Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/contrib/zstd/lib/dictBuilder/zdict.c
48378 views
1
/*
2
* Copyright (c) Yann Collet, Facebook, Inc.
3
* All rights reserved.
4
*
5
* This source code is licensed under both the BSD-style license (found in the
6
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
7
* in the COPYING file in the root directory of this source tree).
8
* You may select, at your option, one of the above-listed licenses.
9
*/
10
11
12
/*-**************************************
13
* Tuning parameters
14
****************************************/
15
#define MINRATIO 4 /* minimum nb of apparition to be selected in dictionary */
16
#define ZDICT_MAX_SAMPLES_SIZE (2000U << 20)
17
#define ZDICT_MIN_SAMPLES_SIZE (ZDICT_CONTENTSIZE_MIN * MINRATIO)
18
19
20
/*-**************************************
21
* Compiler Options
22
****************************************/
23
/* Unix Large Files support (>4GB) */
24
#define _FILE_OFFSET_BITS 64
25
#if (defined(__sun__) && (!defined(__LP64__))) /* Sun Solaris 32-bits requires specific definitions */
26
# ifndef _LARGEFILE_SOURCE
27
# define _LARGEFILE_SOURCE
28
# endif
29
#elif ! defined(__LP64__) /* No point defining Large file for 64 bit */
30
# ifndef _LARGEFILE64_SOURCE
31
# define _LARGEFILE64_SOURCE
32
# endif
33
#endif
34
35
36
/*-*************************************
37
* Dependencies
38
***************************************/
39
#include <stdlib.h> /* malloc, free */
40
#include <string.h> /* memset */
41
#include <stdio.h> /* fprintf, fopen, ftello64 */
42
#include <time.h> /* clock */
43
44
#ifndef ZDICT_STATIC_LINKING_ONLY
45
# define ZDICT_STATIC_LINKING_ONLY
46
#endif
47
#define HUF_STATIC_LINKING_ONLY
48
49
#include "../common/mem.h" /* read */
50
#include "../common/fse.h" /* FSE_normalizeCount, FSE_writeNCount */
51
#include "../common/huf.h" /* HUF_buildCTable, HUF_writeCTable */
52
#include "../common/zstd_internal.h" /* includes zstd.h */
53
#include "../common/xxhash.h" /* XXH64 */
54
#include "../compress/zstd_compress_internal.h" /* ZSTD_loadCEntropy() */
55
#include "../zdict.h"
56
#include "divsufsort.h"
57
58
59
/*-*************************************
60
* Constants
61
***************************************/
62
#define KB *(1 <<10)
63
#define MB *(1 <<20)
64
#define GB *(1U<<30)
65
66
#define DICTLISTSIZE_DEFAULT 10000
67
68
#define NOISELENGTH 32
69
70
static const U32 g_selectivity_default = 9;
71
72
73
/*-*************************************
74
* Console display
75
***************************************/
76
#undef DISPLAY
77
#define DISPLAY(...) { fprintf(stderr, __VA_ARGS__); fflush( stderr ); }
78
#undef DISPLAYLEVEL
79
#define DISPLAYLEVEL(l, ...) if (notificationLevel>=l) { DISPLAY(__VA_ARGS__); } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
80
81
static clock_t ZDICT_clockSpan(clock_t nPrevious) { return clock() - nPrevious; }
82
83
static void ZDICT_printHex(const void* ptr, size_t length)
84
{
85
const BYTE* const b = (const BYTE*)ptr;
86
size_t u;
87
for (u=0; u<length; u++) {
88
BYTE c = b[u];
89
if (c<32 || c>126) c = '.'; /* non-printable char */
90
DISPLAY("%c", c);
91
}
92
}
93
94
95
/*-********************************************************
96
* Helper functions
97
**********************************************************/
98
unsigned ZDICT_isError(size_t errorCode) { return ERR_isError(errorCode); }
99
100
const char* ZDICT_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
101
102
unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize)
103
{
104
if (dictSize < 8) return 0;
105
if (MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return 0;
106
return MEM_readLE32((const char*)dictBuffer + 4);
107
}
108
109
size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize)
110
{
111
size_t headerSize;
112
if (dictSize <= 8 || MEM_readLE32(dictBuffer) != ZSTD_MAGIC_DICTIONARY) return ERROR(dictionary_corrupted);
113
114
{ ZSTD_compressedBlockState_t* bs = (ZSTD_compressedBlockState_t*)malloc(sizeof(ZSTD_compressedBlockState_t));
115
U32* wksp = (U32*)malloc(HUF_WORKSPACE_SIZE);
116
if (!bs || !wksp) {
117
headerSize = ERROR(memory_allocation);
118
} else {
119
ZSTD_reset_compressedBlockState(bs);
120
headerSize = ZSTD_loadCEntropy(bs, wksp, dictBuffer, dictSize);
121
}
122
123
free(bs);
124
free(wksp);
125
}
126
127
return headerSize;
128
}
129
130
/*-********************************************************
131
* Dictionary training functions
132
**********************************************************/
133
static unsigned ZDICT_NbCommonBytes (size_t val)
134
{
135
if (MEM_isLittleEndian()) {
136
if (MEM_64bits()) {
137
# if defined(_MSC_VER) && defined(_WIN64)
138
if (val != 0) {
139
unsigned long r;
140
_BitScanForward64(&r, (U64)val);
141
return (unsigned)(r >> 3);
142
} else {
143
/* Should not reach this code path */
144
__assume(0);
145
}
146
# elif defined(__GNUC__) && (__GNUC__ >= 3)
147
return (unsigned)(__builtin_ctzll((U64)val) >> 3);
148
# else
149
static const int DeBruijnBytePos[64] = { 0, 0, 0, 0, 0, 1, 1, 2, 0, 3, 1, 3, 1, 4, 2, 7, 0, 2, 3, 6, 1, 5, 3, 5, 1, 3, 4, 4, 2, 5, 6, 7, 7, 0, 1, 2, 3, 3, 4, 6, 2, 6, 5, 5, 3, 4, 5, 6, 7, 1, 2, 4, 6, 4, 4, 5, 7, 2, 6, 5, 7, 6, 7, 7 };
150
return DeBruijnBytePos[((U64)((val & -(long long)val) * 0x0218A392CDABBD3FULL)) >> 58];
151
# endif
152
} else { /* 32 bits */
153
# if defined(_MSC_VER)
154
if (val != 0) {
155
unsigned long r;
156
_BitScanForward(&r, (U32)val);
157
return (unsigned)(r >> 3);
158
} else {
159
/* Should not reach this code path */
160
__assume(0);
161
}
162
# elif defined(__GNUC__) && (__GNUC__ >= 3)
163
return (unsigned)(__builtin_ctz((U32)val) >> 3);
164
# else
165
static const int DeBruijnBytePos[32] = { 0, 0, 3, 0, 3, 1, 3, 0, 3, 2, 2, 1, 3, 2, 0, 1, 3, 3, 1, 2, 2, 2, 2, 0, 3, 1, 2, 0, 1, 0, 1, 1 };
166
return DeBruijnBytePos[((U32)((val & -(S32)val) * 0x077CB531U)) >> 27];
167
# endif
168
}
169
} else { /* Big Endian CPU */
170
if (MEM_64bits()) {
171
# if defined(_MSC_VER) && defined(_WIN64)
172
if (val != 0) {
173
unsigned long r;
174
_BitScanReverse64(&r, val);
175
return (unsigned)(r >> 3);
176
} else {
177
/* Should not reach this code path */
178
__assume(0);
179
}
180
# elif defined(__GNUC__) && (__GNUC__ >= 3)
181
return (unsigned)(__builtin_clzll(val) >> 3);
182
# else
183
unsigned r;
184
const unsigned n32 = sizeof(size_t)*4; /* calculate this way due to compiler complaining in 32-bits mode */
185
if (!(val>>n32)) { r=4; } else { r=0; val>>=n32; }
186
if (!(val>>16)) { r+=2; val>>=8; } else { val>>=24; }
187
r += (!val);
188
return r;
189
# endif
190
} else { /* 32 bits */
191
# if defined(_MSC_VER)
192
if (val != 0) {
193
unsigned long r;
194
_BitScanReverse(&r, (unsigned long)val);
195
return (unsigned)(r >> 3);
196
} else {
197
/* Should not reach this code path */
198
__assume(0);
199
}
200
# elif defined(__GNUC__) && (__GNUC__ >= 3)
201
return (unsigned)(__builtin_clz((U32)val) >> 3);
202
# else
203
unsigned r;
204
if (!(val>>16)) { r=2; val>>=8; } else { r=0; val>>=24; }
205
r += (!val);
206
return r;
207
# endif
208
} }
209
}
210
211
212
/*! ZDICT_count() :
213
Count the nb of common bytes between 2 pointers.
214
Note : this function presumes end of buffer followed by noisy guard band.
215
*/
216
static size_t ZDICT_count(const void* pIn, const void* pMatch)
217
{
218
const char* const pStart = (const char*)pIn;
219
for (;;) {
220
size_t const diff = MEM_readST(pMatch) ^ MEM_readST(pIn);
221
if (!diff) {
222
pIn = (const char*)pIn+sizeof(size_t);
223
pMatch = (const char*)pMatch+sizeof(size_t);
224
continue;
225
}
226
pIn = (const char*)pIn+ZDICT_NbCommonBytes(diff);
227
return (size_t)((const char*)pIn - pStart);
228
}
229
}
230
231
232
typedef struct {
233
U32 pos;
234
U32 length;
235
U32 savings;
236
} dictItem;
237
238
static void ZDICT_initDictItem(dictItem* d)
239
{
240
d->pos = 1;
241
d->length = 0;
242
d->savings = (U32)(-1);
243
}
244
245
246
#define LLIMIT 64 /* heuristic determined experimentally */
247
#define MINMATCHLENGTH 7 /* heuristic determined experimentally */
248
static dictItem ZDICT_analyzePos(
249
BYTE* doneMarks,
250
const int* suffix, U32 start,
251
const void* buffer, U32 minRatio, U32 notificationLevel)
252
{
253
U32 lengthList[LLIMIT] = {0};
254
U32 cumulLength[LLIMIT] = {0};
255
U32 savings[LLIMIT] = {0};
256
const BYTE* b = (const BYTE*)buffer;
257
size_t maxLength = LLIMIT;
258
size_t pos = (size_t)suffix[start];
259
U32 end = start;
260
dictItem solution;
261
262
/* init */
263
memset(&solution, 0, sizeof(solution));
264
doneMarks[pos] = 1;
265
266
/* trivial repetition cases */
267
if ( (MEM_read16(b+pos+0) == MEM_read16(b+pos+2))
268
||(MEM_read16(b+pos+1) == MEM_read16(b+pos+3))
269
||(MEM_read16(b+pos+2) == MEM_read16(b+pos+4)) ) {
270
/* skip and mark segment */
271
U16 const pattern16 = MEM_read16(b+pos+4);
272
U32 u, patternEnd = 6;
273
while (MEM_read16(b+pos+patternEnd) == pattern16) patternEnd+=2 ;
274
if (b[pos+patternEnd] == b[pos+patternEnd-1]) patternEnd++;
275
for (u=1; u<patternEnd; u++)
276
doneMarks[pos+u] = 1;
277
return solution;
278
}
279
280
/* look forward */
281
{ size_t length;
282
do {
283
end++;
284
length = ZDICT_count(b + pos, b + suffix[end]);
285
} while (length >= MINMATCHLENGTH);
286
}
287
288
/* look backward */
289
{ size_t length;
290
do {
291
length = ZDICT_count(b + pos, b + *(suffix+start-1));
292
if (length >=MINMATCHLENGTH) start--;
293
} while(length >= MINMATCHLENGTH);
294
}
295
296
/* exit if not found a minimum nb of repetitions */
297
if (end-start < minRatio) {
298
U32 idx;
299
for(idx=start; idx<end; idx++)
300
doneMarks[suffix[idx]] = 1;
301
return solution;
302
}
303
304
{ int i;
305
U32 mml;
306
U32 refinedStart = start;
307
U32 refinedEnd = end;
308
309
DISPLAYLEVEL(4, "\n");
310
DISPLAYLEVEL(4, "found %3u matches of length >= %i at pos %7u ", (unsigned)(end-start), MINMATCHLENGTH, (unsigned)pos);
311
DISPLAYLEVEL(4, "\n");
312
313
for (mml = MINMATCHLENGTH ; ; mml++) {
314
BYTE currentChar = 0;
315
U32 currentCount = 0;
316
U32 currentID = refinedStart;
317
U32 id;
318
U32 selectedCount = 0;
319
U32 selectedID = currentID;
320
for (id =refinedStart; id < refinedEnd; id++) {
321
if (b[suffix[id] + mml] != currentChar) {
322
if (currentCount > selectedCount) {
323
selectedCount = currentCount;
324
selectedID = currentID;
325
}
326
currentID = id;
327
currentChar = b[ suffix[id] + mml];
328
currentCount = 0;
329
}
330
currentCount ++;
331
}
332
if (currentCount > selectedCount) { /* for last */
333
selectedCount = currentCount;
334
selectedID = currentID;
335
}
336
337
if (selectedCount < minRatio)
338
break;
339
refinedStart = selectedID;
340
refinedEnd = refinedStart + selectedCount;
341
}
342
343
/* evaluate gain based on new dict */
344
start = refinedStart;
345
pos = suffix[refinedStart];
346
end = start;
347
memset(lengthList, 0, sizeof(lengthList));
348
349
/* look forward */
350
{ size_t length;
351
do {
352
end++;
353
length = ZDICT_count(b + pos, b + suffix[end]);
354
if (length >= LLIMIT) length = LLIMIT-1;
355
lengthList[length]++;
356
} while (length >=MINMATCHLENGTH);
357
}
358
359
/* look backward */
360
{ size_t length = MINMATCHLENGTH;
361
while ((length >= MINMATCHLENGTH) & (start > 0)) {
362
length = ZDICT_count(b + pos, b + suffix[start - 1]);
363
if (length >= LLIMIT) length = LLIMIT - 1;
364
lengthList[length]++;
365
if (length >= MINMATCHLENGTH) start--;
366
}
367
}
368
369
/* largest useful length */
370
memset(cumulLength, 0, sizeof(cumulLength));
371
cumulLength[maxLength-1] = lengthList[maxLength-1];
372
for (i=(int)(maxLength-2); i>=0; i--)
373
cumulLength[i] = cumulLength[i+1] + lengthList[i];
374
375
for (i=LLIMIT-1; i>=MINMATCHLENGTH; i--) if (cumulLength[i]>=minRatio) break;
376
maxLength = i;
377
378
/* reduce maxLength in case of final into repetitive data */
379
{ U32 l = (U32)maxLength;
380
BYTE const c = b[pos + maxLength-1];
381
while (b[pos+l-2]==c) l--;
382
maxLength = l;
383
}
384
if (maxLength < MINMATCHLENGTH) return solution; /* skip : no long-enough solution */
385
386
/* calculate savings */
387
savings[5] = 0;
388
for (i=MINMATCHLENGTH; i<=(int)maxLength; i++)
389
savings[i] = savings[i-1] + (lengthList[i] * (i-3));
390
391
DISPLAYLEVEL(4, "Selected dict at position %u, of length %u : saves %u (ratio: %.2f) \n",
392
(unsigned)pos, (unsigned)maxLength, (unsigned)savings[maxLength], (double)savings[maxLength] / (double)maxLength);
393
394
solution.pos = (U32)pos;
395
solution.length = (U32)maxLength;
396
solution.savings = savings[maxLength];
397
398
/* mark positions done */
399
{ U32 id;
400
for (id=start; id<end; id++) {
401
U32 p, pEnd, length;
402
U32 const testedPos = (U32)suffix[id];
403
if (testedPos == pos)
404
length = solution.length;
405
else {
406
length = (U32)ZDICT_count(b+pos, b+testedPos);
407
if (length > solution.length) length = solution.length;
408
}
409
pEnd = (U32)(testedPos + length);
410
for (p=testedPos; p<pEnd; p++)
411
doneMarks[p] = 1;
412
} } }
413
414
return solution;
415
}
416
417
418
static int isIncluded(const void* in, const void* container, size_t length)
419
{
420
const char* const ip = (const char*) in;
421
const char* const into = (const char*) container;
422
size_t u;
423
424
for (u=0; u<length; u++) { /* works because end of buffer is a noisy guard band */
425
if (ip[u] != into[u]) break;
426
}
427
428
return u==length;
429
}
430
431
/*! ZDICT_tryMerge() :
432
check if dictItem can be merged, do it if possible
433
@return : id of destination elt, 0 if not merged
434
*/
435
static U32 ZDICT_tryMerge(dictItem* table, dictItem elt, U32 eltNbToSkip, const void* buffer)
436
{
437
const U32 tableSize = table->pos;
438
const U32 eltEnd = elt.pos + elt.length;
439
const char* const buf = (const char*) buffer;
440
441
/* tail overlap */
442
U32 u; for (u=1; u<tableSize; u++) {
443
if (u==eltNbToSkip) continue;
444
if ((table[u].pos > elt.pos) && (table[u].pos <= eltEnd)) { /* overlap, existing > new */
445
/* append */
446
U32 const addedLength = table[u].pos - elt.pos;
447
table[u].length += addedLength;
448
table[u].pos = elt.pos;
449
table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */
450
table[u].savings += elt.length / 8; /* rough approx bonus */
451
elt = table[u];
452
/* sort : improve rank */
453
while ((u>1) && (table[u-1].savings < elt.savings))
454
table[u] = table[u-1], u--;
455
table[u] = elt;
456
return u;
457
} }
458
459
/* front overlap */
460
for (u=1; u<tableSize; u++) {
461
if (u==eltNbToSkip) continue;
462
463
if ((table[u].pos + table[u].length >= elt.pos) && (table[u].pos < elt.pos)) { /* overlap, existing < new */
464
/* append */
465
int const addedLength = (int)eltEnd - (int)(table[u].pos + table[u].length);
466
table[u].savings += elt.length / 8; /* rough approx bonus */
467
if (addedLength > 0) { /* otherwise, elt fully included into existing */
468
table[u].length += addedLength;
469
table[u].savings += elt.savings * addedLength / elt.length; /* rough approx */
470
}
471
/* sort : improve rank */
472
elt = table[u];
473
while ((u>1) && (table[u-1].savings < elt.savings))
474
table[u] = table[u-1], u--;
475
table[u] = elt;
476
return u;
477
}
478
479
if (MEM_read64(buf + table[u].pos) == MEM_read64(buf + elt.pos + 1)) {
480
if (isIncluded(buf + table[u].pos, buf + elt.pos + 1, table[u].length)) {
481
size_t const addedLength = MAX( (int)elt.length - (int)table[u].length , 1 );
482
table[u].pos = elt.pos;
483
table[u].savings += (U32)(elt.savings * addedLength / elt.length);
484
table[u].length = MIN(elt.length, table[u].length + 1);
485
return u;
486
}
487
}
488
}
489
490
return 0;
491
}
492
493
494
static void ZDICT_removeDictItem(dictItem* table, U32 id)
495
{
496
/* convention : table[0].pos stores nb of elts */
497
U32 const max = table[0].pos;
498
U32 u;
499
if (!id) return; /* protection, should never happen */
500
for (u=id; u<max-1; u++)
501
table[u] = table[u+1];
502
table->pos--;
503
}
504
505
506
static void ZDICT_insertDictItem(dictItem* table, U32 maxSize, dictItem elt, const void* buffer)
507
{
508
/* merge if possible */
509
U32 mergeId = ZDICT_tryMerge(table, elt, 0, buffer);
510
if (mergeId) {
511
U32 newMerge = 1;
512
while (newMerge) {
513
newMerge = ZDICT_tryMerge(table, table[mergeId], mergeId, buffer);
514
if (newMerge) ZDICT_removeDictItem(table, mergeId);
515
mergeId = newMerge;
516
}
517
return;
518
}
519
520
/* insert */
521
{ U32 current;
522
U32 nextElt = table->pos;
523
if (nextElt >= maxSize) nextElt = maxSize-1;
524
current = nextElt-1;
525
while (table[current].savings < elt.savings) {
526
table[current+1] = table[current];
527
current--;
528
}
529
table[current+1] = elt;
530
table->pos = nextElt+1;
531
}
532
}
533
534
535
static U32 ZDICT_dictSize(const dictItem* dictList)
536
{
537
U32 u, dictSize = 0;
538
for (u=1; u<dictList[0].pos; u++)
539
dictSize += dictList[u].length;
540
return dictSize;
541
}
542
543
544
static size_t ZDICT_trainBuffer_legacy(dictItem* dictList, U32 dictListSize,
545
const void* const buffer, size_t bufferSize, /* buffer must end with noisy guard band */
546
const size_t* fileSizes, unsigned nbFiles,
547
unsigned minRatio, U32 notificationLevel)
548
{
549
int* const suffix0 = (int*)malloc((bufferSize+2)*sizeof(*suffix0));
550
int* const suffix = suffix0+1;
551
U32* reverseSuffix = (U32*)malloc((bufferSize)*sizeof(*reverseSuffix));
552
BYTE* doneMarks = (BYTE*)malloc((bufferSize+16)*sizeof(*doneMarks)); /* +16 for overflow security */
553
U32* filePos = (U32*)malloc(nbFiles * sizeof(*filePos));
554
size_t result = 0;
555
clock_t displayClock = 0;
556
clock_t const refreshRate = CLOCKS_PER_SEC * 3 / 10;
557
558
# undef DISPLAYUPDATE
559
# define DISPLAYUPDATE(l, ...) if (notificationLevel>=l) { \
560
if (ZDICT_clockSpan(displayClock) > refreshRate) \
561
{ displayClock = clock(); DISPLAY(__VA_ARGS__); \
562
if (notificationLevel>=4) fflush(stderr); } }
563
564
/* init */
565
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
566
if (!suffix0 || !reverseSuffix || !doneMarks || !filePos) {
567
result = ERROR(memory_allocation);
568
goto _cleanup;
569
}
570
if (minRatio < MINRATIO) minRatio = MINRATIO;
571
memset(doneMarks, 0, bufferSize+16);
572
573
/* limit sample set size (divsufsort limitation)*/
574
if (bufferSize > ZDICT_MAX_SAMPLES_SIZE) DISPLAYLEVEL(3, "sample set too large : reduced to %u MB ...\n", (unsigned)(ZDICT_MAX_SAMPLES_SIZE>>20));
575
while (bufferSize > ZDICT_MAX_SAMPLES_SIZE) bufferSize -= fileSizes[--nbFiles];
576
577
/* sort */
578
DISPLAYLEVEL(2, "sorting %u files of total size %u MB ...\n", nbFiles, (unsigned)(bufferSize>>20));
579
{ int const divSuftSortResult = divsufsort((const unsigned char*)buffer, suffix, (int)bufferSize, 0);
580
if (divSuftSortResult != 0) { result = ERROR(GENERIC); goto _cleanup; }
581
}
582
suffix[bufferSize] = (int)bufferSize; /* leads into noise */
583
suffix0[0] = (int)bufferSize; /* leads into noise */
584
/* build reverse suffix sort */
585
{ size_t pos;
586
for (pos=0; pos < bufferSize; pos++)
587
reverseSuffix[suffix[pos]] = (U32)pos;
588
/* note filePos tracks borders between samples.
589
It's not used at this stage, but planned to become useful in a later update */
590
filePos[0] = 0;
591
for (pos=1; pos<nbFiles; pos++)
592
filePos[pos] = (U32)(filePos[pos-1] + fileSizes[pos-1]);
593
}
594
595
DISPLAYLEVEL(2, "finding patterns ... \n");
596
DISPLAYLEVEL(3, "minimum ratio : %u \n", minRatio);
597
598
{ U32 cursor; for (cursor=0; cursor < bufferSize; ) {
599
dictItem solution;
600
if (doneMarks[cursor]) { cursor++; continue; }
601
solution = ZDICT_analyzePos(doneMarks, suffix, reverseSuffix[cursor], buffer, minRatio, notificationLevel);
602
if (solution.length==0) { cursor++; continue; }
603
ZDICT_insertDictItem(dictList, dictListSize, solution, buffer);
604
cursor += solution.length;
605
DISPLAYUPDATE(2, "\r%4.2f %% \r", (double)cursor / bufferSize * 100);
606
} }
607
608
_cleanup:
609
free(suffix0);
610
free(reverseSuffix);
611
free(doneMarks);
612
free(filePos);
613
return result;
614
}
615
616
617
static void ZDICT_fillNoise(void* buffer, size_t length)
618
{
619
unsigned const prime1 = 2654435761U;
620
unsigned const prime2 = 2246822519U;
621
unsigned acc = prime1;
622
size_t p=0;
623
for (p=0; p<length; p++) {
624
acc *= prime2;
625
((unsigned char*)buffer)[p] = (unsigned char)(acc >> 21);
626
}
627
}
628
629
630
typedef struct
631
{
632
ZSTD_CDict* dict; /* dictionary */
633
ZSTD_CCtx* zc; /* working context */
634
void* workPlace; /* must be ZSTD_BLOCKSIZE_MAX allocated */
635
} EStats_ress_t;
636
637
#define MAXREPOFFSET 1024
638
639
static void ZDICT_countEStats(EStats_ress_t esr, const ZSTD_parameters* params,
640
unsigned* countLit, unsigned* offsetcodeCount, unsigned* matchlengthCount, unsigned* litlengthCount, U32* repOffsets,
641
const void* src, size_t srcSize,
642
U32 notificationLevel)
643
{
644
size_t const blockSizeMax = MIN (ZSTD_BLOCKSIZE_MAX, 1 << params->cParams.windowLog);
645
size_t cSize;
646
647
if (srcSize > blockSizeMax) srcSize = blockSizeMax; /* protection vs large samples */
648
{ size_t const errorCode = ZSTD_compressBegin_usingCDict(esr.zc, esr.dict);
649
if (ZSTD_isError(errorCode)) { DISPLAYLEVEL(1, "warning : ZSTD_compressBegin_usingCDict failed \n"); return; }
650
651
}
652
cSize = ZSTD_compressBlock(esr.zc, esr.workPlace, ZSTD_BLOCKSIZE_MAX, src, srcSize);
653
if (ZSTD_isError(cSize)) { DISPLAYLEVEL(3, "warning : could not compress sample size %u \n", (unsigned)srcSize); return; }
654
655
if (cSize) { /* if == 0; block is not compressible */
656
const seqStore_t* const seqStorePtr = ZSTD_getSeqStore(esr.zc);
657
658
/* literals stats */
659
{ const BYTE* bytePtr;
660
for(bytePtr = seqStorePtr->litStart; bytePtr < seqStorePtr->lit; bytePtr++)
661
countLit[*bytePtr]++;
662
}
663
664
/* seqStats */
665
{ U32 const nbSeq = (U32)(seqStorePtr->sequences - seqStorePtr->sequencesStart);
666
ZSTD_seqToCodes(seqStorePtr);
667
668
{ const BYTE* codePtr = seqStorePtr->ofCode;
669
U32 u;
670
for (u=0; u<nbSeq; u++) offsetcodeCount[codePtr[u]]++;
671
}
672
673
{ const BYTE* codePtr = seqStorePtr->mlCode;
674
U32 u;
675
for (u=0; u<nbSeq; u++) matchlengthCount[codePtr[u]]++;
676
}
677
678
{ const BYTE* codePtr = seqStorePtr->llCode;
679
U32 u;
680
for (u=0; u<nbSeq; u++) litlengthCount[codePtr[u]]++;
681
}
682
683
if (nbSeq >= 2) { /* rep offsets */
684
const seqDef* const seq = seqStorePtr->sequencesStart;
685
U32 offset1 = seq[0].offBase - ZSTD_REP_NUM;
686
U32 offset2 = seq[1].offBase - ZSTD_REP_NUM;
687
if (offset1 >= MAXREPOFFSET) offset1 = 0;
688
if (offset2 >= MAXREPOFFSET) offset2 = 0;
689
repOffsets[offset1] += 3;
690
repOffsets[offset2] += 1;
691
} } }
692
}
693
694
static size_t ZDICT_totalSampleSize(const size_t* fileSizes, unsigned nbFiles)
695
{
696
size_t total=0;
697
unsigned u;
698
for (u=0; u<nbFiles; u++) total += fileSizes[u];
699
return total;
700
}
701
702
typedef struct { U32 offset; U32 count; } offsetCount_t;
703
704
static void ZDICT_insertSortCount(offsetCount_t table[ZSTD_REP_NUM+1], U32 val, U32 count)
705
{
706
U32 u;
707
table[ZSTD_REP_NUM].offset = val;
708
table[ZSTD_REP_NUM].count = count;
709
for (u=ZSTD_REP_NUM; u>0; u--) {
710
offsetCount_t tmp;
711
if (table[u-1].count >= table[u].count) break;
712
tmp = table[u-1];
713
table[u-1] = table[u];
714
table[u] = tmp;
715
}
716
}
717
718
/* ZDICT_flatLit() :
719
* rewrite `countLit` to contain a mostly flat but still compressible distribution of literals.
720
* necessary to avoid generating a non-compressible distribution that HUF_writeCTable() cannot encode.
721
*/
722
static void ZDICT_flatLit(unsigned* countLit)
723
{
724
int u;
725
for (u=1; u<256; u++) countLit[u] = 2;
726
countLit[0] = 4;
727
countLit[253] = 1;
728
countLit[254] = 1;
729
}
730
731
#define OFFCODE_MAX 30 /* only applicable to first block */
732
static size_t ZDICT_analyzeEntropy(void* dstBuffer, size_t maxDstSize,
733
int compressionLevel,
734
const void* srcBuffer, const size_t* fileSizes, unsigned nbFiles,
735
const void* dictBuffer, size_t dictBufferSize,
736
unsigned notificationLevel)
737
{
738
unsigned countLit[256];
739
HUF_CREATE_STATIC_CTABLE(hufTable, 255);
740
unsigned offcodeCount[OFFCODE_MAX+1];
741
short offcodeNCount[OFFCODE_MAX+1];
742
U32 offcodeMax = ZSTD_highbit32((U32)(dictBufferSize + 128 KB));
743
unsigned matchLengthCount[MaxML+1];
744
short matchLengthNCount[MaxML+1];
745
unsigned litLengthCount[MaxLL+1];
746
short litLengthNCount[MaxLL+1];
747
U32 repOffset[MAXREPOFFSET];
748
offsetCount_t bestRepOffset[ZSTD_REP_NUM+1];
749
EStats_ress_t esr = { NULL, NULL, NULL };
750
ZSTD_parameters params;
751
U32 u, huffLog = 11, Offlog = OffFSELog, mlLog = MLFSELog, llLog = LLFSELog, total;
752
size_t pos = 0, errorCode;
753
size_t eSize = 0;
754
size_t const totalSrcSize = ZDICT_totalSampleSize(fileSizes, nbFiles);
755
size_t const averageSampleSize = totalSrcSize / (nbFiles + !nbFiles);
756
BYTE* dstPtr = (BYTE*)dstBuffer;
757
758
/* init */
759
DEBUGLOG(4, "ZDICT_analyzeEntropy");
760
if (offcodeMax>OFFCODE_MAX) { eSize = ERROR(dictionaryCreation_failed); goto _cleanup; } /* too large dictionary */
761
for (u=0; u<256; u++) countLit[u] = 1; /* any character must be described */
762
for (u=0; u<=offcodeMax; u++) offcodeCount[u] = 1;
763
for (u=0; u<=MaxML; u++) matchLengthCount[u] = 1;
764
for (u=0; u<=MaxLL; u++) litLengthCount[u] = 1;
765
memset(repOffset, 0, sizeof(repOffset));
766
repOffset[1] = repOffset[4] = repOffset[8] = 1;
767
memset(bestRepOffset, 0, sizeof(bestRepOffset));
768
if (compressionLevel==0) compressionLevel = ZSTD_CLEVEL_DEFAULT;
769
params = ZSTD_getParams(compressionLevel, averageSampleSize, dictBufferSize);
770
771
esr.dict = ZSTD_createCDict_advanced(dictBuffer, dictBufferSize, ZSTD_dlm_byRef, ZSTD_dct_rawContent, params.cParams, ZSTD_defaultCMem);
772
esr.zc = ZSTD_createCCtx();
773
esr.workPlace = malloc(ZSTD_BLOCKSIZE_MAX);
774
if (!esr.dict || !esr.zc || !esr.workPlace) {
775
eSize = ERROR(memory_allocation);
776
DISPLAYLEVEL(1, "Not enough memory \n");
777
goto _cleanup;
778
}
779
780
/* collect stats on all samples */
781
for (u=0; u<nbFiles; u++) {
782
ZDICT_countEStats(esr, &params,
783
countLit, offcodeCount, matchLengthCount, litLengthCount, repOffset,
784
(const char*)srcBuffer + pos, fileSizes[u],
785
notificationLevel);
786
pos += fileSizes[u];
787
}
788
789
if (notificationLevel >= 4) {
790
/* writeStats */
791
DISPLAYLEVEL(4, "Offset Code Frequencies : \n");
792
for (u=0; u<=offcodeMax; u++) {
793
DISPLAYLEVEL(4, "%2u :%7u \n", u, offcodeCount[u]);
794
} }
795
796
/* analyze, build stats, starting with literals */
797
{ size_t maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
798
if (HUF_isError(maxNbBits)) {
799
eSize = maxNbBits;
800
DISPLAYLEVEL(1, " HUF_buildCTable error \n");
801
goto _cleanup;
802
}
803
if (maxNbBits==8) { /* not compressible : will fail on HUF_writeCTable() */
804
DISPLAYLEVEL(2, "warning : pathological dataset : literals are not compressible : samples are noisy or too regular \n");
805
ZDICT_flatLit(countLit); /* replace distribution by a fake "mostly flat but still compressible" distribution, that HUF_writeCTable() can encode */
806
maxNbBits = HUF_buildCTable (hufTable, countLit, 255, huffLog);
807
assert(maxNbBits==9);
808
}
809
huffLog = (U32)maxNbBits;
810
}
811
812
/* looking for most common first offsets */
813
{ U32 offset;
814
for (offset=1; offset<MAXREPOFFSET; offset++)
815
ZDICT_insertSortCount(bestRepOffset, offset, repOffset[offset]);
816
}
817
/* note : the result of this phase should be used to better appreciate the impact on statistics */
818
819
total=0; for (u=0; u<=offcodeMax; u++) total+=offcodeCount[u];
820
errorCode = FSE_normalizeCount(offcodeNCount, Offlog, offcodeCount, total, offcodeMax, /* useLowProbCount */ 1);
821
if (FSE_isError(errorCode)) {
822
eSize = errorCode;
823
DISPLAYLEVEL(1, "FSE_normalizeCount error with offcodeCount \n");
824
goto _cleanup;
825
}
826
Offlog = (U32)errorCode;
827
828
total=0; for (u=0; u<=MaxML; u++) total+=matchLengthCount[u];
829
errorCode = FSE_normalizeCount(matchLengthNCount, mlLog, matchLengthCount, total, MaxML, /* useLowProbCount */ 1);
830
if (FSE_isError(errorCode)) {
831
eSize = errorCode;
832
DISPLAYLEVEL(1, "FSE_normalizeCount error with matchLengthCount \n");
833
goto _cleanup;
834
}
835
mlLog = (U32)errorCode;
836
837
total=0; for (u=0; u<=MaxLL; u++) total+=litLengthCount[u];
838
errorCode = FSE_normalizeCount(litLengthNCount, llLog, litLengthCount, total, MaxLL, /* useLowProbCount */ 1);
839
if (FSE_isError(errorCode)) {
840
eSize = errorCode;
841
DISPLAYLEVEL(1, "FSE_normalizeCount error with litLengthCount \n");
842
goto _cleanup;
843
}
844
llLog = (U32)errorCode;
845
846
/* write result to buffer */
847
{ size_t const hhSize = HUF_writeCTable(dstPtr, maxDstSize, hufTable, 255, huffLog);
848
if (HUF_isError(hhSize)) {
849
eSize = hhSize;
850
DISPLAYLEVEL(1, "HUF_writeCTable error \n");
851
goto _cleanup;
852
}
853
dstPtr += hhSize;
854
maxDstSize -= hhSize;
855
eSize += hhSize;
856
}
857
858
{ size_t const ohSize = FSE_writeNCount(dstPtr, maxDstSize, offcodeNCount, OFFCODE_MAX, Offlog);
859
if (FSE_isError(ohSize)) {
860
eSize = ohSize;
861
DISPLAYLEVEL(1, "FSE_writeNCount error with offcodeNCount \n");
862
goto _cleanup;
863
}
864
dstPtr += ohSize;
865
maxDstSize -= ohSize;
866
eSize += ohSize;
867
}
868
869
{ size_t const mhSize = FSE_writeNCount(dstPtr, maxDstSize, matchLengthNCount, MaxML, mlLog);
870
if (FSE_isError(mhSize)) {
871
eSize = mhSize;
872
DISPLAYLEVEL(1, "FSE_writeNCount error with matchLengthNCount \n");
873
goto _cleanup;
874
}
875
dstPtr += mhSize;
876
maxDstSize -= mhSize;
877
eSize += mhSize;
878
}
879
880
{ size_t const lhSize = FSE_writeNCount(dstPtr, maxDstSize, litLengthNCount, MaxLL, llLog);
881
if (FSE_isError(lhSize)) {
882
eSize = lhSize;
883
DISPLAYLEVEL(1, "FSE_writeNCount error with litlengthNCount \n");
884
goto _cleanup;
885
}
886
dstPtr += lhSize;
887
maxDstSize -= lhSize;
888
eSize += lhSize;
889
}
890
891
if (maxDstSize<12) {
892
eSize = ERROR(dstSize_tooSmall);
893
DISPLAYLEVEL(1, "not enough space to write RepOffsets \n");
894
goto _cleanup;
895
}
896
# if 0
897
MEM_writeLE32(dstPtr+0, bestRepOffset[0].offset);
898
MEM_writeLE32(dstPtr+4, bestRepOffset[1].offset);
899
MEM_writeLE32(dstPtr+8, bestRepOffset[2].offset);
900
#else
901
/* at this stage, we don't use the result of "most common first offset",
902
* as the impact of statistics is not properly evaluated */
903
MEM_writeLE32(dstPtr+0, repStartValue[0]);
904
MEM_writeLE32(dstPtr+4, repStartValue[1]);
905
MEM_writeLE32(dstPtr+8, repStartValue[2]);
906
#endif
907
eSize += 12;
908
909
_cleanup:
910
ZSTD_freeCDict(esr.dict);
911
ZSTD_freeCCtx(esr.zc);
912
free(esr.workPlace);
913
914
return eSize;
915
}
916
917
918
/**
919
* @returns the maximum repcode value
920
*/
921
static U32 ZDICT_maxRep(U32 const reps[ZSTD_REP_NUM])
922
{
923
U32 maxRep = reps[0];
924
int r;
925
for (r = 1; r < ZSTD_REP_NUM; ++r)
926
maxRep = MAX(maxRep, reps[r]);
927
return maxRep;
928
}
929
930
size_t ZDICT_finalizeDictionary(void* dictBuffer, size_t dictBufferCapacity,
931
const void* customDictContent, size_t dictContentSize,
932
const void* samplesBuffer, const size_t* samplesSizes,
933
unsigned nbSamples, ZDICT_params_t params)
934
{
935
size_t hSize;
936
#define HBUFFSIZE 256 /* should prove large enough for all entropy headers */
937
BYTE header[HBUFFSIZE];
938
int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
939
U32 const notificationLevel = params.notificationLevel;
940
/* The final dictionary content must be at least as large as the largest repcode */
941
size_t const minContentSize = (size_t)ZDICT_maxRep(repStartValue);
942
size_t paddingSize;
943
944
/* check conditions */
945
DEBUGLOG(4, "ZDICT_finalizeDictionary");
946
if (dictBufferCapacity < dictContentSize) return ERROR(dstSize_tooSmall);
947
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) return ERROR(dstSize_tooSmall);
948
949
/* dictionary header */
950
MEM_writeLE32(header, ZSTD_MAGIC_DICTIONARY);
951
{ U64 const randomID = XXH64(customDictContent, dictContentSize, 0);
952
U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
953
U32 const dictID = params.dictID ? params.dictID : compliantID;
954
MEM_writeLE32(header+4, dictID);
955
}
956
hSize = 8;
957
958
/* entropy tables */
959
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
960
DISPLAYLEVEL(2, "statistics ... \n");
961
{ size_t const eSize = ZDICT_analyzeEntropy(header+hSize, HBUFFSIZE-hSize,
962
compressionLevel,
963
samplesBuffer, samplesSizes, nbSamples,
964
customDictContent, dictContentSize,
965
notificationLevel);
966
if (ZDICT_isError(eSize)) return eSize;
967
hSize += eSize;
968
}
969
970
/* Shrink the content size if it doesn't fit in the buffer */
971
if (hSize + dictContentSize > dictBufferCapacity) {
972
dictContentSize = dictBufferCapacity - hSize;
973
}
974
975
/* Pad the dictionary content with zeros if it is too small */
976
if (dictContentSize < minContentSize) {
977
RETURN_ERROR_IF(hSize + minContentSize > dictBufferCapacity, dstSize_tooSmall,
978
"dictBufferCapacity too small to fit max repcode");
979
paddingSize = minContentSize - dictContentSize;
980
} else {
981
paddingSize = 0;
982
}
983
984
{
985
size_t const dictSize = hSize + paddingSize + dictContentSize;
986
987
/* The dictionary consists of the header, optional padding, and the content.
988
* The padding comes before the content because the "best" position in the
989
* dictionary is the last byte.
990
*/
991
BYTE* const outDictHeader = (BYTE*)dictBuffer;
992
BYTE* const outDictPadding = outDictHeader + hSize;
993
BYTE* const outDictContent = outDictPadding + paddingSize;
994
995
assert(dictSize <= dictBufferCapacity);
996
assert(outDictContent + dictContentSize == (BYTE*)dictBuffer + dictSize);
997
998
/* First copy the customDictContent into its final location.
999
* `customDictContent` and `dictBuffer` may overlap, so we must
1000
* do this before any other writes into the output buffer.
1001
* Then copy the header & padding into the output buffer.
1002
*/
1003
memmove(outDictContent, customDictContent, dictContentSize);
1004
memcpy(outDictHeader, header, hSize);
1005
memset(outDictPadding, 0, paddingSize);
1006
1007
return dictSize;
1008
}
1009
}
1010
1011
1012
static size_t ZDICT_addEntropyTablesFromBuffer_advanced(
1013
void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
1014
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
1015
ZDICT_params_t params)
1016
{
1017
int const compressionLevel = (params.compressionLevel == 0) ? ZSTD_CLEVEL_DEFAULT : params.compressionLevel;
1018
U32 const notificationLevel = params.notificationLevel;
1019
size_t hSize = 8;
1020
1021
/* calculate entropy tables */
1022
DISPLAYLEVEL(2, "\r%70s\r", ""); /* clean display line */
1023
DISPLAYLEVEL(2, "statistics ... \n");
1024
{ size_t const eSize = ZDICT_analyzeEntropy((char*)dictBuffer+hSize, dictBufferCapacity-hSize,
1025
compressionLevel,
1026
samplesBuffer, samplesSizes, nbSamples,
1027
(char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize,
1028
notificationLevel);
1029
if (ZDICT_isError(eSize)) return eSize;
1030
hSize += eSize;
1031
}
1032
1033
/* add dictionary header (after entropy tables) */
1034
MEM_writeLE32(dictBuffer, ZSTD_MAGIC_DICTIONARY);
1035
{ U64 const randomID = XXH64((char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize, 0);
1036
U32 const compliantID = (randomID % ((1U<<31)-32768)) + 32768;
1037
U32 const dictID = params.dictID ? params.dictID : compliantID;
1038
MEM_writeLE32((char*)dictBuffer+4, dictID);
1039
}
1040
1041
if (hSize + dictContentSize < dictBufferCapacity)
1042
memmove((char*)dictBuffer + hSize, (char*)dictBuffer + dictBufferCapacity - dictContentSize, dictContentSize);
1043
return MIN(dictBufferCapacity, hSize+dictContentSize);
1044
}
1045
1046
/*! ZDICT_trainFromBuffer_unsafe_legacy() :
1047
* Warning : `samplesBuffer` must be followed by noisy guard band !!!
1048
* @return : size of dictionary, or an error code which can be tested with ZDICT_isError()
1049
*/
1050
/* Begin FreeBSD - This symbol is needed by dll-linked CLI zstd(1). */
1051
ZSTDLIB_API
1052
/* End FreeBSD */
1053
static size_t ZDICT_trainFromBuffer_unsafe_legacy(
1054
void* dictBuffer, size_t maxDictSize,
1055
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
1056
ZDICT_legacy_params_t params)
1057
{
1058
U32 const dictListSize = MAX(MAX(DICTLISTSIZE_DEFAULT, nbSamples), (U32)(maxDictSize/16));
1059
dictItem* const dictList = (dictItem*)malloc(dictListSize * sizeof(*dictList));
1060
unsigned const selectivity = params.selectivityLevel == 0 ? g_selectivity_default : params.selectivityLevel;
1061
unsigned const minRep = (selectivity > 30) ? MINRATIO : nbSamples >> selectivity;
1062
size_t const targetDictSize = maxDictSize;
1063
size_t const samplesBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
1064
size_t dictSize = 0;
1065
U32 const notificationLevel = params.zParams.notificationLevel;
1066
1067
/* checks */
1068
if (!dictList) return ERROR(memory_allocation);
1069
if (maxDictSize < ZDICT_DICTSIZE_MIN) { free(dictList); return ERROR(dstSize_tooSmall); } /* requested dictionary size is too small */
1070
if (samplesBuffSize < ZDICT_MIN_SAMPLES_SIZE) { free(dictList); return ERROR(dictionaryCreation_failed); } /* not enough source to create dictionary */
1071
1072
/* init */
1073
ZDICT_initDictItem(dictList);
1074
1075
/* build dictionary */
1076
ZDICT_trainBuffer_legacy(dictList, dictListSize,
1077
samplesBuffer, samplesBuffSize,
1078
samplesSizes, nbSamples,
1079
minRep, notificationLevel);
1080
1081
/* display best matches */
1082
if (params.zParams.notificationLevel>= 3) {
1083
unsigned const nb = MIN(25, dictList[0].pos);
1084
unsigned const dictContentSize = ZDICT_dictSize(dictList);
1085
unsigned u;
1086
DISPLAYLEVEL(3, "\n %u segments found, of total size %u \n", (unsigned)dictList[0].pos-1, dictContentSize);
1087
DISPLAYLEVEL(3, "list %u best segments \n", nb-1);
1088
for (u=1; u<nb; u++) {
1089
unsigned const pos = dictList[u].pos;
1090
unsigned const length = dictList[u].length;
1091
U32 const printedLength = MIN(40, length);
1092
if ((pos > samplesBuffSize) || ((pos + length) > samplesBuffSize)) {
1093
free(dictList);
1094
return ERROR(GENERIC); /* should never happen */
1095
}
1096
DISPLAYLEVEL(3, "%3u:%3u bytes at pos %8u, savings %7u bytes |",
1097
u, length, pos, (unsigned)dictList[u].savings);
1098
ZDICT_printHex((const char*)samplesBuffer+pos, printedLength);
1099
DISPLAYLEVEL(3, "| \n");
1100
} }
1101
1102
1103
/* create dictionary */
1104
{ unsigned dictContentSize = ZDICT_dictSize(dictList);
1105
if (dictContentSize < ZDICT_CONTENTSIZE_MIN) { free(dictList); return ERROR(dictionaryCreation_failed); } /* dictionary content too small */
1106
if (dictContentSize < targetDictSize/4) {
1107
DISPLAYLEVEL(2, "! warning : selected content significantly smaller than requested (%u < %u) \n", dictContentSize, (unsigned)maxDictSize);
1108
if (samplesBuffSize < 10 * targetDictSize)
1109
DISPLAYLEVEL(2, "! consider increasing the number of samples (total size : %u MB)\n", (unsigned)(samplesBuffSize>>20));
1110
if (minRep > MINRATIO) {
1111
DISPLAYLEVEL(2, "! consider increasing selectivity to produce larger dictionary (-s%u) \n", selectivity+1);
1112
DISPLAYLEVEL(2, "! note : larger dictionaries are not necessarily better, test its efficiency on samples \n");
1113
}
1114
}
1115
1116
if ((dictContentSize > targetDictSize*3) && (nbSamples > 2*MINRATIO) && (selectivity>1)) {
1117
unsigned proposedSelectivity = selectivity-1;
1118
while ((nbSamples >> proposedSelectivity) <= MINRATIO) { proposedSelectivity--; }
1119
DISPLAYLEVEL(2, "! note : calculated dictionary significantly larger than requested (%u > %u) \n", dictContentSize, (unsigned)maxDictSize);
1120
DISPLAYLEVEL(2, "! consider increasing dictionary size, or produce denser dictionary (-s%u) \n", proposedSelectivity);
1121
DISPLAYLEVEL(2, "! always test dictionary efficiency on real samples \n");
1122
}
1123
1124
/* limit dictionary size */
1125
{ U32 const max = dictList->pos; /* convention : nb of useful elts within dictList */
1126
U32 currentSize = 0;
1127
U32 n; for (n=1; n<max; n++) {
1128
currentSize += dictList[n].length;
1129
if (currentSize > targetDictSize) { currentSize -= dictList[n].length; break; }
1130
}
1131
dictList->pos = n;
1132
dictContentSize = currentSize;
1133
}
1134
1135
/* build dict content */
1136
{ U32 u;
1137
BYTE* ptr = (BYTE*)dictBuffer + maxDictSize;
1138
for (u=1; u<dictList->pos; u++) {
1139
U32 l = dictList[u].length;
1140
ptr -= l;
1141
if (ptr<(BYTE*)dictBuffer) { free(dictList); return ERROR(GENERIC); } /* should not happen */
1142
memcpy(ptr, (const char*)samplesBuffer+dictList[u].pos, l);
1143
} }
1144
1145
dictSize = ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, maxDictSize,
1146
samplesBuffer, samplesSizes, nbSamples,
1147
params.zParams);
1148
}
1149
1150
/* clean up */
1151
free(dictList);
1152
return dictSize;
1153
}
1154
1155
1156
/* ZDICT_trainFromBuffer_legacy() :
1157
* issue : samplesBuffer need to be followed by a noisy guard band.
1158
* work around : duplicate the buffer, and add the noise */
1159
size_t ZDICT_trainFromBuffer_legacy(void* dictBuffer, size_t dictBufferCapacity,
1160
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
1161
ZDICT_legacy_params_t params)
1162
{
1163
size_t result;
1164
void* newBuff;
1165
size_t const sBuffSize = ZDICT_totalSampleSize(samplesSizes, nbSamples);
1166
if (sBuffSize < ZDICT_MIN_SAMPLES_SIZE) return 0; /* not enough content => no dictionary */
1167
1168
newBuff = malloc(sBuffSize + NOISELENGTH);
1169
if (!newBuff) return ERROR(memory_allocation);
1170
1171
memcpy(newBuff, samplesBuffer, sBuffSize);
1172
ZDICT_fillNoise((char*)newBuff + sBuffSize, NOISELENGTH); /* guard band, for end of buffer condition */
1173
1174
result =
1175
ZDICT_trainFromBuffer_unsafe_legacy(dictBuffer, dictBufferCapacity, newBuff,
1176
samplesSizes, nbSamples, params);
1177
free(newBuff);
1178
return result;
1179
}
1180
1181
1182
size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
1183
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
1184
{
1185
ZDICT_fastCover_params_t params;
1186
DEBUGLOG(3, "ZDICT_trainFromBuffer");
1187
memset(&params, 0, sizeof(params));
1188
params.d = 8;
1189
params.steps = 4;
1190
/* Use default level since no compression level information is available */
1191
params.zParams.compressionLevel = ZSTD_CLEVEL_DEFAULT;
1192
#if defined(DEBUGLEVEL) && (DEBUGLEVEL>=1)
1193
params.zParams.notificationLevel = DEBUGLEVEL;
1194
#endif
1195
return ZDICT_optimizeTrainFromBuffer_fastCover(dictBuffer, dictBufferCapacity,
1196
samplesBuffer, samplesSizes, nbSamples,
1197
&params);
1198
}
1199
1200
size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
1201
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples)
1202
{
1203
ZDICT_params_t params;
1204
memset(&params, 0, sizeof(params));
1205
return ZDICT_addEntropyTablesFromBuffer_advanced(dictBuffer, dictContentSize, dictBufferCapacity,
1206
samplesBuffer, samplesSizes, nbSamples,
1207
params);
1208
}
1209
1210