#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/malloc.h>
#include <sys/libkern.h>
#include <sys/pcpu.h>
#include <sys/uio.h>
#include <machine/fpu.h>
#include <opencrypto/cryptodev.h>
#include <crypto/rijndael/rijndael.h>
#include <crypto/via/padlock.h>
#define PADLOCK_ROUND_COUNT_AES128 10
#define PADLOCK_ROUND_COUNT_AES192 12
#define PADLOCK_ROUND_COUNT_AES256 14
#define PADLOCK_ALGORITHM_TYPE_AES 0
#define PADLOCK_KEY_GENERATION_HW 0
#define PADLOCK_KEY_GENERATION_SW 1
#define PADLOCK_DIRECTION_ENCRYPT 0
#define PADLOCK_DIRECTION_DECRYPT 1
#define PADLOCK_KEY_SIZE_128 0
#define PADLOCK_KEY_SIZE_192 1
#define PADLOCK_KEY_SIZE_256 2
MALLOC_DECLARE(M_PADLOCK);
static __inline void
padlock_cbc(void *in, void *out, size_t count, void *key, union padlock_cw *cw,
void *iv)
{
__asm __volatile(
"pushf \n\t"
"popf \n\t"
"rep \n\t"
".byte 0x0f, 0xa7, 0xd0"
: "+a" (iv), "+c" (count), "+D" (out), "+S" (in)
: "b" (key), "d" (cw)
: "cc", "memory"
);
}
static void
padlock_cipher_key_setup(struct padlock_session *ses, const void *key, int klen)
{
union padlock_cw *cw;
int i;
cw = &ses->ses_cw;
if (cw->cw_key_generation == PADLOCK_KEY_GENERATION_SW) {
rijndaelKeySetupEnc(ses->ses_ekey, key, klen * 8);
rijndaelKeySetupDec(ses->ses_dkey, key, klen * 8);
for (i = 0; i < 4 * (RIJNDAEL_MAXNR + 1); i++) {
ses->ses_ekey[i] = ntohl(ses->ses_ekey[i]);
ses->ses_dkey[i] = ntohl(ses->ses_dkey[i]);
}
} else {
bcopy(key, ses->ses_ekey, klen);
bcopy(key, ses->ses_dkey, klen);
}
}
int
padlock_cipher_setup(struct padlock_session *ses,
const struct crypto_session_params *csp)
{
union padlock_cw *cw;
if (csp->csp_cipher_klen != 16 && csp->csp_cipher_klen != 24 &&
csp->csp_cipher_klen != 32) {
return (EINVAL);
}
cw = &ses->ses_cw;
bzero(cw, sizeof(*cw));
cw->cw_algorithm_type = PADLOCK_ALGORITHM_TYPE_AES;
cw->cw_key_generation = PADLOCK_KEY_GENERATION_SW;
cw->cw_intermediate = 0;
switch (csp->csp_cipher_klen * 8) {
case 128:
cw->cw_round_count = PADLOCK_ROUND_COUNT_AES128;
cw->cw_key_size = PADLOCK_KEY_SIZE_128;
#ifdef HW_KEY_GENERATION
cw->cw_key_generation = PADLOCK_KEY_GENERATION_HW;
#endif
break;
case 192:
cw->cw_round_count = PADLOCK_ROUND_COUNT_AES192;
cw->cw_key_size = PADLOCK_KEY_SIZE_192;
break;
case 256:
cw->cw_round_count = PADLOCK_ROUND_COUNT_AES256;
cw->cw_key_size = PADLOCK_KEY_SIZE_256;
break;
}
if (csp->csp_cipher_key != NULL) {
padlock_cipher_key_setup(ses, csp->csp_cipher_key,
csp->csp_cipher_klen);
}
return (0);
}
static u_char *
padlock_cipher_alloc(struct cryptop *crp, int *allocated)
{
u_char *addr;
addr = crypto_contiguous_subsegment(crp, crp->crp_payload_start,
crp->crp_payload_length);
if (((uintptr_t)addr & 0xf) == 0) {
*allocated = 0;
return (addr);
}
*allocated = 1;
addr = malloc(crp->crp_payload_length + 16, M_PADLOCK, M_NOWAIT);
return (addr);
}
int
padlock_cipher_process(struct padlock_session *ses, struct cryptop *crp,
const struct crypto_session_params *csp)
{
union padlock_cw *cw;
struct thread *td;
u_char *buf, *abuf;
uint32_t *key;
uint8_t iv[AES_BLOCK_LEN] __aligned(16);
int allocated;
buf = padlock_cipher_alloc(crp, &allocated);
if (buf == NULL)
return (ENOMEM);
abuf = PADLOCK_ALIGN(buf);
if (crp->crp_cipher_key != NULL) {
padlock_cipher_key_setup(ses, crp->crp_cipher_key,
csp->csp_cipher_klen);
}
cw = &ses->ses_cw;
cw->cw_filler0 = 0;
cw->cw_filler1 = 0;
cw->cw_filler2 = 0;
cw->cw_filler3 = 0;
crypto_read_iv(crp, iv);
if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
cw->cw_direction = PADLOCK_DIRECTION_ENCRYPT;
key = ses->ses_ekey;
} else {
cw->cw_direction = PADLOCK_DIRECTION_DECRYPT;
key = ses->ses_dkey;
}
if (allocated) {
crypto_copydata(crp, crp->crp_payload_start,
crp->crp_payload_length, abuf);
}
td = curthread;
fpu_kern_enter(td, NULL, FPU_KERN_NORMAL | FPU_KERN_NOCTX);
padlock_cbc(abuf, abuf, crp->crp_payload_length / AES_BLOCK_LEN, key,
cw, iv);
fpu_kern_leave(td, NULL);
if (allocated) {
crypto_copyback(crp, crp->crp_payload_start,
crp->crp_payload_length, abuf);
zfree(buf, M_PADLOCK);
}
return (0);
}