Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/crypto/sha2/sha256c.c
104873 views
1
/*-
2
* Copyright 2005 Colin Percival
3
* All rights reserved.
4
*
5
* Redistribution and use in source and binary forms, with or without
6
* modification, are permitted provided that the following conditions
7
* are met:
8
* 1. Redistributions of source code must retain the above copyright
9
* notice, this list of conditions and the following disclaimer.
10
* 2. Redistributions in binary form must reproduce the above copyright
11
* notice, this list of conditions and the following disclaimer in the
12
* documentation and/or other materials provided with the distribution.
13
*
14
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24
* SUCH DAMAGE.
25
*/
26
27
#include <sys/cdefs.h>
28
#include <sys/endian.h>
29
#include <sys/types.h>
30
31
#ifdef _KERNEL
32
#include <sys/systm.h>
33
#else
34
#include <string.h>
35
#endif
36
37
#include "sha224.h"
38
#include "sha256.h"
39
#include "sha256c_impl.h"
40
41
#if defined(ARM64_SHA2)
42
#include <sys/auxv.h>
43
#include <machine/ifunc.h>
44
#endif
45
46
#if BYTE_ORDER == BIG_ENDIAN
47
48
/* Copy a vector of big-endian uint32_t into a vector of bytes */
49
#define be32enc_vect(dst, src, len) \
50
memcpy((void *)dst, (const void *)src, (size_t)len)
51
52
/* Copy a vector of bytes into a vector of big-endian uint32_t */
53
#define be32dec_vect(dst, src, len) \
54
memcpy((void *)dst, (const void *)src, (size_t)len)
55
56
#else /* BYTE_ORDER != BIG_ENDIAN */
57
58
/*
59
* Encode a length len/4 vector of (uint32_t) into a length len vector of
60
* (unsigned char) in big-endian form. Assumes len is a multiple of 4.
61
*/
62
static void
63
be32enc_vect(unsigned char *dst, const uint32_t *src, size_t len)
64
{
65
size_t i;
66
67
for (i = 0; i < len / 4; i++)
68
be32enc(dst + i * 4, src[i]);
69
}
70
71
/*
72
* Decode a big-endian length len vector of (unsigned char) into a length
73
* len/4 vector of (uint32_t). Assumes len is a multiple of 4.
74
*/
75
static void
76
be32dec_vect(uint32_t *dst, const unsigned char *src, size_t len)
77
{
78
size_t i;
79
80
for (i = 0; i < len / 4; i++)
81
dst[i] = be32dec(src + i * 4);
82
}
83
84
#endif /* BYTE_ORDER != BIG_ENDIAN */
85
86
/* SHA256 round constants. */
87
static const uint32_t K[64] = {
88
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
89
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
90
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
91
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
92
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
93
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
94
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
95
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
96
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
97
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
98
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
99
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
100
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
101
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
102
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
103
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
104
};
105
106
/* Elementary functions used by SHA256 */
107
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
108
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
109
#define SHR(x, n) (x >> n)
110
#define ROTR(x, n) ((x >> n) | (x << (32 - n)))
111
#define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
112
#define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
113
#define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
114
#define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
115
116
/* SHA256 round function */
117
#define RND(a, b, c, d, e, f, g, h, k) \
118
h += S1(e) + Ch(e, f, g) + k; \
119
d += h; \
120
h += S0(a) + Maj(a, b, c);
121
122
/* Adjusted round function for rotating state */
123
#define RNDr(S, W, i, ii) \
124
RND(S[(64 - i) % 8], S[(65 - i) % 8], \
125
S[(66 - i) % 8], S[(67 - i) % 8], \
126
S[(68 - i) % 8], S[(69 - i) % 8], \
127
S[(70 - i) % 8], S[(71 - i) % 8], \
128
W[i + ii] + K[i + ii])
129
130
/* Message schedule computation */
131
#define MSCH(W, ii, i) \
132
W[i + ii + 16] = s1(W[i + ii + 14]) + W[i + ii + 9] + s0(W[i + ii + 1]) + W[i + ii]
133
134
/*
135
* SHA256 block compression function. The 256-bit state is transformed via
136
* the 512-bit input block to produce a new state.
137
*/
138
static void
139
#if defined(ARM64_SHA2)
140
SHA256_Transform_c(uint32_t * state, const unsigned char block[64])
141
#else
142
SHA256_Transform(uint32_t * state, const unsigned char block[64])
143
#endif
144
{
145
uint32_t W[64];
146
uint32_t S[8];
147
int i;
148
149
/* 1. Prepare the first part of the message schedule W. */
150
be32dec_vect(W, block, 64);
151
152
/* 2. Initialize working variables. */
153
memcpy(S, state, 32);
154
155
/* 3. Mix. */
156
for (i = 0; i < 64; i += 16) {
157
RNDr(S, W, 0, i);
158
RNDr(S, W, 1, i);
159
RNDr(S, W, 2, i);
160
RNDr(S, W, 3, i);
161
RNDr(S, W, 4, i);
162
RNDr(S, W, 5, i);
163
RNDr(S, W, 6, i);
164
RNDr(S, W, 7, i);
165
RNDr(S, W, 8, i);
166
RNDr(S, W, 9, i);
167
RNDr(S, W, 10, i);
168
RNDr(S, W, 11, i);
169
RNDr(S, W, 12, i);
170
RNDr(S, W, 13, i);
171
RNDr(S, W, 14, i);
172
RNDr(S, W, 15, i);
173
174
if (i == 48)
175
break;
176
MSCH(W, 0, i);
177
MSCH(W, 1, i);
178
MSCH(W, 2, i);
179
MSCH(W, 3, i);
180
MSCH(W, 4, i);
181
MSCH(W, 5, i);
182
MSCH(W, 6, i);
183
MSCH(W, 7, i);
184
MSCH(W, 8, i);
185
MSCH(W, 9, i);
186
MSCH(W, 10, i);
187
MSCH(W, 11, i);
188
MSCH(W, 12, i);
189
MSCH(W, 13, i);
190
MSCH(W, 14, i);
191
MSCH(W, 15, i);
192
}
193
194
/* 4. Mix local working variables into global state */
195
for (i = 0; i < 8; i++)
196
state[i] += S[i];
197
}
198
199
#if defined(ARM64_SHA2)
200
static void
201
SHA256_Transform_arm64(uint32_t * state, const unsigned char block[64])
202
{
203
SHA256_Transform_arm64_impl(state, block, K);
204
}
205
206
DEFINE_UIFUNC(static, void, SHA256_Transform,
207
(uint32_t * state, const unsigned char block[64]))
208
{
209
if ((at_hwcap & HWCAP_SHA2) != 0)
210
return (SHA256_Transform_arm64);
211
212
return (SHA256_Transform_c);
213
}
214
#endif
215
216
static unsigned char PAD[64] = {
217
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
218
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
219
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
220
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
221
};
222
223
/* Add padding and terminating bit-count. */
224
static void
225
SHA256_Pad(SHA256_CTX * ctx)
226
{
227
size_t r;
228
229
/* Figure out how many bytes we have buffered. */
230
r = (ctx->count >> 3) & 0x3f;
231
232
/* Pad to 56 mod 64, transforming if we finish a block en route. */
233
if (r < 56) {
234
/* Pad to 56 mod 64. */
235
memcpy(&ctx->buf[r], PAD, 56 - r);
236
} else {
237
/* Finish the current block and mix. */
238
memcpy(&ctx->buf[r], PAD, 64 - r);
239
SHA256_Transform(ctx->state, ctx->buf);
240
241
/* The start of the final block is all zeroes. */
242
memset(&ctx->buf[0], 0, 56);
243
}
244
245
/* Add the terminating bit-count. */
246
be64enc(&ctx->buf[56], ctx->count);
247
248
/* Mix in the final block. */
249
SHA256_Transform(ctx->state, ctx->buf);
250
}
251
252
/* SHA-256 initialization. Begins a SHA-256 operation. */
253
void
254
SHA256_Init(SHA256_CTX * ctx)
255
{
256
257
/* Zero bits processed so far */
258
ctx->count = 0;
259
260
/* Magic initialization constants */
261
ctx->state[0] = 0x6A09E667;
262
ctx->state[1] = 0xBB67AE85;
263
ctx->state[2] = 0x3C6EF372;
264
ctx->state[3] = 0xA54FF53A;
265
ctx->state[4] = 0x510E527F;
266
ctx->state[5] = 0x9B05688C;
267
ctx->state[6] = 0x1F83D9AB;
268
ctx->state[7] = 0x5BE0CD19;
269
}
270
271
/* Add bytes into the hash */
272
void
273
SHA256_Update(SHA256_CTX * ctx, const void *in, size_t len)
274
{
275
uint64_t bitlen;
276
uint32_t r;
277
const unsigned char *src = in;
278
279
/* Number of bytes left in the buffer from previous updates */
280
r = (ctx->count >> 3) & 0x3f;
281
282
/* Convert the length into a number of bits */
283
bitlen = len << 3;
284
285
/* Update number of bits */
286
ctx->count += bitlen;
287
288
/* Handle the case where we don't need to perform any transforms */
289
if (len < 64 - r) {
290
memcpy(&ctx->buf[r], src, len);
291
return;
292
}
293
294
/* Finish the current block */
295
memcpy(&ctx->buf[r], src, 64 - r);
296
SHA256_Transform(ctx->state, ctx->buf);
297
src += 64 - r;
298
len -= 64 - r;
299
300
/* Perform complete blocks */
301
while (len >= 64) {
302
SHA256_Transform(ctx->state, src);
303
src += 64;
304
len -= 64;
305
}
306
307
/* Copy left over data into buffer */
308
memcpy(ctx->buf, src, len);
309
}
310
311
/*
312
* SHA-256 finalization. Pads the input data, exports the hash value,
313
* and clears the context state.
314
*/
315
void
316
SHA256_Final(unsigned char digest[static SHA256_DIGEST_LENGTH], SHA256_CTX *ctx)
317
{
318
319
/* Add padding */
320
SHA256_Pad(ctx);
321
322
/* Write the hash */
323
be32enc_vect(digest, ctx->state, SHA256_DIGEST_LENGTH);
324
325
/* Clear the context state */
326
explicit_bzero(ctx, sizeof(*ctx));
327
}
328
329
/*** SHA-224: *********************************************************/
330
/*
331
* the SHA224 and SHA256 transforms are identical
332
*/
333
334
/* SHA-224 initialization. Begins a SHA-224 operation. */
335
void
336
SHA224_Init(SHA224_CTX * ctx)
337
{
338
339
/* Zero bits processed so far */
340
ctx->count = 0;
341
342
/* Magic initialization constants */
343
ctx->state[0] = 0xC1059ED8;
344
ctx->state[1] = 0x367CD507;
345
ctx->state[2] = 0x3070DD17;
346
ctx->state[3] = 0xF70E5939;
347
ctx->state[4] = 0xFFC00B31;
348
ctx->state[5] = 0x68581511;
349
ctx->state[6] = 0x64f98FA7;
350
ctx->state[7] = 0xBEFA4FA4;
351
}
352
353
/* Add bytes into the SHA-224 hash */
354
void
355
SHA224_Update(SHA224_CTX * ctx, const void *in, size_t len)
356
{
357
358
SHA256_Update((SHA256_CTX *)ctx, in, len);
359
}
360
361
/*
362
* SHA-224 finalization. Pads the input data, exports the hash value,
363
* and clears the context state.
364
*/
365
void
366
SHA224_Final(unsigned char digest[static SHA224_DIGEST_LENGTH], SHA224_CTX *ctx)
367
{
368
369
/* Add padding */
370
SHA256_Pad((SHA256_CTX *)ctx);
371
372
/* Write the hash */
373
be32enc_vect(digest, ctx->state, SHA224_DIGEST_LENGTH);
374
375
/* Clear the context state */
376
explicit_bzero(ctx, sizeof(*ctx));
377
}
378
379
#ifdef WEAK_REFS
380
/* When building libmd, provide weak references. Note: this is not
381
activated in the context of compiling these sources for internal
382
use in libcrypt.
383
*/
384
#undef SHA256_Init
385
__weak_reference(_libmd_SHA256_Init, SHA256_Init);
386
#undef SHA256_Update
387
__weak_reference(_libmd_SHA256_Update, SHA256_Update);
388
#undef SHA256_Final
389
__weak_reference(_libmd_SHA256_Final, SHA256_Final);
390
391
#undef SHA224_Init
392
__weak_reference(_libmd_SHA224_Init, SHA224_Init);
393
#undef SHA224_Update
394
__weak_reference(_libmd_SHA224_Update, SHA224_Update);
395
#undef SHA224_Final
396
__weak_reference(_libmd_SHA224_Final, SHA224_Final);
397
#endif
398
399