Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/agp/agp.c
39534 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2000 Doug Rabson
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26
* SUCH DAMAGE.
27
*/
28
29
#include <sys/cdefs.h>
30
#include "opt_agp.h"
31
32
#include <sys/param.h>
33
#include <sys/systm.h>
34
#include <sys/malloc.h>
35
#include <sys/kernel.h>
36
#include <sys/module.h>
37
#include <sys/bus.h>
38
#include <sys/conf.h>
39
#include <sys/ioccom.h>
40
#include <sys/agpio.h>
41
#include <sys/lock.h>
42
#include <sys/mutex.h>
43
#include <sys/proc.h>
44
#include <sys/rwlock.h>
45
46
#include <dev/agp/agppriv.h>
47
#include <dev/agp/agpvar.h>
48
#include <dev/agp/agpreg.h>
49
#include <dev/pci/pcivar.h>
50
#include <dev/pci/pcireg.h>
51
52
#include <vm/vm.h>
53
#include <vm/vm_extern.h>
54
#include <vm/vm_kern.h>
55
#include <vm/vm_param.h>
56
#include <vm/vm_object.h>
57
#include <vm/vm_page.h>
58
#include <vm/vm_pageout.h>
59
#include <vm/vm_radix.h>
60
#include <vm/pmap.h>
61
62
#include <machine/bus.h>
63
#include <machine/resource.h>
64
#include <sys/rman.h>
65
66
MODULE_VERSION(agp, 1);
67
68
MALLOC_DEFINE(M_AGP, "agp", "AGP data structures");
69
70
/* agp_drv.c */
71
static d_open_t agp_open;
72
static d_close_t agp_close;
73
static d_ioctl_t agp_ioctl;
74
static d_mmap_t agp_mmap;
75
76
static struct cdevsw agp_cdevsw = {
77
.d_version = D_VERSION,
78
.d_flags = D_NEEDGIANT,
79
.d_open = agp_open,
80
.d_close = agp_close,
81
.d_ioctl = agp_ioctl,
82
.d_mmap = agp_mmap,
83
.d_name = "agp",
84
};
85
86
static devclass_t agp_devclass;
87
88
/* Helper functions for implementing chipset mini drivers. */
89
90
u_int8_t
91
agp_find_caps(device_t dev)
92
{
93
int capreg;
94
95
if (pci_find_cap(dev, PCIY_AGP, &capreg) != 0)
96
capreg = 0;
97
return (capreg);
98
}
99
100
/*
101
* Find an AGP display device (if any).
102
*/
103
static device_t
104
agp_find_display(void)
105
{
106
devclass_t pci = devclass_find("pci");
107
device_t bus, dev = 0;
108
device_t *kids;
109
int busnum, numkids, i;
110
111
for (busnum = 0; busnum < devclass_get_maxunit(pci); busnum++) {
112
bus = devclass_get_device(pci, busnum);
113
if (!bus)
114
continue;
115
if (device_get_children(bus, &kids, &numkids) != 0)
116
continue;
117
for (i = 0; i < numkids; i++) {
118
dev = kids[i];
119
if (pci_get_class(dev) == PCIC_DISPLAY
120
&& pci_get_subclass(dev) == PCIS_DISPLAY_VGA)
121
if (agp_find_caps(dev)) {
122
free(kids, M_TEMP);
123
return dev;
124
}
125
126
}
127
free(kids, M_TEMP);
128
}
129
130
return 0;
131
}
132
133
struct agp_gatt *
134
agp_alloc_gatt(device_t dev)
135
{
136
u_int32_t apsize = AGP_GET_APERTURE(dev);
137
u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
138
struct agp_gatt *gatt;
139
140
if (bootverbose)
141
device_printf(dev,
142
"allocating GATT for aperture of size %dM\n",
143
apsize / (1024*1024));
144
145
if (entries == 0) {
146
device_printf(dev, "bad aperture size\n");
147
return NULL;
148
}
149
150
gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_NOWAIT);
151
if (!gatt)
152
return 0;
153
154
gatt->ag_entries = entries;
155
gatt->ag_virtual = kmem_alloc_contig(entries * sizeof(uint32_t),
156
M_NOWAIT | M_ZERO, 0, ~0, PAGE_SIZE, 0, VM_MEMATTR_WRITE_COMBINING);
157
if (!gatt->ag_virtual) {
158
if (bootverbose)
159
device_printf(dev, "contiguous allocation failed\n");
160
free(gatt, M_AGP);
161
return 0;
162
}
163
gatt->ag_physical = vtophys((vm_offset_t) gatt->ag_virtual);
164
165
return gatt;
166
}
167
168
void
169
agp_free_gatt(struct agp_gatt *gatt)
170
{
171
kmem_free(gatt->ag_virtual, gatt->ag_entries * sizeof(uint32_t));
172
free(gatt, M_AGP);
173
}
174
175
static u_int agp_max[][2] = {
176
{0, 0},
177
{32, 4},
178
{64, 28},
179
{128, 96},
180
{256, 204},
181
{512, 440},
182
{1024, 942},
183
{2048, 1920},
184
{4096, 3932}
185
};
186
#define AGP_MAX_SIZE nitems(agp_max)
187
188
/**
189
* Sets the PCI resource which represents the AGP aperture.
190
*
191
* If not called, the default AGP aperture resource of AGP_APBASE will
192
* be used. Must be called before agp_generic_attach().
193
*/
194
void
195
agp_set_aperture_resource(device_t dev, int rid)
196
{
197
struct agp_softc *sc = device_get_softc(dev);
198
199
sc->as_aperture_rid = rid;
200
}
201
202
int
203
agp_generic_attach(device_t dev)
204
{
205
struct make_dev_args mdargs;
206
struct agp_softc *sc = device_get_softc(dev);
207
int error, i, unit;
208
u_int memsize;
209
210
/*
211
* Find and map the aperture, RF_SHAREABLE for DRM but not RF_ACTIVE
212
* because the kernel doesn't need to map it.
213
*/
214
215
if (sc->as_aperture_rid != -1) {
216
if (sc->as_aperture_rid == 0)
217
sc->as_aperture_rid = AGP_APBASE;
218
219
sc->as_aperture = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
220
&sc->as_aperture_rid, RF_SHAREABLE);
221
if (!sc->as_aperture)
222
return ENOMEM;
223
}
224
225
/*
226
* Work out an upper bound for agp memory allocation. This
227
* uses a heurisitc table from the Linux driver.
228
*/
229
memsize = ptoa(realmem) >> 20;
230
for (i = 0; i < AGP_MAX_SIZE; i++) {
231
if (memsize <= agp_max[i][0])
232
break;
233
}
234
if (i == AGP_MAX_SIZE)
235
i = AGP_MAX_SIZE - 1;
236
sc->as_maxmem = agp_max[i][1] << 20U;
237
238
/*
239
* The lock is used to prevent re-entry to
240
* agp_generic_bind_memory() since that function can sleep.
241
*/
242
mtx_init(&sc->as_lock, "agp lock", NULL, MTX_DEF);
243
244
/*
245
* Initialise stuff for the userland device.
246
*/
247
agp_devclass = devclass_find("agp");
248
TAILQ_INIT(&sc->as_memory);
249
sc->as_nextid = 1;
250
251
sc->as_devalias = NULL;
252
253
make_dev_args_init(&mdargs);
254
mdargs.mda_devsw = &agp_cdevsw;
255
mdargs.mda_uid = UID_ROOT;
256
mdargs.mda_gid = GID_WHEEL;
257
mdargs.mda_mode = 0600;
258
mdargs.mda_si_drv1 = dev;
259
mdargs.mda_si_drv2 = NULL;
260
261
unit = device_get_unit(dev);
262
error = make_dev_s(&mdargs, &sc->as_devnode, "agpgart%d", unit);
263
if (error == 0) {
264
/*
265
* Create an alias for the first device that shows up.
266
*/
267
if (unit == 0) {
268
(void)make_dev_alias_p(MAKEDEV_CHECKNAME,
269
&sc->as_devalias, sc->as_devnode, "agpgart");
270
}
271
} else {
272
agp_free_res(dev);
273
}
274
275
return error;
276
}
277
278
void
279
agp_free_cdev(device_t dev)
280
{
281
struct agp_softc *sc = device_get_softc(dev);
282
283
destroy_dev(sc->as_devnode);
284
if (sc->as_devalias != NULL)
285
destroy_dev(sc->as_devalias);
286
}
287
288
void
289
agp_free_res(device_t dev)
290
{
291
struct agp_softc *sc = device_get_softc(dev);
292
293
if (sc->as_aperture != NULL)
294
bus_release_resource(dev, SYS_RES_MEMORY, sc->as_aperture_rid,
295
sc->as_aperture);
296
mtx_destroy(&sc->as_lock);
297
}
298
299
int
300
agp_generic_detach(device_t dev)
301
{
302
303
agp_free_cdev(dev);
304
agp_free_res(dev);
305
return 0;
306
}
307
308
/**
309
* Default AGP aperture size detection which simply returns the size of
310
* the aperture's PCI resource.
311
*/
312
u_int32_t
313
agp_generic_get_aperture(device_t dev)
314
{
315
struct agp_softc *sc = device_get_softc(dev);
316
317
return rman_get_size(sc->as_aperture);
318
}
319
320
/**
321
* Default AGP aperture size setting function, which simply doesn't allow
322
* changes to resource size.
323
*/
324
int
325
agp_generic_set_aperture(device_t dev, u_int32_t aperture)
326
{
327
u_int32_t current_aperture;
328
329
current_aperture = AGP_GET_APERTURE(dev);
330
if (current_aperture != aperture)
331
return EINVAL;
332
else
333
return 0;
334
}
335
336
/*
337
* This does the enable logic for v3, with the same topology
338
* restrictions as in place for v2 -- one bus, one device on the bus.
339
*/
340
static int
341
agp_v3_enable(device_t dev, device_t mdev, u_int32_t mode)
342
{
343
u_int32_t tstatus, mstatus;
344
u_int32_t command;
345
int rq, sba, fw, rate, arqsz, cal;
346
347
tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
348
mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
349
350
/* Set RQ to the min of mode, tstatus and mstatus */
351
rq = AGP_MODE_GET_RQ(mode);
352
if (AGP_MODE_GET_RQ(tstatus) < rq)
353
rq = AGP_MODE_GET_RQ(tstatus);
354
if (AGP_MODE_GET_RQ(mstatus) < rq)
355
rq = AGP_MODE_GET_RQ(mstatus);
356
357
/*
358
* ARQSZ - Set the value to the maximum one.
359
* Don't allow the mode register to override values.
360
*/
361
arqsz = AGP_MODE_GET_ARQSZ(mode);
362
if (AGP_MODE_GET_ARQSZ(tstatus) > rq)
363
rq = AGP_MODE_GET_ARQSZ(tstatus);
364
if (AGP_MODE_GET_ARQSZ(mstatus) > rq)
365
rq = AGP_MODE_GET_ARQSZ(mstatus);
366
367
/* Calibration cycle - don't allow override by mode register */
368
cal = AGP_MODE_GET_CAL(tstatus);
369
if (AGP_MODE_GET_CAL(mstatus) < cal)
370
cal = AGP_MODE_GET_CAL(mstatus);
371
372
/* SBA must be supported for AGP v3. */
373
sba = 1;
374
375
/* Set FW if all three support it. */
376
fw = (AGP_MODE_GET_FW(tstatus)
377
& AGP_MODE_GET_FW(mstatus)
378
& AGP_MODE_GET_FW(mode));
379
380
/* Figure out the max rate */
381
rate = (AGP_MODE_GET_RATE(tstatus)
382
& AGP_MODE_GET_RATE(mstatus)
383
& AGP_MODE_GET_RATE(mode));
384
if (rate & AGP_MODE_V3_RATE_8x)
385
rate = AGP_MODE_V3_RATE_8x;
386
else
387
rate = AGP_MODE_V3_RATE_4x;
388
if (bootverbose)
389
device_printf(dev, "Setting AGP v3 mode %d\n", rate * 4);
390
391
pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, 0, 4);
392
393
/* Construct the new mode word and tell the hardware */
394
command = 0;
395
command = AGP_MODE_SET_RQ(0, rq);
396
command = AGP_MODE_SET_ARQSZ(command, arqsz);
397
command = AGP_MODE_SET_CAL(command, cal);
398
command = AGP_MODE_SET_SBA(command, sba);
399
command = AGP_MODE_SET_FW(command, fw);
400
command = AGP_MODE_SET_RATE(command, rate);
401
command = AGP_MODE_SET_MODE_3(command, 1);
402
command = AGP_MODE_SET_AGP(command, 1);
403
pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
404
pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
405
406
return 0;
407
}
408
409
static int
410
agp_v2_enable(device_t dev, device_t mdev, u_int32_t mode)
411
{
412
u_int32_t tstatus, mstatus;
413
u_int32_t command;
414
int rq, sba, fw, rate;
415
416
tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
417
mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
418
419
/* Set RQ to the min of mode, tstatus and mstatus */
420
rq = AGP_MODE_GET_RQ(mode);
421
if (AGP_MODE_GET_RQ(tstatus) < rq)
422
rq = AGP_MODE_GET_RQ(tstatus);
423
if (AGP_MODE_GET_RQ(mstatus) < rq)
424
rq = AGP_MODE_GET_RQ(mstatus);
425
426
/* Set SBA if all three can deal with SBA */
427
sba = (AGP_MODE_GET_SBA(tstatus)
428
& AGP_MODE_GET_SBA(mstatus)
429
& AGP_MODE_GET_SBA(mode));
430
431
/* Similar for FW */
432
fw = (AGP_MODE_GET_FW(tstatus)
433
& AGP_MODE_GET_FW(mstatus)
434
& AGP_MODE_GET_FW(mode));
435
436
/* Figure out the max rate */
437
rate = (AGP_MODE_GET_RATE(tstatus)
438
& AGP_MODE_GET_RATE(mstatus)
439
& AGP_MODE_GET_RATE(mode));
440
if (rate & AGP_MODE_V2_RATE_4x)
441
rate = AGP_MODE_V2_RATE_4x;
442
else if (rate & AGP_MODE_V2_RATE_2x)
443
rate = AGP_MODE_V2_RATE_2x;
444
else
445
rate = AGP_MODE_V2_RATE_1x;
446
if (bootverbose)
447
device_printf(dev, "Setting AGP v2 mode %d\n", rate);
448
449
/* Construct the new mode word and tell the hardware */
450
command = 0;
451
command = AGP_MODE_SET_RQ(0, rq);
452
command = AGP_MODE_SET_SBA(command, sba);
453
command = AGP_MODE_SET_FW(command, fw);
454
command = AGP_MODE_SET_RATE(command, rate);
455
command = AGP_MODE_SET_AGP(command, 1);
456
pci_write_config(dev, agp_find_caps(dev) + AGP_COMMAND, command, 4);
457
pci_write_config(mdev, agp_find_caps(mdev) + AGP_COMMAND, command, 4);
458
459
return 0;
460
}
461
462
int
463
agp_generic_enable(device_t dev, u_int32_t mode)
464
{
465
device_t mdev = agp_find_display();
466
u_int32_t tstatus, mstatus;
467
468
if (!mdev) {
469
AGP_DPF("can't find display\n");
470
return ENXIO;
471
}
472
473
tstatus = pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
474
mstatus = pci_read_config(mdev, agp_find_caps(mdev) + AGP_STATUS, 4);
475
476
/*
477
* Check display and bridge for AGP v3 support. AGP v3 allows
478
* more variety in topology than v2, e.g. multiple AGP devices
479
* attached to one bridge, or multiple AGP bridges in one
480
* system. This doesn't attempt to address those situations,
481
* but should work fine for a classic single AGP slot system
482
* with AGP v3.
483
*/
484
if (AGP_MODE_GET_MODE_3(mode) &&
485
AGP_MODE_GET_MODE_3(tstatus) &&
486
AGP_MODE_GET_MODE_3(mstatus))
487
return (agp_v3_enable(dev, mdev, mode));
488
else
489
return (agp_v2_enable(dev, mdev, mode));
490
}
491
492
struct agp_memory *
493
agp_generic_alloc_memory(device_t dev, int type, vm_size_t size)
494
{
495
struct agp_softc *sc = device_get_softc(dev);
496
struct agp_memory *mem;
497
498
if ((size & (AGP_PAGE_SIZE - 1)) != 0)
499
return 0;
500
501
if (size > sc->as_maxmem - sc->as_allocated)
502
return 0;
503
504
if (type != 0) {
505
printf("agp_generic_alloc_memory: unsupported type %d\n",
506
type);
507
return 0;
508
}
509
510
mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
511
mem->am_id = sc->as_nextid++;
512
mem->am_size = size;
513
mem->am_type = 0;
514
mem->am_obj = vm_object_allocate(OBJT_SWAP, atop(round_page(size)));
515
mem->am_physical = 0;
516
mem->am_offset = 0;
517
mem->am_is_bound = 0;
518
TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
519
sc->as_allocated += size;
520
521
return mem;
522
}
523
524
int
525
agp_generic_free_memory(device_t dev, struct agp_memory *mem)
526
{
527
struct agp_softc *sc = device_get_softc(dev);
528
529
if (mem->am_is_bound)
530
return EBUSY;
531
532
sc->as_allocated -= mem->am_size;
533
TAILQ_REMOVE(&sc->as_memory, mem, am_link);
534
vm_object_deallocate(mem->am_obj);
535
free(mem, M_AGP);
536
return 0;
537
}
538
539
int
540
agp_generic_bind_memory(device_t dev, struct agp_memory *mem,
541
vm_offset_t offset)
542
{
543
struct pctrie_iter pages;
544
struct agp_softc *sc = device_get_softc(dev);
545
vm_offset_t i, j, k;
546
vm_page_t m;
547
int error;
548
549
/* Do some sanity checks first. */
550
if ((offset & (AGP_PAGE_SIZE - 1)) != 0 ||
551
offset + mem->am_size > AGP_GET_APERTURE(dev)) {
552
device_printf(dev, "binding memory at bad offset %#x\n",
553
(int)offset);
554
return EINVAL;
555
}
556
557
/*
558
* Allocate the pages early, before acquiring the lock,
559
* because vm_page_grab() may sleep and we can't hold a mutex
560
* while sleeping.
561
*/
562
VM_OBJECT_WLOCK(mem->am_obj);
563
for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
564
/*
565
* Find a page from the object and wire it
566
* down. This page will be mapped using one or more
567
* entries in the GATT (assuming that PAGE_SIZE >=
568
* AGP_PAGE_SIZE. If this is the first call to bind,
569
* the pages will be allocated and zeroed.
570
*/
571
m = vm_page_grab(mem->am_obj, OFF_TO_IDX(i),
572
VM_ALLOC_WIRED | VM_ALLOC_ZERO);
573
AGP_DPF("found page pa=%#jx\n", (uintmax_t)VM_PAGE_TO_PHYS(m));
574
}
575
VM_OBJECT_WUNLOCK(mem->am_obj);
576
vm_page_iter_init(&pages, mem->am_obj);
577
mtx_lock(&sc->as_lock);
578
579
if (mem->am_is_bound) {
580
device_printf(dev, "memory already bound\n");
581
error = EINVAL;
582
VM_OBJECT_WLOCK(mem->am_obj);
583
i = 0;
584
goto bad;
585
}
586
587
/*
588
* Bind the individual pages and flush the chipset's
589
* TLB.
590
*/
591
VM_OBJECT_WLOCK(mem->am_obj);
592
for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
593
m = vm_radix_iter_lookup(&pages, OFF_TO_IDX(i));
594
595
/*
596
* Install entries in the GATT, making sure that if
597
* AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
598
* aligned to PAGE_SIZE, we don't modify too many GATT
599
* entries.
600
*/
601
for (j = 0; j < PAGE_SIZE && i + j < mem->am_size;
602
j += AGP_PAGE_SIZE) {
603
vm_offset_t pa = VM_PAGE_TO_PHYS(m) + j;
604
AGP_DPF("binding offset %#jx to pa %#jx\n",
605
(uintmax_t)offset + i + j, (uintmax_t)pa);
606
error = AGP_BIND_PAGE(dev, offset + i + j, pa);
607
if (error) {
608
/*
609
* Bail out. Reverse all the mappings
610
* and unwire the pages.
611
*/
612
for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
613
AGP_UNBIND_PAGE(dev, offset + k);
614
goto bad;
615
}
616
}
617
vm_page_xunbusy(m);
618
}
619
VM_OBJECT_WUNLOCK(mem->am_obj);
620
621
/*
622
* Make sure the chipset gets the new mappings.
623
*/
624
AGP_FLUSH_TLB(dev);
625
626
mem->am_offset = offset;
627
mem->am_is_bound = 1;
628
629
mtx_unlock(&sc->as_lock);
630
631
return 0;
632
bad:
633
mtx_unlock(&sc->as_lock);
634
VM_OBJECT_ASSERT_WLOCKED(mem->am_obj);
635
for (k = 0; k < mem->am_size; k += PAGE_SIZE) {
636
m = vm_radix_iter_lookup(&pages, OFF_TO_IDX(k));
637
if (k >= i)
638
vm_page_xunbusy(m);
639
vm_page_unwire(m, PQ_INACTIVE);
640
}
641
VM_OBJECT_WUNLOCK(mem->am_obj);
642
643
return error;
644
}
645
646
int
647
agp_generic_unbind_memory(device_t dev, struct agp_memory *mem)
648
{
649
struct pctrie_iter pages;
650
struct agp_softc *sc = device_get_softc(dev);
651
vm_page_t m;
652
int i;
653
654
mtx_lock(&sc->as_lock);
655
656
if (!mem->am_is_bound) {
657
device_printf(dev, "memory is not bound\n");
658
mtx_unlock(&sc->as_lock);
659
return EINVAL;
660
}
661
662
/*
663
* Unbind the individual pages and flush the chipset's
664
* TLB. Unwire the pages so they can be swapped.
665
*/
666
for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
667
AGP_UNBIND_PAGE(dev, mem->am_offset + i);
668
669
AGP_FLUSH_TLB(dev);
670
671
vm_page_iter_init(&pages, mem->am_obj);
672
VM_OBJECT_WLOCK(mem->am_obj);
673
for (i = 0; i < mem->am_size; i += PAGE_SIZE) {
674
m = vm_radix_iter_lookup(&pages, atop(i));
675
vm_page_unwire(m, PQ_INACTIVE);
676
}
677
VM_OBJECT_WUNLOCK(mem->am_obj);
678
679
mem->am_offset = 0;
680
mem->am_is_bound = 0;
681
682
mtx_unlock(&sc->as_lock);
683
684
return 0;
685
}
686
687
/* Helper functions for implementing user/kernel api */
688
689
static int
690
agp_acquire_helper(device_t dev, enum agp_acquire_state state)
691
{
692
struct agp_softc *sc = device_get_softc(dev);
693
694
if (sc->as_state != AGP_ACQUIRE_FREE)
695
return EBUSY;
696
sc->as_state = state;
697
698
return 0;
699
}
700
701
static int
702
agp_release_helper(device_t dev, enum agp_acquire_state state)
703
{
704
struct agp_softc *sc = device_get_softc(dev);
705
706
if (sc->as_state == AGP_ACQUIRE_FREE)
707
return 0;
708
709
if (sc->as_state != state)
710
return EBUSY;
711
712
sc->as_state = AGP_ACQUIRE_FREE;
713
return 0;
714
}
715
716
static struct agp_memory *
717
agp_find_memory(device_t dev, int id)
718
{
719
struct agp_softc *sc = device_get_softc(dev);
720
struct agp_memory *mem;
721
722
AGP_DPF("searching for memory block %d\n", id);
723
TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
724
AGP_DPF("considering memory block %d\n", mem->am_id);
725
if (mem->am_id == id)
726
return mem;
727
}
728
return 0;
729
}
730
731
/* Implementation of the userland ioctl api */
732
733
static int
734
agp_info_user(device_t dev, agp_info *info)
735
{
736
struct agp_softc *sc = device_get_softc(dev);
737
738
bzero(info, sizeof *info);
739
info->bridge_id = pci_get_devid(dev);
740
info->agp_mode =
741
pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
742
if (sc->as_aperture)
743
info->aper_base = rman_get_start(sc->as_aperture);
744
else
745
info->aper_base = 0;
746
info->aper_size = AGP_GET_APERTURE(dev) >> 20;
747
info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
748
info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
749
750
return 0;
751
}
752
753
static int
754
agp_setup_user(device_t dev, agp_setup *setup)
755
{
756
return AGP_ENABLE(dev, setup->agp_mode);
757
}
758
759
static int
760
agp_allocate_user(device_t dev, agp_allocate *alloc)
761
{
762
struct agp_memory *mem;
763
764
mem = AGP_ALLOC_MEMORY(dev,
765
alloc->type,
766
alloc->pg_count << AGP_PAGE_SHIFT);
767
if (mem) {
768
alloc->key = mem->am_id;
769
alloc->physical = mem->am_physical;
770
return 0;
771
} else {
772
return ENOMEM;
773
}
774
}
775
776
static int
777
agp_deallocate_user(device_t dev, int id)
778
{
779
struct agp_memory *mem = agp_find_memory(dev, id);
780
781
if (mem) {
782
AGP_FREE_MEMORY(dev, mem);
783
return 0;
784
} else {
785
return ENOENT;
786
}
787
}
788
789
static int
790
agp_bind_user(device_t dev, agp_bind *bind)
791
{
792
struct agp_memory *mem = agp_find_memory(dev, bind->key);
793
794
if (!mem)
795
return ENOENT;
796
797
return AGP_BIND_MEMORY(dev, mem, bind->pg_start << AGP_PAGE_SHIFT);
798
}
799
800
static int
801
agp_unbind_user(device_t dev, agp_unbind *unbind)
802
{
803
struct agp_memory *mem = agp_find_memory(dev, unbind->key);
804
805
if (!mem)
806
return ENOENT;
807
808
return AGP_UNBIND_MEMORY(dev, mem);
809
}
810
811
static int
812
agp_chipset_flush(device_t dev)
813
{
814
815
return (AGP_CHIPSET_FLUSH(dev));
816
}
817
818
static int
819
agp_open(struct cdev *kdev, int oflags, int devtype, struct thread *td)
820
{
821
device_t dev = kdev->si_drv1;
822
struct agp_softc *sc = device_get_softc(dev);
823
824
if (!sc->as_isopen) {
825
sc->as_isopen = 1;
826
device_busy(dev);
827
}
828
829
return 0;
830
}
831
832
static int
833
agp_close(struct cdev *kdev, int fflag, int devtype, struct thread *td)
834
{
835
device_t dev = kdev->si_drv1;
836
struct agp_softc *sc = device_get_softc(dev);
837
struct agp_memory *mem;
838
839
/*
840
* Clear the GATT and force release on last close
841
*/
842
while ((mem = TAILQ_FIRST(&sc->as_memory)) != NULL) {
843
if (mem->am_is_bound)
844
AGP_UNBIND_MEMORY(dev, mem);
845
AGP_FREE_MEMORY(dev, mem);
846
}
847
if (sc->as_state == AGP_ACQUIRE_USER)
848
agp_release_helper(dev, AGP_ACQUIRE_USER);
849
sc->as_isopen = 0;
850
device_unbusy(dev);
851
852
return 0;
853
}
854
855
static int
856
agp_ioctl(struct cdev *kdev, u_long cmd, caddr_t data, int fflag, struct thread *td)
857
{
858
device_t dev = kdev->si_drv1;
859
860
switch (cmd) {
861
case AGPIOC_INFO:
862
return agp_info_user(dev, (agp_info *) data);
863
864
case AGPIOC_ACQUIRE:
865
return agp_acquire_helper(dev, AGP_ACQUIRE_USER);
866
867
case AGPIOC_RELEASE:
868
return agp_release_helper(dev, AGP_ACQUIRE_USER);
869
870
case AGPIOC_SETUP:
871
return agp_setup_user(dev, (agp_setup *)data);
872
873
case AGPIOC_ALLOCATE:
874
return agp_allocate_user(dev, (agp_allocate *)data);
875
876
case AGPIOC_DEALLOCATE:
877
return agp_deallocate_user(dev, *(int *) data);
878
879
case AGPIOC_BIND:
880
return agp_bind_user(dev, (agp_bind *)data);
881
882
case AGPIOC_UNBIND:
883
return agp_unbind_user(dev, (agp_unbind *)data);
884
885
case AGPIOC_CHIPSET_FLUSH:
886
return agp_chipset_flush(dev);
887
}
888
889
return EINVAL;
890
}
891
892
static int
893
agp_mmap(struct cdev *kdev, vm_ooffset_t offset, vm_paddr_t *paddr,
894
int prot, vm_memattr_t *memattr)
895
{
896
device_t dev = kdev->si_drv1;
897
struct agp_softc *sc = device_get_softc(dev);
898
899
if (offset > AGP_GET_APERTURE(dev))
900
return -1;
901
if (sc->as_aperture == NULL)
902
return -1;
903
*paddr = rman_get_start(sc->as_aperture) + offset;
904
return 0;
905
}
906
907
/* Implementation of the kernel api */
908
909
device_t
910
agp_find_device(void)
911
{
912
device_t *children, child;
913
int i, count;
914
915
if (!agp_devclass)
916
return NULL;
917
if (devclass_get_devices(agp_devclass, &children, &count) != 0)
918
return NULL;
919
child = NULL;
920
for (i = 0; i < count; i++) {
921
if (device_is_attached(children[i])) {
922
child = children[i];
923
break;
924
}
925
}
926
free(children, M_TEMP);
927
return child;
928
}
929
930
enum agp_acquire_state
931
agp_state(device_t dev)
932
{
933
struct agp_softc *sc = device_get_softc(dev);
934
return sc->as_state;
935
}
936
937
void
938
agp_get_info(device_t dev, struct agp_info *info)
939
{
940
struct agp_softc *sc = device_get_softc(dev);
941
942
info->ai_mode =
943
pci_read_config(dev, agp_find_caps(dev) + AGP_STATUS, 4);
944
if (sc->as_aperture != NULL)
945
info->ai_aperture_base = rman_get_start(sc->as_aperture);
946
else
947
info->ai_aperture_base = 0;
948
info->ai_aperture_size = AGP_GET_APERTURE(dev);
949
info->ai_memory_allowed = sc->as_maxmem;
950
info->ai_memory_used = sc->as_allocated;
951
}
952
953
int
954
agp_acquire(device_t dev)
955
{
956
return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
957
}
958
959
int
960
agp_release(device_t dev)
961
{
962
return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
963
}
964
965
int
966
agp_enable(device_t dev, u_int32_t mode)
967
{
968
return AGP_ENABLE(dev, mode);
969
}
970
971
void *agp_alloc_memory(device_t dev, int type, vm_size_t bytes)
972
{
973
return (void *) AGP_ALLOC_MEMORY(dev, type, bytes);
974
}
975
976
void agp_free_memory(device_t dev, void *handle)
977
{
978
struct agp_memory *mem = (struct agp_memory *) handle;
979
AGP_FREE_MEMORY(dev, mem);
980
}
981
982
int agp_bind_memory(device_t dev, void *handle, vm_offset_t offset)
983
{
984
struct agp_memory *mem = (struct agp_memory *) handle;
985
return AGP_BIND_MEMORY(dev, mem, offset);
986
}
987
988
int agp_unbind_memory(device_t dev, void *handle)
989
{
990
struct agp_memory *mem = (struct agp_memory *) handle;
991
return AGP_UNBIND_MEMORY(dev, mem);
992
}
993
994
void agp_memory_info(device_t dev, void *handle, struct
995
agp_memory_info *mi)
996
{
997
struct agp_memory *mem = (struct agp_memory *) handle;
998
999
mi->ami_size = mem->am_size;
1000
mi->ami_physical = mem->am_physical;
1001
mi->ami_offset = mem->am_offset;
1002
mi->ami_is_bound = mem->am_is_bound;
1003
}
1004
1005
int
1006
agp_bind_pages(device_t dev, vm_page_t *pages, vm_size_t size,
1007
vm_offset_t offset)
1008
{
1009
struct agp_softc *sc;
1010
vm_offset_t i, j, k, pa;
1011
vm_page_t m;
1012
int error;
1013
1014
if ((size & (AGP_PAGE_SIZE - 1)) != 0 ||
1015
(offset & (AGP_PAGE_SIZE - 1)) != 0)
1016
return (EINVAL);
1017
1018
sc = device_get_softc(dev);
1019
1020
mtx_lock(&sc->as_lock);
1021
for (i = 0; i < size; i += PAGE_SIZE) {
1022
m = pages[OFF_TO_IDX(i)];
1023
KASSERT(vm_page_wired(m),
1024
("agp_bind_pages: page %p hasn't been wired", m));
1025
1026
/*
1027
* Install entries in the GATT, making sure that if
1028
* AGP_PAGE_SIZE < PAGE_SIZE and size is not
1029
* aligned to PAGE_SIZE, we don't modify too many GATT
1030
* entries.
1031
*/
1032
for (j = 0; j < PAGE_SIZE && i + j < size; j += AGP_PAGE_SIZE) {
1033
pa = VM_PAGE_TO_PHYS(m) + j;
1034
AGP_DPF("binding offset %#jx to pa %#jx\n",
1035
(uintmax_t)offset + i + j, (uintmax_t)pa);
1036
error = AGP_BIND_PAGE(dev, offset + i + j, pa);
1037
if (error) {
1038
/*
1039
* Bail out. Reverse all the mappings.
1040
*/
1041
for (k = 0; k < i + j; k += AGP_PAGE_SIZE)
1042
AGP_UNBIND_PAGE(dev, offset + k);
1043
1044
mtx_unlock(&sc->as_lock);
1045
return (error);
1046
}
1047
}
1048
}
1049
1050
AGP_FLUSH_TLB(dev);
1051
1052
mtx_unlock(&sc->as_lock);
1053
return (0);
1054
}
1055
1056
int
1057
agp_unbind_pages(device_t dev, vm_size_t size, vm_offset_t offset)
1058
{
1059
struct agp_softc *sc;
1060
vm_offset_t i;
1061
1062
if ((size & (AGP_PAGE_SIZE - 1)) != 0 ||
1063
(offset & (AGP_PAGE_SIZE - 1)) != 0)
1064
return (EINVAL);
1065
1066
sc = device_get_softc(dev);
1067
1068
mtx_lock(&sc->as_lock);
1069
for (i = 0; i < size; i += AGP_PAGE_SIZE)
1070
AGP_UNBIND_PAGE(dev, offset + i);
1071
1072
AGP_FLUSH_TLB(dev);
1073
1074
mtx_unlock(&sc->as_lock);
1075
return (0);
1076
}
1077
1078