Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/age/if_age.c
39536 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2008, Pyun YongHyeon <[email protected]>
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice unmodified, this list of conditions, and the following
12
* disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
*
17
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27
* SUCH DAMAGE.
28
*/
29
30
/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
31
32
#include <sys/param.h>
33
#include <sys/systm.h>
34
#include <sys/bus.h>
35
#include <sys/endian.h>
36
#include <sys/kernel.h>
37
#include <sys/malloc.h>
38
#include <sys/mbuf.h>
39
#include <sys/rman.h>
40
#include <sys/module.h>
41
#include <sys/queue.h>
42
#include <sys/socket.h>
43
#include <sys/sockio.h>
44
#include <sys/sysctl.h>
45
#include <sys/taskqueue.h>
46
47
#include <net/bpf.h>
48
#include <net/if.h>
49
#include <net/if_var.h>
50
#include <net/if_arp.h>
51
#include <net/ethernet.h>
52
#include <net/if_dl.h>
53
#include <net/if_media.h>
54
#include <net/if_types.h>
55
#include <net/if_vlan_var.h>
56
57
#include <netinet/in.h>
58
#include <netinet/in_systm.h>
59
#include <netinet/ip.h>
60
#include <netinet/tcp.h>
61
62
#include <dev/mii/mii.h>
63
#include <dev/mii/miivar.h>
64
65
#include <dev/pci/pcireg.h>
66
#include <dev/pci/pcivar.h>
67
68
#include <machine/bus.h>
69
#include <machine/in_cksum.h>
70
71
#include <dev/age/if_agereg.h>
72
#include <dev/age/if_agevar.h>
73
74
/* "device miibus" required. See GENERIC if you get errors here. */
75
#include "miibus_if.h"
76
77
#define AGE_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
78
79
MODULE_DEPEND(age, pci, 1, 1, 1);
80
MODULE_DEPEND(age, ether, 1, 1, 1);
81
MODULE_DEPEND(age, miibus, 1, 1, 1);
82
83
/* Tunables. */
84
static int msi_disable = 0;
85
static int msix_disable = 0;
86
TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87
TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88
89
/*
90
* Devices supported by this driver.
91
*/
92
static struct age_dev {
93
uint16_t age_vendorid;
94
uint16_t age_deviceid;
95
const char *age_name;
96
} age_devs[] = {
97
{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98
"Attansic Technology Corp, L1 Gigabit Ethernet" },
99
};
100
101
static int age_miibus_readreg(device_t, int, int);
102
static int age_miibus_writereg(device_t, int, int, int);
103
static void age_miibus_statchg(device_t);
104
static void age_mediastatus(if_t, struct ifmediareq *);
105
static int age_mediachange(if_t);
106
static int age_probe(device_t);
107
static void age_get_macaddr(struct age_softc *);
108
static void age_phy_reset(struct age_softc *);
109
static int age_attach(device_t);
110
static int age_detach(device_t);
111
static void age_sysctl_node(struct age_softc *);
112
static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113
static int age_check_boundary(struct age_softc *);
114
static int age_dma_alloc(struct age_softc *);
115
static void age_dma_free(struct age_softc *);
116
static int age_shutdown(device_t);
117
static void age_setwol(struct age_softc *);
118
static int age_suspend(device_t);
119
static int age_resume(device_t);
120
static int age_encap(struct age_softc *, struct mbuf **);
121
static void age_start(if_t);
122
static void age_start_locked(if_t);
123
static void age_watchdog(struct age_softc *);
124
static int age_ioctl(if_t, u_long, caddr_t);
125
static void age_mac_config(struct age_softc *);
126
static void age_link_task(void *, int);
127
static void age_stats_update(struct age_softc *);
128
static int age_intr(void *);
129
static void age_int_task(void *, int);
130
static void age_txintr(struct age_softc *, int);
131
static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132
static int age_rxintr(struct age_softc *, int, int);
133
static void age_tick(void *);
134
static void age_reset(struct age_softc *);
135
static void age_init(void *);
136
static void age_init_locked(struct age_softc *);
137
static void age_stop(struct age_softc *);
138
static void age_stop_txmac(struct age_softc *);
139
static void age_stop_rxmac(struct age_softc *);
140
static void age_init_tx_ring(struct age_softc *);
141
static int age_init_rx_ring(struct age_softc *);
142
static void age_init_rr_ring(struct age_softc *);
143
static void age_init_cmb_block(struct age_softc *);
144
static void age_init_smb_block(struct age_softc *);
145
#ifndef __NO_STRICT_ALIGNMENT
146
static struct mbuf *age_fixup_rx(if_t, struct mbuf *);
147
#endif
148
static int age_newbuf(struct age_softc *, struct age_rxdesc *);
149
static void age_rxvlan(struct age_softc *);
150
static void age_rxfilter(struct age_softc *);
151
static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
152
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
153
static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
154
static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
155
156
static device_method_t age_methods[] = {
157
/* Device interface. */
158
DEVMETHOD(device_probe, age_probe),
159
DEVMETHOD(device_attach, age_attach),
160
DEVMETHOD(device_detach, age_detach),
161
DEVMETHOD(device_shutdown, age_shutdown),
162
DEVMETHOD(device_suspend, age_suspend),
163
DEVMETHOD(device_resume, age_resume),
164
165
/* MII interface. */
166
DEVMETHOD(miibus_readreg, age_miibus_readreg),
167
DEVMETHOD(miibus_writereg, age_miibus_writereg),
168
DEVMETHOD(miibus_statchg, age_miibus_statchg),
169
{ NULL, NULL }
170
};
171
172
static driver_t age_driver = {
173
"age",
174
age_methods,
175
sizeof(struct age_softc)
176
};
177
178
DRIVER_MODULE(age, pci, age_driver, 0, 0);
179
MODULE_PNP_INFO("U16:vendor;U16:device;D:#", pci, age, age_devs,
180
nitems(age_devs));
181
DRIVER_MODULE(miibus, age, miibus_driver, 0, 0);
182
183
static struct resource_spec age_res_spec_mem[] = {
184
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
185
{ -1, 0, 0 }
186
};
187
188
static struct resource_spec age_irq_spec_legacy[] = {
189
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
190
{ -1, 0, 0 }
191
};
192
193
static struct resource_spec age_irq_spec_msi[] = {
194
{ SYS_RES_IRQ, 1, RF_ACTIVE },
195
{ -1, 0, 0 }
196
};
197
198
static struct resource_spec age_irq_spec_msix[] = {
199
{ SYS_RES_IRQ, 1, RF_ACTIVE },
200
{ -1, 0, 0 }
201
};
202
203
/*
204
* Read a PHY register on the MII of the L1.
205
*/
206
static int
207
age_miibus_readreg(device_t dev, int phy, int reg)
208
{
209
struct age_softc *sc;
210
uint32_t v;
211
int i;
212
213
sc = device_get_softc(dev);
214
215
CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
216
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
217
for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
218
DELAY(1);
219
v = CSR_READ_4(sc, AGE_MDIO);
220
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
221
break;
222
}
223
224
if (i == 0) {
225
device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
226
return (0);
227
}
228
229
return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
230
}
231
232
/*
233
* Write a PHY register on the MII of the L1.
234
*/
235
static int
236
age_miibus_writereg(device_t dev, int phy, int reg, int val)
237
{
238
struct age_softc *sc;
239
uint32_t v;
240
int i;
241
242
sc = device_get_softc(dev);
243
244
CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
245
(val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
246
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
247
for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
248
DELAY(1);
249
v = CSR_READ_4(sc, AGE_MDIO);
250
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
251
break;
252
}
253
254
if (i == 0)
255
device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
256
257
return (0);
258
}
259
260
/*
261
* Callback from MII layer when media changes.
262
*/
263
static void
264
age_miibus_statchg(device_t dev)
265
{
266
struct age_softc *sc;
267
268
sc = device_get_softc(dev);
269
taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
270
}
271
272
/*
273
* Get the current interface media status.
274
*/
275
static void
276
age_mediastatus(if_t ifp, struct ifmediareq *ifmr)
277
{
278
struct age_softc *sc;
279
struct mii_data *mii;
280
281
sc = if_getsoftc(ifp);
282
AGE_LOCK(sc);
283
mii = device_get_softc(sc->age_miibus);
284
285
mii_pollstat(mii);
286
ifmr->ifm_status = mii->mii_media_status;
287
ifmr->ifm_active = mii->mii_media_active;
288
AGE_UNLOCK(sc);
289
}
290
291
/*
292
* Set hardware to newly-selected media.
293
*/
294
static int
295
age_mediachange(if_t ifp)
296
{
297
struct age_softc *sc;
298
struct mii_data *mii;
299
struct mii_softc *miisc;
300
int error;
301
302
sc = if_getsoftc(ifp);
303
AGE_LOCK(sc);
304
mii = device_get_softc(sc->age_miibus);
305
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
306
PHY_RESET(miisc);
307
error = mii_mediachg(mii);
308
AGE_UNLOCK(sc);
309
310
return (error);
311
}
312
313
static int
314
age_probe(device_t dev)
315
{
316
struct age_dev *sp;
317
int i;
318
uint16_t vendor, devid;
319
320
vendor = pci_get_vendor(dev);
321
devid = pci_get_device(dev);
322
sp = age_devs;
323
for (i = 0; i < nitems(age_devs); i++, sp++) {
324
if (vendor == sp->age_vendorid &&
325
devid == sp->age_deviceid) {
326
device_set_desc(dev, sp->age_name);
327
return (BUS_PROBE_DEFAULT);
328
}
329
}
330
331
return (ENXIO);
332
}
333
334
static void
335
age_get_macaddr(struct age_softc *sc)
336
{
337
uint32_t ea[2], reg;
338
int i, vpdc;
339
340
reg = CSR_READ_4(sc, AGE_SPI_CTRL);
341
if ((reg & SPI_VPD_ENB) != 0) {
342
/* Get VPD stored in TWSI EEPROM. */
343
reg &= ~SPI_VPD_ENB;
344
CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
345
}
346
347
if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
348
/*
349
* PCI VPD capability found, let TWSI reload EEPROM.
350
* This will set ethernet address of controller.
351
*/
352
CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
353
TWSI_CTRL_SW_LD_START);
354
for (i = 100; i > 0; i--) {
355
DELAY(1000);
356
reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
357
if ((reg & TWSI_CTRL_SW_LD_START) == 0)
358
break;
359
}
360
if (i == 0)
361
device_printf(sc->age_dev,
362
"reloading EEPROM timeout!\n");
363
} else {
364
if (bootverbose)
365
device_printf(sc->age_dev,
366
"PCI VPD capability not found!\n");
367
}
368
369
ea[0] = CSR_READ_4(sc, AGE_PAR0);
370
ea[1] = CSR_READ_4(sc, AGE_PAR1);
371
sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
372
sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
373
sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
374
sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
375
sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
376
sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
377
}
378
379
static void
380
age_phy_reset(struct age_softc *sc)
381
{
382
uint16_t reg, pn;
383
int i, linkup;
384
385
/* Reset PHY. */
386
CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
387
DELAY(2000);
388
CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
389
DELAY(2000);
390
391
#define ATPHY_DBG_ADDR 0x1D
392
#define ATPHY_DBG_DATA 0x1E
393
#define ATPHY_CDTC 0x16
394
#define PHY_CDTC_ENB 0x0001
395
#define PHY_CDTC_POFF 8
396
#define ATPHY_CDTS 0x1C
397
#define PHY_CDTS_STAT_OK 0x0000
398
#define PHY_CDTS_STAT_SHORT 0x0100
399
#define PHY_CDTS_STAT_OPEN 0x0200
400
#define PHY_CDTS_STAT_INVAL 0x0300
401
#define PHY_CDTS_STAT_MASK 0x0300
402
403
/* Check power saving mode. Magic from Linux. */
404
age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
405
for (linkup = 0, pn = 0; pn < 4; pn++) {
406
age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
407
(pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
408
for (i = 200; i > 0; i--) {
409
DELAY(1000);
410
reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
411
ATPHY_CDTC);
412
if ((reg & PHY_CDTC_ENB) == 0)
413
break;
414
}
415
DELAY(1000);
416
reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417
ATPHY_CDTS);
418
if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
419
linkup++;
420
break;
421
}
422
}
423
age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
424
BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
425
if (linkup == 0) {
426
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
427
ATPHY_DBG_ADDR, 0);
428
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429
ATPHY_DBG_DATA, 0x124E);
430
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431
ATPHY_DBG_ADDR, 1);
432
reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
433
ATPHY_DBG_DATA);
434
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435
ATPHY_DBG_DATA, reg | 0x03);
436
/* XXX */
437
DELAY(1500 * 1000);
438
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
439
ATPHY_DBG_ADDR, 0);
440
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441
ATPHY_DBG_DATA, 0x024E);
442
}
443
444
#undef ATPHY_DBG_ADDR
445
#undef ATPHY_DBG_DATA
446
#undef ATPHY_CDTC
447
#undef PHY_CDTC_ENB
448
#undef PHY_CDTC_POFF
449
#undef ATPHY_CDTS
450
#undef PHY_CDTS_STAT_OK
451
#undef PHY_CDTS_STAT_SHORT
452
#undef PHY_CDTS_STAT_OPEN
453
#undef PHY_CDTS_STAT_INVAL
454
#undef PHY_CDTS_STAT_MASK
455
}
456
457
static int
458
age_attach(device_t dev)
459
{
460
struct age_softc *sc;
461
if_t ifp;
462
uint16_t burst;
463
int error, i, msic, msixc;
464
465
error = 0;
466
sc = device_get_softc(dev);
467
sc->age_dev = dev;
468
469
mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
470
MTX_DEF);
471
callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
472
TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
473
TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
474
475
/* Map the device. */
476
pci_enable_busmaster(dev);
477
sc->age_res_spec = age_res_spec_mem;
478
sc->age_irq_spec = age_irq_spec_legacy;
479
error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
480
if (error != 0) {
481
device_printf(dev, "cannot allocate memory resources.\n");
482
goto fail;
483
}
484
485
/* Set PHY address. */
486
sc->age_phyaddr = AGE_PHY_ADDR;
487
488
/* Reset PHY. */
489
age_phy_reset(sc);
490
491
/* Reset the ethernet controller. */
492
age_reset(sc);
493
494
/* Get PCI and chip id/revision. */
495
sc->age_rev = pci_get_revid(dev);
496
sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
497
MASTER_CHIP_REV_SHIFT;
498
if (bootverbose) {
499
device_printf(dev, "PCI device revision : 0x%04x\n",
500
sc->age_rev);
501
device_printf(dev, "Chip id/revision : 0x%04x\n",
502
sc->age_chip_rev);
503
}
504
505
/*
506
* XXX
507
* Unintialized hardware returns an invalid chip id/revision
508
* as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
509
* unplugged cable results in putting hardware into automatic
510
* power down mode which in turn returns invalld chip revision.
511
*/
512
if (sc->age_chip_rev == 0xFFFF) {
513
device_printf(dev,"invalid chip revision : 0x%04x -- "
514
"not initialized?\n", sc->age_chip_rev);
515
error = ENXIO;
516
goto fail;
517
}
518
519
device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
520
CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
521
CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
522
523
/* Allocate IRQ resources. */
524
msixc = pci_msix_count(dev);
525
msic = pci_msi_count(dev);
526
if (bootverbose) {
527
device_printf(dev, "MSIX count : %d\n", msixc);
528
device_printf(dev, "MSI count : %d\n", msic);
529
}
530
531
/* Prefer MSIX over MSI. */
532
if (msix_disable == 0 || msi_disable == 0) {
533
if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
534
pci_alloc_msix(dev, &msixc) == 0) {
535
if (msic == AGE_MSIX_MESSAGES) {
536
device_printf(dev, "Using %d MSIX messages.\n",
537
msixc);
538
sc->age_flags |= AGE_FLAG_MSIX;
539
sc->age_irq_spec = age_irq_spec_msix;
540
} else
541
pci_release_msi(dev);
542
}
543
if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
544
msic == AGE_MSI_MESSAGES &&
545
pci_alloc_msi(dev, &msic) == 0) {
546
if (msic == AGE_MSI_MESSAGES) {
547
device_printf(dev, "Using %d MSI messages.\n",
548
msic);
549
sc->age_flags |= AGE_FLAG_MSI;
550
sc->age_irq_spec = age_irq_spec_msi;
551
} else
552
pci_release_msi(dev);
553
}
554
}
555
556
error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
557
if (error != 0) {
558
device_printf(dev, "cannot allocate IRQ resources.\n");
559
goto fail;
560
}
561
562
/* Get DMA parameters from PCIe device control register. */
563
if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
564
sc->age_flags |= AGE_FLAG_PCIE;
565
burst = pci_read_config(dev, i + 0x08, 2);
566
/* Max read request size. */
567
sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
568
DMA_CFG_RD_BURST_SHIFT;
569
/* Max payload size. */
570
sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
571
DMA_CFG_WR_BURST_SHIFT;
572
if (bootverbose) {
573
device_printf(dev, "Read request size : %d bytes.\n",
574
128 << ((burst >> 12) & 0x07));
575
device_printf(dev, "TLP payload size : %d bytes.\n",
576
128 << ((burst >> 5) & 0x07));
577
}
578
} else {
579
sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
580
sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
581
}
582
583
/* Create device sysctl node. */
584
age_sysctl_node(sc);
585
586
if ((error = age_dma_alloc(sc)) != 0)
587
goto fail;
588
589
/* Load station address. */
590
age_get_macaddr(sc);
591
592
ifp = sc->age_ifp = if_alloc(IFT_ETHER);
593
if_setsoftc(ifp, sc);
594
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
595
if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
596
if_setioctlfn(ifp, age_ioctl);
597
if_setstartfn(ifp, age_start);
598
if_setinitfn(ifp, age_init);
599
if_setsendqlen(ifp, AGE_TX_RING_CNT - 1);
600
if_setsendqready(ifp);
601
if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4);
602
if_sethwassist(ifp, AGE_CSUM_FEATURES | CSUM_TSO);
603
if (pci_has_pm(dev)) {
604
if_setcapabilitiesbit(ifp, IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST, 0);
605
}
606
if_setcapenable(ifp, if_getcapabilities(ifp));
607
608
/* Set up MII bus. */
609
error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
610
age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
611
0);
612
if (error != 0) {
613
device_printf(dev, "attaching PHYs failed\n");
614
goto fail;
615
}
616
617
ether_ifattach(ifp, sc->age_eaddr);
618
619
/* VLAN capability setup. */
620
if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
621
IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO, 0);
622
if_setcapenable(ifp, if_getcapabilities(ifp));
623
624
/* Tell the upper layer(s) we support long frames. */
625
if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
626
627
/* Create local taskq. */
628
sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
629
taskqueue_thread_enqueue, &sc->age_tq);
630
taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
631
device_get_nameunit(sc->age_dev));
632
633
if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
634
msic = AGE_MSIX_MESSAGES;
635
else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
636
msic = AGE_MSI_MESSAGES;
637
else
638
msic = 1;
639
for (i = 0; i < msic; i++) {
640
error = bus_setup_intr(dev, sc->age_irq[i],
641
INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
642
&sc->age_intrhand[i]);
643
if (error != 0)
644
break;
645
}
646
if (error != 0) {
647
device_printf(dev, "could not set up interrupt handler.\n");
648
taskqueue_free(sc->age_tq);
649
sc->age_tq = NULL;
650
ether_ifdetach(ifp);
651
goto fail;
652
}
653
654
fail:
655
if (error != 0)
656
age_detach(dev);
657
658
return (error);
659
}
660
661
static int
662
age_detach(device_t dev)
663
{
664
struct age_softc *sc;
665
if_t ifp;
666
int i, msic;
667
668
sc = device_get_softc(dev);
669
670
ifp = sc->age_ifp;
671
if (device_is_attached(dev)) {
672
AGE_LOCK(sc);
673
sc->age_flags |= AGE_FLAG_DETACH;
674
age_stop(sc);
675
AGE_UNLOCK(sc);
676
callout_drain(&sc->age_tick_ch);
677
taskqueue_drain(sc->age_tq, &sc->age_int_task);
678
taskqueue_drain(taskqueue_swi, &sc->age_link_task);
679
ether_ifdetach(ifp);
680
}
681
682
if (sc->age_tq != NULL) {
683
taskqueue_drain(sc->age_tq, &sc->age_int_task);
684
taskqueue_free(sc->age_tq);
685
sc->age_tq = NULL;
686
}
687
688
bus_generic_detach(dev);
689
age_dma_free(sc);
690
691
if (ifp != NULL) {
692
if_free(ifp);
693
sc->age_ifp = NULL;
694
}
695
696
if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
697
msic = AGE_MSIX_MESSAGES;
698
else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
699
msic = AGE_MSI_MESSAGES;
700
else
701
msic = 1;
702
for (i = 0; i < msic; i++) {
703
if (sc->age_intrhand[i] != NULL) {
704
bus_teardown_intr(dev, sc->age_irq[i],
705
sc->age_intrhand[i]);
706
sc->age_intrhand[i] = NULL;
707
}
708
}
709
710
bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
711
if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
712
pci_release_msi(dev);
713
bus_release_resources(dev, sc->age_res_spec, sc->age_res);
714
mtx_destroy(&sc->age_mtx);
715
716
return (0);
717
}
718
719
static void
720
age_sysctl_node(struct age_softc *sc)
721
{
722
int error;
723
724
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
725
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
726
"stats", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
727
sc, 0, sysctl_age_stats, "I", "Statistics");
728
729
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
730
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
731
"int_mod", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
732
&sc->age_int_mod, 0, sysctl_hw_age_int_mod, "I",
733
"age interrupt moderation");
734
735
/* Pull in device tunables. */
736
sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
737
error = resource_int_value(device_get_name(sc->age_dev),
738
device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
739
if (error == 0) {
740
if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
741
sc->age_int_mod > AGE_IM_TIMER_MAX) {
742
device_printf(sc->age_dev,
743
"int_mod value out of range; using default: %d\n",
744
AGE_IM_TIMER_DEFAULT);
745
sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
746
}
747
}
748
749
SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
750
SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
751
"process_limit", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
752
&sc->age_process_limit, 0, sysctl_hw_age_proc_limit, "I",
753
"max number of Rx events to process");
754
755
/* Pull in device tunables. */
756
sc->age_process_limit = AGE_PROC_DEFAULT;
757
error = resource_int_value(device_get_name(sc->age_dev),
758
device_get_unit(sc->age_dev), "process_limit",
759
&sc->age_process_limit);
760
if (error == 0) {
761
if (sc->age_process_limit < AGE_PROC_MIN ||
762
sc->age_process_limit > AGE_PROC_MAX) {
763
device_printf(sc->age_dev,
764
"process_limit value out of range; "
765
"using default: %d\n", AGE_PROC_DEFAULT);
766
sc->age_process_limit = AGE_PROC_DEFAULT;
767
}
768
}
769
}
770
771
struct age_dmamap_arg {
772
bus_addr_t age_busaddr;
773
};
774
775
static void
776
age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
777
{
778
struct age_dmamap_arg *ctx;
779
780
if (error != 0)
781
return;
782
783
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
784
785
ctx = (struct age_dmamap_arg *)arg;
786
ctx->age_busaddr = segs[0].ds_addr;
787
}
788
789
/*
790
* Attansic L1 controller have single register to specify high
791
* address part of DMA blocks. So all descriptor structures and
792
* DMA memory blocks should have the same high address of given
793
* 4GB address space(i.e. crossing 4GB boundary is not allowed).
794
*/
795
static int
796
age_check_boundary(struct age_softc *sc)
797
{
798
bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
799
bus_addr_t cmb_block_end, smb_block_end;
800
801
/* Tx/Rx descriptor queue should reside within 4GB boundary. */
802
tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
803
rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
804
rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
805
cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
806
smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
807
808
if ((AGE_ADDR_HI(tx_ring_end) !=
809
AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
810
(AGE_ADDR_HI(rx_ring_end) !=
811
AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
812
(AGE_ADDR_HI(rr_ring_end) !=
813
AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
814
(AGE_ADDR_HI(cmb_block_end) !=
815
AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
816
(AGE_ADDR_HI(smb_block_end) !=
817
AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
818
return (EFBIG);
819
820
if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
821
(AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
822
(AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
823
(AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
824
return (EFBIG);
825
826
return (0);
827
}
828
829
static int
830
age_dma_alloc(struct age_softc *sc)
831
{
832
struct age_txdesc *txd;
833
struct age_rxdesc *rxd;
834
bus_addr_t lowaddr;
835
struct age_dmamap_arg ctx;
836
int error, i;
837
838
lowaddr = BUS_SPACE_MAXADDR;
839
840
again:
841
/* Create parent ring/DMA block tag. */
842
error = bus_dma_tag_create(
843
bus_get_dma_tag(sc->age_dev), /* parent */
844
1, 0, /* alignment, boundary */
845
lowaddr, /* lowaddr */
846
BUS_SPACE_MAXADDR, /* highaddr */
847
NULL, NULL, /* filter, filterarg */
848
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
849
0, /* nsegments */
850
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
851
0, /* flags */
852
NULL, NULL, /* lockfunc, lockarg */
853
&sc->age_cdata.age_parent_tag);
854
if (error != 0) {
855
device_printf(sc->age_dev,
856
"could not create parent DMA tag.\n");
857
goto fail;
858
}
859
860
/* Create tag for Tx ring. */
861
error = bus_dma_tag_create(
862
sc->age_cdata.age_parent_tag, /* parent */
863
AGE_TX_RING_ALIGN, 0, /* alignment, boundary */
864
BUS_SPACE_MAXADDR, /* lowaddr */
865
BUS_SPACE_MAXADDR, /* highaddr */
866
NULL, NULL, /* filter, filterarg */
867
AGE_TX_RING_SZ, /* maxsize */
868
1, /* nsegments */
869
AGE_TX_RING_SZ, /* maxsegsize */
870
0, /* flags */
871
NULL, NULL, /* lockfunc, lockarg */
872
&sc->age_cdata.age_tx_ring_tag);
873
if (error != 0) {
874
device_printf(sc->age_dev,
875
"could not create Tx ring DMA tag.\n");
876
goto fail;
877
}
878
879
/* Create tag for Rx ring. */
880
error = bus_dma_tag_create(
881
sc->age_cdata.age_parent_tag, /* parent */
882
AGE_RX_RING_ALIGN, 0, /* alignment, boundary */
883
BUS_SPACE_MAXADDR, /* lowaddr */
884
BUS_SPACE_MAXADDR, /* highaddr */
885
NULL, NULL, /* filter, filterarg */
886
AGE_RX_RING_SZ, /* maxsize */
887
1, /* nsegments */
888
AGE_RX_RING_SZ, /* maxsegsize */
889
0, /* flags */
890
NULL, NULL, /* lockfunc, lockarg */
891
&sc->age_cdata.age_rx_ring_tag);
892
if (error != 0) {
893
device_printf(sc->age_dev,
894
"could not create Rx ring DMA tag.\n");
895
goto fail;
896
}
897
898
/* Create tag for Rx return ring. */
899
error = bus_dma_tag_create(
900
sc->age_cdata.age_parent_tag, /* parent */
901
AGE_RR_RING_ALIGN, 0, /* alignment, boundary */
902
BUS_SPACE_MAXADDR, /* lowaddr */
903
BUS_SPACE_MAXADDR, /* highaddr */
904
NULL, NULL, /* filter, filterarg */
905
AGE_RR_RING_SZ, /* maxsize */
906
1, /* nsegments */
907
AGE_RR_RING_SZ, /* maxsegsize */
908
0, /* flags */
909
NULL, NULL, /* lockfunc, lockarg */
910
&sc->age_cdata.age_rr_ring_tag);
911
if (error != 0) {
912
device_printf(sc->age_dev,
913
"could not create Rx return ring DMA tag.\n");
914
goto fail;
915
}
916
917
/* Create tag for coalesing message block. */
918
error = bus_dma_tag_create(
919
sc->age_cdata.age_parent_tag, /* parent */
920
AGE_CMB_ALIGN, 0, /* alignment, boundary */
921
BUS_SPACE_MAXADDR, /* lowaddr */
922
BUS_SPACE_MAXADDR, /* highaddr */
923
NULL, NULL, /* filter, filterarg */
924
AGE_CMB_BLOCK_SZ, /* maxsize */
925
1, /* nsegments */
926
AGE_CMB_BLOCK_SZ, /* maxsegsize */
927
0, /* flags */
928
NULL, NULL, /* lockfunc, lockarg */
929
&sc->age_cdata.age_cmb_block_tag);
930
if (error != 0) {
931
device_printf(sc->age_dev,
932
"could not create CMB DMA tag.\n");
933
goto fail;
934
}
935
936
/* Create tag for statistics message block. */
937
error = bus_dma_tag_create(
938
sc->age_cdata.age_parent_tag, /* parent */
939
AGE_SMB_ALIGN, 0, /* alignment, boundary */
940
BUS_SPACE_MAXADDR, /* lowaddr */
941
BUS_SPACE_MAXADDR, /* highaddr */
942
NULL, NULL, /* filter, filterarg */
943
AGE_SMB_BLOCK_SZ, /* maxsize */
944
1, /* nsegments */
945
AGE_SMB_BLOCK_SZ, /* maxsegsize */
946
0, /* flags */
947
NULL, NULL, /* lockfunc, lockarg */
948
&sc->age_cdata.age_smb_block_tag);
949
if (error != 0) {
950
device_printf(sc->age_dev,
951
"could not create SMB DMA tag.\n");
952
goto fail;
953
}
954
955
/* Allocate DMA'able memory and load the DMA map. */
956
error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
957
(void **)&sc->age_rdata.age_tx_ring,
958
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
959
&sc->age_cdata.age_tx_ring_map);
960
if (error != 0) {
961
device_printf(sc->age_dev,
962
"could not allocate DMA'able memory for Tx ring.\n");
963
goto fail;
964
}
965
ctx.age_busaddr = 0;
966
error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
967
sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
968
AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
969
if (error != 0 || ctx.age_busaddr == 0) {
970
device_printf(sc->age_dev,
971
"could not load DMA'able memory for Tx ring.\n");
972
goto fail;
973
}
974
sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
975
/* Rx ring */
976
error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
977
(void **)&sc->age_rdata.age_rx_ring,
978
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
979
&sc->age_cdata.age_rx_ring_map);
980
if (error != 0) {
981
device_printf(sc->age_dev,
982
"could not allocate DMA'able memory for Rx ring.\n");
983
goto fail;
984
}
985
ctx.age_busaddr = 0;
986
error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
987
sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
988
AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
989
if (error != 0 || ctx.age_busaddr == 0) {
990
device_printf(sc->age_dev,
991
"could not load DMA'able memory for Rx ring.\n");
992
goto fail;
993
}
994
sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
995
/* Rx return ring */
996
error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
997
(void **)&sc->age_rdata.age_rr_ring,
998
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
999
&sc->age_cdata.age_rr_ring_map);
1000
if (error != 0) {
1001
device_printf(sc->age_dev,
1002
"could not allocate DMA'able memory for Rx return ring.\n");
1003
goto fail;
1004
}
1005
ctx.age_busaddr = 0;
1006
error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1007
sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1008
AGE_RR_RING_SZ, age_dmamap_cb,
1009
&ctx, 0);
1010
if (error != 0 || ctx.age_busaddr == 0) {
1011
device_printf(sc->age_dev,
1012
"could not load DMA'able memory for Rx return ring.\n");
1013
goto fail;
1014
}
1015
sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1016
/* CMB block */
1017
error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1018
(void **)&sc->age_rdata.age_cmb_block,
1019
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1020
&sc->age_cdata.age_cmb_block_map);
1021
if (error != 0) {
1022
device_printf(sc->age_dev,
1023
"could not allocate DMA'able memory for CMB block.\n");
1024
goto fail;
1025
}
1026
ctx.age_busaddr = 0;
1027
error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1028
sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1029
AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1030
if (error != 0 || ctx.age_busaddr == 0) {
1031
device_printf(sc->age_dev,
1032
"could not load DMA'able memory for CMB block.\n");
1033
goto fail;
1034
}
1035
sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1036
/* SMB block */
1037
error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1038
(void **)&sc->age_rdata.age_smb_block,
1039
BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1040
&sc->age_cdata.age_smb_block_map);
1041
if (error != 0) {
1042
device_printf(sc->age_dev,
1043
"could not allocate DMA'able memory for SMB block.\n");
1044
goto fail;
1045
}
1046
ctx.age_busaddr = 0;
1047
error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1048
sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1049
AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1050
if (error != 0 || ctx.age_busaddr == 0) {
1051
device_printf(sc->age_dev,
1052
"could not load DMA'able memory for SMB block.\n");
1053
goto fail;
1054
}
1055
sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1056
1057
/*
1058
* All ring buffer and DMA blocks should have the same
1059
* high address part of 64bit DMA address space.
1060
*/
1061
if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1062
(error = age_check_boundary(sc)) != 0) {
1063
device_printf(sc->age_dev, "4GB boundary crossed, "
1064
"switching to 32bit DMA addressing mode.\n");
1065
age_dma_free(sc);
1066
/* Limit DMA address space to 32bit and try again. */
1067
lowaddr = BUS_SPACE_MAXADDR_32BIT;
1068
goto again;
1069
}
1070
1071
/*
1072
* Create Tx/Rx buffer parent tag.
1073
* L1 supports full 64bit DMA addressing in Tx/Rx buffers
1074
* so it needs separate parent DMA tag.
1075
* XXX
1076
* It seems enabling 64bit DMA causes data corruption. Limit
1077
* DMA address space to 32bit.
1078
*/
1079
error = bus_dma_tag_create(
1080
bus_get_dma_tag(sc->age_dev), /* parent */
1081
1, 0, /* alignment, boundary */
1082
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1083
BUS_SPACE_MAXADDR, /* highaddr */
1084
NULL, NULL, /* filter, filterarg */
1085
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
1086
0, /* nsegments */
1087
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1088
0, /* flags */
1089
NULL, NULL, /* lockfunc, lockarg */
1090
&sc->age_cdata.age_buffer_tag);
1091
if (error != 0) {
1092
device_printf(sc->age_dev,
1093
"could not create parent buffer DMA tag.\n");
1094
goto fail;
1095
}
1096
1097
/* Create tag for Tx buffers. */
1098
error = bus_dma_tag_create(
1099
sc->age_cdata.age_buffer_tag, /* parent */
1100
1, 0, /* alignment, boundary */
1101
BUS_SPACE_MAXADDR, /* lowaddr */
1102
BUS_SPACE_MAXADDR, /* highaddr */
1103
NULL, NULL, /* filter, filterarg */
1104
AGE_TSO_MAXSIZE, /* maxsize */
1105
AGE_MAXTXSEGS, /* nsegments */
1106
AGE_TSO_MAXSEGSIZE, /* maxsegsize */
1107
0, /* flags */
1108
NULL, NULL, /* lockfunc, lockarg */
1109
&sc->age_cdata.age_tx_tag);
1110
if (error != 0) {
1111
device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1112
goto fail;
1113
}
1114
1115
/* Create tag for Rx buffers. */
1116
error = bus_dma_tag_create(
1117
sc->age_cdata.age_buffer_tag, /* parent */
1118
AGE_RX_BUF_ALIGN, 0, /* alignment, boundary */
1119
BUS_SPACE_MAXADDR, /* lowaddr */
1120
BUS_SPACE_MAXADDR, /* highaddr */
1121
NULL, NULL, /* filter, filterarg */
1122
MCLBYTES, /* maxsize */
1123
1, /* nsegments */
1124
MCLBYTES, /* maxsegsize */
1125
0, /* flags */
1126
NULL, NULL, /* lockfunc, lockarg */
1127
&sc->age_cdata.age_rx_tag);
1128
if (error != 0) {
1129
device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1130
goto fail;
1131
}
1132
1133
/* Create DMA maps for Tx buffers. */
1134
for (i = 0; i < AGE_TX_RING_CNT; i++) {
1135
txd = &sc->age_cdata.age_txdesc[i];
1136
txd->tx_m = NULL;
1137
txd->tx_dmamap = NULL;
1138
error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1139
&txd->tx_dmamap);
1140
if (error != 0) {
1141
device_printf(sc->age_dev,
1142
"could not create Tx dmamap.\n");
1143
goto fail;
1144
}
1145
}
1146
/* Create DMA maps for Rx buffers. */
1147
if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1148
&sc->age_cdata.age_rx_sparemap)) != 0) {
1149
device_printf(sc->age_dev,
1150
"could not create spare Rx dmamap.\n");
1151
goto fail;
1152
}
1153
for (i = 0; i < AGE_RX_RING_CNT; i++) {
1154
rxd = &sc->age_cdata.age_rxdesc[i];
1155
rxd->rx_m = NULL;
1156
rxd->rx_dmamap = NULL;
1157
error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1158
&rxd->rx_dmamap);
1159
if (error != 0) {
1160
device_printf(sc->age_dev,
1161
"could not create Rx dmamap.\n");
1162
goto fail;
1163
}
1164
}
1165
1166
fail:
1167
return (error);
1168
}
1169
1170
static void
1171
age_dma_free(struct age_softc *sc)
1172
{
1173
struct age_txdesc *txd;
1174
struct age_rxdesc *rxd;
1175
int i;
1176
1177
/* Tx buffers */
1178
if (sc->age_cdata.age_tx_tag != NULL) {
1179
for (i = 0; i < AGE_TX_RING_CNT; i++) {
1180
txd = &sc->age_cdata.age_txdesc[i];
1181
if (txd->tx_dmamap != NULL) {
1182
bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1183
txd->tx_dmamap);
1184
txd->tx_dmamap = NULL;
1185
}
1186
}
1187
bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1188
sc->age_cdata.age_tx_tag = NULL;
1189
}
1190
/* Rx buffers */
1191
if (sc->age_cdata.age_rx_tag != NULL) {
1192
for (i = 0; i < AGE_RX_RING_CNT; i++) {
1193
rxd = &sc->age_cdata.age_rxdesc[i];
1194
if (rxd->rx_dmamap != NULL) {
1195
bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1196
rxd->rx_dmamap);
1197
rxd->rx_dmamap = NULL;
1198
}
1199
}
1200
if (sc->age_cdata.age_rx_sparemap != NULL) {
1201
bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1202
sc->age_cdata.age_rx_sparemap);
1203
sc->age_cdata.age_rx_sparemap = NULL;
1204
}
1205
bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1206
sc->age_cdata.age_rx_tag = NULL;
1207
}
1208
/* Tx ring. */
1209
if (sc->age_cdata.age_tx_ring_tag != NULL) {
1210
if (sc->age_rdata.age_tx_ring_paddr != 0)
1211
bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1212
sc->age_cdata.age_tx_ring_map);
1213
if (sc->age_rdata.age_tx_ring != NULL)
1214
bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1215
sc->age_rdata.age_tx_ring,
1216
sc->age_cdata.age_tx_ring_map);
1217
sc->age_rdata.age_tx_ring_paddr = 0;
1218
sc->age_rdata.age_tx_ring = NULL;
1219
bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1220
sc->age_cdata.age_tx_ring_tag = NULL;
1221
}
1222
/* Rx ring. */
1223
if (sc->age_cdata.age_rx_ring_tag != NULL) {
1224
if (sc->age_rdata.age_rx_ring_paddr != 0)
1225
bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1226
sc->age_cdata.age_rx_ring_map);
1227
if (sc->age_rdata.age_rx_ring != NULL)
1228
bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1229
sc->age_rdata.age_rx_ring,
1230
sc->age_cdata.age_rx_ring_map);
1231
sc->age_rdata.age_rx_ring_paddr = 0;
1232
sc->age_rdata.age_rx_ring = NULL;
1233
bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1234
sc->age_cdata.age_rx_ring_tag = NULL;
1235
}
1236
/* Rx return ring. */
1237
if (sc->age_cdata.age_rr_ring_tag != NULL) {
1238
if (sc->age_rdata.age_rr_ring_paddr != 0)
1239
bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1240
sc->age_cdata.age_rr_ring_map);
1241
if (sc->age_rdata.age_rr_ring != NULL)
1242
bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1243
sc->age_rdata.age_rr_ring,
1244
sc->age_cdata.age_rr_ring_map);
1245
sc->age_rdata.age_rr_ring_paddr = 0;
1246
sc->age_rdata.age_rr_ring = NULL;
1247
bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1248
sc->age_cdata.age_rr_ring_tag = NULL;
1249
}
1250
/* CMB block */
1251
if (sc->age_cdata.age_cmb_block_tag != NULL) {
1252
if (sc->age_rdata.age_cmb_block_paddr != 0)
1253
bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1254
sc->age_cdata.age_cmb_block_map);
1255
if (sc->age_rdata.age_cmb_block != NULL)
1256
bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1257
sc->age_rdata.age_cmb_block,
1258
sc->age_cdata.age_cmb_block_map);
1259
sc->age_rdata.age_cmb_block_paddr = 0;
1260
sc->age_rdata.age_cmb_block = NULL;
1261
bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1262
sc->age_cdata.age_cmb_block_tag = NULL;
1263
}
1264
/* SMB block */
1265
if (sc->age_cdata.age_smb_block_tag != NULL) {
1266
if (sc->age_rdata.age_smb_block_paddr != 0)
1267
bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1268
sc->age_cdata.age_smb_block_map);
1269
if (sc->age_rdata.age_smb_block != NULL)
1270
bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1271
sc->age_rdata.age_smb_block,
1272
sc->age_cdata.age_smb_block_map);
1273
sc->age_rdata.age_smb_block_paddr = 0;
1274
sc->age_rdata.age_smb_block = NULL;
1275
bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1276
sc->age_cdata.age_smb_block_tag = NULL;
1277
}
1278
1279
if (sc->age_cdata.age_buffer_tag != NULL) {
1280
bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1281
sc->age_cdata.age_buffer_tag = NULL;
1282
}
1283
if (sc->age_cdata.age_parent_tag != NULL) {
1284
bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1285
sc->age_cdata.age_parent_tag = NULL;
1286
}
1287
}
1288
1289
/*
1290
* Make sure the interface is stopped at reboot time.
1291
*/
1292
static int
1293
age_shutdown(device_t dev)
1294
{
1295
1296
return (age_suspend(dev));
1297
}
1298
1299
static void
1300
age_setwol(struct age_softc *sc)
1301
{
1302
if_t ifp;
1303
struct mii_data *mii;
1304
uint32_t reg, pmcs;
1305
int aneg, i;
1306
1307
AGE_LOCK_ASSERT(sc);
1308
1309
if (!pci_has_pm(sc->age_dev)) {
1310
CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1311
/*
1312
* No PME capability, PHY power down.
1313
* XXX
1314
* Due to an unknown reason powering down PHY resulted
1315
* in unexpected results such as inaccessbility of
1316
* hardware of freshly rebooted system. Disable
1317
* powering down PHY until I got more information for
1318
* Attansic/Atheros PHY hardwares.
1319
*/
1320
#ifdef notyet
1321
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1322
MII_BMCR, BMCR_PDOWN);
1323
#endif
1324
return;
1325
}
1326
1327
ifp = sc->age_ifp;
1328
if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1329
/*
1330
* Note, this driver resets the link speed to 10/100Mbps with
1331
* auto-negotiation but we don't know whether that operation
1332
* would succeed or not as it have no control after powering
1333
* off. If the renegotiation fail WOL may not work. Running
1334
* at 1Gbps will draw more power than 375mA at 3.3V which is
1335
* specified in PCI specification and that would result in
1336
* complete shutdowning power to ethernet controller.
1337
*
1338
* TODO
1339
* Save current negotiated media speed/duplex/flow-control
1340
* to softc and restore the same link again after resuming.
1341
* PHY handling such as power down/resetting to 100Mbps
1342
* may be better handled in suspend method in phy driver.
1343
*/
1344
mii = device_get_softc(sc->age_miibus);
1345
mii_pollstat(mii);
1346
aneg = 0;
1347
if ((mii->mii_media_status & IFM_AVALID) != 0) {
1348
switch IFM_SUBTYPE(mii->mii_media_active) {
1349
case IFM_10_T:
1350
case IFM_100_TX:
1351
goto got_link;
1352
case IFM_1000_T:
1353
aneg++;
1354
default:
1355
break;
1356
}
1357
}
1358
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1359
MII_100T2CR, 0);
1360
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1361
MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1362
ANAR_10 | ANAR_CSMA);
1363
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1364
MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1365
DELAY(1000);
1366
if (aneg != 0) {
1367
/* Poll link state until age(4) get a 10/100 link. */
1368
for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1369
mii_pollstat(mii);
1370
if ((mii->mii_media_status & IFM_AVALID) != 0) {
1371
switch (IFM_SUBTYPE(
1372
mii->mii_media_active)) {
1373
case IFM_10_T:
1374
case IFM_100_TX:
1375
age_mac_config(sc);
1376
goto got_link;
1377
default:
1378
break;
1379
}
1380
}
1381
AGE_UNLOCK(sc);
1382
pause("agelnk", hz);
1383
AGE_LOCK(sc);
1384
}
1385
if (i == MII_ANEGTICKS_GIGE)
1386
device_printf(sc->age_dev,
1387
"establishing link failed, "
1388
"WOL may not work!");
1389
}
1390
/*
1391
* No link, force MAC to have 100Mbps, full-duplex link.
1392
* This is the last resort and may/may not work.
1393
*/
1394
mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1395
mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1396
age_mac_config(sc);
1397
}
1398
1399
got_link:
1400
pmcs = 0;
1401
if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0)
1402
pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1403
CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1404
reg = CSR_READ_4(sc, AGE_MAC_CFG);
1405
reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1406
reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1407
if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0)
1408
reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1409
if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) {
1410
reg |= MAC_CFG_RX_ENB;
1411
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1412
}
1413
1414
/* Request PME. */
1415
if ((if_getcapenable(ifp) & IFCAP_WOL) != 0)
1416
pci_enable_pme(sc->age_dev);
1417
#ifdef notyet
1418
/* See above for powering down PHY issues. */
1419
if ((if_getcapenable(ifp) & IFCAP_WOL) == 0) {
1420
/* No WOL, PHY power down. */
1421
age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1422
MII_BMCR, BMCR_PDOWN);
1423
}
1424
#endif
1425
}
1426
1427
static int
1428
age_suspend(device_t dev)
1429
{
1430
struct age_softc *sc;
1431
1432
sc = device_get_softc(dev);
1433
1434
AGE_LOCK(sc);
1435
age_stop(sc);
1436
age_setwol(sc);
1437
AGE_UNLOCK(sc);
1438
1439
return (0);
1440
}
1441
1442
static int
1443
age_resume(device_t dev)
1444
{
1445
struct age_softc *sc;
1446
if_t ifp;
1447
1448
sc = device_get_softc(dev);
1449
1450
AGE_LOCK(sc);
1451
age_phy_reset(sc);
1452
ifp = sc->age_ifp;
1453
if ((if_getflags(ifp) & IFF_UP) != 0)
1454
age_init_locked(sc);
1455
1456
AGE_UNLOCK(sc);
1457
1458
return (0);
1459
}
1460
1461
static int
1462
age_encap(struct age_softc *sc, struct mbuf **m_head)
1463
{
1464
struct age_txdesc *txd, *txd_last;
1465
struct tx_desc *desc;
1466
struct mbuf *m;
1467
struct ip *ip;
1468
struct tcphdr *tcp;
1469
bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1470
bus_dmamap_t map;
1471
uint32_t cflags, hdrlen, ip_off, poff, vtag;
1472
int error, i, nsegs, prod, si;
1473
1474
AGE_LOCK_ASSERT(sc);
1475
1476
M_ASSERTPKTHDR((*m_head));
1477
1478
m = *m_head;
1479
ip = NULL;
1480
tcp = NULL;
1481
cflags = vtag = 0;
1482
ip_off = poff = 0;
1483
if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1484
/*
1485
* L1 requires offset of TCP/UDP payload in its Tx
1486
* descriptor to perform hardware Tx checksum offload.
1487
* Additionally, TSO requires IP/TCP header size and
1488
* modification of IP/TCP header in order to make TSO
1489
* engine work. This kind of operation takes many CPU
1490
* cycles on FreeBSD so fast host CPU is needed to get
1491
* smooth TSO performance.
1492
*/
1493
struct ether_header *eh;
1494
1495
if (M_WRITABLE(m) == 0) {
1496
/* Get a writable copy. */
1497
m = m_dup(*m_head, M_NOWAIT);
1498
/* Release original mbufs. */
1499
m_freem(*m_head);
1500
if (m == NULL) {
1501
*m_head = NULL;
1502
return (ENOBUFS);
1503
}
1504
*m_head = m;
1505
}
1506
ip_off = sizeof(struct ether_header);
1507
m = m_pullup(m, ip_off);
1508
if (m == NULL) {
1509
*m_head = NULL;
1510
return (ENOBUFS);
1511
}
1512
eh = mtod(m, struct ether_header *);
1513
/*
1514
* Check if hardware VLAN insertion is off.
1515
* Additional check for LLC/SNAP frame?
1516
*/
1517
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1518
ip_off = sizeof(struct ether_vlan_header);
1519
m = m_pullup(m, ip_off);
1520
if (m == NULL) {
1521
*m_head = NULL;
1522
return (ENOBUFS);
1523
}
1524
}
1525
m = m_pullup(m, ip_off + sizeof(struct ip));
1526
if (m == NULL) {
1527
*m_head = NULL;
1528
return (ENOBUFS);
1529
}
1530
ip = (struct ip *)(mtod(m, char *) + ip_off);
1531
poff = ip_off + (ip->ip_hl << 2);
1532
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1533
m = m_pullup(m, poff + sizeof(struct tcphdr));
1534
if (m == NULL) {
1535
*m_head = NULL;
1536
return (ENOBUFS);
1537
}
1538
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1539
m = m_pullup(m, poff + (tcp->th_off << 2));
1540
if (m == NULL) {
1541
*m_head = NULL;
1542
return (ENOBUFS);
1543
}
1544
/*
1545
* L1 requires IP/TCP header size and offset as
1546
* well as TCP pseudo checksum which complicates
1547
* TSO configuration. I guess this comes from the
1548
* adherence to Microsoft NDIS Large Send
1549
* specification which requires insertion of
1550
* pseudo checksum by upper stack. The pseudo
1551
* checksum that NDIS refers to doesn't include
1552
* TCP payload length so age(4) should recompute
1553
* the pseudo checksum here. Hopefully this wouldn't
1554
* be much burden on modern CPUs.
1555
* Reset IP checksum and recompute TCP pseudo
1556
* checksum as NDIS specification said.
1557
*/
1558
ip = (struct ip *)(mtod(m, char *) + ip_off);
1559
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1560
ip->ip_sum = 0;
1561
tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1562
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1563
}
1564
*m_head = m;
1565
}
1566
1567
si = prod = sc->age_cdata.age_tx_prod;
1568
txd = &sc->age_cdata.age_txdesc[prod];
1569
txd_last = txd;
1570
map = txd->tx_dmamap;
1571
1572
error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1573
*m_head, txsegs, &nsegs, 0);
1574
if (error == EFBIG) {
1575
m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1576
if (m == NULL) {
1577
m_freem(*m_head);
1578
*m_head = NULL;
1579
return (ENOMEM);
1580
}
1581
*m_head = m;
1582
error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1583
*m_head, txsegs, &nsegs, 0);
1584
if (error != 0) {
1585
m_freem(*m_head);
1586
*m_head = NULL;
1587
return (error);
1588
}
1589
} else if (error != 0)
1590
return (error);
1591
if (nsegs == 0) {
1592
m_freem(*m_head);
1593
*m_head = NULL;
1594
return (EIO);
1595
}
1596
1597
/* Check descriptor overrun. */
1598
if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1599
bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1600
return (ENOBUFS);
1601
}
1602
1603
m = *m_head;
1604
/* Configure VLAN hardware tag insertion. */
1605
if ((m->m_flags & M_VLANTAG) != 0) {
1606
vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1607
vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1608
cflags |= AGE_TD_INSERT_VLAN_TAG;
1609
}
1610
1611
desc = NULL;
1612
i = 0;
1613
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1614
/* Request TSO and set MSS. */
1615
cflags |= AGE_TD_TSO_IPV4;
1616
cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1617
cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1618
AGE_TD_TSO_MSS_SHIFT);
1619
/* Set IP/TCP header size. */
1620
cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1621
cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1622
/*
1623
* L1 requires the first buffer should only hold IP/TCP
1624
* header data. TCP payload should be handled in other
1625
* descriptors.
1626
*/
1627
hdrlen = poff + (tcp->th_off << 2);
1628
desc = &sc->age_rdata.age_tx_ring[prod];
1629
desc->addr = htole64(txsegs[0].ds_addr);
1630
desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1631
desc->flags = htole32(cflags);
1632
sc->age_cdata.age_tx_cnt++;
1633
AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1634
if (m->m_len - hdrlen > 0) {
1635
/* Handle remaining payload of the 1st fragment. */
1636
desc = &sc->age_rdata.age_tx_ring[prod];
1637
desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1638
desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1639
vtag);
1640
desc->flags = htole32(cflags);
1641
sc->age_cdata.age_tx_cnt++;
1642
AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1643
}
1644
/* Handle remaining fragments. */
1645
i = 1;
1646
} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1647
/* Configure Tx IP/TCP/UDP checksum offload. */
1648
cflags |= AGE_TD_CSUM;
1649
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1650
cflags |= AGE_TD_TCPCSUM;
1651
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1652
cflags |= AGE_TD_UDPCSUM;
1653
/* Set checksum start offset. */
1654
cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1655
/* Set checksum insertion position of TCP/UDP. */
1656
cflags |= ((poff + m->m_pkthdr.csum_data) <<
1657
AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1658
}
1659
for (; i < nsegs; i++) {
1660
desc = &sc->age_rdata.age_tx_ring[prod];
1661
desc->addr = htole64(txsegs[i].ds_addr);
1662
desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1663
desc->flags = htole32(cflags);
1664
sc->age_cdata.age_tx_cnt++;
1665
AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1666
}
1667
/* Update producer index. */
1668
sc->age_cdata.age_tx_prod = prod;
1669
1670
/* Set EOP on the last descriptor. */
1671
prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1672
desc = &sc->age_rdata.age_tx_ring[prod];
1673
desc->flags |= htole32(AGE_TD_EOP);
1674
1675
/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1676
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1677
desc = &sc->age_rdata.age_tx_ring[si];
1678
desc->flags |= htole32(AGE_TD_TSO_HDR);
1679
}
1680
1681
/* Swap dmamap of the first and the last. */
1682
txd = &sc->age_cdata.age_txdesc[prod];
1683
map = txd_last->tx_dmamap;
1684
txd_last->tx_dmamap = txd->tx_dmamap;
1685
txd->tx_dmamap = map;
1686
txd->tx_m = m;
1687
1688
/* Sync descriptors. */
1689
bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1690
bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1691
sc->age_cdata.age_tx_ring_map,
1692
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1693
1694
return (0);
1695
}
1696
1697
static void
1698
age_start(if_t ifp)
1699
{
1700
struct age_softc *sc;
1701
1702
sc = if_getsoftc(ifp);
1703
AGE_LOCK(sc);
1704
age_start_locked(ifp);
1705
AGE_UNLOCK(sc);
1706
}
1707
1708
static void
1709
age_start_locked(if_t ifp)
1710
{
1711
struct age_softc *sc;
1712
struct mbuf *m_head;
1713
int enq;
1714
1715
sc = if_getsoftc(ifp);
1716
1717
AGE_LOCK_ASSERT(sc);
1718
1719
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1720
IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1721
return;
1722
1723
for (enq = 0; !if_sendq_empty(ifp); ) {
1724
m_head = if_dequeue(ifp);
1725
if (m_head == NULL)
1726
break;
1727
/*
1728
* Pack the data into the transmit ring. If we
1729
* don't have room, set the OACTIVE flag and wait
1730
* for the NIC to drain the ring.
1731
*/
1732
if (age_encap(sc, &m_head)) {
1733
if (m_head == NULL)
1734
break;
1735
if_sendq_prepend(ifp, m_head);
1736
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1737
break;
1738
}
1739
1740
enq++;
1741
/*
1742
* If there's a BPF listener, bounce a copy of this frame
1743
* to him.
1744
*/
1745
ETHER_BPF_MTAP(ifp, m_head);
1746
}
1747
1748
if (enq > 0) {
1749
/* Update mbox. */
1750
AGE_COMMIT_MBOX(sc);
1751
/* Set a timeout in case the chip goes out to lunch. */
1752
sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1753
}
1754
}
1755
1756
static void
1757
age_watchdog(struct age_softc *sc)
1758
{
1759
if_t ifp;
1760
1761
AGE_LOCK_ASSERT(sc);
1762
1763
if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1764
return;
1765
1766
ifp = sc->age_ifp;
1767
if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1768
if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1769
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1770
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1771
age_init_locked(sc);
1772
return;
1773
}
1774
if (sc->age_cdata.age_tx_cnt == 0) {
1775
if_printf(sc->age_ifp,
1776
"watchdog timeout (missed Tx interrupts) -- recovering\n");
1777
if (!if_sendq_empty(ifp))
1778
age_start_locked(ifp);
1779
return;
1780
}
1781
if_printf(sc->age_ifp, "watchdog timeout\n");
1782
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1783
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1784
age_init_locked(sc);
1785
if (!if_sendq_empty(ifp))
1786
age_start_locked(ifp);
1787
}
1788
1789
static int
1790
age_ioctl(if_t ifp, u_long cmd, caddr_t data)
1791
{
1792
struct age_softc *sc;
1793
struct ifreq *ifr;
1794
struct mii_data *mii;
1795
uint32_t reg;
1796
int error, mask;
1797
1798
sc = if_getsoftc(ifp);
1799
ifr = (struct ifreq *)data;
1800
error = 0;
1801
switch (cmd) {
1802
case SIOCSIFMTU:
1803
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1804
error = EINVAL;
1805
else if (if_getmtu(ifp) != ifr->ifr_mtu) {
1806
AGE_LOCK(sc);
1807
if_setmtu(ifp, ifr->ifr_mtu);
1808
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1809
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1810
age_init_locked(sc);
1811
}
1812
AGE_UNLOCK(sc);
1813
}
1814
break;
1815
case SIOCSIFFLAGS:
1816
AGE_LOCK(sc);
1817
if ((if_getflags(ifp) & IFF_UP) != 0) {
1818
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
1819
if (((if_getflags(ifp) ^ sc->age_if_flags)
1820
& (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1821
age_rxfilter(sc);
1822
} else {
1823
if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1824
age_init_locked(sc);
1825
}
1826
} else {
1827
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1828
age_stop(sc);
1829
}
1830
sc->age_if_flags = if_getflags(ifp);
1831
AGE_UNLOCK(sc);
1832
break;
1833
case SIOCADDMULTI:
1834
case SIOCDELMULTI:
1835
AGE_LOCK(sc);
1836
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
1837
age_rxfilter(sc);
1838
AGE_UNLOCK(sc);
1839
break;
1840
case SIOCSIFMEDIA:
1841
case SIOCGIFMEDIA:
1842
mii = device_get_softc(sc->age_miibus);
1843
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1844
break;
1845
case SIOCSIFCAP:
1846
AGE_LOCK(sc);
1847
mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
1848
if ((mask & IFCAP_TXCSUM) != 0 &&
1849
(if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
1850
if_togglecapenable(ifp, IFCAP_TXCSUM);
1851
if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
1852
if_sethwassistbits(ifp, AGE_CSUM_FEATURES, 0);
1853
else
1854
if_sethwassistbits(ifp, 0, AGE_CSUM_FEATURES);
1855
}
1856
if ((mask & IFCAP_RXCSUM) != 0 &&
1857
(if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) {
1858
if_togglecapenable(ifp, IFCAP_RXCSUM);
1859
reg = CSR_READ_4(sc, AGE_MAC_CFG);
1860
reg &= ~MAC_CFG_RXCSUM_ENB;
1861
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1862
reg |= MAC_CFG_RXCSUM_ENB;
1863
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1864
}
1865
if ((mask & IFCAP_TSO4) != 0 &&
1866
(if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
1867
if_togglecapenable(ifp, IFCAP_TSO4);
1868
if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
1869
if_sethwassistbits(ifp, CSUM_TSO, 0);
1870
else
1871
if_sethwassistbits(ifp, 0, CSUM_TSO);
1872
}
1873
1874
if ((mask & IFCAP_WOL_MCAST) != 0 &&
1875
(if_getcapabilities(ifp) & IFCAP_WOL_MCAST) != 0)
1876
if_togglecapenable(ifp, IFCAP_WOL_MCAST);
1877
if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1878
(if_getcapabilities(ifp) & IFCAP_WOL_MAGIC) != 0)
1879
if_togglecapenable(ifp, IFCAP_WOL_MAGIC);
1880
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1881
(if_getcapabilities(ifp) & IFCAP_VLAN_HWCSUM) != 0)
1882
if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
1883
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1884
(if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
1885
if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
1886
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1887
(if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
1888
if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
1889
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
1890
if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
1891
age_rxvlan(sc);
1892
}
1893
AGE_UNLOCK(sc);
1894
VLAN_CAPABILITIES(ifp);
1895
break;
1896
default:
1897
error = ether_ioctl(ifp, cmd, data);
1898
break;
1899
}
1900
1901
return (error);
1902
}
1903
1904
static void
1905
age_mac_config(struct age_softc *sc)
1906
{
1907
struct mii_data *mii;
1908
uint32_t reg;
1909
1910
AGE_LOCK_ASSERT(sc);
1911
1912
mii = device_get_softc(sc->age_miibus);
1913
reg = CSR_READ_4(sc, AGE_MAC_CFG);
1914
reg &= ~MAC_CFG_FULL_DUPLEX;
1915
reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1916
reg &= ~MAC_CFG_SPEED_MASK;
1917
/* Reprogram MAC with resolved speed/duplex. */
1918
switch (IFM_SUBTYPE(mii->mii_media_active)) {
1919
case IFM_10_T:
1920
case IFM_100_TX:
1921
reg |= MAC_CFG_SPEED_10_100;
1922
break;
1923
case IFM_1000_T:
1924
reg |= MAC_CFG_SPEED_1000;
1925
break;
1926
}
1927
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1928
reg |= MAC_CFG_FULL_DUPLEX;
1929
#ifdef notyet
1930
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1931
reg |= MAC_CFG_TX_FC;
1932
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1933
reg |= MAC_CFG_RX_FC;
1934
#endif
1935
}
1936
1937
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1938
}
1939
1940
static void
1941
age_link_task(void *arg, int pending)
1942
{
1943
struct age_softc *sc;
1944
struct mii_data *mii;
1945
if_t ifp;
1946
uint32_t reg;
1947
1948
sc = (struct age_softc *)arg;
1949
1950
AGE_LOCK(sc);
1951
mii = device_get_softc(sc->age_miibus);
1952
ifp = sc->age_ifp;
1953
if (mii == NULL || ifp == NULL ||
1954
(if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
1955
AGE_UNLOCK(sc);
1956
return;
1957
}
1958
1959
sc->age_flags &= ~AGE_FLAG_LINK;
1960
if ((mii->mii_media_status & IFM_AVALID) != 0) {
1961
switch (IFM_SUBTYPE(mii->mii_media_active)) {
1962
case IFM_10_T:
1963
case IFM_100_TX:
1964
case IFM_1000_T:
1965
sc->age_flags |= AGE_FLAG_LINK;
1966
break;
1967
default:
1968
break;
1969
}
1970
}
1971
1972
/* Stop Rx/Tx MACs. */
1973
age_stop_rxmac(sc);
1974
age_stop_txmac(sc);
1975
1976
/* Program MACs with resolved speed/duplex/flow-control. */
1977
if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1978
age_mac_config(sc);
1979
reg = CSR_READ_4(sc, AGE_MAC_CFG);
1980
/* Restart DMA engine and Tx/Rx MAC. */
1981
CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1982
DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1983
reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1984
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1985
}
1986
1987
AGE_UNLOCK(sc);
1988
}
1989
1990
static void
1991
age_stats_update(struct age_softc *sc)
1992
{
1993
struct age_stats *stat;
1994
struct smb *smb;
1995
if_t ifp;
1996
1997
AGE_LOCK_ASSERT(sc);
1998
1999
stat = &sc->age_stat;
2000
2001
bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2002
sc->age_cdata.age_smb_block_map,
2003
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2004
2005
smb = sc->age_rdata.age_smb_block;
2006
if (smb->updated == 0)
2007
return;
2008
2009
ifp = sc->age_ifp;
2010
/* Rx stats. */
2011
stat->rx_frames += smb->rx_frames;
2012
stat->rx_bcast_frames += smb->rx_bcast_frames;
2013
stat->rx_mcast_frames += smb->rx_mcast_frames;
2014
stat->rx_pause_frames += smb->rx_pause_frames;
2015
stat->rx_control_frames += smb->rx_control_frames;
2016
stat->rx_crcerrs += smb->rx_crcerrs;
2017
stat->rx_lenerrs += smb->rx_lenerrs;
2018
stat->rx_bytes += smb->rx_bytes;
2019
stat->rx_runts += smb->rx_runts;
2020
stat->rx_fragments += smb->rx_fragments;
2021
stat->rx_pkts_64 += smb->rx_pkts_64;
2022
stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2023
stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2024
stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2025
stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2026
stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2027
stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2028
stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2029
stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2030
stat->rx_desc_oflows += smb->rx_desc_oflows;
2031
stat->rx_alignerrs += smb->rx_alignerrs;
2032
stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2033
stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2034
stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2035
2036
/* Tx stats. */
2037
stat->tx_frames += smb->tx_frames;
2038
stat->tx_bcast_frames += smb->tx_bcast_frames;
2039
stat->tx_mcast_frames += smb->tx_mcast_frames;
2040
stat->tx_pause_frames += smb->tx_pause_frames;
2041
stat->tx_excess_defer += smb->tx_excess_defer;
2042
stat->tx_control_frames += smb->tx_control_frames;
2043
stat->tx_deferred += smb->tx_deferred;
2044
stat->tx_bytes += smb->tx_bytes;
2045
stat->tx_pkts_64 += smb->tx_pkts_64;
2046
stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2047
stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2048
stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2049
stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2050
stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2051
stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2052
stat->tx_single_colls += smb->tx_single_colls;
2053
stat->tx_multi_colls += smb->tx_multi_colls;
2054
stat->tx_late_colls += smb->tx_late_colls;
2055
stat->tx_excess_colls += smb->tx_excess_colls;
2056
stat->tx_underrun += smb->tx_underrun;
2057
stat->tx_desc_underrun += smb->tx_desc_underrun;
2058
stat->tx_lenerrs += smb->tx_lenerrs;
2059
stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2060
stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2061
stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2062
2063
/* Update counters in ifnet. */
2064
if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2065
2066
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2067
smb->tx_multi_colls + smb->tx_late_colls +
2068
smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2069
2070
if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2071
smb->tx_late_colls + smb->tx_underrun +
2072
smb->tx_pkts_truncated);
2073
2074
if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2075
2076
if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2077
smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2078
smb->rx_fifo_oflows + smb->rx_desc_oflows +
2079
smb->rx_alignerrs);
2080
2081
/* Update done, clear. */
2082
smb->updated = 0;
2083
2084
bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2085
sc->age_cdata.age_smb_block_map,
2086
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2087
}
2088
2089
static int
2090
age_intr(void *arg)
2091
{
2092
struct age_softc *sc;
2093
uint32_t status;
2094
2095
sc = (struct age_softc *)arg;
2096
2097
status = CSR_READ_4(sc, AGE_INTR_STATUS);
2098
if (status == 0 || (status & AGE_INTRS) == 0)
2099
return (FILTER_STRAY);
2100
/* Disable interrupts. */
2101
CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2102
taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2103
2104
return (FILTER_HANDLED);
2105
}
2106
2107
static void
2108
age_int_task(void *arg, int pending)
2109
{
2110
struct age_softc *sc;
2111
if_t ifp;
2112
struct cmb *cmb;
2113
uint32_t status;
2114
2115
sc = (struct age_softc *)arg;
2116
2117
AGE_LOCK(sc);
2118
2119
bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2120
sc->age_cdata.age_cmb_block_map,
2121
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2122
cmb = sc->age_rdata.age_cmb_block;
2123
status = le32toh(cmb->intr_status);
2124
if (sc->age_morework != 0)
2125
status |= INTR_CMB_RX;
2126
if ((status & AGE_INTRS) == 0)
2127
goto done;
2128
2129
sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2130
TPD_CONS_SHIFT;
2131
sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2132
RRD_PROD_SHIFT;
2133
/* Let hardware know CMB was served. */
2134
cmb->intr_status = 0;
2135
bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2136
sc->age_cdata.age_cmb_block_map,
2137
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2138
2139
ifp = sc->age_ifp;
2140
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
2141
if ((status & INTR_CMB_RX) != 0)
2142
sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2143
sc->age_process_limit);
2144
if ((status & INTR_CMB_TX) != 0)
2145
age_txintr(sc, sc->age_tpd_cons);
2146
if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2147
if ((status & INTR_DMA_RD_TO_RST) != 0)
2148
device_printf(sc->age_dev,
2149
"DMA read error! -- resetting\n");
2150
if ((status & INTR_DMA_WR_TO_RST) != 0)
2151
device_printf(sc->age_dev,
2152
"DMA write error! -- resetting\n");
2153
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2154
age_init_locked(sc);
2155
}
2156
if (!if_sendq_empty(ifp))
2157
age_start_locked(ifp);
2158
if ((status & INTR_SMB) != 0)
2159
age_stats_update(sc);
2160
}
2161
2162
/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2163
bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2164
sc->age_cdata.age_cmb_block_map,
2165
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2166
status = le32toh(cmb->intr_status);
2167
if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2168
taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2169
AGE_UNLOCK(sc);
2170
return;
2171
}
2172
2173
done:
2174
/* Re-enable interrupts. */
2175
CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2176
AGE_UNLOCK(sc);
2177
}
2178
2179
static void
2180
age_txintr(struct age_softc *sc, int tpd_cons)
2181
{
2182
if_t ifp;
2183
struct age_txdesc *txd;
2184
int cons, prog;
2185
2186
AGE_LOCK_ASSERT(sc);
2187
2188
ifp = sc->age_ifp;
2189
2190
bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2191
sc->age_cdata.age_tx_ring_map,
2192
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2193
2194
/*
2195
* Go through our Tx list and free mbufs for those
2196
* frames which have been transmitted.
2197
*/
2198
cons = sc->age_cdata.age_tx_cons;
2199
for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2200
if (sc->age_cdata.age_tx_cnt <= 0)
2201
break;
2202
prog++;
2203
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2204
sc->age_cdata.age_tx_cnt--;
2205
txd = &sc->age_cdata.age_txdesc[cons];
2206
/*
2207
* Clear Tx descriptors, it's not required but would
2208
* help debugging in case of Tx issues.
2209
*/
2210
txd->tx_desc->addr = 0;
2211
txd->tx_desc->len = 0;
2212
txd->tx_desc->flags = 0;
2213
2214
if (txd->tx_m == NULL)
2215
continue;
2216
/* Reclaim transmitted mbufs. */
2217
bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2218
BUS_DMASYNC_POSTWRITE);
2219
bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2220
m_freem(txd->tx_m);
2221
txd->tx_m = NULL;
2222
}
2223
2224
if (prog > 0) {
2225
sc->age_cdata.age_tx_cons = cons;
2226
2227
/*
2228
* Unarm watchdog timer only when there are no pending
2229
* Tx descriptors in queue.
2230
*/
2231
if (sc->age_cdata.age_tx_cnt == 0)
2232
sc->age_watchdog_timer = 0;
2233
bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2234
sc->age_cdata.age_tx_ring_map,
2235
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2236
}
2237
}
2238
2239
#ifndef __NO_STRICT_ALIGNMENT
2240
static struct mbuf *
2241
age_fixup_rx(if_t ifp, struct mbuf *m)
2242
{
2243
struct mbuf *n;
2244
int i;
2245
uint16_t *src, *dst;
2246
2247
src = mtod(m, uint16_t *);
2248
dst = src - 3;
2249
2250
if (m->m_next == NULL) {
2251
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2252
*dst++ = *src++;
2253
m->m_data -= 6;
2254
return (m);
2255
}
2256
/*
2257
* Append a new mbuf to received mbuf chain and copy ethernet
2258
* header from the mbuf chain. This can save lots of CPU
2259
* cycles for jumbo frame.
2260
*/
2261
MGETHDR(n, M_NOWAIT, MT_DATA);
2262
if (n == NULL) {
2263
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2264
m_freem(m);
2265
return (NULL);
2266
}
2267
bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2268
m->m_data += ETHER_HDR_LEN;
2269
m->m_len -= ETHER_HDR_LEN;
2270
n->m_len = ETHER_HDR_LEN;
2271
M_MOVE_PKTHDR(n, m);
2272
n->m_next = m;
2273
return (n);
2274
}
2275
#endif
2276
2277
/* Receive a frame. */
2278
static void
2279
age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2280
{
2281
struct age_rxdesc *rxd;
2282
if_t ifp;
2283
struct mbuf *mp, *m;
2284
uint32_t status, index, vtag;
2285
int count, nsegs;
2286
int rx_cons;
2287
2288
AGE_LOCK_ASSERT(sc);
2289
2290
ifp = sc->age_ifp;
2291
status = le32toh(rxrd->flags);
2292
index = le32toh(rxrd->index);
2293
rx_cons = AGE_RX_CONS(index);
2294
nsegs = AGE_RX_NSEGS(index);
2295
2296
sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2297
if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2298
/*
2299
* We want to pass the following frames to upper
2300
* layer regardless of error status of Rx return
2301
* ring.
2302
*
2303
* o IP/TCP/UDP checksum is bad.
2304
* o frame length and protocol specific length
2305
* does not match.
2306
*/
2307
status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2308
if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2309
AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2310
return;
2311
}
2312
2313
for (count = 0; count < nsegs; count++,
2314
AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2315
rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2316
mp = rxd->rx_m;
2317
/* Add a new receive buffer to the ring. */
2318
if (age_newbuf(sc, rxd) != 0) {
2319
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2320
/* Reuse Rx buffers. */
2321
if (sc->age_cdata.age_rxhead != NULL)
2322
m_freem(sc->age_cdata.age_rxhead);
2323
break;
2324
}
2325
2326
/*
2327
* Assume we've received a full sized frame.
2328
* Actual size is fixed when we encounter the end of
2329
* multi-segmented frame.
2330
*/
2331
mp->m_len = AGE_RX_BUF_SIZE;
2332
2333
/* Chain received mbufs. */
2334
if (sc->age_cdata.age_rxhead == NULL) {
2335
sc->age_cdata.age_rxhead = mp;
2336
sc->age_cdata.age_rxtail = mp;
2337
} else {
2338
mp->m_flags &= ~M_PKTHDR;
2339
sc->age_cdata.age_rxprev_tail =
2340
sc->age_cdata.age_rxtail;
2341
sc->age_cdata.age_rxtail->m_next = mp;
2342
sc->age_cdata.age_rxtail = mp;
2343
}
2344
2345
if (count == nsegs - 1) {
2346
/* Last desc. for this frame. */
2347
m = sc->age_cdata.age_rxhead;
2348
m->m_flags |= M_PKTHDR;
2349
/*
2350
* It seems that L1 controller has no way
2351
* to tell hardware to strip CRC bytes.
2352
*/
2353
m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2354
ETHER_CRC_LEN;
2355
if (nsegs > 1) {
2356
/* Set last mbuf size. */
2357
mp->m_len = sc->age_cdata.age_rxlen -
2358
((nsegs - 1) * AGE_RX_BUF_SIZE);
2359
/* Remove the CRC bytes in chained mbufs. */
2360
if (mp->m_len <= ETHER_CRC_LEN) {
2361
sc->age_cdata.age_rxtail =
2362
sc->age_cdata.age_rxprev_tail;
2363
sc->age_cdata.age_rxtail->m_len -=
2364
(ETHER_CRC_LEN - mp->m_len);
2365
sc->age_cdata.age_rxtail->m_next = NULL;
2366
m_freem(mp);
2367
} else {
2368
mp->m_len -= ETHER_CRC_LEN;
2369
}
2370
} else
2371
m->m_len = m->m_pkthdr.len;
2372
m->m_pkthdr.rcvif = ifp;
2373
/*
2374
* Set checksum information.
2375
* It seems that L1 controller can compute partial
2376
* checksum. The partial checksum value can be used
2377
* to accelerate checksum computation for fragmented
2378
* TCP/UDP packets. Upper network stack already
2379
* takes advantage of the partial checksum value in
2380
* IP reassembly stage. But I'm not sure the
2381
* correctness of the partial hardware checksum
2382
* assistance due to lack of data sheet. If it is
2383
* proven to work on L1 I'll enable it.
2384
*/
2385
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
2386
(status & AGE_RRD_IPV4) != 0) {
2387
if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2388
m->m_pkthdr.csum_flags |=
2389
CSUM_IP_CHECKED | CSUM_IP_VALID;
2390
if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2391
(status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2392
m->m_pkthdr.csum_flags |=
2393
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2394
m->m_pkthdr.csum_data = 0xffff;
2395
}
2396
/*
2397
* Don't mark bad checksum for TCP/UDP frames
2398
* as fragmented frames may always have set
2399
* bad checksummed bit of descriptor status.
2400
*/
2401
}
2402
2403
/* Check for VLAN tagged frames. */
2404
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0 &&
2405
(status & AGE_RRD_VLAN) != 0) {
2406
vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2407
m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2408
m->m_flags |= M_VLANTAG;
2409
}
2410
#ifndef __NO_STRICT_ALIGNMENT
2411
m = age_fixup_rx(ifp, m);
2412
if (m != NULL)
2413
#endif
2414
{
2415
/* Pass it on. */
2416
AGE_UNLOCK(sc);
2417
if_input(ifp, m);
2418
AGE_LOCK(sc);
2419
}
2420
}
2421
}
2422
2423
/* Reset mbuf chains. */
2424
AGE_RXCHAIN_RESET(sc);
2425
}
2426
2427
static int
2428
age_rxintr(struct age_softc *sc, int rr_prod, int count)
2429
{
2430
struct rx_rdesc *rxrd;
2431
int rr_cons, nsegs, pktlen, prog;
2432
2433
AGE_LOCK_ASSERT(sc);
2434
2435
rr_cons = sc->age_cdata.age_rr_cons;
2436
if (rr_cons == rr_prod)
2437
return (0);
2438
2439
bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2440
sc->age_cdata.age_rr_ring_map,
2441
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2442
bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2443
sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2444
2445
for (prog = 0; rr_cons != rr_prod; prog++) {
2446
if (count-- <= 0)
2447
break;
2448
rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2449
nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2450
if (nsegs == 0)
2451
break;
2452
/*
2453
* Check number of segments against received bytes.
2454
* Non-matching value would indicate that hardware
2455
* is still trying to update Rx return descriptors.
2456
* I'm not sure whether this check is really needed.
2457
*/
2458
pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2459
if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2460
break;
2461
2462
/* Received a frame. */
2463
age_rxeof(sc, rxrd);
2464
/* Clear return ring. */
2465
rxrd->index = 0;
2466
AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2467
sc->age_cdata.age_rx_cons += nsegs;
2468
sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2469
}
2470
2471
if (prog > 0) {
2472
/* Update the consumer index. */
2473
sc->age_cdata.age_rr_cons = rr_cons;
2474
2475
bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2476
sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2477
/* Sync descriptors. */
2478
bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2479
sc->age_cdata.age_rr_ring_map,
2480
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2481
2482
/* Notify hardware availability of new Rx buffers. */
2483
AGE_COMMIT_MBOX(sc);
2484
}
2485
2486
return (count > 0 ? 0 : EAGAIN);
2487
}
2488
2489
static void
2490
age_tick(void *arg)
2491
{
2492
struct age_softc *sc;
2493
struct mii_data *mii;
2494
2495
sc = (struct age_softc *)arg;
2496
2497
AGE_LOCK_ASSERT(sc);
2498
2499
mii = device_get_softc(sc->age_miibus);
2500
mii_tick(mii);
2501
age_watchdog(sc);
2502
callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2503
}
2504
2505
static void
2506
age_reset(struct age_softc *sc)
2507
{
2508
uint32_t reg;
2509
int i;
2510
2511
CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2512
CSR_READ_4(sc, AGE_MASTER_CFG);
2513
DELAY(1000);
2514
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2515
if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2516
break;
2517
DELAY(10);
2518
}
2519
2520
if (i == 0)
2521
device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2522
/* Initialize PCIe module. From Linux. */
2523
CSR_WRITE_4(sc, 0x12FC, 0x6500);
2524
CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2525
}
2526
2527
static void
2528
age_init(void *xsc)
2529
{
2530
struct age_softc *sc;
2531
2532
sc = (struct age_softc *)xsc;
2533
AGE_LOCK(sc);
2534
age_init_locked(sc);
2535
AGE_UNLOCK(sc);
2536
}
2537
2538
static void
2539
age_init_locked(struct age_softc *sc)
2540
{
2541
if_t ifp;
2542
struct mii_data *mii;
2543
uint8_t eaddr[ETHER_ADDR_LEN];
2544
bus_addr_t paddr;
2545
uint32_t reg, fsize;
2546
uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2547
int error;
2548
2549
AGE_LOCK_ASSERT(sc);
2550
2551
ifp = sc->age_ifp;
2552
mii = device_get_softc(sc->age_miibus);
2553
2554
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2555
return;
2556
2557
/*
2558
* Cancel any pending I/O.
2559
*/
2560
age_stop(sc);
2561
2562
/*
2563
* Reset the chip to a known state.
2564
*/
2565
age_reset(sc);
2566
2567
/* Initialize descriptors. */
2568
error = age_init_rx_ring(sc);
2569
if (error != 0) {
2570
device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2571
age_stop(sc);
2572
return;
2573
}
2574
age_init_rr_ring(sc);
2575
age_init_tx_ring(sc);
2576
age_init_cmb_block(sc);
2577
age_init_smb_block(sc);
2578
2579
/* Reprogram the station address. */
2580
bcopy(if_getlladdr(ifp), eaddr, ETHER_ADDR_LEN);
2581
CSR_WRITE_4(sc, AGE_PAR0,
2582
eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2583
CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2584
2585
/* Set descriptor base addresses. */
2586
paddr = sc->age_rdata.age_tx_ring_paddr;
2587
CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2588
paddr = sc->age_rdata.age_rx_ring_paddr;
2589
CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2590
paddr = sc->age_rdata.age_rr_ring_paddr;
2591
CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2592
paddr = sc->age_rdata.age_tx_ring_paddr;
2593
CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2594
paddr = sc->age_rdata.age_cmb_block_paddr;
2595
CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2596
paddr = sc->age_rdata.age_smb_block_paddr;
2597
CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2598
/* Set Rx/Rx return descriptor counter. */
2599
CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2600
((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2601
DESC_RRD_CNT_MASK) |
2602
((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2603
/* Set Tx descriptor counter. */
2604
CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2605
(AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2606
2607
/* Tell hardware that we're ready to load descriptors. */
2608
CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2609
2610
/*
2611
* Initialize mailbox register.
2612
* Updated producer/consumer index information is exchanged
2613
* through this mailbox register. However Tx producer and
2614
* Rx return consumer/Rx producer are all shared such that
2615
* it's hard to separate code path between Tx and Rx without
2616
* locking. If L1 hardware have a separate mail box register
2617
* for Tx and Rx consumer/producer management we could have
2618
* independent Tx/Rx handler which in turn Rx handler could have
2619
* been run without any locking.
2620
*/
2621
AGE_COMMIT_MBOX(sc);
2622
2623
/* Configure IPG/IFG parameters. */
2624
CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2625
((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2626
((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2627
((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2628
((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2629
2630
/* Set parameters for half-duplex media. */
2631
CSR_WRITE_4(sc, AGE_HDPX_CFG,
2632
((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2633
HDPX_CFG_LCOL_MASK) |
2634
((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2635
HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2636
((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2637
HDPX_CFG_ABEBT_MASK) |
2638
((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2639
HDPX_CFG_JAMIPG_MASK));
2640
2641
/* Configure interrupt moderation timer. */
2642
CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2643
reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2644
reg &= ~MASTER_MTIMER_ENB;
2645
if (AGE_USECS(sc->age_int_mod) == 0)
2646
reg &= ~MASTER_ITIMER_ENB;
2647
else
2648
reg |= MASTER_ITIMER_ENB;
2649
CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2650
if (bootverbose)
2651
device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2652
sc->age_int_mod);
2653
CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2654
2655
/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2656
if (if_getmtu(ifp) < ETHERMTU)
2657
sc->age_max_frame_size = ETHERMTU;
2658
else
2659
sc->age_max_frame_size = if_getmtu(ifp);
2660
sc->age_max_frame_size += ETHER_HDR_LEN +
2661
sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2662
CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2663
/* Configure jumbo frame. */
2664
fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2665
CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2666
(((fsize / sizeof(uint64_t)) <<
2667
RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2668
((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2669
RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2670
((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2671
RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2672
2673
/* Configure flow-control parameters. From Linux. */
2674
if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2675
/*
2676
* Magic workaround for old-L1.
2677
* Don't know which hw revision requires this magic.
2678
*/
2679
CSR_WRITE_4(sc, 0x12FC, 0x6500);
2680
/*
2681
* Another magic workaround for flow-control mode
2682
* change. From Linux.
2683
*/
2684
CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2685
}
2686
/*
2687
* TODO
2688
* Should understand pause parameter relationships between FIFO
2689
* size and number of Rx descriptors and Rx return descriptors.
2690
*
2691
* Magic parameters came from Linux.
2692
*/
2693
switch (sc->age_chip_rev) {
2694
case 0x8001:
2695
case 0x9001:
2696
case 0x9002:
2697
case 0x9003:
2698
rxf_hi = AGE_RX_RING_CNT / 16;
2699
rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2700
rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2701
rrd_lo = AGE_RR_RING_CNT / 16;
2702
break;
2703
default:
2704
reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2705
rxf_lo = reg / 16;
2706
if (rxf_lo < 192)
2707
rxf_lo = 192;
2708
rxf_hi = (reg * 7) / 8;
2709
if (rxf_hi < rxf_lo)
2710
rxf_hi = rxf_lo + 16;
2711
reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2712
rrd_lo = reg / 8;
2713
rrd_hi = (reg * 7) / 8;
2714
if (rrd_lo < 2)
2715
rrd_lo = 2;
2716
if (rrd_hi < rrd_lo)
2717
rrd_hi = rrd_lo + 3;
2718
break;
2719
}
2720
CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2721
((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2722
RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2723
((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2724
RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2725
CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2726
((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2727
RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2728
((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2729
RXQ_RRD_PAUSE_THRESH_HI_MASK));
2730
2731
/* Configure RxQ. */
2732
CSR_WRITE_4(sc, AGE_RXQ_CFG,
2733
((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2734
RXQ_CFG_RD_BURST_MASK) |
2735
((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2736
RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2737
((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2738
RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2739
RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2740
2741
/* Configure TxQ. */
2742
CSR_WRITE_4(sc, AGE_TXQ_CFG,
2743
((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2744
TXQ_CFG_TPD_BURST_MASK) |
2745
((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2746
TXQ_CFG_TX_FIFO_BURST_MASK) |
2747
((TXQ_CFG_TPD_FETCH_DEFAULT <<
2748
TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2749
TXQ_CFG_ENB);
2750
2751
CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2752
(((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2753
TX_JUMBO_TPD_TH_MASK) |
2754
((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2755
TX_JUMBO_TPD_IPG_MASK));
2756
/* Configure DMA parameters. */
2757
CSR_WRITE_4(sc, AGE_DMA_CFG,
2758
DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2759
sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2760
sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2761
2762
/* Configure CMB DMA write threshold. */
2763
CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2764
((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2765
CMB_WR_THRESH_RRD_MASK) |
2766
((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2767
CMB_WR_THRESH_TPD_MASK));
2768
2769
/* Set CMB/SMB timer and enable them. */
2770
CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2771
((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2772
((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2773
/* Request SMB updates for every seconds. */
2774
CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2775
CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2776
2777
/*
2778
* Disable all WOL bits as WOL can interfere normal Rx
2779
* operation.
2780
*/
2781
CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2782
2783
/*
2784
* Configure Tx/Rx MACs.
2785
* - Auto-padding for short frames.
2786
* - Enable CRC generation.
2787
* Start with full-duplex/1000Mbps media. Actual reconfiguration
2788
* of MAC is followed after link establishment.
2789
*/
2790
CSR_WRITE_4(sc, AGE_MAC_CFG,
2791
MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2792
MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2793
((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2794
MAC_CFG_PREAMBLE_MASK));
2795
/* Set up the receive filter. */
2796
age_rxfilter(sc);
2797
age_rxvlan(sc);
2798
2799
reg = CSR_READ_4(sc, AGE_MAC_CFG);
2800
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
2801
reg |= MAC_CFG_RXCSUM_ENB;
2802
2803
/* Ack all pending interrupts and clear it. */
2804
CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2805
CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2806
2807
/* Finally enable Tx/Rx MAC. */
2808
CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2809
2810
sc->age_flags &= ~AGE_FLAG_LINK;
2811
/* Switch to the current media. */
2812
mii_mediachg(mii);
2813
2814
callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2815
2816
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
2817
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
2818
}
2819
2820
static void
2821
age_stop(struct age_softc *sc)
2822
{
2823
if_t ifp;
2824
struct age_txdesc *txd;
2825
struct age_rxdesc *rxd;
2826
uint32_t reg;
2827
int i;
2828
2829
AGE_LOCK_ASSERT(sc);
2830
/*
2831
* Mark the interface down and cancel the watchdog timer.
2832
*/
2833
ifp = sc->age_ifp;
2834
if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
2835
sc->age_flags &= ~AGE_FLAG_LINK;
2836
callout_stop(&sc->age_tick_ch);
2837
sc->age_watchdog_timer = 0;
2838
2839
/*
2840
* Disable interrupts.
2841
*/
2842
CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2843
CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2844
/* Stop CMB/SMB updates. */
2845
CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2846
/* Stop Rx/Tx MAC. */
2847
age_stop_rxmac(sc);
2848
age_stop_txmac(sc);
2849
/* Stop DMA. */
2850
CSR_WRITE_4(sc, AGE_DMA_CFG,
2851
CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2852
/* Stop TxQ/RxQ. */
2853
CSR_WRITE_4(sc, AGE_TXQ_CFG,
2854
CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2855
CSR_WRITE_4(sc, AGE_RXQ_CFG,
2856
CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2857
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2858
if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2859
break;
2860
DELAY(10);
2861
}
2862
if (i == 0)
2863
device_printf(sc->age_dev,
2864
"stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2865
2866
/* Reclaim Rx buffers that have been processed. */
2867
if (sc->age_cdata.age_rxhead != NULL)
2868
m_freem(sc->age_cdata.age_rxhead);
2869
AGE_RXCHAIN_RESET(sc);
2870
/*
2871
* Free RX and TX mbufs still in the queues.
2872
*/
2873
for (i = 0; i < AGE_RX_RING_CNT; i++) {
2874
rxd = &sc->age_cdata.age_rxdesc[i];
2875
if (rxd->rx_m != NULL) {
2876
bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2877
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2878
bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2879
rxd->rx_dmamap);
2880
m_freem(rxd->rx_m);
2881
rxd->rx_m = NULL;
2882
}
2883
}
2884
for (i = 0; i < AGE_TX_RING_CNT; i++) {
2885
txd = &sc->age_cdata.age_txdesc[i];
2886
if (txd->tx_m != NULL) {
2887
bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2888
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2889
bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2890
txd->tx_dmamap);
2891
m_freem(txd->tx_m);
2892
txd->tx_m = NULL;
2893
}
2894
}
2895
}
2896
2897
static void
2898
age_stop_txmac(struct age_softc *sc)
2899
{
2900
uint32_t reg;
2901
int i;
2902
2903
AGE_LOCK_ASSERT(sc);
2904
2905
reg = CSR_READ_4(sc, AGE_MAC_CFG);
2906
if ((reg & MAC_CFG_TX_ENB) != 0) {
2907
reg &= ~MAC_CFG_TX_ENB;
2908
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2909
}
2910
/* Stop Tx DMA engine. */
2911
reg = CSR_READ_4(sc, AGE_DMA_CFG);
2912
if ((reg & DMA_CFG_RD_ENB) != 0) {
2913
reg &= ~DMA_CFG_RD_ENB;
2914
CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2915
}
2916
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2917
if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2918
(IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2919
break;
2920
DELAY(10);
2921
}
2922
if (i == 0)
2923
device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2924
}
2925
2926
static void
2927
age_stop_rxmac(struct age_softc *sc)
2928
{
2929
uint32_t reg;
2930
int i;
2931
2932
AGE_LOCK_ASSERT(sc);
2933
2934
reg = CSR_READ_4(sc, AGE_MAC_CFG);
2935
if ((reg & MAC_CFG_RX_ENB) != 0) {
2936
reg &= ~MAC_CFG_RX_ENB;
2937
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2938
}
2939
/* Stop Rx DMA engine. */
2940
reg = CSR_READ_4(sc, AGE_DMA_CFG);
2941
if ((reg & DMA_CFG_WR_ENB) != 0) {
2942
reg &= ~DMA_CFG_WR_ENB;
2943
CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2944
}
2945
for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2946
if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2947
(IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2948
break;
2949
DELAY(10);
2950
}
2951
if (i == 0)
2952
device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2953
}
2954
2955
static void
2956
age_init_tx_ring(struct age_softc *sc)
2957
{
2958
struct age_ring_data *rd;
2959
struct age_txdesc *txd;
2960
int i;
2961
2962
AGE_LOCK_ASSERT(sc);
2963
2964
sc->age_cdata.age_tx_prod = 0;
2965
sc->age_cdata.age_tx_cons = 0;
2966
sc->age_cdata.age_tx_cnt = 0;
2967
2968
rd = &sc->age_rdata;
2969
bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2970
for (i = 0; i < AGE_TX_RING_CNT; i++) {
2971
txd = &sc->age_cdata.age_txdesc[i];
2972
txd->tx_desc = &rd->age_tx_ring[i];
2973
txd->tx_m = NULL;
2974
}
2975
2976
bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2977
sc->age_cdata.age_tx_ring_map,
2978
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2979
}
2980
2981
static int
2982
age_init_rx_ring(struct age_softc *sc)
2983
{
2984
struct age_ring_data *rd;
2985
struct age_rxdesc *rxd;
2986
int i;
2987
2988
AGE_LOCK_ASSERT(sc);
2989
2990
sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2991
sc->age_morework = 0;
2992
rd = &sc->age_rdata;
2993
bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2994
for (i = 0; i < AGE_RX_RING_CNT; i++) {
2995
rxd = &sc->age_cdata.age_rxdesc[i];
2996
rxd->rx_m = NULL;
2997
rxd->rx_desc = &rd->age_rx_ring[i];
2998
if (age_newbuf(sc, rxd) != 0)
2999
return (ENOBUFS);
3000
}
3001
3002
bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3003
sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3004
3005
return (0);
3006
}
3007
3008
static void
3009
age_init_rr_ring(struct age_softc *sc)
3010
{
3011
struct age_ring_data *rd;
3012
3013
AGE_LOCK_ASSERT(sc);
3014
3015
sc->age_cdata.age_rr_cons = 0;
3016
AGE_RXCHAIN_RESET(sc);
3017
3018
rd = &sc->age_rdata;
3019
bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3020
bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3021
sc->age_cdata.age_rr_ring_map,
3022
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3023
}
3024
3025
static void
3026
age_init_cmb_block(struct age_softc *sc)
3027
{
3028
struct age_ring_data *rd;
3029
3030
AGE_LOCK_ASSERT(sc);
3031
3032
rd = &sc->age_rdata;
3033
bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3034
bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3035
sc->age_cdata.age_cmb_block_map,
3036
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3037
}
3038
3039
static void
3040
age_init_smb_block(struct age_softc *sc)
3041
{
3042
struct age_ring_data *rd;
3043
3044
AGE_LOCK_ASSERT(sc);
3045
3046
rd = &sc->age_rdata;
3047
bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3048
bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3049
sc->age_cdata.age_smb_block_map,
3050
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3051
}
3052
3053
static int
3054
age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3055
{
3056
struct rx_desc *desc;
3057
struct mbuf *m;
3058
bus_dma_segment_t segs[1];
3059
bus_dmamap_t map;
3060
int nsegs;
3061
3062
AGE_LOCK_ASSERT(sc);
3063
3064
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3065
if (m == NULL)
3066
return (ENOBUFS);
3067
m->m_len = m->m_pkthdr.len = MCLBYTES;
3068
#ifndef __NO_STRICT_ALIGNMENT
3069
m_adj(m, AGE_RX_BUF_ALIGN);
3070
#endif
3071
3072
if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3073
sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3074
m_freem(m);
3075
return (ENOBUFS);
3076
}
3077
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3078
3079
if (rxd->rx_m != NULL) {
3080
bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3081
BUS_DMASYNC_POSTREAD);
3082
bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3083
}
3084
map = rxd->rx_dmamap;
3085
rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3086
sc->age_cdata.age_rx_sparemap = map;
3087
bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3088
BUS_DMASYNC_PREREAD);
3089
rxd->rx_m = m;
3090
3091
desc = rxd->rx_desc;
3092
desc->addr = htole64(segs[0].ds_addr);
3093
desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3094
AGE_RD_LEN_SHIFT);
3095
return (0);
3096
}
3097
3098
static void
3099
age_rxvlan(struct age_softc *sc)
3100
{
3101
if_t ifp;
3102
uint32_t reg;
3103
3104
AGE_LOCK_ASSERT(sc);
3105
3106
ifp = sc->age_ifp;
3107
reg = CSR_READ_4(sc, AGE_MAC_CFG);
3108
reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3109
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0)
3110
reg |= MAC_CFG_VLAN_TAG_STRIP;
3111
CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3112
}
3113
3114
static u_int
3115
age_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3116
{
3117
uint32_t *mchash = arg;
3118
uint32_t crc;
3119
3120
crc = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN);
3121
mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3122
3123
return (1);
3124
}
3125
3126
static void
3127
age_rxfilter(struct age_softc *sc)
3128
{
3129
if_t ifp;
3130
uint32_t mchash[2];
3131
uint32_t rxcfg;
3132
3133
AGE_LOCK_ASSERT(sc);
3134
3135
ifp = sc->age_ifp;
3136
3137
rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3138
rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3139
if ((if_getflags(ifp) & IFF_BROADCAST) != 0)
3140
rxcfg |= MAC_CFG_BCAST;
3141
if ((if_getflags(ifp) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3142
if ((if_getflags(ifp) & IFF_PROMISC) != 0)
3143
rxcfg |= MAC_CFG_PROMISC;
3144
if ((if_getflags(ifp) & IFF_ALLMULTI) != 0)
3145
rxcfg |= MAC_CFG_ALLMULTI;
3146
CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3147
CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3148
CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3149
return;
3150
}
3151
3152
/* Program new filter. */
3153
bzero(mchash, sizeof(mchash));
3154
if_foreach_llmaddr(ifp, age_hash_maddr, mchash);
3155
3156
CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3157
CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3158
CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3159
}
3160
3161
static int
3162
sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3163
{
3164
struct age_softc *sc;
3165
struct age_stats *stats;
3166
int error, result;
3167
3168
result = -1;
3169
error = sysctl_handle_int(oidp, &result, 0, req);
3170
3171
if (error != 0 || req->newptr == NULL)
3172
return (error);
3173
3174
if (result != 1)
3175
return (error);
3176
3177
sc = (struct age_softc *)arg1;
3178
stats = &sc->age_stat;
3179
printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3180
printf("Transmit good frames : %ju\n",
3181
(uintmax_t)stats->tx_frames);
3182
printf("Transmit good broadcast frames : %ju\n",
3183
(uintmax_t)stats->tx_bcast_frames);
3184
printf("Transmit good multicast frames : %ju\n",
3185
(uintmax_t)stats->tx_mcast_frames);
3186
printf("Transmit pause control frames : %u\n",
3187
stats->tx_pause_frames);
3188
printf("Transmit control frames : %u\n",
3189
stats->tx_control_frames);
3190
printf("Transmit frames with excessive deferrals : %u\n",
3191
stats->tx_excess_defer);
3192
printf("Transmit deferrals : %u\n",
3193
stats->tx_deferred);
3194
printf("Transmit good octets : %ju\n",
3195
(uintmax_t)stats->tx_bytes);
3196
printf("Transmit good broadcast octets : %ju\n",
3197
(uintmax_t)stats->tx_bcast_bytes);
3198
printf("Transmit good multicast octets : %ju\n",
3199
(uintmax_t)stats->tx_mcast_bytes);
3200
printf("Transmit frames 64 bytes : %ju\n",
3201
(uintmax_t)stats->tx_pkts_64);
3202
printf("Transmit frames 65 to 127 bytes : %ju\n",
3203
(uintmax_t)stats->tx_pkts_65_127);
3204
printf("Transmit frames 128 to 255 bytes : %ju\n",
3205
(uintmax_t)stats->tx_pkts_128_255);
3206
printf("Transmit frames 256 to 511 bytes : %ju\n",
3207
(uintmax_t)stats->tx_pkts_256_511);
3208
printf("Transmit frames 512 to 1024 bytes : %ju\n",
3209
(uintmax_t)stats->tx_pkts_512_1023);
3210
printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3211
(uintmax_t)stats->tx_pkts_1024_1518);
3212
printf("Transmit frames 1519 to MTU bytes : %ju\n",
3213
(uintmax_t)stats->tx_pkts_1519_max);
3214
printf("Transmit single collisions : %u\n",
3215
stats->tx_single_colls);
3216
printf("Transmit multiple collisions : %u\n",
3217
stats->tx_multi_colls);
3218
printf("Transmit late collisions : %u\n",
3219
stats->tx_late_colls);
3220
printf("Transmit abort due to excessive collisions : %u\n",
3221
stats->tx_excess_colls);
3222
printf("Transmit underruns due to FIFO underruns : %u\n",
3223
stats->tx_underrun);
3224
printf("Transmit descriptor write-back errors : %u\n",
3225
stats->tx_desc_underrun);
3226
printf("Transmit frames with length mismatched frame size : %u\n",
3227
stats->tx_lenerrs);
3228
printf("Transmit frames with truncated due to MTU size : %u\n",
3229
stats->tx_lenerrs);
3230
3231
printf("Receive good frames : %ju\n",
3232
(uintmax_t)stats->rx_frames);
3233
printf("Receive good broadcast frames : %ju\n",
3234
(uintmax_t)stats->rx_bcast_frames);
3235
printf("Receive good multicast frames : %ju\n",
3236
(uintmax_t)stats->rx_mcast_frames);
3237
printf("Receive pause control frames : %u\n",
3238
stats->rx_pause_frames);
3239
printf("Receive control frames : %u\n",
3240
stats->rx_control_frames);
3241
printf("Receive CRC errors : %u\n",
3242
stats->rx_crcerrs);
3243
printf("Receive frames with length errors : %u\n",
3244
stats->rx_lenerrs);
3245
printf("Receive good octets : %ju\n",
3246
(uintmax_t)stats->rx_bytes);
3247
printf("Receive good broadcast octets : %ju\n",
3248
(uintmax_t)stats->rx_bcast_bytes);
3249
printf("Receive good multicast octets : %ju\n",
3250
(uintmax_t)stats->rx_mcast_bytes);
3251
printf("Receive frames too short : %u\n",
3252
stats->rx_runts);
3253
printf("Receive fragmented frames : %ju\n",
3254
(uintmax_t)stats->rx_fragments);
3255
printf("Receive frames 64 bytes : %ju\n",
3256
(uintmax_t)stats->rx_pkts_64);
3257
printf("Receive frames 65 to 127 bytes : %ju\n",
3258
(uintmax_t)stats->rx_pkts_65_127);
3259
printf("Receive frames 128 to 255 bytes : %ju\n",
3260
(uintmax_t)stats->rx_pkts_128_255);
3261
printf("Receive frames 256 to 511 bytes : %ju\n",
3262
(uintmax_t)stats->rx_pkts_256_511);
3263
printf("Receive frames 512 to 1024 bytes : %ju\n",
3264
(uintmax_t)stats->rx_pkts_512_1023);
3265
printf("Receive frames 1024 to 1518 bytes : %ju\n",
3266
(uintmax_t)stats->rx_pkts_1024_1518);
3267
printf("Receive frames 1519 to MTU bytes : %ju\n",
3268
(uintmax_t)stats->rx_pkts_1519_max);
3269
printf("Receive frames too long : %ju\n",
3270
(uint64_t)stats->rx_pkts_truncated);
3271
printf("Receive frames with FIFO overflow : %u\n",
3272
stats->rx_fifo_oflows);
3273
printf("Receive frames with return descriptor overflow : %u\n",
3274
stats->rx_desc_oflows);
3275
printf("Receive frames with alignment errors : %u\n",
3276
stats->rx_alignerrs);
3277
printf("Receive frames dropped due to address filtering : %ju\n",
3278
(uint64_t)stats->rx_pkts_filtered);
3279
3280
return (error);
3281
}
3282
3283
static int
3284
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3285
{
3286
int error, value;
3287
3288
if (arg1 == NULL)
3289
return (EINVAL);
3290
value = *(int *)arg1;
3291
error = sysctl_handle_int(oidp, &value, 0, req);
3292
if (error || req->newptr == NULL)
3293
return (error);
3294
if (value < low || value > high)
3295
return (EINVAL);
3296
*(int *)arg1 = value;
3297
3298
return (0);
3299
}
3300
3301
static int
3302
sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3303
{
3304
return (sysctl_int_range(oidp, arg1, arg2, req,
3305
AGE_PROC_MIN, AGE_PROC_MAX));
3306
}
3307
3308
static int
3309
sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3310
{
3311
3312
return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3313
AGE_IM_TIMER_MAX));
3314
}
3315
3316