Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/crypto/aesni/intel_sha256.c
39478 views
1
/*******************************************************************************
2
* Copyright (c) 2013, Intel Corporation
3
*
4
* All rights reserved.
5
*
6
* Redistribution and use in source and binary forms, with or without
7
* modification, are permitted provided that the following conditions are
8
* met:
9
*
10
* * Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
*
13
* * Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the
16
* distribution.
17
*
18
* * Neither the name of the Intel Corporation nor the names of its
19
* contributors may be used to endorse or promote products derived from
20
* this software without specific prior written permission.
21
*
22
*
23
* THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
24
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
27
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34
********************************************************************************
35
*
36
* Intel SHA Extensions optimized implementation of a SHA-256 update function
37
*
38
* The function takes a pointer to the current hash values, a pointer to the
39
* input data, and a number of 64 byte blocks to process. Once all blocks have
40
* been processed, the digest pointer is updated with the resulting hash value.
41
* The function only processes complete blocks, there is no functionality to
42
* store partial blocks. All message padding and hash value initialization must
43
* be done outside the update function.
44
*
45
* The indented lines in the loop are instructions related to rounds processing.
46
* The non-indented lines are instructions related to the message schedule.
47
*
48
* Author: Sean Gulley <[email protected]>
49
* Date: July 2013
50
*
51
********************************************************************************
52
*
53
* Example complier command line:
54
* icc intel_sha_extensions_sha256_intrinsic.c
55
* gcc -msha -msse4 intel_sha_extensions_sha256_intrinsic.c
56
*
57
*******************************************************************************/
58
59
#include <sys/types.h>
60
#include <crypto/aesni/aesni_os.h>
61
#include <crypto/aesni/sha_sse.h>
62
63
#include <immintrin.h>
64
65
void intel_sha256_step(uint32_t *digest, const char *data, uint32_t num_blks) {
66
__m128i state0, state1;
67
__m128i msg;
68
__m128i msgtmp0, msgtmp1, msgtmp2, msgtmp3;
69
__m128i tmp;
70
__m128i shuf_mask;
71
__m128i abef_save, cdgh_save;
72
73
// Load initial hash values
74
// Need to reorder these appropriately
75
// DCBA, HGFE -> ABEF, CDGH
76
tmp = _mm_loadu_si128((__m128i*) digest);
77
state1 = _mm_loadu_si128((__m128i*) (digest+4));
78
79
tmp = _mm_shuffle_epi32(tmp, 0xB1); // CDAB
80
state1 = _mm_shuffle_epi32(state1, 0x1B); // EFGH
81
state0 = _mm_alignr_epi8(tmp, state1, 8); // ABEF
82
state1 = _mm_blend_epi16(state1, tmp, 0xF0); // CDGH
83
84
shuf_mask = _mm_set_epi64x(0x0c0d0e0f08090a0bull, 0x0405060700010203ull);
85
86
while (num_blks > 0) {
87
// Save hash values for addition after rounds
88
abef_save = state0;
89
cdgh_save = state1;
90
91
// Rounds 0-3
92
msg = _mm_loadu_si128((const __m128i*) data);
93
msgtmp0 = _mm_shuffle_epi8(msg, shuf_mask);
94
msg = _mm_add_epi32(msgtmp0,
95
_mm_set_epi64x(0xE9B5DBA5B5C0FBCFull, 0x71374491428A2F98ull));
96
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
97
msg = _mm_shuffle_epi32(msg, 0x0E);
98
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
99
100
// Rounds 4-7
101
msgtmp1 = _mm_loadu_si128((const __m128i*) (data+16));
102
msgtmp1 = _mm_shuffle_epi8(msgtmp1, shuf_mask);
103
msg = _mm_add_epi32(msgtmp1,
104
_mm_set_epi64x(0xAB1C5ED5923F82A4ull, 0x59F111F13956C25Bull));
105
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
106
msg = _mm_shuffle_epi32(msg, 0x0E);
107
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
108
msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1);
109
110
// Rounds 8-11
111
msgtmp2 = _mm_loadu_si128((const __m128i*) (data+32));
112
msgtmp2 = _mm_shuffle_epi8(msgtmp2, shuf_mask);
113
msg = _mm_add_epi32(msgtmp2,
114
_mm_set_epi64x(0x550C7DC3243185BEull, 0x12835B01D807AA98ull));
115
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
116
msg = _mm_shuffle_epi32(msg, 0x0E);
117
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
118
msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2);
119
120
// Rounds 12-15
121
msgtmp3 = _mm_loadu_si128((const __m128i*) (data+48));
122
msgtmp3 = _mm_shuffle_epi8(msgtmp3, shuf_mask);
123
msg = _mm_add_epi32(msgtmp3,
124
_mm_set_epi64x(0xC19BF1749BDC06A7ull, 0x80DEB1FE72BE5D74ull));
125
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
126
tmp = _mm_alignr_epi8(msgtmp3, msgtmp2, 4);
127
msgtmp0 = _mm_add_epi32(msgtmp0, tmp);
128
msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3);
129
msg = _mm_shuffle_epi32(msg, 0x0E);
130
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
131
msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3);
132
133
// Rounds 16-19
134
msg = _mm_add_epi32(msgtmp0,
135
_mm_set_epi64x(0x240CA1CC0FC19DC6ull, 0xEFBE4786E49B69C1ull));
136
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
137
tmp = _mm_alignr_epi8(msgtmp0, msgtmp3, 4);
138
msgtmp1 = _mm_add_epi32(msgtmp1, tmp);
139
msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0);
140
msg = _mm_shuffle_epi32(msg, 0x0E);
141
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
142
msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0);
143
144
// Rounds 20-23
145
msg = _mm_add_epi32(msgtmp1,
146
_mm_set_epi64x(0x76F988DA5CB0A9DCull, 0x4A7484AA2DE92C6Full));
147
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
148
tmp = _mm_alignr_epi8(msgtmp1, msgtmp0, 4);
149
msgtmp2 = _mm_add_epi32(msgtmp2, tmp);
150
msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1);
151
msg = _mm_shuffle_epi32(msg, 0x0E);
152
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
153
msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1);
154
155
// Rounds 24-27
156
msg = _mm_add_epi32(msgtmp2,
157
_mm_set_epi64x(0xBF597FC7B00327C8ull, 0xA831C66D983E5152ull));
158
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
159
tmp = _mm_alignr_epi8(msgtmp2, msgtmp1, 4);
160
msgtmp3 = _mm_add_epi32(msgtmp3, tmp);
161
msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2);
162
msg = _mm_shuffle_epi32(msg, 0x0E);
163
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
164
msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2);
165
166
// Rounds 28-31
167
msg = _mm_add_epi32(msgtmp3,
168
_mm_set_epi64x(0x1429296706CA6351ull, 0xD5A79147C6E00BF3ull));
169
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
170
tmp = _mm_alignr_epi8(msgtmp3, msgtmp2, 4);
171
msgtmp0 = _mm_add_epi32(msgtmp0, tmp);
172
msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3);
173
msg = _mm_shuffle_epi32(msg, 0x0E);
174
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
175
msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3);
176
177
// Rounds 32-35
178
msg = _mm_add_epi32(msgtmp0,
179
_mm_set_epi64x(0x53380D134D2C6DFCull, 0x2E1B213827B70A85ull));
180
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
181
tmp = _mm_alignr_epi8(msgtmp0, msgtmp3, 4);
182
msgtmp1 = _mm_add_epi32(msgtmp1, tmp);
183
msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0);
184
msg = _mm_shuffle_epi32(msg, 0x0E);
185
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
186
msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0);
187
188
// Rounds 36-39
189
msg = _mm_add_epi32(msgtmp1,
190
_mm_set_epi64x(0x92722C8581C2C92Eull, 0x766A0ABB650A7354ull));
191
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
192
tmp = _mm_alignr_epi8(msgtmp1, msgtmp0, 4);
193
msgtmp2 = _mm_add_epi32(msgtmp2, tmp);
194
msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1);
195
msg = _mm_shuffle_epi32(msg, 0x0E);
196
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
197
msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1);
198
199
// Rounds 40-43
200
msg = _mm_add_epi32(msgtmp2,
201
_mm_set_epi64x(0xC76C51A3C24B8B70ull, 0xA81A664BA2BFE8A1ull));
202
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
203
tmp = _mm_alignr_epi8(msgtmp2, msgtmp1, 4);
204
msgtmp3 = _mm_add_epi32(msgtmp3, tmp);
205
msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2);
206
msg = _mm_shuffle_epi32(msg, 0x0E);
207
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
208
msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2);
209
210
// Rounds 44-47
211
msg = _mm_add_epi32(msgtmp3,
212
_mm_set_epi64x(0x106AA070F40E3585ull, 0xD6990624D192E819ull));
213
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
214
tmp = _mm_alignr_epi8(msgtmp3, msgtmp2, 4);
215
msgtmp0 = _mm_add_epi32(msgtmp0, tmp);
216
msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3);
217
msg = _mm_shuffle_epi32(msg, 0x0E);
218
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
219
msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3);
220
221
// Rounds 48-51
222
msg = _mm_add_epi32(msgtmp0,
223
_mm_set_epi64x(0x34B0BCB52748774Cull, 0x1E376C0819A4C116ull));
224
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
225
tmp = _mm_alignr_epi8(msgtmp0, msgtmp3, 4);
226
msgtmp1 = _mm_add_epi32(msgtmp1, tmp);
227
msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0);
228
msg = _mm_shuffle_epi32(msg, 0x0E);
229
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
230
msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0);
231
232
// Rounds 52-55
233
msg = _mm_add_epi32(msgtmp1,
234
_mm_set_epi64x(0x682E6FF35B9CCA4Full, 0x4ED8AA4A391C0CB3ull));
235
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
236
tmp = _mm_alignr_epi8(msgtmp1, msgtmp0, 4);
237
msgtmp2 = _mm_add_epi32(msgtmp2, tmp);
238
msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1);
239
msg = _mm_shuffle_epi32(msg, 0x0E);
240
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
241
242
// Rounds 56-59
243
msg = _mm_add_epi32(msgtmp2,
244
_mm_set_epi64x(0x8CC7020884C87814ull, 0x78A5636F748F82EEull));
245
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
246
tmp = _mm_alignr_epi8(msgtmp2, msgtmp1, 4);
247
msgtmp3 = _mm_add_epi32(msgtmp3, tmp);
248
msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2);
249
msg = _mm_shuffle_epi32(msg, 0x0E);
250
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
251
252
// Rounds 60-63
253
msg = _mm_add_epi32(msgtmp3,
254
_mm_set_epi64x(0xC67178F2BEF9A3F7ull, 0xA4506CEB90BEFFFAull));
255
state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
256
msg = _mm_shuffle_epi32(msg, 0x0E);
257
state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
258
259
// Add current hash values with previously saved
260
state0 = _mm_add_epi32(state0, abef_save);
261
state1 = _mm_add_epi32(state1, cdgh_save);
262
263
data += 64;
264
num_blks--;
265
}
266
267
// Write hash values back in the correct order
268
tmp = _mm_shuffle_epi32(state0, 0x1B); // FEBA
269
state1 = _mm_shuffle_epi32(state1, 0xB1); // DCHG
270
state0 = _mm_blend_epi16(tmp, state1, 0xF0); // DCBA
271
state1 = _mm_alignr_epi8(state1, tmp, 8); // ABEF
272
273
_mm_store_si128((__m128i*) digest, state0);
274
_mm_store_si128((__m128i*) (digest+4), state1);
275
}
276
277
278