Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/acpica/acpi.c
104814 views
1
/*-
2
* Copyright (c) 2000 Takanori Watanabe <[email protected]>
3
* Copyright (c) 2000 Mitsuru IWASAKI <[email protected]>
4
* Copyright (c) 2000, 2001 Michael Smith
5
* Copyright (c) 2000 BSDi
6
* All rights reserved.
7
* Copyright (c) 2025 The FreeBSD Foundation
8
*
9
* Portions of this software were developed by Aymeric Wibo
10
* <[email protected]> under sponsorship from the FreeBSD Foundation.
11
*
12
* Redistribution and use in source and binary forms, with or without
13
* modification, are permitted provided that the following conditions
14
* are met:
15
* 1. Redistributions of source code must retain the above copyright
16
* notice, this list of conditions and the following disclaimer.
17
* 2. Redistributions in binary form must reproduce the above copyright
18
* notice, this list of conditions and the following disclaimer in the
19
* documentation and/or other materials provided with the distribution.
20
*
21
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
22
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
25
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31
* SUCH DAMAGE.
32
*/
33
34
#include <sys/cdefs.h>
35
#include "opt_acpi.h"
36
37
#include <sys/param.h>
38
#include <sys/eventhandler.h>
39
#include <sys/kernel.h>
40
#include <sys/proc.h>
41
#include <sys/fcntl.h>
42
#include <sys/malloc.h>
43
#include <sys/module.h>
44
#include <sys/bus.h>
45
#include <sys/conf.h>
46
#include <sys/ioccom.h>
47
#include <sys/reboot.h>
48
#include <sys/sysctl.h>
49
#include <sys/ctype.h>
50
#include <sys/linker.h>
51
#include <sys/mount.h>
52
#include <sys/power.h>
53
#include <sys/sbuf.h>
54
#include <sys/sched.h>
55
#include <sys/smp.h>
56
#include <sys/timetc.h>
57
#include <sys/uuid.h>
58
59
#if defined(__i386__) || defined(__amd64__)
60
#include <machine/clock.h>
61
#include <machine/intr_machdep.h>
62
#include <machine/pci_cfgreg.h>
63
#include <x86/cputypes.h>
64
#include <x86/x86_var.h>
65
#endif
66
#include <machine/resource.h>
67
#include <machine/bus.h>
68
#include <sys/rman.h>
69
#include <isa/isavar.h>
70
#include <isa/pnpvar.h>
71
72
#include <contrib/dev/acpica/include/acpi.h>
73
#include <contrib/dev/acpica/include/accommon.h>
74
#include <contrib/dev/acpica/include/acnamesp.h>
75
76
#include <dev/acpica/acpivar.h>
77
#include <dev/acpica/acpiio.h>
78
79
#include <dev/pci/pcivar.h>
80
81
#include <vm/vm_param.h>
82
83
static MALLOC_DEFINE(M_ACPIDEV, "acpidev", "ACPI devices");
84
85
/* Hooks for the ACPI CA debugging infrastructure */
86
#define _COMPONENT ACPI_BUS
87
ACPI_MODULE_NAME("ACPI")
88
89
static d_open_t acpiopen;
90
static d_close_t acpiclose;
91
static d_ioctl_t acpiioctl;
92
93
static struct cdevsw acpi_cdevsw = {
94
.d_version = D_VERSION,
95
.d_open = acpiopen,
96
.d_close = acpiclose,
97
.d_ioctl = acpiioctl,
98
.d_name = "acpi",
99
};
100
101
struct acpi_interface {
102
ACPI_STRING *data;
103
int num;
104
};
105
106
struct acpi_wake_prep_context {
107
struct acpi_softc *sc;
108
enum power_stype stype;
109
};
110
111
static char *sysres_ids[] = { "PNP0C01", "PNP0C02", NULL };
112
113
/* Global mutex for locking access to the ACPI subsystem. */
114
struct mtx acpi_mutex;
115
struct callout acpi_sleep_timer;
116
117
/* Bitmap of device quirks. */
118
int acpi_quirks;
119
120
/* Supported sleep states and types. */
121
static bool acpi_supported_stypes[POWER_STYPE_COUNT];
122
static bool acpi_supported_sstates[ACPI_S_STATE_COUNT];
123
124
static void acpi_lookup(void *arg, const char *name, device_t *dev);
125
static int acpi_modevent(struct module *mod, int event, void *junk);
126
127
static device_probe_t acpi_probe;
128
static device_attach_t acpi_attach;
129
static device_suspend_t acpi_suspend;
130
static device_resume_t acpi_resume;
131
static device_shutdown_t acpi_shutdown;
132
133
static bus_add_child_t acpi_add_child;
134
static bus_print_child_t acpi_print_child;
135
static bus_probe_nomatch_t acpi_probe_nomatch;
136
static bus_driver_added_t acpi_driver_added;
137
static bus_child_deleted_t acpi_child_deleted;
138
static bus_read_ivar_t acpi_read_ivar;
139
static bus_write_ivar_t acpi_write_ivar;
140
static bus_get_resource_list_t acpi_get_rlist;
141
static bus_get_rman_t acpi_get_rman;
142
static bus_set_resource_t acpi_set_resource;
143
static bus_alloc_resource_t acpi_alloc_resource;
144
static bus_adjust_resource_t acpi_adjust_resource;
145
static bus_release_resource_t acpi_release_resource;
146
static bus_delete_resource_t acpi_delete_resource;
147
static bus_activate_resource_t acpi_activate_resource;
148
static bus_deactivate_resource_t acpi_deactivate_resource;
149
static bus_map_resource_t acpi_map_resource;
150
static bus_unmap_resource_t acpi_unmap_resource;
151
static bus_child_pnpinfo_t acpi_child_pnpinfo_method;
152
static bus_child_location_t acpi_child_location_method;
153
static bus_hint_device_unit_t acpi_hint_device_unit;
154
static bus_get_property_t acpi_bus_get_prop;
155
static bus_get_device_path_t acpi_get_device_path;
156
static bus_get_domain_t acpi_get_domain_method;
157
158
static acpi_id_probe_t acpi_device_id_probe;
159
static acpi_evaluate_object_t acpi_device_eval_obj;
160
static acpi_get_property_t acpi_device_get_prop;
161
static acpi_scan_children_t acpi_device_scan_children;
162
163
static isa_pnp_probe_t acpi_isa_pnp_probe;
164
165
static void acpi_reserve_resources(device_t dev);
166
static int acpi_sysres_alloc(device_t dev);
167
static uint32_t acpi_isa_get_logicalid(device_t dev);
168
static int acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count);
169
static ACPI_STATUS acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level,
170
void *context, void **retval);
171
static ACPI_STATUS acpi_find_dsd(struct acpi_device *ad);
172
static void acpi_platform_osc(device_t dev);
173
static void acpi_probe_children(device_t bus);
174
static void acpi_probe_order(ACPI_HANDLE handle, int *order);
175
static ACPI_STATUS acpi_probe_child(ACPI_HANDLE handle, UINT32 level,
176
void *context, void **status);
177
static void acpi_sleep_enable(void *arg);
178
static ACPI_STATUS acpi_sleep_disable(struct acpi_softc *sc);
179
static ACPI_STATUS acpi_EnterSleepState(struct acpi_softc *sc,
180
enum power_stype stype);
181
static void acpi_shutdown_final(void *arg, int howto);
182
static void acpi_enable_fixed_events(struct acpi_softc *sc);
183
static void acpi_resync_clock(struct acpi_softc *sc);
184
static int acpi_wake_sleep_prep(struct acpi_softc *sc, ACPI_HANDLE handle,
185
enum power_stype stype);
186
static int acpi_wake_run_prep(struct acpi_softc *sc, ACPI_HANDLE handle,
187
enum power_stype stype);
188
static int acpi_wake_prep_walk(struct acpi_softc *sc, enum power_stype stype);
189
static int acpi_wake_sysctl_walk(device_t dev);
190
static int acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS);
191
static int acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
192
static void acpi_system_eventhandler_sleep(void *arg,
193
enum power_stype stype);
194
static void acpi_system_eventhandler_wakeup(void *arg,
195
enum power_stype stype);
196
static int acpi_s4bios_sysctl(SYSCTL_HANDLER_ARGS);
197
static enum power_stype acpi_sstate_to_stype(int sstate);
198
static int acpi_sname_to_sstate(const char *sname);
199
static const char *acpi_sstate_to_sname(int sstate);
200
static int acpi_suspend_state_sysctl(SYSCTL_HANDLER_ARGS);
201
static int acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS);
202
static int acpi_stype_sysctl(SYSCTL_HANDLER_ARGS);
203
static int acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS);
204
static int acpi_stype_to_sstate(struct acpi_softc *sc, enum power_stype stype);
205
static int acpi_pm_func(u_long cmd, void *arg, enum power_stype stype);
206
static void acpi_enable_pcie(void);
207
static void acpi_reset_interfaces(device_t dev);
208
209
static device_method_t acpi_methods[] = {
210
/* Device interface */
211
DEVMETHOD(device_probe, acpi_probe),
212
DEVMETHOD(device_attach, acpi_attach),
213
DEVMETHOD(device_shutdown, acpi_shutdown),
214
DEVMETHOD(device_detach, bus_generic_detach),
215
DEVMETHOD(device_suspend, acpi_suspend),
216
DEVMETHOD(device_resume, acpi_resume),
217
218
/* Bus interface */
219
DEVMETHOD(bus_add_child, acpi_add_child),
220
DEVMETHOD(bus_print_child, acpi_print_child),
221
DEVMETHOD(bus_probe_nomatch, acpi_probe_nomatch),
222
DEVMETHOD(bus_driver_added, acpi_driver_added),
223
DEVMETHOD(bus_child_deleted, acpi_child_deleted),
224
DEVMETHOD(bus_read_ivar, acpi_read_ivar),
225
DEVMETHOD(bus_write_ivar, acpi_write_ivar),
226
DEVMETHOD(bus_get_resource_list, acpi_get_rlist),
227
DEVMETHOD(bus_get_rman, acpi_get_rman),
228
DEVMETHOD(bus_set_resource, acpi_set_resource),
229
DEVMETHOD(bus_get_resource, bus_generic_rl_get_resource),
230
DEVMETHOD(bus_alloc_resource, acpi_alloc_resource),
231
DEVMETHOD(bus_adjust_resource, acpi_adjust_resource),
232
DEVMETHOD(bus_release_resource, acpi_release_resource),
233
DEVMETHOD(bus_delete_resource, acpi_delete_resource),
234
DEVMETHOD(bus_activate_resource, acpi_activate_resource),
235
DEVMETHOD(bus_deactivate_resource, acpi_deactivate_resource),
236
DEVMETHOD(bus_map_resource, acpi_map_resource),
237
DEVMETHOD(bus_unmap_resource, acpi_unmap_resource),
238
DEVMETHOD(bus_child_pnpinfo, acpi_child_pnpinfo_method),
239
DEVMETHOD(bus_child_location, acpi_child_location_method),
240
DEVMETHOD(bus_setup_intr, bus_generic_setup_intr),
241
DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
242
DEVMETHOD(bus_hint_device_unit, acpi_hint_device_unit),
243
DEVMETHOD(bus_get_cpus, acpi_get_cpus),
244
DEVMETHOD(bus_get_domain, acpi_get_domain_method),
245
DEVMETHOD(bus_get_property, acpi_bus_get_prop),
246
DEVMETHOD(bus_get_device_path, acpi_get_device_path),
247
248
/* ACPI bus */
249
DEVMETHOD(acpi_id_probe, acpi_device_id_probe),
250
DEVMETHOD(acpi_evaluate_object, acpi_device_eval_obj),
251
DEVMETHOD(acpi_get_property, acpi_device_get_prop),
252
DEVMETHOD(acpi_pwr_for_sleep, acpi_device_pwr_for_sleep),
253
DEVMETHOD(acpi_scan_children, acpi_device_scan_children),
254
255
/* ISA emulation */
256
DEVMETHOD(isa_pnp_probe, acpi_isa_pnp_probe),
257
258
DEVMETHOD_END
259
};
260
261
static driver_t acpi_driver = {
262
"acpi",
263
acpi_methods,
264
sizeof(struct acpi_softc),
265
};
266
267
EARLY_DRIVER_MODULE(acpi, nexus, acpi_driver, acpi_modevent, 0,
268
BUS_PASS_BUS + BUS_PASS_ORDER_MIDDLE);
269
MODULE_VERSION(acpi, 1);
270
271
ACPI_SERIAL_DECL(acpi, "ACPI root bus");
272
273
/* Local pools for managing system resources for ACPI child devices. */
274
static struct rman acpi_rman_io, acpi_rman_mem;
275
276
#define ACPI_MINIMUM_AWAKETIME 5
277
278
/* Holds the description of the acpi0 device. */
279
static char acpi_desc[ACPI_OEM_ID_SIZE + ACPI_OEM_TABLE_ID_SIZE + 2];
280
281
SYSCTL_NODE(_debug, OID_AUTO, acpi, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
282
"ACPI debugging");
283
static char acpi_ca_version[12];
284
SYSCTL_STRING(_debug_acpi, OID_AUTO, acpi_ca_version, CTLFLAG_RD,
285
acpi_ca_version, 0, "Version of Intel ACPI-CA");
286
287
/*
288
* Allow overriding _OSI methods.
289
*/
290
static char acpi_install_interface[256];
291
TUNABLE_STR("hw.acpi.install_interface", acpi_install_interface,
292
sizeof(acpi_install_interface));
293
static char acpi_remove_interface[256];
294
TUNABLE_STR("hw.acpi.remove_interface", acpi_remove_interface,
295
sizeof(acpi_remove_interface));
296
297
/*
298
* Automatically apply the Darwin OSI on Apple Mac hardware to obtain
299
* access to full ACPI hardware support on supported platforms.
300
*
301
* This flag automatically overrides any values set by
302
* `hw.acpi.acpi_install_interface` and unset by
303
* `hw.acpi.acpi_remove_interface`.
304
*/
305
static int acpi_apple_darwin_osi = 1;
306
TUNABLE_INT("hw.acpi.apple_darwin_osi", &acpi_apple_darwin_osi);
307
308
/* Allow users to dump Debug objects without ACPI debugger. */
309
static int acpi_debug_objects;
310
TUNABLE_INT("debug.acpi.enable_debug_objects", &acpi_debug_objects);
311
SYSCTL_PROC(_debug_acpi, OID_AUTO, enable_debug_objects,
312
CTLFLAG_RW | CTLTYPE_INT | CTLFLAG_MPSAFE, NULL, 0,
313
acpi_debug_objects_sysctl, "I",
314
"Enable Debug objects");
315
316
/* Allow the interpreter to ignore common mistakes in BIOS. */
317
static int acpi_interpreter_slack = 1;
318
TUNABLE_INT("debug.acpi.interpreter_slack", &acpi_interpreter_slack);
319
SYSCTL_INT(_debug_acpi, OID_AUTO, interpreter_slack, CTLFLAG_RDTUN,
320
&acpi_interpreter_slack, 1, "Turn on interpreter slack mode.");
321
322
/* Ignore register widths set by FADT and use default widths instead. */
323
static int acpi_ignore_reg_width = 1;
324
TUNABLE_INT("debug.acpi.default_register_width", &acpi_ignore_reg_width);
325
SYSCTL_INT(_debug_acpi, OID_AUTO, default_register_width, CTLFLAG_RDTUN,
326
&acpi_ignore_reg_width, 1, "Ignore register widths set by FADT");
327
328
/* Allow users to override quirks. */
329
TUNABLE_INT("debug.acpi.quirks", &acpi_quirks);
330
331
int acpi_susp_bounce;
332
SYSCTL_INT(_debug_acpi, OID_AUTO, suspend_bounce, CTLFLAG_RW,
333
&acpi_susp_bounce, 0, "Don't actually suspend, just test devices.");
334
335
#if defined(__amd64__) || defined(__i386__)
336
int acpi_override_isa_irq_polarity;
337
#endif
338
339
/*
340
* ACPI standard UUID for Device Specific Data Package
341
* "Device Properties UUID for _DSD" Rev. 2.0
342
*/
343
static const struct uuid acpi_dsd_uuid = {
344
0xdaffd814, 0x6eba, 0x4d8c, 0x8a, 0x91,
345
{ 0xbc, 0x9b, 0xbf, 0x4a, 0xa3, 0x01 }
346
};
347
348
/*
349
* ACPI can only be loaded as a module by the loader; activating it after
350
* system bootstrap time is not useful, and can be fatal to the system.
351
* It also cannot be unloaded, since the entire system bus hierarchy hangs
352
* off it.
353
*/
354
static int
355
acpi_modevent(struct module *mod, int event, void *junk)
356
{
357
switch (event) {
358
case MOD_LOAD:
359
if (!cold) {
360
printf("The ACPI driver cannot be loaded after boot.\n");
361
return (EPERM);
362
}
363
break;
364
case MOD_UNLOAD:
365
if (!cold && power_pm_get_type() == POWER_PM_TYPE_ACPI)
366
return (EBUSY);
367
break;
368
default:
369
break;
370
}
371
return (0);
372
}
373
374
/*
375
* Perform early initialization.
376
*/
377
ACPI_STATUS
378
acpi_Startup(void)
379
{
380
static int started = 0;
381
ACPI_STATUS status;
382
int val;
383
384
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
385
386
/* Only run the startup code once. The MADT driver also calls this. */
387
if (started)
388
return_VALUE (AE_OK);
389
started = 1;
390
391
/*
392
* Initialize the ACPICA subsystem.
393
*/
394
if (ACPI_FAILURE(status = AcpiInitializeSubsystem())) {
395
printf("ACPI: Could not initialize Subsystem: %s\n",
396
AcpiFormatException(status));
397
return_VALUE (status);
398
}
399
400
/*
401
* Pre-allocate space for RSDT/XSDT and DSDT tables and allow resizing
402
* if more tables exist.
403
*/
404
if (ACPI_FAILURE(status = AcpiInitializeTables(NULL, 2, TRUE))) {
405
printf("ACPI: Table initialisation failed: %s\n",
406
AcpiFormatException(status));
407
return_VALUE (status);
408
}
409
410
/* Set up any quirks we have for this system. */
411
if (acpi_quirks == ACPI_Q_OK)
412
acpi_table_quirks(&acpi_quirks);
413
414
/* If the user manually set the disabled hint to 0, force-enable ACPI. */
415
if (resource_int_value("acpi", 0, "disabled", &val) == 0 && val == 0)
416
acpi_quirks &= ~ACPI_Q_BROKEN;
417
if (acpi_quirks & ACPI_Q_BROKEN) {
418
printf("ACPI disabled by blacklist. Contact your BIOS vendor.\n");
419
status = AE_SUPPORT;
420
}
421
422
return_VALUE (status);
423
}
424
425
/*
426
* Detect ACPI and perform early initialisation.
427
*/
428
int
429
acpi_identify(void)
430
{
431
ACPI_TABLE_RSDP *rsdp;
432
ACPI_TABLE_HEADER *rsdt;
433
ACPI_PHYSICAL_ADDRESS paddr;
434
struct sbuf sb;
435
436
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
437
438
if (!cold)
439
return (ENXIO);
440
441
/* Check that we haven't been disabled with a hint. */
442
if (resource_disabled("acpi", 0))
443
return (ENXIO);
444
445
/* Check for other PM systems. */
446
if (power_pm_get_type() != POWER_PM_TYPE_NONE &&
447
power_pm_get_type() != POWER_PM_TYPE_ACPI) {
448
printf("ACPI identify failed, other PM system enabled.\n");
449
return (ENXIO);
450
}
451
452
/* Initialize root tables. */
453
if (ACPI_FAILURE(acpi_Startup())) {
454
printf("ACPI: Try disabling either ACPI or apic support.\n");
455
return (ENXIO);
456
}
457
458
if ((paddr = AcpiOsGetRootPointer()) == 0 ||
459
(rsdp = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_RSDP))) == NULL)
460
return (ENXIO);
461
if (rsdp->Revision > 1 && rsdp->XsdtPhysicalAddress != 0)
462
paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->XsdtPhysicalAddress;
463
else
464
paddr = (ACPI_PHYSICAL_ADDRESS)rsdp->RsdtPhysicalAddress;
465
AcpiOsUnmapMemory(rsdp, sizeof(ACPI_TABLE_RSDP));
466
467
if ((rsdt = AcpiOsMapMemory(paddr, sizeof(ACPI_TABLE_HEADER))) == NULL)
468
return (ENXIO);
469
sbuf_new(&sb, acpi_desc, sizeof(acpi_desc), SBUF_FIXEDLEN);
470
sbuf_bcat(&sb, rsdt->OemId, ACPI_OEM_ID_SIZE);
471
sbuf_trim(&sb);
472
sbuf_putc(&sb, ' ');
473
sbuf_bcat(&sb, rsdt->OemTableId, ACPI_OEM_TABLE_ID_SIZE);
474
sbuf_trim(&sb);
475
sbuf_finish(&sb);
476
sbuf_delete(&sb);
477
AcpiOsUnmapMemory(rsdt, sizeof(ACPI_TABLE_HEADER));
478
479
snprintf(acpi_ca_version, sizeof(acpi_ca_version), "%x", ACPI_CA_VERSION);
480
481
return (0);
482
}
483
484
/*
485
* Fetch some descriptive data from ACPI to put in our attach message.
486
*/
487
static int
488
acpi_probe(device_t dev)
489
{
490
491
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
492
493
device_set_desc(dev, acpi_desc);
494
495
return_VALUE (BUS_PROBE_NOWILDCARD);
496
}
497
498
static int
499
acpi_attach(device_t dev)
500
{
501
struct acpi_softc *sc;
502
ACPI_STATUS status;
503
int error, state;
504
UINT32 flags;
505
char *env;
506
enum power_stype stype;
507
508
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
509
510
sc = device_get_softc(dev);
511
sc->acpi_dev = dev;
512
callout_init(&sc->susp_force_to, 1);
513
514
error = ENXIO;
515
516
/* Initialize resource manager. */
517
acpi_rman_io.rm_type = RMAN_ARRAY;
518
acpi_rman_io.rm_start = 0;
519
acpi_rman_io.rm_end = 0xffff;
520
acpi_rman_io.rm_descr = "ACPI I/O ports";
521
if (rman_init(&acpi_rman_io) != 0)
522
panic("acpi rman_init IO ports failed");
523
acpi_rman_mem.rm_type = RMAN_ARRAY;
524
acpi_rman_mem.rm_descr = "ACPI I/O memory addresses";
525
if (rman_init(&acpi_rman_mem) != 0)
526
panic("acpi rman_init memory failed");
527
528
resource_list_init(&sc->sysres_rl);
529
530
/* Initialise the ACPI mutex */
531
mtx_init(&acpi_mutex, "ACPI global lock", NULL, MTX_DEF);
532
533
/*
534
* Set the globals from our tunables. This is needed because ACPI-CA
535
* uses UINT8 for some values and we have no tunable_byte.
536
*/
537
AcpiGbl_EnableInterpreterSlack = acpi_interpreter_slack ? TRUE : FALSE;
538
AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
539
AcpiGbl_UseDefaultRegisterWidths = acpi_ignore_reg_width ? TRUE : FALSE;
540
541
#ifndef ACPI_DEBUG
542
/*
543
* Disable all debugging layers and levels.
544
*/
545
AcpiDbgLayer = 0;
546
AcpiDbgLevel = 0;
547
#endif
548
549
/* Override OS interfaces if the user requested. */
550
acpi_reset_interfaces(dev);
551
552
/* Load ACPI name space. */
553
status = AcpiLoadTables();
554
if (ACPI_FAILURE(status)) {
555
device_printf(dev, "Could not load Namespace: %s\n",
556
AcpiFormatException(status));
557
goto out;
558
}
559
560
/* Handle MCFG table if present. */
561
acpi_enable_pcie();
562
563
/*
564
* Note that some systems (specifically, those with namespace evaluation
565
* issues that require the avoidance of parts of the namespace) must
566
* avoid running _INI and _STA on everything, as well as dodging the final
567
* object init pass.
568
*
569
* For these devices, we set ACPI_NO_DEVICE_INIT and ACPI_NO_OBJECT_INIT).
570
*
571
* XXX We should arrange for the object init pass after we have attached
572
* all our child devices, but on many systems it works here.
573
*/
574
flags = 0;
575
if (testenv("debug.acpi.avoid"))
576
flags = ACPI_NO_DEVICE_INIT | ACPI_NO_OBJECT_INIT;
577
578
/* Bring the hardware and basic handlers online. */
579
if (ACPI_FAILURE(status = AcpiEnableSubsystem(flags))) {
580
device_printf(dev, "Could not enable ACPI: %s\n",
581
AcpiFormatException(status));
582
goto out;
583
}
584
585
/*
586
* Call the ECDT probe function to provide EC functionality before
587
* the namespace has been evaluated.
588
*
589
* XXX This happens before the sysresource devices have been probed and
590
* attached so its resources come from nexus0. In practice, this isn't
591
* a problem but should be addressed eventually.
592
*/
593
acpi_ec_ecdt_probe(dev);
594
595
/* Bring device objects and regions online. */
596
if (ACPI_FAILURE(status = AcpiInitializeObjects(flags))) {
597
device_printf(dev, "Could not initialize ACPI objects: %s\n",
598
AcpiFormatException(status));
599
goto out;
600
}
601
602
#if defined(__amd64__) || defined(__i386__)
603
/*
604
* Enable workaround for incorrect ISA IRQ polarity by default on
605
* systems with Intel CPUs.
606
*/
607
if (cpu_vendor_id == CPU_VENDOR_INTEL)
608
acpi_override_isa_irq_polarity = 1;
609
#endif
610
611
/*
612
* Default to 1 second before sleeping to give some machines time to
613
* stabilize.
614
*/
615
sc->acpi_sleep_delay = 1;
616
if (bootverbose)
617
sc->acpi_verbose = 1;
618
if ((env = kern_getenv("hw.acpi.verbose")) != NULL) {
619
if (strcmp(env, "0") != 0)
620
sc->acpi_verbose = 1;
621
freeenv(env);
622
}
623
624
/* Only enable reboot by default if the FADT says it is available. */
625
if (AcpiGbl_FADT.Flags & ACPI_FADT_RESET_REGISTER)
626
sc->acpi_handle_reboot = 1;
627
628
/*
629
* Mark whether S4BIOS is available according to the FACS, and if it is,
630
* enable it by default.
631
*/
632
if (AcpiGbl_FACS != NULL && AcpiGbl_FACS->Flags & ACPI_FACS_S4_BIOS_PRESENT)
633
sc->acpi_s4bios = sc->acpi_s4bios_supported = true;
634
635
/*
636
* Probe all supported ACPI sleep states. Awake (S0) is always supported,
637
* and suspend-to-idle is always supported on x86 only (at the moment).
638
*/
639
acpi_supported_sstates[ACPI_STATE_S0] = true;
640
acpi_supported_stypes[POWER_STYPE_AWAKE] = true;
641
#if defined(__i386__) || defined(__amd64__)
642
acpi_supported_stypes[POWER_STYPE_SUSPEND_TO_IDLE] = true;
643
#endif
644
for (state = ACPI_STATE_S1; state <= ACPI_STATE_S5; state++) {
645
UINT8 TypeA, TypeB;
646
647
if (ACPI_SUCCESS(AcpiGetSleepTypeData(state, &TypeA, &TypeB))) {
648
acpi_supported_sstates[state] = true;
649
acpi_supported_stypes[acpi_sstate_to_stype(state)] = true;
650
}
651
}
652
653
/*
654
* Dispatch the default sleep type to devices. The lid switch is set
655
* to UNKNOWN by default to avoid surprising users.
656
*/
657
sc->acpi_power_button_stype = acpi_supported_stypes[POWER_STYPE_POWEROFF] ?
658
POWER_STYPE_POWEROFF : POWER_STYPE_UNKNOWN;
659
sc->acpi_lid_switch_stype = POWER_STYPE_UNKNOWN;
660
661
sc->acpi_standby_sx = ACPI_STATE_UNKNOWN;
662
if (acpi_supported_sstates[ACPI_STATE_S1])
663
sc->acpi_standby_sx = ACPI_STATE_S1;
664
else if (acpi_supported_sstates[ACPI_STATE_S2])
665
sc->acpi_standby_sx = ACPI_STATE_S2;
666
667
/*
668
* Pick the first valid sleep type for the sleep button default. If that
669
* type was hibernate and we support s2idle, set it to that. The sleep
670
* button prefers s2mem instead of s2idle at the moment as s2idle may not
671
* yet work reliably on all machines. In the future, we should set this to
672
* s2idle when ACPI_FADT_LOW_POWER_S0 is set.
673
*/
674
sc->acpi_sleep_button_stype = POWER_STYPE_UNKNOWN;
675
for (stype = POWER_STYPE_STANDBY; stype <= POWER_STYPE_HIBERNATE; stype++)
676
if (acpi_supported_stypes[stype]) {
677
sc->acpi_sleep_button_stype = stype;
678
break;
679
}
680
if (sc->acpi_sleep_button_stype == POWER_STYPE_HIBERNATE ||
681
sc->acpi_sleep_button_stype == POWER_STYPE_UNKNOWN) {
682
if (acpi_supported_stypes[POWER_STYPE_SUSPEND_TO_IDLE])
683
sc->acpi_sleep_button_stype = POWER_STYPE_SUSPEND_TO_IDLE;
684
}
685
686
acpi_enable_fixed_events(sc);
687
688
/*
689
* Scan the namespace and attach/initialise children.
690
*/
691
692
/* Register our shutdown handler. */
693
EVENTHANDLER_REGISTER(shutdown_final, acpi_shutdown_final, sc,
694
SHUTDOWN_PRI_LAST + 150);
695
696
/*
697
* Register our acpi event handlers.
698
* XXX should be configurable eg. via userland policy manager.
699
*/
700
EVENTHANDLER_REGISTER(acpi_sleep_event, acpi_system_eventhandler_sleep,
701
sc, ACPI_EVENT_PRI_LAST);
702
EVENTHANDLER_REGISTER(acpi_wakeup_event, acpi_system_eventhandler_wakeup,
703
sc, ACPI_EVENT_PRI_LAST);
704
705
/* Flag our initial states. */
706
sc->acpi_enabled = TRUE;
707
sc->acpi_stype = POWER_STYPE_AWAKE;
708
sc->acpi_sleep_disabled = TRUE;
709
710
/* Create the control device */
711
sc->acpi_dev_t = make_dev(&acpi_cdevsw, 0, UID_ROOT, GID_OPERATOR, 0664,
712
"acpi");
713
sc->acpi_dev_t->si_drv1 = sc;
714
715
if ((error = acpi_machdep_init(dev)))
716
goto out;
717
718
/*
719
* Setup our sysctl tree.
720
*
721
* XXX: This doesn't check to make sure that none of these fail.
722
*/
723
sysctl_ctx_init(&sc->acpi_sysctl_ctx);
724
sc->acpi_sysctl_tree = SYSCTL_ADD_NODE(&sc->acpi_sysctl_ctx,
725
SYSCTL_STATIC_CHILDREN(_hw), OID_AUTO, device_get_name(dev),
726
CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "");
727
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
728
OID_AUTO, "supported_sleep_state",
729
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
730
0, 0, acpi_supported_sleep_state_sysctl, "A",
731
"List supported ACPI sleep states.");
732
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
733
OID_AUTO, "power_button_state",
734
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
735
&sc->acpi_power_button_stype, 0, acpi_stype_sysctl, "A",
736
"Power button ACPI sleep state.");
737
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
738
OID_AUTO, "sleep_button_state",
739
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
740
&sc->acpi_sleep_button_stype, 0, acpi_stype_sysctl, "A",
741
"Sleep button ACPI sleep state.");
742
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
743
OID_AUTO, "lid_switch_state",
744
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
745
&sc->acpi_lid_switch_stype, 0, acpi_stype_sysctl, "A",
746
"Lid ACPI sleep state. Set to s2idle or s2mem if you want to suspend "
747
"your laptop when you close the lid.");
748
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
749
OID_AUTO, "suspend_state", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
750
NULL, 0, acpi_suspend_state_sysctl, "A",
751
"Current ACPI suspend state. This sysctl is deprecated; you probably "
752
"want to use kern.power.suspend instead.");
753
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
754
OID_AUTO, "standby_state",
755
CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE,
756
&sc->acpi_standby_sx, 0, acpi_sleep_state_sysctl, "A",
757
"ACPI Sx state to use when going standby (usually S1 or S2).");
758
SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
759
OID_AUTO, "sleep_delay", CTLFLAG_RW, &sc->acpi_sleep_delay, 0,
760
"sleep delay in seconds");
761
SYSCTL_ADD_PROC(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
762
OID_AUTO, "s4bios", CTLTYPE_U8 | CTLFLAG_RW | CTLFLAG_MPSAFE,
763
sc, 0, acpi_s4bios_sysctl, "CU",
764
"On hibernate, have the firmware save/restore the machine state (S4BIOS).");
765
SYSCTL_ADD_BOOL(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
766
OID_AUTO, "s4bios_supported", CTLFLAG_RD, &sc->acpi_s4bios_supported, 0,
767
"Whether firmware supports saving/restoring the machine state (S4BIOS).");
768
SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
769
OID_AUTO, "verbose", CTLFLAG_RW, &sc->acpi_verbose, 0, "verbose mode");
770
SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
771
OID_AUTO, "disable_on_reboot", CTLFLAG_RW,
772
&sc->acpi_do_disable, 0, "Disable ACPI when rebooting/halting system");
773
SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
774
OID_AUTO, "handle_reboot", CTLFLAG_RW,
775
&sc->acpi_handle_reboot, 0, "Use ACPI Reset Register to reboot");
776
#if defined(__amd64__) || defined(__i386__)
777
SYSCTL_ADD_INT(&sc->acpi_sysctl_ctx, SYSCTL_CHILDREN(sc->acpi_sysctl_tree),
778
OID_AUTO, "override_isa_irq_polarity", CTLFLAG_RDTUN,
779
&acpi_override_isa_irq_polarity, 0,
780
"Force active-hi polarity for edge-triggered ISA IRQs");
781
#endif
782
783
/* Register ACPI again to pass the correct argument of pm_func. */
784
power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, sc,
785
acpi_supported_stypes);
786
787
acpi_platform_osc(dev);
788
789
if (!acpi_disabled("bus")) {
790
EVENTHANDLER_REGISTER(dev_lookup, acpi_lookup, NULL, 1000);
791
acpi_probe_children(dev);
792
}
793
794
/* Update all GPEs and enable runtime GPEs. */
795
status = AcpiUpdateAllGpes();
796
if (ACPI_FAILURE(status))
797
device_printf(dev, "Could not update all GPEs: %s\n",
798
AcpiFormatException(status));
799
800
/* Allow sleep request after a while. */
801
callout_init_mtx(&acpi_sleep_timer, &acpi_mutex, 0);
802
callout_reset(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME,
803
acpi_sleep_enable, sc);
804
805
error = 0;
806
807
out:
808
return_VALUE (error);
809
}
810
811
static int
812
acpi_stype_to_sstate(struct acpi_softc *sc, enum power_stype stype)
813
{
814
switch (stype) {
815
case POWER_STYPE_AWAKE:
816
return (ACPI_STATE_S0);
817
case POWER_STYPE_STANDBY:
818
return (sc->acpi_standby_sx);
819
case POWER_STYPE_SUSPEND_TO_MEM:
820
return (ACPI_STATE_S3);
821
case POWER_STYPE_HIBERNATE:
822
return (ACPI_STATE_S4);
823
case POWER_STYPE_POWEROFF:
824
return (ACPI_STATE_S5);
825
case POWER_STYPE_SUSPEND_TO_IDLE:
826
case POWER_STYPE_COUNT:
827
case POWER_STYPE_UNKNOWN:
828
return (ACPI_STATE_UNKNOWN);
829
}
830
return (ACPI_STATE_UNKNOWN);
831
}
832
833
/*
834
* XXX It would be nice if we didn't need this function, but we'd need
835
* acpi_EnterSleepState and acpi_ReqSleepState to take in actual ACPI S-states,
836
* which won't be possible at the moment because suspend-to-idle (which is not
837
* an ACPI S-state nor maps to one) will be implemented here.
838
*
839
* In the future, we should make generic a lot of the logic in these functions
840
* to enable suspend-to-idle on non-ACPI builds, and then make
841
* acpi_EnterSleepState and acpi_ReqSleepState truly take in ACPI S-states
842
* again.
843
*/
844
static enum power_stype
845
acpi_sstate_to_stype(int sstate)
846
{
847
switch (sstate) {
848
case ACPI_STATE_S0:
849
return (POWER_STYPE_AWAKE);
850
case ACPI_STATE_S1:
851
case ACPI_STATE_S2:
852
return (POWER_STYPE_STANDBY);
853
case ACPI_STATE_S3:
854
return (POWER_STYPE_SUSPEND_TO_MEM);
855
case ACPI_STATE_S4:
856
return (POWER_STYPE_HIBERNATE);
857
case ACPI_STATE_S5:
858
return (POWER_STYPE_POWEROFF);
859
}
860
return (POWER_STYPE_UNKNOWN);
861
}
862
863
static void
864
acpi_set_power_children(device_t dev, int state)
865
{
866
device_t child;
867
device_t *devlist;
868
int dstate, i, numdevs;
869
870
if (device_get_children(dev, &devlist, &numdevs) != 0)
871
return;
872
873
/*
874
* Retrieve and set D-state for the sleep state if _SxD is present.
875
* Skip children who aren't attached since they are handled separately.
876
*/
877
for (i = 0; i < numdevs; i++) {
878
child = devlist[i];
879
dstate = state;
880
if (device_is_attached(child) &&
881
acpi_device_pwr_for_sleep(dev, child, &dstate) == 0)
882
acpi_set_powerstate(child, dstate);
883
}
884
free(devlist, M_TEMP);
885
}
886
887
static int
888
acpi_suspend(device_t dev)
889
{
890
int error;
891
892
bus_topo_assert();
893
894
error = bus_generic_suspend(dev);
895
if (error == 0)
896
acpi_set_power_children(dev, ACPI_STATE_D3);
897
898
return (error);
899
}
900
901
static int
902
acpi_resume(device_t dev)
903
{
904
905
bus_topo_assert();
906
907
acpi_set_power_children(dev, ACPI_STATE_D0);
908
909
return (bus_generic_resume(dev));
910
}
911
912
static int
913
acpi_shutdown(device_t dev)
914
{
915
struct acpi_softc *sc = device_get_softc(dev);
916
917
bus_topo_assert();
918
919
/* Allow children to shutdown first. */
920
bus_generic_shutdown(dev);
921
922
/*
923
* Enable any GPEs that are able to power-on the system (i.e., RTC).
924
* Also, disable any that are not valid for this state (most).
925
*/
926
acpi_wake_prep_walk(sc, POWER_STYPE_POWEROFF);
927
928
return (0);
929
}
930
931
/*
932
* Handle a new device being added
933
*/
934
static device_t
935
acpi_add_child(device_t bus, u_int order, const char *name, int unit)
936
{
937
struct acpi_device *ad;
938
device_t child;
939
940
if ((ad = malloc(sizeof(*ad), M_ACPIDEV, M_NOWAIT | M_ZERO)) == NULL)
941
return (NULL);
942
943
ad->ad_domain = ACPI_DEV_DOMAIN_UNKNOWN;
944
resource_list_init(&ad->ad_rl);
945
946
child = device_add_child_ordered(bus, order, name, unit);
947
if (child != NULL)
948
device_set_ivars(child, ad);
949
else
950
free(ad, M_ACPIDEV);
951
return (child);
952
}
953
954
static int
955
acpi_print_child(device_t bus, device_t child)
956
{
957
struct acpi_device *adev = device_get_ivars(child);
958
struct resource_list *rl = &adev->ad_rl;
959
int retval = 0;
960
961
retval += bus_print_child_header(bus, child);
962
retval += resource_list_print_type(rl, "port", SYS_RES_IOPORT, "%#jx");
963
retval += resource_list_print_type(rl, "iomem", SYS_RES_MEMORY, "%#jx");
964
retval += resource_list_print_type(rl, "irq", SYS_RES_IRQ, "%jd");
965
retval += resource_list_print_type(rl, "drq", SYS_RES_DRQ, "%jd");
966
if (device_get_flags(child))
967
retval += printf(" flags %#x", device_get_flags(child));
968
retval += bus_print_child_domain(bus, child);
969
retval += bus_print_child_footer(bus, child);
970
971
return (retval);
972
}
973
974
/*
975
* If this device is an ACPI child but no one claimed it, attempt
976
* to power it off. We'll power it back up when a driver is added.
977
*
978
* XXX Disabled for now since many necessary devices (like fdc and
979
* ATA) don't claim the devices we created for them but still expect
980
* them to be powered up.
981
*/
982
static void
983
acpi_probe_nomatch(device_t bus, device_t child)
984
{
985
#ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
986
acpi_set_powerstate(child, ACPI_STATE_D3);
987
#endif
988
}
989
990
/*
991
* If a new driver has a chance to probe a child, first power it up.
992
*
993
* XXX Disabled for now (see acpi_probe_nomatch for details).
994
*/
995
static void
996
acpi_driver_added(device_t dev, driver_t *driver)
997
{
998
device_t child, *devlist;
999
int i, numdevs;
1000
1001
DEVICE_IDENTIFY(driver, dev);
1002
if (device_get_children(dev, &devlist, &numdevs))
1003
return;
1004
for (i = 0; i < numdevs; i++) {
1005
child = devlist[i];
1006
if (device_get_state(child) == DS_NOTPRESENT) {
1007
#ifdef ACPI_ENABLE_POWERDOWN_NODRIVER
1008
acpi_set_powerstate(child, ACPI_STATE_D0);
1009
if (device_probe_and_attach(child) != 0)
1010
acpi_set_powerstate(child, ACPI_STATE_D3);
1011
#else
1012
device_probe_and_attach(child);
1013
#endif
1014
}
1015
}
1016
free(devlist, M_TEMP);
1017
}
1018
1019
/* Location hint for devctl(8) */
1020
static int
1021
acpi_child_location_method(device_t cbdev, device_t child, struct sbuf *sb)
1022
{
1023
struct acpi_device *dinfo = device_get_ivars(child);
1024
int pxm;
1025
1026
if (dinfo->ad_handle) {
1027
sbuf_printf(sb, "handle=%s", acpi_name(dinfo->ad_handle));
1028
if (ACPI_SUCCESS(acpi_GetInteger(dinfo->ad_handle, "_PXM", &pxm))) {
1029
sbuf_printf(sb, " _PXM=%d", pxm);
1030
}
1031
}
1032
return (0);
1033
}
1034
1035
/* PnP information for devctl(8) */
1036
int
1037
acpi_pnpinfo(ACPI_HANDLE handle, struct sbuf *sb)
1038
{
1039
ACPI_DEVICE_INFO *adinfo;
1040
1041
if (ACPI_FAILURE(AcpiGetObjectInfo(handle, &adinfo))) {
1042
sbuf_printf(sb, "unknown");
1043
return (0);
1044
}
1045
1046
sbuf_printf(sb, "_HID=%s _UID=%lu _CID=%s",
1047
(adinfo->Valid & ACPI_VALID_HID) ?
1048
adinfo->HardwareId.String : "none",
1049
(adinfo->Valid & ACPI_VALID_UID) ?
1050
strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL,
1051
((adinfo->Valid & ACPI_VALID_CID) &&
1052
adinfo->CompatibleIdList.Count > 0) ?
1053
adinfo->CompatibleIdList.Ids[0].String : "none");
1054
AcpiOsFree(adinfo);
1055
1056
return (0);
1057
}
1058
1059
static int
1060
acpi_child_pnpinfo_method(device_t cbdev, device_t child, struct sbuf *sb)
1061
{
1062
struct acpi_device *dinfo = device_get_ivars(child);
1063
1064
return (acpi_pnpinfo(dinfo->ad_handle, sb));
1065
}
1066
1067
/*
1068
* Note: the check for ACPI locator may be redundant. However, this routine is
1069
* suitable for both busses whose only locator is ACPI and as a building block
1070
* for busses that have multiple locators to cope with.
1071
*/
1072
int
1073
acpi_get_acpi_device_path(device_t bus, device_t child, const char *locator, struct sbuf *sb)
1074
{
1075
if (strcmp(locator, BUS_LOCATOR_ACPI) == 0) {
1076
ACPI_HANDLE *handle = acpi_get_handle(child);
1077
1078
if (handle != NULL)
1079
sbuf_printf(sb, "%s", acpi_name(handle));
1080
return (0);
1081
}
1082
1083
return (bus_generic_get_device_path(bus, child, locator, sb));
1084
}
1085
1086
static int
1087
acpi_get_device_path(device_t bus, device_t child, const char *locator, struct sbuf *sb)
1088
{
1089
struct acpi_device *dinfo = device_get_ivars(child);
1090
1091
if (strcmp(locator, BUS_LOCATOR_ACPI) == 0)
1092
return (acpi_get_acpi_device_path(bus, child, locator, sb));
1093
1094
if (strcmp(locator, BUS_LOCATOR_UEFI) == 0) {
1095
ACPI_DEVICE_INFO *adinfo;
1096
if (!ACPI_FAILURE(AcpiGetObjectInfo(dinfo->ad_handle, &adinfo)) &&
1097
dinfo->ad_handle != 0 && (adinfo->Valid & ACPI_VALID_HID)) {
1098
const char *hid = adinfo->HardwareId.String;
1099
u_long uid = (adinfo->Valid & ACPI_VALID_UID) ?
1100
strtoul(adinfo->UniqueId.String, NULL, 10) : 0UL;
1101
u_long hidval;
1102
1103
/*
1104
* In UEFI Stanard Version 2.6, Section 9.6.1.6 Text
1105
* Device Node Reference, there's an insanely long table
1106
* 98. This implements the relevant bits from that
1107
* table. Newer versions appear to have not required
1108
* anything new. The EDK2 firmware presents both PciRoot
1109
* and PcieRoot as PciRoot. Follow the EDK2 standard.
1110
*/
1111
if (strncmp("PNP", hid, 3) != 0)
1112
goto nomatch;
1113
hidval = strtoul(hid + 3, NULL, 16);
1114
switch (hidval) {
1115
case 0x0301:
1116
sbuf_printf(sb, "Keyboard(0x%lx)", uid);
1117
break;
1118
case 0x0401:
1119
sbuf_printf(sb, "ParallelPort(0x%lx)", uid);
1120
break;
1121
case 0x0501:
1122
sbuf_printf(sb, "Serial(0x%lx)", uid);
1123
break;
1124
case 0x0604:
1125
sbuf_printf(sb, "Floppy(0x%lx)", uid);
1126
break;
1127
case 0x0a03:
1128
case 0x0a08:
1129
sbuf_printf(sb, "PciRoot(0x%lx)", uid);
1130
break;
1131
default: /* Everything else gets a generic encode */
1132
nomatch:
1133
sbuf_printf(sb, "Acpi(%s,0x%lx)", hid, uid);
1134
break;
1135
}
1136
}
1137
/* Not handled: AcpiAdr... unsure how to know it's one */
1138
}
1139
1140
/* For the rest, punt to the default handler */
1141
return (bus_generic_get_device_path(bus, child, locator, sb));
1142
}
1143
1144
/*
1145
* Handle device deletion.
1146
*/
1147
static void
1148
acpi_child_deleted(device_t dev, device_t child)
1149
{
1150
struct acpi_device *dinfo = device_get_ivars(child);
1151
1152
if (acpi_get_device(dinfo->ad_handle) == child)
1153
AcpiDetachData(dinfo->ad_handle, acpi_fake_objhandler);
1154
free(dinfo, M_ACPIDEV);
1155
}
1156
1157
/*
1158
* Handle per-device ivars
1159
*/
1160
static int
1161
acpi_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
1162
{
1163
struct acpi_device *ad;
1164
1165
if ((ad = device_get_ivars(child)) == NULL) {
1166
device_printf(child, "device has no ivars\n");
1167
return (ENOENT);
1168
}
1169
1170
/* ACPI and ISA compatibility ivars */
1171
switch(index) {
1172
case ACPI_IVAR_HANDLE:
1173
*(ACPI_HANDLE *)result = ad->ad_handle;
1174
break;
1175
case ACPI_IVAR_PRIVATE:
1176
*(void **)result = ad->ad_private;
1177
break;
1178
case ACPI_IVAR_FLAGS:
1179
*(int *)result = ad->ad_flags;
1180
break;
1181
case ACPI_IVAR_DOMAIN:
1182
*(int *)result = ad->ad_domain;
1183
break;
1184
case ISA_IVAR_VENDORID:
1185
case ISA_IVAR_SERIAL:
1186
case ISA_IVAR_COMPATID:
1187
*(int *)result = -1;
1188
break;
1189
case ISA_IVAR_LOGICALID:
1190
*(int *)result = acpi_isa_get_logicalid(child);
1191
break;
1192
case PCI_IVAR_CLASS:
1193
*(uint8_t*)result = (ad->ad_cls_class >> 16) & 0xff;
1194
break;
1195
case PCI_IVAR_SUBCLASS:
1196
*(uint8_t*)result = (ad->ad_cls_class >> 8) & 0xff;
1197
break;
1198
case PCI_IVAR_PROGIF:
1199
*(uint8_t*)result = (ad->ad_cls_class >> 0) & 0xff;
1200
break;
1201
default:
1202
return (ENOENT);
1203
}
1204
1205
return (0);
1206
}
1207
1208
static int
1209
acpi_write_ivar(device_t dev, device_t child, int index, uintptr_t value)
1210
{
1211
struct acpi_device *ad;
1212
1213
if ((ad = device_get_ivars(child)) == NULL) {
1214
device_printf(child, "device has no ivars\n");
1215
return (ENOENT);
1216
}
1217
1218
switch(index) {
1219
case ACPI_IVAR_HANDLE:
1220
ad->ad_handle = (ACPI_HANDLE)value;
1221
break;
1222
case ACPI_IVAR_PRIVATE:
1223
ad->ad_private = (void *)value;
1224
break;
1225
case ACPI_IVAR_FLAGS:
1226
ad->ad_flags = (int)value;
1227
break;
1228
case ACPI_IVAR_DOMAIN:
1229
ad->ad_domain = (int)value;
1230
break;
1231
default:
1232
panic("bad ivar write request (%d)", index);
1233
return (ENOENT);
1234
}
1235
1236
return (0);
1237
}
1238
1239
/*
1240
* Handle child resource allocation/removal
1241
*/
1242
static struct resource_list *
1243
acpi_get_rlist(device_t dev, device_t child)
1244
{
1245
struct acpi_device *ad;
1246
1247
ad = device_get_ivars(child);
1248
return (&ad->ad_rl);
1249
}
1250
1251
static int
1252
acpi_match_resource_hint(device_t dev, int type, long value)
1253
{
1254
struct acpi_device *ad = device_get_ivars(dev);
1255
struct resource_list *rl = &ad->ad_rl;
1256
struct resource_list_entry *rle;
1257
1258
STAILQ_FOREACH(rle, rl, link) {
1259
if (rle->type != type)
1260
continue;
1261
if (rle->start <= value && rle->end >= value)
1262
return (1);
1263
}
1264
return (0);
1265
}
1266
1267
/*
1268
* Does this device match because the resources match?
1269
*/
1270
static bool
1271
acpi_hint_device_matches_resources(device_t child, const char *name,
1272
int unit)
1273
{
1274
long value;
1275
bool matches;
1276
1277
/*
1278
* Check for matching resources. We must have at least one match.
1279
* Since I/O and memory resources cannot be shared, if we get a
1280
* match on either of those, ignore any mismatches in IRQs or DRQs.
1281
*
1282
* XXX: We may want to revisit this to be more lenient and wire
1283
* as long as it gets one match.
1284
*/
1285
matches = false;
1286
if (resource_long_value(name, unit, "port", &value) == 0) {
1287
/*
1288
* Floppy drive controllers are notorious for having a
1289
* wide variety of resources not all of which include the
1290
* first port that is specified by the hint (typically
1291
* 0x3f0) (see the comment above fdc_isa_alloc_resources()
1292
* in fdc_isa.c). However, they do all seem to include
1293
* port + 2 (e.g. 0x3f2) so for a floppy device, look for
1294
* 'value + 2' in the port resources instead of the hint
1295
* value.
1296
*/
1297
if (strcmp(name, "fdc") == 0)
1298
value += 2;
1299
if (acpi_match_resource_hint(child, SYS_RES_IOPORT, value))
1300
matches = true;
1301
else
1302
return false;
1303
}
1304
if (resource_long_value(name, unit, "maddr", &value) == 0) {
1305
if (acpi_match_resource_hint(child, SYS_RES_MEMORY, value))
1306
matches = true;
1307
else
1308
return false;
1309
}
1310
1311
/*
1312
* If either the I/O address and/or the memory address matched, then
1313
* assumed this devices matches and that any mismatch in other resources
1314
* will be resolved by siltently ignoring those other resources. Otherwise
1315
* all further resources must match.
1316
*/
1317
if (matches) {
1318
return (true);
1319
}
1320
if (resource_long_value(name, unit, "irq", &value) == 0) {
1321
if (acpi_match_resource_hint(child, SYS_RES_IRQ, value))
1322
matches = true;
1323
else
1324
return false;
1325
}
1326
if (resource_long_value(name, unit, "drq", &value) == 0) {
1327
if (acpi_match_resource_hint(child, SYS_RES_DRQ, value))
1328
matches = true;
1329
else
1330
return false;
1331
}
1332
return matches;
1333
}
1334
1335
1336
/*
1337
* Wire device unit numbers based on resource matches in hints.
1338
*/
1339
static void
1340
acpi_hint_device_unit(device_t acdev, device_t child, const char *name,
1341
int *unitp)
1342
{
1343
device_location_cache_t *cache;
1344
const char *s;
1345
int line, unit;
1346
bool matches;
1347
1348
/*
1349
* Iterate over all the hints for the devices with the specified
1350
* name to see if one's resources are a subset of this device.
1351
*/
1352
line = 0;
1353
cache = dev_wired_cache_init();
1354
while (resource_find_dev(&line, name, &unit, "at", NULL) == 0) {
1355
/* Must have an "at" for acpi or isa. */
1356
resource_string_value(name, unit, "at", &s);
1357
matches = false;
1358
if (strcmp(s, "acpi0") == 0 || strcmp(s, "acpi") == 0 ||
1359
strcmp(s, "isa0") == 0 || strcmp(s, "isa") == 0)
1360
matches = acpi_hint_device_matches_resources(child, name, unit);
1361
else
1362
matches = dev_wired_cache_match(cache, child, s);
1363
1364
if (matches) {
1365
/* We have a winner! */
1366
*unitp = unit;
1367
break;
1368
}
1369
}
1370
dev_wired_cache_fini(cache);
1371
}
1372
1373
/*
1374
* Fetch the NUMA domain for a device by mapping the value returned by
1375
* _PXM to a NUMA domain. If the device does not have a _PXM method,
1376
* -2 is returned. If any other error occurs, -1 is returned.
1377
*/
1378
int
1379
acpi_pxm_parse(device_t dev)
1380
{
1381
#ifdef NUMA
1382
#if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
1383
ACPI_HANDLE handle;
1384
ACPI_STATUS status;
1385
int pxm;
1386
1387
handle = acpi_get_handle(dev);
1388
if (handle == NULL)
1389
return (-2);
1390
status = acpi_GetInteger(handle, "_PXM", &pxm);
1391
if (ACPI_SUCCESS(status))
1392
return (acpi_map_pxm_to_vm_domainid(pxm));
1393
if (status == AE_NOT_FOUND)
1394
return (-2);
1395
#endif
1396
#endif
1397
return (-1);
1398
}
1399
1400
int
1401
acpi_get_cpus(device_t dev, device_t child, enum cpu_sets op, size_t setsize,
1402
cpuset_t *cpuset)
1403
{
1404
int d, error;
1405
1406
d = acpi_pxm_parse(child);
1407
if (d < 0)
1408
return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
1409
1410
switch (op) {
1411
case LOCAL_CPUS:
1412
if (setsize != sizeof(cpuset_t))
1413
return (EINVAL);
1414
*cpuset = cpuset_domain[d];
1415
return (0);
1416
case INTR_CPUS:
1417
error = bus_generic_get_cpus(dev, child, op, setsize, cpuset);
1418
if (error != 0)
1419
return (error);
1420
if (setsize != sizeof(cpuset_t))
1421
return (EINVAL);
1422
CPU_AND(cpuset, cpuset, &cpuset_domain[d]);
1423
return (0);
1424
default:
1425
return (bus_generic_get_cpus(dev, child, op, setsize, cpuset));
1426
}
1427
}
1428
1429
static int
1430
acpi_get_domain_method(device_t dev, device_t child, int *domain)
1431
{
1432
int error;
1433
1434
error = acpi_read_ivar(dev, child, ACPI_IVAR_DOMAIN,
1435
(uintptr_t *)domain);
1436
if (error == 0 && *domain != ACPI_DEV_DOMAIN_UNKNOWN)
1437
return (0);
1438
return (ENOENT);
1439
}
1440
1441
static struct rman *
1442
acpi_get_rman(device_t bus, int type, u_int flags)
1443
{
1444
/* Only memory and IO resources are managed. */
1445
switch (type) {
1446
case SYS_RES_IOPORT:
1447
return (&acpi_rman_io);
1448
case SYS_RES_MEMORY:
1449
return (&acpi_rman_mem);
1450
default:
1451
return (NULL);
1452
}
1453
}
1454
1455
/*
1456
* Pre-allocate/manage all memory and IO resources. Since rman can't handle
1457
* duplicates, we merge any in the sysresource attach routine.
1458
*/
1459
static int
1460
acpi_sysres_alloc(device_t dev)
1461
{
1462
struct acpi_softc *sc = device_get_softc(dev);
1463
struct resource *res;
1464
struct resource_list_entry *rle;
1465
struct rman *rm;
1466
device_t *children;
1467
int child_count, i;
1468
1469
/*
1470
* Probe/attach any sysresource devices. This would be unnecessary if we
1471
* had multi-pass probe/attach.
1472
*/
1473
if (device_get_children(dev, &children, &child_count) != 0)
1474
return (ENXIO);
1475
for (i = 0; i < child_count; i++) {
1476
if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0)
1477
device_probe_and_attach(children[i]);
1478
}
1479
free(children, M_TEMP);
1480
1481
STAILQ_FOREACH(rle, &sc->sysres_rl, link) {
1482
if (rle->res != NULL) {
1483
device_printf(dev, "duplicate resource for %jx\n", rle->start);
1484
continue;
1485
}
1486
1487
/* Only memory and IO resources are valid here. */
1488
rm = acpi_get_rman(dev, rle->type, 0);
1489
if (rm == NULL)
1490
continue;
1491
1492
/* Pre-allocate resource and add to our rman pool. */
1493
res = bus_alloc_resource(dev, rle->type,
1494
&rle->rid, rle->start, rle->start + rle->count - 1, rle->count,
1495
RF_ACTIVE | RF_UNMAPPED);
1496
if (res != NULL) {
1497
rman_manage_region(rm, rman_get_start(res), rman_get_end(res));
1498
rle->res = res;
1499
} else if (bootverbose)
1500
device_printf(dev, "reservation of %jx, %jx (%d) failed\n",
1501
rle->start, rle->count, rle->type);
1502
}
1503
return (0);
1504
}
1505
1506
/*
1507
* Reserve declared resources for active devices found during the
1508
* namespace scan once the boot-time attach of devices has completed.
1509
*
1510
* Ideally reserving firmware-assigned resources would work in a
1511
* depth-first traversal of the device namespace, but this is
1512
* complicated. In particular, not all resources are enumerated by
1513
* ACPI (e.g. PCI bridges and devices enumerate their resources via
1514
* other means). Some systems also enumerate devices via ACPI behind
1515
* PCI bridges but without a matching a PCI device_t enumerated via
1516
* PCI bus scanning, the device_t's end up as direct children of
1517
* acpi0. Doing this scan late is not ideal, but works for now.
1518
*/
1519
static void
1520
acpi_reserve_resources(device_t dev)
1521
{
1522
struct resource_list_entry *rle;
1523
struct resource_list *rl;
1524
struct acpi_device *ad;
1525
device_t *children;
1526
int child_count, i;
1527
1528
if (device_get_children(dev, &children, &child_count) != 0)
1529
return;
1530
for (i = 0; i < child_count; i++) {
1531
ad = device_get_ivars(children[i]);
1532
rl = &ad->ad_rl;
1533
1534
/* Don't reserve system resources. */
1535
if (ACPI_ID_PROBE(dev, children[i], sysres_ids, NULL) <= 0)
1536
continue;
1537
1538
STAILQ_FOREACH(rle, rl, link) {
1539
/*
1540
* Don't reserve IRQ resources. There are many sticky things
1541
* to get right otherwise (e.g. IRQs for psm, atkbd, and HPET
1542
* when using legacy routing).
1543
*/
1544
if (rle->type == SYS_RES_IRQ)
1545
continue;
1546
1547
/*
1548
* Don't reserve the resource if it is already allocated.
1549
* The acpi_ec(4) driver can allocate its resources early
1550
* if ECDT is present.
1551
*/
1552
if (rle->res != NULL)
1553
continue;
1554
1555
/*
1556
* Try to reserve the resource from our parent. If this
1557
* fails because the resource is a system resource, just
1558
* let it be. The resource range is already reserved so
1559
* that other devices will not use it. If the driver
1560
* needs to allocate the resource, then
1561
* acpi_alloc_resource() will sub-alloc from the system
1562
* resource.
1563
*/
1564
resource_list_reserve(rl, dev, children[i], rle->type, rle->rid,
1565
rle->start, rle->end, rle->count, 0);
1566
}
1567
}
1568
free(children, M_TEMP);
1569
}
1570
1571
static int
1572
acpi_set_resource(device_t dev, device_t child, int type, int rid,
1573
rman_res_t start, rman_res_t count)
1574
{
1575
struct acpi_device *ad = device_get_ivars(child);
1576
struct resource_list *rl = &ad->ad_rl;
1577
rman_res_t end;
1578
1579
#ifdef INTRNG
1580
/* map with default for now */
1581
if (type == SYS_RES_IRQ)
1582
start = (rman_res_t)acpi_map_intr(child, (u_int)start,
1583
acpi_get_handle(child));
1584
#endif
1585
1586
/* If the resource is already allocated, fail. */
1587
if (resource_list_busy(rl, type, rid))
1588
return (EBUSY);
1589
1590
/* If the resource is already reserved, release it. */
1591
if (resource_list_reserved(rl, type, rid))
1592
resource_list_unreserve(rl, dev, child, type, rid);
1593
1594
/* Add the resource. */
1595
end = (start + count - 1);
1596
resource_list_add(rl, type, rid, start, end, count);
1597
return (0);
1598
}
1599
1600
static struct resource *
1601
acpi_alloc_resource(device_t bus, device_t child, int type, int rid,
1602
rman_res_t start, rman_res_t end, rman_res_t count, u_int flags)
1603
{
1604
#ifndef INTRNG
1605
ACPI_RESOURCE ares;
1606
#endif
1607
struct acpi_device *ad;
1608
struct resource_list_entry *rle;
1609
struct resource_list *rl;
1610
struct resource *res;
1611
int isdefault = RMAN_IS_DEFAULT_RANGE(start, end);
1612
1613
/*
1614
* First attempt at allocating the resource. For direct children,
1615
* use resource_list_alloc() to handle reserved resources. For
1616
* other devices, pass the request up to our parent.
1617
*/
1618
if (bus == device_get_parent(child)) {
1619
ad = device_get_ivars(child);
1620
rl = &ad->ad_rl;
1621
1622
/*
1623
* Simulate the behavior of the ISA bus for direct children
1624
* devices. That is, if a non-default range is specified for
1625
* a resource that doesn't exist, use bus_set_resource() to
1626
* add the resource before allocating it. Note that these
1627
* resources will not be reserved.
1628
*/
1629
if (!isdefault && resource_list_find(rl, type, rid) == NULL)
1630
resource_list_add(rl, type, rid, start, end, count);
1631
res = resource_list_alloc(rl, bus, child, type, rid, start, end, count,
1632
flags);
1633
#ifndef INTRNG
1634
if (res != NULL && type == SYS_RES_IRQ) {
1635
/*
1636
* Since bus_config_intr() takes immediate effect, we cannot
1637
* configure the interrupt associated with a device when we
1638
* parse the resources but have to defer it until a driver
1639
* actually allocates the interrupt via bus_alloc_resource().
1640
*
1641
* XXX: Should we handle the lookup failing?
1642
*/
1643
if (ACPI_SUCCESS(acpi_lookup_irq_resource(child, rid, res, &ares)))
1644
acpi_config_intr(child, &ares);
1645
}
1646
#endif
1647
1648
/*
1649
* If this is an allocation of the "default" range for a given
1650
* RID, fetch the exact bounds for this resource from the
1651
* resource list entry to try to allocate the range from the
1652
* system resource regions.
1653
*/
1654
if (res == NULL && isdefault) {
1655
rle = resource_list_find(rl, type, rid);
1656
if (rle != NULL) {
1657
start = rle->start;
1658
end = rle->end;
1659
count = rle->count;
1660
}
1661
}
1662
} else
1663
res = bus_generic_alloc_resource(bus, child, type, rid,
1664
start, end, count, flags);
1665
1666
/*
1667
* If the first attempt failed and this is an allocation of a
1668
* specific range, try to satisfy the request via a suballocation
1669
* from our system resource regions.
1670
*/
1671
if (res == NULL && start + count - 1 == end)
1672
res = bus_generic_rman_alloc_resource(bus, child, type, rid, start, end,
1673
count, flags);
1674
return (res);
1675
}
1676
1677
static bool
1678
acpi_is_resource_managed(device_t bus, struct resource *r)
1679
{
1680
struct rman *rm;
1681
1682
rm = acpi_get_rman(bus, rman_get_type(r), rman_get_flags(r));
1683
if (rm == NULL)
1684
return (false);
1685
return (rman_is_region_manager(r, rm));
1686
}
1687
1688
static struct resource *
1689
acpi_managed_resource(device_t bus, struct resource *r)
1690
{
1691
struct acpi_softc *sc = device_get_softc(bus);
1692
struct resource_list_entry *rle;
1693
1694
KASSERT(acpi_is_resource_managed(bus, r),
1695
("resource %p is not suballocated", r));
1696
1697
STAILQ_FOREACH(rle, &sc->sysres_rl, link) {
1698
if (rle->type != rman_get_type(r) || rle->res == NULL)
1699
continue;
1700
if (rman_get_start(r) >= rman_get_start(rle->res) &&
1701
rman_get_end(r) <= rman_get_end(rle->res))
1702
return (rle->res);
1703
}
1704
return (NULL);
1705
}
1706
1707
static int
1708
acpi_adjust_resource(device_t bus, device_t child, struct resource *r,
1709
rman_res_t start, rman_res_t end)
1710
{
1711
1712
if (acpi_is_resource_managed(bus, r))
1713
return (rman_adjust_resource(r, start, end));
1714
return (bus_generic_adjust_resource(bus, child, r, start, end));
1715
}
1716
1717
static int
1718
acpi_release_resource(device_t bus, device_t child, struct resource *r)
1719
{
1720
/*
1721
* If this resource belongs to one of our internal managers,
1722
* deactivate it and release it to the local pool.
1723
*/
1724
if (acpi_is_resource_managed(bus, r))
1725
return (bus_generic_rman_release_resource(bus, child, r));
1726
1727
return (bus_generic_rl_release_resource(bus, child, r));
1728
}
1729
1730
static void
1731
acpi_delete_resource(device_t bus, device_t child, int type, int rid)
1732
{
1733
struct resource_list *rl;
1734
1735
rl = acpi_get_rlist(bus, child);
1736
if (resource_list_busy(rl, type, rid)) {
1737
device_printf(bus, "delete_resource: Resource still owned by child"
1738
" (type=%d, rid=%d)\n", type, rid);
1739
return;
1740
}
1741
if (resource_list_reserved(rl, type, rid))
1742
resource_list_unreserve(rl, bus, child, type, rid);
1743
resource_list_delete(rl, type, rid);
1744
}
1745
1746
static int
1747
acpi_activate_resource(device_t bus, device_t child, struct resource *r)
1748
{
1749
if (acpi_is_resource_managed(bus, r))
1750
return (bus_generic_rman_activate_resource(bus, child, r));
1751
return (bus_generic_activate_resource(bus, child, r));
1752
}
1753
1754
static int
1755
acpi_deactivate_resource(device_t bus, device_t child, struct resource *r)
1756
{
1757
if (acpi_is_resource_managed(bus, r))
1758
return (bus_generic_rman_deactivate_resource(bus, child, r));
1759
return (bus_generic_deactivate_resource(bus, child, r));
1760
}
1761
1762
static int
1763
acpi_map_resource(device_t bus, device_t child, struct resource *r,
1764
struct resource_map_request *argsp, struct resource_map *map)
1765
{
1766
struct resource_map_request args;
1767
struct resource *sysres;
1768
rman_res_t length, start;
1769
int error;
1770
1771
if (!acpi_is_resource_managed(bus, r))
1772
return (bus_generic_map_resource(bus, child, r, argsp, map));
1773
1774
/* Resources must be active to be mapped. */
1775
if (!(rman_get_flags(r) & RF_ACTIVE))
1776
return (ENXIO);
1777
1778
resource_init_map_request(&args);
1779
error = resource_validate_map_request(r, argsp, &args, &start, &length);
1780
if (error)
1781
return (error);
1782
1783
sysres = acpi_managed_resource(bus, r);
1784
if (sysres == NULL)
1785
return (ENOENT);
1786
1787
args.offset = start - rman_get_start(sysres);
1788
args.length = length;
1789
return (bus_map_resource(bus, sysres, &args, map));
1790
}
1791
1792
static int
1793
acpi_unmap_resource(device_t bus, device_t child, struct resource *r,
1794
struct resource_map *map)
1795
{
1796
struct resource *sysres;
1797
1798
if (!acpi_is_resource_managed(bus, r))
1799
return (bus_generic_unmap_resource(bus, child, r, map));
1800
1801
sysres = acpi_managed_resource(bus, r);
1802
if (sysres == NULL)
1803
return (ENOENT);
1804
return (bus_unmap_resource(bus, sysres, map));
1805
}
1806
1807
/* Allocate an IO port or memory resource, given its GAS. */
1808
int
1809
acpi_bus_alloc_gas(device_t dev, int *type, int rid, ACPI_GENERIC_ADDRESS *gas,
1810
struct resource **res, u_int flags)
1811
{
1812
int error, res_type;
1813
1814
error = ENOMEM;
1815
if (type == NULL || gas == NULL || res == NULL)
1816
return (EINVAL);
1817
1818
/* We only support memory and IO spaces. */
1819
switch (gas->SpaceId) {
1820
case ACPI_ADR_SPACE_SYSTEM_MEMORY:
1821
res_type = SYS_RES_MEMORY;
1822
break;
1823
case ACPI_ADR_SPACE_SYSTEM_IO:
1824
res_type = SYS_RES_IOPORT;
1825
break;
1826
default:
1827
return (EOPNOTSUPP);
1828
}
1829
1830
/*
1831
* If the register width is less than 8, assume the BIOS author means
1832
* it is a bit field and just allocate a byte.
1833
*/
1834
if (gas->BitWidth && gas->BitWidth < 8)
1835
gas->BitWidth = 8;
1836
1837
/* Validate the address after we're sure we support the space. */
1838
if (gas->Address == 0 || gas->BitWidth == 0)
1839
return (EINVAL);
1840
1841
bus_set_resource(dev, res_type, rid, gas->Address,
1842
gas->BitWidth / 8);
1843
*res = bus_alloc_resource_any(dev, res_type, rid, RF_ACTIVE | flags);
1844
if (*res != NULL) {
1845
*type = res_type;
1846
error = 0;
1847
} else
1848
bus_delete_resource(dev, res_type, rid);
1849
1850
return (error);
1851
}
1852
1853
/* Probe _HID and _CID for compatible ISA PNP ids. */
1854
static uint32_t
1855
acpi_isa_get_logicalid(device_t dev)
1856
{
1857
ACPI_DEVICE_INFO *devinfo;
1858
ACPI_HANDLE h;
1859
uint32_t pnpid;
1860
1861
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1862
1863
/* Fetch and validate the HID. */
1864
if ((h = acpi_get_handle(dev)) == NULL ||
1865
ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1866
return_VALUE (0);
1867
1868
pnpid = (devinfo->Valid & ACPI_VALID_HID) != 0 &&
1869
devinfo->HardwareId.Length >= ACPI_EISAID_STRING_SIZE ?
1870
PNP_EISAID(devinfo->HardwareId.String) : 0;
1871
AcpiOsFree(devinfo);
1872
1873
return_VALUE (pnpid);
1874
}
1875
1876
static int
1877
acpi_isa_get_compatid(device_t dev, uint32_t *cids, int count)
1878
{
1879
ACPI_DEVICE_INFO *devinfo;
1880
ACPI_PNP_DEVICE_ID *ids;
1881
ACPI_HANDLE h;
1882
uint32_t *pnpid;
1883
int i, valid;
1884
1885
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1886
1887
pnpid = cids;
1888
1889
/* Fetch and validate the CID */
1890
if ((h = acpi_get_handle(dev)) == NULL ||
1891
ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
1892
return_VALUE (0);
1893
1894
if ((devinfo->Valid & ACPI_VALID_CID) == 0) {
1895
AcpiOsFree(devinfo);
1896
return_VALUE (0);
1897
}
1898
1899
if (devinfo->CompatibleIdList.Count < count)
1900
count = devinfo->CompatibleIdList.Count;
1901
ids = devinfo->CompatibleIdList.Ids;
1902
for (i = 0, valid = 0; i < count; i++)
1903
if (ids[i].Length >= ACPI_EISAID_STRING_SIZE &&
1904
strncmp(ids[i].String, "PNP", 3) == 0) {
1905
*pnpid++ = PNP_EISAID(ids[i].String);
1906
valid++;
1907
}
1908
AcpiOsFree(devinfo);
1909
1910
return_VALUE (valid);
1911
}
1912
1913
static int
1914
acpi_device_id_probe(device_t bus, device_t dev, char **ids, char **match)
1915
{
1916
ACPI_HANDLE h;
1917
ACPI_OBJECT_TYPE t;
1918
int rv;
1919
int i;
1920
1921
h = acpi_get_handle(dev);
1922
if (ids == NULL || h == NULL)
1923
return (ENXIO);
1924
t = acpi_get_type(dev);
1925
if (t != ACPI_TYPE_DEVICE && t != ACPI_TYPE_PROCESSOR)
1926
return (ENXIO);
1927
1928
/* Try to match one of the array of IDs with a HID or CID. */
1929
for (i = 0; ids[i] != NULL; i++) {
1930
rv = acpi_MatchHid(h, ids[i]);
1931
if (rv == ACPI_MATCHHID_NOMATCH)
1932
continue;
1933
1934
if (match != NULL) {
1935
*match = ids[i];
1936
}
1937
return ((rv == ACPI_MATCHHID_HID)?
1938
BUS_PROBE_DEFAULT : BUS_PROBE_LOW_PRIORITY);
1939
}
1940
return (ENXIO);
1941
}
1942
1943
static ACPI_STATUS
1944
acpi_device_eval_obj(device_t bus, device_t dev, ACPI_STRING pathname,
1945
ACPI_OBJECT_LIST *parameters, ACPI_BUFFER *ret)
1946
{
1947
ACPI_HANDLE h;
1948
1949
if (dev == NULL)
1950
h = ACPI_ROOT_OBJECT;
1951
else if ((h = acpi_get_handle(dev)) == NULL)
1952
return (AE_BAD_PARAMETER);
1953
return (AcpiEvaluateObject(h, pathname, parameters, ret));
1954
}
1955
1956
static ACPI_STATUS
1957
acpi_device_get_prop(device_t bus, device_t dev, ACPI_STRING propname,
1958
const ACPI_OBJECT **value)
1959
{
1960
const ACPI_OBJECT *pkg, *name, *val;
1961
struct acpi_device *ad;
1962
ACPI_STATUS status;
1963
int i;
1964
1965
ad = device_get_ivars(dev);
1966
1967
if (ad == NULL || propname == NULL)
1968
return (AE_BAD_PARAMETER);
1969
if (ad->dsd_pkg == NULL) {
1970
if (ad->dsd.Pointer == NULL) {
1971
status = acpi_find_dsd(ad);
1972
if (ACPI_FAILURE(status))
1973
return (status);
1974
} else {
1975
return (AE_NOT_FOUND);
1976
}
1977
}
1978
1979
for (i = 0; i < ad->dsd_pkg->Package.Count; i ++) {
1980
pkg = &ad->dsd_pkg->Package.Elements[i];
1981
if (pkg->Type != ACPI_TYPE_PACKAGE || pkg->Package.Count != 2)
1982
continue;
1983
1984
name = &pkg->Package.Elements[0];
1985
val = &pkg->Package.Elements[1];
1986
if (name->Type != ACPI_TYPE_STRING)
1987
continue;
1988
if (strncmp(propname, name->String.Pointer, name->String.Length) == 0) {
1989
if (value != NULL)
1990
*value = val;
1991
1992
return (AE_OK);
1993
}
1994
}
1995
1996
return (AE_NOT_FOUND);
1997
}
1998
1999
static ACPI_STATUS
2000
acpi_find_dsd(struct acpi_device *ad)
2001
{
2002
const ACPI_OBJECT *dsd, *guid, *pkg;
2003
ACPI_STATUS status;
2004
2005
ad->dsd.Length = ACPI_ALLOCATE_BUFFER;
2006
ad->dsd.Pointer = NULL;
2007
ad->dsd_pkg = NULL;
2008
2009
status = AcpiEvaluateObject(ad->ad_handle, "_DSD", NULL, &ad->dsd);
2010
if (ACPI_FAILURE(status))
2011
return (status);
2012
2013
dsd = ad->dsd.Pointer;
2014
guid = &dsd->Package.Elements[0];
2015
pkg = &dsd->Package.Elements[1];
2016
2017
if (guid->Type != ACPI_TYPE_BUFFER || pkg->Type != ACPI_TYPE_PACKAGE ||
2018
guid->Buffer.Length != sizeof(acpi_dsd_uuid))
2019
return (AE_NOT_FOUND);
2020
if (memcmp(guid->Buffer.Pointer, &acpi_dsd_uuid,
2021
sizeof(acpi_dsd_uuid)) == 0) {
2022
2023
ad->dsd_pkg = pkg;
2024
return (AE_OK);
2025
}
2026
2027
return (AE_NOT_FOUND);
2028
}
2029
2030
static ssize_t
2031
acpi_bus_get_prop_handle(const ACPI_OBJECT *hobj, void *propvalue, size_t size)
2032
{
2033
ACPI_OBJECT *pobj;
2034
ACPI_HANDLE h;
2035
2036
if (hobj->Type != ACPI_TYPE_PACKAGE)
2037
goto err;
2038
if (hobj->Package.Count != 1)
2039
goto err;
2040
2041
pobj = &hobj->Package.Elements[0];
2042
if (pobj == NULL)
2043
goto err;
2044
if (pobj->Type != ACPI_TYPE_LOCAL_REFERENCE)
2045
goto err;
2046
2047
h = acpi_GetReference(NULL, pobj);
2048
if (h == NULL)
2049
goto err;
2050
2051
if (propvalue != NULL && size >= sizeof(ACPI_HANDLE))
2052
*(ACPI_HANDLE *)propvalue = h;
2053
return (sizeof(ACPI_HANDLE));
2054
2055
err:
2056
return (-1);
2057
}
2058
2059
static ssize_t
2060
acpi_bus_get_prop(device_t bus, device_t child, const char *propname,
2061
void *propvalue, size_t size, device_property_type_t type)
2062
{
2063
ACPI_STATUS status;
2064
const ACPI_OBJECT *obj;
2065
2066
status = acpi_device_get_prop(bus, child, __DECONST(char *, propname),
2067
&obj);
2068
if (ACPI_FAILURE(status))
2069
return (-1);
2070
2071
switch (type) {
2072
case DEVICE_PROP_ANY:
2073
case DEVICE_PROP_BUFFER:
2074
case DEVICE_PROP_UINT32:
2075
case DEVICE_PROP_UINT64:
2076
break;
2077
case DEVICE_PROP_HANDLE:
2078
return (acpi_bus_get_prop_handle(obj, propvalue, size));
2079
default:
2080
return (-1);
2081
}
2082
2083
switch (obj->Type) {
2084
case ACPI_TYPE_INTEGER:
2085
if (type == DEVICE_PROP_UINT32) {
2086
if (propvalue != NULL && size >= sizeof(uint32_t))
2087
*((uint32_t *)propvalue) = obj->Integer.Value;
2088
return (sizeof(uint32_t));
2089
}
2090
if (propvalue != NULL && size >= sizeof(uint64_t))
2091
*((uint64_t *) propvalue) = obj->Integer.Value;
2092
return (sizeof(uint64_t));
2093
2094
case ACPI_TYPE_STRING:
2095
if (type != DEVICE_PROP_ANY &&
2096
type != DEVICE_PROP_BUFFER)
2097
return (-1);
2098
2099
if (propvalue != NULL && size > 0)
2100
memcpy(propvalue, obj->String.Pointer,
2101
MIN(size, obj->String.Length));
2102
return (obj->String.Length);
2103
2104
case ACPI_TYPE_BUFFER:
2105
if (propvalue != NULL && size > 0)
2106
memcpy(propvalue, obj->Buffer.Pointer,
2107
MIN(size, obj->Buffer.Length));
2108
return (obj->Buffer.Length);
2109
2110
case ACPI_TYPE_PACKAGE:
2111
if (propvalue != NULL && size >= sizeof(ACPI_OBJECT *)) {
2112
*((ACPI_OBJECT **) propvalue) =
2113
__DECONST(ACPI_OBJECT *, obj);
2114
}
2115
return (sizeof(ACPI_OBJECT *));
2116
2117
case ACPI_TYPE_LOCAL_REFERENCE:
2118
if (propvalue != NULL && size >= sizeof(ACPI_HANDLE)) {
2119
ACPI_HANDLE h;
2120
2121
h = acpi_GetReference(NULL,
2122
__DECONST(ACPI_OBJECT *, obj));
2123
memcpy(propvalue, h, sizeof(ACPI_HANDLE));
2124
}
2125
return (sizeof(ACPI_HANDLE));
2126
default:
2127
return (0);
2128
}
2129
}
2130
2131
int
2132
acpi_device_pwr_for_sleep(device_t bus, device_t dev, int *dstate)
2133
{
2134
struct acpi_softc *sc;
2135
ACPI_HANDLE handle;
2136
ACPI_STATUS status;
2137
char sxd[8];
2138
2139
handle = acpi_get_handle(dev);
2140
2141
/*
2142
* XXX If we find these devices, don't try to power them down.
2143
* The serial and IRDA ports on my T23 hang the system when
2144
* set to D3 and it appears that such legacy devices may
2145
* need special handling in their drivers.
2146
*/
2147
if (dstate == NULL || handle == NULL ||
2148
acpi_MatchHid(handle, "PNP0500") ||
2149
acpi_MatchHid(handle, "PNP0501") ||
2150
acpi_MatchHid(handle, "PNP0502") ||
2151
acpi_MatchHid(handle, "PNP0510") ||
2152
acpi_MatchHid(handle, "PNP0511"))
2153
return (ENXIO);
2154
2155
/*
2156
* Override next state with the value from _SxD, if present.
2157
* Note illegal _S0D is evaluated because some systems expect this.
2158
*/
2159
sc = device_get_softc(bus);
2160
snprintf(sxd, sizeof(sxd), "_S%dD", acpi_stype_to_sstate(sc, sc->acpi_stype));
2161
status = acpi_GetInteger(handle, sxd, dstate);
2162
if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) {
2163
device_printf(dev, "failed to get %s on %s: %s\n", sxd,
2164
acpi_name(handle), AcpiFormatException(status));
2165
return (ENXIO);
2166
}
2167
2168
return (0);
2169
}
2170
2171
/* Callback arg for our implementation of walking the namespace. */
2172
struct acpi_device_scan_ctx {
2173
acpi_scan_cb_t user_fn;
2174
void *arg;
2175
ACPI_HANDLE parent;
2176
};
2177
2178
static ACPI_STATUS
2179
acpi_device_scan_cb(ACPI_HANDLE h, UINT32 level, void *arg, void **retval)
2180
{
2181
struct acpi_device_scan_ctx *ctx;
2182
device_t dev, old_dev;
2183
ACPI_STATUS status;
2184
ACPI_OBJECT_TYPE type;
2185
2186
/*
2187
* Skip this device if we think we'll have trouble with it or it is
2188
* the parent where the scan began.
2189
*/
2190
ctx = (struct acpi_device_scan_ctx *)arg;
2191
if (acpi_avoid(h) || h == ctx->parent)
2192
return (AE_OK);
2193
2194
/* If this is not a valid device type (e.g., a method), skip it. */
2195
if (ACPI_FAILURE(AcpiGetType(h, &type)))
2196
return (AE_OK);
2197
if (type != ACPI_TYPE_DEVICE && type != ACPI_TYPE_PROCESSOR &&
2198
type != ACPI_TYPE_THERMAL && type != ACPI_TYPE_POWER)
2199
return (AE_OK);
2200
2201
/*
2202
* Call the user function with the current device. If it is unchanged
2203
* afterwards, return. Otherwise, we update the handle to the new dev.
2204
*/
2205
old_dev = acpi_get_device(h);
2206
dev = old_dev;
2207
status = ctx->user_fn(h, &dev, level, ctx->arg);
2208
if (ACPI_FAILURE(status) || old_dev == dev)
2209
return (status);
2210
2211
/* Remove the old child and its connection to the handle. */
2212
if (old_dev != NULL)
2213
device_delete_child(device_get_parent(old_dev), old_dev);
2214
2215
/* Recreate the handle association if the user created a device. */
2216
if (dev != NULL)
2217
AcpiAttachData(h, acpi_fake_objhandler, dev);
2218
2219
return (AE_OK);
2220
}
2221
2222
static ACPI_STATUS
2223
acpi_device_scan_children(device_t bus, device_t dev, int max_depth,
2224
acpi_scan_cb_t user_fn, void *arg)
2225
{
2226
ACPI_HANDLE h;
2227
struct acpi_device_scan_ctx ctx;
2228
2229
if (acpi_disabled("children"))
2230
return (AE_OK);
2231
2232
if (dev == NULL)
2233
h = ACPI_ROOT_OBJECT;
2234
else if ((h = acpi_get_handle(dev)) == NULL)
2235
return (AE_BAD_PARAMETER);
2236
ctx.user_fn = user_fn;
2237
ctx.arg = arg;
2238
ctx.parent = h;
2239
return (AcpiWalkNamespace(ACPI_TYPE_ANY, h, max_depth,
2240
acpi_device_scan_cb, NULL, &ctx, NULL));
2241
}
2242
2243
/*
2244
* Even though ACPI devices are not PCI, we use the PCI approach for setting
2245
* device power states since it's close enough to ACPI.
2246
*/
2247
int
2248
acpi_set_powerstate(device_t child, int state)
2249
{
2250
ACPI_HANDLE h;
2251
ACPI_STATUS status;
2252
2253
h = acpi_get_handle(child);
2254
if (state < ACPI_STATE_D0 || state > ACPI_D_STATES_MAX)
2255
return (EINVAL);
2256
if (h == NULL)
2257
return (0);
2258
2259
/* Ignore errors if the power methods aren't present. */
2260
status = acpi_pwr_switch_consumer(h, state);
2261
if (ACPI_SUCCESS(status)) {
2262
if (bootverbose)
2263
device_printf(child, "set ACPI power state %s on %s\n",
2264
acpi_d_state_to_str(state), acpi_name(h));
2265
} else if (status != AE_NOT_FOUND)
2266
device_printf(child,
2267
"failed to set ACPI power state %s on %s: %s\n",
2268
acpi_d_state_to_str(state), acpi_name(h),
2269
AcpiFormatException(status));
2270
2271
return (0);
2272
}
2273
2274
static int
2275
acpi_isa_pnp_probe(device_t bus, device_t child, struct isa_pnp_id *ids)
2276
{
2277
int result, cid_count, i;
2278
uint32_t lid, cids[8];
2279
2280
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2281
2282
/*
2283
* ISA-style drivers attached to ACPI may persist and
2284
* probe manually if we return ENOENT. We never want
2285
* that to happen, so don't ever return it.
2286
*/
2287
result = ENXIO;
2288
2289
/* Scan the supplied IDs for a match */
2290
lid = acpi_isa_get_logicalid(child);
2291
cid_count = acpi_isa_get_compatid(child, cids, 8);
2292
while (ids && ids->ip_id) {
2293
if (lid == ids->ip_id) {
2294
result = 0;
2295
goto out;
2296
}
2297
for (i = 0; i < cid_count; i++) {
2298
if (cids[i] == ids->ip_id) {
2299
result = 0;
2300
goto out;
2301
}
2302
}
2303
ids++;
2304
}
2305
2306
out:
2307
if (result == 0 && ids->ip_desc)
2308
device_set_desc(child, ids->ip_desc);
2309
2310
return_VALUE (result);
2311
}
2312
2313
/*
2314
* Look for a MCFG table. If it is present, use the settings for
2315
* domain (segment) 0 to setup PCI config space access via the memory
2316
* map.
2317
*
2318
* On non-x86 architectures (arm64 for now), this will be done from the
2319
* PCI host bridge driver.
2320
*/
2321
static void
2322
acpi_enable_pcie(void)
2323
{
2324
#if defined(__i386__) || defined(__amd64__)
2325
ACPI_TABLE_HEADER *hdr;
2326
ACPI_MCFG_ALLOCATION *alloc, *end;
2327
ACPI_STATUS status;
2328
2329
status = AcpiGetTable(ACPI_SIG_MCFG, 1, &hdr);
2330
if (ACPI_FAILURE(status))
2331
return;
2332
2333
end = (ACPI_MCFG_ALLOCATION *)((char *)hdr + hdr->Length);
2334
alloc = (ACPI_MCFG_ALLOCATION *)((ACPI_TABLE_MCFG *)hdr + 1);
2335
while (alloc < end) {
2336
pcie_cfgregopen(alloc->Address, alloc->PciSegment,
2337
alloc->StartBusNumber, alloc->EndBusNumber);
2338
alloc++;
2339
}
2340
#endif
2341
}
2342
2343
static void
2344
acpi_platform_osc(device_t dev)
2345
{
2346
ACPI_HANDLE sb_handle;
2347
ACPI_STATUS status;
2348
uint32_t cap_set[2];
2349
2350
/* 0811B06E-4A27-44F9-8D60-3CBBC22E7B48 */
2351
static uint8_t acpi_platform_uuid[ACPI_UUID_LENGTH] = {
2352
0x6e, 0xb0, 0x11, 0x08, 0x27, 0x4a, 0xf9, 0x44,
2353
0x8d, 0x60, 0x3c, 0xbb, 0xc2, 0x2e, 0x7b, 0x48
2354
};
2355
2356
if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
2357
return;
2358
2359
cap_set[1] = 0x10; /* APEI Support */
2360
status = acpi_EvaluateOSC(sb_handle, acpi_platform_uuid, 1,
2361
nitems(cap_set), cap_set, cap_set, false);
2362
if (ACPI_FAILURE(status)) {
2363
if (status == AE_NOT_FOUND)
2364
return;
2365
device_printf(dev, "_OSC failed: %s\n",
2366
AcpiFormatException(status));
2367
return;
2368
}
2369
}
2370
2371
/*
2372
* Scan all of the ACPI namespace and attach child devices.
2373
*
2374
* We should only expect to find devices in the \_PR, \_TZ, \_SI, and
2375
* \_SB scopes, and \_PR and \_TZ became obsolete in the ACPI 2.0 spec.
2376
* However, in violation of the spec, some systems place their PCI link
2377
* devices in \, so we have to walk the whole namespace. We check the
2378
* type of namespace nodes, so this should be ok.
2379
*/
2380
static void
2381
acpi_probe_children(device_t bus)
2382
{
2383
2384
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2385
2386
/*
2387
* Scan the namespace and insert placeholders for all the devices that
2388
* we find. We also probe/attach any early devices.
2389
*
2390
* Note that we use AcpiWalkNamespace rather than AcpiGetDevices because
2391
* we want to create nodes for all devices, not just those that are
2392
* currently present. (This assumes that we don't want to create/remove
2393
* devices as they appear, which might be smarter.)
2394
*/
2395
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "namespace scan\n"));
2396
AcpiWalkNamespace(ACPI_TYPE_ANY, ACPI_ROOT_OBJECT, 100, acpi_probe_child,
2397
NULL, bus, NULL);
2398
2399
/* Pre-allocate resources for our rman from any sysresource devices. */
2400
acpi_sysres_alloc(bus);
2401
2402
/* Create any static children by calling device identify methods. */
2403
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "device identify routines\n"));
2404
bus_identify_children(bus);
2405
2406
/* Probe/attach all children, created statically and from the namespace. */
2407
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "acpi bus_attach_children\n"));
2408
bus_attach_children(bus);
2409
2410
/*
2411
* Reserve resources allocated to children but not yet allocated
2412
* by a driver.
2413
*/
2414
acpi_reserve_resources(bus);
2415
2416
/* Attach wake sysctls. */
2417
acpi_wake_sysctl_walk(bus);
2418
2419
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "done attaching children\n"));
2420
return_VOID;
2421
}
2422
2423
/*
2424
* Determine the probe order for a given device.
2425
*/
2426
static void
2427
acpi_probe_order(ACPI_HANDLE handle, int *order)
2428
{
2429
ACPI_OBJECT_TYPE type;
2430
2431
/*
2432
* 0. CPUs
2433
* 1. I/O port and memory system resource holders
2434
* 2. Clocks and timers (to handle early accesses)
2435
* 3. Embedded controllers (to handle early accesses)
2436
* 4. PCI Link Devices
2437
*/
2438
AcpiGetType(handle, &type);
2439
if (type == ACPI_TYPE_PROCESSOR)
2440
*order = 0;
2441
else if (acpi_MatchHid(handle, "PNP0C01") ||
2442
acpi_MatchHid(handle, "PNP0C02"))
2443
*order = 1;
2444
else if (acpi_MatchHid(handle, "PNP0100") ||
2445
acpi_MatchHid(handle, "PNP0103") ||
2446
acpi_MatchHid(handle, "PNP0B00"))
2447
*order = 2;
2448
else if (acpi_MatchHid(handle, "PNP0C09"))
2449
*order = 3;
2450
else if (acpi_MatchHid(handle, "PNP0C0F"))
2451
*order = 4;
2452
}
2453
2454
/*
2455
* Evaluate a child device and determine whether we might attach a device to
2456
* it.
2457
*/
2458
static ACPI_STATUS
2459
acpi_probe_child(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
2460
{
2461
ACPI_DEVICE_INFO *devinfo;
2462
struct acpi_device *ad;
2463
struct acpi_prw_data prw;
2464
ACPI_OBJECT_TYPE type;
2465
ACPI_HANDLE h;
2466
device_t bus, child;
2467
char *handle_str;
2468
int d, order;
2469
2470
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
2471
2472
if (acpi_disabled("children"))
2473
return_ACPI_STATUS (AE_OK);
2474
2475
/* Skip this device if we think we'll have trouble with it. */
2476
if (acpi_avoid(handle))
2477
return_ACPI_STATUS (AE_OK);
2478
2479
bus = (device_t)context;
2480
if (ACPI_SUCCESS(AcpiGetType(handle, &type))) {
2481
handle_str = acpi_name(handle);
2482
switch (type) {
2483
case ACPI_TYPE_DEVICE:
2484
/*
2485
* Since we scan from \, be sure to skip system scope objects.
2486
* \_SB_ and \_TZ_ are defined in ACPICA as devices to work around
2487
* BIOS bugs. For example, \_SB_ is to allow \_SB_._INI to be run
2488
* during the initialization and \_TZ_ is to support Notify() on it.
2489
*/
2490
if (strcmp(handle_str, "\\_SB_") == 0 ||
2491
strcmp(handle_str, "\\_TZ_") == 0)
2492
break;
2493
if (acpi_parse_prw(handle, &prw) == 0)
2494
AcpiSetupGpeForWake(handle, prw.gpe_handle, prw.gpe_bit);
2495
2496
/*
2497
* Ignore devices that do not have a _HID or _CID. They should
2498
* be discovered by other buses (e.g. the PCI bus driver).
2499
*/
2500
if (!acpi_has_hid(handle))
2501
break;
2502
/* FALLTHROUGH */
2503
case ACPI_TYPE_PROCESSOR:
2504
case ACPI_TYPE_THERMAL:
2505
case ACPI_TYPE_POWER:
2506
/*
2507
* Create a placeholder device for this node. Sort the
2508
* placeholder so that the probe/attach passes will run
2509
* breadth-first. Orders less than ACPI_DEV_BASE_ORDER
2510
* are reserved for special objects (i.e., system
2511
* resources).
2512
*/
2513
ACPI_DEBUG_PRINT((ACPI_DB_OBJECTS, "scanning '%s'\n", handle_str));
2514
order = level * 10 + ACPI_DEV_BASE_ORDER;
2515
acpi_probe_order(handle, &order);
2516
child = BUS_ADD_CHILD(bus, order, NULL, DEVICE_UNIT_ANY);
2517
if (child == NULL)
2518
break;
2519
2520
/* Associate the handle with the device_t and vice versa. */
2521
acpi_set_handle(child, handle);
2522
AcpiAttachData(handle, acpi_fake_objhandler, child);
2523
2524
/*
2525
* Check that the device is present. If it's not present,
2526
* leave it disabled (so that we have a device_t attached to
2527
* the handle, but we don't probe it).
2528
*
2529
* XXX PCI link devices sometimes report "present" but not
2530
* "functional" (i.e. if disabled). Go ahead and probe them
2531
* anyway since we may enable them later.
2532
*/
2533
if (type == ACPI_TYPE_DEVICE && !acpi_DeviceIsPresent(child)) {
2534
/* Never disable PCI link devices. */
2535
if (acpi_MatchHid(handle, "PNP0C0F"))
2536
break;
2537
2538
/*
2539
* RTC Device should be enabled for CMOS register space
2540
* unless FADT indicate it is not present.
2541
* (checked in RTC probe routine.)
2542
*/
2543
if (acpi_MatchHid(handle, "PNP0B00"))
2544
break;
2545
2546
/*
2547
* Docking stations should remain enabled since the system
2548
* may be undocked at boot.
2549
*/
2550
if (ACPI_SUCCESS(AcpiGetHandle(handle, "_DCK", &h)))
2551
break;
2552
2553
device_disable(child);
2554
break;
2555
}
2556
2557
/*
2558
* Get the device's resource settings and attach them.
2559
* Note that if the device has _PRS but no _CRS, we need
2560
* to decide when it's appropriate to try to configure the
2561
* device. Ignore the return value here; it's OK for the
2562
* device not to have any resources.
2563
*/
2564
acpi_parse_resources(child, handle, &acpi_res_parse_set, NULL);
2565
2566
ad = device_get_ivars(child);
2567
ad->ad_cls_class = 0xffffff;
2568
if (ACPI_SUCCESS(AcpiGetObjectInfo(handle, &devinfo))) {
2569
if ((devinfo->Valid & ACPI_VALID_CLS) != 0 &&
2570
devinfo->ClassCode.Length >= ACPI_PCICLS_STRING_SIZE) {
2571
ad->ad_cls_class = strtoul(devinfo->ClassCode.String,
2572
NULL, 16);
2573
}
2574
AcpiOsFree(devinfo);
2575
}
2576
2577
d = acpi_pxm_parse(child);
2578
if (d >= 0)
2579
ad->ad_domain = d;
2580
break;
2581
}
2582
}
2583
2584
return_ACPI_STATUS (AE_OK);
2585
}
2586
2587
/*
2588
* AcpiAttachData() requires an object handler but never uses it. This is a
2589
* placeholder object handler so we can store a device_t in an ACPI_HANDLE.
2590
*/
2591
void
2592
acpi_fake_objhandler(ACPI_HANDLE h, void *data)
2593
{
2594
}
2595
2596
static void
2597
acpi_shutdown_final(void *arg, int howto)
2598
{
2599
struct acpi_softc *sc = (struct acpi_softc *)arg;
2600
register_t intr;
2601
ACPI_STATUS status;
2602
2603
/*
2604
* XXX Shutdown code should only run on the BSP (cpuid 0).
2605
* Some chipsets do not power off the system correctly if called from
2606
* an AP.
2607
*/
2608
if ((howto & RB_POWEROFF) != 0) {
2609
status = AcpiEnterSleepStatePrep(ACPI_STATE_S5);
2610
if (ACPI_FAILURE(status)) {
2611
device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
2612
AcpiFormatException(status));
2613
return;
2614
}
2615
device_printf(sc->acpi_dev, "Powering system off\n");
2616
intr = intr_disable();
2617
status = AcpiEnterSleepState(ACPI_STATE_S5);
2618
if (ACPI_FAILURE(status)) {
2619
intr_restore(intr);
2620
device_printf(sc->acpi_dev, "power-off failed - %s\n",
2621
AcpiFormatException(status));
2622
} else {
2623
DELAY(1000000);
2624
intr_restore(intr);
2625
device_printf(sc->acpi_dev, "power-off failed - timeout\n");
2626
}
2627
} else if ((howto & RB_HALT) == 0 && sc->acpi_handle_reboot) {
2628
/* Reboot using the reset register. */
2629
status = AcpiReset();
2630
if (ACPI_SUCCESS(status)) {
2631
DELAY(1000000);
2632
device_printf(sc->acpi_dev, "reset failed - timeout\n");
2633
} else if (status != AE_NOT_EXIST)
2634
device_printf(sc->acpi_dev, "reset failed - %s\n",
2635
AcpiFormatException(status));
2636
} else if (sc->acpi_do_disable && !KERNEL_PANICKED()) {
2637
/*
2638
* Only disable ACPI if the user requested. On some systems, writing
2639
* the disable value to SMI_CMD hangs the system.
2640
*/
2641
device_printf(sc->acpi_dev, "Shutting down\n");
2642
AcpiTerminate();
2643
}
2644
}
2645
2646
static void
2647
acpi_enable_fixed_events(struct acpi_softc *sc)
2648
{
2649
static int first_time = 1;
2650
2651
/* Enable and clear fixed events and install handlers. */
2652
if ((AcpiGbl_FADT.Flags & ACPI_FADT_POWER_BUTTON) == 0) {
2653
AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
2654
AcpiInstallFixedEventHandler(ACPI_EVENT_POWER_BUTTON,
2655
acpi_event_power_button_sleep, sc);
2656
if (first_time)
2657
device_printf(sc->acpi_dev, "Power Button (fixed)\n");
2658
}
2659
if ((AcpiGbl_FADT.Flags & ACPI_FADT_SLEEP_BUTTON) == 0) {
2660
AcpiClearEvent(ACPI_EVENT_SLEEP_BUTTON);
2661
AcpiInstallFixedEventHandler(ACPI_EVENT_SLEEP_BUTTON,
2662
acpi_event_sleep_button_sleep, sc);
2663
if (first_time)
2664
device_printf(sc->acpi_dev, "Sleep Button (fixed)\n");
2665
}
2666
2667
first_time = 0;
2668
}
2669
2670
/*
2671
* Returns true if the device is actually present and should
2672
* be attached to. This requires the present, enabled, UI-visible
2673
* and diagnostics-passed bits to be set.
2674
*/
2675
BOOLEAN
2676
acpi_DeviceIsPresent(device_t dev)
2677
{
2678
ACPI_HANDLE h;
2679
UINT32 s;
2680
ACPI_STATUS status;
2681
2682
h = acpi_get_handle(dev);
2683
if (h == NULL)
2684
return (FALSE);
2685
2686
#ifdef ACPI_EARLY_EPYC_WAR
2687
/*
2688
* Certain Treadripper boards always returns 0 for FreeBSD because it
2689
* only returns non-zero for the OS string "Windows 2015". Otherwise it
2690
* will return zero. Force them to always be treated as present.
2691
* Beata versions were worse: they always returned 0.
2692
*/
2693
if (acpi_MatchHid(h, "AMDI0020") || acpi_MatchHid(h, "AMDI0010"))
2694
return (TRUE);
2695
#endif
2696
2697
status = acpi_GetInteger(h, "_STA", &s);
2698
2699
/*
2700
* If no _STA method or if it failed, then assume that
2701
* the device is present.
2702
*/
2703
if (ACPI_FAILURE(status))
2704
return (TRUE);
2705
2706
return (ACPI_DEVICE_PRESENT(s) ? TRUE : FALSE);
2707
}
2708
2709
/*
2710
* Returns true if the battery is actually present and inserted.
2711
*/
2712
BOOLEAN
2713
acpi_BatteryIsPresent(device_t dev)
2714
{
2715
ACPI_HANDLE h;
2716
UINT32 s;
2717
ACPI_STATUS status;
2718
2719
h = acpi_get_handle(dev);
2720
if (h == NULL)
2721
return (FALSE);
2722
status = acpi_GetInteger(h, "_STA", &s);
2723
2724
/*
2725
* If no _STA method or if it failed, then assume that
2726
* the device is present.
2727
*/
2728
if (ACPI_FAILURE(status))
2729
return (TRUE);
2730
2731
return (ACPI_BATTERY_PRESENT(s) ? TRUE : FALSE);
2732
}
2733
2734
/*
2735
* Returns true if a device has at least one valid device ID.
2736
*/
2737
BOOLEAN
2738
acpi_has_hid(ACPI_HANDLE h)
2739
{
2740
ACPI_DEVICE_INFO *devinfo;
2741
BOOLEAN ret;
2742
2743
if (h == NULL ||
2744
ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
2745
return (FALSE);
2746
2747
ret = FALSE;
2748
if ((devinfo->Valid & ACPI_VALID_HID) != 0)
2749
ret = TRUE;
2750
else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
2751
if (devinfo->CompatibleIdList.Count > 0)
2752
ret = TRUE;
2753
2754
AcpiOsFree(devinfo);
2755
return (ret);
2756
}
2757
2758
/*
2759
* Match a HID string against a handle
2760
* returns ACPI_MATCHHID_HID if _HID match
2761
* ACPI_MATCHHID_CID if _CID match and not _HID match.
2762
* ACPI_MATCHHID_NOMATCH=0 if no match.
2763
*/
2764
int
2765
acpi_MatchHid(ACPI_HANDLE h, const char *hid)
2766
{
2767
ACPI_DEVICE_INFO *devinfo;
2768
BOOLEAN ret;
2769
int i;
2770
2771
if (hid == NULL || h == NULL ||
2772
ACPI_FAILURE(AcpiGetObjectInfo(h, &devinfo)))
2773
return (ACPI_MATCHHID_NOMATCH);
2774
2775
ret = ACPI_MATCHHID_NOMATCH;
2776
if ((devinfo->Valid & ACPI_VALID_HID) != 0 &&
2777
strcmp(hid, devinfo->HardwareId.String) == 0)
2778
ret = ACPI_MATCHHID_HID;
2779
else if ((devinfo->Valid & ACPI_VALID_CID) != 0)
2780
for (i = 0; i < devinfo->CompatibleIdList.Count; i++) {
2781
if (strcmp(hid, devinfo->CompatibleIdList.Ids[i].String) == 0) {
2782
ret = ACPI_MATCHHID_CID;
2783
break;
2784
}
2785
}
2786
2787
AcpiOsFree(devinfo);
2788
return (ret);
2789
}
2790
2791
/*
2792
* Return the handle of a named object within our scope, ie. that of (parent)
2793
* or one if its parents.
2794
*/
2795
ACPI_STATUS
2796
acpi_GetHandleInScope(ACPI_HANDLE parent, char *path, ACPI_HANDLE *result)
2797
{
2798
ACPI_HANDLE r;
2799
ACPI_STATUS status;
2800
2801
/* Walk back up the tree to the root */
2802
for (;;) {
2803
status = AcpiGetHandle(parent, path, &r);
2804
if (ACPI_SUCCESS(status)) {
2805
*result = r;
2806
return (AE_OK);
2807
}
2808
/* XXX Return error here? */
2809
if (status != AE_NOT_FOUND)
2810
return (AE_OK);
2811
if (ACPI_FAILURE(AcpiGetParent(parent, &r)))
2812
return (AE_NOT_FOUND);
2813
parent = r;
2814
}
2815
}
2816
2817
ACPI_STATUS
2818
acpi_GetProperty(device_t dev, ACPI_STRING propname,
2819
const ACPI_OBJECT **value)
2820
{
2821
device_t bus = device_get_parent(dev);
2822
2823
return (ACPI_GET_PROPERTY(bus, dev, propname, value));
2824
}
2825
2826
/*
2827
* Allocate a buffer with a preset data size.
2828
*/
2829
ACPI_BUFFER *
2830
acpi_AllocBuffer(int size)
2831
{
2832
ACPI_BUFFER *buf;
2833
2834
if ((buf = malloc(size + sizeof(*buf), M_ACPIDEV, M_NOWAIT)) == NULL)
2835
return (NULL);
2836
buf->Length = size;
2837
buf->Pointer = (void *)(buf + 1);
2838
return (buf);
2839
}
2840
2841
ACPI_STATUS
2842
acpi_SetInteger(ACPI_HANDLE handle, char *path, UINT32 number)
2843
{
2844
ACPI_OBJECT arg1;
2845
ACPI_OBJECT_LIST args;
2846
2847
arg1.Type = ACPI_TYPE_INTEGER;
2848
arg1.Integer.Value = number;
2849
args.Count = 1;
2850
args.Pointer = &arg1;
2851
2852
return (AcpiEvaluateObject(handle, path, &args, NULL));
2853
}
2854
2855
/*
2856
* Evaluate a path that should return an integer.
2857
*/
2858
ACPI_STATUS
2859
acpi_GetInteger(ACPI_HANDLE handle, char *path, UINT32 *number)
2860
{
2861
ACPI_STATUS status;
2862
ACPI_BUFFER buf;
2863
ACPI_OBJECT param;
2864
2865
if (handle == NULL)
2866
handle = ACPI_ROOT_OBJECT;
2867
2868
/*
2869
* Assume that what we've been pointed at is an Integer object, or
2870
* a method that will return an Integer.
2871
*/
2872
buf.Pointer = &param;
2873
buf.Length = sizeof(param);
2874
status = AcpiEvaluateObject(handle, path, NULL, &buf);
2875
if (ACPI_SUCCESS(status)) {
2876
if (param.Type == ACPI_TYPE_INTEGER)
2877
*number = param.Integer.Value;
2878
else
2879
status = AE_TYPE;
2880
}
2881
2882
/*
2883
* In some applications, a method that's expected to return an Integer
2884
* may instead return a Buffer (probably to simplify some internal
2885
* arithmetic). We'll try to fetch whatever it is, and if it's a Buffer,
2886
* convert it into an Integer as best we can.
2887
*
2888
* This is a hack.
2889
*/
2890
if (status == AE_BUFFER_OVERFLOW) {
2891
if ((buf.Pointer = AcpiOsAllocate(buf.Length)) == NULL) {
2892
status = AE_NO_MEMORY;
2893
} else {
2894
status = AcpiEvaluateObject(handle, path, NULL, &buf);
2895
if (ACPI_SUCCESS(status))
2896
status = acpi_ConvertBufferToInteger(&buf, number);
2897
AcpiOsFree(buf.Pointer);
2898
}
2899
}
2900
return (status);
2901
}
2902
2903
ACPI_STATUS
2904
acpi_ConvertBufferToInteger(ACPI_BUFFER *bufp, UINT32 *number)
2905
{
2906
ACPI_OBJECT *p;
2907
UINT8 *val;
2908
int i;
2909
2910
p = (ACPI_OBJECT *)bufp->Pointer;
2911
if (p->Type == ACPI_TYPE_INTEGER) {
2912
*number = p->Integer.Value;
2913
return (AE_OK);
2914
}
2915
if (p->Type != ACPI_TYPE_BUFFER)
2916
return (AE_TYPE);
2917
if (p->Buffer.Length > sizeof(int))
2918
return (AE_BAD_DATA);
2919
2920
*number = 0;
2921
val = p->Buffer.Pointer;
2922
for (i = 0; i < p->Buffer.Length; i++)
2923
*number += val[i] << (i * 8);
2924
return (AE_OK);
2925
}
2926
2927
/*
2928
* Iterate over the elements of an a package object, calling the supplied
2929
* function for each element.
2930
*
2931
* XXX possible enhancement might be to abort traversal on error.
2932
*/
2933
ACPI_STATUS
2934
acpi_ForeachPackageObject(ACPI_OBJECT *pkg,
2935
void (*func)(ACPI_OBJECT *comp, void *arg), void *arg)
2936
{
2937
ACPI_OBJECT *comp;
2938
int i;
2939
2940
if (pkg == NULL || pkg->Type != ACPI_TYPE_PACKAGE)
2941
return (AE_BAD_PARAMETER);
2942
2943
/* Iterate over components */
2944
i = 0;
2945
comp = pkg->Package.Elements;
2946
for (; i < pkg->Package.Count; i++, comp++)
2947
func(comp, arg);
2948
2949
return (AE_OK);
2950
}
2951
2952
/*
2953
* Find the (index)th resource object in a set.
2954
*/
2955
ACPI_STATUS
2956
acpi_FindIndexedResource(ACPI_BUFFER *buf, int index, ACPI_RESOURCE **resp)
2957
{
2958
ACPI_RESOURCE *rp;
2959
int i;
2960
2961
rp = (ACPI_RESOURCE *)buf->Pointer;
2962
i = index;
2963
while (i-- > 0) {
2964
/* Range check */
2965
if (rp > (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
2966
return (AE_BAD_PARAMETER);
2967
2968
/* Check for terminator */
2969
if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
2970
return (AE_NOT_FOUND);
2971
rp = ACPI_NEXT_RESOURCE(rp);
2972
}
2973
if (resp != NULL)
2974
*resp = rp;
2975
2976
return (AE_OK);
2977
}
2978
2979
/*
2980
* Append an ACPI_RESOURCE to an ACPI_BUFFER.
2981
*
2982
* Given a pointer to an ACPI_RESOURCE structure, expand the ACPI_BUFFER
2983
* provided to contain it. If the ACPI_BUFFER is empty, allocate a sensible
2984
* backing block. If the ACPI_RESOURCE is NULL, return an empty set of
2985
* resources.
2986
*/
2987
#define ACPI_INITIAL_RESOURCE_BUFFER_SIZE 512
2988
2989
ACPI_STATUS
2990
acpi_AppendBufferResource(ACPI_BUFFER *buf, ACPI_RESOURCE *res)
2991
{
2992
ACPI_RESOURCE *rp;
2993
void *newp;
2994
2995
/* Initialise the buffer if necessary. */
2996
if (buf->Pointer == NULL) {
2997
buf->Length = ACPI_INITIAL_RESOURCE_BUFFER_SIZE;
2998
if ((buf->Pointer = AcpiOsAllocate(buf->Length)) == NULL)
2999
return (AE_NO_MEMORY);
3000
rp = (ACPI_RESOURCE *)buf->Pointer;
3001
rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
3002
rp->Length = ACPI_RS_SIZE_MIN;
3003
}
3004
if (res == NULL)
3005
return (AE_OK);
3006
3007
/*
3008
* Scan the current buffer looking for the terminator.
3009
* This will either find the terminator or hit the end
3010
* of the buffer and return an error.
3011
*/
3012
rp = (ACPI_RESOURCE *)buf->Pointer;
3013
for (;;) {
3014
/* Range check, don't go outside the buffer */
3015
if (rp >= (ACPI_RESOURCE *)((u_int8_t *)buf->Pointer + buf->Length))
3016
return (AE_BAD_PARAMETER);
3017
if (rp->Type == ACPI_RESOURCE_TYPE_END_TAG || rp->Length == 0)
3018
break;
3019
rp = ACPI_NEXT_RESOURCE(rp);
3020
}
3021
3022
/*
3023
* Check the size of the buffer and expand if required.
3024
*
3025
* Required size is:
3026
* size of existing resources before terminator +
3027
* size of new resource and header +
3028
* size of terminator.
3029
*
3030
* Note that this loop should really only run once, unless
3031
* for some reason we are stuffing a *really* huge resource.
3032
*/
3033
while ((((u_int8_t *)rp - (u_int8_t *)buf->Pointer) +
3034
res->Length + ACPI_RS_SIZE_NO_DATA +
3035
ACPI_RS_SIZE_MIN) >= buf->Length) {
3036
if ((newp = AcpiOsAllocate(buf->Length * 2)) == NULL)
3037
return (AE_NO_MEMORY);
3038
bcopy(buf->Pointer, newp, buf->Length);
3039
rp = (ACPI_RESOURCE *)((u_int8_t *)newp +
3040
((u_int8_t *)rp - (u_int8_t *)buf->Pointer));
3041
AcpiOsFree(buf->Pointer);
3042
buf->Pointer = newp;
3043
buf->Length += buf->Length;
3044
}
3045
3046
/* Insert the new resource. */
3047
bcopy(res, rp, res->Length + ACPI_RS_SIZE_NO_DATA);
3048
3049
/* And add the terminator. */
3050
rp = ACPI_NEXT_RESOURCE(rp);
3051
rp->Type = ACPI_RESOURCE_TYPE_END_TAG;
3052
rp->Length = ACPI_RS_SIZE_MIN;
3053
3054
return (AE_OK);
3055
}
3056
3057
UINT64
3058
acpi_DSMQuery(ACPI_HANDLE h, const uint8_t *uuid, int revision)
3059
{
3060
/*
3061
* ACPI spec 9.1.1 defines this.
3062
*
3063
* "Arg2: Function Index Represents a specific function whose meaning is
3064
* specific to the UUID and Revision ID. Function indices should start
3065
* with 1. Function number zero is a query function (see the special
3066
* return code defined below)."
3067
*/
3068
ACPI_BUFFER buf;
3069
ACPI_OBJECT *obj;
3070
UINT64 ret = 0;
3071
int i;
3072
3073
if (!ACPI_SUCCESS(acpi_EvaluateDSM(h, uuid, revision, 0, NULL, &buf))) {
3074
ACPI_INFO(("Failed to enumerate DSM functions\n"));
3075
return (0);
3076
}
3077
3078
obj = (ACPI_OBJECT *)buf.Pointer;
3079
KASSERT(obj, ("Object not allowed to be NULL\n"));
3080
3081
/*
3082
* From ACPI 6.2 spec 9.1.1:
3083
* If Function Index = 0, a Buffer containing a function index bitfield.
3084
* Otherwise, the return value and type depends on the UUID and revision
3085
* ID (see below).
3086
*/
3087
switch (obj->Type) {
3088
case ACPI_TYPE_BUFFER:
3089
for (i = 0; i < MIN(obj->Buffer.Length, sizeof(ret)); i++)
3090
ret |= (((uint64_t)obj->Buffer.Pointer[i]) << (i * 8));
3091
break;
3092
case ACPI_TYPE_INTEGER:
3093
ACPI_BIOS_WARNING((AE_INFO,
3094
"Possibly buggy BIOS with ACPI_TYPE_INTEGER for function enumeration\n"));
3095
ret = obj->Integer.Value;
3096
break;
3097
default:
3098
ACPI_WARNING((AE_INFO, "Unexpected return type %u\n", obj->Type));
3099
};
3100
3101
AcpiOsFree(obj);
3102
return ret;
3103
}
3104
3105
/*
3106
* DSM may return multiple types depending on the function. It is therefore
3107
* unsafe to use the typed evaluation. It is highly recommended that the caller
3108
* check the type of the returned object.
3109
*/
3110
ACPI_STATUS
3111
acpi_EvaluateDSM(ACPI_HANDLE handle, const uint8_t *uuid, int revision,
3112
UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf)
3113
{
3114
return (acpi_EvaluateDSMTyped(handle, uuid, revision, function,
3115
package, out_buf, ACPI_TYPE_ANY));
3116
}
3117
3118
ACPI_STATUS
3119
acpi_EvaluateDSMTyped(ACPI_HANDLE handle, const uint8_t *uuid, int revision,
3120
UINT64 function, ACPI_OBJECT *package, ACPI_BUFFER *out_buf,
3121
ACPI_OBJECT_TYPE type)
3122
{
3123
ACPI_OBJECT arg[4];
3124
ACPI_OBJECT_LIST arglist;
3125
ACPI_BUFFER buf;
3126
ACPI_STATUS status;
3127
3128
if (out_buf == NULL)
3129
return (AE_NO_MEMORY);
3130
3131
arg[0].Type = ACPI_TYPE_BUFFER;
3132
arg[0].Buffer.Length = ACPI_UUID_LENGTH;
3133
arg[0].Buffer.Pointer = __DECONST(uint8_t *, uuid);
3134
arg[1].Type = ACPI_TYPE_INTEGER;
3135
arg[1].Integer.Value = revision;
3136
arg[2].Type = ACPI_TYPE_INTEGER;
3137
arg[2].Integer.Value = function;
3138
if (package) {
3139
arg[3] = *package;
3140
} else {
3141
arg[3].Type = ACPI_TYPE_PACKAGE;
3142
arg[3].Package.Count = 0;
3143
arg[3].Package.Elements = NULL;
3144
}
3145
3146
arglist.Pointer = arg;
3147
arglist.Count = 4;
3148
buf.Pointer = NULL;
3149
buf.Length = ACPI_ALLOCATE_BUFFER;
3150
status = AcpiEvaluateObjectTyped(handle, "_DSM", &arglist, &buf, type);
3151
if (ACPI_FAILURE(status))
3152
return (status);
3153
3154
KASSERT(ACPI_SUCCESS(status), ("Unexpected status"));
3155
3156
*out_buf = buf;
3157
return (status);
3158
}
3159
3160
ACPI_STATUS
3161
acpi_EvaluateOSC(ACPI_HANDLE handle, uint8_t *uuid, int revision, int count,
3162
uint32_t *caps_in, uint32_t *caps_out, bool query)
3163
{
3164
ACPI_OBJECT arg[4], *ret;
3165
ACPI_OBJECT_LIST arglist;
3166
ACPI_BUFFER buf;
3167
ACPI_STATUS status;
3168
3169
arglist.Pointer = arg;
3170
arglist.Count = 4;
3171
arg[0].Type = ACPI_TYPE_BUFFER;
3172
arg[0].Buffer.Length = ACPI_UUID_LENGTH;
3173
arg[0].Buffer.Pointer = uuid;
3174
arg[1].Type = ACPI_TYPE_INTEGER;
3175
arg[1].Integer.Value = revision;
3176
arg[2].Type = ACPI_TYPE_INTEGER;
3177
arg[2].Integer.Value = count;
3178
arg[3].Type = ACPI_TYPE_BUFFER;
3179
arg[3].Buffer.Length = count * sizeof(*caps_in);
3180
arg[3].Buffer.Pointer = (uint8_t *)caps_in;
3181
caps_in[0] = query ? 1 : 0;
3182
buf.Pointer = NULL;
3183
buf.Length = ACPI_ALLOCATE_BUFFER;
3184
status = AcpiEvaluateObjectTyped(handle, "_OSC", &arglist, &buf,
3185
ACPI_TYPE_BUFFER);
3186
if (ACPI_FAILURE(status))
3187
return (status);
3188
if (caps_out != NULL) {
3189
ret = buf.Pointer;
3190
if (ret->Buffer.Length != count * sizeof(*caps_out)) {
3191
AcpiOsFree(buf.Pointer);
3192
return (AE_BUFFER_OVERFLOW);
3193
}
3194
bcopy(ret->Buffer.Pointer, caps_out, ret->Buffer.Length);
3195
}
3196
AcpiOsFree(buf.Pointer);
3197
return (status);
3198
}
3199
3200
/*
3201
* Set interrupt model.
3202
*/
3203
ACPI_STATUS
3204
acpi_SetIntrModel(int model)
3205
{
3206
3207
return (acpi_SetInteger(ACPI_ROOT_OBJECT, "_PIC", model));
3208
}
3209
3210
/*
3211
* Walk subtables of a table and call a callback routine for each
3212
* subtable. The caller should provide the first subtable and a
3213
* pointer to the end of the table. This can be used to walk tables
3214
* such as MADT and SRAT that use subtable entries.
3215
*/
3216
void
3217
acpi_walk_subtables(void *first, void *end, acpi_subtable_handler *handler,
3218
void *arg)
3219
{
3220
ACPI_SUBTABLE_HEADER *entry;
3221
3222
for (entry = first; (void *)entry < end; ) {
3223
/* Avoid an infinite loop if we hit a bogus entry. */
3224
if (entry->Length < sizeof(ACPI_SUBTABLE_HEADER))
3225
return;
3226
3227
handler(entry, arg);
3228
entry = ACPI_ADD_PTR(ACPI_SUBTABLE_HEADER, entry, entry->Length);
3229
}
3230
}
3231
3232
/*
3233
* DEPRECATED. This interface has serious deficiencies and will be
3234
* removed.
3235
*
3236
* Immediately enter the sleep state. In the old model, acpiconf(8) ran
3237
* rc.suspend and rc.resume so we don't have to notify devd(8) to do this.
3238
*/
3239
ACPI_STATUS
3240
acpi_SetSleepState(struct acpi_softc *sc, int state)
3241
{
3242
static int once;
3243
3244
if (!once) {
3245
device_printf(sc->acpi_dev,
3246
"warning: acpi_SetSleepState() deprecated, need to update your software\n");
3247
once = 1;
3248
}
3249
return (acpi_EnterSleepState(sc, state));
3250
}
3251
3252
#if defined(__amd64__) || defined(__i386__)
3253
static void
3254
acpi_sleep_force_task(void *context)
3255
{
3256
struct acpi_softc *sc = (struct acpi_softc *)context;
3257
3258
if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_stype)))
3259
device_printf(sc->acpi_dev, "force sleep state %s failed\n",
3260
power_stype_to_name(sc->acpi_next_stype));
3261
}
3262
3263
static void
3264
acpi_sleep_force(void *arg)
3265
{
3266
struct acpi_softc *sc = (struct acpi_softc *)arg;
3267
3268
device_printf(sc->acpi_dev,
3269
"suspend request timed out, forcing sleep now\n");
3270
/*
3271
* XXX Suspending from callout causes freezes in DEVICE_SUSPEND().
3272
* Suspend from acpi_task thread instead.
3273
*/
3274
if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
3275
acpi_sleep_force_task, sc)))
3276
device_printf(sc->acpi_dev, "AcpiOsExecute() for sleeping failed\n");
3277
}
3278
#endif
3279
3280
/*
3281
* Request that the system enter the given suspend state. All /dev/apm
3282
* devices and devd(8) will be notified. Userland then has a chance to
3283
* save state and acknowledge the request. The system sleeps once all
3284
* acks are in.
3285
*/
3286
int
3287
acpi_ReqSleepState(struct acpi_softc *sc, enum power_stype stype)
3288
{
3289
#if defined(__amd64__) || defined(__i386__)
3290
struct apm_clone_data *clone;
3291
ACPI_STATUS status;
3292
3293
if (stype < POWER_STYPE_AWAKE || stype >= POWER_STYPE_COUNT)
3294
return (EINVAL);
3295
if (!acpi_supported_stypes[stype])
3296
return (EOPNOTSUPP);
3297
3298
/*
3299
* If a reboot/shutdown/suspend request is already in progress or
3300
* suspend is blocked due to an upcoming shutdown, just return.
3301
*/
3302
if (rebooting || sc->acpi_next_stype != POWER_STYPE_AWAKE ||
3303
suspend_blocked)
3304
return (0);
3305
3306
/* Wait until sleep is enabled. */
3307
while (sc->acpi_sleep_disabled) {
3308
AcpiOsSleep(1000);
3309
}
3310
3311
ACPI_LOCK(acpi);
3312
3313
sc->acpi_next_stype = stype;
3314
3315
/* S5 (soft-off) should be entered directly with no waiting. */
3316
if (stype == POWER_STYPE_POWEROFF) {
3317
ACPI_UNLOCK(acpi);
3318
status = acpi_EnterSleepState(sc, stype);
3319
return (ACPI_SUCCESS(status) ? 0 : ENXIO);
3320
}
3321
3322
/* Record the pending state and notify all apm devices. */
3323
STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
3324
clone->notify_status = APM_EV_NONE;
3325
if ((clone->flags & ACPI_EVF_DEVD) == 0) {
3326
selwakeuppri(&clone->sel_read, PZERO);
3327
KNOTE_LOCKED(&clone->sel_read.si_note, 0);
3328
}
3329
}
3330
3331
/* If devd(8) is not running, immediately enter the sleep state. */
3332
if (!devctl_process_running()) {
3333
ACPI_UNLOCK(acpi);
3334
status = acpi_EnterSleepState(sc, stype);
3335
return (ACPI_SUCCESS(status) ? 0 : ENXIO);
3336
}
3337
3338
/*
3339
* Set a timeout to fire if userland doesn't ack the suspend request
3340
* in time. This way we still eventually go to sleep if we were
3341
* overheating or running low on battery, even if userland is hung.
3342
* We cancel this timeout once all userland acks are in or the
3343
* suspend request is aborted.
3344
*/
3345
callout_reset(&sc->susp_force_to, 10 * hz, acpi_sleep_force, sc);
3346
ACPI_UNLOCK(acpi);
3347
3348
/* Now notify devd(8) also. */
3349
acpi_UserNotify("Suspend", ACPI_ROOT_OBJECT, stype);
3350
3351
return (0);
3352
#else
3353
device_printf(sc->acpi_dev, "ACPI suspend not supported on this platform "
3354
"(TODO suspend to idle should be, however)\n");
3355
return (EOPNOTSUPP);
3356
#endif
3357
}
3358
3359
/*
3360
* Acknowledge (or reject) a pending sleep state. The caller has
3361
* prepared for suspend and is now ready for it to proceed. If the
3362
* error argument is non-zero, it indicates suspend should be cancelled
3363
* and gives an errno value describing why. Once all votes are in,
3364
* we suspend the system.
3365
*/
3366
int
3367
acpi_AckSleepState(struct apm_clone_data *clone, int error)
3368
{
3369
struct acpi_softc *sc = clone->acpi_sc;
3370
3371
#if defined(__amd64__) || defined(__i386__)
3372
int ret, sleeping;
3373
3374
/* If no pending sleep type, return an error. */
3375
ACPI_LOCK(acpi);
3376
if (sc->acpi_next_stype == POWER_STYPE_AWAKE) {
3377
ACPI_UNLOCK(acpi);
3378
return (ENXIO);
3379
}
3380
3381
/* Caller wants to abort suspend process. */
3382
if (error) {
3383
sc->acpi_next_stype = POWER_STYPE_AWAKE;
3384
callout_stop(&sc->susp_force_to);
3385
device_printf(sc->acpi_dev,
3386
"listener on %s cancelled the pending suspend\n",
3387
devtoname(clone->cdev));
3388
ACPI_UNLOCK(acpi);
3389
return (0);
3390
}
3391
3392
/*
3393
* Mark this device as acking the suspend request. Then, walk through
3394
* all devices, seeing if they agree yet. We only count devices that
3395
* are writable since read-only devices couldn't ack the request.
3396
*/
3397
sleeping = TRUE;
3398
clone->notify_status = APM_EV_ACKED;
3399
STAILQ_FOREACH(clone, &sc->apm_cdevs, entries) {
3400
if ((clone->flags & ACPI_EVF_WRITE) != 0 &&
3401
clone->notify_status != APM_EV_ACKED) {
3402
sleeping = FALSE;
3403
break;
3404
}
3405
}
3406
3407
/* If all devices have voted "yes", we will suspend now. */
3408
if (sleeping)
3409
callout_stop(&sc->susp_force_to);
3410
ACPI_UNLOCK(acpi);
3411
ret = 0;
3412
if (sleeping) {
3413
if (ACPI_FAILURE(acpi_EnterSleepState(sc, sc->acpi_next_stype)))
3414
ret = ENODEV;
3415
}
3416
return (ret);
3417
#else
3418
device_printf(sc->acpi_dev, "ACPI suspend not supported on this platform "
3419
"(TODO suspend to idle should be, however)\n");
3420
return (EOPNOTSUPP);
3421
#endif
3422
}
3423
3424
static void
3425
acpi_sleep_enable(void *arg)
3426
{
3427
struct acpi_softc *sc = (struct acpi_softc *)arg;
3428
3429
ACPI_LOCK_ASSERT(acpi);
3430
3431
/* Reschedule if the system is not fully up and running. */
3432
if (!AcpiGbl_SystemAwakeAndRunning) {
3433
callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
3434
return;
3435
}
3436
3437
sc->acpi_sleep_disabled = FALSE;
3438
}
3439
3440
static ACPI_STATUS
3441
acpi_sleep_disable(struct acpi_softc *sc)
3442
{
3443
ACPI_STATUS status;
3444
3445
/* Fail if the system is not fully up and running. */
3446
if (!AcpiGbl_SystemAwakeAndRunning)
3447
return (AE_ERROR);
3448
3449
ACPI_LOCK(acpi);
3450
status = sc->acpi_sleep_disabled ? AE_ERROR : AE_OK;
3451
sc->acpi_sleep_disabled = TRUE;
3452
ACPI_UNLOCK(acpi);
3453
3454
return (status);
3455
}
3456
3457
enum acpi_sleep_state {
3458
ACPI_SS_NONE = 0,
3459
ACPI_SS_GPE_SET = 1 << 0,
3460
ACPI_SS_DEV_SUSPEND = 1 << 1,
3461
ACPI_SS_SLP_PREP = 1 << 2,
3462
ACPI_SS_SLEPT = 1 << 3,
3463
};
3464
3465
static void
3466
do_standby(struct acpi_softc *sc, enum acpi_sleep_state *slp_state,
3467
register_t rflags)
3468
{
3469
ACPI_STATUS status;
3470
3471
status = AcpiEnterSleepState(sc->acpi_standby_sx);
3472
intr_restore(rflags);
3473
AcpiLeaveSleepStatePrep(sc->acpi_standby_sx);
3474
if (ACPI_FAILURE(status)) {
3475
device_printf(sc->acpi_dev, "AcpiEnterSleepState failed - %s\n",
3476
AcpiFormatException(status));
3477
return;
3478
}
3479
*slp_state |= ACPI_SS_SLEPT;
3480
}
3481
3482
static void
3483
do_sleep(struct acpi_softc *sc, enum acpi_sleep_state *slp_state,
3484
register_t rflags, int state)
3485
{
3486
int sleep_result;
3487
ACPI_EVENT_STATUS power_button_status;
3488
3489
MPASS(state == ACPI_STATE_S3 || state == ACPI_STATE_S4);
3490
3491
sleep_result = acpi_sleep_machdep(sc, state);
3492
acpi_wakeup_machdep(sc, state, sleep_result, 0);
3493
3494
if (sleep_result == 1 && state == ACPI_STATE_S3) {
3495
/*
3496
* XXX According to ACPI specification SCI_EN bit should be restored
3497
* by ACPI platform (BIOS, firmware) to its pre-sleep state.
3498
* Unfortunately some BIOSes fail to do that and that leads to
3499
* unexpected and serious consequences during wake up like a system
3500
* getting stuck in SMI handlers.
3501
* This hack is picked up from Linux, which claims that it follows
3502
* Windows behavior.
3503
*/
3504
AcpiWriteBitRegister(ACPI_BITREG_SCI_ENABLE, ACPI_ENABLE_EVENT);
3505
3506
/*
3507
* Prevent misinterpretation of the wakeup by power button
3508
* as a request for power off.
3509
* Ideally we should post an appropriate wakeup event,
3510
* perhaps using acpi_event_power_button_wake or alike.
3511
*
3512
* Clearing of power button status after wakeup is mandated
3513
* by ACPI specification in section "Fixed Power Button".
3514
*
3515
* XXX As of ACPICA 20121114 AcpiGetEventStatus provides
3516
* status as 0/1 corresponding to inactive/active despite
3517
* its type being ACPI_EVENT_STATUS. In other words,
3518
* we should not test for ACPI_EVENT_FLAG_SET for time being.
3519
*/
3520
if (ACPI_SUCCESS(AcpiGetEventStatus(ACPI_EVENT_POWER_BUTTON,
3521
&power_button_status)) && power_button_status != 0) {
3522
AcpiClearEvent(ACPI_EVENT_POWER_BUTTON);
3523
device_printf(sc->acpi_dev, "cleared fixed power button status\n");
3524
}
3525
}
3526
3527
intr_restore(rflags);
3528
3529
/* call acpi_wakeup_machdep() again with interrupt enabled */
3530
acpi_wakeup_machdep(sc, state, sleep_result, 1);
3531
3532
AcpiLeaveSleepStatePrep(state);
3533
3534
if (sleep_result == -1)
3535
return;
3536
3537
/* Re-enable ACPI hardware on wakeup from sleep state 4. */
3538
if (state == ACPI_STATE_S4)
3539
AcpiEnable();
3540
*slp_state |= ACPI_SS_SLEPT;
3541
}
3542
3543
#if defined(__i386__) || defined(__amd64__)
3544
static void
3545
do_idle(struct acpi_softc *sc, enum acpi_sleep_state *slp_state,
3546
register_t rflags)
3547
{
3548
3549
intr_suspend();
3550
3551
/*
3552
* The CPU will exit idle when interrupted, so we want to minimize the
3553
* number of interrupts it can receive while idle. We do this by only
3554
* allowing SCI (system control interrupt) interrupts, which are used by
3555
* the ACPI firmware to send wake GPEs to the OS.
3556
*
3557
* XXX We might still receive other spurious non-wake GPEs from noisy
3558
* devices that can't be disabled, so this will need to end up being a
3559
* suspend-to-idle loop which, when breaking out of idle, will check the
3560
* reason for the wakeup and immediately idle the CPU again if it was not a
3561
* proper wake event.
3562
*/
3563
intr_enable_src(AcpiGbl_FADT.SciInterrupt);
3564
3565
cpu_idle(0);
3566
3567
intr_resume(false);
3568
intr_restore(rflags);
3569
*slp_state |= ACPI_SS_SLEPT;
3570
}
3571
#endif
3572
3573
/*
3574
* Enter the desired system sleep state.
3575
*
3576
* Currently we support S1-S5 and suspend-to-idle, but S4 is only S4BIOS.
3577
*/
3578
static ACPI_STATUS
3579
acpi_EnterSleepState(struct acpi_softc *sc, enum power_stype stype)
3580
{
3581
register_t intr;
3582
ACPI_STATUS status;
3583
enum acpi_sleep_state slp_state;
3584
int acpi_sstate;
3585
3586
ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, stype);
3587
3588
if (stype <= POWER_STYPE_AWAKE || stype >= POWER_STYPE_COUNT)
3589
return_ACPI_STATUS (AE_BAD_PARAMETER);
3590
if (!acpi_supported_stypes[stype]) {
3591
device_printf(sc->acpi_dev, "Sleep type %s not supported on this "
3592
"platform\n", power_stype_to_name(stype));
3593
return (AE_SUPPORT);
3594
}
3595
3596
acpi_sstate = acpi_stype_to_sstate(sc, stype);
3597
3598
/* Re-entry once we're suspending is not allowed. */
3599
status = acpi_sleep_disable(sc);
3600
if (ACPI_FAILURE(status)) {
3601
device_printf(sc->acpi_dev,
3602
"suspend request ignored (not ready yet)\n");
3603
return (status);
3604
}
3605
3606
if (stype == POWER_STYPE_POWEROFF) {
3607
/*
3608
* Shut down cleanly and power off. This will call us back through the
3609
* shutdown handlers.
3610
*/
3611
shutdown_nice(RB_POWEROFF);
3612
return_ACPI_STATUS (AE_OK);
3613
}
3614
3615
EVENTHANDLER_INVOKE(power_suspend_early, stype);
3616
stop_all_proc();
3617
suspend_all_fs();
3618
EVENTHANDLER_INVOKE(power_suspend, stype);
3619
3620
#ifdef EARLY_AP_STARTUP
3621
MPASS(mp_ncpus == 1 || smp_started);
3622
thread_lock(curthread);
3623
sched_bind(curthread, 0);
3624
thread_unlock(curthread);
3625
#else
3626
if (smp_started) {
3627
thread_lock(curthread);
3628
sched_bind(curthread, 0);
3629
thread_unlock(curthread);
3630
}
3631
#endif
3632
3633
/*
3634
* Be sure to hold bus topology lock across DEVICE_SUSPEND/RESUME.
3635
*/
3636
bus_topo_lock();
3637
3638
slp_state = ACPI_SS_NONE;
3639
3640
sc->acpi_stype = stype;
3641
3642
/* Enable any GPEs as appropriate and requested by the user. */
3643
acpi_wake_prep_walk(sc, stype);
3644
slp_state |= ACPI_SS_GPE_SET;
3645
3646
/*
3647
* Inform all devices that we are going to sleep. If at least one
3648
* device fails, DEVICE_SUSPEND() automatically resumes the tree.
3649
*
3650
* XXX Note that a better two-pass approach with a 'veto' pass
3651
* followed by a "real thing" pass would be better, but the current
3652
* bus interface does not provide for this.
3653
*/
3654
if (DEVICE_SUSPEND(root_bus) != 0) {
3655
device_printf(sc->acpi_dev, "device_suspend failed\n");
3656
goto backout;
3657
}
3658
EVENTHANDLER_INVOKE(acpi_post_dev_suspend, stype);
3659
slp_state |= ACPI_SS_DEV_SUSPEND;
3660
3661
if (stype != POWER_STYPE_SUSPEND_TO_IDLE) {
3662
status = AcpiEnterSleepStatePrep(acpi_sstate);
3663
if (ACPI_FAILURE(status)) {
3664
device_printf(sc->acpi_dev, "AcpiEnterSleepStatePrep failed - %s\n",
3665
AcpiFormatException(status));
3666
goto backout;
3667
}
3668
slp_state |= ACPI_SS_SLP_PREP;
3669
}
3670
3671
if (sc->acpi_sleep_delay > 0)
3672
DELAY(sc->acpi_sleep_delay * 1000000);
3673
3674
suspendclock();
3675
intr = intr_disable();
3676
switch (stype) {
3677
case POWER_STYPE_STANDBY:
3678
do_standby(sc, &slp_state, intr);
3679
break;
3680
case POWER_STYPE_SUSPEND_TO_MEM:
3681
case POWER_STYPE_HIBERNATE:
3682
do_sleep(sc, &slp_state, intr, acpi_sstate);
3683
break;
3684
case POWER_STYPE_SUSPEND_TO_IDLE:
3685
#if defined(__i386__) || defined(__amd64__)
3686
do_idle(sc, &slp_state, intr);
3687
break;
3688
#endif
3689
case POWER_STYPE_AWAKE:
3690
case POWER_STYPE_POWEROFF:
3691
case POWER_STYPE_COUNT:
3692
case POWER_STYPE_UNKNOWN:
3693
__unreachable();
3694
}
3695
resumeclock();
3696
3697
/*
3698
* Back out state according to how far along we got in the suspend
3699
* process. This handles both the error and success cases.
3700
*/
3701
backout:
3702
if ((slp_state & ACPI_SS_GPE_SET) != 0) {
3703
acpi_wake_prep_walk(sc, stype);
3704
sc->acpi_stype = POWER_STYPE_AWAKE;
3705
slp_state &= ~ACPI_SS_GPE_SET;
3706
}
3707
if ((slp_state & ACPI_SS_DEV_SUSPEND) != 0) {
3708
EVENTHANDLER_INVOKE(acpi_pre_dev_resume, stype);
3709
DEVICE_RESUME(root_bus);
3710
slp_state &= ~ACPI_SS_DEV_SUSPEND;
3711
}
3712
if ((slp_state & ACPI_SS_SLP_PREP) != 0) {
3713
AcpiLeaveSleepState(acpi_sstate);
3714
slp_state &= ~ACPI_SS_SLP_PREP;
3715
}
3716
if ((slp_state & ACPI_SS_SLEPT) != 0) {
3717
#if defined(__i386__) || defined(__amd64__)
3718
/* NB: we are still using ACPI timecounter at this point. */
3719
resume_TSC();
3720
#endif
3721
acpi_resync_clock(sc);
3722
acpi_enable_fixed_events(sc);
3723
slp_state &= ~ACPI_SS_SLEPT;
3724
}
3725
sc->acpi_next_stype = POWER_STYPE_AWAKE;
3726
3727
MPASS(slp_state == ACPI_SS_NONE);
3728
3729
bus_topo_unlock();
3730
3731
#ifdef EARLY_AP_STARTUP
3732
thread_lock(curthread);
3733
sched_unbind(curthread);
3734
thread_unlock(curthread);
3735
#else
3736
if (smp_started) {
3737
thread_lock(curthread);
3738
sched_unbind(curthread);
3739
thread_unlock(curthread);
3740
}
3741
#endif
3742
3743
resume_all_fs();
3744
resume_all_proc();
3745
3746
EVENTHANDLER_INVOKE(power_resume, stype);
3747
3748
/* Allow another sleep request after a while. */
3749
callout_schedule(&acpi_sleep_timer, hz * ACPI_MINIMUM_AWAKETIME);
3750
3751
/* Run /etc/rc.resume after we are back. */
3752
if (devctl_process_running())
3753
acpi_UserNotify("Resume", ACPI_ROOT_OBJECT, stype);
3754
3755
return_ACPI_STATUS (status);
3756
}
3757
3758
static void
3759
acpi_resync_clock(struct acpi_softc *sc)
3760
{
3761
3762
/*
3763
* Warm up timecounter again and reset system clock.
3764
*/
3765
(void)timecounter->tc_get_timecount(timecounter);
3766
inittodr(time_second + sc->acpi_sleep_delay);
3767
}
3768
3769
/* Enable or disable the device's wake GPE. */
3770
int
3771
acpi_wake_set_enable(device_t dev, int enable)
3772
{
3773
struct acpi_prw_data prw;
3774
ACPI_STATUS status;
3775
int flags;
3776
3777
/* Make sure the device supports waking the system and get the GPE. */
3778
if (acpi_parse_prw(acpi_get_handle(dev), &prw) != 0)
3779
return (ENXIO);
3780
3781
flags = acpi_get_flags(dev);
3782
if (enable) {
3783
status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
3784
ACPI_GPE_ENABLE);
3785
if (ACPI_FAILURE(status)) {
3786
device_printf(dev, "enable wake failed\n");
3787
return (ENXIO);
3788
}
3789
acpi_set_flags(dev, flags | ACPI_FLAG_WAKE_ENABLED);
3790
} else {
3791
status = AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit,
3792
ACPI_GPE_DISABLE);
3793
if (ACPI_FAILURE(status)) {
3794
device_printf(dev, "disable wake failed\n");
3795
return (ENXIO);
3796
}
3797
acpi_set_flags(dev, flags & ~ACPI_FLAG_WAKE_ENABLED);
3798
}
3799
3800
return (0);
3801
}
3802
3803
static int
3804
acpi_wake_sleep_prep(struct acpi_softc *sc, ACPI_HANDLE handle,
3805
enum power_stype stype)
3806
{
3807
int sstate;
3808
struct acpi_prw_data prw;
3809
device_t dev;
3810
3811
/* Check that this is a wake-capable device and get its GPE. */
3812
if (acpi_parse_prw(handle, &prw) != 0)
3813
return (ENXIO);
3814
dev = acpi_get_device(handle);
3815
3816
sstate = acpi_stype_to_sstate(sc, stype);
3817
3818
/*
3819
* The destination sleep state must be less than (i.e., higher power)
3820
* or equal to the value specified by _PRW. If this GPE cannot be
3821
* enabled for the next sleep state, then disable it. If it can and
3822
* the user requested it be enabled, turn on any required power resources
3823
* and set _PSW.
3824
*/
3825
if (sstate > prw.lowest_wake) {
3826
AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_DISABLE);
3827
if (bootverbose)
3828
device_printf(dev, "wake_prep disabled wake for %s (%s)\n",
3829
acpi_name(handle), power_stype_to_name(stype));
3830
} else if (dev && (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) != 0) {
3831
acpi_pwr_wake_enable(handle, 1);
3832
acpi_SetInteger(handle, "_PSW", 1);
3833
if (bootverbose)
3834
device_printf(dev, "wake_prep enabled for %s (%s)\n",
3835
acpi_name(handle), power_stype_to_name(stype));
3836
}
3837
3838
return (0);
3839
}
3840
3841
static int
3842
acpi_wake_run_prep(struct acpi_softc *sc, ACPI_HANDLE handle,
3843
enum power_stype stype)
3844
{
3845
int sstate;
3846
struct acpi_prw_data prw;
3847
device_t dev;
3848
3849
/*
3850
* Check that this is a wake-capable device and get its GPE. Return
3851
* now if the user didn't enable this device for wake.
3852
*/
3853
if (acpi_parse_prw(handle, &prw) != 0)
3854
return (ENXIO);
3855
dev = acpi_get_device(handle);
3856
if (dev == NULL || (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) == 0)
3857
return (0);
3858
3859
sstate = acpi_stype_to_sstate(sc, stype);
3860
3861
/*
3862
* If this GPE couldn't be enabled for the previous sleep state, it was
3863
* disabled before going to sleep so re-enable it. If it was enabled,
3864
* clear _PSW and turn off any power resources it used.
3865
*/
3866
if (sstate > prw.lowest_wake) {
3867
AcpiSetGpeWakeMask(prw.gpe_handle, prw.gpe_bit, ACPI_GPE_ENABLE);
3868
if (bootverbose)
3869
device_printf(dev, "run_prep re-enabled %s\n", acpi_name(handle));
3870
} else {
3871
acpi_SetInteger(handle, "_PSW", 0);
3872
acpi_pwr_wake_enable(handle, 0);
3873
if (bootverbose)
3874
device_printf(dev, "run_prep cleaned up for %s\n",
3875
acpi_name(handle));
3876
}
3877
3878
return (0);
3879
}
3880
3881
static ACPI_STATUS
3882
acpi_wake_prep(ACPI_HANDLE handle, UINT32 level, void *context, void **status)
3883
{
3884
struct acpi_wake_prep_context *ctx = context;
3885
3886
/* If suspending, run the sleep prep function, otherwise wake. */
3887
if (AcpiGbl_SystemAwakeAndRunning)
3888
acpi_wake_sleep_prep(ctx->sc, handle, ctx->stype);
3889
else
3890
acpi_wake_run_prep(ctx->sc, handle, ctx->stype);
3891
return (AE_OK);
3892
}
3893
3894
/* Walk the tree rooted at acpi0 to prep devices for suspend/resume. */
3895
static int
3896
acpi_wake_prep_walk(struct acpi_softc *sc, enum power_stype stype)
3897
{
3898
ACPI_HANDLE sb_handle;
3899
struct acpi_wake_prep_context ctx = {
3900
.sc = sc,
3901
.stype = stype,
3902
};
3903
3904
if (ACPI_SUCCESS(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sb_handle)))
3905
AcpiWalkNamespace(ACPI_TYPE_DEVICE, sb_handle, 100,
3906
acpi_wake_prep, NULL, &ctx, NULL);
3907
return (0);
3908
}
3909
3910
/* Walk the tree rooted at acpi0 to attach per-device wake sysctls. */
3911
static int
3912
acpi_wake_sysctl_walk(device_t dev)
3913
{
3914
int error, i, numdevs;
3915
device_t *devlist;
3916
device_t child;
3917
ACPI_STATUS status;
3918
3919
error = device_get_children(dev, &devlist, &numdevs);
3920
if (error != 0 || numdevs == 0) {
3921
if (numdevs == 0)
3922
free(devlist, M_TEMP);
3923
return (error);
3924
}
3925
for (i = 0; i < numdevs; i++) {
3926
child = devlist[i];
3927
acpi_wake_sysctl_walk(child);
3928
if (!device_is_attached(child))
3929
continue;
3930
status = AcpiEvaluateObject(acpi_get_handle(child), "_PRW", NULL, NULL);
3931
if (ACPI_SUCCESS(status)) {
3932
SYSCTL_ADD_PROC(device_get_sysctl_ctx(child),
3933
SYSCTL_CHILDREN(device_get_sysctl_tree(child)), OID_AUTO,
3934
"wake", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, child, 0,
3935
acpi_wake_set_sysctl, "I", "Device set to wake the system");
3936
}
3937
}
3938
free(devlist, M_TEMP);
3939
3940
return (0);
3941
}
3942
3943
/* Enable or disable wake from userland. */
3944
static int
3945
acpi_wake_set_sysctl(SYSCTL_HANDLER_ARGS)
3946
{
3947
int enable, error;
3948
device_t dev;
3949
3950
dev = (device_t)arg1;
3951
enable = (acpi_get_flags(dev) & ACPI_FLAG_WAKE_ENABLED) ? 1 : 0;
3952
3953
error = sysctl_handle_int(oidp, &enable, 0, req);
3954
if (error != 0 || req->newptr == NULL)
3955
return (error);
3956
if (enable != 0 && enable != 1)
3957
return (EINVAL);
3958
3959
return (acpi_wake_set_enable(dev, enable));
3960
}
3961
3962
/* Parse a device's _PRW into a structure. */
3963
int
3964
acpi_parse_prw(ACPI_HANDLE h, struct acpi_prw_data *prw)
3965
{
3966
ACPI_STATUS status;
3967
ACPI_BUFFER prw_buffer;
3968
ACPI_OBJECT *res, *res2;
3969
int error, i, power_count;
3970
3971
if (h == NULL || prw == NULL)
3972
return (EINVAL);
3973
3974
/*
3975
* The _PRW object (7.2.9) is only required for devices that have the
3976
* ability to wake the system from a sleeping state.
3977
*/
3978
error = EINVAL;
3979
prw_buffer.Pointer = NULL;
3980
prw_buffer.Length = ACPI_ALLOCATE_BUFFER;
3981
status = AcpiEvaluateObject(h, "_PRW", NULL, &prw_buffer);
3982
if (ACPI_FAILURE(status))
3983
return (ENOENT);
3984
res = (ACPI_OBJECT *)prw_buffer.Pointer;
3985
if (res == NULL)
3986
return (ENOENT);
3987
if (!ACPI_PKG_VALID(res, 2))
3988
goto out;
3989
3990
/*
3991
* Element 1 of the _PRW object:
3992
* The lowest power system sleeping state that can be entered while still
3993
* providing wake functionality. The sleeping state being entered must
3994
* be less than (i.e., higher power) or equal to this value.
3995
*/
3996
if (acpi_PkgInt32(res, 1, &prw->lowest_wake) != 0)
3997
goto out;
3998
3999
/*
4000
* Element 0 of the _PRW object:
4001
*/
4002
switch (res->Package.Elements[0].Type) {
4003
case ACPI_TYPE_INTEGER:
4004
/*
4005
* If the data type of this package element is numeric, then this
4006
* _PRW package element is the bit index in the GPEx_EN, in the
4007
* GPE blocks described in the FADT, of the enable bit that is
4008
* enabled for the wake event.
4009
*/
4010
prw->gpe_handle = NULL;
4011
prw->gpe_bit = res->Package.Elements[0].Integer.Value;
4012
error = 0;
4013
break;
4014
case ACPI_TYPE_PACKAGE:
4015
/*
4016
* If the data type of this package element is a package, then this
4017
* _PRW package element is itself a package containing two
4018
* elements. The first is an object reference to the GPE Block
4019
* device that contains the GPE that will be triggered by the wake
4020
* event. The second element is numeric and it contains the bit
4021
* index in the GPEx_EN, in the GPE Block referenced by the
4022
* first element in the package, of the enable bit that is enabled for
4023
* the wake event.
4024
*
4025
* For example, if this field is a package then it is of the form:
4026
* Package() {\_SB.PCI0.ISA.GPE, 2}
4027
*/
4028
res2 = &res->Package.Elements[0];
4029
if (!ACPI_PKG_VALID(res2, 2))
4030
goto out;
4031
prw->gpe_handle = acpi_GetReference(NULL, &res2->Package.Elements[0]);
4032
if (prw->gpe_handle == NULL)
4033
goto out;
4034
if (acpi_PkgInt32(res2, 1, &prw->gpe_bit) != 0)
4035
goto out;
4036
error = 0;
4037
break;
4038
default:
4039
goto out;
4040
}
4041
4042
/* Elements 2 to N of the _PRW object are power resources. */
4043
power_count = res->Package.Count - 2;
4044
if (power_count > ACPI_PRW_MAX_POWERRES) {
4045
printf("ACPI device %s has too many power resources\n", acpi_name(h));
4046
power_count = 0;
4047
}
4048
prw->power_res_count = power_count;
4049
for (i = 0; i < power_count; i++)
4050
prw->power_res[i] = res->Package.Elements[i];
4051
4052
out:
4053
if (prw_buffer.Pointer != NULL)
4054
AcpiOsFree(prw_buffer.Pointer);
4055
return (error);
4056
}
4057
4058
/*
4059
* ACPI Event Handlers
4060
*/
4061
4062
/* System Event Handlers (registered by EVENTHANDLER_REGISTER) */
4063
4064
static void
4065
acpi_system_eventhandler_sleep(void *arg, enum power_stype stype)
4066
{
4067
struct acpi_softc *sc = (struct acpi_softc *)arg;
4068
int ret;
4069
4070
ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, stype);
4071
4072
/* Check if button action is disabled or unknown. */
4073
if (stype == POWER_STYPE_UNKNOWN)
4074
return;
4075
4076
/*
4077
* Request that the system prepare to enter the given suspend state. We can
4078
* totally pass an ACPI S-state to an enum power_stype.
4079
*/
4080
ret = acpi_ReqSleepState(sc, stype);
4081
if (ret != 0)
4082
device_printf(sc->acpi_dev,
4083
"request to enter state %s failed (err %d)\n",
4084
power_stype_to_name(stype), ret);
4085
4086
return_VOID;
4087
}
4088
4089
static void
4090
acpi_system_eventhandler_wakeup(void *arg, enum power_stype stype)
4091
{
4092
4093
ACPI_FUNCTION_TRACE_U32((char *)(uintptr_t)__func__, stype);
4094
4095
/* Currently, nothing to do for wakeup. */
4096
4097
return_VOID;
4098
}
4099
4100
/*
4101
* ACPICA Event Handlers (FixedEvent, also called from button notify handler)
4102
*/
4103
static void
4104
acpi_invoke_sleep_eventhandler(void *context)
4105
{
4106
4107
EVENTHANDLER_INVOKE(acpi_sleep_event, *(enum power_stype *)context);
4108
}
4109
4110
static void
4111
acpi_invoke_wake_eventhandler(void *context)
4112
{
4113
4114
EVENTHANDLER_INVOKE(acpi_wakeup_event, *(enum power_stype *)context);
4115
}
4116
4117
UINT32
4118
acpi_event_power_button_sleep(void *context)
4119
{
4120
#if defined(__amd64__) || defined(__i386__)
4121
struct acpi_softc *sc = (struct acpi_softc *)context;
4122
#else
4123
(void)context;
4124
#endif
4125
4126
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
4127
4128
#if defined(__amd64__) || defined(__i386__)
4129
if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
4130
acpi_invoke_sleep_eventhandler, &sc->acpi_power_button_stype)))
4131
return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
4132
#else
4133
shutdown_nice(RB_POWEROFF);
4134
#endif
4135
4136
return_VALUE (ACPI_INTERRUPT_HANDLED);
4137
}
4138
4139
UINT32
4140
acpi_event_power_button_wake(void *context)
4141
{
4142
struct acpi_softc *sc = (struct acpi_softc *)context;
4143
4144
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
4145
4146
if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
4147
acpi_invoke_wake_eventhandler, &sc->acpi_power_button_stype)))
4148
return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
4149
return_VALUE (ACPI_INTERRUPT_HANDLED);
4150
}
4151
4152
UINT32
4153
acpi_event_sleep_button_sleep(void *context)
4154
{
4155
struct acpi_softc *sc = (struct acpi_softc *)context;
4156
4157
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
4158
4159
if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
4160
acpi_invoke_sleep_eventhandler, &sc->acpi_sleep_button_stype)))
4161
return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
4162
return_VALUE (ACPI_INTERRUPT_HANDLED);
4163
}
4164
4165
UINT32
4166
acpi_event_sleep_button_wake(void *context)
4167
{
4168
struct acpi_softc *sc = (struct acpi_softc *)context;
4169
4170
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
4171
4172
if (ACPI_FAILURE(AcpiOsExecute(OSL_NOTIFY_HANDLER,
4173
acpi_invoke_wake_eventhandler, &sc->acpi_sleep_button_stype)))
4174
return_VALUE (ACPI_INTERRUPT_NOT_HANDLED);
4175
return_VALUE (ACPI_INTERRUPT_HANDLED);
4176
}
4177
4178
/*
4179
* XXX This static buffer is suboptimal. There is no locking so only
4180
* use this for single-threaded callers.
4181
*/
4182
char *
4183
acpi_name(ACPI_HANDLE handle)
4184
{
4185
ACPI_BUFFER buf;
4186
static char data[256];
4187
4188
buf.Length = sizeof(data);
4189
buf.Pointer = data;
4190
4191
if (handle && ACPI_SUCCESS(AcpiGetName(handle, ACPI_FULL_PATHNAME, &buf)))
4192
return (data);
4193
return ("(unknown)");
4194
}
4195
4196
/*
4197
* Debugging/bug-avoidance. Avoid trying to fetch info on various
4198
* parts of the namespace.
4199
*/
4200
int
4201
acpi_avoid(ACPI_HANDLE handle)
4202
{
4203
char *cp, *env, *np;
4204
int len;
4205
4206
np = acpi_name(handle);
4207
if (*np == '\\')
4208
np++;
4209
if ((env = kern_getenv("debug.acpi.avoid")) == NULL)
4210
return (0);
4211
4212
/* Scan the avoid list checking for a match */
4213
cp = env;
4214
for (;;) {
4215
while (*cp != 0 && isspace(*cp))
4216
cp++;
4217
if (*cp == 0)
4218
break;
4219
len = 0;
4220
while (cp[len] != 0 && !isspace(cp[len]))
4221
len++;
4222
if (!strncmp(cp, np, len)) {
4223
freeenv(env);
4224
return(1);
4225
}
4226
cp += len;
4227
}
4228
freeenv(env);
4229
4230
return (0);
4231
}
4232
4233
/*
4234
* Debugging/bug-avoidance. Disable ACPI subsystem components.
4235
*/
4236
int
4237
acpi_disabled(char *subsys)
4238
{
4239
char *cp, *env;
4240
int len;
4241
4242
if ((env = kern_getenv("debug.acpi.disabled")) == NULL)
4243
return (0);
4244
if (strcmp(env, "all") == 0) {
4245
freeenv(env);
4246
return (1);
4247
}
4248
4249
/* Scan the disable list, checking for a match. */
4250
cp = env;
4251
for (;;) {
4252
while (*cp != '\0' && isspace(*cp))
4253
cp++;
4254
if (*cp == '\0')
4255
break;
4256
len = 0;
4257
while (cp[len] != '\0' && !isspace(cp[len]))
4258
len++;
4259
if (strncmp(cp, subsys, len) == 0) {
4260
freeenv(env);
4261
return (1);
4262
}
4263
cp += len;
4264
}
4265
freeenv(env);
4266
4267
return (0);
4268
}
4269
4270
static void
4271
acpi_lookup(void *arg, const char *name, device_t *dev)
4272
{
4273
ACPI_HANDLE handle;
4274
4275
if (*dev != NULL)
4276
return;
4277
4278
/*
4279
* Allow any handle name that is specified as an absolute path and
4280
* starts with '\'. We could restrict this to \_SB and friends,
4281
* but see acpi_probe_children() for notes on why we scan the entire
4282
* namespace for devices.
4283
*
4284
* XXX: The pathname argument to AcpiGetHandle() should be fixed to
4285
* be const.
4286
*/
4287
if (name[0] != '\\')
4288
return;
4289
if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, __DECONST(char *, name),
4290
&handle)))
4291
return;
4292
*dev = acpi_get_device(handle);
4293
}
4294
4295
/*
4296
* Control interface.
4297
*
4298
* We multiplex ioctls for all participating ACPI devices here. Individual
4299
* drivers wanting to be accessible via /dev/acpi should use the
4300
* register/deregister interface to make their handlers visible.
4301
*/
4302
struct acpi_ioctl_hook
4303
{
4304
TAILQ_ENTRY(acpi_ioctl_hook) link;
4305
u_long cmd;
4306
acpi_ioctl_fn fn;
4307
void *arg;
4308
};
4309
4310
static TAILQ_HEAD(,acpi_ioctl_hook) acpi_ioctl_hooks =
4311
TAILQ_HEAD_INITIALIZER(acpi_ioctl_hooks);
4312
4313
int
4314
acpi_register_ioctl(u_long cmd, acpi_ioctl_fn fn, void *arg)
4315
{
4316
struct acpi_ioctl_hook *hp, *thp;
4317
4318
hp = malloc(sizeof(*hp), M_ACPIDEV, M_WAITOK);
4319
hp->cmd = cmd;
4320
hp->fn = fn;
4321
hp->arg = arg;
4322
4323
ACPI_LOCK(acpi);
4324
TAILQ_FOREACH(thp, &acpi_ioctl_hooks, link) {
4325
if (thp->cmd == cmd) {
4326
ACPI_UNLOCK(acpi);
4327
free(hp, M_ACPIDEV);
4328
return (EBUSY);
4329
}
4330
}
4331
4332
TAILQ_INSERT_TAIL(&acpi_ioctl_hooks, hp, link);
4333
ACPI_UNLOCK(acpi);
4334
4335
return (0);
4336
}
4337
4338
void
4339
acpi_deregister_ioctl(u_long cmd, acpi_ioctl_fn fn)
4340
{
4341
struct acpi_ioctl_hook *hp;
4342
4343
ACPI_LOCK(acpi);
4344
TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link)
4345
if (hp->cmd == cmd && hp->fn == fn)
4346
break;
4347
4348
if (hp != NULL) {
4349
TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link);
4350
free(hp, M_ACPIDEV);
4351
}
4352
ACPI_UNLOCK(acpi);
4353
}
4354
4355
void
4356
acpi_deregister_ioctls(acpi_ioctl_fn fn)
4357
{
4358
struct acpi_ioctl_hook *hp, *thp;
4359
4360
ACPI_LOCK(acpi);
4361
TAILQ_FOREACH_SAFE(hp, &acpi_ioctl_hooks, link, thp) {
4362
if (hp->fn == fn) {
4363
TAILQ_REMOVE(&acpi_ioctl_hooks, hp, link);
4364
free(hp, M_ACPIDEV);
4365
}
4366
}
4367
ACPI_UNLOCK(acpi);
4368
}
4369
4370
static int
4371
acpiopen(struct cdev *dev, int flag, int fmt, struct thread *td)
4372
{
4373
return (0);
4374
}
4375
4376
static int
4377
acpiclose(struct cdev *dev, int flag, int fmt, struct thread *td)
4378
{
4379
return (0);
4380
}
4381
4382
static int
4383
acpiioctl(struct cdev *dev, u_long cmd, caddr_t addr, int flag, struct thread *td)
4384
{
4385
struct acpi_softc *sc;
4386
struct acpi_ioctl_hook *hp;
4387
int error;
4388
int sstate;
4389
4390
error = 0;
4391
hp = NULL;
4392
sc = dev->si_drv1;
4393
4394
/*
4395
* Scan the list of registered ioctls, looking for handlers.
4396
*/
4397
ACPI_LOCK(acpi);
4398
TAILQ_FOREACH(hp, &acpi_ioctl_hooks, link) {
4399
if (hp->cmd == cmd)
4400
break;
4401
}
4402
ACPI_UNLOCK(acpi);
4403
if (hp)
4404
return (hp->fn(cmd, addr, hp->arg));
4405
4406
/*
4407
* Core ioctls are not permitted for non-writable user.
4408
* Currently, other ioctls just fetch information.
4409
* Not changing system behavior.
4410
*/
4411
if ((flag & FWRITE) == 0)
4412
return (EPERM);
4413
4414
/* Core system ioctls. */
4415
switch (cmd) {
4416
case ACPIIO_REQSLPSTATE:
4417
sstate = *(int *)addr;
4418
if (sstate != ACPI_STATE_S5)
4419
return (acpi_ReqSleepState(sc, acpi_sstate_to_stype(sstate)));
4420
device_printf(sc->acpi_dev, "power off via acpi ioctl not supported\n");
4421
error = EOPNOTSUPP;
4422
break;
4423
case ACPIIO_ACKSLPSTATE:
4424
error = *(int *)addr;
4425
error = acpi_AckSleepState(sc->acpi_clone, error);
4426
break;
4427
case ACPIIO_SETSLPSTATE: /* DEPRECATED */
4428
sstate = *(int *)addr;
4429
if (sstate < ACPI_STATE_S0 || sstate > ACPI_STATE_S5)
4430
return (EINVAL);
4431
if (!acpi_supported_sstates[sstate])
4432
return (EOPNOTSUPP);
4433
if (ACPI_FAILURE(acpi_SetSleepState(sc, acpi_sstate_to_stype(sstate))))
4434
error = ENXIO;
4435
break;
4436
default:
4437
error = ENXIO;
4438
break;
4439
}
4440
4441
return (error);
4442
}
4443
4444
static int
4445
acpi_s4bios_sysctl(SYSCTL_HANDLER_ARGS)
4446
{
4447
struct acpi_softc *const sc = arg1;
4448
bool val;
4449
int error;
4450
4451
val = sc->acpi_s4bios;
4452
error = sysctl_handle_bool(oidp, &val, 0, req);
4453
if (error != 0 || req->newptr == NULL)
4454
return (error);
4455
4456
if (val && !sc->acpi_s4bios_supported)
4457
return (EOPNOTSUPP);
4458
sc->acpi_s4bios = val;
4459
4460
return (0);
4461
}
4462
4463
static int
4464
acpi_sname_to_sstate(const char *sname)
4465
{
4466
int sstate;
4467
4468
if (strcasecmp(sname, "NONE") == 0)
4469
return (ACPI_STATE_UNKNOWN);
4470
4471
if (toupper(sname[0]) == 'S') {
4472
sstate = sname[1] - '0';
4473
if (sstate >= ACPI_STATE_S0 && sstate <= ACPI_STATE_S5 &&
4474
sname[2] == '\0')
4475
return (sstate);
4476
}
4477
return (-1);
4478
}
4479
4480
static const char *
4481
acpi_sstate_to_sname(int state)
4482
{
4483
static const char *snames[ACPI_S_STATE_COUNT] = {"S0", "S1", "S2", "S3",
4484
"S4", "S5"};
4485
4486
if (state == ACPI_STATE_UNKNOWN)
4487
return ("NONE");
4488
if (state >= ACPI_STATE_S0 && state < ACPI_S_STATE_COUNT)
4489
return (snames[state]);
4490
return (NULL);
4491
}
4492
4493
static int
4494
acpi_supported_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
4495
{
4496
int error;
4497
struct sbuf sb;
4498
UINT8 state;
4499
4500
sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4501
for (state = ACPI_STATE_S1; state < ACPI_S_STATE_COUNT; state++)
4502
if (acpi_supported_sstates[state])
4503
sbuf_printf(&sb, "%s ", acpi_sstate_to_sname(state));
4504
sbuf_trim(&sb);
4505
sbuf_finish(&sb);
4506
error = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4507
sbuf_delete(&sb);
4508
return (error);
4509
}
4510
4511
static int
4512
acpi_suspend_state_sysctl(SYSCTL_HANDLER_ARGS)
4513
{
4514
char name[10];
4515
int err;
4516
struct acpi_softc *sc = oidp->oid_arg1;
4517
enum power_stype new_stype;
4518
enum power_stype old_stype = power_suspend_stype;
4519
int old_sstate = acpi_stype_to_sstate(sc, old_stype);
4520
int new_sstate;
4521
4522
strlcpy(name, acpi_sstate_to_sname(old_sstate), sizeof(name));
4523
err = sysctl_handle_string(oidp, name, sizeof(name), req);
4524
if (err != 0 || req->newptr == NULL)
4525
return (err);
4526
4527
new_sstate = acpi_sname_to_sstate(name);
4528
if (new_sstate < 0)
4529
return (EINVAL);
4530
new_stype = acpi_sstate_to_stype(new_sstate);
4531
if (new_sstate != ACPI_STATE_UNKNOWN &&
4532
acpi_supported_stypes[new_stype] == false)
4533
return (EOPNOTSUPP);
4534
4535
if (new_stype != old_stype)
4536
power_suspend_stype = new_stype;
4537
return (err);
4538
}
4539
4540
static int
4541
acpi_sleep_state_sysctl(SYSCTL_HANDLER_ARGS)
4542
{
4543
char sleep_state[10];
4544
int error;
4545
int new_sstate, old_sstate;
4546
4547
old_sstate = *(int *)oidp->oid_arg1;
4548
strlcpy(sleep_state, acpi_sstate_to_sname(old_sstate), sizeof(sleep_state));
4549
error = sysctl_handle_string(oidp, sleep_state, sizeof(sleep_state), req);
4550
if (error == 0 && req->newptr != NULL) {
4551
new_sstate = acpi_sname_to_sstate(sleep_state);
4552
if (new_sstate < 0)
4553
return (EINVAL);
4554
if (new_sstate < ACPI_S_STATE_COUNT &&
4555
!acpi_supported_sstates[new_sstate])
4556
return (EOPNOTSUPP);
4557
if (new_sstate != old_sstate)
4558
*(int *)oidp->oid_arg1 = new_sstate;
4559
}
4560
return (error);
4561
}
4562
4563
static int
4564
acpi_stype_sysctl(SYSCTL_HANDLER_ARGS)
4565
{
4566
char name[10];
4567
int err;
4568
int sstate;
4569
enum power_stype new_stype, old_stype;
4570
4571
old_stype = *(enum power_stype *)oidp->oid_arg1;
4572
strlcpy(name, power_stype_to_name(old_stype), sizeof(name));
4573
err = sysctl_handle_string(oidp, name, sizeof(name), req);
4574
if (err != 0 || req->newptr == NULL)
4575
return (err);
4576
4577
if (strcasecmp(name, "NONE") == 0) {
4578
new_stype = POWER_STYPE_UNKNOWN;
4579
} else {
4580
new_stype = power_name_to_stype(name);
4581
if (new_stype == POWER_STYPE_UNKNOWN) {
4582
sstate = acpi_sname_to_sstate(name);
4583
if (sstate < 0)
4584
return (EINVAL);
4585
printf("warning: this sysctl expects a sleep type, but an ACPI "
4586
"S-state has been passed to it. This functionality is "
4587
"deprecated; see acpi(4).\n");
4588
MPASS(sstate < ACPI_S_STATE_COUNT);
4589
if (acpi_supported_sstates[sstate] == false)
4590
return (EOPNOTSUPP);
4591
new_stype = acpi_sstate_to_stype(sstate);
4592
}
4593
if (acpi_supported_stypes[new_stype] == false)
4594
return (EOPNOTSUPP);
4595
}
4596
4597
if (new_stype != old_stype)
4598
*(enum power_stype *)oidp->oid_arg1 = new_stype;
4599
return (0);
4600
}
4601
4602
/* Inform devctl(4) when we receive a Notify. */
4603
void
4604
acpi_UserNotify(const char *subsystem, ACPI_HANDLE h, uint8_t notify)
4605
{
4606
char notify_buf[16];
4607
ACPI_BUFFER handle_buf;
4608
ACPI_STATUS status;
4609
4610
if (subsystem == NULL)
4611
return;
4612
4613
handle_buf.Pointer = NULL;
4614
handle_buf.Length = ACPI_ALLOCATE_BUFFER;
4615
status = AcpiNsHandleToPathname(h, &handle_buf, FALSE);
4616
if (ACPI_FAILURE(status))
4617
return;
4618
snprintf(notify_buf, sizeof(notify_buf), "notify=0x%02x", notify);
4619
devctl_notify("ACPI", subsystem, handle_buf.Pointer, notify_buf);
4620
AcpiOsFree(handle_buf.Pointer);
4621
}
4622
4623
#ifdef ACPI_DEBUG
4624
/*
4625
* Support for parsing debug options from the kernel environment.
4626
*
4627
* Bits may be set in the AcpiDbgLayer and AcpiDbgLevel debug registers
4628
* by specifying the names of the bits in the debug.acpi.layer and
4629
* debug.acpi.level environment variables. Bits may be unset by
4630
* prefixing the bit name with !.
4631
*/
4632
struct debugtag
4633
{
4634
char *name;
4635
UINT32 value;
4636
};
4637
4638
static struct debugtag dbg_layer[] = {
4639
{"ACPI_UTILITIES", ACPI_UTILITIES},
4640
{"ACPI_HARDWARE", ACPI_HARDWARE},
4641
{"ACPI_EVENTS", ACPI_EVENTS},
4642
{"ACPI_TABLES", ACPI_TABLES},
4643
{"ACPI_NAMESPACE", ACPI_NAMESPACE},
4644
{"ACPI_PARSER", ACPI_PARSER},
4645
{"ACPI_DISPATCHER", ACPI_DISPATCHER},
4646
{"ACPI_EXECUTER", ACPI_EXECUTER},
4647
{"ACPI_RESOURCES", ACPI_RESOURCES},
4648
{"ACPI_CA_DEBUGGER", ACPI_CA_DEBUGGER},
4649
{"ACPI_OS_SERVICES", ACPI_OS_SERVICES},
4650
{"ACPI_CA_DISASSEMBLER", ACPI_CA_DISASSEMBLER},
4651
{"ACPI_ALL_COMPONENTS", ACPI_ALL_COMPONENTS},
4652
4653
{"ACPI_AC_ADAPTER", ACPI_AC_ADAPTER},
4654
{"ACPI_BATTERY", ACPI_BATTERY},
4655
{"ACPI_BUS", ACPI_BUS},
4656
{"ACPI_BUTTON", ACPI_BUTTON},
4657
{"ACPI_EC", ACPI_EC},
4658
{"ACPI_FAN", ACPI_FAN},
4659
{"ACPI_POWERRES", ACPI_POWERRES},
4660
{"ACPI_PROCESSOR", ACPI_PROCESSOR},
4661
{"ACPI_SPMC", ACPI_SPMC},
4662
{"ACPI_THERMAL", ACPI_THERMAL},
4663
{"ACPI_TIMER", ACPI_TIMER},
4664
{"ACPI_ALL_DRIVERS", ACPI_ALL_DRIVERS},
4665
{NULL, 0}
4666
};
4667
4668
static struct debugtag dbg_level[] = {
4669
{"ACPI_LV_INIT", ACPI_LV_INIT},
4670
{"ACPI_LV_DEBUG_OBJECT", ACPI_LV_DEBUG_OBJECT},
4671
{"ACPI_LV_INFO", ACPI_LV_INFO},
4672
{"ACPI_LV_REPAIR", ACPI_LV_REPAIR},
4673
{"ACPI_LV_ALL_EXCEPTIONS", ACPI_LV_ALL_EXCEPTIONS},
4674
4675
/* Trace verbosity level 1 [Standard Trace Level] */
4676
{"ACPI_LV_INIT_NAMES", ACPI_LV_INIT_NAMES},
4677
{"ACPI_LV_PARSE", ACPI_LV_PARSE},
4678
{"ACPI_LV_LOAD", ACPI_LV_LOAD},
4679
{"ACPI_LV_DISPATCH", ACPI_LV_DISPATCH},
4680
{"ACPI_LV_EXEC", ACPI_LV_EXEC},
4681
{"ACPI_LV_NAMES", ACPI_LV_NAMES},
4682
{"ACPI_LV_OPREGION", ACPI_LV_OPREGION},
4683
{"ACPI_LV_BFIELD", ACPI_LV_BFIELD},
4684
{"ACPI_LV_TABLES", ACPI_LV_TABLES},
4685
{"ACPI_LV_VALUES", ACPI_LV_VALUES},
4686
{"ACPI_LV_OBJECTS", ACPI_LV_OBJECTS},
4687
{"ACPI_LV_RESOURCES", ACPI_LV_RESOURCES},
4688
{"ACPI_LV_USER_REQUESTS", ACPI_LV_USER_REQUESTS},
4689
{"ACPI_LV_PACKAGE", ACPI_LV_PACKAGE},
4690
{"ACPI_LV_VERBOSITY1", ACPI_LV_VERBOSITY1},
4691
4692
/* Trace verbosity level 2 [Function tracing and memory allocation] */
4693
{"ACPI_LV_ALLOCATIONS", ACPI_LV_ALLOCATIONS},
4694
{"ACPI_LV_FUNCTIONS", ACPI_LV_FUNCTIONS},
4695
{"ACPI_LV_OPTIMIZATIONS", ACPI_LV_OPTIMIZATIONS},
4696
{"ACPI_LV_VERBOSITY2", ACPI_LV_VERBOSITY2},
4697
{"ACPI_LV_ALL", ACPI_LV_ALL},
4698
4699
/* Trace verbosity level 3 [Threading, I/O, and Interrupts] */
4700
{"ACPI_LV_MUTEX", ACPI_LV_MUTEX},
4701
{"ACPI_LV_THREADS", ACPI_LV_THREADS},
4702
{"ACPI_LV_IO", ACPI_LV_IO},
4703
{"ACPI_LV_INTERRUPTS", ACPI_LV_INTERRUPTS},
4704
{"ACPI_LV_VERBOSITY3", ACPI_LV_VERBOSITY3},
4705
4706
/* Exceptionally verbose output -- also used in the global "DebugLevel" */
4707
{"ACPI_LV_AML_DISASSEMBLE", ACPI_LV_AML_DISASSEMBLE},
4708
{"ACPI_LV_VERBOSE_INFO", ACPI_LV_VERBOSE_INFO},
4709
{"ACPI_LV_FULL_TABLES", ACPI_LV_FULL_TABLES},
4710
{"ACPI_LV_EVENTS", ACPI_LV_EVENTS},
4711
{"ACPI_LV_VERBOSE", ACPI_LV_VERBOSE},
4712
{NULL, 0}
4713
};
4714
4715
static void
4716
acpi_parse_debug(char *cp, struct debugtag *tag, UINT32 *flag)
4717
{
4718
char *ep;
4719
int i, l;
4720
int set;
4721
4722
while (*cp) {
4723
if (isspace(*cp)) {
4724
cp++;
4725
continue;
4726
}
4727
ep = cp;
4728
while (*ep && !isspace(*ep))
4729
ep++;
4730
if (*cp == '!') {
4731
set = 0;
4732
cp++;
4733
if (cp == ep)
4734
continue;
4735
} else {
4736
set = 1;
4737
}
4738
l = ep - cp;
4739
for (i = 0; tag[i].name != NULL; i++) {
4740
if (!strncmp(cp, tag[i].name, l)) {
4741
if (set)
4742
*flag |= tag[i].value;
4743
else
4744
*flag &= ~tag[i].value;
4745
}
4746
}
4747
cp = ep;
4748
}
4749
}
4750
4751
static void
4752
acpi_set_debugging(void *junk)
4753
{
4754
char *layer, *level;
4755
4756
if (cold) {
4757
AcpiDbgLayer = 0;
4758
AcpiDbgLevel = 0;
4759
}
4760
4761
layer = kern_getenv("debug.acpi.layer");
4762
level = kern_getenv("debug.acpi.level");
4763
if (layer == NULL && level == NULL)
4764
return;
4765
4766
printf("ACPI set debug");
4767
if (layer != NULL) {
4768
if (strcmp("NONE", layer) != 0)
4769
printf(" layer '%s'", layer);
4770
acpi_parse_debug(layer, &dbg_layer[0], &AcpiDbgLayer);
4771
freeenv(layer);
4772
}
4773
if (level != NULL) {
4774
if (strcmp("NONE", level) != 0)
4775
printf(" level '%s'", level);
4776
acpi_parse_debug(level, &dbg_level[0], &AcpiDbgLevel);
4777
freeenv(level);
4778
}
4779
printf("\n");
4780
}
4781
4782
SYSINIT(acpi_debugging, SI_SUB_TUNABLES, SI_ORDER_ANY, acpi_set_debugging,
4783
NULL);
4784
4785
static int
4786
acpi_debug_sysctl(SYSCTL_HANDLER_ARGS)
4787
{
4788
int error, *dbg;
4789
struct debugtag *tag;
4790
struct sbuf sb;
4791
char temp[128];
4792
4793
if (sbuf_new(&sb, NULL, 128, SBUF_AUTOEXTEND) == NULL)
4794
return (ENOMEM);
4795
if (strcmp(oidp->oid_arg1, "debug.acpi.layer") == 0) {
4796
tag = &dbg_layer[0];
4797
dbg = &AcpiDbgLayer;
4798
} else {
4799
tag = &dbg_level[0];
4800
dbg = &AcpiDbgLevel;
4801
}
4802
4803
/* Get old values if this is a get request. */
4804
ACPI_SERIAL_BEGIN(acpi);
4805
if (*dbg == 0) {
4806
sbuf_cpy(&sb, "NONE");
4807
} else if (req->newptr == NULL) {
4808
for (; tag->name != NULL; tag++) {
4809
if ((*dbg & tag->value) == tag->value)
4810
sbuf_printf(&sb, "%s ", tag->name);
4811
}
4812
}
4813
sbuf_trim(&sb);
4814
sbuf_finish(&sb);
4815
strlcpy(temp, sbuf_data(&sb), sizeof(temp));
4816
sbuf_delete(&sb);
4817
4818
error = sysctl_handle_string(oidp, temp, sizeof(temp), req);
4819
4820
/* Check for error or no change */
4821
if (error == 0 && req->newptr != NULL) {
4822
*dbg = 0;
4823
kern_setenv((char *)oidp->oid_arg1, temp);
4824
acpi_set_debugging(NULL);
4825
}
4826
ACPI_SERIAL_END(acpi);
4827
4828
return (error);
4829
}
4830
4831
SYSCTL_PROC(_debug_acpi, OID_AUTO, layer,
4832
CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_MPSAFE, "debug.acpi.layer", 0,
4833
acpi_debug_sysctl, "A",
4834
"");
4835
SYSCTL_PROC(_debug_acpi, OID_AUTO, level,
4836
CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_MPSAFE, "debug.acpi.level", 0,
4837
acpi_debug_sysctl, "A",
4838
"");
4839
#endif /* ACPI_DEBUG */
4840
4841
static int
4842
acpi_debug_objects_sysctl(SYSCTL_HANDLER_ARGS)
4843
{
4844
int error;
4845
int old;
4846
4847
old = acpi_debug_objects;
4848
error = sysctl_handle_int(oidp, &acpi_debug_objects, 0, req);
4849
if (error != 0 || req->newptr == NULL)
4850
return (error);
4851
if (old == acpi_debug_objects || (old && acpi_debug_objects))
4852
return (0);
4853
4854
ACPI_SERIAL_BEGIN(acpi);
4855
AcpiGbl_EnableAmlDebugObject = acpi_debug_objects ? TRUE : FALSE;
4856
ACPI_SERIAL_END(acpi);
4857
4858
return (0);
4859
}
4860
4861
static int
4862
acpi_parse_interfaces(char *str, struct acpi_interface *iface)
4863
{
4864
char *p;
4865
size_t len;
4866
int i, j;
4867
4868
p = str;
4869
while (isspace(*p) || *p == ',')
4870
p++;
4871
len = strlen(p);
4872
if (len == 0)
4873
return (0);
4874
p = strdup(p, M_TEMP);
4875
for (i = 0; i < len; i++)
4876
if (p[i] == ',')
4877
p[i] = '\0';
4878
i = j = 0;
4879
while (i < len)
4880
if (isspace(p[i]) || p[i] == '\0')
4881
i++;
4882
else {
4883
i += strlen(p + i) + 1;
4884
j++;
4885
}
4886
if (j == 0) {
4887
free(p, M_TEMP);
4888
return (0);
4889
}
4890
iface->data = malloc(sizeof(*iface->data) * j, M_TEMP, M_WAITOK);
4891
iface->num = j;
4892
i = j = 0;
4893
while (i < len)
4894
if (isspace(p[i]) || p[i] == '\0')
4895
i++;
4896
else {
4897
iface->data[j] = p + i;
4898
i += strlen(p + i) + 1;
4899
j++;
4900
}
4901
4902
return (j);
4903
}
4904
4905
static void
4906
acpi_free_interfaces(struct acpi_interface *iface)
4907
{
4908
4909
free(iface->data[0], M_TEMP);
4910
free(iface->data, M_TEMP);
4911
}
4912
4913
static void
4914
acpi_reset_interfaces(device_t dev)
4915
{
4916
struct acpi_interface list;
4917
ACPI_STATUS status;
4918
int i;
4919
4920
if (acpi_parse_interfaces(acpi_install_interface, &list) > 0) {
4921
for (i = 0; i < list.num; i++) {
4922
status = AcpiInstallInterface(list.data[i]);
4923
if (ACPI_FAILURE(status))
4924
device_printf(dev,
4925
"failed to install _OSI(\"%s\"): %s\n",
4926
list.data[i], AcpiFormatException(status));
4927
else if (bootverbose)
4928
device_printf(dev, "installed _OSI(\"%s\")\n",
4929
list.data[i]);
4930
}
4931
acpi_free_interfaces(&list);
4932
}
4933
if (acpi_parse_interfaces(acpi_remove_interface, &list) > 0) {
4934
for (i = 0; i < list.num; i++) {
4935
status = AcpiRemoveInterface(list.data[i]);
4936
if (ACPI_FAILURE(status))
4937
device_printf(dev,
4938
"failed to remove _OSI(\"%s\"): %s\n",
4939
list.data[i], AcpiFormatException(status));
4940
else if (bootverbose)
4941
device_printf(dev, "removed _OSI(\"%s\")\n",
4942
list.data[i]);
4943
}
4944
acpi_free_interfaces(&list);
4945
}
4946
4947
/*
4948
* Apple Mac hardware quirk: install Darwin OSI.
4949
*
4950
* On Apple hardware, install the Darwin OSI and remove the Windows OSI
4951
* to match Linux behavior.
4952
*
4953
* This is required for dual-GPU MacBook Pro systems
4954
* (Intel iGPU + AMD/NVIDIA dGPU) where the iGPU is hidden when the
4955
* firmware doesn't see Darwin OSI, but it also unlocks additional ACPI
4956
* support on non-MacBook Pro Apple platforms.
4957
*
4958
* Apple's ACPI firmware checks _OSI("Darwin") and sets OSYS=10000
4959
* for macOS. Many device methods use OSDW() which checks OSYS==10000
4960
* for macOS-specific behavior including GPU visibility and power
4961
* management.
4962
*
4963
* Linux enables Darwin OSI by default on Apple hardware and disables
4964
* all Windows OSI strings (drivers/acpi/osi.c). Users can override
4965
* this behavior with acpi_osi=!Darwin to get Windows-like behavior,
4966
* in general, but this logic makes that process unnecessary.
4967
*
4968
* Detect Apple via SMBIOS and enable Darwin while disabling Windows
4969
* vendor strings. This makes both GPUs visible on dual-GPU MacBook Pro
4970
* systems (Intel iGPU + AMD dGPU) and unlocks full platform
4971
* ACPI support.
4972
*/
4973
if (acpi_apple_darwin_osi) {
4974
char *vendor = kern_getenv("smbios.system.maker");
4975
if (vendor != NULL) {
4976
if (strcmp(vendor, "Apple Inc.") == 0 ||
4977
strcmp(vendor, "Apple Computer, Inc.") == 0) {
4978
/* Disable all other OSI vendor strings. */
4979
status = AcpiUpdateInterfaces(
4980
ACPI_DISABLE_ALL_VENDOR_STRINGS);
4981
if (ACPI_SUCCESS(status)) {
4982
/* Install Darwin OSI */
4983
status = AcpiInstallInterface("Darwin");
4984
}
4985
if (bootverbose) {
4986
if (ACPI_SUCCESS(status)) {
4987
device_printf(dev,
4988
"disabled non-Darwin OSI & "
4989
"installed Darwin OSI\n");
4990
} else {
4991
device_printf(dev,
4992
"could not install "
4993
"Darwin OSI: %s\n",
4994
AcpiFormatException(status));
4995
}
4996
}
4997
} else if (bootverbose) {
4998
device_printf(dev,
4999
"Not installing Darwin OSI on unsupported platform: %s\n",
5000
vendor);
5001
}
5002
freeenv(vendor);
5003
}
5004
}
5005
}
5006
5007
static int
5008
acpi_pm_func(u_long cmd, void *arg, enum power_stype stype)
5009
{
5010
int error;
5011
struct acpi_softc *sc;
5012
5013
error = 0;
5014
switch (cmd) {
5015
case POWER_CMD_SUSPEND:
5016
sc = (struct acpi_softc *)arg;
5017
if (sc == NULL) {
5018
error = EINVAL;
5019
goto out;
5020
}
5021
if (ACPI_FAILURE(acpi_EnterSleepState(sc, stype)))
5022
error = ENXIO;
5023
break;
5024
default:
5025
error = EINVAL;
5026
goto out;
5027
}
5028
5029
out:
5030
return (error);
5031
}
5032
5033
static void
5034
acpi_pm_register(void *arg)
5035
{
5036
if (!cold || resource_disabled("acpi", 0))
5037
return;
5038
5039
power_pm_register(POWER_PM_TYPE_ACPI, acpi_pm_func, NULL,
5040
acpi_supported_stypes);
5041
}
5042
5043
SYSINIT(power, SI_SUB_KLD, SI_ORDER_ANY, acpi_pm_register, NULL);
5044
5045