Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/zstd/lib/dictBuilder/cover.c
48378 views
1
/*
2
* Copyright (c) Yann Collet, Facebook, Inc.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
/* *****************************************************************************
12
* Constructs a dictionary using a heuristic based on the following paper:
13
*
14
* Liao, Petri, Moffat, Wirth
15
* Effective Construction of Relative Lempel-Ziv Dictionaries
16
* Published in WWW 2016.
17
*
18
* Adapted from code originally written by @ot (Giuseppe Ottaviano).
19
******************************************************************************/
20
21
/*-*************************************
22
* Dependencies
23
***************************************/
24
#include <stdio.h> /* fprintf */
25
#include <stdlib.h> /* malloc, free, qsort */
26
#include <string.h> /* memset */
27
#include <time.h> /* clock */
28
29
#ifndef ZDICT_STATIC_LINKING_ONLY
30
# define ZDICT_STATIC_LINKING_ONLY
31
#endif
32
33
#include "../common/mem.h" /* read */
34
#include "../common/pool.h"
35
#include "../common/threading.h"
36
#include "../common/zstd_internal.h" /* includes zstd.h */
37
#include "../zdict.h"
38
#include "cover.h"
39
40
/*-*************************************
41
* Constants
42
***************************************/
43
/**
44
* There are 32bit indexes used to ref samples, so limit samples size to 4GB
45
* on 64bit builds.
46
* For 32bit builds we choose 1 GB.
47
* Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
48
* contiguous buffer, so 1GB is already a high limit.
49
*/
50
#define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
51
#define COVER_DEFAULT_SPLITPOINT 1.0
52
53
/*-*************************************
54
* Console display
55
***************************************/
56
#ifndef LOCALDISPLAYLEVEL
57
static int g_displayLevel = 0;
58
#endif
59
#undef DISPLAY
60
#define DISPLAY(...) \
61
{ \
62
fprintf(stderr, __VA_ARGS__); \
63
fflush(stderr); \
64
}
65
#undef LOCALDISPLAYLEVEL
66
#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
67
if (displayLevel >= l) { \
68
DISPLAY(__VA_ARGS__); \
69
} /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
70
#undef DISPLAYLEVEL
71
#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
72
73
#ifndef LOCALDISPLAYUPDATE
74
static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
75
static clock_t g_time = 0;
76
#endif
77
#undef LOCALDISPLAYUPDATE
78
#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
79
if (displayLevel >= l) { \
80
if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) { \
81
g_time = clock(); \
82
DISPLAY(__VA_ARGS__); \
83
} \
84
}
85
#undef DISPLAYUPDATE
86
#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
87
88
/*-*************************************
89
* Hash table
90
***************************************
91
* A small specialized hash map for storing activeDmers.
92
* The map does not resize, so if it becomes full it will loop forever.
93
* Thus, the map must be large enough to store every value.
94
* The map implements linear probing and keeps its load less than 0.5.
95
*/
96
97
#define MAP_EMPTY_VALUE ((U32)-1)
98
typedef struct COVER_map_pair_t_s {
99
U32 key;
100
U32 value;
101
} COVER_map_pair_t;
102
103
typedef struct COVER_map_s {
104
COVER_map_pair_t *data;
105
U32 sizeLog;
106
U32 size;
107
U32 sizeMask;
108
} COVER_map_t;
109
110
/**
111
* Clear the map.
112
*/
113
static void COVER_map_clear(COVER_map_t *map) {
114
memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
115
}
116
117
/**
118
* Initializes a map of the given size.
119
* Returns 1 on success and 0 on failure.
120
* The map must be destroyed with COVER_map_destroy().
121
* The map is only guaranteed to be large enough to hold size elements.
122
*/
123
static int COVER_map_init(COVER_map_t *map, U32 size) {
124
map->sizeLog = ZSTD_highbit32(size) + 2;
125
map->size = (U32)1 << map->sizeLog;
126
map->sizeMask = map->size - 1;
127
map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
128
if (!map->data) {
129
map->sizeLog = 0;
130
map->size = 0;
131
return 0;
132
}
133
COVER_map_clear(map);
134
return 1;
135
}
136
137
/**
138
* Internal hash function
139
*/
140
static const U32 COVER_prime4bytes = 2654435761U;
141
static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
142
return (key * COVER_prime4bytes) >> (32 - map->sizeLog);
143
}
144
145
/**
146
* Helper function that returns the index that a key should be placed into.
147
*/
148
static U32 COVER_map_index(COVER_map_t *map, U32 key) {
149
const U32 hash = COVER_map_hash(map, key);
150
U32 i;
151
for (i = hash;; i = (i + 1) & map->sizeMask) {
152
COVER_map_pair_t *pos = &map->data[i];
153
if (pos->value == MAP_EMPTY_VALUE) {
154
return i;
155
}
156
if (pos->key == key) {
157
return i;
158
}
159
}
160
}
161
162
/**
163
* Returns the pointer to the value for key.
164
* If key is not in the map, it is inserted and the value is set to 0.
165
* The map must not be full.
166
*/
167
static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
168
COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
169
if (pos->value == MAP_EMPTY_VALUE) {
170
pos->key = key;
171
pos->value = 0;
172
}
173
return &pos->value;
174
}
175
176
/**
177
* Deletes key from the map if present.
178
*/
179
static void COVER_map_remove(COVER_map_t *map, U32 key) {
180
U32 i = COVER_map_index(map, key);
181
COVER_map_pair_t *del = &map->data[i];
182
U32 shift = 1;
183
if (del->value == MAP_EMPTY_VALUE) {
184
return;
185
}
186
for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
187
COVER_map_pair_t *const pos = &map->data[i];
188
/* If the position is empty we are done */
189
if (pos->value == MAP_EMPTY_VALUE) {
190
del->value = MAP_EMPTY_VALUE;
191
return;
192
}
193
/* If pos can be moved to del do so */
194
if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
195
del->key = pos->key;
196
del->value = pos->value;
197
del = pos;
198
shift = 1;
199
} else {
200
++shift;
201
}
202
}
203
}
204
205
/**
206
* Destroys a map that is inited with COVER_map_init().
207
*/
208
static void COVER_map_destroy(COVER_map_t *map) {
209
if (map->data) {
210
free(map->data);
211
}
212
map->data = NULL;
213
map->size = 0;
214
}
215
216
/*-*************************************
217
* Context
218
***************************************/
219
220
typedef struct {
221
const BYTE *samples;
222
size_t *offsets;
223
const size_t *samplesSizes;
224
size_t nbSamples;
225
size_t nbTrainSamples;
226
size_t nbTestSamples;
227
U32 *suffix;
228
size_t suffixSize;
229
U32 *freqs;
230
U32 *dmerAt;
231
unsigned d;
232
} COVER_ctx_t;
233
234
/* We need a global context for qsort... */
235
static COVER_ctx_t *g_coverCtx = NULL;
236
237
/*-*************************************
238
* Helper functions
239
***************************************/
240
241
/**
242
* Returns the sum of the sample sizes.
243
*/
244
size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
245
size_t sum = 0;
246
unsigned i;
247
for (i = 0; i < nbSamples; ++i) {
248
sum += samplesSizes[i];
249
}
250
return sum;
251
}
252
253
/**
254
* Returns -1 if the dmer at lp is less than the dmer at rp.
255
* Return 0 if the dmers at lp and rp are equal.
256
* Returns 1 if the dmer at lp is greater than the dmer at rp.
257
*/
258
static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
259
U32 const lhs = *(U32 const *)lp;
260
U32 const rhs = *(U32 const *)rp;
261
return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
262
}
263
/**
264
* Faster version for d <= 8.
265
*/
266
static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
267
U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
268
U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
269
U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
270
if (lhs < rhs) {
271
return -1;
272
}
273
return (lhs > rhs);
274
}
275
276
/**
277
* Same as COVER_cmp() except ties are broken by pointer value
278
* NOTE: g_coverCtx must be set to call this function. A global is required because
279
* qsort doesn't take an opaque pointer.
280
*/
281
static int WIN_CDECL COVER_strict_cmp(const void *lp, const void *rp) {
282
int result = COVER_cmp(g_coverCtx, lp, rp);
283
if (result == 0) {
284
result = lp < rp ? -1 : 1;
285
}
286
return result;
287
}
288
/**
289
* Faster version for d <= 8.
290
*/
291
static int WIN_CDECL COVER_strict_cmp8(const void *lp, const void *rp) {
292
int result = COVER_cmp8(g_coverCtx, lp, rp);
293
if (result == 0) {
294
result = lp < rp ? -1 : 1;
295
}
296
return result;
297
}
298
299
/**
300
* Returns the first pointer in [first, last) whose element does not compare
301
* less than value. If no such element exists it returns last.
302
*/
303
static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
304
size_t value) {
305
size_t count = last - first;
306
while (count != 0) {
307
size_t step = count / 2;
308
const size_t *ptr = first;
309
ptr += step;
310
if (*ptr < value) {
311
first = ++ptr;
312
count -= step + 1;
313
} else {
314
count = step;
315
}
316
}
317
return first;
318
}
319
320
/**
321
* Generic groupBy function.
322
* Groups an array sorted by cmp into groups with equivalent values.
323
* Calls grp for each group.
324
*/
325
static void
326
COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
327
int (*cmp)(COVER_ctx_t *, const void *, const void *),
328
void (*grp)(COVER_ctx_t *, const void *, const void *)) {
329
const BYTE *ptr = (const BYTE *)data;
330
size_t num = 0;
331
while (num < count) {
332
const BYTE *grpEnd = ptr + size;
333
++num;
334
while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
335
grpEnd += size;
336
++num;
337
}
338
grp(ctx, ptr, grpEnd);
339
ptr = grpEnd;
340
}
341
}
342
343
/*-*************************************
344
* Cover functions
345
***************************************/
346
347
/**
348
* Called on each group of positions with the same dmer.
349
* Counts the frequency of each dmer and saves it in the suffix array.
350
* Fills `ctx->dmerAt`.
351
*/
352
static void COVER_group(COVER_ctx_t *ctx, const void *group,
353
const void *groupEnd) {
354
/* The group consists of all the positions with the same first d bytes. */
355
const U32 *grpPtr = (const U32 *)group;
356
const U32 *grpEnd = (const U32 *)groupEnd;
357
/* The dmerId is how we will reference this dmer.
358
* This allows us to map the whole dmer space to a much smaller space, the
359
* size of the suffix array.
360
*/
361
const U32 dmerId = (U32)(grpPtr - ctx->suffix);
362
/* Count the number of samples this dmer shows up in */
363
U32 freq = 0;
364
/* Details */
365
const size_t *curOffsetPtr = ctx->offsets;
366
const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
367
/* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
368
* different sample than the last.
369
*/
370
size_t curSampleEnd = ctx->offsets[0];
371
for (; grpPtr != grpEnd; ++grpPtr) {
372
/* Save the dmerId for this position so we can get back to it. */
373
ctx->dmerAt[*grpPtr] = dmerId;
374
/* Dictionaries only help for the first reference to the dmer.
375
* After that zstd can reference the match from the previous reference.
376
* So only count each dmer once for each sample it is in.
377
*/
378
if (*grpPtr < curSampleEnd) {
379
continue;
380
}
381
freq += 1;
382
/* Binary search to find the end of the sample *grpPtr is in.
383
* In the common case that grpPtr + 1 == grpEnd we can skip the binary
384
* search because the loop is over.
385
*/
386
if (grpPtr + 1 != grpEnd) {
387
const size_t *sampleEndPtr =
388
COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
389
curSampleEnd = *sampleEndPtr;
390
curOffsetPtr = sampleEndPtr + 1;
391
}
392
}
393
/* At this point we are never going to look at this segment of the suffix
394
* array again. We take advantage of this fact to save memory.
395
* We store the frequency of the dmer in the first position of the group,
396
* which is dmerId.
397
*/
398
ctx->suffix[dmerId] = freq;
399
}
400
401
402
/**
403
* Selects the best segment in an epoch.
404
* Segments of are scored according to the function:
405
*
406
* Let F(d) be the frequency of dmer d.
407
* Let S_i be the dmer at position i of segment S which has length k.
408
*
409
* Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
410
*
411
* Once the dmer d is in the dictionary we set F(d) = 0.
412
*/
413
static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
414
COVER_map_t *activeDmers, U32 begin,
415
U32 end,
416
ZDICT_cover_params_t parameters) {
417
/* Constants */
418
const U32 k = parameters.k;
419
const U32 d = parameters.d;
420
const U32 dmersInK = k - d + 1;
421
/* Try each segment (activeSegment) and save the best (bestSegment) */
422
COVER_segment_t bestSegment = {0, 0, 0};
423
COVER_segment_t activeSegment;
424
/* Reset the activeDmers in the segment */
425
COVER_map_clear(activeDmers);
426
/* The activeSegment starts at the beginning of the epoch. */
427
activeSegment.begin = begin;
428
activeSegment.end = begin;
429
activeSegment.score = 0;
430
/* Slide the activeSegment through the whole epoch.
431
* Save the best segment in bestSegment.
432
*/
433
while (activeSegment.end < end) {
434
/* The dmerId for the dmer at the next position */
435
U32 newDmer = ctx->dmerAt[activeSegment.end];
436
/* The entry in activeDmers for this dmerId */
437
U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
438
/* If the dmer isn't already present in the segment add its score. */
439
if (*newDmerOcc == 0) {
440
/* The paper suggest using the L-0.5 norm, but experiments show that it
441
* doesn't help.
442
*/
443
activeSegment.score += freqs[newDmer];
444
}
445
/* Add the dmer to the segment */
446
activeSegment.end += 1;
447
*newDmerOcc += 1;
448
449
/* If the window is now too large, drop the first position */
450
if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
451
U32 delDmer = ctx->dmerAt[activeSegment.begin];
452
U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
453
activeSegment.begin += 1;
454
*delDmerOcc -= 1;
455
/* If this is the last occurrence of the dmer, subtract its score */
456
if (*delDmerOcc == 0) {
457
COVER_map_remove(activeDmers, delDmer);
458
activeSegment.score -= freqs[delDmer];
459
}
460
}
461
462
/* If this segment is the best so far save it */
463
if (activeSegment.score > bestSegment.score) {
464
bestSegment = activeSegment;
465
}
466
}
467
{
468
/* Trim off the zero frequency head and tail from the segment. */
469
U32 newBegin = bestSegment.end;
470
U32 newEnd = bestSegment.begin;
471
U32 pos;
472
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
473
U32 freq = freqs[ctx->dmerAt[pos]];
474
if (freq != 0) {
475
newBegin = MIN(newBegin, pos);
476
newEnd = pos + 1;
477
}
478
}
479
bestSegment.begin = newBegin;
480
bestSegment.end = newEnd;
481
}
482
{
483
/* Zero out the frequency of each dmer covered by the chosen segment. */
484
U32 pos;
485
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
486
freqs[ctx->dmerAt[pos]] = 0;
487
}
488
}
489
return bestSegment;
490
}
491
492
/**
493
* Check the validity of the parameters.
494
* Returns non-zero if the parameters are valid and 0 otherwise.
495
*/
496
static int COVER_checkParameters(ZDICT_cover_params_t parameters,
497
size_t maxDictSize) {
498
/* k and d are required parameters */
499
if (parameters.d == 0 || parameters.k == 0) {
500
return 0;
501
}
502
/* k <= maxDictSize */
503
if (parameters.k > maxDictSize) {
504
return 0;
505
}
506
/* d <= k */
507
if (parameters.d > parameters.k) {
508
return 0;
509
}
510
/* 0 < splitPoint <= 1 */
511
if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
512
return 0;
513
}
514
return 1;
515
}
516
517
/**
518
* Clean up a context initialized with `COVER_ctx_init()`.
519
*/
520
static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
521
if (!ctx) {
522
return;
523
}
524
if (ctx->suffix) {
525
free(ctx->suffix);
526
ctx->suffix = NULL;
527
}
528
if (ctx->freqs) {
529
free(ctx->freqs);
530
ctx->freqs = NULL;
531
}
532
if (ctx->dmerAt) {
533
free(ctx->dmerAt);
534
ctx->dmerAt = NULL;
535
}
536
if (ctx->offsets) {
537
free(ctx->offsets);
538
ctx->offsets = NULL;
539
}
540
}
541
542
/**
543
* Prepare a context for dictionary building.
544
* The context is only dependent on the parameter `d` and can used multiple
545
* times.
546
* Returns 0 on success or error code on error.
547
* The context must be destroyed with `COVER_ctx_destroy()`.
548
*/
549
static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
550
const size_t *samplesSizes, unsigned nbSamples,
551
unsigned d, double splitPoint) {
552
const BYTE *const samples = (const BYTE *)samplesBuffer;
553
const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
554
/* Split samples into testing and training sets */
555
const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
556
const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
557
const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
558
const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
559
/* Checks */
560
if (totalSamplesSize < MAX(d, sizeof(U64)) ||
561
totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
562
DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
563
(unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
564
return ERROR(srcSize_wrong);
565
}
566
/* Check if there are at least 5 training samples */
567
if (nbTrainSamples < 5) {
568
DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
569
return ERROR(srcSize_wrong);
570
}
571
/* Check if there's testing sample */
572
if (nbTestSamples < 1) {
573
DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
574
return ERROR(srcSize_wrong);
575
}
576
/* Zero the context */
577
memset(ctx, 0, sizeof(*ctx));
578
DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
579
(unsigned)trainingSamplesSize);
580
DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
581
(unsigned)testSamplesSize);
582
ctx->samples = samples;
583
ctx->samplesSizes = samplesSizes;
584
ctx->nbSamples = nbSamples;
585
ctx->nbTrainSamples = nbTrainSamples;
586
ctx->nbTestSamples = nbTestSamples;
587
/* Partial suffix array */
588
ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
589
ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
590
/* Maps index to the dmerID */
591
ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
592
/* The offsets of each file */
593
ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
594
if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
595
DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
596
COVER_ctx_destroy(ctx);
597
return ERROR(memory_allocation);
598
}
599
ctx->freqs = NULL;
600
ctx->d = d;
601
602
/* Fill offsets from the samplesSizes */
603
{
604
U32 i;
605
ctx->offsets[0] = 0;
606
for (i = 1; i <= nbSamples; ++i) {
607
ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
608
}
609
}
610
DISPLAYLEVEL(2, "Constructing partial suffix array\n");
611
{
612
/* suffix is a partial suffix array.
613
* It only sorts suffixes by their first parameters.d bytes.
614
* The sort is stable, so each dmer group is sorted by position in input.
615
*/
616
U32 i;
617
for (i = 0; i < ctx->suffixSize; ++i) {
618
ctx->suffix[i] = i;
619
}
620
/* qsort doesn't take an opaque pointer, so pass as a global.
621
* On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
622
*/
623
g_coverCtx = ctx;
624
#if defined(__OpenBSD__)
625
mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
626
(ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
627
#else
628
qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
629
(ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
630
#endif
631
}
632
DISPLAYLEVEL(2, "Computing frequencies\n");
633
/* For each dmer group (group of positions with the same first d bytes):
634
* 1. For each position we set dmerAt[position] = dmerID. The dmerID is
635
* (groupBeginPtr - suffix). This allows us to go from position to
636
* dmerID so we can look up values in freq.
637
* 2. We calculate how many samples the dmer occurs in and save it in
638
* freqs[dmerId].
639
*/
640
COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
641
(ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
642
ctx->freqs = ctx->suffix;
643
ctx->suffix = NULL;
644
return 0;
645
}
646
647
void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
648
{
649
const double ratio = (double)nbDmers / maxDictSize;
650
if (ratio >= 10) {
651
return;
652
}
653
LOCALDISPLAYLEVEL(displayLevel, 1,
654
"WARNING: The maximum dictionary size %u is too large "
655
"compared to the source size %u! "
656
"size(source)/size(dictionary) = %f, but it should be >= "
657
"10! This may lead to a subpar dictionary! We recommend "
658
"training on sources at least 10x, and preferably 100x "
659
"the size of the dictionary! \n", (U32)maxDictSize,
660
(U32)nbDmers, ratio);
661
}
662
663
COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
664
U32 nbDmers, U32 k, U32 passes)
665
{
666
const U32 minEpochSize = k * 10;
667
COVER_epoch_info_t epochs;
668
epochs.num = MAX(1, maxDictSize / k / passes);
669
epochs.size = nbDmers / epochs.num;
670
if (epochs.size >= minEpochSize) {
671
assert(epochs.size * epochs.num <= nbDmers);
672
return epochs;
673
}
674
epochs.size = MIN(minEpochSize, nbDmers);
675
epochs.num = nbDmers / epochs.size;
676
assert(epochs.size * epochs.num <= nbDmers);
677
return epochs;
678
}
679
680
/**
681
* Given the prepared context build the dictionary.
682
*/
683
static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
684
COVER_map_t *activeDmers, void *dictBuffer,
685
size_t dictBufferCapacity,
686
ZDICT_cover_params_t parameters) {
687
BYTE *const dict = (BYTE *)dictBuffer;
688
size_t tail = dictBufferCapacity;
689
/* Divide the data into epochs. We will select one segment from each epoch. */
690
const COVER_epoch_info_t epochs = COVER_computeEpochs(
691
(U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
692
const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
693
size_t zeroScoreRun = 0;
694
size_t epoch;
695
DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
696
(U32)epochs.num, (U32)epochs.size);
697
/* Loop through the epochs until there are no more segments or the dictionary
698
* is full.
699
*/
700
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
701
const U32 epochBegin = (U32)(epoch * epochs.size);
702
const U32 epochEnd = epochBegin + epochs.size;
703
size_t segmentSize;
704
/* Select a segment */
705
COVER_segment_t segment = COVER_selectSegment(
706
ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
707
/* If the segment covers no dmers, then we are out of content.
708
* There may be new content in other epochs, for continue for some time.
709
*/
710
if (segment.score == 0) {
711
if (++zeroScoreRun >= maxZeroScoreRun) {
712
break;
713
}
714
continue;
715
}
716
zeroScoreRun = 0;
717
/* Trim the segment if necessary and if it is too small then we are done */
718
segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
719
if (segmentSize < parameters.d) {
720
break;
721
}
722
/* We fill the dictionary from the back to allow the best segments to be
723
* referenced with the smallest offsets.
724
*/
725
tail -= segmentSize;
726
memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
727
DISPLAYUPDATE(
728
2, "\r%u%% ",
729
(unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
730
}
731
DISPLAYLEVEL(2, "\r%79s\r", "");
732
return tail;
733
}
734
735
ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
736
void *dictBuffer, size_t dictBufferCapacity,
737
const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
738
ZDICT_cover_params_t parameters)
739
{
740
BYTE* const dict = (BYTE*)dictBuffer;
741
COVER_ctx_t ctx;
742
COVER_map_t activeDmers;
743
parameters.splitPoint = 1.0;
744
/* Initialize global data */
745
g_displayLevel = (int)parameters.zParams.notificationLevel;
746
/* Checks */
747
if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
748
DISPLAYLEVEL(1, "Cover parameters incorrect\n");
749
return ERROR(parameter_outOfBound);
750
}
751
if (nbSamples == 0) {
752
DISPLAYLEVEL(1, "Cover must have at least one input file\n");
753
return ERROR(srcSize_wrong);
754
}
755
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
756
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
757
ZDICT_DICTSIZE_MIN);
758
return ERROR(dstSize_tooSmall);
759
}
760
/* Initialize context and activeDmers */
761
{
762
size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
763
parameters.d, parameters.splitPoint);
764
if (ZSTD_isError(initVal)) {
765
return initVal;
766
}
767
}
768
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
769
if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
770
DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
771
COVER_ctx_destroy(&ctx);
772
return ERROR(memory_allocation);
773
}
774
775
DISPLAYLEVEL(2, "Building dictionary\n");
776
{
777
const size_t tail =
778
COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
779
dictBufferCapacity, parameters);
780
const size_t dictionarySize = ZDICT_finalizeDictionary(
781
dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
782
samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
783
if (!ZSTD_isError(dictionarySize)) {
784
DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
785
(unsigned)dictionarySize);
786
}
787
COVER_ctx_destroy(&ctx);
788
COVER_map_destroy(&activeDmers);
789
return dictionarySize;
790
}
791
}
792
793
794
795
size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
796
const size_t *samplesSizes, const BYTE *samples,
797
size_t *offsets,
798
size_t nbTrainSamples, size_t nbSamples,
799
BYTE *const dict, size_t dictBufferCapacity) {
800
size_t totalCompressedSize = ERROR(GENERIC);
801
/* Pointers */
802
ZSTD_CCtx *cctx;
803
ZSTD_CDict *cdict;
804
void *dst;
805
/* Local variables */
806
size_t dstCapacity;
807
size_t i;
808
/* Allocate dst with enough space to compress the maximum sized sample */
809
{
810
size_t maxSampleSize = 0;
811
i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
812
for (; i < nbSamples; ++i) {
813
maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
814
}
815
dstCapacity = ZSTD_compressBound(maxSampleSize);
816
dst = malloc(dstCapacity);
817
}
818
/* Create the cctx and cdict */
819
cctx = ZSTD_createCCtx();
820
cdict = ZSTD_createCDict(dict, dictBufferCapacity,
821
parameters.zParams.compressionLevel);
822
if (!dst || !cctx || !cdict) {
823
goto _compressCleanup;
824
}
825
/* Compress each sample and sum their sizes (or error) */
826
totalCompressedSize = dictBufferCapacity;
827
i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
828
for (; i < nbSamples; ++i) {
829
const size_t size = ZSTD_compress_usingCDict(
830
cctx, dst, dstCapacity, samples + offsets[i],
831
samplesSizes[i], cdict);
832
if (ZSTD_isError(size)) {
833
totalCompressedSize = size;
834
goto _compressCleanup;
835
}
836
totalCompressedSize += size;
837
}
838
_compressCleanup:
839
ZSTD_freeCCtx(cctx);
840
ZSTD_freeCDict(cdict);
841
if (dst) {
842
free(dst);
843
}
844
return totalCompressedSize;
845
}
846
847
848
/**
849
* Initialize the `COVER_best_t`.
850
*/
851
void COVER_best_init(COVER_best_t *best) {
852
if (best==NULL) return; /* compatible with init on NULL */
853
(void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
854
(void)ZSTD_pthread_cond_init(&best->cond, NULL);
855
best->liveJobs = 0;
856
best->dict = NULL;
857
best->dictSize = 0;
858
best->compressedSize = (size_t)-1;
859
memset(&best->parameters, 0, sizeof(best->parameters));
860
}
861
862
/**
863
* Wait until liveJobs == 0.
864
*/
865
void COVER_best_wait(COVER_best_t *best) {
866
if (!best) {
867
return;
868
}
869
ZSTD_pthread_mutex_lock(&best->mutex);
870
while (best->liveJobs != 0) {
871
ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
872
}
873
ZSTD_pthread_mutex_unlock(&best->mutex);
874
}
875
876
/**
877
* Call COVER_best_wait() and then destroy the COVER_best_t.
878
*/
879
void COVER_best_destroy(COVER_best_t *best) {
880
if (!best) {
881
return;
882
}
883
COVER_best_wait(best);
884
if (best->dict) {
885
free(best->dict);
886
}
887
ZSTD_pthread_mutex_destroy(&best->mutex);
888
ZSTD_pthread_cond_destroy(&best->cond);
889
}
890
891
/**
892
* Called when a thread is about to be launched.
893
* Increments liveJobs.
894
*/
895
void COVER_best_start(COVER_best_t *best) {
896
if (!best) {
897
return;
898
}
899
ZSTD_pthread_mutex_lock(&best->mutex);
900
++best->liveJobs;
901
ZSTD_pthread_mutex_unlock(&best->mutex);
902
}
903
904
/**
905
* Called when a thread finishes executing, both on error or success.
906
* Decrements liveJobs and signals any waiting threads if liveJobs == 0.
907
* If this dictionary is the best so far save it and its parameters.
908
*/
909
void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
910
COVER_dictSelection_t selection) {
911
void* dict = selection.dictContent;
912
size_t compressedSize = selection.totalCompressedSize;
913
size_t dictSize = selection.dictSize;
914
if (!best) {
915
return;
916
}
917
{
918
size_t liveJobs;
919
ZSTD_pthread_mutex_lock(&best->mutex);
920
--best->liveJobs;
921
liveJobs = best->liveJobs;
922
/* If the new dictionary is better */
923
if (compressedSize < best->compressedSize) {
924
/* Allocate space if necessary */
925
if (!best->dict || best->dictSize < dictSize) {
926
if (best->dict) {
927
free(best->dict);
928
}
929
best->dict = malloc(dictSize);
930
if (!best->dict) {
931
best->compressedSize = ERROR(GENERIC);
932
best->dictSize = 0;
933
ZSTD_pthread_cond_signal(&best->cond);
934
ZSTD_pthread_mutex_unlock(&best->mutex);
935
return;
936
}
937
}
938
/* Save the dictionary, parameters, and size */
939
if (dict) {
940
memcpy(best->dict, dict, dictSize);
941
best->dictSize = dictSize;
942
best->parameters = parameters;
943
best->compressedSize = compressedSize;
944
}
945
}
946
if (liveJobs == 0) {
947
ZSTD_pthread_cond_broadcast(&best->cond);
948
}
949
ZSTD_pthread_mutex_unlock(&best->mutex);
950
}
951
}
952
953
COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
954
COVER_dictSelection_t selection = { NULL, 0, error };
955
return selection;
956
}
957
958
unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
959
return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
960
}
961
962
void COVER_dictSelectionFree(COVER_dictSelection_t selection){
963
free(selection.dictContent);
964
}
965
966
COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
967
size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
968
size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
969
970
size_t largestDict = 0;
971
size_t largestCompressed = 0;
972
BYTE* customDictContentEnd = customDictContent + dictContentSize;
973
974
BYTE * largestDictbuffer = (BYTE *)malloc(dictBufferCapacity);
975
BYTE * candidateDictBuffer = (BYTE *)malloc(dictBufferCapacity);
976
double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
977
978
if (!largestDictbuffer || !candidateDictBuffer) {
979
free(largestDictbuffer);
980
free(candidateDictBuffer);
981
return COVER_dictSelectionError(dictContentSize);
982
}
983
984
/* Initial dictionary size and compressed size */
985
memcpy(largestDictbuffer, customDictContent, dictContentSize);
986
dictContentSize = ZDICT_finalizeDictionary(
987
largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize,
988
samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
989
990
if (ZDICT_isError(dictContentSize)) {
991
free(largestDictbuffer);
992
free(candidateDictBuffer);
993
return COVER_dictSelectionError(dictContentSize);
994
}
995
996
totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
997
samplesBuffer, offsets,
998
nbCheckSamples, nbSamples,
999
largestDictbuffer, dictContentSize);
1000
1001
if (ZSTD_isError(totalCompressedSize)) {
1002
free(largestDictbuffer);
1003
free(candidateDictBuffer);
1004
return COVER_dictSelectionError(totalCompressedSize);
1005
}
1006
1007
if (params.shrinkDict == 0) {
1008
COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
1009
free(candidateDictBuffer);
1010
return selection;
1011
}
1012
1013
largestDict = dictContentSize;
1014
largestCompressed = totalCompressedSize;
1015
dictContentSize = ZDICT_DICTSIZE_MIN;
1016
1017
/* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
1018
while (dictContentSize < largestDict) {
1019
memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
1020
dictContentSize = ZDICT_finalizeDictionary(
1021
candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize,
1022
samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
1023
1024
if (ZDICT_isError(dictContentSize)) {
1025
free(largestDictbuffer);
1026
free(candidateDictBuffer);
1027
return COVER_dictSelectionError(dictContentSize);
1028
1029
}
1030
1031
totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
1032
samplesBuffer, offsets,
1033
nbCheckSamples, nbSamples,
1034
candidateDictBuffer, dictContentSize);
1035
1036
if (ZSTD_isError(totalCompressedSize)) {
1037
free(largestDictbuffer);
1038
free(candidateDictBuffer);
1039
return COVER_dictSelectionError(totalCompressedSize);
1040
}
1041
1042
if (totalCompressedSize <= largestCompressed * regressionTolerance) {
1043
COVER_dictSelection_t selection = { candidateDictBuffer, dictContentSize, totalCompressedSize };
1044
free(largestDictbuffer);
1045
return selection;
1046
}
1047
dictContentSize *= 2;
1048
}
1049
dictContentSize = largestDict;
1050
totalCompressedSize = largestCompressed;
1051
{
1052
COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
1053
free(candidateDictBuffer);
1054
return selection;
1055
}
1056
}
1057
1058
/**
1059
* Parameters for COVER_tryParameters().
1060
*/
1061
typedef struct COVER_tryParameters_data_s {
1062
const COVER_ctx_t *ctx;
1063
COVER_best_t *best;
1064
size_t dictBufferCapacity;
1065
ZDICT_cover_params_t parameters;
1066
} COVER_tryParameters_data_t;
1067
1068
/**
1069
* Tries a set of parameters and updates the COVER_best_t with the results.
1070
* This function is thread safe if zstd is compiled with multithreaded support.
1071
* It takes its parameters as an *OWNING* opaque pointer to support threading.
1072
*/
1073
static void COVER_tryParameters(void *opaque)
1074
{
1075
/* Save parameters as local variables */
1076
COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t*)opaque;
1077
const COVER_ctx_t *const ctx = data->ctx;
1078
const ZDICT_cover_params_t parameters = data->parameters;
1079
size_t dictBufferCapacity = data->dictBufferCapacity;
1080
size_t totalCompressedSize = ERROR(GENERIC);
1081
/* Allocate space for hash table, dict, and freqs */
1082
COVER_map_t activeDmers;
1083
BYTE* const dict = (BYTE*)malloc(dictBufferCapacity);
1084
COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
1085
U32* const freqs = (U32*)malloc(ctx->suffixSize * sizeof(U32));
1086
if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
1087
DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
1088
goto _cleanup;
1089
}
1090
if (!dict || !freqs) {
1091
DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
1092
goto _cleanup;
1093
}
1094
/* Copy the frequencies because we need to modify them */
1095
memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
1096
/* Build the dictionary */
1097
{
1098
const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
1099
dictBufferCapacity, parameters);
1100
selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
1101
ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
1102
totalCompressedSize);
1103
1104
if (COVER_dictSelectionIsError(selection)) {
1105
DISPLAYLEVEL(1, "Failed to select dictionary\n");
1106
goto _cleanup;
1107
}
1108
}
1109
_cleanup:
1110
free(dict);
1111
COVER_best_finish(data->best, parameters, selection);
1112
free(data);
1113
COVER_map_destroy(&activeDmers);
1114
COVER_dictSelectionFree(selection);
1115
free(freqs);
1116
}
1117
1118
ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
1119
void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer,
1120
const size_t* samplesSizes, unsigned nbSamples,
1121
ZDICT_cover_params_t* parameters)
1122
{
1123
/* constants */
1124
const unsigned nbThreads = parameters->nbThreads;
1125
const double splitPoint =
1126
parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
1127
const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
1128
const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
1129
const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
1130
const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
1131
const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
1132
const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
1133
const unsigned kIterations =
1134
(1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
1135
const unsigned shrinkDict = 0;
1136
/* Local variables */
1137
const int displayLevel = parameters->zParams.notificationLevel;
1138
unsigned iteration = 1;
1139
unsigned d;
1140
unsigned k;
1141
COVER_best_t best;
1142
POOL_ctx *pool = NULL;
1143
int warned = 0;
1144
1145
/* Checks */
1146
if (splitPoint <= 0 || splitPoint > 1) {
1147
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1148
return ERROR(parameter_outOfBound);
1149
}
1150
if (kMinK < kMaxD || kMaxK < kMinK) {
1151
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1152
return ERROR(parameter_outOfBound);
1153
}
1154
if (nbSamples == 0) {
1155
DISPLAYLEVEL(1, "Cover must have at least one input file\n");
1156
return ERROR(srcSize_wrong);
1157
}
1158
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
1159
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
1160
ZDICT_DICTSIZE_MIN);
1161
return ERROR(dstSize_tooSmall);
1162
}
1163
if (nbThreads > 1) {
1164
pool = POOL_create(nbThreads, 1);
1165
if (!pool) {
1166
return ERROR(memory_allocation);
1167
}
1168
}
1169
/* Initialization */
1170
COVER_best_init(&best);
1171
/* Turn down global display level to clean up display at level 2 and below */
1172
g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
1173
/* Loop through d first because each new value needs a new context */
1174
LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
1175
kIterations);
1176
for (d = kMinD; d <= kMaxD; d += 2) {
1177
/* Initialize the context for this value of d */
1178
COVER_ctx_t ctx;
1179
LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
1180
{
1181
const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
1182
if (ZSTD_isError(initVal)) {
1183
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
1184
COVER_best_destroy(&best);
1185
POOL_free(pool);
1186
return initVal;
1187
}
1188
}
1189
if (!warned) {
1190
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
1191
warned = 1;
1192
}
1193
/* Loop through k reusing the same context */
1194
for (k = kMinK; k <= kMaxK; k += kStepSize) {
1195
/* Prepare the arguments */
1196
COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
1197
sizeof(COVER_tryParameters_data_t));
1198
LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
1199
if (!data) {
1200
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
1201
COVER_best_destroy(&best);
1202
COVER_ctx_destroy(&ctx);
1203
POOL_free(pool);
1204
return ERROR(memory_allocation);
1205
}
1206
data->ctx = &ctx;
1207
data->best = &best;
1208
data->dictBufferCapacity = dictBufferCapacity;
1209
data->parameters = *parameters;
1210
data->parameters.k = k;
1211
data->parameters.d = d;
1212
data->parameters.splitPoint = splitPoint;
1213
data->parameters.steps = kSteps;
1214
data->parameters.shrinkDict = shrinkDict;
1215
data->parameters.zParams.notificationLevel = g_displayLevel;
1216
/* Check the parameters */
1217
if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
1218
DISPLAYLEVEL(1, "Cover parameters incorrect\n");
1219
free(data);
1220
continue;
1221
}
1222
/* Call the function and pass ownership of data to it */
1223
COVER_best_start(&best);
1224
if (pool) {
1225
POOL_add(pool, &COVER_tryParameters, data);
1226
} else {
1227
COVER_tryParameters(data);
1228
}
1229
/* Print status */
1230
LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
1231
(unsigned)((iteration * 100) / kIterations));
1232
++iteration;
1233
}
1234
COVER_best_wait(&best);
1235
COVER_ctx_destroy(&ctx);
1236
}
1237
LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
1238
/* Fill the output buffer and parameters with output of the best parameters */
1239
{
1240
const size_t dictSize = best.dictSize;
1241
if (ZSTD_isError(best.compressedSize)) {
1242
const size_t compressedSize = best.compressedSize;
1243
COVER_best_destroy(&best);
1244
POOL_free(pool);
1245
return compressedSize;
1246
}
1247
*parameters = best.parameters;
1248
memcpy(dictBuffer, best.dict, dictSize);
1249
COVER_best_destroy(&best);
1250
POOL_free(pool);
1251
return dictSize;
1252
}
1253
}
1254
1255