsumed = lastByte ? 8 - BIT_highbit32(lastByte) : 0;
146
size_t const value = MEM_readLEST(ip) | 1;
147
assert(bitsConsumed <= 8);
148
return value << bitsConsumed;
149
}
150
typedef struct {
151
BYTE const* ip[4];
152
BYTE* op[4];
153
U64 bits[4];
154
void const* dt;
155
BYTE const* ilimit;
156
BYTE* oend;
157
BYTE const* iend[4];
158
} HUF_DecompressAsmArgs;
159
160
/**
161
* Initializes args for the asm decoding loop.
162
* @returns 0 on success
163
* 1 if the fallback implementation should be used.
164
* Or an error code on failure.
165
*/
166
static size_t HUF_DecompressAsmArgs_init(HUF_DecompressAsmArgs* args, void* dst, size_t dstSize, void const* src, size_t srcSize, const HUF_DTable* DTable)
167
{
168
void const* dt = DTable + 1;
169
U32 const dtLog = HUF_getDTableDesc(DTable).tableLog;
170
171
const BYTE* const ilimit = (const BYTE*)src + 6 + 8;
172
173
BYTE* const oend = (BYTE*)dst + dstSize;
174
175
/* The following condition is false on x32 platform,
176
* but HUF_asm is not compatible with this ABI */
177
if (!(MEM_isLittleEndian() && !MEM_32bits())) return 1;
178
179
/* strict minimum : jump table + 1 byte per stream */
180
if (srcSize < 10)
181
return ERROR(corruption_detected);
182
183
/* Must have at least 8 bytes per stream because we don't handle initializing smaller bit containers.
184
* If table log is not correct at this point, fallback to the old decoder.
185
* On small inputs we don't have enough data to trigger the fast loop, so use the old decoder.
186
*/
187
if (dtLog != HUF_DECODER_FAST_TABLELOG)
188
return 1;
189
190
/* Read the jump table. */
191
{
192
const BYTE* const istart = (const BYTE*)src;
193
size_t const length1 = MEM_readLE16(istart);
194
size_t const length2 = MEM_readLE16(istart+2);
195
size_t const length3 = MEM_readLE16(istart+4);
196
size_t const length4 = srcSize - (length1 + length2 + length3 + 6);
197
args->iend[0] = istart + 6; /* jumpTable */
198
args->iend[1] = args->iend[0] + length1;
199
args->iend[2] = args->iend[1] + length2;
200
args->iend[3] = args->iend[2] + length3;
201
202
/* HUF_initDStream() requires this, and this small of an input
203
* won't benefit from the ASM loop anyways.
204
* length1 must be >= 16 so that ip[0] >= ilimit before the loop
205
* starts.
206
*/
207
if (length1 < 16 || length2 < 8 || length3 < 8 || length4 < 8)
208
return 1;
209
if (length4 > srcSize) return ERROR(corruption_detected); /* overflow */
210
}
211
/* ip[] contains the position that is currently loaded into bits[]. */
212
args->ip[0] = args->iend[1] - sizeof(U64);
213
args->ip[1] = args->iend[2] - sizeof(U64);
214
args->ip[2] = args->iend[3] - sizeof(U64);
215
args->ip[3] = (BYTE const*)src + srcSize - sizeof(U64);
216
217
/* op[] contains the output pointers. */
218
args->op[0] = (BYTE*)dst;
219
args->op[1] = args->op[0] + (dstSize+3)/4;
220
args->op[2] = args->op[1] + (dstSize+3)/4;
221
args->op[3] = args->op[2] + (dstSize+3)/4;
222
223
/* No point to call the ASM loop for tiny outputs. */
224
if (args->op[3] >= oend)
225
return 1;
226
227
/* bits[] is the bit container.
228
* It is read from the MSB down to the LSB.
229
* It is shifted left as it is read, and zeros are
230
* shifted in. After the lowest valid bit a 1 is
231
* set, so that CountTrailingZeros(bits[]) can be used
232
* to count how many bits we've consumed.
233
*/
234
args->bits[0] = HUF_initDStream(args->ip[0]);
235
args->bits[1] = HUF_initDStream(args->ip[1]);
236
args->bits[2] = HUF_initDStream(args->ip[2]);
237
args->bits[3] = HUF_initDStream(args->ip[3]);
238
239
/* If ip[] >= ilimit, it is guaranteed to be safe to
240
* reload bits[]. It may be beyond its section, but is
241
* guaranteed to be valid (>= istart).
242
*/
243
args->ilimit = ilimit;
244
245
args->oend = oend;
246
args->dt = dt;
247
248
return 0;
249
}
250
251
static size_t HUF_initRemainingDStream(BIT_DStream_t* bit, HUF_DecompressAsmArgs const* args, int stream, BYTE* segmentEnd)
252
{
253
/* Validate that we haven't overwritten. */
254
if (args->op[stream] > segmentEnd)
255
return ERROR(corruption_detected);
256
/* Validate that we haven't read beyond iend[].
257
* Note that ip[] may be < iend[] because the MSB is
258
* the next bit to read, and we may have consumed 100%
259
* of the stream, so down to iend[i] - 8 is valid.
260
*/
261
if (args->ip[stream] < args->iend[stream] - 8)
262
return ERROR(corruption_detected);
263
264
/* Construct the BIT_DStream_t. */
265
bit->bitContainer = MEM_readLE64(args->ip[stream]);
266
bit->bitsConsumed = ZSTD_countTrailingZeros((size_t)args->bits[stream]);
267
bit->start = (const char*)args->iend[0];
268
bit->limitPtr = bit->start + sizeof(size_t);
269
bit->ptr = (const char*)args->ip[stream];
270
271
return 0;
272
}
273
#endif
274
275
276
#ifndef HUF_FORCE_DECOMPRESS_X2
277
278
/*-***************************/
279
/* single-symbol decoding */
280
/*-***************************/
281
typedef struct { BYTE nbBits; BYTE byte; } HUF_DEltX1; /* single-symbol decoding */
282
283
/**
284
* Packs 4 HUF_DEltX1 structs into a U64. This is used to lay down 4 entries at
285
* a time.
286
*/
287
static U64 HUF_DEltX1_set4(BYTE symbol, BYTE nbBits) {
288
U64 D4;
289
if (MEM_isLittleEndian()) {
290
D4 = (symbol << 8) + nbBits;
291
} else {
292
D4 = symbol + (nbBits << 8);
293
}
294
D4 *= 0x0001000100010001ULL;
295
return D4;
296
}
297
298
/**
299
* Increase the tableLog to targetTableLog and rescales the stats.
300
* If tableLog > targetTableLog this is a no-op.
301
* @returns New tableLog
302
*/
303
static U32 HUF_rescaleStats(BYTE* huffWeight, U32* rankVal, U32 nbSymbols, U32 tableLog, U32 targetTableLog)
304
{
305
if (tableLog > targetTableLog)
306
return tableLog;
307
if (tableLog < targetTableLog) {
308
U32 const scale = targetTableLog - tableLog;
309
U32 s;
310
/* Increase the weight for all non-zero probability symbols by scale. */
311
for (s = 0; s < nbSymbols; ++s) {
312
huffWeight[s] += (BYTE)((huffWeight[s] == 0) ? 0 : scale);
313
}
314
/* Update rankVal to reflect the new weights.
315
* All weights except 0 get moved to weight + scale.
316
* Weights [1, scale] are empty.
317
*/
318
for (s = targetTableLog; s > scale; --s) {
319
rankVal[s] = rankVal[s - scale];
320
}
321
for (s = scale; s > 0; --s) {
322
rankVal[s] = 0;
323
}
324
}
325
return targetTableLog;
326
}
327
328
typedef struct {
329
U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];
330
U32 rankStart[HUF_TABLELOG_ABSOLUTEMAX + 1];
331
U32 statsWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
332
BYTE symbols[HUF_SYMBOLVALUE_MAX + 1];
333
BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];
334
} HUF_ReadDTableX1_Workspace;
335
336
337
size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize)
338
{
339
return HUF_readDTableX1_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
340
}
341
342
size_t HUF_readDTableX1_wksp_bmi2(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int bmi2)
343
{
344
U32 tableLog = 0;
345
U32 nbSymbols = 0;
346
size_t iSize;
347
void* const dtPtr = DTable + 1;
348
HUF_DEltX1* const dt = (HUF_DEltX1*)dtPtr;
349
HUF_ReadDTableX1_Workspace* wksp = (HUF_ReadDTableX1_Workspace*)workSpace;
350
351
DEBUG_STATIC_ASSERT(HUF_DECOMPRESS_WORKSPACE_SIZE >= sizeof(*wksp));
352
if (sizeof(*wksp) > wkspSize) return ERROR(tableLog_tooLarge);
353
354
DEBUG_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUF_DTable));
355
/* ZSTD_memset(huffWeight, 0, sizeof(huffWeight)); */ /* is not necessary, even though some analyzer complain ... */
356
357
iSize = HUF_readStats_wksp(wksp->huffWeight, HUF_SYMBOLVALUE_MAX + 1, wksp->rankVal, &nbSymbols, &tableLog, src, srcSize, wksp->statsWksp, sizeof(wksp->statsWksp), bmi2);
358
if (HUF_isError(iSize)) return iSize;
359
360
361
/* Table header */
362
{ DTableDesc dtd = HUF_getDTableDesc(DTable);
363
U32 const maxTableLog = dtd.maxTableLog + 1;
364
U32 const targetTableLog = MIN(maxTableLog, HUF_DECODER_FAST_TABLELOG);
365
tableLog = HUF_rescaleStats(wksp->huffWeight, wksp->rankVal, nbSymbols, tableLog, targetTableLog);
366
if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, Huffman tree cannot fit in */
367
dtd.tableType = 0;
368
dtd.tableLog = (BYTE)tableLog;
369
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
370
}
371
372
/* Compute symbols and rankStart given rankVal:
373
*
374
* rankVal already contains the number of values of each weight.
375
*
376
* symbols contains the symbols ordered by weight. First are the rankVal[0]
377
* weight 0 symbols, followed by the rankVal[1] weight 1 symbols, and so on.
378
* symbols[0] is filled (but unused) to avoid a branch.
379
*
380
* rankStart contains the offset where each rank belongs in the DTable.
381
* rankStart[0] is not filled because there are no entries in the table for
382
* weight 0.
383
*/
384
{
385
int n;
386
int nextRankStart = 0;
387
int const unroll = 4;
388
int const nLimit = (int)nbSymbols - unroll + 1;
389
for (n=0; n<(int)tableLog+1; n++) {
390
U32 const curr = nextRankStart;
391
nextRankStart += wksp->rankVal[n];
392
wksp->rankStart[n] = curr;
393
}
394
for (n=0; n < nLimit; n += unroll) {
395
int u;
396
for (u=0; u < unroll; ++u) {
397
size_t const w = wksp->huffWeight[n+u];
398
wksp->symbols[wksp->rankStart[w]++] = (BYTE)(n+u);
399
}
400
}
401
for (; n < (int)nbSymbols; ++n) {
402
size_t const w = wksp->huffWeight[n];
403
wksp->symbols[wksp->rankStart[w]++] = (BYTE)n;
404
}
405
}
406
407
/* fill DTable
408
* We fill all entries of each weight in order.
409
* That way length is a constant for each iteration of the outer loop.
410
* We can switch based on the length to a different inner loop which is
411
* optimized for that particular case.
412
*/
413
{
414
U32 w;
415
int symbol=wksp->rankVal[0];
416
int rankStart=0;
417
for (w=1; w<tableLog+1; ++w) {
418
int const symbolCount = wksp->rankVal[w];
419
int const length = (1 << w) >> 1;
420
int uStart = rankStart;
421
BYTE const nbBits = (BYTE)(tableLog + 1 - w);
422
int s;
423
int u;
424
switch (length) {
425
case 1:
426
for (s=0; s<symbolCount; ++s) {
427
HUF_DEltX1 D;
428
D.byte = wksp->symbols[symbol + s];
429
D.nbBits = nbBits;
430
dt[uStart] = D;
431
uStart += 1;
432
}
433
break;
434
case 2:
435
for (s=0; s<symbolCount; ++s) {
436
HUF_DEltX1 D;
437
D.byte = wksp->symbols[symbol + s];
438
D.nbBits = nbBits;
439
dt[uStart+0] = D;
440
dt[uStart+1] = D;
441
uStart += 2;
442
}
443
break;
444
case 4:
445
for (s=0; s<symbolCount; ++s) {
446
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
447
MEM_write64(dt + uStart, D4);
448
uStart += 4;
449
}
450
break;
451
case 8:
452
for (s=0; s<symbolCount; ++s) {
453
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
454
MEM_write64(dt + uStart, D4);
455
MEM_write64(dt + uStart + 4, D4);
456
uStart += 8;
457
}
458
break;
459
default:
460
for (s=0; s<symbolCount; ++s) {
461
U64 const D4 = HUF_DEltX1_set4(wksp->symbols[symbol + s], nbBits);
462
for (u=0; u < length; u += 16) {
463
MEM_write64(dt + uStart + u + 0, D4);
464
MEM_write64(dt + uStart + u + 4, D4);
465
MEM_write64(dt + uStart + u + 8, D4);
466
MEM_write64(dt + uStart + u + 12, D4);
467
}
468
assert(u == length);
469
uStart += length;
470
}
471
break;
472
}
473
symbol += symbolCount;
474
rankStart += symbolCount * length;
475
}
476
}
477
return iSize;
478
}
479
480
FORCE_INLINE_TEMPLATE BYTE
481
HUF_decodeSymbolX1(BIT_DStream_t* Dstream, const HUF_DEltX1* dt, const U32 dtLog)
482
{
483
size_t const val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
484
BYTE const c = dt[val].byte;
485
BIT_skipBits(Dstream, dt[val].nbBits);
486
return c;
487
}
488
489
#define HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr) \
490
*ptr++ = HUF_decodeSymbolX1(DStreamPtr, dt, dtLog)
491
492
#define HUF_DECODE_SYMBOLX1_1(ptr, DStreamPtr) \
493
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
494
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
495
496
#define HUF_DECODE_SYMBOLX1_2(ptr, DStreamPtr) \
497
if (MEM_64bits()) \
498
HUF_DECODE_SYMBOLX1_0(ptr, DStreamPtr)
499
500
HINT_INLINE size_t
501
HUF_decodeStreamX1(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX1* const dt, const U32 dtLog)
502
{
503
BYTE* const pStart = p;
504
505
/* up to 4 symbols at a time */
506
if ((pEnd - p) > 3) {
507
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-3)) {
508
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
509
HUF_DECODE_SYMBOLX1_1(p, bitDPtr);
510
HUF_DECODE_SYMBOLX1_2(p, bitDPtr);
511
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
512
}
513
} else {
514
BIT_reloadDStream(bitDPtr);
515
}
516
517
/* [0-3] symbols remaining */
518
if (MEM_32bits())
519
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd))
520
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
521
522
/* no more data to retrieve from bitstream, no need to reload */
523
while (p < pEnd)
524
HUF_DECODE_SYMBOLX1_0(p, bitDPtr);
525
526
return pEnd-pStart;
527
}
528
529
FORCE_INLINE_TEMPLATE size_t
530
HUF_decompress1X1_usingDTable_internal_body(
531
void* dst, size_t dstSize,
532
const void* cSrc, size_t cSrcSize,
533
const HUF_DTable* DTable)
534
{
535
BYTE* op = (BYTE*)dst;
536
BYTE* const oend = op + dstSize;
537
const void* dtPtr = DTable + 1;
538
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
539
BIT_DStream_t bitD;
540
DTableDesc const dtd = HUF_getDTableDesc(DTable);
541
U32 const dtLog = dtd.tableLog;
542
543
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
544
545
HUF_decodeStreamX1(op, &bitD, oend, dt, dtLog);
546
547
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
548
549
return dstSize;
550
}
551
552
FORCE_INLINE_TEMPLATE size_t
553
HUF_decompress4X1_usingDTable_internal_body(
554
void* dst, size_t dstSize,
555
const void* cSrc, size_t cSrcSize,
556
const HUF_DTable* DTable)
557
{
558
/* Check */
559
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
560
561
{ const BYTE* const istart = (const BYTE*) cSrc;
562
BYTE* const ostart = (BYTE*) dst;
563
BYTE* const oend = ostart + dstSize;
564
BYTE* const olimit = oend - 3;
565
const void* const dtPtr = DTable + 1;
566
const HUF_DEltX1* const dt = (const HUF_DEltX1*)dtPtr;
567
568
/* Init */
569
BIT_DStream_t bitD1;
570
BIT_DStream_t bitD2;
571
BIT_DStream_t bitD3;
572
BIT_DStream_t bitD4;
573
size_t const length1 = MEM_readLE16(istart);
574
size_t const length2 = MEM_readLE16(istart+2);
575
size_t const length3 = MEM_readLE16(istart+4);
576
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
577
const BYTE* const istart1 = istart + 6; /* jumpTable */
578
const BYTE* const istart2 = istart1 + length1;
579
const BYTE* const istart3 = istart2 + length2;
580
const BYTE* const istart4 = istart3 + length3;
581
const size_t segmentSize = (dstSize+3) / 4;
582
BYTE* const opStart2 = ostart + segmentSize;
583
BYTE* const opStart3 = opStart2 + segmentSize;
584
BYTE* const opStart4 = opStart3 + segmentSize;
585
BYTE* op1 = ostart;
586
BYTE* op2 = opStart2;
587
BYTE* op3 = opStart3;
588
BYTE* op4 = opStart4;
589
DTableDesc const dtd = HUF_getDTableDesc(DTable);
590
U32 const dtLog = dtd.tableLog;
591
U32 endSignal = 1;
592
593
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
594
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
595
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
596
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
597
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
598
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
599
600
/* up to 16 symbols per loop (4 symbols per stream) in 64-bit mode */
601
if ((size_t)(oend - op4) >= sizeof(size_t)) {
602
for ( ; (endSignal) & (op4 < olimit) ; ) {
603
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
604
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
605
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
606
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
607
HUF_DECODE_SYMBOLX1_1(op1, &bitD1);
608
HUF_DECODE_SYMBOLX1_1(op2, &bitD2);
609
HUF_DECODE_SYMBOLX1_1(op3, &bitD3);
610
HUF_DECODE_SYMBOLX1_1(op4, &bitD4);
611
HUF_DECODE_SYMBOLX1_2(op1, &bitD1);
612
HUF_DECODE_SYMBOLX1_2(op2, &bitD2);
613
HUF_DECODE_SYMBOLX1_2(op3, &bitD3);
614
HUF_DECODE_SYMBOLX1_2(op4, &bitD4);
615
HUF_DECODE_SYMBOLX1_0(op1, &bitD1);
616
HUF_DECODE_SYMBOLX1_0(op2, &bitD2);
617
HUF_DECODE_SYMBOLX1_0(op3, &bitD3);
618
HUF_DECODE_SYMBOLX1_0(op4, &bitD4);
619
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
620
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
621
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
622
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
623
}
624
}
625
626
/* check corruption */
627
/* note : should not be necessary : op# advance in lock step, and we control op4.
628
* but curiously, binary generated by gcc 7.2 & 7.3 with -mbmi2 runs faster when >=1 test is present */
629
if (op1 > opStart2) return ERROR(corruption_detected);
630
if (op2 > opStart3) return ERROR(corruption_detected);
631
if (op3 > opStart4) return ERROR(corruption_detected);
632
/* note : op4 supposed already verified within main loop */
633
634
/* finish bitStreams one by one */
635
HUF_decodeStreamX1(op1, &bitD1, opStart2, dt, dtLog);
636
HUF_decodeStreamX1(op2, &bitD2, opStart3, dt, dtLog);
637
HUF_decodeStreamX1(op3, &bitD3, opStart4, dt, dtLog);
638
HUF_decodeStreamX1(op4, &bitD4, oend, dt, dtLog);
639
640
/* check */
641
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
642
if (!endCheck) return ERROR(corruption_detected); }
643
644
/* decoded size */
645
return dstSize;
646
}
647
}
648
649
#if HUF_NEED_BMI2_FUNCTION
650
static BMI2_TARGET_ATTRIBUTE
651
size_t HUF_decompress4X1_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
652
size_t cSrcSize, HUF_DTable const* DTable) {
653
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
654
}
655
#endif
656
657
#if HUF_NEED_DEFAULT_FUNCTION
658
static
659
size_t HUF_decompress4X1_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
660
size_t cSrcSize, HUF_DTable const* DTable) {
661
return HUF_decompress4X1_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
662
}
663
#endif
664
665
#if ZSTD_ENABLE_ASM_X86_64_BMI2
666
667
HUF_ASM_DECL void HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN;
668
669
static HUF_ASM_X86_64_BMI2_ATTRS
670
size_t
671
HUF_decompress4X1_usingDTable_internal_bmi2_asm(
672
void* dst, size_t dstSize,
673
const void* cSrc, size_t cSrcSize,
674
const HUF_DTable* DTable)
675
{
676
void const* dt = DTable + 1;
677
const BYTE* const iend = (const BYTE*)cSrc + 6;
678
BYTE* const oend = (BYTE*)dst + dstSize;
679
HUF_DecompressAsmArgs args;
680
{
681
size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
682
FORWARD_IF_ERROR(ret, "Failed to init asm args");
683
if (ret != 0)
684
return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
685
}
686
687
assert(args.ip[0] >= args.ilimit);
688
HUF_decompress4X1_usingDTable_internal_bmi2_asm_loop(&args);
689
690
/* Our loop guarantees that ip[] >= ilimit and that we haven't
691
* overwritten any op[].
692
*/
693
assert(args.ip[0] >= iend);
694
assert(args.ip[1] >= iend);
695
assert(args.ip[2] >= iend);
696
assert(args.ip[3] >= iend);
697
assert(args.op[3] <= oend);
698
(void)iend;
699
700
/* finish bit streams one by one. */
701
{
702
size_t const segmentSize = (dstSize+3) / 4;
703
BYTE* segmentEnd = (BYTE*)dst;
704
int i;
705
for (i = 0; i < 4; ++i) {
706
BIT_DStream_t bit;
707
if (segmentSize <= (size_t)(oend - segmentEnd))
708
segmentEnd += segmentSize;
709
else
710
segmentEnd = oend;
711
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
712
/* Decompress and validate that we've produced exactly the expected length. */
713
args.op[i] += HUF_decodeStreamX1(args.op[i], &bit, segmentEnd, (HUF_DEltX1 const*)dt, HUF_DECODER_FAST_TABLELOG);
714
if (args.op[i] != segmentEnd) return ERROR(corruption_detected);
715
}
716
}
717
718
/* decoded size */
719
return dstSize;
720
}
721
#endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */
722
723
typedef size_t (*HUF_decompress_usingDTable_t)(void *dst, size_t dstSize,
724
const void *cSrc,
725
size_t cSrcSize,
726
const HUF_DTable *DTable);
727
728
HUF_DGEN(HUF_decompress1X1_usingDTable_internal)
729
730
static size_t HUF_decompress4X1_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
731
size_t cSrcSize, HUF_DTable const* DTable, int bmi2)
732
{
733
#if DYNAMIC_BMI2
734
if (bmi2) {
735
# if ZSTD_ENABLE_ASM_X86_64_BMI2
736
return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
737
# else
738
return HUF_decompress4X1_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
739
# endif
740
}
741
#else
742
(void)bmi2;
743
#endif
744
745
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
746
return HUF_decompress4X1_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
747
#else
748
return HUF_decompress4X1_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable);
749
#endif
750
}
751
752
753
size_t HUF_decompress1X1_usingDTable(
754
void* dst, size_t dstSize,
755
const void* cSrc, size_t cSrcSize,
756
const HUF_DTable* DTable)
757
{
758
DTableDesc dtd = HUF_getDTableDesc(DTable);
759
if (dtd.tableType != 0) return ERROR(GENERIC);
760
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
761
}
762
763
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
764
const void* cSrc, size_t cSrcSize,
765
void* workSpace, size_t wkspSize)
766
{
767
const BYTE* ip = (const BYTE*) cSrc;
768
769
size_t const hSize = HUF_readDTableX1_wksp(DCtx, cSrc, cSrcSize, workSpace, wkspSize);
770
if (HUF_isError(hSize)) return hSize;
771
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
772
ip += hSize; cSrcSize -= hSize;
773
774
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
775
}
776
777
778
size_t HUF_decompress4X1_usingDTable(
779
void* dst, size_t dstSize,
780
const void* cSrc, size_t cSrcSize,
781
const HUF_DTable* DTable)
782
{
783
DTableDesc dtd = HUF_getDTableDesc(DTable);
784
if (dtd.tableType != 0) return ERROR(GENERIC);
785
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
786
}
787
788
static size_t HUF_decompress4X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
789
const void* cSrc, size_t cSrcSize,
790
void* workSpace, size_t wkspSize, int bmi2)
791
{
792
const BYTE* ip = (const BYTE*) cSrc;
793
794
size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
795
if (HUF_isError(hSize)) return hSize;
796
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
797
ip += hSize; cSrcSize -= hSize;
798
799
return HUF_decompress4X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
800
}
801
802
size_t HUF_decompress4X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
803
const void* cSrc, size_t cSrcSize,
804
void* workSpace, size_t wkspSize)
805
{
806
return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, 0);
807
}
808
809
810
#endif /* HUF_FORCE_DECOMPRESS_X2 */
811
812
813
#ifndef HUF_FORCE_DECOMPRESS_X1
814
815
/* *************************/
816
/* double-symbols decoding */
817
/* *************************/
818
819
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX2; /* double-symbols decoding */
820
typedef struct { BYTE symbol; } sortedSymbol_t;
821
typedef U32 rankValCol_t[HUF_TABLELOG_MAX + 1];
822
typedef rankValCol_t rankVal_t[HUF_TABLELOG_MAX];
823
824
/**
825
* Constructs a HUF_DEltX2 in a U32.
826
*/
827
static U32 HUF_buildDEltX2U32(U32 symbol, U32 nbBits, U32 baseSeq, int level)
828
{
829
U32 seq;
830
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, sequence) == 0);
831
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, nbBits) == 2);
832
DEBUG_STATIC_ASSERT(offsetof(HUF_DEltX2, length) == 3);
833
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U32));
834
if (MEM_isLittleEndian()) {
835
seq = level == 1 ? symbol : (baseSeq + (symbol << 8));
836
return seq + (nbBits << 16) + ((U32)level << 24);
837
} else {
838
seq = level == 1 ? (symbol << 8) : ((baseSeq << 8) + symbol);
839
return (seq << 16) + (nbBits << 8) + (U32)level;
840
}
841
}
842
843
/**
844
* Constructs a HUF_DEltX2.
845
*/
846
static HUF_DEltX2 HUF_buildDEltX2(U32 symbol, U32 nbBits, U32 baseSeq, int level)
847
{
848
HUF_DEltX2 DElt;
849
U32 const val = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
850
DEBUG_STATIC_ASSERT(sizeof(DElt) == sizeof(val));
851
ZSTD_memcpy(&DElt, &val, sizeof(val));
852
return DElt;
853
}
854
855
/**
856
* Constructs 2 HUF_DEltX2s and packs them into a U64.
857
*/
858
static U64 HUF_buildDEltX2U64(U32 symbol, U32 nbBits, U16 baseSeq, int level)
859
{
860
U32 DElt = HUF_buildDEltX2U32(symbol, nbBits, baseSeq, level);
861
return (U64)DElt + ((U64)DElt << 32);
862
}
863
864
/**
865
* Fills the DTable rank with all the symbols from [begin, end) that are each
866
* nbBits long.
867
*
868
* @param DTableRank The start of the rank in the DTable.
869
* @param begin The first symbol to fill (inclusive).
870
* @param end The last symbol to fill (exclusive).
871
* @param nbBits Each symbol is nbBits long.
872
* @param tableLog The table log.
873
* @param baseSeq If level == 1 { 0 } else { the first level symbol }
874
* @param level The level in the table. Must be 1 or 2.
875
*/
876
static void HUF_fillDTableX2ForWeight(
877
HUF_DEltX2* DTableRank,
878
sortedSymbol_t const* begin, sortedSymbol_t const* end,
879
U32 nbBits, U32 tableLog,
880
U16 baseSeq, int const level)
881
{
882
U32 const length = 1U << ((tableLog - nbBits) & 0x1F /* quiet static-analyzer */);
883
const sortedSymbol_t* ptr;
884
assert(level >= 1 && level <= 2);
885
switch (length) {
886
case 1:
887
for (ptr = begin; ptr != end; ++ptr) {
888
HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
889
*DTableRank++ = DElt;
890
}
891
break;
892
case 2:
893
for (ptr = begin; ptr != end; ++ptr) {
894
HUF_DEltX2 const DElt = HUF_buildDEltX2(ptr->symbol, nbBits, baseSeq, level);
895
DTableRank[0] = DElt;
896
DTableRank[1] = DElt;
897
DTableRank += 2;
898
}
899
break;
900
case 4:
901
for (ptr = begin; ptr != end; ++ptr) {
902
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
903
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
904
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
905
DTableRank += 4;
906
}
907
break;
908
case 8:
909
for (ptr = begin; ptr != end; ++ptr) {
910
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
911
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
912
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
913
ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
914
ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
915
DTableRank += 8;
916
}
917
break;
918
default:
919
for (ptr = begin; ptr != end; ++ptr) {
920
U64 const DEltX2 = HUF_buildDEltX2U64(ptr->symbol, nbBits, baseSeq, level);
921
HUF_DEltX2* const DTableRankEnd = DTableRank + length;
922
for (; DTableRank != DTableRankEnd; DTableRank += 8) {
923
ZSTD_memcpy(DTableRank + 0, &DEltX2, sizeof(DEltX2));
924
ZSTD_memcpy(DTableRank + 2, &DEltX2, sizeof(DEltX2));
925
ZSTD_memcpy(DTableRank + 4, &DEltX2, sizeof(DEltX2));
926
ZSTD_memcpy(DTableRank + 6, &DEltX2, sizeof(DEltX2));
927
}
928
}
929
break;
930
}
931
}
932
933
/* HUF_fillDTableX2Level2() :
934
* `rankValOrigin` must be a table of at least (HUF_TABLELOG_MAX + 1) U32 */
935
static void HUF_fillDTableX2Level2(HUF_DEltX2* DTable, U32 targetLog, const U32 consumedBits,
936
const U32* rankVal, const int minWeight, const int maxWeight1,
937
const sortedSymbol_t* sortedSymbols, U32 const* rankStart,
938
U32 nbBitsBaseline, U16 baseSeq)
939
{
940
/* Fill skipped values (all positions up to rankVal[minWeight]).
941
* These are positions only get a single symbol because the combined weight
942
* is too large.
943
*/
944
if (minWeight>1) {
945
U32 const length = 1U << ((targetLog - consumedBits) & 0x1F /* quiet static-analyzer */);
946
U64 const DEltX2 = HUF_buildDEltX2U64(baseSeq, consumedBits, /* baseSeq */ 0, /* level */ 1);
947
int const skipSize = rankVal[minWeight];
948
assert(length > 1);
949
assert((U32)skipSize < length);
950
switch (length) {
951
case 2:
952
assert(skipSize == 1);
953
ZSTD_memcpy(DTable, &DEltX2, sizeof(DEltX2));
954
break;
955
case 4:
956
assert(skipSize <= 4);
957
ZSTD_memcpy(DTable + 0, &DEltX2, sizeof(DEltX2));
958
ZSTD_memcpy(DTable + 2, &DEltX2, sizeof(DEltX2));
959
break;
960
default:
961
{
962
int i;
963
for (i = 0; i < skipSize; i += 8) {
964
ZSTD_memcpy(DTable + i + 0, &DEltX2, sizeof(DEltX2));
965
ZSTD_memcpy(DTable + i + 2, &DEltX2, sizeof(DEltX2));
966
ZSTD_memcpy(DTable + i + 4, &DEltX2, sizeof(DEltX2));
967
ZSTD_memcpy(DTable + i + 6, &DEltX2, sizeof(DEltX2));
968
}
969
}
970
}
971
}
972
973
/* Fill each of the second level symbols by weight. */
974
{
975
int w;
976
for (w = minWeight; w < maxWeight1; ++w) {
977
int const begin = rankStart[w];
978
int const end = rankStart[w+1];
979
U32 const nbBits = nbBitsBaseline - w;
980
U32 const totalBits = nbBits + consumedBits;
981
HUF_fillDTableX2ForWeight(
982
DTable + rankVal[w],
983
sortedSymbols + begin, sortedSymbols + end,
984
totalBits, targetLog,
985
baseSeq, /* level */ 2);
986
}
987
}
988
}
989
990
static void HUF_fillDTableX2(HUF_DEltX2* DTable, const U32 targetLog,
991
const sortedSymbol_t* sortedList,
992
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
993
const U32 nbBitsBaseline)
994
{
995
U32* const rankVal = rankValOrigin[0];
996
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
997
const U32 minBits = nbBitsBaseline - maxWeight;
998
int w;
999
int const wEnd = (int)maxWeight + 1;
1000
1001
/* Fill DTable in order of weight. */
1002
for (w = 1; w < wEnd; ++w) {
1003
int const begin = (int)rankStart[w];
1004
int const end = (int)rankStart[w+1];
1005
U32 const nbBits = nbBitsBaseline - w;
1006
1007
if (targetLog-nbBits >= minBits) {
1008
/* Enough room for a second symbol. */
1009
int start = rankVal[w];
1010
U32 const length = 1U << ((targetLog - nbBits) & 0x1F /* quiet static-analyzer */);
1011
int minWeight = nbBits + scaleLog;
1012
int s;
1013
if (minWeight < 1) minWeight = 1;
1014
/* Fill the DTable for every symbol of weight w.
1015
* These symbols get at least 1 second symbol.
1016
*/
1017
for (s = begin; s != end; ++s) {
1018
HUF_fillDTableX2Level2(
1019
DTable + start, targetLog, nbBits,
1020
rankValOrigin[nbBits], minWeight, wEnd,
1021
sortedList, rankStart,
1022
nbBitsBaseline, sortedList[s].symbol);
1023
start += length;
1024
}
1025
} else {
1026
/* Only a single symbol. */
1027
HUF_fillDTableX2ForWeight(
1028
DTable + rankVal[w],
1029
sortedList + begin, sortedList + end,
1030
nbBits, targetLog,
1031
/* baseSeq */ 0, /* level */ 1);
1032
}
1033
}
1034
}
1035
1036
typedef struct {
1037
rankValCol_t rankVal[HUF_TABLELOG_MAX];
1038
U32 rankStats[HUF_TABLELOG_MAX + 1];
1039
U32 rankStart0[HUF_TABLELOG_MAX + 3];
1040
sortedSymbol_t sortedSymbol[HUF_SYMBOLVALUE_MAX + 1];
1041
BYTE weightList[HUF_SYMBOLVALUE_MAX + 1];
1042
U32 calleeWksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
1043
} HUF_ReadDTableX2_Workspace;
1044
1045
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable,
1046
const void* src, size_t srcSize,
1047
void* workSpace, size_t wkspSize)
1048
{
1049
return HUF_readDTableX2_wksp_bmi2(DTable, src, srcSize, workSpace, wkspSize, /* bmi2 */ 0);
1050
}
1051
1052
size_t HUF_readDTableX2_wksp_bmi2(HUF_DTable* DTable,
1053
const void* src, size_t srcSize,
1054
void* workSpace, size_t wkspSize, int bmi2)
1055
{
1056
U32 tableLog, maxW, nbSymbols;
1057
DTableDesc dtd = HUF_getDTableDesc(DTable);
1058
U32 maxTableLog = dtd.maxTableLog;
1059
size_t iSize;
1060
void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */
1061
HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
1062
U32 *rankStart;
1063
1064
HUF_ReadDTableX2_Workspace* const wksp = (HUF_ReadDTableX2_Workspace*)workSpace;
1065
1066
if (sizeof(*wksp) > wkspSize) return ERROR(GENERIC);
1067
1068
rankStart = wksp->rankStart0 + 1;
1069
ZSTD_memset(wksp->rankStats, 0, sizeof(wksp->rankStats));
1070
ZSTD_memset(wksp->rankStart0, 0, sizeof(wksp->rankStart0));
1071
1072
DEBUG_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(HUF_DTable)); /* if compiler fails here, assertion is wrong */
1073
if (maxTableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
1074
/* ZSTD_memset(weightList, 0, sizeof(weightList)); */ /* is not necessary, even though some analyzer complain ... */
1075
1076
iSize = HUF_readStats_wksp(wksp->weightList, HUF_SYMBOLVALUE_MAX + 1, wksp->rankStats, &nbSymbols, &tableLog, src, srcSize, wksp->calleeWksp, sizeof(wksp->calleeWksp), bmi2);
1077
if (HUF_isError(iSize)) return iSize;
1078
1079
/* check result */
1080
if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
1081
if (tableLog <= HUF_DECODER_FAST_TABLELOG && maxTableLog > HUF_DECODER_FAST_TABLELOG) maxTableLog = HUF_DECODER_FAST_TABLELOG;
1082
1083
/* find maxWeight */
1084
for (maxW = tableLog; wksp->rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
1085
1086
/* Get start index of each weight */
1087
{ U32 w, nextRankStart = 0;
1088
for (w=1; w<maxW+1; w++) {
1089
U32 curr = nextRankStart;
1090
nextRankStart += wksp->rankStats[w];
1091
rankStart[w] = curr;
1092
}
1093
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
1094
rankStart[maxW+1] = nextRankStart;
1095
}
1096
1097
/* sort symbols by weight */
1098
{ U32 s;
1099
for (s=0; s<nbSymbols; s++) {
1100
U32 const w = wksp->weightList[s];
1101
U32 const r = rankStart[w]++;
1102
wksp->sortedSymbol[r].symbol = (BYTE)s;
1103
}
1104
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
1105
}
1106
1107
/* Build rankVal */
1108
{ U32* const rankVal0 = wksp->rankVal[0];
1109
{ int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */
1110
U32 nextRankVal = 0;
1111
U32 w;
1112
for (w=1; w<maxW+1; w++) {
1113
U32 curr = nextRankVal;
1114
nextRankVal += wksp->rankStats[w] << (w+rescale);
1115
rankVal0[w] = curr;
1116
} }
1117
{ U32 const minBits = tableLog+1 - maxW;
1118
U32 consumed;
1119
for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) {
1120
U32* const rankValPtr = wksp->rankVal[consumed];
1121
U32 w;
1122
for (w = 1; w < maxW+1; w++) {
1123
rankValPtr[w] = rankVal0[w] >> consumed;
1124
} } } }
1125
1126
HUF_fillDTableX2(dt, maxTableLog,
1127
wksp->sortedSymbol,
1128
wksp->rankStart0, wksp->rankVal, maxW,
1129
tableLog+1);
1130
1131
dtd.tableLog = (BYTE)maxTableLog;
1132
dtd.tableType = 1;
1133
ZSTD_memcpy(DTable, &dtd, sizeof(dtd));
1134
return iSize;
1135
}
1136
1137
1138
FORCE_INLINE_TEMPLATE U32
1139
HUF_decodeSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
1140
{
1141
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
1142
ZSTD_memcpy(op, &dt[val].sequence, 2);
1143
BIT_skipBits(DStream, dt[val].nbBits);
1144
return dt[val].length;
1145
}
1146
1147
FORCE_INLINE_TEMPLATE U32
1148
HUF_decodeLastSymbolX2(void* op, BIT_DStream_t* DStream, const HUF_DEltX2* dt, const U32 dtLog)
1149
{
1150
size_t const val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
1151
ZSTD_memcpy(op, &dt[val].sequence, 1);
1152
if (dt[val].length==1) {
1153
BIT_skipBits(DStream, dt[val].nbBits);
1154
} else {
1155
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
1156
BIT_skipBits(DStream, dt[val].nbBits);
1157
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
1158
/* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
1159
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);
1160
}
1161
}
1162
return 1;
1163
}
1164
1165
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
1166
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
1167
1168
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
1169
if (MEM_64bits() || (HUF_TABLELOG_MAX<=12)) \
1170
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
1171
1172
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
1173
if (MEM_64bits()) \
1174
ptr += HUF_decodeSymbolX2(ptr, DStreamPtr, dt, dtLog)
1175
1176
HINT_INLINE size_t
1177
HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd,
1178
const HUF_DEltX2* const dt, const U32 dtLog)
1179
{
1180
BYTE* const pStart = p;
1181
1182
/* up to 8 symbols at a time */
1183
if ((size_t)(pEnd - p) >= sizeof(bitDPtr->bitContainer)) {
1184
if (dtLog <= 11 && MEM_64bits()) {
1185
/* up to 10 symbols at a time */
1186
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-9)) {
1187
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1188
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1189
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1190
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1191
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1192
}
1193
} else {
1194
/* up to 8 symbols at a time */
1195
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p < pEnd-(sizeof(bitDPtr->bitContainer)-1))) {
1196
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1197
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
1198
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1199
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1200
}
1201
}
1202
} else {
1203
BIT_reloadDStream(bitDPtr);
1204
}
1205
1206
/* closer to end : up to 2 symbols at a time */
1207
if ((size_t)(pEnd - p) >= 2) {
1208
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) & (p <= pEnd-2))
1209
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1210
1211
while (p <= pEnd-2)
1212
HUF_DECODE_SYMBOLX2_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
1213
}
1214
1215
if (p < pEnd)
1216
p += HUF_decodeLastSymbolX2(p, bitDPtr, dt, dtLog);
1217
1218
return p-pStart;
1219
}
1220
1221
FORCE_INLINE_TEMPLATE size_t
1222
HUF_decompress1X2_usingDTable_internal_body(
1223
void* dst, size_t dstSize,
1224
const void* cSrc, size_t cSrcSize,
1225
const HUF_DTable* DTable)
1226
{
1227
BIT_DStream_t bitD;
1228
1229
/* Init */
1230
CHECK_F( BIT_initDStream(&bitD, cSrc, cSrcSize) );
1231
1232
/* decode */
1233
{ BYTE* const ostart = (BYTE*) dst;
1234
BYTE* const oend = ostart + dstSize;
1235
const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */
1236
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
1237
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1238
HUF_decodeStreamX2(ostart, &bitD, oend, dt, dtd.tableLog);
1239
}
1240
1241
/* check */
1242
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
1243
1244
/* decoded size */
1245
return dstSize;
1246
}
1247
FORCE_INLINE_TEMPLATE size_t
1248
HUF_decompress4X2_usingDTable_internal_body(
1249
void* dst, size_t dstSize,
1250
const void* cSrc, size_t cSrcSize,
1251
const HUF_DTable* DTable)
1252
{
1253
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
1254
1255
{ const BYTE* const istart = (const BYTE*) cSrc;
1256
BYTE* const ostart = (BYTE*) dst;
1257
BYTE* const oend = ostart + dstSize;
1258
BYTE* const olimit = oend - (sizeof(size_t)-1);
1259
const void* const dtPtr = DTable+1;
1260
const HUF_DEltX2* const dt = (const HUF_DEltX2*)dtPtr;
1261
1262
/* Init */
1263
BIT_DStream_t bitD1;
1264
BIT_DStream_t bitD2;
1265
BIT_DStream_t bitD3;
1266
BIT_DStream_t bitD4;
1267
size_t const length1 = MEM_readLE16(istart);
1268
size_t const length2 = MEM_readLE16(istart+2);
1269
size_t const length3 = MEM_readLE16(istart+4);
1270
size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6);
1271
const BYTE* const istart1 = istart + 6; /* jumpTable */
1272
const BYTE* const istart2 = istart1 + length1;
1273
const BYTE* const istart3 = istart2 + length2;
1274
const BYTE* const istart4 = istart3 + length3;
1275
size_t const segmentSize = (dstSize+3) / 4;
1276
BYTE* const opStart2 = ostart + segmentSize;
1277
BYTE* const opStart3 = opStart2 + segmentSize;
1278
BYTE* const opStart4 = opStart3 + segmentSize;
1279
BYTE* op1 = ostart;
1280
BYTE* op2 = opStart2;
1281
BYTE* op3 = opStart3;
1282
BYTE* op4 = opStart4;
1283
U32 endSignal = 1;
1284
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1285
U32 const dtLog = dtd.tableLog;
1286
1287
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
1288
if (opStart4 > oend) return ERROR(corruption_detected); /* overflow */
1289
CHECK_F( BIT_initDStream(&bitD1, istart1, length1) );
1290
CHECK_F( BIT_initDStream(&bitD2, istart2, length2) );
1291
CHECK_F( BIT_initDStream(&bitD3, istart3, length3) );
1292
CHECK_F( BIT_initDStream(&bitD4, istart4, length4) );
1293
1294
/* 16-32 symbols per loop (4-8 symbols per stream) */
1295
if ((size_t)(oend - op4) >= sizeof(size_t)) {
1296
for ( ; (endSignal) & (op4 < olimit); ) {
1297
#if defined(__clang__) && (defined(__x86_64__) || defined(__i386__))
1298
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1299
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1300
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1301
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1302
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1303
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1304
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1305
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1306
endSignal &= BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished;
1307
endSignal &= BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished;
1308
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1309
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1310
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1311
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1312
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1313
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1314
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1315
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1316
endSignal &= BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished;
1317
endSignal &= BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished;
1318
#else
1319
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1320
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1321
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1322
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1323
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1324
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1325
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1326
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1327
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1328
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1329
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1330
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1331
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1332
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1333
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1334
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1335
endSignal = (U32)LIKELY((U32)
1336
(BIT_reloadDStreamFast(&bitD1) == BIT_DStream_unfinished)
1337
& (BIT_reloadDStreamFast(&bitD2) == BIT_DStream_unfinished)
1338
& (BIT_reloadDStreamFast(&bitD3) == BIT_DStream_unfinished)
1339
& (BIT_reloadDStreamFast(&bitD4) == BIT_DStream_unfinished));
1340
#endif
1341
}
1342
}
1343
1344
/* check corruption */
1345
if (op1 > opStart2) return ERROR(corruption_detected);
1346
if (op2 > opStart3) return ERROR(corruption_detected);
1347
if (op3 > opStart4) return ERROR(corruption_detected);
1348
/* note : op4 already verified within main loop */
1349
1350
/* finish bitStreams one by one */
1351
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
1352
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
1353
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
1354
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
1355
1356
/* check */
1357
{ U32 const endCheck = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
1358
if (!endCheck) return ERROR(corruption_detected); }
1359
1360
/* decoded size */
1361
return dstSize;
1362
}
1363
}
1364
1365
#if HUF_NEED_BMI2_FUNCTION
1366
static BMI2_TARGET_ATTRIBUTE
1367
size_t HUF_decompress4X2_usingDTable_internal_bmi2(void* dst, size_t dstSize, void const* cSrc,
1368
size_t cSrcSize, HUF_DTable const* DTable) {
1369
return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
1370
}
1371
#endif
1372
1373
#if HUF_NEED_DEFAULT_FUNCTION
1374
static
1375
size_t HUF_decompress4X2_usingDTable_internal_default(void* dst, size_t dstSize, void const* cSrc,
1376
size_t cSrcSize, HUF_DTable const* DTable) {
1377
return HUF_decompress4X2_usingDTable_internal_body(dst, dstSize, cSrc, cSrcSize, DTable);
1378
}
1379
#endif
1380
1381
#if ZSTD_ENABLE_ASM_X86_64_BMI2
1382
1383
HUF_ASM_DECL void HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(HUF_DecompressAsmArgs* args) ZSTDLIB_HIDDEN;
1384
1385
static HUF_ASM_X86_64_BMI2_ATTRS size_t
1386
HUF_decompress4X2_usingDTable_internal_bmi2_asm(
1387
void* dst, size_t dstSize,
1388
const void* cSrc, size_t cSrcSize,
1389
const HUF_DTable* DTable) {
1390
void const* dt = DTable + 1;
1391
const BYTE* const iend = (const BYTE*)cSrc + 6;
1392
BYTE* const oend = (BYTE*)dst + dstSize;
1393
HUF_DecompressAsmArgs args;
1394
{
1395
size_t const ret = HUF_DecompressAsmArgs_init(&args, dst, dstSize, cSrc, cSrcSize, DTable);
1396
FORWARD_IF_ERROR(ret, "Failed to init asm args");
1397
if (ret != 0)
1398
return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
1399
}
1400
1401
assert(args.ip[0] >= args.ilimit);
1402
HUF_decompress4X2_usingDTable_internal_bmi2_asm_loop(&args);
1403
1404
/* note : op4 already verified within main loop */
1405
assert(args.ip[0] >= iend);
1406
assert(args.ip[1] >= iend);
1407
assert(args.ip[2] >= iend);
1408
assert(args.ip[3] >= iend);
1409
assert(args.op[3] <= oend);
1410
(void)iend;
1411
1412
/* finish bitStreams one by one */
1413
{
1414
size_t const segmentSize = (dstSize+3) / 4;
1415
BYTE* segmentEnd = (BYTE*)dst;
1416
int i;
1417
for (i = 0; i < 4; ++i) {
1418
BIT_DStream_t bit;
1419
if (segmentSize <= (size_t)(oend - segmentEnd))
1420
segmentEnd += segmentSize;
1421
else
1422
segmentEnd = oend;
1423
FORWARD_IF_ERROR(HUF_initRemainingDStream(&bit, &args, i, segmentEnd), "corruption");
1424
args.op[i] += HUF_decodeStreamX2(args.op[i], &bit, segmentEnd, (HUF_DEltX2 const*)dt, HUF_DECODER_FAST_TABLELOG);
1425
if (args.op[i] != segmentEnd)
1426
return ERROR(corruption_detected);
1427
}
1428
}
1429
1430
/* decoded size */
1431
return dstSize;
1432
}
1433
#endif /* ZSTD_ENABLE_ASM_X86_64_BMI2 */
1434
1435
static size_t HUF_decompress4X2_usingDTable_internal(void* dst, size_t dstSize, void const* cSrc,
1436
size_t cSrcSize, HUF_DTable const* DTable, int bmi2)
1437
{
1438
#if DYNAMIC_BMI2
1439
if (bmi2) {
1440
# if ZSTD_ENABLE_ASM_X86_64_BMI2
1441
return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
1442
# else
1443
return HUF_decompress4X2_usingDTable_internal_bmi2(dst, dstSize, cSrc, cSrcSize, DTable);
1444
# endif
1445
}
1446
#else
1447
(void)bmi2;
1448
#endif
1449
1450
#if ZSTD_ENABLE_ASM_X86_64_BMI2 && defined(__BMI2__)
1451
return HUF_decompress4X2_usingDTable_internal_bmi2_asm(dst, dstSize, cSrc, cSrcSize, DTable);
1452
#else
1453
return HUF_decompress4X2_usingDTable_internal_default(dst, dstSize, cSrc, cSrcSize, DTable);
1454
#endif
1455
}
1456
1457
HUF_DGEN(HUF_decompress1X2_usingDTable_internal)
1458
1459
size_t HUF_decompress1X2_usingDTable(
1460
void* dst, size_t dstSize,
1461
const void* cSrc, size_t cSrcSize,
1462
const HUF_DTable* DTable)
1463
{
1464
DTableDesc dtd = HUF_getDTableDesc(DTable);
1465
if (dtd.tableType != 1) return ERROR(GENERIC);
1466
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1467
}
1468
1469
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* DCtx, void* dst, size_t dstSize,
1470
const void* cSrc, size_t cSrcSize,
1471
void* workSpace, size_t wkspSize)
1472
{
1473
const BYTE* ip = (const BYTE*) cSrc;
1474
1475
size_t const hSize = HUF_readDTableX2_wksp(DCtx, cSrc, cSrcSize,
1476
workSpace, wkspSize);
1477
if (HUF_isError(hSize)) return hSize;
1478
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1479
ip += hSize; cSrcSize -= hSize;
1480
1481
return HUF_decompress1X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, DCtx, /* bmi2 */ 0);
1482
}
1483
1484
1485
size_t HUF_decompress4X2_usingDTable(
1486
void* dst, size_t dstSize,
1487
const void* cSrc, size_t cSrcSize,
1488
const HUF_DTable* DTable)
1489
{
1490
DTableDesc dtd = HUF_getDTableDesc(DTable);
1491
if (dtd.tableType != 1) return ERROR(GENERIC);
1492
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1493
}
1494
1495
static size_t HUF_decompress4X2_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize,
1496
const void* cSrc, size_t cSrcSize,
1497
void* workSpace, size_t wkspSize, int bmi2)
1498
{
1499
const BYTE* ip = (const BYTE*) cSrc;
1500
1501
size_t hSize = HUF_readDTableX2_wksp(dctx, cSrc, cSrcSize,
1502
workSpace, wkspSize);
1503
if (HUF_isError(hSize)) return hSize;
1504
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1505
ip += hSize; cSrcSize -= hSize;
1506
1507
return HUF_decompress4X2_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
1508
}
1509
1510
size_t HUF_decompress4X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1511
const void* cSrc, size_t cSrcSize,
1512
void* workSpace, size_t wkspSize)
1513
{
1514
return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, /* bmi2 */ 0);
1515
}
1516
1517
1518
#endif /* HUF_FORCE_DECOMPRESS_X1 */
1519
1520
1521
/* ***********************************/
1522
/* Universal decompression selectors */
1523
/* ***********************************/
1524
1525
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize,
1526
const void* cSrc, size_t cSrcSize,
1527
const HUF_DTable* DTable)
1528
{
1529
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1530
#if defined(HUF_FORCE_DECOMPRESS_X1)
1531
(void)dtd;
1532
assert(dtd.tableType == 0);
1533
return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1534
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1535
(void)dtd;
1536
assert(dtd.tableType == 1);
1537
return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1538
#else
1539
return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
1540
HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1541
#endif
1542
}
1543
1544
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize,
1545
const void* cSrc, size_t cSrcSize,
1546
const HUF_DTable* DTable)
1547
{
1548
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1549
#if defined(HUF_FORCE_DECOMPRESS_X1)
1550
(void)dtd;
1551
assert(dtd.tableType == 0);
1552
return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1553
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1554
(void)dtd;
1555
assert(dtd.tableType == 1);
1556
return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1557
#else
1558
return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0) :
1559
HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, /* bmi2 */ 0);
1560
#endif
1561
}
1562
1563
1564
#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
1565
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
1566
static const algo_time_t algoTime[16 /* Quantization */][2 /* single, double */] =
1567
{
1568
/* single, double, quad */
1569
{{0,0}, {1,1}}, /* Q==0 : impossible */
1570
{{0,0}, {1,1}}, /* Q==1 : impossible */
1571
{{ 150,216}, { 381,119}}, /* Q == 2 : 12-18% */
1572
{{ 170,205}, { 514,112}}, /* Q == 3 : 18-25% */
1573
{{ 177,199}, { 539,110}}, /* Q == 4 : 25-32% */
1574
{{ 197,194}, { 644,107}}, /* Q == 5 : 32-38% */
1575
{{ 221,192}, { 735,107}}, /* Q == 6 : 38-44% */
1576
{{ 256,189}, { 881,106}}, /* Q == 7 : 44-50% */
1577
{{ 359,188}, {1167,109}}, /* Q == 8 : 50-56% */
1578
{{ 582,187}, {1570,114}}, /* Q == 9 : 56-62% */
1579
{{ 688,187}, {1712,122}}, /* Q ==10 : 62-69% */
1580
{{ 825,186}, {1965,136}}, /* Q ==11 : 69-75% */
1581
{{ 976,185}, {2131,150}}, /* Q ==12 : 75-81% */
1582
{{1180,186}, {2070,175}}, /* Q ==13 : 81-87% */
1583
{{1377,185}, {1731,202}}, /* Q ==14 : 87-93% */
1584
{{1412,185}, {1695,202}}, /* Q ==15 : 93-99% */
1585
};
1586
#endif
1587
1588
/** HUF_selectDecoder() :
1589
* Tells which decoder is likely to decode faster,
1590
* based on a set of pre-computed metrics.
1591
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
1592
* Assumption : 0 < dstSize <= 128 KB */
1593
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize)
1594
{
1595
assert(dstSize > 0);
1596
assert(dstSize <= 128*1024);
1597
#if defined(HUF_FORCE_DECOMPRESS_X1)
1598
(void)dstSize;
1599
(void)cSrcSize;
1600
return 0;
1601
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1602
(void)dstSize;
1603
(void)cSrcSize;
1604
return 1;
1605
#else
1606
/* decoder timing evaluation */
1607
{ U32 const Q = (cSrcSize >= dstSize) ? 15 : (U32)(cSrcSize * 16 / dstSize); /* Q < 16 */
1608
U32 const D256 = (U32)(dstSize >> 8);
1609
U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256);
1610
U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256);
1611
DTime1 += DTime1 >> 5; /* small advantage to algorithm using less memory, to reduce cache eviction */
1612
return DTime1 < DTime0;
1613
}
1614
#endif
1615
}
1616
1617
1618
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst,
1619
size_t dstSize, const void* cSrc,
1620
size_t cSrcSize, void* workSpace,
1621
size_t wkspSize)
1622
{
1623
/* validation checks */
1624
if (dstSize == 0) return ERROR(dstSize_tooSmall);
1625
if (cSrcSize == 0) return ERROR(corruption_detected);
1626
1627
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1628
#if defined(HUF_FORCE_DECOMPRESS_X1)
1629
(void)algoNb;
1630
assert(algoNb == 0);
1631
return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
1632
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1633
(void)algoNb;
1634
assert(algoNb == 1);
1635
return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
1636
#else
1637
return algoNb ? HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1638
cSrcSize, workSpace, wkspSize):
1639
HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize);
1640
#endif
1641
}
1642
}
1643
1644
size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize,
1645
const void* cSrc, size_t cSrcSize,
1646
void* workSpace, size_t wkspSize)
1647
{
1648
/* validation checks */
1649
if (dstSize == 0) return ERROR(dstSize_tooSmall);
1650
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
1651
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
1652
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
1653
1654
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1655
#if defined(HUF_FORCE_DECOMPRESS_X1)
1656
(void)algoNb;
1657
assert(algoNb == 0);
1658
return HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1659
cSrcSize, workSpace, wkspSize);
1660
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1661
(void)algoNb;
1662
assert(algoNb == 1);
1663
return HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1664
cSrcSize, workSpace, wkspSize);
1665
#else
1666
return algoNb ? HUF_decompress1X2_DCtx_wksp(dctx, dst, dstSize, cSrc,
1667
cSrcSize, workSpace, wkspSize):
1668
HUF_decompress1X1_DCtx_wksp(dctx, dst, dstSize, cSrc,
1669
cSrcSize, workSpace, wkspSize);
1670
#endif
1671
}
1672
}
1673
1674
1675
size_t HUF_decompress1X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
1676
{
1677
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1678
#if defined(HUF_FORCE_DECOMPRESS_X1)
1679
(void)dtd;
1680
assert(dtd.tableType == 0);
1681
return HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
1682
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1683
(void)dtd;
1684
assert(dtd.tableType == 1);
1685
return HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
1686
#else
1687
return dtd.tableType ? HUF_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
1688
HUF_decompress1X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
1689
#endif
1690
}
1691
1692
#ifndef HUF_FORCE_DECOMPRESS_X2
1693
size_t HUF_decompress1X1_DCtx_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
1694
{
1695
const BYTE* ip = (const BYTE*) cSrc;
1696
1697
size_t const hSize = HUF_readDTableX1_wksp_bmi2(dctx, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
1698
if (HUF_isError(hSize)) return hSize;
1699
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
1700
ip += hSize; cSrcSize -= hSize;
1701
1702
return HUF_decompress1X1_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx, bmi2);
1703
}
1704
#endif
1705
1706
size_t HUF_decompress4X_usingDTable_bmi2(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int bmi2)
1707
{
1708
DTableDesc const dtd = HUF_getDTableDesc(DTable);
1709
#if defined(HUF_FORCE_DECOMPRESS_X1)
1710
(void)dtd;
1711
assert(dtd.tableType == 0);
1712
return HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
1713
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1714
(void)dtd;
1715
assert(dtd.tableType == 1);
1716
return HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
1717
#else
1718
return dtd.tableType ? HUF_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2) :
1719
HUF_decompress4X1_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable, bmi2);
1720
#endif
1721
}
1722
1723
size_t HUF_decompress4X_hufOnly_wksp_bmi2(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int bmi2)
1724
{
1725
/* validation checks */
1726
if (dstSize == 0) return ERROR(dstSize_tooSmall);
1727
if (cSrcSize == 0) return ERROR(corruption_detected);
1728
1729
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1730
#if defined(HUF_FORCE_DECOMPRESS_X1)
1731
(void)algoNb;
1732
assert(algoNb == 0);
1733
return HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
1734
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1735
(void)algoNb;
1736
assert(algoNb == 1);
1737
return HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
1738
#else
1739
return algoNb ? HUF_decompress4X2_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2) :
1740
HUF_decompress4X1_DCtx_wksp_bmi2(dctx, dst, dstSize, cSrc, cSrcSize, workSpace, wkspSize, bmi2);
1741
#endif
1742
}
1743
}
1744
1745
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
1746
#ifndef HUF_FORCE_DECOMPRESS_X2
1747
size_t HUF_readDTableX1(HUF_DTable* DTable, const void* src, size_t srcSize)
1748
{
1749
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
1750
return HUF_readDTableX1_wksp(DTable, src, srcSize,
1751
workSpace, sizeof(workSpace));
1752
}
1753
1754
size_t HUF_decompress1X1_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
1755
const void* cSrc, size_t cSrcSize)
1756
{
1757
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
1758
return HUF_decompress1X1_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
1759
workSpace, sizeof(workSpace));
1760
}
1761
1762
size_t HUF_decompress1X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
1763
{
1764
HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX);
1765
return HUF_decompress1X1_DCtx (DTable, dst, dstSize, cSrc, cSrcSize);
1766
}
1767
#endif
1768
1769
#ifndef HUF_FORCE_DECOMPRESS_X1
1770
size_t HUF_readDTableX2(HUF_DTable* DTable, const void* src, size_t srcSize)
1771
{
1772
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
1773
return HUF_readDTableX2_wksp(DTable, src, srcSize,
1774
workSpace, sizeof(workSpace));
1775
}
1776
1777
size_t HUF_decompress1X2_DCtx(HUF_DTable* DCtx, void* dst, size_t dstSize,
1778
const void* cSrc, size_t cSrcSize)
1779
{
1780
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
1781
return HUF_decompress1X2_DCtx_wksp(DCtx, dst, dstSize, cSrc, cSrcSize,
1782
workSpace, sizeof(workSpace));
1783
}
1784
1785
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
1786
{
1787
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
1788
return HUF_decompress1X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
1789
}
1790
#endif
1791
1792
#ifndef HUF_FORCE_DECOMPRESS_X2
1793
size_t HUF_decompress4X1_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
1794
{
1795
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
1796
return HUF_decompress4X1_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
1797
workSpace, sizeof(workSpace));
1798
}
1799
size_t HUF_decompress4X1 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
1800
{
1801
HUF_CREATE_STATIC_DTABLEX1(DTable, HUF_TABLELOG_MAX);
1802
return HUF_decompress4X1_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
1803
}
1804
#endif
1805
1806
#ifndef HUF_FORCE_DECOMPRESS_X1
1807
size_t HUF_decompress4X2_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
1808
const void* cSrc, size_t cSrcSize)
1809
{
1810
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
1811
return HUF_decompress4X2_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
1812
workSpace, sizeof(workSpace));
1813
}
1814
1815
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
1816
{
1817
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_TABLELOG_MAX);
1818
return HUF_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize);
1819
}
1820
#endif
1821
1822
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
1823
1824
size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
1825
{
1826
#if !defined(HUF_FORCE_DECOMPRESS_X1) && !defined(HUF_FORCE_DECOMPRESS_X2)
1827
static const decompressionAlgo decompress[2] = { HUF_decompress4X1, HUF_decompress4X2 };
1828
#endif
1829
1830
/* validation checks */
1831
if (dstSize == 0) return ERROR(dstSize_tooSmall);
1832
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
1833
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
1834
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
1835
1836
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1837
#if defined(HUF_FORCE_DECOMPRESS_X1)
1838
(void)algoNb;
1839
assert(algoNb == 0);
1840
return HUF_decompress4X1(dst, dstSize, cSrc, cSrcSize);
1841
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1842
(void)algoNb;
1843
assert(algoNb == 1);
1844
return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize);
1845
#else
1846
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
1847
#endif
1848
}
1849
}
1850
1851
size_t HUF_decompress4X_DCtx (HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
1852
{
1853
/* validation checks */
1854
if (dstSize == 0) return ERROR(dstSize_tooSmall);
1855
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
1856
if (cSrcSize == dstSize) { ZSTD_memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
1857
if (cSrcSize == 1) { ZSTD_memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
1858
1859
{ U32 const algoNb = HUF_selectDecoder(dstSize, cSrcSize);
1860
#if defined(HUF_FORCE_DECOMPRESS_X1)
1861
(void)algoNb;
1862
assert(algoNb == 0);
1863
return HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize);
1864
#elif defined(HUF_FORCE_DECOMPRESS_X2)
1865
(void)algoNb;
1866
assert(algoNb == 1);
1867
return HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize);
1868
#else
1869
return algoNb ? HUF_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) :
1870
HUF_decompress4X1_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ;
1871
#endif
1872
}
1873
}
1874
1875
size_t HUF_decompress4X_hufOnly(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
1876
{
1877
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
1878
return HUF_decompress4X_hufOnly_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
1879
workSpace, sizeof(workSpace));
1880
}
1881
1882
size_t HUF_decompress1X_DCtx(HUF_DTable* dctx, void* dst, size_t dstSize,
1883
const void* cSrc, size_t cSrcSize)
1884
{
1885
U32 workSpace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32];
1886
return HUF_decompress1X_DCtx_wksp(dctx, dst, dstSize, cSrc, cSrcSize,
1887
workSpace, sizeof(workSpace));
1888
}
1889
#endif
1890
1891