Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/arcmsr/arcmsr.h
39507 views
1
/*
2
********************************************************************************
3
** OS : FreeBSD
4
** FILE NAME : arcmsr.h
5
** BY : Erich Chen, Ching Huang
6
** Description: SCSI RAID Device Driver for
7
** ARECA (ARC11XX/ARC12XX/ARC13XX/ARC16XX/ARC188x)
8
** SATA/SAS RAID HOST Adapter
9
********************************************************************************
10
********************************************************************************
11
** SPDX-License-Identifier: BSD-3-Clause
12
**
13
** Copyright (C) 2002 - 2012, Areca Technology Corporation All rights reserved.
14
**
15
** Redistribution and use in source and binary forms,with or without
16
** modification,are permitted provided that the following conditions
17
** are met:
18
** 1. Redistributions of source code must retain the above copyright
19
** notice,this list of conditions and the following disclaimer.
20
** 2. Redistributions in binary form must reproduce the above copyright
21
** notice,this list of conditions and the following disclaimer in the
22
** documentation and/or other materials provided with the distribution.
23
** 3. The name of the author may not be used to endorse or promote products
24
** derived from this software without specific prior written permission.
25
**
26
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
27
** IMPLIED WARRANTIES,INCLUDING,BUT NOT LIMITED TO,THE IMPLIED WARRANTIES
28
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
29
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,INDIRECT,
30
** INCIDENTAL,SPECIAL,EXEMPLARY,OR CONSEQUENTIAL DAMAGES(INCLUDING,BUT
31
** NOT LIMITED TO,PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32
** DATA,OR PROFITS; OR BUSINESS INTERRUPTION)HOWEVER CAUSED AND ON ANY
33
** THEORY OF LIABILITY,WHETHER IN CONTRACT,STRICT LIABILITY,OR TORT
34
**(INCLUDING NEGLIGENCE OR OTHERWISE)ARISING IN ANY WAY OUT OF THE USE OF
35
** THIS SOFTWARE,EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36
**************************************************************************
37
*/
38
#define ARCMSR_SCSI_INITIATOR_ID 255
39
#define ARCMSR_DEV_SECTOR_SIZE 512
40
#define ARCMSR_MAX_XFER_SECTORS 4096
41
#define ARCMSR_MAX_TARGETID 17 /*16 max target id + 1*/
42
#define ARCMSR_MAX_TARGETLUN 8 /*8*/
43
#define ARCMSR_VIRTUAL_DEVICE_ID (ARCMSR_MAX_TARGETID - 1)
44
#define ARCMSR_MAX_CHIPTYPE_NUM 4
45
#define ARCMSR_MAX_OUTSTANDING_CMD 256
46
#define ARCMSR_MAX_START_JOB 256
47
#define ARCMSR_MAX_CMD_PERLUN ARCMSR_MAX_OUTSTANDING_CMD
48
#define ARCMSR_MAX_FREESRB_NUM 384
49
#define ARCMSR_MAX_QBUFFER 4096 /* ioctl QBUFFER */
50
#define ARCMSR_MAX_SG_ENTRIES 38 /* max 38*/
51
#define ARCMSR_MAX_ADAPTER 4
52
#define ARCMSR_RELEASE_SIMQ_LEVEL 230
53
#define ARCMSR_MAX_HBB_POSTQUEUE 264 /* (ARCMSR_MAX_OUTSTANDING_CMD+8) */
54
#define ARCMSR_MAX_HBD_POSTQUEUE 256
55
#define ARCMSR_TIMEOUT_DELAY 60 /* in sec */
56
#define ARCMSR_NUM_MSIX_VECTORS 4
57
/*
58
*********************************************************************
59
*/
60
#ifndef TRUE
61
#define TRUE 1
62
#endif
63
#ifndef FALSE
64
#define FALSE 0
65
#endif
66
#ifndef INTR_ENTROPY
67
# define INTR_ENTROPY 0
68
#endif
69
70
#ifndef offsetof
71
#define offsetof(type, member) ((size_t)(&((type *)0)->member))
72
#endif
73
74
#define ARCMSR_LOCK_INIT(l, s) mtx_init(l, s, NULL, MTX_DEF)
75
#define ARCMSR_LOCK_DESTROY(l) mtx_destroy(l)
76
#define ARCMSR_LOCK_ACQUIRE(l) mtx_lock(l)
77
#define ARCMSR_LOCK_RELEASE(l) mtx_unlock(l)
78
#define ARCMSR_LOCK_TRY(l) mtx_trylock(l)
79
#define arcmsr_htole32(x) htole32(x)
80
typedef struct mtx arcmsr_lock_t;
81
82
/*
83
**********************************************************************************
84
**
85
**********************************************************************************
86
*/
87
#define PCI_VENDOR_ID_ARECA 0x17D3 /* Vendor ID */
88
#define PCI_DEVICE_ID_ARECA_1110 0x1110 /* Device ID */
89
#define PCI_DEVICE_ID_ARECA_1120 0x1120 /* Device ID */
90
#define PCI_DEVICE_ID_ARECA_1130 0x1130 /* Device ID */
91
#define PCI_DEVICE_ID_ARECA_1160 0x1160 /* Device ID */
92
#define PCI_DEVICE_ID_ARECA_1170 0x1170 /* Device ID */
93
#define PCI_DEVICE_ID_ARECA_1200 0x1200 /* Device ID */
94
#define PCI_DEVICE_ID_ARECA_1201 0x1201 /* Device ID */
95
#define PCI_DEVICE_ID_ARECA_1203 0x1203 /* Device ID */
96
#define PCI_DEVICE_ID_ARECA_1210 0x1210 /* Device ID */
97
#define PCI_DEVICE_ID_ARECA_1212 0x1212 /* Device ID */
98
#define PCI_DEVICE_ID_ARECA_1214 0x1214 /* Device ID */
99
#define PCI_DEVICE_ID_ARECA_1220 0x1220 /* Device ID */
100
#define PCI_DEVICE_ID_ARECA_1222 0x1222 /* Device ID */
101
#define PCI_DEVICE_ID_ARECA_1230 0x1230 /* Device ID */
102
#define PCI_DEVICE_ID_ARECA_1231 0x1231 /* Device ID */
103
#define PCI_DEVICE_ID_ARECA_1260 0x1260 /* Device ID */
104
#define PCI_DEVICE_ID_ARECA_1261 0x1261 /* Device ID */
105
#define PCI_DEVICE_ID_ARECA_1270 0x1270 /* Device ID */
106
#define PCI_DEVICE_ID_ARECA_1280 0x1280 /* Device ID */
107
#define PCI_DEVICE_ID_ARECA_1380 0x1380 /* Device ID */
108
#define PCI_DEVICE_ID_ARECA_1381 0x1381 /* Device ID */
109
#define PCI_DEVICE_ID_ARECA_1680 0x1680 /* Device ID */
110
#define PCI_DEVICE_ID_ARECA_1681 0x1681 /* Device ID */
111
#define PCI_DEVICE_ID_ARECA_1880 0x1880 /* Device ID */
112
#define PCI_DEVICE_ID_ARECA_1883 0x1883 /* Device ID */
113
#define PCI_DEVICE_ID_ARECA_1884 0x1884 /* Device ID */
114
115
#define ARECA_SUB_DEV_ID_1880 0x1880 /* Subsystem Device ID */
116
#define ARECA_SUB_DEV_ID_1882 0x1882 /* Subsystem Device ID */
117
#define ARECA_SUB_DEV_ID_1883 0x1883 /* Subsystem Device ID */
118
#define ARECA_SUB_DEV_ID_1884 0x1884 /* Subsystem Device ID */
119
#define ARECA_SUB_DEV_ID_1212 0x1212 /* Subsystem Device ID */
120
#define ARECA_SUB_DEV_ID_1213 0x1213 /* Subsystem Device ID */
121
#define ARECA_SUB_DEV_ID_1214 0x1214 /* Subsystem Device ID */
122
#define ARECA_SUB_DEV_ID_1216 0x1216 /* Subsystem Device ID */
123
#define ARECA_SUB_DEV_ID_1222 0x1222 /* Subsystem Device ID */
124
#define ARECA_SUB_DEV_ID_1223 0x1223 /* Subsystem Device ID */
125
#define ARECA_SUB_DEV_ID_1224 0x1224 /* Subsystem Device ID */
126
#define ARECA_SUB_DEV_ID_1226 0x1226 /* Subsystem Device ID */
127
128
#define PCIDevVenIDARC1110 0x111017D3 /* Vendor Device ID */
129
#define PCIDevVenIDARC1120 0x112017D3 /* Vendor Device ID */
130
#define PCIDevVenIDARC1130 0x113017D3 /* Vendor Device ID */
131
#define PCIDevVenIDARC1160 0x116017D3 /* Vendor Device ID */
132
#define PCIDevVenIDARC1170 0x117017D3 /* Vendor Device ID */
133
#define PCIDevVenIDARC1200 0x120017D3 /* Vendor Device ID */
134
#define PCIDevVenIDARC1201 0x120117D3 /* Vendor Device ID */
135
#define PCIDevVenIDARC1203 0x120317D3 /* Vendor Device ID */
136
#define PCIDevVenIDARC1210 0x121017D3 /* Vendor Device ID */
137
#define PCIDevVenIDARC1212 0x121217D3 /* Vendor Device ID */
138
#define PCIDevVenIDARC1213 0x121317D3 /* Vendor Device ID */
139
#define PCIDevVenIDARC1214 0x121417D3 /* Vendor Device ID */
140
#define PCIDevVenIDARC1220 0x122017D3 /* Vendor Device ID */
141
#define PCIDevVenIDARC1222 0x122217D3 /* Vendor Device ID */
142
#define PCIDevVenIDARC1223 0x122317D3 /* Vendor Device ID */
143
#define PCIDevVenIDARC1224 0x122417D3 /* Vendor Device ID */
144
#define PCIDevVenIDARC1230 0x123017D3 /* Vendor Device ID */
145
#define PCIDevVenIDARC1231 0x123117D3 /* Vendor Device ID */
146
#define PCIDevVenIDARC1260 0x126017D3 /* Vendor Device ID */
147
#define PCIDevVenIDARC1261 0x126117D3 /* Vendor Device ID */
148
#define PCIDevVenIDARC1270 0x127017D3 /* Vendor Device ID */
149
#define PCIDevVenIDARC1280 0x128017D3 /* Vendor Device ID */
150
#define PCIDevVenIDARC1380 0x138017D3 /* Vendor Device ID */
151
#define PCIDevVenIDARC1381 0x138117D3 /* Vendor Device ID */
152
#define PCIDevVenIDARC1680 0x168017D3 /* Vendor Device ID */
153
#define PCIDevVenIDARC1681 0x168117D3 /* Vendor Device ID */
154
#define PCIDevVenIDARC1880 0x188017D3 /* Vendor Device ID */
155
#define PCIDevVenIDARC1882 0x188217D3 /* Vendor Device ID */
156
#define PCIDevVenIDARC1883 0x188317D3 /* Vendor Device ID */
157
#define PCIDevVenIDARC1884 0x188417D3 /* Vendor Device ID */
158
#define PCIDevVenIDARC1886_0 0x188617D3 /* Vendor Device ID */
159
#define PCIDevVenIDARC1886_ 0x188917D3 /* Vendor Device ID */
160
#define PCIDevVenIDARC1886 0x188A17D3 /* Vendor Device ID */
161
162
#ifndef PCIR_BARS
163
#define PCIR_BARS 0x10
164
#define PCIR_BAR(x) (PCIR_BARS + (x) * 4)
165
#endif
166
167
#define PCI_BASE_ADDR0 0x10
168
#define PCI_BASE_ADDR1 0x14
169
#define PCI_BASE_ADDR2 0x18
170
#define PCI_BASE_ADDR3 0x1C
171
#define PCI_BASE_ADDR4 0x20
172
#define PCI_BASE_ADDR5 0x24
173
/*
174
**********************************************************************************
175
**
176
**********************************************************************************
177
*/
178
#define ARCMSR_SCSICMD_IOCTL 0x77
179
#define ARCMSR_CDEVSW_IOCTL 0x88
180
#define ARCMSR_MESSAGE_FAIL 0x0001
181
#define ARCMSR_MESSAGE_SUCCESS 0x0000
182
/*
183
**********************************************************************************
184
**
185
**********************************************************************************
186
*/
187
#define arcmsr_ccbsrb_ptr spriv_ptr0
188
#define arcmsr_ccbacb_ptr spriv_ptr1
189
#define dma_addr_hi32(addr) (u_int32_t) ((addr>>16)>>16)
190
#define dma_addr_lo32(addr) (u_int32_t) (addr & 0xffffffff)
191
#define get_min(x,y) ((x) < (y) ? (x) : (y))
192
#define get_max(x,y) ((x) < (y) ? (y) : (x))
193
/*
194
**************************************************************************
195
**************************************************************************
196
*/
197
#define CHIP_REG_READ32(s, b, r) bus_space_read_4(acb->btag[b], acb->bhandle[b], offsetof(struct s, r))
198
#define CHIP_REG_WRITE32(s, b, r, d) bus_space_write_4(acb->btag[b], acb->bhandle[b], offsetof(struct s, r), d)
199
#define READ_CHIP_REG32(b, r) bus_space_read_4(acb->btag[b], acb->bhandle[b], r)
200
#define WRITE_CHIP_REG32(b, r, d) bus_space_write_4(acb->btag[b], acb->bhandle[b], r, d)
201
/*
202
**********************************************************************************
203
** IOCTL CONTROL Mail Box
204
**********************************************************************************
205
*/
206
struct CMD_MESSAGE {
207
u_int32_t HeaderLength;
208
u_int8_t Signature[8];
209
u_int32_t Timeout;
210
u_int32_t ControlCode;
211
u_int32_t ReturnCode;
212
u_int32_t Length;
213
};
214
215
struct CMD_MESSAGE_FIELD {
216
struct CMD_MESSAGE cmdmessage; /* ioctl header */
217
u_int8_t messagedatabuffer[1032]; /* areca gui program does not accept more than 1031 byte */
218
};
219
220
/************************************************************************/
221
/************************************************************************/
222
223
#define ARCMSR_IOP_ERROR_ILLEGALPCI 0x0001
224
#define ARCMSR_IOP_ERROR_VENDORID 0x0002
225
#define ARCMSR_IOP_ERROR_DEVICEID 0x0002
226
#define ARCMSR_IOP_ERROR_ILLEGALCDB 0x0003
227
#define ARCMSR_IOP_ERROR_UNKNOW_CDBERR 0x0004
228
#define ARCMSR_SYS_ERROR_MEMORY_ALLOCATE 0x0005
229
#define ARCMSR_SYS_ERROR_MEMORY_CROSS4G 0x0006
230
#define ARCMSR_SYS_ERROR_MEMORY_LACK 0x0007
231
#define ARCMSR_SYS_ERROR_MEMORY_RANGE 0x0008
232
#define ARCMSR_SYS_ERROR_DEVICE_BASE 0x0009
233
#define ARCMSR_SYS_ERROR_PORT_VALIDATE 0x000A
234
235
/*DeviceType*/
236
#define ARECA_SATA_RAID 0x90000000
237
238
/*FunctionCode*/
239
#define FUNCTION_READ_RQBUFFER 0x0801
240
#define FUNCTION_WRITE_WQBUFFER 0x0802
241
#define FUNCTION_CLEAR_RQBUFFER 0x0803
242
#define FUNCTION_CLEAR_WQBUFFER 0x0804
243
#define FUNCTION_CLEAR_ALLQBUFFER 0x0805
244
#define FUNCTION_REQUEST_RETURNCODE_3F 0x0806
245
#define FUNCTION_SAY_HELLO 0x0807
246
#define FUNCTION_SAY_GOODBYE 0x0808
247
#define FUNCTION_FLUSH_ADAPTER_CACHE 0x0809
248
/*
249
************************************************************************
250
** IOCTL CONTROL CODE
251
************************************************************************
252
*/
253
/* ARECA IO CONTROL CODE*/
254
#define ARCMSR_MESSAGE_READ_RQBUFFER _IOWR('F', FUNCTION_READ_RQBUFFER, struct CMD_MESSAGE_FIELD)
255
#define ARCMSR_MESSAGE_WRITE_WQBUFFER _IOWR('F', FUNCTION_WRITE_WQBUFFER, struct CMD_MESSAGE_FIELD)
256
#define ARCMSR_MESSAGE_CLEAR_RQBUFFER _IOWR('F', FUNCTION_CLEAR_RQBUFFER, struct CMD_MESSAGE_FIELD)
257
#define ARCMSR_MESSAGE_CLEAR_WQBUFFER _IOWR('F', FUNCTION_CLEAR_WQBUFFER, struct CMD_MESSAGE_FIELD)
258
#define ARCMSR_MESSAGE_CLEAR_ALLQBUFFER _IOWR('F', FUNCTION_CLEAR_ALLQBUFFER, struct CMD_MESSAGE_FIELD)
259
#define ARCMSR_MESSAGE_REQUEST_RETURNCODE_3F _IOWR('F', FUNCTION_REQUEST_RETURNCODE_3F, struct CMD_MESSAGE_FIELD)
260
#define ARCMSR_MESSAGE_SAY_HELLO _IOWR('F', FUNCTION_SAY_HELLO, struct CMD_MESSAGE_FIELD)
261
#define ARCMSR_MESSAGE_SAY_GOODBYE _IOWR('F', FUNCTION_SAY_GOODBYE, struct CMD_MESSAGE_FIELD)
262
#define ARCMSR_MESSAGE_FLUSH_ADAPTER_CACHE _IOWR('F', FUNCTION_FLUSH_ADAPTER_CACHE, struct CMD_MESSAGE_FIELD)
263
264
/* ARECA IOCTL ReturnCode */
265
#define ARCMSR_MESSAGE_RETURNCODE_OK 0x00000001
266
#define ARCMSR_MESSAGE_RETURNCODE_ERROR 0x00000006
267
#define ARCMSR_MESSAGE_RETURNCODE_3F 0x0000003F
268
#define ARCMSR_IOCTL_RETURNCODE_BUS_HANG_ON 0x00000088
269
/*
270
************************************************************************
271
** SPEC. for Areca HBA adapter
272
************************************************************************
273
*/
274
/* signature of set and get firmware config */
275
#define ARCMSR_SIGNATURE_GET_CONFIG 0x87974060
276
#define ARCMSR_SIGNATURE_SET_CONFIG 0x87974063
277
/* message code of inbound message register */
278
#define ARCMSR_INBOUND_MESG0_NOP 0x00000000
279
#define ARCMSR_INBOUND_MESG0_GET_CONFIG 0x00000001
280
#define ARCMSR_INBOUND_MESG0_SET_CONFIG 0x00000002
281
#define ARCMSR_INBOUND_MESG0_ABORT_CMD 0x00000003
282
#define ARCMSR_INBOUND_MESG0_STOP_BGRB 0x00000004
283
#define ARCMSR_INBOUND_MESG0_FLUSH_CACHE 0x00000005
284
#define ARCMSR_INBOUND_MESG0_START_BGRB 0x00000006
285
#define ARCMSR_INBOUND_MESG0_CHK331PENDING 0x00000007
286
#define ARCMSR_INBOUND_MESG0_SYNC_TIMER 0x00000008
287
/* doorbell interrupt generator */
288
#define ARCMSR_INBOUND_DRIVER_DATA_WRITE_OK 0x00000001
289
#define ARCMSR_INBOUND_DRIVER_DATA_READ_OK 0x00000002
290
#define ARCMSR_OUTBOUND_IOP331_DATA_WRITE_OK 0x00000001
291
#define ARCMSR_OUTBOUND_IOP331_DATA_READ_OK 0x00000002
292
/* srb areca cdb flag */
293
#define ARCMSR_SRBPOST_FLAG_SGL_BSIZE 0x80000000
294
#define ARCMSR_SRBPOST_FLAG_IAM_BIOS 0x40000000
295
#define ARCMSR_SRBREPLY_FLAG_IAM_BIOS 0x40000000
296
#define ARCMSR_SRBREPLY_FLAG_ERROR 0x10000000
297
#define ARCMSR_SRBREPLY_FLAG_ERROR_MODE0 0x10000000
298
#define ARCMSR_SRBREPLY_FLAG_ERROR_MODE1 0x00000001
299
/* outbound firmware ok */
300
#define ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK 0x80000000
301
302
#define ARCMSR_ARC1680_BUS_RESET 0x00000003
303
/*
304
************************************************************************
305
** SPEC. for Areca HBB adapter
306
************************************************************************
307
*/
308
/* ARECA HBB COMMAND for its FIRMWARE */
309
#define ARCMSR_DRV2IOP_DOORBELL 0x00020400 /* window of "instruction flags" from driver to iop */
310
#define ARCMSR_DRV2IOP_DOORBELL_MASK 0x00020404
311
#define ARCMSR_IOP2DRV_DOORBELL 0x00020408 /* window of "instruction flags" from iop to driver */
312
#define ARCMSR_IOP2DRV_DOORBELL_MASK 0x0002040C
313
314
#define ARCMSR_IOP2DRV_DOORBELL_1203 0x00021870 /* window of "instruction flags" from iop to driver */
315
#define ARCMSR_IOP2DRV_DOORBELL_MASK_1203 0x00021874
316
#define ARCMSR_DRV2IOP_DOORBELL_1203 0x00021878 /* window of "instruction flags" from driver to iop */
317
#define ARCMSR_DRV2IOP_DOORBELL_MASK_1203 0x0002187C
318
319
/* ARECA FLAG LANGUAGE */
320
#define ARCMSR_IOP2DRV_DATA_WRITE_OK 0x00000001 /* ioctl transfer */
321
#define ARCMSR_IOP2DRV_DATA_READ_OK 0x00000002 /* ioctl transfer */
322
#define ARCMSR_IOP2DRV_CDB_DONE 0x00000004
323
#define ARCMSR_IOP2DRV_MESSAGE_CMD_DONE 0x00000008
324
325
#define ARCMSR_DOORBELL_HANDLE_INT 0x0000000F
326
#define ARCMSR_DOORBELL_INT_CLEAR_PATTERN 0xFF00FFF0
327
#define ARCMSR_MESSAGE_INT_CLEAR_PATTERN 0xFF00FFF7
328
329
#define ARCMSR_MESSAGE_GET_CONFIG 0x00010008 /* (ARCMSR_INBOUND_MESG0_GET_CONFIG<<16)|ARCMSR_DRV2IOP_MESSAGE_CMD_POSTED) */
330
#define ARCMSR_MESSAGE_SET_CONFIG 0x00020008 /* (ARCMSR_INBOUND_MESG0_SET_CONFIG<<16)|ARCMSR_DRV2IOP_MESSAGE_CMD_POSTED) */
331
#define ARCMSR_MESSAGE_ABORT_CMD 0x00030008 /* (ARCMSR_INBOUND_MESG0_ABORT_CMD<<16)|ARCMSR_DRV2IOP_MESSAGE_CMD_POSTED) */
332
#define ARCMSR_MESSAGE_STOP_BGRB 0x00040008 /* (ARCMSR_INBOUND_MESG0_STOP_BGRB<<16)|ARCMSR_DRV2IOP_MESSAGE_CMD_POSTED) */
333
#define ARCMSR_MESSAGE_FLUSH_CACHE 0x00050008 /* (ARCMSR_INBOUND_MESG0_FLUSH_CACHE<<16)|ARCMSR_DRV2IOP_MESSAGE_CMD_POSTED) */
334
#define ARCMSR_MESSAGE_START_BGRB 0x00060008 /* (ARCMSR_INBOUND_MESG0_START_BGRB<<16)|ARCMSR_DRV2IOP_MESSAGE_CMD_POSTED) */
335
#define ARCMSR_MESSAGE_START_DRIVER_MODE 0x000E0008
336
#define ARCMSR_MESSAGE_SET_POST_WINDOW 0x000F0008
337
#define ARCMSR_MESSAGE_ACTIVE_EOI_MODE 0x00100008
338
#define ARCMSR_MESSAGE_FIRMWARE_OK 0x80000000 /* ARCMSR_OUTBOUND_MESG1_FIRMWARE_OK */
339
340
#define ARCMSR_DRV2IOP_DATA_WRITE_OK 0x00000001 /* ioctl transfer */
341
#define ARCMSR_DRV2IOP_DATA_READ_OK 0x00000002 /* ioctl transfer */
342
#define ARCMSR_DRV2IOP_CDB_POSTED 0x00000004
343
#define ARCMSR_DRV2IOP_MESSAGE_CMD_POSTED 0x00000008
344
#define ARCMSR_DRV2IOP_END_OF_INTERRUPT 0x00000010 /* */
345
346
/* data tunnel buffer between user space program and its firmware */
347
#define ARCMSR_MSGCODE_RWBUFFER 0x0000fa00 /* iop msgcode_rwbuffer for message command */
348
#define ARCMSR_IOCTL_WBUFFER 0x0000fe00 /* user space data to iop 128bytes */
349
#define ARCMSR_IOCTL_RBUFFER 0x0000ff00 /* iop data to user space 128bytes */
350
#define ARCMSR_HBB_BASE0_OFFSET 0x00000010
351
#define ARCMSR_HBB_BASE1_OFFSET 0x00000018
352
#define ARCMSR_HBB_BASE0_LEN 0x00021000
353
#define ARCMSR_HBB_BASE1_LEN 0x00010000
354
/*
355
************************************************************************
356
** SPEC. for Areca HBC adapter
357
************************************************************************
358
*/
359
#define ARCMSR_HBC_ISR_THROTTLING_LEVEL 12
360
#define ARCMSR_HBC_ISR_MAX_DONE_QUEUE 20
361
/* Host Interrupt Mask */
362
#define ARCMSR_HBCMU_UTILITY_A_ISR_MASK 0x00000001 /* When clear, the Utility_A interrupt routes to the host.*/
363
#define ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR_MASK 0x00000004 /* When clear, the General Outbound Doorbell interrupt routes to the host.*/
364
#define ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR_MASK 0x00000008 /* When clear, the Outbound Post List FIFO Not Empty interrupt routes to the host.*/
365
#define ARCMSR_HBCMU_ALL_INTMASKENABLE 0x0000000D /* disable all ISR */
366
/* Host Interrupt Status */
367
#define ARCMSR_HBCMU_UTILITY_A_ISR 0x00000001
368
/*
369
** Set when the Utility_A Interrupt bit is set in the Outbound Doorbell Register.
370
** It clears by writing a 1 to the Utility_A bit in the Outbound Doorbell Clear Register or through automatic clearing (if enabled).
371
*/
372
#define ARCMSR_HBCMU_OUTBOUND_DOORBELL_ISR 0x00000004
373
/*
374
** Set if Outbound Doorbell register bits 30:1 have a non-zero
375
** value. This bit clears only when Outbound Doorbell bits
376
** 30:1 are ALL clear. Only a write to the Outbound Doorbell
377
** Clear register clears bits in the Outbound Doorbell register.
378
*/
379
#define ARCMSR_HBCMU_OUTBOUND_POSTQUEUE_ISR 0x00000008
380
/*
381
** Set whenever the Outbound Post List Producer/Consumer
382
** Register (FIFO) is not empty. It clears when the Outbound
383
** Post List FIFO is empty.
384
*/
385
#define ARCMSR_HBCMU_SAS_ALL_INT 0x00000010
386
/*
387
** This bit indicates a SAS interrupt from a source external to
388
** the PCIe core. This bit is not maskable.
389
*/
390
/* DoorBell*/
391
#define ARCMSR_HBCMU_DRV2IOP_DATA_WRITE_OK 0x00000002/**/
392
#define ARCMSR_HBCMU_DRV2IOP_DATA_READ_OK 0x00000004/**/
393
#define ARCMSR_HBCMU_DRV2IOP_MESSAGE_CMD_DONE 0x00000008/*inbound message 0 ready*/
394
#define ARCMSR_HBCMU_DRV2IOP_POSTQUEUE_THROTTLING 0x00000010/*more than 12 request completed in a time*/
395
#define ARCMSR_HBCMU_IOP2DRV_DATA_WRITE_OK 0x00000002/**/
396
#define ARCMSR_HBCMU_IOP2DRV_DATA_WRITE_DOORBELL_CLEAR 0x00000002/*outbound DATA WRITE isr door bell clear*/
397
#define ARCMSR_HBCMU_IOP2DRV_DATA_READ_OK 0x00000004/**/
398
#define ARCMSR_HBCMU_IOP2DRV_DATA_READ_DOORBELL_CLEAR 0x00000004/*outbound DATA READ isr door bell clear*/
399
#define ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE 0x00000008/*outbound message 0 ready*/
400
#define ARCMSR_HBCMU_IOP2DRV_MESSAGE_CMD_DONE_DOORBELL_CLEAR 0x00000008/*outbound message cmd isr door bell clear*/
401
#define ARCMSR_HBCMU_MESSAGE_FIRMWARE_OK 0x80000000/*ARCMSR_HBCMU_MESSAGE_FIRMWARE_OK*/
402
#define ARCMSR_HBCMU_RESET_ADAPTER 0x00000024
403
#define ARCMSR_HBCMU_DiagWrite_ENABLE 0x00000080
404
405
/*
406
************************************************************************
407
** SPEC. for Areca HBD adapter
408
************************************************************************
409
*/
410
#define ARCMSR_HBDMU_CHIP_ID 0x00004
411
#define ARCMSR_HBDMU_CPU_MEMORY_CONFIGURATION 0x00008
412
#define ARCMSR_HBDMU_I2_HOST_INTERRUPT_MASK 0x00034
413
#define ARCMSR_HBDMU_MAIN_INTERRUPT_STATUS 0x00200
414
#define ARCMSR_HBDMU_PCIE_F0_INTERRUPT_ENABLE 0x0020C
415
#define ARCMSR_HBDMU_INBOUND_MESSAGE0 0x00400
416
#define ARCMSR_HBDMU_INBOUND_MESSAGE1 0x00404
417
#define ARCMSR_HBDMU_OUTBOUND_MESSAGE0 0x00420
418
#define ARCMSR_HBDMU_OUTBOUND_MESSAGE1 0x00424
419
#define ARCMSR_HBDMU_INBOUND_DOORBELL 0x00460
420
#define ARCMSR_HBDMU_OUTBOUND_DOORBELL 0x00480
421
#define ARCMSR_HBDMU_OUTBOUND_DOORBELL_ENABLE 0x00484
422
#define ARCMSR_HBDMU_INBOUND_LIST_BASE_LOW 0x01000
423
#define ARCMSR_HBDMU_INBOUND_LIST_BASE_HIGH 0x01004
424
#define ARCMSR_HBDMU_INBOUND_LIST_WRITE_POINTER 0x01018
425
#define ARCMSR_HBDMU_OUTBOUND_LIST_BASE_LOW 0x01060
426
#define ARCMSR_HBDMU_OUTBOUND_LIST_BASE_HIGH 0x01064
427
#define ARCMSR_HBDMU_OUTBOUND_LIST_COPY_POINTER 0x0106C
428
#define ARCMSR_HBDMU_OUTBOUND_LIST_READ_POINTER 0x01070
429
#define ARCMSR_HBDMU_OUTBOUND_INTERRUPT_CAUSE 0x01088
430
#define ARCMSR_HBDMU_OUTBOUND_INTERRUPT_ENABLE 0x0108C
431
432
#define ARCMSR_HBDMU_MESSAGE_WBUFFER 0x02000
433
#define ARCMSR_HBDMU_MESSAGE_RBUFFER 0x02100
434
#define ARCMSR_HBDMU_MESSAGE_RWBUFFER 0x02200
435
436
#define ARCMSR_HBDMU_ISR_THROTTLING_LEVEL 16
437
#define ARCMSR_HBDMU_ISR_MAX_DONE_QUEUE 20
438
439
/* Host Interrupt Mask */
440
#define ARCMSR_HBDMU_ALL_INT_ENABLE 0x00001010 /* enable all ISR */
441
#define ARCMSR_HBDMU_ALL_INT_DISABLE 0x00000000 /* disable all ISR */
442
443
/* Host Interrupt Status */
444
#define ARCMSR_HBDMU_OUTBOUND_INT 0x00001010
445
#define ARCMSR_HBDMU_OUTBOUND_DOORBELL_INT 0x00001000
446
#define ARCMSR_HBDMU_OUTBOUND_POSTQUEUE_INT 0x00000010
447
448
/* DoorBell*/
449
#define ARCMSR_HBDMU_DRV2IOP_DATA_IN_READY 0x00000001
450
#define ARCMSR_HBDMU_DRV2IOP_DATA_OUT_READ 0x00000002
451
452
#define ARCMSR_HBDMU_IOP2DRV_DATA_WRITE_OK 0x00000001
453
#define ARCMSR_HBDMU_IOP2DRV_DATA_READ_OK 0x00000002
454
455
/*outbound message 0 ready*/
456
#define ARCMSR_HBDMU_IOP2DRV_MESSAGE_CMD_DONE 0x02000000
457
458
#define ARCMSR_HBDMU_F0_DOORBELL_CAUSE 0x02000003
459
460
/*outbound message cmd isr door bell clear*/
461
#define ARCMSR_HBDMU_IOP2DRV_MESSAGE_CMD_DONE_CLEAR 0x02000000
462
463
/*outbound list */
464
#define ARCMSR_HBDMU_OUTBOUND_LIST_INTERRUPT 0x00000001
465
#define ARCMSR_HBDMU_OUTBOUND_LIST_INTERRUPT_CLEAR 0x00000001
466
467
/*ARCMSR_HBAMU_MESSAGE_FIRMWARE_OK*/
468
#define ARCMSR_HBDMU_MESSAGE_FIRMWARE_OK 0x80000000
469
/*
470
*******************************************************************************
471
** SPEC. for Areca HBE adapter
472
*******************************************************************************
473
*/
474
#define ARCMSR_SIGNATURE_1884 0x188417D3
475
#define ARCMSR_HBEMU_OUTBOUND_DOORBELL_ISR 0x00000001
476
#define ARCMSR_HBEMU_OUTBOUND_POSTQUEUE_ISR 0x00000008
477
#define ARCMSR_HBEMU_ALL_INTMASKENABLE 0x00000009 /* disable all ISR */
478
479
#define ARCMSR_HBEMU_DRV2IOP_DATA_WRITE_OK 0x00000002
480
#define ARCMSR_HBEMU_DRV2IOP_DATA_READ_OK 0x00000004
481
#define ARCMSR_HBEMU_DRV2IOP_MESSAGE_CMD_DONE 0x00000008 /* inbound message 0 ready */
482
#define ARCMSR_HBEMU_IOP2DRV_DATA_WRITE_OK 0x00000002
483
#define ARCMSR_HBEMU_IOP2DRV_DATA_READ_OK 0x00000004
484
#define ARCMSR_HBEMU_IOP2DRV_MESSAGE_CMD_DONE 0x00000008 /* outbound message 0 ready */
485
#define ARCMSR_HBEMU_MESSAGE_FIRMWARE_OK 0x80000000 /* ARCMSR_HBCMU_MESSAGE_FIRMWARE_OK */
486
/* ARC-1884 doorbell sync */
487
#define ARCMSR_HBEMU_DOORBELL_SYNC 0x100
488
#define ARCMSR_ARC188X_RESET_ADAPTER 0x00000004
489
/*
490
*******************************************************************************
491
** SPEC. for Areca HBF adapter
492
*******************************************************************************
493
*/
494
#define ARCMSR_SIGNATURE_1886 0x188617D3
495
// Doorbell and interrupt definition are same as Type E adapter
496
/* ARC-1886 doorbell sync */
497
#define ARCMSR_HBFMU_DOORBELL_SYNC 0x100
498
//set host rw buffer physical address at inbound message 0, 1 (low,high)
499
#define ARCMSR_HBFMU_DOORBELL_SYNC1 0x300
500
#define ARCMSR_HBFMU_MESSAGE_FIRMWARE_OK 0x80000000
501
#define ARCMSR_HBFMU_MESSAGE_NO_VOLUME_CHANGE 0x20000000
502
503
/*
504
*********************************************************************
505
** Messaging Unit (MU) of Type A processor
506
*********************************************************************
507
*/
508
struct HBA_MessageUnit
509
{
510
u_int32_t resrved0[4]; /*0000 000F*/
511
u_int32_t inbound_msgaddr0; /*0010 0013*/
512
u_int32_t inbound_msgaddr1; /*0014 0017*/
513
u_int32_t outbound_msgaddr0; /*0018 001B*/
514
u_int32_t outbound_msgaddr1; /*001C 001F*/
515
u_int32_t inbound_doorbell; /*0020 0023*/
516
u_int32_t inbound_intstatus; /*0024 0027*/
517
u_int32_t inbound_intmask; /*0028 002B*/
518
u_int32_t outbound_doorbell; /*002C 002F*/
519
u_int32_t outbound_intstatus; /*0030 0033*/
520
u_int32_t outbound_intmask; /*0034 0037*/
521
u_int32_t reserved1[2]; /*0038 003F*/
522
u_int32_t inbound_queueport; /*0040 0043*/
523
u_int32_t outbound_queueport; /*0044 0047*/
524
u_int32_t reserved2[2]; /*0048 004F*/
525
u_int32_t reserved3[492]; /*0050 07FF ......local_buffer 492*/
526
u_int32_t reserved4[128]; /*0800 09FF 128*/
527
u_int32_t msgcode_rwbuffer[256]; /*0a00 0DFF 256*/
528
u_int32_t message_wbuffer[32]; /*0E00 0E7F 32*/
529
u_int32_t reserved5[32]; /*0E80 0EFF 32*/
530
u_int32_t message_rbuffer[32]; /*0F00 0F7F 32*/
531
u_int32_t reserved6[32]; /*0F80 0FFF 32*/
532
};
533
/*
534
*********************************************************************
535
**
536
*********************************************************************
537
*/
538
struct HBB_DOORBELL_1203
539
{
540
u_int8_t doorbell_reserved[ARCMSR_IOP2DRV_DOORBELL_1203]; /*reserved */
541
u_int32_t iop2drv_doorbell; /*offset 0x00021870:00,01,02,03: window of "instruction flags" from iop to driver */
542
u_int32_t iop2drv_doorbell_mask; /* 04,05,06,07: doorbell mask */
543
u_int32_t drv2iop_doorbell; /* 08,09,10,11: window of "instruction flags" from driver to iop */
544
u_int32_t drv2iop_doorbell_mask; /* 12,13,14,15: doorbell mask */
545
};
546
struct HBB_DOORBELL
547
{
548
u_int8_t doorbell_reserved[ARCMSR_DRV2IOP_DOORBELL]; /*reserved */
549
u_int32_t drv2iop_doorbell; /*offset 0x00020400:00,01,02,03: window of "instruction flags" from driver to iop */
550
u_int32_t drv2iop_doorbell_mask; /* 04,05,06,07: doorbell mask */
551
u_int32_t iop2drv_doorbell; /* 08,09,10,11: window of "instruction flags" from iop to driver */
552
u_int32_t iop2drv_doorbell_mask; /* 12,13,14,15: doorbell mask */
553
};
554
/*
555
*********************************************************************
556
**
557
*********************************************************************
558
*/
559
struct HBB_RWBUFFER
560
{
561
u_int8_t message_reserved0[ARCMSR_MSGCODE_RWBUFFER]; /*reserved */
562
u_int32_t msgcode_rwbuffer[256]; /*offset 0x0000fa00: 0, 1, 2, 3,...,1023: message code read write 1024bytes */
563
u_int32_t message_wbuffer[32]; /*offset 0x0000fe00:1024,1025,1026,1027,...,1151: user space data to iop 128bytes */
564
u_int32_t message_reserved1[32]; /* 1152,1153,1154,1155,...,1279: message reserved*/
565
u_int32_t message_rbuffer[32]; /*offset 0x0000ff00:1280,1281,1282,1283,...,1407: iop data to user space 128bytes */
566
};
567
/*
568
*********************************************************************
569
** Messaging Unit (MU) of Type B processor(MARVEL)
570
*********************************************************************
571
*/
572
struct HBB_MessageUnit
573
{
574
u_int32_t post_qbuffer[ARCMSR_MAX_HBB_POSTQUEUE]; /* post queue buffer for iop */
575
u_int32_t done_qbuffer[ARCMSR_MAX_HBB_POSTQUEUE]; /* done queue buffer for iop */
576
int32_t postq_index; /* post queue index */
577
int32_t doneq_index; /* done queue index */
578
struct HBB_DOORBELL *hbb_doorbell;
579
struct HBB_RWBUFFER *hbb_rwbuffer;
580
bus_size_t drv2iop_doorbell; /* window of "instruction flags" from driver to iop */
581
bus_size_t drv2iop_doorbell_mask; /* doorbell mask */
582
bus_size_t iop2drv_doorbell; /* window of "instruction flags" from iop to driver */
583
bus_size_t iop2drv_doorbell_mask; /* doorbell mask */
584
};
585
586
/*
587
*********************************************************************
588
** Messaging Unit (MU) of Type C processor(LSI)
589
*********************************************************************
590
*/
591
struct HBC_MessageUnit {
592
u_int32_t message_unit_status; /*0000 0003*/
593
u_int32_t slave_error_attribute; /*0004 0007*/
594
u_int32_t slave_error_address; /*0008 000B*/
595
u_int32_t posted_outbound_doorbell; /*000C 000F*/
596
u_int32_t master_error_attribute; /*0010 0013*/
597
u_int32_t master_error_address_low; /*0014 0017*/
598
u_int32_t master_error_address_high; /*0018 001B*/
599
u_int32_t hcb_size; /*001C 001F size of the PCIe window used for HCB_Mode accesses*/
600
u_int32_t inbound_doorbell; /*0020 0023*/
601
u_int32_t diagnostic_rw_data; /*0024 0027*/
602
u_int32_t diagnostic_rw_address_low; /*0028 002B*/
603
u_int32_t diagnostic_rw_address_high; /*002C 002F*/
604
u_int32_t host_int_status; /*0030 0033 host interrupt status*/
605
u_int32_t host_int_mask; /*0034 0037 host interrupt mask*/
606
u_int32_t dcr_data; /*0038 003B*/
607
u_int32_t dcr_address; /*003C 003F*/
608
u_int32_t inbound_queueport; /*0040 0043 port32 host inbound queue port*/
609
u_int32_t outbound_queueport; /*0044 0047 port32 host outbound queue port*/
610
u_int32_t hcb_pci_address_low; /*0048 004B*/
611
u_int32_t hcb_pci_address_high; /*004C 004F*/
612
u_int32_t iop_int_status; /*0050 0053*/
613
u_int32_t iop_int_mask; /*0054 0057*/
614
u_int32_t iop_inbound_queue_port; /*0058 005B*/
615
u_int32_t iop_outbound_queue_port; /*005C 005F*/
616
u_int32_t inbound_free_list_index; /*0060 0063 inbound free list producer consumer index*/
617
u_int32_t inbound_post_list_index; /*0064 0067 inbound post list producer consumer index*/
618
u_int32_t outbound_free_list_index; /*0068 006B outbound free list producer consumer index*/
619
u_int32_t outbound_post_list_index; /*006C 006F outbound post list producer consumer index*/
620
u_int32_t inbound_doorbell_clear; /*0070 0073*/
621
u_int32_t i2o_message_unit_control; /*0074 0077*/
622
u_int32_t last_used_message_source_address_low; /*0078 007B*/
623
u_int32_t last_used_message_source_address_high; /*007C 007F*/
624
u_int32_t pull_mode_data_byte_count[4]; /*0080 008F pull mode data byte count0..count7*/
625
u_int32_t message_dest_address_index; /*0090 0093*/
626
u_int32_t done_queue_not_empty_int_counter_timer; /*0094 0097*/
627
u_int32_t utility_A_int_counter_timer; /*0098 009B*/
628
u_int32_t outbound_doorbell; /*009C 009F*/
629
u_int32_t outbound_doorbell_clear; /*00A0 00A3*/
630
u_int32_t message_source_address_index; /*00A4 00A7 message accelerator source address consumer producer index*/
631
u_int32_t message_done_queue_index; /*00A8 00AB message accelerator completion queue consumer producer index*/
632
u_int32_t reserved0; /*00AC 00AF*/
633
u_int32_t inbound_msgaddr0; /*00B0 00B3 scratchpad0*/
634
u_int32_t inbound_msgaddr1; /*00B4 00B7 scratchpad1*/
635
u_int32_t outbound_msgaddr0; /*00B8 00BB scratchpad2*/
636
u_int32_t outbound_msgaddr1; /*00BC 00BF scratchpad3*/
637
u_int32_t inbound_queueport_low; /*00C0 00C3 port64 host inbound queue port low*/
638
u_int32_t inbound_queueport_high; /*00C4 00C7 port64 host inbound queue port high*/
639
u_int32_t outbound_queueport_low; /*00C8 00CB port64 host outbound queue port low*/
640
u_int32_t outbound_queueport_high; /*00CC 00CF port64 host outbound queue port high*/
641
u_int32_t iop_inbound_queue_port_low; /*00D0 00D3*/
642
u_int32_t iop_inbound_queue_port_high; /*00D4 00D7*/
643
u_int32_t iop_outbound_queue_port_low; /*00D8 00DB*/
644
u_int32_t iop_outbound_queue_port_high; /*00DC 00DF*/
645
u_int32_t message_dest_queue_port_low; /*00E0 00E3 message accelerator destination queue port low*/
646
u_int32_t message_dest_queue_port_high; /*00E4 00E7 message accelerator destination queue port high*/
647
u_int32_t last_used_message_dest_address_low; /*00E8 00EB last used message accelerator destination address low*/
648
u_int32_t last_used_message_dest_address_high; /*00EC 00EF last used message accelerator destination address high*/
649
u_int32_t message_done_queue_base_address_low; /*00F0 00F3 message accelerator completion queue base address low*/
650
u_int32_t message_done_queue_base_address_high; /*00F4 00F7 message accelerator completion queue base address high*/
651
u_int32_t host_diagnostic; /*00F8 00FB*/
652
u_int32_t write_sequence; /*00FC 00FF*/
653
u_int32_t reserved1[34]; /*0100 0187*/
654
u_int32_t reserved2[1950]; /*0188 1FFF*/
655
u_int32_t message_wbuffer[32]; /*2000 207F*/
656
u_int32_t reserved3[32]; /*2080 20FF*/
657
u_int32_t message_rbuffer[32]; /*2100 217F*/
658
u_int32_t reserved4[32]; /*2180 21FF*/
659
u_int32_t msgcode_rwbuffer[256]; /*2200 23FF*/
660
};
661
/*
662
*********************************************************************
663
** Messaging Unit (MU) of Type D processor
664
*********************************************************************
665
*/
666
struct InBound_SRB {
667
uint32_t addressLow; //pointer to SRB block
668
uint32_t addressHigh;
669
uint32_t length; // in DWORDs
670
uint32_t reserved0;
671
};
672
673
struct OutBound_SRB {
674
uint32_t addressLow; //pointer to SRB block
675
uint32_t addressHigh;
676
};
677
678
struct HBD_MessageUnit {
679
uint32_t reserved0;
680
uint32_t chip_id; //0x0004
681
uint32_t cpu_mem_config; //0x0008
682
uint32_t reserved1[10]; //0x000C
683
uint32_t i2o_host_interrupt_mask; //0x0034
684
uint32_t reserved2[114]; //0x0038
685
uint32_t host_int_status; //0x0200
686
uint32_t host_int_enable; //0x0204
687
uint32_t reserved3[1]; //0x0208
688
uint32_t pcief0_int_enable; //0x020C
689
uint32_t reserved4[124]; //0x0210
690
uint32_t inbound_msgaddr0; //0x0400
691
uint32_t inbound_msgaddr1; //0x0404
692
uint32_t reserved5[6]; //0x0408
693
uint32_t outbound_msgaddr0; //0x0420
694
uint32_t outbound_msgaddr1; //0x0424
695
uint32_t reserved6[14]; //0x0428
696
uint32_t inbound_doorbell; //0x0460
697
uint32_t reserved7[7]; //0x0464
698
uint32_t outbound_doorbell; //0x0480
699
uint32_t outbound_doorbell_enable; //0x0484
700
uint32_t reserved8[734]; //0x0488
701
uint32_t inboundlist_base_low; //0x1000
702
uint32_t inboundlist_base_high; //0x1004
703
uint32_t reserved9[4]; //0x1008
704
uint32_t inboundlist_write_pointer; //0x1018
705
uint32_t inboundlist_read_pointer; //0x101C
706
uint32_t reserved10[16]; //0x1020
707
uint32_t outboundlist_base_low; //0x1060
708
uint32_t outboundlist_base_high; //0x1064
709
uint32_t reserved11; //0x1068
710
uint32_t outboundlist_copy_pointer; //0x106C
711
uint32_t outboundlist_read_pointer; //0x1070 0x1072
712
uint32_t reserved12[5]; //0x1074
713
uint32_t outboundlist_interrupt_cause; //0x1088
714
uint32_t outboundlist_interrupt_enable; //0x108C
715
uint32_t reserved13[988]; //0x1090
716
uint32_t message_wbuffer[32]; //0x2000
717
uint32_t reserved14[32]; //0x2080
718
uint32_t message_rbuffer[32]; //0x2100
719
uint32_t reserved15[32]; //0x2180
720
uint32_t msgcode_rwbuffer[256]; //0x2200
721
};
722
723
struct HBD_MessageUnit0 {
724
struct InBound_SRB post_qbuffer[ARCMSR_MAX_HBD_POSTQUEUE];
725
struct OutBound_SRB done_qbuffer[ARCMSR_MAX_HBD_POSTQUEUE+1];
726
uint16_t postq_index;
727
uint16_t doneq_index;
728
struct HBD_MessageUnit *phbdmu;
729
};
730
/*
731
*********************************************************************
732
** Messaging Unit (MU) of Type E processor(LSI)
733
*********************************************************************
734
*/
735
struct HBE_MessageUnit {
736
u_int32_t iobound_doorbell; /*0000 0003*/
737
u_int32_t write_sequence_3xxx; /*0004 0007*/
738
u_int32_t host_diagnostic_3xxx; /*0008 000B*/
739
u_int32_t posted_outbound_doorbell; /*000C 000F*/
740
u_int32_t master_error_attribute; /*0010 0013*/
741
u_int32_t master_error_address_low; /*0014 0017*/
742
u_int32_t master_error_address_high; /*0018 001B*/
743
u_int32_t hcb_size; /*001C 001F*/
744
u_int32_t inbound_doorbell; /*0020 0023*/
745
u_int32_t diagnostic_rw_data; /*0024 0027*/
746
u_int32_t diagnostic_rw_address_low; /*0028 002B*/
747
u_int32_t diagnostic_rw_address_high; /*002C 002F*/
748
u_int32_t host_int_status; /*0030 0033 host interrupt status*/
749
u_int32_t host_int_mask; /*0034 0037 host interrupt mask*/
750
u_int32_t dcr_data; /*0038 003B*/
751
u_int32_t dcr_address; /*003C 003F*/
752
u_int32_t inbound_queueport; /*0040 0043 port32 host inbound queue port*/
753
u_int32_t outbound_queueport; /*0044 0047 port32 host outbound queue port*/
754
u_int32_t hcb_pci_address_low; /*0048 004B*/
755
u_int32_t hcb_pci_address_high; /*004C 004F*/
756
u_int32_t iop_int_status; /*0050 0053*/
757
u_int32_t iop_int_mask; /*0054 0057*/
758
u_int32_t iop_inbound_queue_port; /*0058 005B*/
759
u_int32_t iop_outbound_queue_port; /*005C 005F*/
760
u_int32_t inbound_free_list_index; /*0060 0063*/
761
u_int32_t inbound_post_list_index; /*0064 0067*/
762
u_int32_t outbound_free_list_index; /*0068 006B*/
763
u_int32_t outbound_post_list_index; /*006C 006F*/
764
u_int32_t inbound_doorbell_clear; /*0070 0073*/
765
u_int32_t i2o_message_unit_control; /*0074 0077*/
766
u_int32_t last_used_message_source_address_low; /*0078 007B*/
767
u_int32_t last_used_message_source_address_high; /*007C 007F*/
768
u_int32_t pull_mode_data_byte_count[4]; /*0080 008F*/
769
u_int32_t message_dest_address_index; /*0090 0093*/
770
u_int32_t done_queue_not_empty_int_counter_timer; /*0094 0097*/
771
u_int32_t utility_A_int_counter_timer; /*0098 009B*/
772
u_int32_t outbound_doorbell; /*009C 009F*/
773
u_int32_t outbound_doorbell_clear; /*00A0 00A3*/
774
u_int32_t message_source_address_index; /*00A4 00A7*/
775
u_int32_t message_done_queue_index; /*00A8 00AB*/
776
u_int32_t reserved0; /*00AC 00AF*/
777
u_int32_t inbound_msgaddr0; /*00B0 00B3 scratchpad0*/
778
u_int32_t inbound_msgaddr1; /*00B4 00B7 scratchpad1*/
779
u_int32_t outbound_msgaddr0; /*00B8 00BB scratchpad2*/
780
u_int32_t outbound_msgaddr1; /*00BC 00BF scratchpad3*/
781
u_int32_t inbound_queueport_low; /*00C0 00C3 port64 host inbound queue port low*/
782
u_int32_t inbound_queueport_high; /*00C4 00C7 port64 host inbound queue port high*/
783
u_int32_t outbound_queueport_low; /*00C8 00CB port64 host outbound queue port low*/
784
u_int32_t outbound_queueport_high; /*00CC 00CF port64 host outbound queue port high*/
785
u_int32_t iop_inbound_queue_port_low; /*00D0 00D3*/
786
u_int32_t iop_inbound_queue_port_high; /*00D4 00D7*/
787
u_int32_t iop_outbound_queue_port_low; /*00D8 00DB*/
788
u_int32_t iop_outbound_queue_port_high; /*00DC 00DF*/
789
u_int32_t message_dest_queue_port_low; /*00E0 00E3*/
790
u_int32_t message_dest_queue_port_high; /*00E4 00E7*/
791
u_int32_t last_used_message_dest_address_low; /*00E8 00EB*/
792
u_int32_t last_used_message_dest_address_high; /*00EC 00EF*/
793
u_int32_t message_done_queue_base_address_low; /*00F0 00F3*/
794
u_int32_t message_done_queue_base_address_high; /*00F4 00F7*/
795
u_int32_t host_diagnostic; /*00F8 00FB*/
796
u_int32_t write_sequence; /*00FC 00FF*/
797
u_int32_t reserved1[46]; /*0100 01B7*/
798
u_int32_t reply_post_producer_index; /*01B8 01BB*/
799
u_int32_t reply_post_consumer_index; /*01BC 01BF*/
800
u_int32_t reserved2[1936]; /*01C0 1FFF*/
801
u_int32_t message_wbuffer[32]; /*2000 207F*/
802
u_int32_t reserved3[32]; /*2080 20FF*/
803
u_int32_t message_rbuffer[32]; /*2100 217F*/
804
u_int32_t reserved4[32]; /*2180 21FF*/
805
u_int32_t msgcode_rwbuffer[256]; /*2200 23FF*/
806
};
807
808
/*
809
*********************************************************************
810
** Messaging Unit (MU) of Type F processor(LSI)
811
*********************************************************************
812
*/
813
struct HBF_MessageUnit {
814
u_int32_t iobound_doorbell; /*0000 0003*/
815
u_int32_t write_sequence_3xxx; /*0004 0007*/
816
u_int32_t host_diagnostic_3xxx; /*0008 000B*/
817
u_int32_t posted_outbound_doorbell; /*000C 000F*/
818
u_int32_t master_error_attribute; /*0010 0013*/
819
u_int32_t master_error_address_low; /*0014 0017*/
820
u_int32_t master_error_address_high; /*0018 001B*/
821
u_int32_t hcb_size; /*001C 001F*/
822
u_int32_t inbound_doorbell; /*0020 0023*/
823
u_int32_t diagnostic_rw_data; /*0024 0027*/
824
u_int32_t diagnostic_rw_address_low; /*0028 002B*/
825
u_int32_t diagnostic_rw_address_high; /*002C 002F*/
826
u_int32_t host_int_status; /*0030 0033 host interrupt status*/
827
u_int32_t host_int_mask; /*0034 0037 host interrupt mask*/
828
u_int32_t dcr_data; /*0038 003B*/
829
u_int32_t dcr_address; /*003C 003F*/
830
u_int32_t inbound_queueport; /*0040 0043 port32 host inbound queue port*/
831
u_int32_t outbound_queueport; /*0044 0047 port32 host outbound queue port*/
832
u_int32_t hcb_pci_address_low; /*0048 004B*/
833
u_int32_t hcb_pci_address_high; /*004C 004F*/
834
u_int32_t iop_int_status; /*0050 0053*/
835
u_int32_t iop_int_mask; /*0054 0057*/
836
u_int32_t iop_inbound_queue_port; /*0058 005B*/
837
u_int32_t iop_outbound_queue_port; /*005C 005F*/
838
u_int32_t inbound_free_list_index; /*0060 0063*/
839
u_int32_t inbound_post_list_index; /*0064 0067*/
840
u_int32_t reply_post_producer_index; /*0068 006B*/
841
u_int32_t reply_post_consumer_index; /*006C 006F*/
842
u_int32_t inbound_doorbell_clear; /*0070 0073*/
843
u_int32_t i2o_message_unit_control; /*0074 0077*/
844
u_int32_t last_used_message_source_address_low; /*0078 007B*/
845
u_int32_t last_used_message_source_address_high; /*007C 007F*/
846
u_int32_t pull_mode_data_byte_count[4]; /*0080 008F*/
847
u_int32_t message_dest_address_index; /*0090 0093*/
848
u_int32_t done_queue_not_empty_int_counter_timer; /*0094 0097*/
849
u_int32_t utility_A_int_counter_timer; /*0098 009B*/
850
u_int32_t outbound_doorbell; /*009C 009F*/
851
u_int32_t outbound_doorbell_clear; /*00A0 00A3*/
852
u_int32_t message_source_address_index; /*00A4 00A7*/
853
u_int32_t message_done_queue_index; /*00A8 00AB*/
854
u_int32_t reserved0; /*00AC 00AF*/
855
u_int32_t inbound_msgaddr0; /*00B0 00B3 scratchpad0*/
856
u_int32_t inbound_msgaddr1; /*00B4 00B7 scratchpad1*/
857
u_int32_t outbound_msgaddr0; /*00B8 00BB scratchpad2*/
858
u_int32_t outbound_msgaddr1; /*00BC 00BF scratchpad3*/
859
u_int32_t inbound_queueport_low; /*00C0 00C3 port64 host inbound queue port low*/
860
u_int32_t inbound_queueport_high; /*00C4 00C7 port64 host inbound queue port high*/
861
u_int32_t outbound_queueport_low; /*00C8 00CB port64 host outbound queue port low*/
862
u_int32_t outbound_queueport_high; /*00CC 00CF port64 host outbound queue port high*/
863
u_int32_t iop_inbound_queue_port_low; /*00D0 00D3*/
864
u_int32_t iop_inbound_queue_port_high; /*00D4 00D7*/
865
u_int32_t iop_outbound_queue_port_low; /*00D8 00DB*/
866
u_int32_t iop_outbound_queue_port_high; /*00DC 00DF*/
867
u_int32_t message_dest_queue_port_low; /*00E0 00E3*/
868
u_int32_t message_dest_queue_port_high; /*00E4 00E7*/
869
u_int32_t last_used_message_dest_address_low; /*00E8 00EB*/
870
u_int32_t last_used_message_dest_address_high; /*00EC 00EF*/
871
u_int32_t message_done_queue_base_address_low; /*00F0 00F3*/
872
u_int32_t message_done_queue_base_address_high; /*00F4 00F7*/
873
u_int32_t host_diagnostic; /*00F8 00FB*/
874
u_int32_t write_sequence; /*00FC 00FF*/
875
u_int32_t reserved1[46]; /*0100 01B7*/
876
u_int32_t reply_post_producer_index1; /*01B8 01BB*/
877
u_int32_t reply_post_consumer_index1; /*01BC 01BF*/
878
};
879
880
#define MESG_RW_BUFFER_SIZE (256 * 3)
881
882
typedef struct deliver_completeQ {
883
u_int16_t cmdFlag;
884
u_int16_t cmdSMID;
885
u_int16_t cmdLMID; // reserved (0)
886
u_int16_t cmdFlag2; // reserved (0)
887
} DeliverQ, CompletionQ, *pDeliver_Q, *pCompletion_Q;
888
889
#define COMPLETION_Q_POOL_SIZE (sizeof(struct deliver_completeQ) * 512 + 128)
890
891
/*
892
*********************************************************************
893
**
894
*********************************************************************
895
*/
896
struct MessageUnit_UNION
897
{
898
union {
899
struct HBA_MessageUnit hbamu;
900
struct HBB_MessageUnit hbbmu;
901
struct HBC_MessageUnit hbcmu;
902
struct HBD_MessageUnit0 hbdmu;
903
struct HBE_MessageUnit hbemu;
904
struct HBF_MessageUnit hbfmu;
905
} muu;
906
};
907
/*
908
*************************************************************
909
** structure for holding DMA address data
910
*************************************************************
911
*/
912
#define IS_SG64_ADDR 0x01000000 /* bit24 */
913
/*
914
************************************************************************************************
915
** ARECA FIRMWARE SPEC
916
************************************************************************************************
917
** Usage of IOP331 adapter
918
** (All In/Out is in IOP331's view)
919
** 1. Message 0 --> InitThread message and retrun code
920
** 2. Doorbell is used for RS-232 emulation
921
** inDoorBell : bit0 -- data in ready (DRIVER DATA WRITE OK)
922
** bit1 -- data out has been read (DRIVER DATA READ OK)
923
** outDooeBell: bit0 -- data out ready (IOP331 DATA WRITE OK)
924
** bit1 -- data in has been read (IOP331 DATA READ OK)
925
** 3. Index Memory Usage
926
** offset 0xf00 : for RS232 out (request buffer)
927
** offset 0xe00 : for RS232 in (scratch buffer)
928
** offset 0xa00 : for inbound message code msgcode_rwbuffer (driver send to IOP331)
929
** offset 0xa00 : for outbound message code msgcode_rwbuffer (IOP331 send to driver)
930
** 4. RS-232 emulation
931
** Currently 128 byte buffer is used
932
** 1st u_int32_t : Data length (1--124)
933
** Byte 4--127 : Max 124 bytes of data
934
** 5. PostQ
935
** All SCSI Command must be sent through postQ:
936
** (inbound queue port) Request frame must be 32 bytes aligned
937
** # bit27--bit31 => flag for post ccb
938
** # bit0--bit26 => real address (bit27--bit31) of post arcmsr_cdb
939
** bit31 : 0 : 256 bytes frame
940
** 1 : 512 bytes frame
941
** bit30 : 0 : normal request
942
** 1 : BIOS request
943
** bit29 : reserved
944
** bit28 : reserved
945
** bit27 : reserved
946
** -------------------------------------------------------------------------------
947
** (outbount queue port) Request reply
948
** # bit27--bit31 => flag for reply
949
** # bit0--bit26 => real address (bit27--bit31) of reply arcmsr_cdb
950
** bit31 : must be 0 (for this type of reply)
951
** bit30 : reserved for BIOS handshake
952
** bit29 : reserved
953
** bit28 : 0 : no error, ignore AdapStatus/DevStatus/SenseData
954
** 1 : Error, error code in AdapStatus/DevStatus/SenseData
955
** bit27 : reserved
956
** 6. BIOS request
957
** All BIOS request is the same with request from PostQ
958
** Except :
959
** Request frame is sent from configuration space
960
** offset: 0x78 : Request Frame (bit30 == 1)
961
** offset: 0x18 : writeonly to generate IRQ to IOP331
962
** Completion of request:
963
** (bit30 == 0, bit28==err flag)
964
** 7. Definition of SGL entry (structure)
965
** 8. Message1 Out - Diag Status Code (????)
966
** 9. Message0 message code :
967
** 0x00 : NOP
968
** 0x01 : Get Config ->offset 0xa00 :for outbound message code msgcode_rwbuffer (IOP331 send to driver)
969
** Signature 0x87974060(4)
970
** Request len 0x00000200(4)
971
** numbers of queue 0x00000100(4)
972
** SDRAM Size 0x00000100(4)-->256 MB
973
** IDE Channels 0x00000008(4)
974
** vendor 40 bytes char
975
** model 8 bytes char
976
** FirmVer 16 bytes char
977
** Device Map 16 bytes char
978
**
979
** FirmwareVersion DWORD <== Added for checking of new firmware capability
980
** 0x02 : Set Config ->offset 0xa00 : for inbound message code msgcode_rwbuffer (driver send to IOP331)
981
** Signature 0x87974063(4)
982
** UPPER32 of Request Frame (4)-->Driver Only
983
** 0x03 : Reset (Abort all queued Command)
984
** 0x04 : Stop Background Activity
985
** 0x05 : Flush Cache
986
** 0x06 : Start Background Activity (re-start if background is halted)
987
** 0x07 : Check If Host Command Pending (Novell May Need This Function)
988
** 0x08 : Set controller time ->offset 0xa00 : for inbound message code msgcode_rwbuffer (driver to IOP331)
989
** byte 0 : 0xaa <-- signature
990
** byte 1 : 0x55 <-- signature
991
** byte 2 : year (04)
992
** byte 3 : month (1..12)
993
** byte 4 : date (1..31)
994
** byte 5 : hour (0..23)
995
** byte 6 : minute (0..59)
996
** byte 7 : second (0..59)
997
** *********************************************************************************
998
** Porting Of LSI2108/2116 Based PCIE SAS/6G host raid adapter
999
** ==> Difference from IOP348
1000
** <1> Message Register 0,1 (the same usage) Init Thread message and retrun code
1001
** Inbound Message 0 (inbound_msgaddr0) : at offset 0xB0 (Scratchpad0) for inbound message code msgcode_rwbuffer (driver send to IOP)
1002
** Inbound Message 1 (inbound_msgaddr1) : at offset 0xB4 (Scratchpad1) Out.... Diag Status Code
1003
** Outbound Message 0 (outbound_msgaddr0): at offset 0xB8 (Scratchpad3) Out.... Diag Status Code
1004
** Outbound Message 1 (outbound_msgaddr1): at offset 0xBC (Scratchpad2) for outbound message code msgcode_rwbuffer (IOP send to driver)
1005
** <A> use doorbell to generate interrupt
1006
**
1007
** inbound doorbell: bit3 -- inbound message 0 ready (driver to iop)
1008
** outbound doorbell: bit3 -- outbound message 0 ready (iop to driver)
1009
**
1010
** a. Message1: Out - Diag Status Code (????)
1011
**
1012
** b. Message0: message code
1013
** 0x00 : NOP
1014
** 0x01 : Get Config ->offset 0xB8 :for outbound message code msgcode_rwbuffer (IOP send to driver)
1015
** Signature 0x87974060(4)
1016
** Request len 0x00000200(4)
1017
** numbers of queue 0x00000100(4)
1018
** SDRAM Size 0x00000100(4)-->256 MB
1019
** IDE Channels 0x00000008(4)
1020
** vendor 40 bytes char
1021
** model 8 bytes char
1022
** FirmVer 16 bytes char
1023
** Device Map 16 bytes char
1024
** cfgVersion ULONG <== Added for checking of new firmware capability
1025
** 0x02 : Set Config ->offset 0xB0 :for inbound message code msgcode_rwbuffer (driver send to IOP)
1026
** Signature 0x87974063(4)
1027
** UPPER32 of Request Frame (4)-->Driver Only
1028
** 0x03 : Reset (Abort all queued Command)
1029
** 0x04 : Stop Background Activity
1030
** 0x05 : Flush Cache
1031
** 0x06 : Start Background Activity (re-start if background is halted)
1032
** 0x07 : Check If Host Command Pending (Novell May Need This Function)
1033
** 0x08 : Set controller time ->offset 0xB0 : for inbound message code msgcode_rwbuffer (driver to IOP)
1034
** byte 0 : 0xaa <-- signature
1035
** byte 1 : 0x55 <-- signature
1036
** byte 2 : year (04)
1037
** byte 3 : month (1..12)
1038
** byte 4 : date (1..31)
1039
** byte 5 : hour (0..23)
1040
** byte 6 : minute (0..59)
1041
** byte 7 : second (0..59)
1042
**
1043
** <2> Doorbell Register is used for RS-232 emulation
1044
** <A> different clear register
1045
** <B> different bit0 definition (bit0 is reserved)
1046
**
1047
** inbound doorbell : at offset 0x20
1048
** inbound doorbell clear : at offset 0x70
1049
**
1050
** inbound doorbell : bit0 -- reserved
1051
** bit1 -- data in ready (DRIVER DATA WRITE OK)
1052
** bit2 -- data out has been read (DRIVER DATA READ OK)
1053
** bit3 -- inbound message 0 ready
1054
** bit4 -- more than 12 request completed in a time
1055
**
1056
** outbound doorbell : at offset 0x9C
1057
** outbound doorbell clear : at offset 0xA0
1058
**
1059
** outbound doorbell : bit0 -- reserved
1060
** bit1 -- data out ready (IOP DATA WRITE OK)
1061
** bit2 -- data in has been read (IOP DATA READ OK)
1062
** bit3 -- outbound message 0 ready
1063
**
1064
** <3> Index Memory Usage (Buffer Area)
1065
** COMPORT_IN at 0x2000: message_wbuffer -- 128 bytes (to be sent to ROC) : for RS232 in (scratch buffer)
1066
** COMPORT_OUT at 0x2100: message_rbuffer -- 128 bytes (to be sent to host): for RS232 out (request buffer)
1067
** BIOS_CFG_AREA at 0x2200: msgcode_rwbuffer -- 1024 bytes for outbound message code msgcode_rwbuffer (IOP send to driver)
1068
** BIOS_CFG_AREA at 0x2200: msgcode_rwbuffer -- 1024 bytes for inbound message code msgcode_rwbuffer (driver send to IOP)
1069
**
1070
** <4> PostQ (Command Post Address)
1071
** All SCSI Command must be sent through postQ:
1072
** inbound queue port32 at offset 0x40 , 0x41, 0x42, 0x43
1073
** inbound queue port64 at offset 0xC0 (lower)/0xC4 (upper)
1074
** outbound queue port32 at offset 0x44
1075
** outbound queue port64 at offset 0xC8 (lower)/0xCC (upper)
1076
** <A> For 32bit queue, access low part is enough to send/receive request
1077
** i.e. write 0x40/0xC0, ROC will get the request with high part == 0, the
1078
** same for outbound queue port
1079
** <B> For 64bit queue, if 64bit instruction is supported, use 64bit instruction
1080
** to post inbound request in a single instruction, and use 64bit instruction
1081
** to retrieve outbound request in a single instruction.
1082
** If in 32bit environment, when sending inbound queue, write high part first
1083
** then write low part. For receiving outbound request, read high part first
1084
** then low part, to check queue empty, ONLY check high part to be 0xFFFFFFFF.
1085
** If high part is 0xFFFFFFFF, DO NOT read low part, this may corrupt the
1086
** consistency of the FIFO. Another way to check empty is to check status flag
1087
** at 0x30 bit3.
1088
** <C> Post Address IS NOT shifted (must be 16 bytes aligned)
1089
** For BIOS, 16bytes aligned is OK
1090
** For Driver, 32bytes alignment is recommended.
1091
** POST Command bit0 to bit3 is defined differently
1092
** ----------------------------
1093
** bit0:1 for PULL mode (must be 1)
1094
** ----------------------------
1095
** bit3/2/1: for arcmsr cdb size (arccdbsize)
1096
** 000: <= 0x0080 (128)
1097
** 001: <= 0x0100 (256)
1098
** 010: <= 0x0180 (384)
1099
** 011: <= 0x0200 (512)
1100
** 100: <= 0x0280 (640)
1101
** 101: <= 0x0300 (768)
1102
** 110: <= 0x0300 (reserved)
1103
** 111: <= 0x0300 (reserved)
1104
** -----------------------------
1105
** if len > 0x300 the len always set as 0x300
1106
** -----------------------------
1107
** post addr = addr | ((len-1) >> 6) | 1
1108
** -----------------------------
1109
** page length in command buffer still required,
1110
**
1111
** if page length > 3,
1112
** firmware will assume more request data need to be retrieved
1113
**
1114
** <D> Outbound Posting
1115
** bit0:0 , no error, 1 with error, refer to status buffer
1116
** bit1:0 , reserved (will be 0)
1117
** bit2:0 , reserved (will be 0)
1118
** bit3:0 , reserved (will be 0)
1119
** bit63-4: Completed command address
1120
**
1121
** <E> BIOS support, no special support is required.
1122
** LSI2108 support I/O register
1123
** All driver functionality is supported through I/O address
1124
**
1125
************************************************************************************************
1126
*/
1127
/*
1128
**********************************
1129
**
1130
**********************************
1131
*/
1132
/* size 8 bytes */
1133
/* 32bit Scatter-Gather list */
1134
struct SG32ENTRY { /* length bit 24 == 0 */
1135
u_int32_t length; /* high 8 bit == flag,low 24 bit == length */
1136
u_int32_t address;
1137
};
1138
/* size 12 bytes */
1139
/* 64bit Scatter-Gather list */
1140
struct SG64ENTRY { /* length bit 24 == 1 */
1141
u_int32_t length; /* high 8 bit == flag,low 24 bit == length */
1142
u_int32_t address;
1143
u_int32_t addresshigh;
1144
};
1145
struct SGENTRY_UNION {
1146
union {
1147
struct SG32ENTRY sg32entry; /* 30h Scatter gather address */
1148
struct SG64ENTRY sg64entry; /* 30h */
1149
}u;
1150
};
1151
/*
1152
**********************************
1153
**
1154
**********************************
1155
*/
1156
struct QBUFFER {
1157
u_int32_t data_len;
1158
u_int8_t data[124];
1159
};
1160
/*
1161
**********************************
1162
*/
1163
typedef struct PHYS_ADDR64 {
1164
u_int32_t phyadd_low;
1165
u_int32_t phyadd_high;
1166
}PHYSADDR64;
1167
/*
1168
************************************************************************************************
1169
** FIRMWARE INFO
1170
************************************************************************************************
1171
*/
1172
#define ARCMSR_FW_MODEL_OFFSET 15
1173
#define ARCMSR_FW_VERS_OFFSET 17
1174
#define ARCMSR_FW_DEVMAP_OFFSET 21
1175
#define ARCMSR_FW_CFGVER_OFFSET 25
1176
#define ARCMSR_FW_PICSTATUS 30
1177
1178
struct FIRMWARE_INFO {
1179
u_int32_t signature; /*0,00-03*/
1180
u_int32_t request_len; /*1,04-07*/
1181
u_int32_t numbers_queue; /*2,08-11*/
1182
u_int32_t sdram_size; /*3,12-15*/
1183
u_int32_t ide_channels; /*4,16-19*/
1184
char vendor[40]; /*5,20-59*/
1185
char model[8]; /*15,60-67*/
1186
char firmware_ver[16]; /*17,68-83*/
1187
char device_map[16]; /*21,84-99*/
1188
u_int32_t cfgVersion; /*25,100-103 Added for checking of new firmware capability*/
1189
char cfgSerial[16]; /*26,104-119*/
1190
u_int32_t cfgPicStatus; /*30,120-123*/
1191
};
1192
/* (A) For cfgVersion in FIRMWARE_INFO
1193
** if low BYTE (byte#0) >= 3 (version 3)
1194
** then byte#1 report the capability of the firmware can xfer in a single request
1195
**
1196
** byte#1
1197
** 0 256K
1198
** 1 512K
1199
** 2 1M
1200
** 3 2M
1201
** 4 4M
1202
** 5 8M
1203
** 6 16M
1204
** (B) Byte offset 7 (Reserved1) of CDB is changed to msgPages
1205
** Driver support new xfer method need to set this field to indicate
1206
** large CDB block in 0x100 unit (we use 0x100 byte as one page)
1207
** e.g. If the length of CDB including MSG header and SGL is 0x1508
1208
** driver need to set the msgPages to 0x16
1209
** (C) REQ_LEN_512BYTE must be used also to indicate SRB length
1210
** e.g. CDB len msgPages REQ_LEN_512BYTE flag
1211
** <= 0x100 1 0
1212
** <= 0x200 2 1
1213
** <= 0x300 3 1
1214
** <= 0x400 4 1
1215
** .
1216
** .
1217
*/
1218
1219
/*
1220
************************************************************************************************
1221
** size 0x1F8 (504)
1222
************************************************************************************************
1223
*/
1224
struct ARCMSR_CDB {
1225
u_int8_t Bus; /* 00h should be 0 */
1226
u_int8_t TargetID; /* 01h should be 0--15 */
1227
u_int8_t LUN; /* 02h should be 0--7 */
1228
u_int8_t Function; /* 03h should be 1 */
1229
1230
u_int8_t CdbLength; /* 04h not used now */
1231
u_int8_t sgcount; /* 05h */
1232
u_int8_t Flags; /* 06h */
1233
u_int8_t msgPages; /* 07h */
1234
1235
u_int32_t Context; /* 08h Address of this request */
1236
u_int32_t DataLength; /* 0ch not used now */
1237
1238
u_int8_t Cdb[16]; /* 10h SCSI CDB */
1239
/*
1240
********************************************************
1241
** Device Status : the same from SCSI bus if error occur
1242
** SCSI bus status codes.
1243
********************************************************
1244
*/
1245
u_int8_t DeviceStatus; /* 20h if error */
1246
1247
u_int8_t SenseData[15]; /* 21h output */
1248
1249
union {
1250
struct SG32ENTRY sg32entry[ARCMSR_MAX_SG_ENTRIES]; /* 30h Scatter gather address */
1251
struct SG64ENTRY sg64entry[ARCMSR_MAX_SG_ENTRIES]; /* 30h */
1252
} u;
1253
};
1254
/* CDB flag */
1255
#define ARCMSR_CDB_FLAG_SGL_BSIZE 0x01 /* bit 0: 0(256) / 1(512) bytes */
1256
#define ARCMSR_CDB_FLAG_BIOS 0x02 /* bit 1: 0(from driver) / 1(from BIOS) */
1257
#define ARCMSR_CDB_FLAG_WRITE 0x04 /* bit 2: 0(Data in) / 1(Data out) */
1258
#define ARCMSR_CDB_FLAG_SIMPLEQ 0x00 /* bit 4/3 ,00 : simple Q,01 : head of Q,10 : ordered Q */
1259
#define ARCMSR_CDB_FLAG_HEADQ 0x08
1260
#define ARCMSR_CDB_FLAG_ORDEREDQ 0x10
1261
/* scsi status */
1262
#define SCSISTAT_GOOD 0x00
1263
#define SCSISTAT_CHECK_CONDITION 0x02
1264
#define SCSISTAT_CONDITION_MET 0x04
1265
#define SCSISTAT_BUSY 0x08
1266
#define SCSISTAT_INTERMEDIATE 0x10
1267
#define SCSISTAT_INTERMEDIATE_COND_MET 0x14
1268
#define SCSISTAT_RESERVATION_CONFLICT 0x18
1269
#define SCSISTAT_COMMAND_TERMINATED 0x22
1270
#define SCSISTAT_QUEUE_FULL 0x28
1271
/* DeviceStatus */
1272
#define ARCMSR_DEV_SELECT_TIMEOUT 0xF0
1273
#define ARCMSR_DEV_ABORTED 0xF1
1274
#define ARCMSR_DEV_INIT_FAIL 0xF2
1275
/*
1276
*********************************************************************
1277
** Command Control Block (SrbExtension)
1278
** SRB must be not cross page boundary,and the order from offset 0
1279
** structure describing an ATA disk request
1280
** this SRB length must be 32 bytes boundary
1281
*********************************************************************
1282
*/
1283
struct CommandControlBlock {
1284
struct ARCMSR_CDB arcmsr_cdb; /* 0 -503 (size of CDB=504): arcmsr messenger scsi command descriptor size 504 bytes */
1285
unsigned long cdb_phyaddr; /* 504-507 */
1286
/* ======================512+32 bytes============================ */
1287
union ccb *pccb; /* 512-515 516-519 pointer of freebsd scsi command */
1288
struct AdapterControlBlock *acb; /* 520-523 524-527 */
1289
bus_dmamap_t dm_segs_dmamap; /* 528-531 532-535 */
1290
u_int16_t srb_flags; /* 536-537 */
1291
u_int16_t srb_state; /* 538-539 */
1292
u_int32_t arc_cdb_size; /* 508-511 */
1293
struct callout ccb_callout;
1294
u_int32_t smid;
1295
/* ========================================================== */
1296
};
1297
/* srb_flags */
1298
#define SRB_FLAG_READ 0x0000
1299
#define SRB_FLAG_WRITE 0x0001
1300
#define SRB_FLAG_ERROR 0x0002
1301
#define SRB_FLAG_FLUSHCACHE 0x0004
1302
#define SRB_FLAG_MASTER_ABORTED 0x0008
1303
#define SRB_FLAG_DMAVALID 0x0010
1304
#define SRB_FLAG_DMACONSISTENT 0x0020
1305
#define SRB_FLAG_DMAWRITE 0x0040
1306
#define SRB_FLAG_PKTBIND 0x0080
1307
#define SRB_FLAG_TIMER_START 0x0080
1308
#define SRB_FLAG_DIRECT_IO 0x0100
1309
#define SRB_FLAG_USE_SG 0x0200
1310
/* srb_state */
1311
#define ARCMSR_SRB_DONE 0x0000
1312
#define ARCMSR_SRB_UNBUILD 0x0000
1313
#define ARCMSR_SRB_TIMEOUT 0x1111
1314
#define ARCMSR_SRB_RETRY 0x2222
1315
#define ARCMSR_SRB_START 0x55AA
1316
#define ARCMSR_SRB_PENDING 0xAA55
1317
#define ARCMSR_SRB_RESET 0xA5A5
1318
#define ARCMSR_SRB_ABORTED 0x5A5A
1319
#define ARCMSR_SRB_ILLEGAL 0xFFFF
1320
1321
#define SRB_SIZE ((sizeof(struct CommandControlBlock)+0x1f) & 0xffe0)
1322
#define ARCMSR_SRBS_POOL_SIZE (SRB_SIZE * ARCMSR_MAX_FREESRB_NUM)
1323
1324
/*
1325
*********************************************************************
1326
** Adapter Control Block
1327
*********************************************************************
1328
*/
1329
#define ACB_ADAPTER_TYPE_A 0x00000000 /* hba I IOP */
1330
#define ACB_ADAPTER_TYPE_B 0x00000001 /* hbb M IOP */
1331
#define ACB_ADAPTER_TYPE_C 0x00000002 /* hbc L IOP */
1332
#define ACB_ADAPTER_TYPE_D 0x00000003 /* hbd M IOP */
1333
#define ACB_ADAPTER_TYPE_E 0x00000004 /* hbd L IOP */
1334
#define ACB_ADAPTER_TYPE_F 0x00000005 /* hbd L IOP */
1335
1336
struct AdapterControlBlock {
1337
u_int32_t adapter_type; /* adapter A,B..... */
1338
1339
bus_space_tag_t btag[2];
1340
bus_space_handle_t bhandle[2];
1341
bus_dma_tag_t parent_dmat;
1342
bus_dma_tag_t dm_segs_dmat; /* dmat for buffer I/O */
1343
bus_dma_tag_t srb_dmat; /* dmat for freesrb */
1344
bus_dmamap_t srb_dmamap;
1345
device_t pci_dev;
1346
struct cdev *ioctl_dev;
1347
int pci_unit;
1348
1349
struct resource *sys_res_arcmsr[2];
1350
struct resource *irqres[ARCMSR_NUM_MSIX_VECTORS];
1351
void *ih[ARCMSR_NUM_MSIX_VECTORS]; /* interrupt handle */
1352
int irq_id[ARCMSR_NUM_MSIX_VECTORS];
1353
1354
/* Hooks into the CAM XPT */
1355
struct cam_sim *psim;
1356
struct cam_path *ppath;
1357
u_int8_t *uncacheptr;
1358
unsigned long vir2phy_offset;
1359
union {
1360
unsigned long phyaddr;
1361
struct {
1362
u_int32_t phyadd_low;
1363
u_int32_t phyadd_high;
1364
}B;
1365
}srb_phyaddr;
1366
// unsigned long srb_phyaddr;
1367
/* Offset is used in making arc cdb physical to virtual calculations */
1368
u_int32_t outbound_int_enable;
1369
1370
struct MessageUnit_UNION *pmu; /* message unit ATU inbound base address0 */
1371
vm_offset_t mem_base0;
1372
vm_offset_t mem_base1;
1373
uint32_t *message_wbuffer; //0x000 - COMPORT_IN (to be sent to ROC)
1374
uint32_t *message_rbuffer; //0x100 - COMPORT_OUT (to be sent to Host)
1375
uint32_t *msgcode_rwbuffer; //0x200 - BIOS_AREA
1376
1377
u_int8_t adapter_index;
1378
u_int8_t irq;
1379
u_int16_t acb_flags;
1380
1381
struct CommandControlBlock *psrb_pool[ARCMSR_MAX_FREESRB_NUM]; /* serial srb pointer array */
1382
struct CommandControlBlock *srbworkingQ[ARCMSR_MAX_FREESRB_NUM]; /* working srb pointer array */
1383
int32_t workingsrb_doneindex; /* done srb array index */
1384
int32_t workingsrb_startindex; /* start srb array index */
1385
int32_t srboutstandingcount;
1386
1387
u_int8_t rqbuffer[ARCMSR_MAX_QBUFFER]; /* data collection buffer for read from 80331 */
1388
u_int32_t rqbuf_firstindex; /* first of read buffer */
1389
u_int32_t rqbuf_lastindex; /* last of read buffer */
1390
1391
u_int8_t wqbuffer[ARCMSR_MAX_QBUFFER]; /* data collection buffer for write to 80331 */
1392
u_int32_t wqbuf_firstindex; /* first of write buffer */
1393
u_int32_t wqbuf_lastindex; /* last of write buffer */
1394
1395
arcmsr_lock_t isr_lock;
1396
arcmsr_lock_t srb_lock;
1397
arcmsr_lock_t postDone_lock;
1398
arcmsr_lock_t qbuffer_lock;
1399
1400
u_int8_t devstate[ARCMSR_MAX_TARGETID][ARCMSR_MAX_TARGETLUN]; /* id0 ..... id15,lun0...lun7 */
1401
u_int32_t num_resets;
1402
u_int32_t num_aborts;
1403
u_int32_t firm_request_len; /*1,04-07*/
1404
u_int32_t firm_numbers_queue; /*2,08-11*/
1405
u_int32_t firm_sdram_size; /*3,12-15*/
1406
u_int32_t firm_ide_channels; /*4,16-19*/
1407
u_int32_t firm_cfg_version;
1408
char firm_model[12]; /*15,60-67*/
1409
char firm_version[20]; /*17,68-83*/
1410
char device_map[20]; /*21,84-99 */
1411
u_int32_t firm_PicStatus;
1412
struct callout devmap_callout;
1413
u_int32_t pktRequestCount;
1414
u_int32_t pktReturnCount;
1415
u_int32_t vendor_device_id;
1416
u_int32_t adapter_bus_speed;
1417
u_int32_t maxOutstanding;
1418
u_int16_t sub_device_id;
1419
u_int32_t doneq_index;
1420
u_int32_t in_doorbell;
1421
u_int32_t out_doorbell;
1422
u_int32_t completionQ_entry;
1423
pCompletion_Q pCompletionQ;
1424
int xor_mega;
1425
int msix_vectors;
1426
int rid[2];
1427
unsigned long completeQ_phys;
1428
u_int32_t max_coherent_size;
1429
u_int8_t *xortable;
1430
unsigned long xor_sgtable_phy;
1431
bus_dma_tag_t xortable_dmat; /* dmat for xor table */
1432
bus_dmamap_t xortable_dmamap;
1433
u_int8_t *xorptr;
1434
bus_dma_tag_t xor_dmat; /* dmat for xor */
1435
bus_dmamap_t xor_dmamap;
1436
unsigned int init2cfg_size;
1437
unsigned int xorVirtOffset;
1438
};/* HW_DEVICE_EXTENSION */
1439
1440
struct HostRamBuf {
1441
u_int32_t hrbSignature; // must be "HRBS"
1442
u_int32_t hrbSize; // total buffer size(must be multiples of MB, this version should be 128+3 MB, i.e. 0x8300000)
1443
u_int32_t hrbRes[2]; // reserved, must be set to 0
1444
};
1445
struct XorSg {
1446
u_int64_t xorPhys;
1447
u_int64_t xorBufLen;
1448
};
1449
#define ARCMSR_XOR_SEG_SIZE (1024 * 1024)
1450
#define ARCMSR_MAX_XOR_SEG 128 + 3
1451
#define ARCMSR_DMA_ALLOC_FLAG (BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO | BUS_DMA_NOCACHE)
1452
1453
/* acb_flags */
1454
#define ACB_F_SCSISTOPADAPTER 0x0001
1455
#define ACB_F_MSG_STOP_BGRB 0x0002 /* stop RAID background rebuild */
1456
#define ACB_F_MSG_START_BGRB 0x0004 /* stop RAID background rebuild */
1457
#define ACB_F_IOPDATA_OVERFLOW 0x0008 /* iop ioctl data rqbuffer overflow */
1458
#define ACB_F_MESSAGE_WQBUFFER_CLEARED 0x0010 /* ioctl clear wqbuffer */
1459
#define ACB_F_MESSAGE_RQBUFFER_CLEARED 0x0020 /* ioctl clear rqbuffer */
1460
#define ACB_F_MESSAGE_WQBUFFER_READ 0x0040
1461
#define ACB_F_BUS_RESET 0x0080
1462
#define ACB_F_IOP_INITED 0x0100 /* iop init */
1463
#define ACB_F_MAPFREESRB_FAILD 0x0200 /* arcmsr_map_freesrb failed */
1464
#define ACB_F_CAM_DEV_QFRZN 0x0400
1465
#define ACB_F_BUS_HANG_ON 0x0800 /* need hardware reset bus */
1466
#define ACB_F_SRB_FUNCTION_POWER 0x1000
1467
#define ACB_F_MSIX_ENABLED 0x2000
1468
#define ACB_F_MSG_GET_CONFIG 0x4000
1469
#define ACB_F_DIRECT_IO 0x8000
1470
#define ACB_F_DMAMAP_SRB 0x10000
1471
#define ACB_F_DMAMAP_SGTABLE 0x20000
1472
#define ACB_F_DMAMAP_SG 0x40000
1473
#define ACB_F_MAPXOR_FAILD 0x80000
1474
/* devstate */
1475
#define ARECA_RAID_GONE 0x55
1476
#define ARECA_RAID_GOOD 0xaa
1477
/* adapter_bus_speed */
1478
#define ACB_BUS_SPEED_3G 0
1479
#define ACB_BUS_SPEED_6G 1
1480
#define ACB_BUS_SPEED_12G 2
1481
/*
1482
*************************************************************
1483
*************************************************************
1484
*/
1485
struct SENSE_DATA {
1486
u_int8_t ErrorCode:7;
1487
u_int8_t Valid:1;
1488
u_int8_t SegmentNumber;
1489
u_int8_t SenseKey:4;
1490
u_int8_t Reserved:1;
1491
u_int8_t IncorrectLength:1;
1492
u_int8_t EndOfMedia:1;
1493
u_int8_t FileMark:1;
1494
u_int8_t Information[4];
1495
u_int8_t AdditionalSenseLength;
1496
u_int8_t CommandSpecificInformation[4];
1497
u_int8_t AdditionalSenseCode;
1498
u_int8_t AdditionalSenseCodeQualifier;
1499
u_int8_t FieldReplaceableUnitCode;
1500
u_int8_t SenseKeySpecific[3];
1501
};
1502
/*
1503
**********************************
1504
** Peripheral Device Type definitions
1505
**********************************
1506
*/
1507
#define SCSI_DASD 0x00 /* Direct-access Device */
1508
#define SCSI_SEQACESS 0x01 /* Sequential-access device */
1509
#define SCSI_PRINTER 0x02 /* Printer device */
1510
#define SCSI_PROCESSOR 0x03 /* Processor device */
1511
#define SCSI_WRITEONCE 0x04 /* Write-once device */
1512
#define SCSI_CDROM 0x05 /* CD-ROM device */
1513
#define SCSI_SCANNER 0x06 /* Scanner device */
1514
#define SCSI_OPTICAL 0x07 /* Optical memory device */
1515
#define SCSI_MEDCHGR 0x08 /* Medium changer device */
1516
#define SCSI_COMM 0x09 /* Communications device */
1517
#define SCSI_NODEV 0x1F /* Unknown or no device type */
1518
/*
1519
************************************************************************************************************
1520
** @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
1521
** 80331 PCI-to-PCI Bridge
1522
** PCI Configuration Space
1523
**
1524
** @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
1525
** Programming Interface
1526
** ========================
1527
** Configuration Register Address Space Groupings and Ranges
1528
** =============================================================
1529
** Register Group Configuration Offset
1530
** -------------------------------------------------------------
1531
** Standard PCI Configuration 00-3Fh
1532
** -------------------------------------------------------------
1533
** Device Specific Registers 40-A7h
1534
** -------------------------------------------------------------
1535
** Reserved A8-CBh
1536
** -------------------------------------------------------------
1537
** Enhanced Capability List CC-FFh
1538
** ==========================================================================================================
1539
** Standard PCI [Type 1] Configuration Space Address Map
1540
** **********************************************************************************************************
1541
** | Byte 3 | Byte 2 | Byte 1 | Byte 0 | Configu-ration Byte Offset
1542
** ----------------------------------------------------------------------------------------------------------
1543
** | Device ID | Vendor ID | 00h
1544
** ----------------------------------------------------------------------------------------------------------
1545
** | Primary Status | Primary Command | 04h
1546
** ----------------------------------------------------------------------------------------------------------
1547
** | Class Code | RevID | 08h
1548
** ----------------------------------------------------------------------------------------------------------
1549
** | reserved | Header Type | Primary MLT | Primary CLS | 0Ch
1550
** ----------------------------------------------------------------------------------------------------------
1551
** | Reserved | 10h
1552
** ----------------------------------------------------------------------------------------------------------
1553
** | Reserved | 14h
1554
** ----------------------------------------------------------------------------------------------------------
1555
** | Secondary MLT | Subordinate Bus Number | Secondary Bus Number | Primary Bus Number | 18h
1556
** ----------------------------------------------------------------------------------------------------------
1557
** | Secondary Status | I/O Limit | I/O Base | 1Ch
1558
** ----------------------------------------------------------------------------------------------------------
1559
** | Non-prefetchable Memory Limit Address | Non-prefetchable Memory Base Address | 20h
1560
** ----------------------------------------------------------------------------------------------------------
1561
** | Prefetchable Memory Limit Address | Prefetchable Memory Base Address | 24h
1562
** ----------------------------------------------------------------------------------------------------------
1563
** | Prefetchable Memory Base Address Upper 32 Bits | 28h
1564
** ----------------------------------------------------------------------------------------------------------
1565
** | Prefetchable Memory Limit Address Upper 32 Bits | 2Ch
1566
** ----------------------------------------------------------------------------------------------------------
1567
** | I/O Limit Upper 16 Bits | I/O Base Upper 16 | 30h
1568
** ----------------------------------------------------------------------------------------------------------
1569
** | Reserved | Capabilities Pointer | 34h
1570
** ----------------------------------------------------------------------------------------------------------
1571
** | Reserved | 38h
1572
** ----------------------------------------------------------------------------------------------------------
1573
** | Bridge Control | Primary Interrupt Pin | Primary Interrupt Line | 3Ch
1574
**=============================================================================================================
1575
*/
1576
/*
1577
**=============================================================================================================
1578
** 0x03-0x00 :
1579
** Bit Default Description
1580
**31:16 0335h Device ID (DID): Indicates the unique device ID that is assigned to bridge by the PCI SIG.
1581
** ID is unique per product speed as indicated.
1582
**15:00 8086h Vendor ID (VID): 16-bit field which indicates that Intel is the vendor.
1583
**=============================================================================================================
1584
*/
1585
#define ARCMSR_PCI2PCI_VENDORID_REG 0x00 /*word*/
1586
#define ARCMSR_PCI2PCI_DEVICEID_REG 0x02 /*word*/
1587
/*
1588
**==============================================================================
1589
** 0x05-0x04 : command register
1590
** Bit Default Description
1591
**15:11 00h Reserved
1592
** 10 0 Interrupt Disable: Disables/Enables the generation of Interrupts on the primary bus.
1593
** The bridge does not support interrupts.
1594
** 09 0 FB2B Enable: Enables/Disables the generation of fast back to back
1595
** transactions on the primary bus.
1596
** The bridge does not generate fast back to back
1597
** transactions on the primary bus.
1598
** 08 0 SERR# Enable (SEE): Enables primary bus SERR# assertions.
1599
** 0=The bridge does not assert P_SERR#.
1600
** 1=The bridge may assert P_SERR#, subject to other programmable criteria.
1601
** 07 0 Wait Cycle Control (WCC): Always returns 0bzero indicating
1602
** that bridge does not perform address or data stepping,
1603
** 06 0 Parity Error Response (PER): Controls bridge response to a detected primary bus parity error.
1604
** 0=When a data parity error is detected bridge does not assert S_PERR#.
1605
** Also bridge does not assert P_SERR# in response to
1606
** a detected address or attribute parity error.
1607
** 1=When a data parity error is detected bridge asserts S_PERR#.
1608
** The bridge also asserts P_SERR#
1609
** (when enabled globally via bit(8) of this register)
1610
** in response to a detected address or attribute parity error.
1611
** 05 0 VGA Palette Snoop Enable (VGA_PSE): Controls bridge response to VGA-compatible palette write transactions.
1612
** VGA palette write transactions are I/O transactions
1613
** whose address bits are: P_AD[9:0] equal to 3C6h, 3C8h or 3C9h
1614
** P_AD[15:10] are not decoded (i.e. aliases are claimed),
1615
** or are fully decoding
1616
** (i.e., must be all 0's depending upon the VGA
1617
** aliasing bit in the Bridge Control Register, offset 3Eh.
1618
** P_AD[31:16] equal to 0000h
1619
** 0=The bridge ignores VGA palette write transactions,
1620
** unless decoded by the standard I/O address range window.
1621
** 1=The bridge responds to VGA palette write transactions
1622
** with medium DEVSEL# timing and forwards them to the secondary bus.
1623
** 04 0 Memory Write and Invalidate Enable (MWIE): The bridge does not promote MW transactions to MWI transactions.
1624
** MWI transactions targeting resources on the opposite side of the bridge,
1625
** however, are forwarded as MWI transactions.
1626
** 03 0 Special Cycle Enable (SCE): The bridge ignores special cycle transactions.
1627
** This bit is read only and always returns 0 when read
1628
** 02 0 Bus Master Enable (BME): Enables bridge to initiate memory and I/O transactions on the primary interface.
1629
** Initiation of configuration transactions is not affected by the state of this bit.
1630
** 0=The bridge does not initiate memory or I/O transactions on the primary interface.
1631
** 1=The bridge is enabled to function as an initiator on the primary interface.
1632
** 01 0 Memory Space Enable (MSE): Controls target response to memory transactions on the primary interface.
1633
** 0=The bridge target response to memory transactions on the primary interface is disabled.
1634
** 1=The bridge target response to memory transactions on the primary interface is enabled.
1635
** 00 0 I/O Space Enable (IOSE): Controls target response to I/O transactions on the primary interface.
1636
** 0=The bridge target response to I/O transactions on the primary interface is disabled.
1637
** 1=The bridge target response to I/O transactions on the primary interface is enabled.
1638
**==============================================================================
1639
*/
1640
#define ARCMSR_PCI2PCI_PRIMARY_COMMAND_REG 0x04 /*word*/
1641
#define PCI_DISABLE_INTERRUPT 0x0400
1642
/*
1643
**==============================================================================
1644
** 0x07-0x06 : status register
1645
** Bit Default Description
1646
** 15 0 Detected Parity Error: The bridge sets this bit to a 1b whenever it detects an address,
1647
** attribute or data parity error.
1648
** This bit is set regardless of the state of the PER bit in the command register.
1649
** 14 0 Signaled System Error: The bridge sets this bit to a 1b whenever it asserts SERR# on the primary bus.
1650
** 13 0 Received Master Abort: The bridge sets this bit to a 1b when,
1651
** acting as the initiator on the primary bus,
1652
** its transaction (with the exception of special cycles)
1653
** has been terminated with a Master Abort.
1654
** 12 0 Received Target Abort: The bridge sets this bit to a 1b when,
1655
** acting as the initiator on the primary bus,
1656
** its transaction has been terminated with a Target Abort.
1657
** 11 0 Signaled Target Abort: The bridge sets this bit to a 1b when it,
1658
** as the target of a transaction, terminates it with a Target Abort.
1659
** In PCI-X mode this bit is also set when it forwards a SCM with a target abort error code.
1660
** 10:09 01 DEVSEL# Timing: Indicates slowest response to a non-configuration command on the primary interface.
1661
** Returns ��01b�� when read, indicating that bridge responds no slower than with medium timing.
1662
** 08 0 Master Data Parity Error: The bridge sets this bit to a 1b when all of the following conditions are true:
1663
** The bridge is the current master on the primary bus
1664
** S_PERR# is detected asserted or is asserted by bridge
1665
** The Parity Error Response bit is set in the Command register
1666
** 07 1 Fast Back to Back Capable: Returns a 1b when read indicating that bridge
1667
** is able to respond to fast back to back transactions on its primary interface.
1668
** 06 0 Reserved
1669
** 05 1 66 MHz Capable Indication: Returns a 1b when read indicating that bridge primary interface is 66 MHz capable.
1670
** 1 =
1671
** 04 1 Capabilities List Enable: Returns 1b when read indicating that bridge supports PCI standard enhanced capabilities.
1672
** Offset 34h (Capability Pointer register)
1673
** provides the offset for the first entry
1674
** in the linked list of enhanced capabilities.
1675
** 03 0 Interrupt Status: Reflects the state of the interrupt in the device/function.
1676
** The bridge does not support interrupts.
1677
** 02:00 000 Reserved
1678
**==============================================================================
1679
*/
1680
#define ARCMSR_PCI2PCI_PRIMARY_STATUS_REG 0x06 /*word: 06,07 */
1681
#define ARCMSR_ADAP_66MHZ 0x20
1682
/*
1683
**==============================================================================
1684
** 0x08 : revision ID
1685
** Bit Default Description
1686
** 07:00 00000000 Revision ID (RID): '00h' indicating bridge A-0 stepping.
1687
**==============================================================================
1688
*/
1689
#define ARCMSR_PCI2PCI_REVISIONID_REG 0x08 /*byte*/
1690
/*
1691
**==============================================================================
1692
** 0x0b-0x09 : 0180_00 (class code 1,native pci mode )
1693
** Bit Default Description
1694
** 23:16 06h Base Class Code (BCC): Indicates that this is a bridge device.
1695
** 15:08 04h Sub Class Code (SCC): Indicates this is of type PCI-to-PCI bridge.
1696
** 07:00 00h Programming Interface (PIF): Indicates that this is standard (non-subtractive) PCI-PCI bridge.
1697
**==============================================================================
1698
*/
1699
#define ARCMSR_PCI2PCI_CLASSCODE_REG 0x09 /*3bytes*/
1700
/*
1701
**==============================================================================
1702
** 0x0c : cache line size
1703
** Bit Default Description
1704
** 07:00 00h Cache Line Size (CLS): Designates the cache line size in 32-bit dword units.
1705
** The contents of this register are factored into
1706
** internal policy decisions associated with memory read prefetching,
1707
** and the promotion of Memory Write transactions to MWI transactions.
1708
** Valid cache line sizes are 8 and 16 dwords.
1709
** When the cache line size is set to an invalid value,
1710
** bridge behaves as though the cache line size was set to 00h.
1711
**==============================================================================
1712
*/
1713
#define ARCMSR_PCI2PCI_PRIMARY_CACHELINESIZE_REG 0x0C /*byte*/
1714
/*
1715
**==============================================================================
1716
** 0x0d : latency timer (number of pci clock 00-ff )
1717
** Bit Default Description
1718
** Primary Latency Timer (PTV):
1719
** 07:00 00h (Conventional PCI) Conventional PCI Mode: Primary bus Master latency timer. Indicates the number of PCI clock cycles,
1720
** referenced from the assertion of FRAME# to the expiration of the timer,
1721
** when bridge may continue as master of the current transaction. All bits are writable,
1722
** resulting in a granularity of 1 PCI clock cycle.
1723
** When the timer expires (i.e., equals 00h)
1724
** bridge relinquishes the bus after the first data transfer
1725
** when its PCI bus grant has been deasserted.
1726
** or 40h (PCI-X) PCI-X Mode: Primary bus Master latency timer.
1727
** Indicates the number of PCI clock cycles,
1728
** referenced from the assertion of FRAME# to the expiration of the timer,
1729
** when bridge may continue as master of the current transaction.
1730
** All bits are writable, resulting in a granularity of 1 PCI clock cycle.
1731
** When the timer expires (i.e., equals 00h) bridge relinquishes the bus at the next ADB.
1732
** (Except in the case where MLT expires within 3 data phases
1733
** of an ADB.In this case bridge continues on
1734
** until it reaches the next ADB before relinquishing the bus.)
1735
**==============================================================================
1736
*/
1737
#define ARCMSR_PCI2PCI_PRIMARY_LATENCYTIMER_REG 0x0D /*byte*/
1738
/*
1739
**==============================================================================
1740
** 0x0e : (header type,single function )
1741
** Bit Default Description
1742
** 07 0 Multi-function device (MVD): 80331 is a single-function device.
1743
** 06:00 01h Header Type (HTYPE): Defines the layout of addresses 10h through 3Fh in configuration space.
1744
** Returns ��01h�� when read indicating
1745
** that the register layout conforms to the standard PCI-to-PCI bridge layout.
1746
**==============================================================================
1747
*/
1748
#define ARCMSR_PCI2PCI_HEADERTYPE_REG 0x0E /*byte*/
1749
/*
1750
**==============================================================================
1751
** 0x0f :
1752
**==============================================================================
1753
*/
1754
/*
1755
**==============================================================================
1756
** 0x13-0x10 :
1757
** PCI CFG Base Address #0 (0x10)
1758
**==============================================================================
1759
*/
1760
/*
1761
**==============================================================================
1762
** 0x17-0x14 :
1763
** PCI CFG Base Address #1 (0x14)
1764
**==============================================================================
1765
*/
1766
/*
1767
**==============================================================================
1768
** 0x1b-0x18 :
1769
** PCI CFG Base Address #2 (0x18)
1770
**-----------------0x1A,0x19,0x18--Bus Number Register - BNR
1771
** Bit Default Description
1772
** 23:16 00h Subordinate Bus Number (SBBN): Indicates the highest PCI bus number below this bridge.
1773
** Any Type 1 configuration cycle
1774
** on the primary bus whose bus number is greater than the secondary bus number,
1775
** and less than or equal to the subordinate bus number
1776
** is forwarded unaltered as a Type 1 configuration cycle on the secondary PCI bus.
1777
** 15:08 00h Secondary Bus Number (SCBN): Indicates the bus number of PCI to which the secondary interface is connected.
1778
** Any Type 1 configuration cycle matching this bus number
1779
** is translated to a Type 0 configuration cycle (or a Special Cycle)
1780
** before being executed on bridge's secondary PCI bus.
1781
** 07:00 00h Primary Bus Number (PBN): Indicates bridge primary bus number.
1782
** Any Type 1 configuration cycle on the primary interface
1783
** with a bus number that is less than the contents
1784
** of this register field does not be claimed by bridge.
1785
**-----------------0x1B--Secondary Latency Timer Register - SLTR
1786
** Bit Default Description
1787
** Secondary Latency Timer (STV):
1788
** 07:00 00h (Conventional PCI) Conventional PCI Mode: Secondary bus Master latency timer.
1789
** Indicates the number of PCI clock cycles,
1790
** referenced from the assertion of FRAME# to the expiration of the timer,
1791
** when bridge may continue as master of the current transaction. All bits are writable,
1792
** resulting in a granularity of 1 PCI clock cycle.
1793
** When the timer expires (i.e., equals 00h)
1794
** bridge relinquishes the bus after the first data transfer
1795
** when its PCI bus grant has been deasserted.
1796
** or 40h (PCI-X) PCI-X Mode: Secondary bus Master latency timer.
1797
** Indicates the number of PCI clock cycles,referenced from the assertion of FRAME#
1798
** to the expiration of the timer,
1799
** when bridge may continue as master of the current transaction. All bits are writable,
1800
** resulting in a granularity of 1 PCI clock cycle.
1801
** When the timer expires (i.e., equals 00h) bridge relinquishes the bus at the next ADB.
1802
** (Except in the case where MLT expires within 3 data phases of an ADB.
1803
** In this case bridge continues on until it reaches the next ADB
1804
** before relinquishing the bus)
1805
**==============================================================================
1806
*/
1807
#define ARCMSR_PCI2PCI_PRIMARY_BUSNUMBER_REG 0x18 /*3byte 0x1A,0x19,0x18*/
1808
#define ARCMSR_PCI2PCI_SECONDARY_BUSNUMBER_REG 0x19 /*byte*/
1809
#define ARCMSR_PCI2PCI_SUBORDINATE_BUSNUMBER_REG 0x1A /*byte*/
1810
#define ARCMSR_PCI2PCI_SECONDARY_LATENCYTIMER_REG 0x1B /*byte*/
1811
/*
1812
**==============================================================================
1813
** 0x1f-0x1c :
1814
** PCI CFG Base Address #3 (0x1C)
1815
**-----------------0x1D,0x1C--I/O Base and Limit Register - IOBL
1816
** Bit Default Description
1817
** 15:12 0h I/O Limit Address Bits [15:12]: Defines the top address of an address range to
1818
** determine when to forward I/O transactions from one interface to the other.
1819
** These bits correspond to address lines 15:12 for 4KB alignment.
1820
** Bits 11:0 are assumed to be FFFh.
1821
** 11:08 1h I/O Limit Addressing Capability: This field is hard-wired to 1h, indicating support 32-bit I/O addressing.
1822
** 07:04 0h I/O Base Address Bits [15:12]: Defines the bottom address of
1823
** an address range to determine when to forward I/O transactions
1824
** from one interface to the other.
1825
** These bits correspond to address lines 15:12 for 4KB alignment.
1826
** Bits 11:0 are assumed to be 000h.
1827
** 03:00 1h I/O Base Addressing Capability: This is hard-wired to 1h, indicating support for 32-bit I/O addressing.
1828
**-----------------0x1F,0x1E--Secondary Status Register - SSR
1829
** Bit Default Description
1830
** 15 0b Detected Parity Error: The bridge sets this bit to a 1b whenever it detects an address,
1831
** attribute or data parity error on its secondary interface.
1832
** 14 0b Received System Error: The bridge sets this bit when it samples SERR# asserted on its secondary bus interface.
1833
** 13 0b Received Master Abort: The bridge sets this bit to a 1b when,
1834
** acting as the initiator on the secondary bus,
1835
** it's transaction (with the exception of special cycles)
1836
** has been terminated with a Master Abort.
1837
** 12 0b Received Target Abort: The bridge sets this bit to a 1b when,
1838
** acting as the initiator on the secondary bus,
1839
** it's transaction has been terminated with a Target Abort.
1840
** 11 0b Signaled Target Abort: The bridge sets this bit to a 1b when it,
1841
** as the target of a transaction, terminates it with a Target Abort.
1842
** In PCI-X mode this bit is also set when it forwards a SCM with a target abort error code.
1843
** 10:09 01b DEVSEL# Timing: Indicates slowest response to a non-configuration command on the secondary interface.
1844
** Returns ��01b�� when read, indicating that bridge responds no slower than with medium timing.
1845
** 08 0b Master Data Parity Error: The bridge sets this bit to a 1b when all of the following conditions are true:
1846
** The bridge is the current master on the secondary bus
1847
** S_PERR# is detected asserted or is asserted by bridge
1848
** The Parity Error Response bit is set in the Command register
1849
** 07 1b Fast Back-to-Back Capable (FBC): Indicates that the secondary interface of bridge can receive fast back-to-back cycles.
1850
** 06 0b Reserved
1851
** 05 1b 66 MHz Capable (C66): Indicates the secondary interface of the bridge is 66 MHz capable.
1852
** 1 =
1853
** 04:00 00h Reserved
1854
**==============================================================================
1855
*/
1856
#define ARCMSR_PCI2PCI_IO_BASE_REG 0x1C /*byte*/
1857
#define ARCMSR_PCI2PCI_IO_LIMIT_REG 0x1D /*byte*/
1858
#define ARCMSR_PCI2PCI_SECONDARY_STATUS_REG 0x1E /*word: 0x1F,0x1E */
1859
/*
1860
**==============================================================================
1861
** 0x23-0x20 :
1862
** PCI CFG Base Address #4 (0x20)
1863
**-----------------0x23,0x22,0x21,0x20--Memory Base and Limit Register - MBL
1864
** Bit Default Description
1865
** 31:20 000h Memory Limit: These 12 bits are compared with P_AD[31:20] of the incoming address to determine
1866
** the upper 1MB aligned value (exclusive) of the range.
1867
** The incoming address must be less than or equal to this value.
1868
** For the purposes of address decoding the lower 20 address bits (P_AD[19:0]
1869
** are assumed to be F FFFFh.
1870
** 19:16 0h Reserved.
1871
** 15:04 000h Memory Base: These 12 bits are compared with bits P_AD[31:20]
1872
** of the incoming address to determine the lower 1MB
1873
** aligned value (inclusive) of the range.
1874
** The incoming address must be greater than or equal to this value.
1875
** For the purposes of address decoding the lower 20 address bits (P_AD[19:0])
1876
** are assumed to be 0 0000h.
1877
** 03:00 0h Reserved.
1878
**==============================================================================
1879
*/
1880
#define ARCMSR_PCI2PCI_NONPREFETCHABLE_MEMORY_BASE_REG 0x20 /*word: 0x21,0x20 */
1881
#define ARCMSR_PCI2PCI_NONPREFETCHABLE_MEMORY_LIMIT_REG 0x22 /*word: 0x23,0x22 */
1882
/*
1883
**==============================================================================
1884
** 0x27-0x24 :
1885
** PCI CFG Base Address #5 (0x24)
1886
**-----------------0x27,0x26,0x25,0x24--Prefetchable Memory Base and Limit Register - PMBL
1887
** Bit Default Description
1888
** 31:20 000h Prefetchable Memory Limit: These 12 bits are compared with P_AD[31:20] of the incoming address to determine
1889
** the upper 1MB aligned value (exclusive) of the range.
1890
** The incoming address must be less than or equal to this value.
1891
** For the purposes of address decoding the lower 20 address bits (P_AD[19:0]
1892
** are assumed to be F FFFFh.
1893
** 19:16 1h 64-bit Indicator: Indicates that 64-bit addressing is supported.
1894
** 15:04 000h Prefetchable Memory Base: These 12 bits are compared with bits P_AD[31:20]
1895
** of the incoming address to determine the lower 1MB aligned value (inclusive)
1896
** of the range.
1897
** The incoming address must be greater than or equal to this value.
1898
** For the purposes of address decoding the lower 20 address bits (P_AD[19:0])
1899
** are assumed to be 0 0000h.
1900
** 03:00 1h 64-bit Indicator: Indicates that 64-bit addressing is supported.
1901
**==============================================================================
1902
*/
1903
#define ARCMSR_PCI2PCI_PREFETCHABLE_MEMORY_BASE_REG 0x24 /*word: 0x25,0x24 */
1904
#define ARCMSR_PCI2PCI_PREFETCHABLE_MEMORY_LIMIT_REG 0x26 /*word: 0x27,0x26 */
1905
/*
1906
**==============================================================================
1907
** 0x2b-0x28 :
1908
** Bit Default Description
1909
** 31:00 00000000h Prefetchable Memory Base Upper Portion: All bits are read/writable
1910
** bridge supports full 64-bit addressing.
1911
**==============================================================================
1912
*/
1913
#define ARCMSR_PCI2PCI_PREFETCHABLE_MEMORY_BASE_UPPER32_REG 0x28 /*dword: 0x2b,0x2a,0x29,0x28 */
1914
/*
1915
**==============================================================================
1916
** 0x2f-0x2c :
1917
** Bit Default Description
1918
** 31:00 00000000h Prefetchable Memory Limit Upper Portion: All bits are read/writable
1919
** bridge supports full 64-bit addressing.
1920
**==============================================================================
1921
*/
1922
#define ARCMSR_PCI2PCI_PREFETCHABLE_MEMORY_LIMIT_UPPER32_REG 0x2C /*dword: 0x2f,0x2e,0x2d,0x2c */
1923
/*
1924
**==============================================================================
1925
** 0x33-0x30 :
1926
** Bit Default Description
1927
** 07:00 DCh Capabilities Pointer: Pointer to the first CAP ID entry in the capabilities list is at DCh in PCI configuration
1928
** space. (Power Management Capability Registers)
1929
**==============================================================================
1930
*/
1931
#define ARCMSR_PCI2PCI_CAPABILITIES_POINTER_REG 0x34 /*byte*/
1932
/*
1933
**==============================================================================
1934
** 0x3b-0x35 : reserved
1935
**==============================================================================
1936
*/
1937
/*
1938
**==============================================================================
1939
** 0x3d-0x3c :
1940
**
1941
** Bit Default Description
1942
** 15:08 00h Interrupt Pin (PIN): Bridges do not support the generation of interrupts.
1943
** 07:00 00h Interrupt Line (LINE): The bridge does not generate interrupts, so this is reserved as '00h'.
1944
**==============================================================================
1945
*/
1946
#define ARCMSR_PCI2PCI_PRIMARY_INTERRUPT_LINE_REG 0x3C /*byte*/
1947
#define ARCMSR_PCI2PCI_PRIMARY_INTERRUPT_PIN_REG 0x3D /*byte*/
1948
/*
1949
**==============================================================================
1950
** 0x3f-0x3e :
1951
** Bit Default Description
1952
** 15:12 0h Reserved
1953
** 11 0b Discard Timer SERR# Enable: Controls the generation of SERR# on the primary interface (P_SERR#) in response
1954
** to a timer discard on either the primary or secondary interface.
1955
** 0b=SERR# is not asserted.
1956
** 1b=SERR# is asserted.
1957
** 10 0b Discard Timer Status (DTS): This bit is set to a '1b' when either the primary or secondary discard timer expires.
1958
** The delayed completion is then discarded.
1959
** 09 0b Secondary Discard Timer (SDT): Sets the maximum number of PCI clock cycles
1960
** that bridge waits for an initiator on the secondary bus
1961
** to repeat a delayed transaction request.
1962
** The counter starts when the delayed transaction completion is ready
1963
** to be returned to the initiator.
1964
** When the initiator has not repeated the transaction
1965
** at least once before the counter expires,bridge
1966
** discards the delayed transaction from its queues.
1967
** 0b=The secondary master time-out counter is 2 15 PCI clock cycles.
1968
** 1b=The secondary master time-out counter is 2 10 PCI clock cycles.
1969
** 08 0b Primary Discard Timer (PDT): Sets the maximum number of PCI clock cycles
1970
** that bridge waits for an initiator on the primary bus
1971
** to repeat a delayed transaction request.
1972
** The counter starts when the delayed transaction completion
1973
** is ready to be returned to the initiator.
1974
** When the initiator has not repeated the transaction
1975
** at least once before the counter expires,
1976
** bridge discards the delayed transaction from its queues.
1977
** 0b=The primary master time-out counter is 2 15 PCI clock cycles.
1978
** 1b=The primary master time-out counter is 2 10 PCI clock cycles.
1979
** 07 0b Fast Back-to-Back Enable (FBE): The bridge does not initiate back to back transactions.
1980
** 06 0b Secondary Bus Reset (SBR):
1981
** When cleared to 0b: The bridge deasserts S_RST#,
1982
** when it had been asserted by writing this bit to a 1b.
1983
** When set to 1b: The bridge asserts S_RST#.
1984
** 05 0b Master Abort Mode (MAM): Dictates bridge behavior on the initiator bus
1985
** when a master abort termination occurs in response to
1986
** a delayed transaction initiated by bridge on the target bus.
1987
** 0b=The bridge asserts TRDY# in response to a non-locked delayed transaction,
1988
** and returns FFFF FFFFh when a read.
1989
** 1b=When the transaction had not yet been completed on the initiator bus
1990
** (e.g.,delayed reads, or non-posted writes),
1991
** then bridge returns a Target Abort in response to the original requester
1992
** when it returns looking for its delayed completion on the initiator bus.
1993
** When the transaction had completed on the initiator bus (e.g., a PMW),
1994
** then bridge asserts P_SERR# (when enabled).
1995
** For PCI-X transactions this bit is an enable for the assertion of P_SERR# due to a master abort
1996
** while attempting to deliver a posted memory write on the destination bus.
1997
** 04 0b VGA Alias Filter Enable: This bit dictates bridge behavior in conjunction with the VGA enable bit
1998
** (also of this register),
1999
** and the VGA Palette Snoop Enable bit (Command Register).
2000
** When the VGA enable, or VGA Palette Snoop enable bits are on (i.e., 1b)
2001
** the VGA Aliasing bit for the corresponding enabled functionality,:
2002
** 0b=Ignores address bits AD[15:10] when decoding VGA I/O addresses.
2003
** 1b=Ensures that address bits AD[15:10] equal 000000b when decoding VGA I/O addresses.
2004
** When all VGA cycle forwarding is disabled, (i.e., VGA Enable bit =0b and VGA Palette Snoop bit =0b),
2005
** then this bit has no impact on bridge behavior.
2006
** 03 0b VGA Enable: Setting this bit enables address decoding
2007
** and transaction forwarding of the following VGA transactions from the primary bus
2008
** to the secondary bus:
2009
** frame buffer memory addresses 000A0000h:000BFFFFh,
2010
** VGA I/O addresses 3B0:3BBh and 3C0h:3DFh, where AD[31:16]=��0000h?** ?and AD[15:10] are either not decoded (i.e., don't cares),
2011
** or must be ��000000b��
2012
** depending upon the state of the VGA Alias Filter Enable bit. (bit(4) of this register)
2013
** I/O and Memory Enable bits must be set in the Command register
2014
** to enable forwarding of VGA cycles.
2015
** 02 0b ISA Enable: Setting this bit enables special handling
2016
** for the forwarding of ISA I/O transactions that fall within the address range
2017
** specified by the I/O Base and Limit registers,
2018
** and are within the lowest 64Kbyte of the I/O address map
2019
** (i.e., 0000 0000h - 0000 FFFFh).
2020
** 0b=All I/O transactions that fall within the I/O Base
2021
** and Limit registers' specified range are forwarded
2022
** from primary to secondary unfiltered.
2023
** 1b=Blocks the forwarding from primary to secondary
2024
** of the top 768 bytes of each 1Kbyte alias.
2025
** On the secondary the top 768 bytes of each 1K alias
2026
** are inversely decoded and forwarded
2027
** from secondary to primary.
2028
** 01 0b SERR# Forward Enable: 0b=The bridge does not assert P_SERR# as a result of an S_SERR# assertion.
2029
** 1b=The bridge asserts P_SERR# whenever S_SERR# is detected
2030
** asserted provided the SERR# Enable bit is set (PCI Command Register bit(8)=1b).
2031
** 00 0b Parity Error Response: This bit controls bridge response to a parity error
2032
** that is detected on its secondary interface.
2033
** 0b=When a data parity error is detected bridge does not assert S_PERR#.
2034
** Also bridge does not assert P_SERR# in response to a detected address
2035
** or attribute parity error.
2036
** 1b=When a data parity error is detected bridge asserts S_PERR#.
2037
** The bridge also asserts P_SERR# (when enabled globally via bit(8)
2038
** of the Command register)
2039
** in response to a detected address or attribute parity error.
2040
**==============================================================================
2041
*/
2042
#define ARCMSR_PCI2PCI_BRIDGE_CONTROL_REG 0x3E /*word*/
2043
/*
2044
**************************************************************************
2045
** Device Specific Registers 40-A7h
2046
**************************************************************************
2047
** ----------------------------------------------------------------------------------------------------------
2048
** | Byte 3 | Byte 2 | Byte 1 | Byte 0 | Configu-ration Byte Offset
2049
** ----------------------------------------------------------------------------------------------------------
2050
** | Bridge Control 0 | Arbiter Control/Status | Reserved | 40h
2051
** ----------------------------------------------------------------------------------------------------------
2052
** | Bridge Control 2 | Bridge Control 1 | 44h
2053
** ----------------------------------------------------------------------------------------------------------
2054
** | Reserved | Bridge Status | 48h
2055
** ----------------------------------------------------------------------------------------------------------
2056
** | Reserved | 4Ch
2057
** ----------------------------------------------------------------------------------------------------------
2058
** | Prefetch Policy | Multi-Transaction Timer | 50h
2059
** ----------------------------------------------------------------------------------------------------------
2060
** | Reserved | Pre-boot Status | P_SERR# Assertion Control | 54h
2061
** ----------------------------------------------------------------------------------------------------------
2062
** | Reserved | Reserved | Secondary Decode Enable | 58h
2063
** ----------------------------------------------------------------------------------------------------------
2064
** | Reserved | Secondary IDSEL | 5Ch
2065
** ----------------------------------------------------------------------------------------------------------
2066
** | Reserved | 5Ch
2067
** ----------------------------------------------------------------------------------------------------------
2068
** | Reserved | 68h:CBh
2069
** ----------------------------------------------------------------------------------------------------------
2070
**************************************************************************
2071
**==============================================================================
2072
** 0x42-0x41: Secondary Arbiter Control/Status Register - SACSR
2073
** Bit Default Description
2074
** 15:12 1111b Grant Time-out Violator: This field indicates the agent that violated the Grant Time-out rule
2075
** (PCI=16 clocks,PCI-X=6 clocks).
2076
** Note that this field is only meaningful when:
2077
** # Bit[11] of this register is set to 1b,
2078
** indicating that a Grant Time-out violation had occurred.
2079
** # bridge internal arbiter is enabled.
2080
** Bits[15:12] Violating Agent (REQ#/GNT# pair number)
2081
** 0000b REQ#/GNT#[0]
2082
** 0001b REQ#/GNT#[1]
2083
** 0010b REQ#/GNT#[2]
2084
** 0011b REQ#/GNT#[3]
2085
** 1111b Default Value (no violation detected)
2086
** When bit[11] is cleared by software, this field reverts back to its default value.
2087
** All other values are Reserved
2088
** 11 0b Grant Time-out Occurred: When set to 1b,
2089
** this indicates that a Grant Time-out error had occurred involving one of the secondary bus agents.
2090
** Software clears this bit by writing a 1b to it.
2091
** 10 0b Bus Parking Control: 0=During bus idle, bridge parks the bus on the last master to use the bus.
2092
** 1=During bus idle, bridge parks the bus on itself.
2093
** The bus grant is removed from the last master and internally asserted to bridge.
2094
** 09:08 00b Reserved
2095
** 07:00 0000 0000b Secondary Bus Arbiter Priority Configuration: The bridge secondary arbiter provides two rings of arbitration priority.
2096
** Each bit of this field assigns its corresponding secondary
2097
** bus master to either the high priority arbiter ring (1b)
2098
** or to the low priority arbiter ring (0b).
2099
** Bits [3:0] correspond to request inputs S_REQ#[3:0], respectively.
2100
** Bit [6] corresponds to the bridge internal secondary bus request
2101
** while Bit [7] corresponds to the SATU secondary bus request.
2102
** Bits [5:4] are unused.
2103
** 0b=Indicates that the master belongs to the low priority group.
2104
** 1b=Indicates that the master belongs to the high priority group
2105
**=================================================================================
2106
** 0x43: Bridge Control Register 0 - BCR0
2107
** Bit Default Description
2108
** 07 0b Fully Dynamic Queue Mode: 0=The number of Posted write transactions is limited to eight
2109
** and the Posted Write data is limited to 4KB.
2110
** 1=Operation in fully dynamic queue mode. The bridge enqueues up to
2111
** 14 Posted Memory Write transactions and 8KB of posted write data.
2112
** 06:03 0H Reserved.
2113
** 02 0b Upstream Prefetch Disable: This bit disables bridge ability
2114
** to perform upstream prefetch operations for Memory
2115
** Read requests received on its secondary interface.
2116
** This bit also controls the bridge's ability to generate advanced read commands
2117
** when forwarding a Memory Read Block transaction request upstream from a PCI-X bus
2118
** to a Conventional PCI bus.
2119
** 0b=bridge treats all upstream Memory Read requests as though they target prefetchable memory.
2120
** The use of Memory Read Line and Memory Read
2121
** Multiple is enabled when forwarding a PCI-X Memory Read Block request
2122
** to an upstream bus operating in Conventional PCI mode.
2123
** 1b=bridge treats upstream PCI Memory Read requests as though
2124
** they target non-prefetchable memory and forwards upstream PCI-X Memory
2125
** Read Block commands as Memory Read
2126
** when the primary bus is operating
2127
** in Conventional PCI mode.
2128
** NOTE: This bit does not affect bridge ability to perform read prefetching
2129
** when the received command is Memory Read Line or Memory Read Multiple.
2130
**=================================================================================
2131
** 0x45-0x44: Bridge Control Register 1 - BCR1 (Sheet 2 of 2)
2132
** Bit Default Description
2133
** 15:08 0000000b Reserved
2134
** 07:06 00b Alias Command Mapping: This two bit field determines how bridge handles PCI-X ��Alias�� commands,
2135
** specifically the Alias to Memory Read Block and Alias to Memory Write Block commands.
2136
** The three options for handling these alias commands are to either pass it as is,
2137
** re-map to the actual block memory read/write command encoding, or ignore
2138
** the transaction forcing a Master Abort to occur on the Origination Bus.
2139
** Bit (7:6) Handling of command
2140
** 0 0 Re-map to Memory Read/Write Block before forwarding
2141
** 0 1 Enqueue and forward the alias command code unaltered
2142
** 1 0 Ignore the transaction, forcing Master Abort
2143
** 1 1 Reserved
2144
** 05 1b Watchdog Timers Disable: Disables or enables all 2 24 Watchdog Timers in both directions.
2145
** The watchdog timers are used to detect prohibitively long latencies in the system.
2146
** The watchdog timer expires when any Posted Memory Write (PMW), Delayed Request,
2147
** or Split Requests (PCI-X mode) is not completed within 2 24 events
2148
** (��events�� are defined as PCI Clocks when operating in PCI-X mode,
2149
** and as the number of times being retried when operating in Conventional PCI mode)
2150
** 0b=All 2 24 watchdog timers are enabled.
2151
** 1b=All 2 24 watchdog timers are disabled and there is no limits to
2152
** the number of attempts bridge makes when initiating a PMW,
2153
** transacting a Delayed Transaction, or how long it waits for
2154
** a split completion corresponding to one of its requests.
2155
** 04 0b GRANT# time-out disable: This bit enables/disables the GNT# time-out mechanism.
2156
** Grant time-out is 16 clocks for conventional PCI, and 6 clocks for PCI-X.
2157
** 0b=The Secondary bus arbiter times out an agent
2158
** that does not assert FRAME# within 16/6 clocks of receiving its grant,
2159
** once the bus has gone idle.
2160
** The time-out counter begins as soon as the bus goes idle with the new GNT# asserted.
2161
** An infringing agent does not receive a subsequent GNT#
2162
** until it de-asserts its REQ# for at least one clock cycle.
2163
** 1b=GNT# time-out mechanism is disabled.
2164
** 03 00b Reserved.
2165
** 02 0b Secondary Discard Timer Disable: This bit enables/disables bridge secondary delayed transaction discard mechanism.
2166
** The time out mechanism is used to ensure that initiators
2167
** of delayed transactions return for their delayed completion data/status
2168
** within a reasonable amount of time after it is available from bridge.
2169
** 0b=The secondary master time-out counter is enabled
2170
** and uses the value specified by the Secondary Discard Timer bit
2171
** (see Bridge Control Register).
2172
** 1b=The secondary master time-out counter is disabled.
2173
** The bridge waits indefinitely for a secondary bus master
2174
** to repeat a delayed transaction.
2175
** 01 0b Primary Discard Timer Disable: This bit enables/disables bridge primary delayed transaction discard mechanism.
2176
** The time out mechanism is used to ensure that initiators
2177
** of delayed transactions return for their delayed completion data/status
2178
** within a reasonable amount of time after it is available from bridge.
2179
** 0b=The primary master time-out counter is enabled and uses the value specified
2180
** by the Primary Discard Timer bit (see Bridge Control Register).
2181
** 1b=The secondary master time-out counter is disabled.
2182
** The bridge waits indefinitely for a secondary bus master
2183
** to repeat a delayed transaction.
2184
** 00 0b Reserved
2185
**=================================================================================
2186
** 0x47-0x46: Bridge Control Register 2 - BCR2
2187
** Bit Default Description
2188
** 15:07 0000b Reserved.
2189
** 06 0b Global Clock Out Disable (External Secondary Bus Clock Source Enable):
2190
** This bit disables all of the secondary PCI clock outputs including
2191
** the feedback clock S_CLKOUT.
2192
** This means that the user is required to provide an S_CLKIN input source.
2193
** 05:04 11 (66 MHz) Preserved.
2194
** 01 (100 MHz)
2195
** 00 (133 MHz)
2196
** 03:00 Fh (100 MHz & 66 MHz)
2197
** 7h (133 MHz)
2198
** This 4 bit field provides individual enable/disable mask bits for each of bridge
2199
** secondary PCI clock outputs. Some, or all secondary clock outputs (S_CLKO[3:0])
2200
** default to being enabled following the rising edge of P_RST#, depending on the
2201
** frequency of the secondary bus clock:
2202
** �E Designs with 100 MHz (or lower) Secondary PCI clock power up with
2203
** all four S_CLKOs enabled by default. (SCLKO[3:0])�P
2204
** �E Designs with 133 MHz Secondary PCI clock power up
2205
** with the lower order 3 S_CLKOs enabled by default.
2206
** (S_CLKO[2:0]) Only those SCLKs that power up enabled by can be connected
2207
** to downstream device clock inputs.
2208
**=================================================================================
2209
** 0x49-0x48: Bridge Status Register - BSR
2210
** Bit Default Description
2211
** 15 0b Upstream Delayed Transaction Discard Timer Expired: This bit is set to a 1b and P_SERR#
2212
** is conditionally asserted when the secondary discard timer expires.
2213
** 14 0b Upstream Delayed/Split Read Watchdog Timer Expired:
2214
** Conventional PCI Mode: This bit is set to a 1b and P_SERR#
2215
** is conditionally asserted when bridge discards an upstream delayed read ** ** transaction request after 2 24 retries following the initial retry.
2216
** PCI-X Mode: This bit is set to a 1b and P_SERR# is conditionally asserted
2217
** when bridge discards an upstream split read request
2218
** after waiting in excess of 2 24 clocks for the corresponding
2219
** Split Completion to arrive.
2220
** 13 0b Upstream Delayed/Split Write Watchdog Timer Expired:
2221
** Conventional PCI Mode: This bit is set to a 1b and P_SERR#
2222
** is conditionally asserted when bridge discards an upstream delayed write ** ** transaction request after 2 24 retries following the initial retry.
2223
** PCI-X Mode: This bit is set to a 1b and P_SERR#
2224
** is conditionally asserted when bridge discards an upstream split write request ** after waiting in excess of 2 24 clocks for the corresponding
2225
** Split Completion to arrive.
2226
** 12 0b Master Abort during Upstream Posted Write: This bit is set to a 1b and P_SERR#
2227
** is conditionally asserted when a Master Abort occurs as a result of an attempt,
2228
** by bridge, to retire a PMW upstream.
2229
** 11 0b Target Abort during Upstream Posted Write: This bit is set to a 1b and P_SERR#
2230
** is conditionally asserted when a Target Abort occurs as a result of an attempt,
2231
** by bridge, to retire a PMW upstream.
2232
** 10 0b Upstream Posted Write Data Discarded: This bit is set to a 1b and P_SERR#
2233
** is conditionally asserted when bridge discards an upstream PMW transaction
2234
** after receiving 2 24 target retries from the primary bus target
2235
** 09 0b Upstream Posted Write Data Parity Error: This bit is set to a 1b and P_SERR#
2236
** is conditionally asserted when a data parity error is detected by bridge
2237
** while attempting to retire a PMW upstream
2238
** 08 0b Secondary Bus Address Parity Error: This bit is set to a 1b and P_SERR#
2239
** is conditionally asserted when bridge detects an address parity error on
2240
** the secondary bus.
2241
** 07 0b Downstream Delayed Transaction Discard Timer Expired: This bit is set to a 1b and P_SERR#
2242
** is conditionally asserted when the primary bus discard timer expires.
2243
** 06 0b Downstream Delayed/Split Read Watchdog Timer Expired:
2244
** Conventional PCI Mode: This bit is set to a 1b and P_SERR#
2245
** is conditionally asserted when bridge discards a downstream delayed read ** ** transaction request after receiving 2 24 target retries
2246
** from the secondary bus target.
2247
** PCI-X Mode: This bit is set to a 1b and P_SERR# is conditionally asserted
2248
** when bridge discards a downstream split read request
2249
** after waiting in excess of 2 24 clocks for the corresponding
2250
** Split Completion to arrive.
2251
** 05 0b Downstream Delayed Write/Split Watchdog Timer Expired:
2252
** Conventional PCI Mode: This bit is set to a 1b and P_SERR# is conditionally asserted
2253
** when bridge discards a downstream delayed write transaction request
2254
** after receiving 2 24 target retries from the secondary bus target.
2255
** PCI-X Mode: This bit is set to a 1b and P_SERR#
2256
** is conditionally asserted when bridge discards a downstream
2257
** split write request after waiting in excess of 2 24 clocks
2258
** for the corresponding Split Completion to arrive.
2259
** 04 0b Master Abort during Downstream Posted Write: This bit is set to a 1b and P_SERR#
2260
** is conditionally asserted when a Master Abort occurs as a result of an attempt,
2261
** by bridge, to retire a PMW downstream.
2262
** 03 0b Target Abort during Downstream Posted Write: This bit is set to a 1b and P_SERR# is conditionally asserted
2263
** when a Target Abort occurs as a result of an attempt, by bridge,
2264
** to retire a PMW downstream.
2265
** 02 0b Downstream Posted Write Data Discarded: This bit is set to a 1b and P_SERR#
2266
** is conditionally asserted when bridge discards a downstream PMW transaction
2267
** after receiving 2 24 target retries from the secondary bus target
2268
** 01 0b Downstream Posted Write Data Parity Error: This bit is set to a 1b and P_SERR#
2269
** is conditionally asserted when a data parity error is detected by bridge
2270
** while attempting to retire a PMW downstream.
2271
** 00 0b Primary Bus Address Parity Error: This bit is set to a 1b and P_SERR# is conditionally asserted
2272
** when bridge detects an address parity error on the primary bus.
2273
**==================================================================================
2274
** 0x51-0x50: Bridge Multi-Transaction Timer Register - BMTTR
2275
** Bit Default Description
2276
** 15:13 000b Reserved
2277
** 12:10 000b GRANT# Duration: This field specifies the count (PCI clocks)
2278
** that a secondary bus master has its grant maintained in order to enable
2279
** multiple transactions to execute within the same arbitration cycle.
2280
** Bit[02:00] GNT# Extended Duration
2281
** 000 MTT Disabled (Default=no GNT# extension)
2282
** 001 16 clocks
2283
** 010 32 clocks
2284
** 011 64 clocks
2285
** 100 128 clocks
2286
** 101 256 clocks
2287
** 110 Invalid (treated as 000)
2288
** 111 Invalid (treated as 000)
2289
** 09:08 00b Reserved
2290
** 07:00 FFh MTT Mask: This field enables/disables MTT usage for each REQ#/GNT#
2291
** pair supported by bridge secondary arbiter.
2292
** Bit(7) corresponds to SATU internal REQ#/GNT# pair,
2293
** bit(6) corresponds to bridge internal REQ#/GNT# pair,
2294
** bit(5) corresponds to REQ#/GNT#(5) pair, etc.
2295
** When a given bit is set to 1b, its corresponding REQ#/GNT#
2296
** pair is enabled for MTT functionality as determined by bits(12:10) of this register.
2297
** When a given bit is cleared to 0b, its corresponding REQ#/GNT# pair is disabled from using the MTT.
2298
**==================================================================================
2299
** 0x53-0x52: Read Prefetch Policy Register - RPPR
2300
** Bit Default Description
2301
** 15:13 000b ReRead_Primary Bus: 3-bit field indicating the multiplication factor
2302
** to be used in calculating the number of bytes to prefetch from the secondary bus interface on ** subsequent PreFetch operations given that the read demands were not satisfied
2303
** using the FirstRead parameter.
2304
** The default value of 000b correlates to: Command Type Hardwired pre-fetch amount Memory Read 4 DWORDs
2305
** Memory Read Line 1 cache lines Memory Read Multiple 2 cache lines
2306
** 12:10 000b FirstRead_Primary Bus: 3-bit field indicating the multiplication factor to be used in calculating
2307
** the number of bytes to prefetch from the secondary bus interface
2308
** on the initial PreFetch operation.
2309
** The default value of 000b correlates to: Command Type Hardwired pre-fetch amount Memory Read 4 DWORDs
2310
** Memory Read Line 1 cache line Memory Read Multiple 2 cache lines
2311
** 09:07 010b ReRead_Secondary Bus: 3-bit field indicating the multiplication factor to be used
2312
** in calculating the number of bytes to prefetch from the primary
2313
** bus interface on subsequent PreFetch operations given
2314
** that the read demands were not satisfied using
2315
** the FirstRead parameter.
2316
** The default value of 010b correlates to: Command Type Hardwired pre-fetch a
2317
** mount Memory Read 3 cache lines Memory Read Line 3 cache lines
2318
** Memory Read Multiple 6 cache lines
2319
** 06:04 000b FirstRead_Secondary Bus: 3-bit field indicating the multiplication factor to be used
2320
** in calculating the number of bytes to prefetch from
2321
** the primary bus interface on the initial PreFetch operation.
2322
** The default value of 000b correlates to: Command Type Hardwired pre-fetch amount
2323
** Memory Read 4 DWORDs Memory Read Line 1 cache line Memory Read Multiple 2 cache lines
2324
** 03:00 1111b Staged Prefetch Enable: This field enables/disables the FirstRead/ReRead pre-fetch
2325
** algorithm for the secondary and the primary bus interfaces.
2326
** Bit(3) is a ganged enable bit for REQ#/GNT#[7:3], and bits(2:0) provide individual
2327
** enable bits for REQ#/GNT#[2:0].
2328
** (bit(2) is the enable bit for REQ#/GNT#[2], etc...)
2329
** 1b: enables the staged pre-fetch feature
2330
** 0b: disables staged pre-fetch,
2331
** and hardwires read pre-fetch policy to the following for
2332
** Memory Read,
2333
** Memory Read Line,
2334
** and Memory Read Multiple commands:
2335
** Command Type Hardwired Pre-Fetch Amount...
2336
** Memory Read 4 DWORDs
2337
** Memory Read Line 1 cache line
2338
** Memory Read Multiple 2 cache lines
2339
** NOTE: When the starting address is not cache line aligned, bridge pre-fetches Memory Read line commands
2340
** only to the next higher cache line boundary.For non-cache line aligned Memory Read
2341
** Multiple commands bridge pre-fetches only to the second cache line boundary encountered.
2342
**==================================================================================
2343
** 0x55-0x54: P_SERR# Assertion Control - SERR_CTL
2344
** Bit Default Description
2345
** 15 0b Upstream Delayed Transaction Discard Timer Expired: Dictates the bridge behavior
2346
** in response to its discarding of a delayed transaction that was initiated from the primary bus.
2347
** 0b=bridge asserts P_SERR#.
2348
** 1b=bridge does not assert P_SERR#
2349
** 14 0b Upstream Delayed/Split Read Watchdog Timer Expired: Dictates bridge behavior following expiration of the subject watchdog timer.
2350
** 0b=bridge asserts P_SERR#.
2351
** 1b=bridge does not assert P_SERR#
2352
** 13 0b Upstream Delayed/Split Write Watchdog Timer Expired: Dictates bridge behavior following expiration of the subject watchdog timer.
2353
** 0b=bridge asserts P_SERR#.
2354
** 1b=bridge does not assert P_SERR#
2355
** 12 0b Master Abort during Upstream Posted Write: Dictates bridge behavior following
2356
** its having detected a Master Abort while attempting to retire one of its PMWs upstream.
2357
** 0b=bridge asserts P_SERR#.
2358
** 1b=bridge does not assert P_SERR#
2359
** 11 0b Target Abort during Upstream Posted Write: Dictates bridge behavior following
2360
** its having been terminated with Target Abort while attempting to retire one of its PMWs upstream.
2361
** 0b=bridge asserts P_SERR#.
2362
** 1b=bridge does not assert P_SERR#
2363
** 10 0b Upstream Posted Write Data Discarded: Dictates bridge behavior in the event that
2364
** it discards an upstream posted write transaction.
2365
** 0b=bridge asserts P_SERR#.
2366
** 1b=bridge does not assert P_SERR#
2367
** 09 0b Upstream Posted Write Data Parity Error: Dictates bridge behavior
2368
** when a data parity error is detected while attempting to retire on of its PMWs upstream.
2369
** 0b=bridge asserts P_SERR#.
2370
** 1b=bridge does not assert P_SERR#
2371
** 08 0b Secondary Bus Address Parity Error: This bit dictates bridge behavior
2372
** when it detects an address parity error on the secondary bus.
2373
** 0b=bridge asserts P_SERR#.
2374
** 1b=bridge does not assert P_SERR#
2375
** 07 0b Downstream Delayed Transaction Discard Timer Expired: Dictates bridge behavior in response to
2376
** its discarding of a delayed transaction that was initiated on the secondary bus.
2377
** 0b=bridge asserts P_SERR#.
2378
** 1b=bridge does not assert P_SERR#
2379
** 06 0b Downstream Delayed/Split Read Watchdog Timer Expired: Dictates bridge behavior following expiration of the subject watchdog timer.
2380
** 0b=bridge asserts P_SERR#.
2381
** 1b=bridge does not assert P_SERR#
2382
** 05 0b Downstream Delayed/Split Write Watchdog Timer Expired: Dictates bridge behavior following expiration of the subject watchdog timer.
2383
** 0b=bridge asserts P_SERR#.
2384
** 1b=bridge does not assert P_SERR#
2385
** 04 0b Master Abort during Downstream Posted Write: Dictates bridge behavior following
2386
** its having detected a Master Abort while attempting to retire one of its PMWs downstream.
2387
** 0b=bridge asserts P_SERR#.
2388
** 1b=bridge does not assert P_SERR#
2389
** 03 0b Target Abort during Downstream Posted Write: Dictates bridge behavior following
2390
** its having been terminated with Target Abort while attempting to retire one of its PMWs downstream.
2391
** 0b=bridge asserts P_SERR#.
2392
** 1b=bridge does not assert P_SERR#
2393
** 02 0b Downstream Posted Write Data Discarded: Dictates bridge behavior in the event
2394
** that it discards a downstream posted write transaction.
2395
** 0b=bridge asserts P_SERR#.
2396
** 1b=bridge does not assert P_SERR#
2397
** 01 0b Downstream Posted Write Data Parity Error: Dictates bridge behavior
2398
** when a data parity error is detected while attempting to retire on of its PMWs downstream.
2399
** 0b=bridge asserts P_SERR#.
2400
** 1b=bridge does not assert P_SERR#
2401
** 00 0b Primary Bus Address Parity Error: This bit dictates bridge behavior
2402
** when it detects an address parity error on the primary bus.
2403
** 0b=bridge asserts P_SERR#.
2404
** 1b=bridge does not assert P_SERR#
2405
**===============================================================================
2406
** 0x56: Pre-Boot Status Register - PBSR
2407
** Bit Default Description
2408
** 07 1 Reserved
2409
** 06 - Reserved - value indeterminate
2410
** 05:02 0 Reserved
2411
** 01 Varies with External State of S_133EN at PCI Bus Reset Secondary Bus Max Frequency Setting:
2412
** This bit reflect captured S_133EN strap,
2413
** indicating the maximum secondary bus clock frequency when in PCI-X mode.
2414
** Max Allowable Secondary Bus Frequency
2415
** ** S_133EN PCI-X Mode
2416
** ** 0 100 MHz
2417
** ** 1 133 MH
2418
** 00 0b Reserved
2419
**===============================================================================
2420
** 0x59-0x58: Secondary Decode Enable Register - SDER
2421
** Bit Default Description
2422
** 15:03 FFF1h Preserved.
2423
** 02 Varies with External State of PRIVMEM at PCI Bus Reset Private Memory Space Enable - when set,
2424
** bridge overrides its secondary inverse decode logic and not
2425
** forward upstream any secondary bus initiated DAC Memory transactions with AD(63)=1b.
2426
** This creates a private memory space on the Secondary PCI bus
2427
** that allows peer-to-peer transactions.
2428
** 01:00 10 2 Preserved.
2429
**===============================================================================
2430
** 0x5D-0x5C: Secondary IDSEL Select Register - SISR
2431
** Bit Default Description
2432
** 15:10 000000 2 Reserved.
2433
** 09 Varies with External State of PRIVDEV at PCI Bus Reset AD25- IDSEL Disable - When this bit is set,
2434
** AD25 is deasserted for any possible Type 1 to Type 0 conversion.
2435
** When this bit is clear,
2436
** AD25 is asserted when Primary addresses AD[15:11]=01001 2 during a Type 1 to Type 0 conversion.
2437
** 08 Varies with External State of PRIVDEV at PCI Bus Reset AD24- IDSEL Disable - When this bit is set,
2438
** AD24 is deasserted for any possible Type 1 to Type 0 conversion.
2439
** When this bit is clear,
2440
** AD24 is asserted when Primary addresses AD[15:11]=01000 2 during a Type 1 to Type 0 conversion.
2441
** 07 Varies with External State of PRIVDEV at PCI Bus Reset AD23- IDSEL Disable - When this bit is set,
2442
** AD23 is deasserted for any possible Type 1 to Type 0 conversion.
2443
** When this bit is clear,
2444
** AD23 is asserted when Primary addresses AD[15:11]=00111 2 during a Type 1 to Type 0 conversion.
2445
** 06 Varies with External State of PRIVDEV at PCI Bus Reset AD22- IDSEL Disable - When this bit is set,
2446
** AD22 is deasserted for any possible Type 1 to Type 0 conversion.
2447
** When this bit is clear,
2448
** AD22 is asserted when Primary addresses AD[15:11]=00110 2 during a Type 1 to Type 0 conversion.
2449
** 05 Varies with External State of PRIVDEV at PCI Bus Reset AD21- IDSEL Disable - When this bit is set,
2450
** AD21 is deasserted for any possible Type 1 to Type 0 conversion.
2451
** When this bit is clear,
2452
** AD21 is asserted when Primary addresses AD[15:11]=00101 2 during a Type 1 to Type 0 conversion.
2453
** 04 Varies with External State of PRIVDEV at PCI Bus Reset AD20- IDSEL Disable - When this bit is set,
2454
** AD20 is deasserted for any possible Type 1 to Type 0 conversion.
2455
** When this bit is clear,
2456
** AD20 is asserted when Primary addresses AD[15:11]=00100 2 during a Type 1 to Type 0 conversion.
2457
** 03 Varies with External State of PRIVDEV at PCI Bus Reset AD19- IDSEL Disable - When this bit is set,
2458
** AD19 is deasserted for any possible Type 1 to Type 0 conversion.
2459
** When this bit is clear,
2460
** AD19 is asserted when Primary addresses AD[15:11]=00011 2 during a Type 1 to Type 0 conversion.
2461
** 02 Varies with External State of PRIVDEV at PCI Bus Reset AD18- IDSEL Disable - When this bit is set,
2462
** AD18 is deasserted for any possible Type 1 to Type 0 conversion.
2463
** When this bit is clear,
2464
** AD18 is asserted when Primary addresses AD[15:11]=00010 2 during a Type 1 to Type 0 conversion.
2465
** 01 Varies with External State of PRIVDEV at PCI Bus Reset AD17- IDSEL Disable - When this bit is set,
2466
** AD17 is deasserted for any possible Type 1 to Type 0 conversion.
2467
** When this bit is clear,
2468
** AD17 is asserted when Primary addresses AD[15:11]=00001 2 during a Type 1 to Type 0 conversion.
2469
** 00 Varies with External State of PRIVDEV at PCI Bus Reset AD16- IDSEL Disable - When this bit is set,
2470
** AD16 is deasserted for any possible Type 1 to Type 0 conversion.
2471
** When this bit is clear,
2472
** AD16 is asserted when Primary addresses AD[15:11]=00000 2 during a Type 1 to Type 0 conversion.
2473
**************************************************************************
2474
*/
2475
/*
2476
**************************************************************************
2477
** Reserved A8-CBh
2478
**************************************************************************
2479
*/
2480
/*
2481
**************************************************************************
2482
** PCI Extended Enhanced Capabilities List CC-FFh
2483
**************************************************************************
2484
** ----------------------------------------------------------------------------------------------------------
2485
** | Byte 3 | Byte 2 | Byte 1 | Byte 0 | Configu-ration Byte Offset
2486
** ----------------------------------------------------------------------------------------------------------
2487
** | Power Management Capabilities | Next Item Ptr | Capability ID | DCh
2488
** ----------------------------------------------------------------------------------------------------------
2489
** | PM Data | PPB Support | Extensions Power Management CSR | E0h
2490
** ----------------------------------------------------------------------------------------------------------
2491
** | Reserved | Reserved | Reserved | E4h
2492
** ----------------------------------------------------------------------------------------------------------
2493
** | Reserved | E8h
2494
** ----------------------------------------------------------------------------------------------------------
2495
** | Reserved | Reserved | Reserved | Reserved | ECh
2496
** ----------------------------------------------------------------------------------------------------------
2497
** | PCI-X Secondary Status | Next Item Ptr | Capability ID | F0h
2498
** ----------------------------------------------------------------------------------------------------------
2499
** | PCI-X Bridge Status | F4h
2500
** ----------------------------------------------------------------------------------------------------------
2501
** | PCI-X Upstream Split Transaction Control | F8h
2502
** ----------------------------------------------------------------------------------------------------------
2503
** | PCI-X Downstream Split Transaction Control | FCh
2504
** ----------------------------------------------------------------------------------------------------------
2505
**===============================================================================
2506
** 0xDC: Power Management Capabilities Identifier - PM_CAPID
2507
** Bit Default Description
2508
** 07:00 01h Identifier (ID): PCI SIG assigned ID for PCI-PM register block
2509
**===============================================================================
2510
** 0xDD: Next Item Pointer - PM_NXTP
2511
** Bit Default Description
2512
** 07:00 F0H Next Capabilities Pointer (PTR): The register defaults to F0H pointing to the PCI-X Extended Capability Header.
2513
**===============================================================================
2514
** 0xDF-0xDE: Power Management Capabilities Register - PMCR
2515
** Bit Default Description
2516
** 15:11 00h PME Supported (PME): PME# cannot be asserted by bridge.
2517
** 10 0h State D2 Supported (D2): Indicates no support for state D2. No power management action in this state.
2518
** 09 1h State D1 Supported (D1): Indicates support for state D1. No power management action in this state.
2519
** 08:06 0h Auxiliary Current (AUXC): This 3 bit field reports the 3.3Vaux auxiliary current requirements for the PCI function.
2520
** This returns 000b as PME# wake-up for bridge is not implemented.
2521
** 05 0 Special Initialization Required (SINT): Special initialization is not required for bridge.
2522
** 04:03 00 Reserved
2523
** 02:00 010 Version (VS): Indicates that this supports PCI Bus Power Management Interface Specification, Revision 1.1.
2524
**===============================================================================
2525
** 0xE1-0xE0: Power Management Control / Status - Register - PMCSR
2526
** Bit Default Description
2527
** 15:09 00h Reserved
2528
** 08 0b PME_Enable: This bit, when set to 1b enables bridge to assert PME#.
2529
** Note that bridge never has occasion to assert PME# and implements this dummy R/W bit only for the purpose of working around an OS PCI-PM bug.
2530
** 07:02 00h Reserved
2531
** 01:00 00 Power State (PSTATE): This 2-bit field is used both to determine the current power state of
2532
** a function and to set the Function into a new power state.
2533
** 00 - D0 state
2534
** 01 - D1 state
2535
** 10 - D2 state
2536
** 11 - D3 hot state
2537
**===============================================================================
2538
** 0xE2: Power Management Control / Status PCI to PCI Bridge Support - PMCSR_BSE
2539
** Bit Default Description
2540
** 07 0 Bus Power/Clock Control Enable (BPCC_En): Indicates that the bus power/clock control policies have been disabled.
2541
** 06 0 B2/B3 support for D3 Hot (B2_B3#): The state of this bit determines the action that
2542
** is to occur as a direct result of programming the function to D3 hot.
2543
** This bit is only meaningful when bit 7 (BPCC_En) is a ��1��.
2544
** 05:00 00h Reserved
2545
**===============================================================================
2546
** 0xE3: Power Management Data Register - PMDR
2547
** Bit Default Description
2548
** 07:00 00h Reserved
2549
**===============================================================================
2550
** 0xF0: PCI-X Capabilities Identifier - PX_CAPID
2551
** Bit Default Description
2552
** 07:00 07h Identifier (ID): Indicates this is a PCI-X capabilities list.
2553
**===============================================================================
2554
** 0xF1: Next Item Pointer - PX_NXTP
2555
** Bit Default Description
2556
** 07:00 00h Next Item Pointer: Points to the next capability in the linked list The power on default value of this
2557
** register is 00h indicating that this is the last entry in the linked list of capabilities.
2558
**===============================================================================
2559
** 0xF3-0xF2: PCI-X Secondary Status - PX_SSTS
2560
** Bit Default Description
2561
** 15:09 00h Reserved
2562
** 08:06 Xxx Secondary Clock Frequency (SCF): This field is set with the frequency of the secondary bus.
2563
** The values are:
2564
** ** BitsMax FrequencyClock Period
2565
** ** 000PCI ModeN/A
2566
** ** 00166 15
2567
** ** 01010010
2568
** ** 0111337.5
2569
** ** 1xxreservedreserved
2570
** ** The default value for this register is the operating frequency of the secondary bus
2571
** 05 0b Split Request Delayed. (SRD): This bit is supposed to be set by a bridge when it cannot forward a transaction on the
2572
** secondary bus to the primary bus because there is not enough room within the limit
2573
** specified in the Split Transaction Commitment Limit field in the Downstream Split
2574
** Transaction Control register. The bridge does not set this bit.
2575
** 04 0b Split Completion Overrun (SCO): This bit is supposed to be set when a bridge terminates a Split Completion on the ** ** secondary bus with retry or Disconnect at next ADB because its buffers are full.
2576
** The bridge does not set this bit.
2577
** 03 0b Unexpected Split Completion (USC): This bit is set when an unexpected split completion with a requester ID
2578
** equal to bridge secondary bus number, device number 00h,
2579
** and function number 0 is received on the secondary interface.
2580
** This bit is cleared by software writing a '1'.
2581
** 02 0b Split Completion Discarded (SCD): This bit is set
2582
** when bridge discards a split completion moving toward the secondary bus
2583
** because the requester would not accept it. This bit cleared by software writing a '1'.
2584
** 01 1b 133 MHz Capable: Indicates that bridge is capable of running its secondary bus at 133 MHz
2585
** 00 1b 64-bit Device (D64): Indicates the width of the secondary bus as 64-bits.
2586
**===============================================================================
2587
** 0xF7-0xF6-0xf5-0xF4: PCI-X Bridge Status - PX_BSTS
2588
** Bit Default Description
2589
** 31:22 0 Reserved
2590
** 21 0 Split Request Delayed (SRD): This bit does not be set by bridge.
2591
** 20 0 Split Completion Overrun (SCO): This bit does not be set by bridge
2592
** because bridge throttles traffic on the completion side.
2593
** 19 0 Unexpected Split Completion (USC): The bridge sets this bit to 1b
2594
** when it encounters a corrupted Split Completion, possibly with an ** ** inconsistent remaining byte count.Software clears
2595
** this bit by writing a 1b to it.
2596
** 18 0 Split Completion Discarded (SCD): The bridge sets this bit to 1b
2597
** when it has discarded a Split Completion.Software clears this bit by ** ** writing a 1b to it.
2598
** 17 1 133 MHz Capable: This bit indicates that the bridge primary interface is ** capable of 133 MHz operation in PCI-X mode.
2599
** 0=The maximum operating frequency is 66 MHz.
2600
** 1=The maximum operating frequency is 133 MHz.
2601
** 16 Varies with the external state of P_32BITPCI# at PCI Bus Reset 64-bit Device (D64): Indicates bus width of the Primary PCI bus interface.
2602
** 0=Primary Interface is connected as a 32-bit PCI bus.
2603
** 1=Primary Interface is connected as a 64-bit PCI bus.
2604
** 15:08 00h Bus Number (BNUM): This field is simply an alias to the PBN field
2605
** of the BNUM register at offset 18h.
2606
** Apparently it was deemed necessary reflect it here for diagnostic purposes.
2607
** 07:03 1fh Device Number (DNUM): Indicates which IDSEL bridge consumes.
2608
** May be updated whenever a PCI-X
2609
** configuration write cycle that targets bridge scores a hit.
2610
** 02:00 0h Function Number (FNUM): The bridge Function #
2611
**===============================================================================
2612
** 0xFB-0xFA-0xF9-0xF8: PCI-X Upstream Split Transaction Control - PX_USTC
2613
** Bit Default Description
2614
** 31:16 003Eh Split Transaction Limit (STL): This register indicates the size of the commitment limit in units of ADQs.
2615
** Software is permitted to program this register to any value greater than or equal to
2616
** the contents of the Split Transaction Capacity register. A value less than the contents
2617
** of the Split Transaction Capacity register causes unspecified results.
2618
** A value of 003Eh or greater enables the bridge to forward all Split Requests of any
2619
** size regardless of the amount of buffer space available.
2620
** 15:00 003Eh Split Transaction Capacity (STC): This read-only field indicates the size of the buffer (number of ADQs) for storing
2621
** split completions. This register controls behavior of the bridge buffers for forwarding
2622
** Split Transactions from a primary bus requester to a secondary bus completer.
2623
** The default value of 003Eh indicates there is available buffer space for 62 ADQs (7936 bytes).
2624
**===============================================================================
2625
** 0xFF-0xFE-0xFD-0xFC: PCI-X Downstream Split Transaction Control - PX_DSTC
2626
** Bit Default Description
2627
** 31:16 003Eh Split Transaction Limit (STL): This register indicates the size of the commitment limit in units of ADQs.
2628
** Software is permitted to program this register to any value greater than or equal to
2629
** the contents of the Split Transaction Capacity register. A value less than the contents
2630
** of the Split Transaction Capacity register causes unspecified results.
2631
** A value of 003Eh or greater enables the bridge to forward all Split Requests of any
2632
** size regardless of the amount of buffer space available.
2633
** 15:00 003Eh Split Transaction Capacity (STC): This read-only field indicates the size of the buffer (number of ADQs) for storing
2634
** split completions. This register controls behavior of the bridge buffers for forwarding
2635
** Split Transactions from a primary bus requester to a secondary bus completer.
2636
** The default value of 003Eh indicates there is available buffer space for 62 ADQs
2637
** (7936 bytes).
2638
**************************************************************************
2639
*/
2640
2641
/*
2642
*************************************************************************************************************************************
2643
** 80331 Address Translation Unit Register Definitions
2644
** ATU Interface Configuration Header Format
2645
** The ATU is programmed via a [Type 0] configuration command on the PCI interface.
2646
*************************************************************************************************************************************
2647
** | Byte 3 | Byte 2 | Byte 1 | Byte 0 | Configuration Byte Offset
2648
**===================================================================================================================================
2649
** | ATU Device ID | Vendor ID | 00h
2650
** ----------------------------------------------------------------------------------------------------------
2651
** | Status | Command | 04H
2652
** ----------------------------------------------------------------------------------------------------------
2653
** | ATU Class Code | Revision ID | 08H
2654
** ----------------------------------------------------------------------------------------------------------
2655
** | ATUBISTR | Header Type | Latency Timer | Cacheline Size | 0CH
2656
** ----------------------------------------------------------------------------------------------------------
2657
** | Inbound ATU Base Address 0 | 10H
2658
** ----------------------------------------------------------------------------------------------------------
2659
** | Inbound ATU Upper Base Address 0 | 14H
2660
** ----------------------------------------------------------------------------------------------------------
2661
** | Inbound ATU Base Address 1 | 18H
2662
** ----------------------------------------------------------------------------------------------------------
2663
** | Inbound ATU Upper Base Address 1 | 1CH
2664
** ----------------------------------------------------------------------------------------------------------
2665
** | Inbound ATU Base Address 2 | 20H
2666
** ----------------------------------------------------------------------------------------------------------
2667
** | Inbound ATU Upper Base Address 2 | 24H
2668
** ----------------------------------------------------------------------------------------------------------
2669
** | Reserved | 28H
2670
** ----------------------------------------------------------------------------------------------------------
2671
** | ATU Subsystem ID | ATU Subsystem Vendor ID | 2CH
2672
** ----------------------------------------------------------------------------------------------------------
2673
** | Expansion ROM Base Address | 30H
2674
** ----------------------------------------------------------------------------------------------------------
2675
** | Reserved Capabilities Pointer | 34H
2676
** ----------------------------------------------------------------------------------------------------------
2677
** | Reserved | 38H
2678
** ----------------------------------------------------------------------------------------------------------
2679
** | Maximum Latency | Minimum Grant | Interrupt Pin | Interrupt Line | 3CH
2680
** ----------------------------------------------------------------------------------------------------------
2681
*********************************************************************************************************************
2682
*/
2683
/*
2684
***********************************************************************************
2685
** ATU Vendor ID Register - ATUVID
2686
** -----------------------------------------------------------------
2687
** Bit Default Description
2688
** 15:00 8086H (0x17D3) ATU Vendor ID - This is a 16-bit value assigned to Intel.
2689
** This register, combined with the DID, uniquely identify the PCI device.
2690
** Access type is Read/Write to allow the 80331 to configure the register as a different vendor ID
2691
** to simulate the interface of a standard mechanism currently used by existing application software.
2692
***********************************************************************************
2693
*/
2694
#define ARCMSR_ATU_VENDOR_ID_REG 0x00 /*word*/
2695
/*
2696
***********************************************************************************
2697
** ATU Device ID Register - ATUDID
2698
** -----------------------------------------------------------------
2699
** Bit Default Description
2700
** 15:00 0336H (0x1110) ATU Device ID - This is a 16-bit value assigned to the ATU.
2701
** This ID, combined with the VID, uniquely identify any PCI device.
2702
***********************************************************************************
2703
*/
2704
#define ARCMSR_ATU_DEVICE_ID_REG 0x02 /*word*/
2705
/*
2706
***********************************************************************************
2707
** ATU Command Register - ATUCMD
2708
** -----------------------------------------------------------------
2709
** Bit Default Description
2710
** 15:11 000000 2 Reserved
2711
** 10 0 Interrupt Disable - This bit disables 80331 from asserting the ATU interrupt signal.
2712
** 0=enables the assertion of interrupt signal.
2713
** 1=disables the assertion of its interrupt signal.
2714
** 09 0 2 Fast Back to Back Enable - When cleared,
2715
** the ATU interface is not allowed to generate fast back-to-back cycles on its bus.
2716
** Ignored when operating in the PCI-X mode.
2717
** 08 0 2 SERR# Enable - When cleared, the ATU interface is not allowed to assert SERR# on the PCI interface.
2718
** 07 1 2 Address/Data Stepping Control - Address stepping is implemented for configuration transactions. The
2719
** ATU inserts 2 clock cycles of address stepping for Conventional Mode and 4 clock cycles
2720
** of address stepping for PCI-X mode.
2721
** 06 0 2 Parity Error Response - When set, the ATU takes normal action when a parity error
2722
** is detected. When cleared, parity checking is disabled.
2723
** 05 0 2 VGA Palette Snoop Enable - The ATU interface does not support I/O writes and therefore,
2724
** does not perform VGA palette snooping.
2725
** 04 0 2 Memory Write and Invalidate Enable - When set, ATU may generate MWI commands.
2726
** When clear, ATU use Memory Write commands instead of MWI. Ignored when operating in the PCI-X mode.
2727
** 03 0 2 Special Cycle Enable - The ATU interface does not respond to special cycle commands in any way.
2728
** Not implemented and a reserved bit field.
2729
** 02 0 2 Bus Master Enable - The ATU interface can act as a master on the PCI bus.
2730
** When cleared, disables the device from generating PCI accesses.
2731
** When set, allows the device to behave as a PCI bus master.
2732
** When operating in the PCI-X mode, ATU initiates a split completion transaction regardless
2733
** of the state of this bit.
2734
** 01 0 2 Memory Enable - Controls the ATU interface��s response to PCI memory addresses.
2735
** When cleared, the ATU interface does not respond to any memory access on the PCI bus.
2736
** 00 0 2 I/O Space Enable - Controls the ATU interface response to I/O transactions.
2737
** Not implemented and a reserved bit field.
2738
***********************************************************************************
2739
*/
2740
#define ARCMSR_ATU_COMMAND_REG 0x04 /*word*/
2741
/*
2742
***********************************************************************************
2743
** ATU Status Register - ATUSR (Sheet 1 of 2)
2744
** -----------------------------------------------------------------
2745
** Bit Default Description
2746
** 15 0 2 Detected Parity Error - set when a parity error is detected in data received by the ATU on the PCI bus even
2747
** when the ATUCMD register��s Parity Error Response bit is cleared. Set under the following conditions:
2748
** �E Write Data Parity Error when the ATU is a target (inbound write).
2749
** �E Read Data Parity Error when the ATU is a requester (outbound read).
2750
** �E Any Address or Attribute (PCI-X Only) Parity Error on the Bus ** ** ** (including one generated by the ATU).
2751
** 14 0 2 SERR# Asserted - set when SERR# is asserted on the PCI bus by the ATU.
2752
** 13 0 2 Master Abort - set when a transaction initiated by the ATU PCI master interface, ends in a Master-Abort
2753
** or when the ATU receives a Master Abort Split Completion Error Message in PCI-X mode.
2754
** 12 0 2 Target Abort (master) - set when a transaction initiated by the ATU PCI master interface, ends in a target
2755
** abort or when the ATU receives a Target Abort Split Completion Error Message in PCI-X mode.
2756
** 11 0 2 Target Abort (target) - set when the ATU interface, acting as a target,
2757
** terminates the transaction on the PCI bus with a target abort.
2758
** 10:09 01 2 DEVSEL# Timing - These bits are read-only and define the slowest DEVSEL#
2759
** timing for a target device in Conventional PCI Mode regardless of the operating mode
2760
** (except configuration accesses).
2761
** 00 2=Fast
2762
** 01 2=Medium
2763
** 10 2=Slow
2764
** 11 2=Reserved
2765
** The ATU interface uses Medium timing.
2766
** 08 0 2 Master Parity Error - The ATU interface sets this bit under the following conditions:
2767
** �E The ATU asserted PERR# itself or the ATU observed PERR# asserted.
2768
** �E And the ATU acted as the requester
2769
** for the operation in which the error occurred.
2770
** �E And the ATUCMD register��s Parity Error Response bit is set
2771
** �E Or (PCI-X Mode Only) the ATU received a Write Data Parity Error Message
2772
** �E And the ATUCMD register��s Parity Error Response bit is set
2773
** 07 1 2 (Conventional mode)
2774
** 0 2 (PCI-X mode)
2775
** Fast Back-to-Back - The ATU/Messaging Unit interface is capable of accepting fast back-to-back
2776
** transactions in Conventional PCI mode when the transactions are not to the same target. Since fast
2777
** back-to-back transactions do not exist in PCI-X mode, this bit is forced to 0 in the PCI-X mode.
2778
** 06 0 2 UDF Supported - User Definable Features are not supported
2779
** 05 1 2 66 MHz. Capable - 66 MHz operation is supported.
2780
** 04 1 2 Capabilities - When set, this function implements extended capabilities.
2781
** 03 0 Interrupt Status - reflects the state of the ATU interrupt
2782
** when the Interrupt Disable bit in the command register is a 0.
2783
** 0=ATU interrupt signal deasserted.
2784
** 1=ATU interrupt signal asserted.
2785
** NOTE: Setting the Interrupt Disable bit to a 1 has no effect on the state of this bit. Refer to
2786
** Section 3.10.23, ��ATU Interrupt Pin Register - ATUIPR�� on page 236 for details on the ATU
2787
** interrupt signal.
2788
** 02:00 00000 2 Reserved.
2789
***********************************************************************************
2790
*/
2791
#define ARCMSR_ATU_STATUS_REG 0x06 /*word*/
2792
/*
2793
***********************************************************************************
2794
** ATU Revision ID Register - ATURID
2795
** -----------------------------------------------------------------
2796
** Bit Default Description
2797
** 07:00 00H ATU Revision - identifies the 80331 revision number.
2798
***********************************************************************************
2799
*/
2800
#define ARCMSR_ATU_REVISION_REG 0x08 /*byte*/
2801
/*
2802
***********************************************************************************
2803
** ATU Class Code Register - ATUCCR
2804
** -----------------------------------------------------------------
2805
** Bit Default Description
2806
** 23:16 05H Base Class - Memory Controller
2807
** 15:08 80H Sub Class - Other Memory Controller
2808
** 07:00 00H Programming Interface - None defined
2809
***********************************************************************************
2810
*/
2811
#define ARCMSR_ATU_CLASS_CODE_REG 0x09 /*3bytes 0x0B,0x0A,0x09*/
2812
/*
2813
***********************************************************************************
2814
** ATU Cacheline Size Register - ATUCLSR
2815
** -----------------------------------------------------------------
2816
** Bit Default Description
2817
** 07:00 00H ATU Cacheline Size - specifies the system cacheline size in DWORDs. Cacheline size is restricted to either 0, 8 or 16 DWORDs.
2818
***********************************************************************************
2819
*/
2820
#define ARCMSR_ATU_CACHELINE_SIZE_REG 0x0C /*byte*/
2821
/*
2822
***********************************************************************************
2823
** ATU Latency Timer Register - ATULT
2824
** -----------------------------------------------------------------
2825
** Bit Default Description
2826
** 07:03 00000 2 (for Conventional mode)
2827
** 01000 2 (for PCI-X mode)
2828
** Programmable Latency Timer - This field varies the latency timer for the interface from 0 to 248 clocks.
2829
** The default value is 0 clocks for Conventional PCI mode, and 64 clocks for PCI-X mode.
2830
** 02:00 000 2 Latency Timer Granularity - These Bits are read only giving a programmable granularity of 8 clocks for the latency timer.
2831
***********************************************************************************
2832
*/
2833
#define ARCMSR_ATU_LATENCY_TIMER_REG 0x0D /*byte*/
2834
/*
2835
***********************************************************************************
2836
** ATU Header Type Register - ATUHTR
2837
** -----------------------------------------------------------------
2838
** Bit Default Description
2839
** 07 0 2 Single Function/Multi-Function Device - Identifies the 80331 as a single-function PCI device.
2840
** 06:00 000000 2 PCI Header Type - This bit field indicates the type of PCI header implemented. The ATU interface
2841
** header conforms to PCI Local Bus Specification, Revision 2.3.
2842
***********************************************************************************
2843
*/
2844
#define ARCMSR_ATU_HEADER_TYPE_REG 0x0E /*byte*/
2845
/*
2846
***********************************************************************************
2847
** ATU BIST Register - ATUBISTR
2848
**
2849
** The ATU BIST Register controls the functions the Intel XScale core performs when BIST is
2850
** initiated. This register is the interface between the host processor requesting BIST functions and
2851
** the 80331 replying with the results from the software implementation of the BIST functionality.
2852
** -----------------------------------------------------------------
2853
** Bit Default Description
2854
** 07 0 2 BIST Capable - This bit value is always equal to the ATUCR ATU BIST Interrupt Enable bit.
2855
** 06 0 2 Start BIST - When the ATUCR BIST Interrupt Enable bit is set:
2856
** Setting this bit generates an interrupt to the Intel XScale core to perform a software BIST function.
2857
** The Intel XScale core clears this bit when the BIST software has completed with the BIST results
2858
** found in ATUBISTR register bits [3:0].
2859
** When the ATUCR BIST Interrupt Enable bit is clear:
2860
** Setting this bit does not generate an interrupt to the Intel XScale core and no BIST functions is performed.
2861
** The Intel XScale core does not clear this bit.
2862
** 05:04 00 2 Reserved
2863
** 03:00 0000 2 BIST Completion Code - when the ATUCR BIST Interrupt Enable bit is set and the ATUBISTR Start BIST bit is set (bit 6):
2864
** The Intel XScale core places the results of the software BIST in these bits.
2865
** A nonzero value indicates a device-specific error.
2866
***********************************************************************************
2867
*/
2868
#define ARCMSR_ATU_BIST_REG 0x0F /*byte*/
2869
2870
/*
2871
***************************************************************************************
2872
** ATU Base Registers and Associated Limit Registers
2873
***************************************************************************************
2874
** Base Address Register Limit Register Description
2875
** Inbound ATU Base Address Register 0 Inbound ATU Limit Register 0 Defines the inbound translation window 0 from the PCI bus.
2876
** Inbound ATU Upper Base Address Register 0 N/A Together with ATU Base Address Register 0 defines the inbound ** translation window 0 from the PCI bus for DACs.
2877
** Inbound ATU Base Address Register 1 Inbound ATU Limit Register 1 Defines inbound window 1 from the PCI bus.
2878
** Inbound ATU Upper Base Address Register 1 N/A Together with ATU Base Address Register 1 defines inbound window ** 1 from the PCI bus for DACs.
2879
** Inbound ATU Base Address Register 2 Inbound ATU Limit Register 2 Defines the inbound translation window 2 from the PCI bus.
2880
** Inbound ATU Upper Base Address Register 2 N/A Together with ATU Base Address Register 2 defines the inbound ** ** translation window 2 from the PCI bus for DACs.
2881
** Inbound ATU Base Address Register 3 Inbound ATU Limit Register 3 Defines the inbound translation window 3 from the PCI bus.
2882
** Inbound ATU Upper Base Address Register 3 N/A Together with ATU Base Address Register 3 defines the inbound ** ** translation window 3 from the PCI bus for DACs.
2883
** NOTE: This is a private BAR that resides outside of the standard PCI configuration header space (offsets 00H-3FH).
2884
** Expansion ROM Base Address Register Expansion ROM Limit Register Defines the window of addresses used by a bus master for reading ** from an Expansion ROM.
2885
**--------------------------------------------------------------------------------------
2886
** ATU Inbound Window 1 is not a translate window.
2887
** The ATU does not claim any PCI accesses that fall within this range.
2888
** This window is used to allocate host memory for use by Private Devices.
2889
** When enabled, the ATU interrupts the Intel XScale core when either the IABAR1 register or the IAUBAR1 register is written from the PCI bus.
2890
***********************************************************************************
2891
*/
2892
2893
/*
2894
***********************************************************************************
2895
** Inbound ATU Base Address Register 0 - IABAR0
2896
**
2897
** . The Inbound ATU Base Address Register 0 (IABAR0) together with the Inbound ATU Upper Base Address Register 0 (IAUBAR0)
2898
** defines the block of memory addresses where the inbound translation window 0 begins.
2899
** . The inbound ATU decodes and forwards the bus request to the 80331 internal bus with a translated address to map into 80331 local memory.
2900
** . The IABAR0 and IAUBAR0 define the base address and describes the required memory block size.
2901
** . Bits 31 through 12 of the IABAR0 is either read/write bits or read only with a value of 0
2902
** depending on the value located within the IALR0.
2903
** This configuration allows the IABAR0 to be programmed per PCI Local Bus Specification.
2904
** The first 4 Kbytes of memory defined by the IABAR0, IAUBAR0 and the IALR0 is reserved for the Messaging Unit.
2905
** The programmed value within the base address register must comply with the PCI programming requirements for address alignment.
2906
** Warning:
2907
** When IALR0 is cleared prior to host configuration:
2908
** the user should also clear the Prefetchable Indicator and the Type Indicator.
2909
** Assuming IALR0 is not cleared:
2910
** a. Since non prefetchable memory windows can never be placed above the 4 Gbyte address boundary,
2911
** when the Prefetchable Indicator is cleared prior to host configuration,
2912
** the user should also set the Type Indicator for 32 bit addressability.
2913
** b. For compliance to the PCI-X Addendum to the PCI Local Bus Specification,
2914
** when the Prefetchable Indicator is set prior to host configuration, the user
2915
** should also set the Type Indicator for 64 bit addressability.
2916
** This is the default for IABAR0.
2917
** -----------------------------------------------------------------
2918
** Bit Default Description
2919
** 31:12 00000H Translation Base Address 0 - These bits define the actual location
2920
** the translation function is to respond to when addressed from the PCI bus.
2921
** 11:04 00H Reserved.
2922
** 03 1 2 Prefetchable Indicator - When set, defines the memory space as prefetchable.
2923
** 02:01 10 2 Type Indicator - Defines the width of the addressability for this memory window:
2924
** 00 - Memory Window is locatable anywhere in 32 bit address space
2925
** 10 - Memory Window is locatable anywhere in 64 bit address space
2926
** 00 0 2 Memory Space Indicator - This bit field describes memory or I/O space base address.
2927
** The ATU does not occupy I/O space,
2928
** thus this bit must be zero.
2929
***********************************************************************************
2930
*/
2931
#define ARCMSR_INBOUND_ATU_BASE_ADDRESS0_REG 0x10 /*dword 0x13,0x12,0x11,0x10*/
2932
#define ARCMSR_INBOUND_ATU_MEMORY_PREFETCHABLE 0x08
2933
#define ARCMSR_INBOUND_ATU_MEMORY_WINDOW64 0x04
2934
/*
2935
***********************************************************************************
2936
** Inbound ATU Upper Base Address Register 0 - IAUBAR0
2937
**
2938
** This register contains the upper base address when decoding PCI addresses beyond 4 GBytes.
2939
** Together with the Translation Base Address this register defines the actual location the translation
2940
** function is to respond to when addressed from the PCI bus for addresses > 4GBytes (for DACs).
2941
** The programmed value within the base address register must comply with the PCI programming requirements for address alignment.
2942
** Note:
2943
** When the Type indicator of IABAR0 is set to indicate 32 bit addressability,
2944
** the IAUBAR0 register attributes are read-only.
2945
** -----------------------------------------------------------------
2946
** Bit Default Description
2947
** 31:0 00000H Translation Upper Base Address 0 - Together with the Translation Base Address 0 these bits define the
2948
** actual location the translation function is to respond to when addressed from the PCI bus for addresses > 4GBytes.
2949
***********************************************************************************
2950
*/
2951
#define ARCMSR_INBOUND_ATU_UPPER_BASE_ADDRESS0_REG 0x14 /*dword 0x17,0x16,0x15,0x14*/
2952
/*
2953
***********************************************************************************
2954
** Inbound ATU Base Address Register 1 - IABAR1
2955
**
2956
** . The Inbound ATU Base Address Register (IABAR1) together with the Inbound ATU Upper Base Address Register 1 (IAUBAR1)
2957
** defines the block of memory addresses where the inbound translation window 1 begins.
2958
** . This window is used merely to allocate memory on the PCI bus and, the ATU does not process any PCI bus transactions to this memory range.
2959
** . The programmed value within the base address register must comply with the PCI programming requirements for address alignment.
2960
** . When enabled, the ATU interrupts the Intel XScale core when the IABAR1 register is written from the PCI bus.
2961
** Warning:
2962
** When a non-zero value is not written to IALR1 prior to host configuration,
2963
** the user should not set either the Prefetchable Indicator or the Type Indicator for 64 bit addressability.
2964
** This is the default for IABAR1.
2965
** Assuming a non-zero value is written to IALR1,
2966
** the user may set the Prefetchable Indicator
2967
** or the Type Indicator:
2968
** a. Since non prefetchable memory windows can never be placed above the 4 Gbyte address
2969
** boundary, when the Prefetchable Indicator is not set prior to host configuration,
2970
** the user should also leave the Type Indicator set for 32 bit addressability.
2971
** This is the default for IABAR1.
2972
** b. when the Prefetchable Indicator is set prior to host configuration,
2973
** the user should also set the Type Indicator for 64 bit addressability.
2974
** -----------------------------------------------------------------
2975
** Bit Default Description
2976
** 31:12 00000H Translation Base Address 1 - These bits define the actual location of window 1 on the PCI bus.
2977
** 11:04 00H Reserved.
2978
** 03 0 2 Prefetchable Indicator - When set, defines the memory space as prefetchable.
2979
** 02:01 00 2 Type Indicator - Defines the width of the addressability for this memory window:
2980
** 00 - Memory Window is locatable anywhere in 32 bit address space
2981
** 10 - Memory Window is locatable anywhere in 64 bit address space
2982
** 00 0 2 Memory Space Indicator - This bit field describes memory or I/O space base address.
2983
** The ATU does not occupy I/O space,
2984
** thus this bit must be zero.
2985
***********************************************************************************
2986
*/
2987
#define ARCMSR_INBOUND_ATU_BASE_ADDRESS1_REG 0x18 /*dword 0x1B,0x1A,0x19,0x18*/
2988
/*
2989
***********************************************************************************
2990
** Inbound ATU Upper Base Address Register 1 - IAUBAR1
2991
**
2992
** This register contains the upper base address when locating this window for PCI addresses beyond 4 GBytes.
2993
** Together with the IABAR1 this register defines the actual location for this memory window for addresses > 4GBytes (for DACs).
2994
** This window is used merely to allocate memory on the PCI bus and, the ATU does not process any PCI bus transactions to this memory range.
2995
** The programmed value within the base address register must comply with the PCI programming
2996
** requirements for address alignment.
2997
** When enabled, the ATU interrupts the Intel XScale core when the IAUBAR1 register is written
2998
** from the PCI bus.
2999
** Note:
3000
** When the Type indicator of IABAR1 is set to indicate 32 bit addressability,
3001
** the IAUBAR1 register attributes are read-only.
3002
** This is the default for IABAR1.
3003
** -----------------------------------------------------------------
3004
** Bit Default Description
3005
** 31:0 00000H Translation Upper Base Address 1 - Together with the Translation Base Address 1
3006
** these bits define the actual location for this memory window on the PCI bus for addresses > 4GBytes.
3007
***********************************************************************************
3008
*/
3009
#define ARCMSR_INBOUND_ATU_UPPER_BASE_ADDRESS1_REG 0x1C /*dword 0x1F,0x1E,0x1D,0x1C*/
3010
/*
3011
***********************************************************************************
3012
** Inbound ATU Base Address Register 2 - IABAR2
3013
**
3014
** . The Inbound ATU Base Address Register 2 (IABAR2) together with the Inbound ATU Upper Base Address Register 2 (IAUBAR2)
3015
** defines the block of memory addresses where the inbound translation window 2 begins.
3016
** . The inbound ATU decodes and forwards the bus request to the 80331 internal bus with a translated address to map into 80331 local memory.
3017
** . The IABAR2 and IAUBAR2 define the base address and describes the required memory block size
3018
** . Bits 31 through 12 of the IABAR2 is either read/write bits or read only with a value of 0 depending on the value located within the IALR2.
3019
** The programmed value within the base address register must comply with the PCI programming requirements for address alignment.
3020
** Warning:
3021
** When a non-zero value is not written to IALR2 prior to host configuration,
3022
** the user should not set either the Prefetchable Indicator
3023
** or the Type Indicator for 64 bit addressability.
3024
** This is the default for IABAR2.
3025
** Assuming a non-zero value is written to IALR2,
3026
** the user may set the Prefetchable Indicator
3027
** or the Type Indicator:
3028
** a. Since non prefetchable memory windows can never be placed above the 4 Gbyte address boundary,
3029
** when the Prefetchable Indicator is not set prior to host configuration,
3030
** the user should also leave the Type Indicator set for 32 bit addressability.
3031
** This is the default for IABAR2.
3032
** b. when the Prefetchable Indicator is set prior to host configuration,
3033
** the user should also set the Type Indicator for 64 bit addressability.
3034
** -----------------------------------------------------------------
3035
** Bit Default Description
3036
** 31:12 00000H Translation Base Address 2 - These bits define the actual location
3037
** the translation function is to respond to when addressed from the PCI bus.
3038
** 11:04 00H Reserved.
3039
** 03 0 2 Prefetchable Indicator - When set, defines the memory space as prefetchable.
3040
** 02:01 00 2 Type Indicator - Defines the width of the addressability for this memory window:
3041
** 00 - Memory Window is locatable anywhere in 32 bit address space
3042
** 10 - Memory Window is locatable anywhere in 64 bit address space
3043
** 00 0 2 Memory Space Indicator - This bit field describes memory or I/O space base address.
3044
** The ATU does not occupy I/O space,
3045
** thus this bit must be zero.
3046
***********************************************************************************
3047
*/
3048
#define ARCMSR_INBOUND_ATU_BASE_ADDRESS2_REG 0x20 /*dword 0x23,0x22,0x21,0x20*/
3049
/*
3050
***********************************************************************************
3051
** Inbound ATU Upper Base Address Register 2 - IAUBAR2
3052
**
3053
** This register contains the upper base address when decoding PCI addresses beyond 4 GBytes.
3054
** Together with the Translation Base Address this register defines the actual location
3055
** the translation function is to respond to when addressed from the PCI bus for addresses > 4GBytes (for DACs).
3056
** The programmed value within the base address register must comply with the PCI programming
3057
** requirements for address alignment.
3058
** Note:
3059
** When the Type indicator of IABAR2 is set to indicate 32 bit addressability,
3060
** the IAUBAR2 register attributes are read-only.
3061
** This is the default for IABAR2.
3062
** -----------------------------------------------------------------
3063
** Bit Default Description
3064
** 31:0 00000H Translation Upper Base Address 2 - Together with the Translation Base Address 2
3065
** these bits define the actual location the translation function is to respond to
3066
** when addressed from the PCI bus for addresses > 4GBytes.
3067
***********************************************************************************
3068
*/
3069
#define ARCMSR_INBOUND_ATU_UPPER_BASE_ADDRESS2_REG 0x24 /*dword 0x27,0x26,0x25,0x24*/
3070
/*
3071
***********************************************************************************
3072
** ATU Subsystem Vendor ID Register - ASVIR
3073
** -----------------------------------------------------------------
3074
** Bit Default Description
3075
** 15:0 0000H Subsystem Vendor ID - This register uniquely identifies the add-in board or subsystem vendor.
3076
***********************************************************************************
3077
*/
3078
#define ARCMSR_ATU_SUBSYSTEM_VENDOR_ID_REG 0x2C /*word 0x2D,0x2C*/
3079
/*
3080
***********************************************************************************
3081
** ATU Subsystem ID Register - ASIR
3082
** -----------------------------------------------------------------
3083
** Bit Default Description
3084
** 15:0 0000H Subsystem ID - uniquely identifies the add-in board or subsystem.
3085
***********************************************************************************
3086
*/
3087
#define ARCMSR_ATU_SUBSYSTEM_ID_REG 0x2E /*word 0x2F,0x2E*/
3088
/*
3089
***********************************************************************************
3090
** Expansion ROM Base Address Register -ERBAR
3091
** -----------------------------------------------------------------
3092
** Bit Default Description
3093
** 31:12 00000H Expansion ROM Base Address - These bits define the actual location
3094
** where the Expansion ROM address window resides when addressed from the PCI bus on any 4 Kbyte boundary.
3095
** 11:01 000H Reserved
3096
** 00 0 2 Address Decode Enable - This bit field shows the ROM address
3097
** decoder is enabled or disabled. When cleared, indicates the address decoder is disabled.
3098
***********************************************************************************
3099
*/
3100
#define ARCMSR_EXPANSION_ROM_BASE_ADDRESS_REG 0x30 /*dword 0x33,0x32,0v31,0x30*/
3101
#define ARCMSR_EXPANSION_ROM_ADDRESS_DECODE_ENABLE 0x01
3102
/*
3103
***********************************************************************************
3104
** ATU Capabilities Pointer Register - ATU_CAP_PTR
3105
** -----------------------------------------------------------------
3106
** Bit Default Description
3107
** 07:00 C0H Capability List Pointer - This provides an offset in this function��s configuration space
3108
** that points to the 80331 PCl Bus Power Management extended capability.
3109
***********************************************************************************
3110
*/
3111
#define ARCMSR_ATU_CAPABILITY_PTR_REG 0x34 /*byte*/
3112
/*
3113
***********************************************************************************
3114
** Determining Block Sizes for Base Address Registers
3115
** The required address size and type can be determined by writing ones to a base address register and
3116
** reading from the registers. By scanning the returned value from the least-significant bit of the base
3117
** address registers upwards, the programmer can determine the required address space size. The
3118
** binary-weighted value of the first non-zero bit found indicates the required amount of space.
3119
** Table 105 describes the relationship between the values read back and the byte sizes the base
3120
** address register requires.
3121
** As an example, assume that FFFF.FFFFH is written to the ATU Inbound Base Address Register 0
3122
** (IABAR0) and the value read back is FFF0.0008H. Bit zero is a zero, so the device requires
3123
** memory address space. Bit three is one, so the memory does supports prefetching. Scanning
3124
** upwards starting at bit four, bit twenty is the first one bit found. The binary-weighted value of this
3125
** bit is 1,048,576, indicated that the device requires 1 Mbyte of memory space.
3126
** The ATU Base Address Registers and the Expansion ROM Base Address Register use their
3127
** associated limit registers to enable which bits within the base address register are read/write and
3128
** which bits are read only (0). This allows the programming of these registers in a manner similar to
3129
** other PCI devices even though the limit is variable.
3130
** Table 105. Memory Block Size Read Response
3131
** Response After Writing all 1s
3132
** to the Base Address Register
3133
** Size
3134
** (Bytes)
3135
** Response After Writing all 1s
3136
** to the Base Address Register
3137
** Size
3138
** (Bytes)
3139
** FFFFFFF0H 16 FFF00000H 1 M
3140
** FFFFFFE0H 32 FFE00000H 2 M
3141
** FFFFFFC0H 64 FFC00000H 4 M
3142
** FFFFFF80H 128 FF800000H 8 M
3143
** FFFFFF00H 256 FF000000H 16 M
3144
** FFFFFE00H 512 FE000000H 32 M
3145
** FFFFFC00H 1K FC000000H 64 M
3146
** FFFFF800H 2K F8000000H 128 M
3147
** FFFFF000H 4K F0000000H 256 M
3148
** FFFFE000H 8K E0000000H 512 M
3149
** FFFFC000H 16K C0000000H 1 G
3150
** FFFF8000H 32K 80000000H 2 G
3151
** FFFF0000H 64K
3152
** 00000000H
3153
** Register not
3154
** imple-mented,
3155
** no
3156
** address
3157
** space
3158
** required.
3159
** FFFE0000H 128K
3160
** FFFC0000H 256K
3161
** FFF80000H 512K
3162
**
3163
***************************************************************************************
3164
*/
3165
3166
/*
3167
***********************************************************************************
3168
** ATU Interrupt Line Register - ATUILR
3169
** -----------------------------------------------------------------
3170
** Bit Default Description
3171
** 07:00 FFH Interrupt Assigned - system-assigned value identifies which system interrupt controller��s interrupt
3172
** request line connects to the device's PCI interrupt request lines
3173
** (as specified in the interrupt pin register).
3174
** A value of FFH signifies ��no connection�� or ��unknown��.
3175
***********************************************************************************
3176
*/
3177
#define ARCMSR_ATU_INTERRUPT_LINE_REG 0x3C /*byte*/
3178
/*
3179
***********************************************************************************
3180
** ATU Interrupt Pin Register - ATUIPR
3181
** -----------------------------------------------------------------
3182
** Bit Default Description
3183
** 07:00 01H Interrupt Used - A value of 01H signifies that the ATU interface unit uses INTA# as the interrupt pin.
3184
***********************************************************************************
3185
*/
3186
#define ARCMSR_ATU_INTERRUPT_PIN_REG 0x3D /*byte*/
3187
/*
3188
***********************************************************************************
3189
** ATU Minimum Grant Register - ATUMGNT
3190
** -----------------------------------------------------------------
3191
** Bit Default Description
3192
** 07:00 80H This register specifies how long a burst period the device needs in increments of 8 PCI clocks.
3193
***********************************************************************************
3194
*/
3195
#define ARCMSR_ATU_MINIMUM_GRANT_REG 0x3E /*byte*/
3196
/*
3197
***********************************************************************************
3198
** ATU Maximum Latency Register - ATUMLAT
3199
** -----------------------------------------------------------------
3200
** Bit Default Description
3201
** 07:00 00H Specifies frequency (how often) the device needs to access the PCI bus
3202
** in increments of 8 PCI clocks. A zero value indicates the device has no stringent requirement.
3203
***********************************************************************************
3204
*/
3205
#define ARCMSR_ATU_MAXIMUM_LATENCY_REG 0x3F /*byte*/
3206
/*
3207
***********************************************************************************
3208
** Inbound Address Translation
3209
**
3210
** The ATU allows external PCI bus initiators to directly access the internal bus.
3211
** These PCI bus initiators can read or write 80331 memory-mapped registers or 80331 local memory space.
3212
** The process of inbound address translation involves two steps:
3213
** 1. Address Detection.
3214
** �E Determine when the 32-bit PCI address (64-bit PCI address during DACs) is
3215
** within the address windows defined for the inbound ATU.
3216
** �E Claim the PCI transaction with medium DEVSEL# timing in the conventional PCI
3217
** mode and with Decode A DEVSEL# timing in the PCI-X mode.
3218
** 2. Address Translation.
3219
** �E Translate the 32-bit PCI address (lower 32-bit PCI address during DACs) to a 32-bit 80331 internal bus address.
3220
** The ATU uses the following registers in inbound address window 0 translation:
3221
** �E Inbound ATU Base Address Register 0
3222
** �E Inbound ATU Limit Register 0
3223
** �E Inbound ATU Translate Value Register 0
3224
** The ATU uses the following registers in inbound address window 2 translation:
3225
** �E Inbound ATU Base Address Register 2
3226
** �E Inbound ATU Limit Register 2
3227
** �E Inbound ATU Translate Value Register 2
3228
** The ATU uses the following registers in inbound address window 3 translation:
3229
** �E Inbound ATU Base Address Register 3
3230
** �E Inbound ATU Limit Register 3
3231
** �E Inbound ATU Translate Value Register 3
3232
** Note: Inbound Address window 1 is not a translate window.
3233
** Instead, window 1 may be used to allocate host memory for Private Devices.
3234
** Inbound Address window 3 does not reside in the standard section of the configuration header (offsets 00H - 3CH),
3235
** thus the host BIOS does not configure window 3.
3236
** Window 3 is intended to be used as a special window into local memory for private PCI
3237
** agents controlled by the 80331 in conjunction with the Private Memory Space of the bridge.
3238
** PCI-to-PCI Bridge in 80331 or
3239
** Inbound address detection is determined from the 32-bit PCI address,
3240
** (64-bit PCI address during DACs) the base address register and the limit register.
3241
** In the case of DACs none of the upper 32-bits of the address is masked during address comparison.
3242
**
3243
** The algorithm for detection is:
3244
**
3245
** Equation 1. Inbound Address Detection
3246
** When (PCI_Address [31:0] & Limit_Register[31:0]) == (Base_Register[31:0] & PCI_Address [63:32]) == Base_Register[63:32] (for DACs only)
3247
** the PCI Address is claimed by the Inbound ATU.
3248
**
3249
** The incoming 32-bit PCI address (lower 32-bits of the address in case of DACs) is bitwise ANDed
3250
** with the associated inbound limit register.
3251
** When the result matches the base register (and upper base address matches upper PCI address in case of DACs),
3252
** the inbound PCI address is detected as being within the inbound translation window and is claimed by the ATU.
3253
**
3254
** Note: The first 4 Kbytes of the ATU inbound address translation window 0 are reserved for the Messaging Unit.
3255
** Once the transaction is claimed, the address must be translated from a PCI address to a 32-bit
3256
** internal bus address. In case of DACs upper 32-bits of the address is simply discarded and only the
3257
** lower 32-bits are used during address translation.
3258
** The algorithm is:
3259
**
3260
**
3261
** Equation 2. Inbound Translation
3262
** Intel I/O processor Internal Bus Address=(PCI_Address[31:0] & ~Limit_Register[31:0]) | ATU_Translate_Value_Register[31:0].
3263
**
3264
** The incoming 32-bit PCI address (lower 32-bits in case of DACs) is first bitwise ANDed with the
3265
** bitwise inverse of the limit register. This result is bitwise ORed with the ATU Translate Value and
3266
** the result is the internal bus address. This translation mechanism is used for all inbound memory
3267
** read and write commands excluding inbound configuration read and writes.
3268
** In the PCI mode for inbound memory transactions, the only burst order supported is Linear
3269
** Incrementing. For any other burst order, the ATU signals a Disconnect after the first data phase.
3270
** The PCI-X supports linear incrementing only, and hence above situation is not encountered in the PCI-X mode.
3271
** example:
3272
** Register Values
3273
** Base_Register=3A00 0000H
3274
** Limit_Register=FF80 0000H (8 Mbyte limit value)
3275
** Value_Register=B100 0000H
3276
** Inbound Translation Window ranges from 3A00 0000H to 3A7F FFFFH (8 Mbytes)
3277
**
3278
** Address Detection (32-bit address)
3279
**
3280
** PCI_Address & Limit_Register == Base_Register
3281
** 3A45 012CH & FF80 0000H == 3A00 0000H
3282
**
3283
** ANS: PCI_Address is in the Inbound Translation Window
3284
** Address Translation (to get internal bus address)
3285
**
3286
** IB_Address=(PCI_Address & ~Limit_Register) | Value_Reg
3287
** IB_Address=(3A45 012CH & 007F FFFFH) | B100 0000H
3288
**
3289
** ANS:IB_Address=B145 012CH
3290
***********************************************************************************
3291
*/
3292
3293
/*
3294
***********************************************************************************
3295
** Inbound ATU Limit Register 0 - IALR0
3296
**
3297
** Inbound address translation for memory window 0 occurs for data transfers occurring from the PCI
3298
** bus (originated from the PCI bus) to the 80331 internal bus. The address translation block converts
3299
** PCI addresses to internal bus addresses.
3300
** The 80331 translate value register��s programmed value must be naturally aligned with the base
3301
** address register��s programmed value. The limit register is used as a mask; thus, the lower address
3302
** bits programmed into the 80331 translate value register are invalid. Refer to the PCI Local Bus
3303
** Specification, Revision 2.3 for additional information on programming base address registers.
3304
** Bits 31 to 12 within the IALR0 have a direct effect on the IABAR0 register, bits 31 to 12, with a
3305
** one to one correspondence. A value of 0 in a bit within the IALR0 makes the corresponding bit
3306
** within the IABAR0 a read only bit which always returns 0. A value of 1 in a bit within the IALR0
3307
** makes the corresponding bit within the IABAR0 read/write from PCI. Note that a consequence of
3308
** this programming scheme is that unless a valid value exists within the IALR0, all writes to the
3309
** IABAR0 has no effect since a value of all zeros within the IALR0 makes the IABAR0 a read only register.
3310
** -----------------------------------------------------------------
3311
** Bit Default Description
3312
** 31:12 FF000H Inbound Translation Limit 0 - This readback value determines the memory block size required for
3313
** inbound memory window 0 of the address translation unit. This defaults to an inbound window of 16MB.
3314
** 11:00 000H Reserved
3315
***********************************************************************************
3316
*/
3317
#define ARCMSR_INBOUND_ATU_LIMIT0_REG 0x40 /*dword 0x43,0x42,0x41,0x40*/
3318
/*
3319
***********************************************************************************
3320
** Inbound ATU Translate Value Register 0 - IATVR0
3321
**
3322
** The Inbound ATU Translate Value Register 0 (IATVR0) contains the internal bus address used to
3323
** convert PCI bus addresses. The converted address is driven on the internal bus as a result of the
3324
** inbound ATU address translation.
3325
** -----------------------------------------------------------------
3326
** Bit Default Description
3327
** 31:12 FF000H Inbound ATU Translation Value 0 - This value is used to convert the PCI address to internal bus addresses.
3328
** This value must be 64-bit aligned on the internal bus.
3329
** The default address allows the ATU to access the internal 80331 memory-mapped registers.
3330
** 11:00 000H Reserved
3331
***********************************************************************************
3332
*/
3333
#define ARCMSR_INBOUND_ATU_TRANSLATE_VALUE0_REG 0x44 /*dword 0x47,0x46,0x45,0x44*/
3334
/*
3335
***********************************************************************************
3336
** Expansion ROM Limit Register - ERLR
3337
**
3338
** The Expansion ROM Limit Register (ERLR) defines the block size of addresses the ATU defines
3339
** as Expansion ROM address space. The block size is programmed by writing a value into the ERLR.
3340
** Bits 31 to 12 within the ERLR have a direct effect on the ERBAR register, bits 31 to 12, with a one
3341
** to one correspondence. A value of 0 in a bit within the ERLR makes the corresponding bit within
3342
** the ERBAR a read only bit which always returns 0. A value of 1 in a bit within the ERLR makes
3343
** the corresponding bit within the ERBAR read/write from PCI.
3344
** -----------------------------------------------------------------
3345
** Bit Default Description
3346
** 31:12 000000H Expansion ROM Limit - Block size of memory required for the Expansion ROM translation unit. Default
3347
** value is 0, which indicates no Expansion ROM address space and all bits within the ERBAR are read only with a value of 0.
3348
** 11:00 000H Reserved.
3349
***********************************************************************************
3350
*/
3351
#define ARCMSR_EXPANSION_ROM_LIMIT_REG 0x48 /*dword 0x4B,0x4A,0x49,0x48*/
3352
/*
3353
***********************************************************************************
3354
** Expansion ROM Translate Value Register - ERTVR
3355
**
3356
** The Expansion ROM Translate Value Register contains the 80331 internal bus address which the
3357
** ATU converts the PCI bus access. This address is driven on the internal bus as a result of the
3358
** Expansion ROM address translation.
3359
** -----------------------------------------------------------------
3360
** Bit Default Description
3361
** 31:12 00000H Expansion ROM Translation Value - Used to convert PCI addresses to 80331 internal bus addresses
3362
** for Expansion ROM accesses. The Expansion ROM address translation value must be word aligned on the internal bus.
3363
** 11:00 000H Reserved
3364
***********************************************************************************
3365
*/
3366
#define ARCMSR_EXPANSION_ROM_TRANSLATE_VALUE_REG 0x4C /*dword 0x4F,0x4E,0x4D,0x4C*/
3367
/*
3368
***********************************************************************************
3369
** Inbound ATU Limit Register 1 - IALR1
3370
**
3371
** Bits 31 to 12 within the IALR1 have a direct effect on the IABAR1 register, bits 31 to 12, with a
3372
** one to one correspondence. A value of 0 in a bit within the IALR1 makes the corresponding bit
3373
** within the IABAR1 a read only bit which always returns 0. A value of 1 in a bit within the IALR1
3374
** makes the corresponding bit within the IABAR1 read/write from PCI. Note that a consequence of
3375
** this programming scheme is that unless a valid value exists within the IALR1, all writes to the
3376
** IABAR1 has no effect since a value of all zeros within the IALR1 makes the IABAR1 a read only
3377
** register.
3378
** The inbound memory window 1 is used merely to allocate memory on the PCI bus. The ATU does
3379
** not process any PCI bus transactions to this memory range.
3380
** Warning: The ATU does not claim any PCI accesses that fall within the range defined by IABAR1,
3381
** IAUBAR1, and IALR1.
3382
** -----------------------------------------------------------------
3383
** Bit Default Description
3384
** 31:12 00000H Inbound Translation Limit 1 - This readback value determines the memory block size
3385
** required for the ATUs memory window 1.
3386
** 11:00 000H Reserved
3387
***********************************************************************************
3388
*/
3389
#define ARCMSR_INBOUND_ATU_LIMIT1_REG 0x50 /*dword 0x53,0x52,0x51,0x50*/
3390
/*
3391
***********************************************************************************
3392
** Inbound ATU Limit Register 2 - IALR2
3393
**
3394
** Inbound address translation for memory window 2 occurs for data transfers occurring from the PCI
3395
** bus (originated from the PCI bus) to the 80331 internal bus. The address translation block converts
3396
** PCI addresses to internal bus addresses.
3397
** The inbound translation base address for inbound window 2 is specified in Section 3.10.15. When
3398
** determining block size requirements �X as described in Section 3.10.21 �X the translation limit
3399
** register provides the block size requirements for the base address register. The remaining registers
3400
** used for performing address translation are discussed in Section 3.2.1.1.
3401
** The 80331 translate value register��s programmed value must be naturally aligned with the base
3402
** address register��s programmed value. The limit register is used as a mask; thus, the lower address
3403
** bits programmed into the 80331 translate value register are invalid. Refer to the PCI Local Bus
3404
** Specification, Revision 2.3 for additional information on programming base address registers.
3405
** Bits 31 to 12 within the IALR2 have a direct effect on the IABAR2 register, bits 31 to 12, with a
3406
** one to one correspondence. A value of 0 in a bit within the IALR2 makes the corresponding bit
3407
** within the IABAR2 a read only bit which always returns 0. A value of 1 in a bit within the IALR2
3408
** makes the corresponding bit within the IABAR2 read/write from PCI. Note that a consequence of
3409
** this programming scheme is that unless a valid value exists within the IALR2, all writes to the
3410
** IABAR2 has no effect since a value of all zeros within the IALR2 makes the IABAR2 a read only
3411
** register.
3412
** -----------------------------------------------------------------
3413
** Bit Default Description
3414
** 31:12 00000H Inbound Translation Limit 2 - This readback value determines the memory block size
3415
** required for the ATUs memory window 2.
3416
** 11:00 000H Reserved
3417
***********************************************************************************
3418
*/
3419
#define ARCMSR_INBOUND_ATU_LIMIT2_REG 0x54 /*dword 0x57,0x56,0x55,0x54*/
3420
/*
3421
***********************************************************************************
3422
** Inbound ATU Translate Value Register 2 - IATVR2
3423
**
3424
** The Inbound ATU Translate Value Register 2 (IATVR2) contains the internal bus address used to
3425
** convert PCI bus addresses. The converted address is driven on the internal bus as a result of the
3426
** inbound ATU address translation.
3427
** -----------------------------------------------------------------
3428
** Bit Default Description
3429
** 31:12 00000H Inbound ATU Translation Value 2 - This value is used to convert the PCI address to internal bus addresses.
3430
** This value must be 64-bit aligned on the internal bus.
3431
** The default address allows the ATU to access the internal 80331 ** ** memory-mapped registers.
3432
** 11:00 000H Reserved
3433
***********************************************************************************
3434
*/
3435
#define ARCMSR_INBOUND_ATU_TRANSLATE_VALUE2_REG 0x58 /*dword 0x5B,0x5A,0x59,0x58*/
3436
/*
3437
***********************************************************************************
3438
** Outbound I/O Window Translate Value Register - OIOWTVR
3439
**
3440
** The Outbound I/O Window Translate Value Register (OIOWTVR) contains the PCI I/O address
3441
** used to convert the internal bus access to a PCI address. This address is driven on the PCI bus as a
3442
** result of the outbound ATU address translation.
3443
** The I/O window is from 80331 internal bus address 9000 000H to 9000 FFFFH with the fixed
3444
** length of 64 Kbytes.
3445
** -----------------------------------------------------------------
3446
** Bit Default Description
3447
** 31:16 0000H Outbound I/O Window Translate Value - Used to convert internal bus addresses to PCI addresses.
3448
** 15:00 0000H Reserved
3449
***********************************************************************************
3450
*/
3451
#define ARCMSR_OUTBOUND_IO_WINDOW_TRANSLATE_VALUE_REG 0x5C /*dword 0x5F,0x5E,0x5D,0x5C*/
3452
/*
3453
***********************************************************************************
3454
** Outbound Memory Window Translate Value Register 0 -OMWTVR0
3455
**
3456
** The Outbound Memory Window Translate Value Register 0 (OMWTVR0) contains the PCI
3457
** address used to convert 80331 internal bus addresses for outbound transactions. This address is
3458
** driven on the PCI bus as a result of the outbound ATU address translation.
3459
** The memory window is from internal bus address 8000 000H to 83FF FFFFH with the fixed length
3460
** of 64 Mbytes.
3461
** -----------------------------------------------------------------
3462
** Bit Default Description
3463
** 31:26 00H Outbound MW Translate Value - Used to convert 80331 internal bus addresses to PCI addresses.
3464
** 25:02 00 0000H Reserved
3465
** 01:00 00 2 Burst Order - This bit field shows the address sequence during a memory burst.
3466
** Only linear incrementing mode is supported.
3467
***********************************************************************************
3468
*/
3469
#define ARCMSR_OUTBOUND_MEMORY_WINDOW_TRANSLATE_VALUE0_REG 0x60 /*dword 0x63,0x62,0x61,0x60*/
3470
/*
3471
***********************************************************************************
3472
** Outbound Upper 32-bit Memory Window Translate Value Register 0 - OUMWTVR0
3473
**
3474
** The Outbound Upper 32-bit Memory Window Translate Value Register 0 (OUMWTVR0) defines
3475
** the upper 32-bits of address used during a dual address cycle. This enables the outbound ATU to
3476
** directly address anywhere within the 64-bit host address space. When this register is all-zero, then
3477
** a SAC is generated on the PCI bus.
3478
** The memory window is from internal bus address 8000 000H to 83FF FFFFH with the fixed
3479
** length of 64 Mbytes.
3480
** -----------------------------------------------------------------
3481
** Bit Default Description
3482
** 31:00 0000 0000H These bits define the upper 32-bits of address driven during the dual address cycle (DAC).
3483
***********************************************************************************
3484
*/
3485
#define ARCMSR_OUTBOUND_UPPER32_MEMORY_WINDOW_TRANSLATE_VALUE0_REG 0x64 /*dword 0x67,0x66,0x65,0x64*/
3486
/*
3487
***********************************************************************************
3488
** Outbound Memory Window Translate Value Register 1 -OMWTVR1
3489
**
3490
** The Outbound Memory Window Translate Value Register 1 (OMWTVR1) contains the PCI
3491
** address used to convert 80331 internal bus addresses for outbound transactions. This address is
3492
** driven on the PCI bus as a result of the outbound ATU address translation.
3493
** The memory window is from internal bus address 8400 000H to 87FF FFFFH with the fixed length
3494
** of 64 Mbytes.
3495
** -----------------------------------------------------------------
3496
** Bit Default Description
3497
** 31:26 00H Outbound MW Translate Value - Used to convert 80331 internal bus addresses to PCI addresses.
3498
** 25:02 00 0000H Reserved
3499
** 01:00 00 2 Burst Order - This bit field shows the address sequence during a memory burst.
3500
** Only linear incrementing mode is supported.
3501
***********************************************************************************
3502
*/
3503
#define ARCMSR_OUTBOUND_MEMORY_WINDOW_TRANSLATE_VALUE1_REG 0x68 /*dword 0x6B,0x6A,0x69,0x68*/
3504
/*
3505
***********************************************************************************
3506
** Outbound Upper 32-bit Memory Window Translate Value Register 1 - OUMWTVR1
3507
**
3508
** The Outbound Upper 32-bit Memory Window Translate Value Register 1 (OUMWTVR1) defines
3509
** the upper 32-bits of address used during a dual address cycle. This enables the outbound ATU to
3510
** directly address anywhere within the 64-bit host address space. When this register is all-zero, then
3511
** a SAC is generated on the PCI bus.
3512
** The memory window is from internal bus address 8400 000H to 87FF FFFFH with the fixed length
3513
** of 64 Mbytes.
3514
** -----------------------------------------------------------------
3515
** Bit Default Description
3516
** 31:00 0000 0000H These bits define the upper 32-bits of address driven during the dual address cycle (DAC).
3517
***********************************************************************************
3518
*/
3519
#define ARCMSR_OUTBOUND_UPPER32_MEMORY_WINDOW_TRANSLATE_VALUE1_REG 0x6C /*dword 0x6F,0x6E,0x6D,0x6C*/
3520
/*
3521
***********************************************************************************
3522
** Outbound Upper 32-bit Direct Window Translate Value Register - OUDWTVR
3523
**
3524
** The Outbound Upper 32-bit Direct Window Translate Value Register (OUDWTVR) defines the
3525
** upper 32-bits of address used during a dual address cycle for the transactions via Direct Addressing
3526
** Window. This enables the outbound ATU to directly address anywhere within the 64-bit host
3527
** address space. When this register is all-zero, then a SAC is generated on the PCI bus.
3528
** -----------------------------------------------------------------
3529
** Bit Default Description
3530
** 31:00 0000 0000H These bits define the upper 32-bits of address driven during the dual address cycle (DAC).
3531
***********************************************************************************
3532
*/
3533
#define ARCMSR_OUTBOUND_UPPER32_DIRECT_WINDOW_TRANSLATE_VALUE_REG 0x78 /*dword 0x7B,0x7A,0x79,0x78*/
3534
/*
3535
***********************************************************************************
3536
** ATU Configuration Register - ATUCR
3537
**
3538
** The ATU Configuration Register controls the outbound address translation for address translation
3539
** unit. It also contains bits for Conventional PCI Delayed Read Command (DRC) aliasing, discard
3540
** timer status, SERR# manual assertion, SERR# detection interrupt masking, and ATU BIST
3541
** interrupt enabling.
3542
** -----------------------------------------------------------------
3543
** Bit Default Description
3544
** 31:20 00H Reserved
3545
** 19 0 2 ATU DRC Alias - when set, the ATU does not distinguish read commands when attempting to match a
3546
** current PCI read transaction with read data enqueued within the DRC buffer. When clear, a current read
3547
** transaction must have the exact same read command as the DRR for the ATU to deliver DRC data. Not
3548
** applicable in the PCI-X mode.
3549
** 18 0 2 Direct Addressing Upper 2Gbytes Translation Enable - When set,
3550
** with Direct Addressing enabled (bit 7 of the ATUCR set),
3551
** the ATU forwards internal bus cycles with an address between 0000.0040H and
3552
** 7FFF.FFFFH to the PCI bus with bit 31 of the address set (8000.0000H - FFFF.FFFFH).
3553
** When clear, no translation occurs.
3554
** 17 0 2 Reserved
3555
** 16 0 2 SERR# Manual Assertion - when set, the ATU asserts SERR# for one clock on the PCI interface. Until
3556
** cleared, SERR# may not be manually asserted again. Once cleared, operation proceeds as specified.
3557
** 15 0 2 ATU Discard Timer Status - when set, one of the 4 discard timers within the ATU has expired and
3558
** discarded the delayed completion transaction within the queue. When clear, no timer has expired.
3559
** 14:10 00000 2 Reserved
3560
** 09 0 2 SERR# Detected Interrupt Enable - When set, the Intel XScale core is signalled an HPI# interrupt
3561
** when the ATU detects that SERR# was asserted. When clear,
3562
** the Intel XScale core is not interrupted when SERR# is detected.
3563
** 08 0 2 Direct Addressing Enable - Setting this bit enables direct outbound addressing through the ATU.
3564
** Internal bus cycles with an address between 0000.0040H and 7FFF.FFFFH automatically forwards to
3565
** the PCI bus with or without translation of address bit 31 based on the setting of bit 18 of
3566
** the ATUCR.
3567
** 07:04 0000 2 Reserved
3568
** 03 0 2 ATU BIST Interrupt Enable - When set, enables an interrupt to the Intel XScale core when the start
3569
** BIST bit is set in the ATUBISTR register. This bit is also reflected as the BIST Capable bit 7
3570
** in the ATUBISTR register.
3571
** 02 0 2 Reserved
3572
** 01 0 2 Outbound ATU Enable - When set, enables the outbound address translation unit.
3573
** When cleared, disables the outbound ATU.
3574
** 00 0 2 Reserved
3575
***********************************************************************************
3576
*/
3577
#define ARCMSR_ATU_CONFIGURATION_REG 0x80 /*dword 0x83,0x82,0x81,0x80*/
3578
/*
3579
***********************************************************************************
3580
** PCI Configuration and Status Register - PCSR
3581
**
3582
** The PCI Configuration and Status Register has additional bits for controlling and monitoring
3583
** various features of the PCI bus interface.
3584
** -----------------------------------------------------------------
3585
** Bit Default Description
3586
** 31:19 0000H Reserved
3587
** 18 0 2 Detected Address or Attribute Parity Error - set when a parity error is detected during either the address
3588
** or attribute phase of a transaction on the PCI bus even when the ATUCMD register Parity Error
3589
** Response bit is cleared. Set under the following conditions:
3590
** �E Any Address or Attribute (PCI-X Only) Parity Error on the Bus (including one generated by the ATU).
3591
** 17:16 Varies with
3592
** external state
3593
** of DEVSEL#,
3594
** STOP#, and
3595
** TRDY#,
3596
** during
3597
** P_RST#
3598
** PCI-X capability - These two bits define the mode of
3599
** the PCI bus (conventional or PCI-X) as well as the
3600
** operating frequency in the case of PCI-X mode.
3601
** 00 - Conventional PCI mode
3602
** 01 - PCI-X 66
3603
** 10 - PCI-X 100
3604
** 11 - PCI-X 133
3605
** As defined by the PCI-X Addendum to the PCI Local Bus Specification,
3606
** Revision 1.0a, the operating
3607
** mode is determined by an initialization pattern on the PCI bus during
3608
** P_RST# assertion:
3609
** DEVSEL# STOP# TRDY# Mode
3610
** Deasserted Deasserted Deasserted Conventional
3611
** Deasserted Deasserted Asserted PCI-X 66
3612
** Deasserted Asserted Deasserted PCI-X 100
3613
** Deasserted Asserted Asserted PCI-X 133
3614
** All other patterns are reserved.
3615
** 15 0 2
3616
** Outbound Transaction Queue Busy:
3617
** 0=Outbound Transaction Queue Empty
3618
** 1=Outbound Transaction Queue Busy
3619
** 14 0 2
3620
** Inbound Transaction Queue Busy:
3621
** 0=Inbound Transaction Queue Empty
3622
** 1=Inbound Transaction Queue Busy
3623
** 13 0 2 Reserved.
3624
** 12 0 2 Discard Timer Value - This bit controls the time-out value
3625
** for the four discard timers attached to the queues holding read data.
3626
** A value of 0 indicates the time-out value is 2 15 clocks.
3627
** A value of 1 indicates the time-out value is 2 10 clocks.
3628
** 11 0 2 Reserved.
3629
** 10 Varies with
3630
** external state
3631
** of M66EN
3632
** during
3633
** P_RST#
3634
** Bus Operating at 66 MHz - When set, the interface has been initialized to function at 66 MHz in
3635
** Conventional PCI mode by the assertion of M66EN during bus initialization.
3636
** When clear, the interface
3637
** has been initialized as a 33 MHz bus.
3638
** NOTE: When PCSR bits 17:16 are not equal to zero, then this bit is meaningless since the 80331 is operating in PCI-X mode.
3639
** 09 0 2 Reserved
3640
** 08 Varies with
3641
** external state
3642
** of REQ64#
3643
** during
3644
** P_RST#
3645
** PCI Bus 64-Bit Capable - When clear, the PCI bus interface has been
3646
** configured as 64-bit capable by
3647
** the assertion of REQ64# on the rising edge of P_RST#. When set,
3648
** the PCI interface is configured as
3649
** 32-bit only.
3650
** 07:06 00 2 Reserved.
3651
** 05 0 2 Reset Internal Bus - This bit controls the reset of the Intel XScale core
3652
** and all units on the internal
3653
** bus. In addition to the internal bus initialization,
3654
** this bit triggers the assertion of the M_RST# pin for
3655
** initialization of registered DIMMs. When set:
3656
** When operating in the conventional PCI mode:
3657
** �E All current PCI transactions being mastered by the ATU completes,
3658
** and the ATU master interfaces
3659
** proceeds to an idle state. No additional transactions is mastered by these units
3660
** until the internal bus reset is complete.
3661
** �E All current transactions being slaved by the ATU on either the PCI bus
3662
** or the internal bus
3663
** completes, and the ATU target interfaces proceeds to an idle state.
3664
** All future slave transactions master aborts,
3665
** with the exception of the completion cycle for the transaction that set the Reset
3666
** Internal Bus bit in the PCSR.
3667
** �E When the value of the Core Processor Reset bit in the PCSR (upon P_RST# assertion)
3668
** is set, the Intel XScale core is held in reset when the internal bus reset is complete.
3669
** �E The ATU ignores configuration cycles, and they appears as master aborts for: 32
3670
** Internal Bus clocks.
3671
** �E The 80331 hardware clears this bit after the reset operation completes.
3672
** When operating in the PCI-X mode:
3673
** The ATU hardware responds the same as in Conventional PCI-X mode.
3674
** However, this may create a problem in PCI-X mode for split requests in
3675
** that there may still be an outstanding split completion that the
3676
** ATU is either waiting to receive (Outbound Request) or initiate
3677
** (Inbound Read Request). For a cleaner
3678
** internal bus reset, host software can take the following steps prior
3679
** to asserting Reset Internal bus:
3680
** 1. Clear the Bus Master (bit 2 of the ATUCMD) and the Memory Enable (bit 1 of the ATUCMD) bits in
3681
** the ATUCMD. This ensures that no new transactions, either outbound or inbound are enqueued.
3682
** 2. Wait for both the Outbound (bit 15 of the PCSR) and Inbound Read (bit 14 of the PCSR) Transaction
3683
** queue busy bits to be clear.
3684
** 3. Set the Reset Internal Bus bit
3685
** As a result, the ATU hardware resets the internal bus using the same logic as in conventional mode,
3686
** however the user is now assured that the ATU no longer has any pending inbound or outbound split
3687
** completion transactions.
3688
** NOTE: Since the Reset Internal Bus bit is set using an inbound configuration cycle, the user is
3689
** guaranteed that any prior configuration cycles have properly completed since there is only a one
3690
** deep transaction queue for configuration transaction requests. The ATU sends the appropriate
3691
** Split Write Completion Message to the Requester prior to the onset of Internal Bus Reset.
3692
** 04 0 2 Bus Master Indicator Enable: Provides software control for the
3693
** Bus Master Indicator signal P_BMI used
3694
** for external RAIDIOS logic control of private devices. Only valid when operating with the bridge and
3695
** central resource/arbiter disabled (BRG_EN =low, ARB_EN=low).
3696
** 03 Varies with external state of PRIVDEV during
3697
** P_RST#
3698
** Private Device Enable - This bit indicates the state of the reset strap which enables the private device
3699
** control mechanism within the PCI-to-PCI Bridge SISR configuration register.
3700
** 0=Private Device control Disabled - SISR register bits default to zero
3701
** 1=Private Device control Enabled - SISR register bits default to one
3702
** 02 Varies with external state of RETRY during P_RST#
3703
** Configuration Cycle Retry - When this bit is set, the PCI interface of the 80331 responds to all
3704
** configuration cycles with a Retry condition. When clear, the 80331 responds to the appropriate
3705
** configuration cycles.
3706
** The default condition for this bit is based on the external state of the RETRY pin at the rising edge of
3707
** P_RST#. When the external state of the pin is high, the bit is set. When the external state of the pin is
3708
** low, the bit is cleared.
3709
** 01 Varies with external state of CORE_RST# during P_RST#
3710
** Core Processor Reset - This bit is set to its default value by the hardware when either P_RST# is
3711
** asserted or the Reset Internal Bus bit in PCSR is set. When this bit is set, the Intel XScale core is
3712
** being held in reset. Software cannot set this bit. Software is required to clear this bit to deassert Intel
3713
** XScale core reset.
3714
** The default condition for this bit is based on the external state of the CORE_RST# pin at the rising edge
3715
** of P_RST#. When the external state of the pin is low, the bit is set. When the external state of the pin is
3716
** high, the bit is clear.
3717
** 00 Varies with external state of PRIVMEM during P_RST#
3718
** Private Memory Enable - This bit indicates the state of the reset strap which enables the private device
3719
** control mechanism within the PCI-to-PCI Bridge SDER configuration register.
3720
** 0=Private Memory control Disabled - SDER register bit 2 default to zero
3721
** 1=Private Memory control Enabled - SDER register bits 2 default to one
3722
***********************************************************************************
3723
*/
3724
#define ARCMSR_PCI_CONFIGURATION_STATUS_REG 0x84 /*dword 0x87,0x86,0x85,0x84*/
3725
/*
3726
***********************************************************************************
3727
** ATU Interrupt Status Register - ATUISR
3728
**
3729
** The ATU Interrupt Status Register is used to notify the core processor of the source of an ATU
3730
** interrupt. In addition, this register is written to clear the source of the interrupt to the interrupt unit
3731
** of the 80331. All bits in this register are Read/Clear.
3732
** Bits 4:0 are a direct reflection of bits 14:11 and bit 8 (respectively) of the ATU Status Register
3733
** (these bits are set at the same time by hardware but need to be cleared independently). Bit 7 is set
3734
** by an error associated with the internal bus of the 80331. Bit 8 is for software BIST. The
3735
** conditions that result in an ATU interrupt are cleared by writing a 1 to the appropriate bits in this
3736
** register.
3737
** Note: Bits 4:0, and bits 15 and 13:7 can result in an interrupt being driven to the Intel XScale core.
3738
** -----------------------------------------------------------------
3739
** Bit Default Description
3740
** 31:18 0000H Reserved
3741
** 17 0 2 VPD Address Register Updated - This bit is set when a PCI bus configuration write occurs to the VPDAR
3742
** register. Configuration register writes to the VPDAR does NOT result in bit 15 also being set. When set,
3743
** this bit results in the assertion of the ATU Configure Register Write Interrupt.
3744
** 16 0 2 Reserved
3745
** 15 0 2 ATU Configuration Write - This bit is set when a PCI bus configuration write occurs to any ATU register.
3746
** When set, this bit results in the assertion of the ATU Configure Register Write Interrupt.
3747
** 14 0 2 ATU Inbound Memory Window 1 Base Updated - This bit is set when a PCI bus configuration write
3748
** occurs to either the IABAR1 register or the IAUBAR1 register. Configuration register writes to these
3749
** registers deos NOT result in bit 15 also being set. When set, this bit results in the assertion of the ATU
3750
** Configure Register Write Interrupt.
3751
** 13 0 2 Initiated Split Completion Error Message - This bit is set when the device initiates a Split Completion
3752
** Message on the PCI Bus with the Split Completion Error attribute bit set.
3753
** 12 0 2 Received Split Completion Error Message - This bit is set when the device receives a Split Completion
3754
** Message from the PCI Bus with the Split Completion Error attribute bit set.
3755
** 11 0 2 Power State Transition - When the Power State Field of the ATU Power Management Control/Status
3756
** Register is written to transition the ATU function Power State from D0 to D3, D0 to D1, or D3 to D0 and
3757
** the ATU Power State Transition Interrupt mask bit is cleared, this bit is set.
3758
** 10 0 2 P_SERR# Asserted - set when P_SERR# is asserted on the PCI bus by the ATU.
3759
** 09 0 2 Detected Parity Error - set when a parity error is detected on the PCI bus even when the ATUCMD
3760
** register��s Parity Error Response bit is cleared. Set under the following conditions:
3761
** �E Write Data Parity Error when the ATU is a target (inbound write).
3762
** �E Read Data Parity Error when the ATU is an initiator (outbound read).
3763
** �E Any Address or Attribute (PCI-X Only) Parity Error on the Bus.
3764
** 08 0 2 ATU BIST Interrupt - When set, generates the ATU BIST Start Interrupt and indicates the host processor
3765
** has set the Start BIST bit (ATUBISTR register bit 6), when the ATU BIST interrupt is enabled (ATUCR
3766
** register bit 3). The Intel XScale core can initiate the software BIST and store the result in ATUBISTR
3767
** register bits 3:0.
3768
** Configuration register writes to the ATUBISTR does NOT result in bit 15 also being set or the assertion
3769
** of the ATU Configure Register Write Interrupt.
3770
** 07 0 2 Internal Bus Master Abort - set when a transaction initiated by the ATU internal bus initiator interface ends in a Master-abort.
3771
** 06:05 00 2 Reserved.
3772
** 04 0 2 P_SERR# Detected - set when P_SERR# is detected on the PCI bus by the ATU.
3773
** 03 0 2 PCI Master Abort - set when a transaction initiated by the ATU PCI initiator interface ends in a Master-abort.
3774
** 02 0 2 PCI Target Abort (master) - set when a transaction initiated by the ATU PCI master interface ends in a Target-abort.
3775
** 01 0 2 PCI Target Abort (target) - set when the ATU interface, acting as a target, terminates the transaction on the PCI bus with a target abort.
3776
** 00 0 2 PCI Master Parity Error - Master Parity Error - The ATU interface sets this bit under the following
3777
** conditions:
3778
** �E The ATU asserted PERR# itself or the ATU observed PERR# asserted.
3779
** �E And the ATU acted as the requester for the operation in which the error occurred.
3780
** �E And the ATUCMD register��s Parity Error Response bit is set
3781
** �E Or (PCI-X Mode Only) the ATU received a Write Data Parity Error Message
3782
** �E And the ATUCMD register��s Parity Error Response bit is set
3783
***********************************************************************************
3784
*/
3785
#define ARCMSR_ATU_INTERRUPT_STATUS_REG 0x88 /*dword 0x8B,0x8A,0x89,0x88*/
3786
/*
3787
***********************************************************************************
3788
** ATU Interrupt Mask Register - ATUIMR
3789
**
3790
** The ATU Interrupt Mask Register contains the control bit to enable and disable interrupts
3791
** generated by the ATU.
3792
** -----------------------------------------------------------------
3793
** Bit Default Description
3794
** 31:15 0 0000H Reserved
3795
** 14 0 2 VPD Address Register Updated Mask - Controls the setting of bit 17 of the ATUISR and generation of the
3796
** ATU Configuration Register Write interrupt when a PCI bus write occurs to the VPDAR register.
3797
** 0=Not Masked
3798
** 1=Masked
3799
** 13 0 2 Reserved
3800
** 12 0 2 Configuration Register Write Mask - Controls the setting of bit 15 of the ATUISR and generation of the
3801
** ATU Configuration Register Write interrupt when a PCI bus write occurs to any ATU configuration register
3802
** except those covered by mask bit 11 and bit 14 of this register, and ATU BIST enable bit 3 of the ATUCR.
3803
** 0=Not Masked
3804
** 1=Masked
3805
** 11 1 2 ATU Inbound Memory Window 1 Base Updated Mask - Controls the setting of bit 14 of the ATUISR and
3806
** generation of the ATU Configuration Register Write interrupt when a PCI bus write occurs to either the
3807
** IABAR1 register or the IAUBAR1 register.
3808
** 0=Not Masked
3809
** 1=Masked
3810
** 10 0 2 Initiated Split Completion Error Message Interrupt Mask - Controls the setting of bit 13 of the ATUISR and
3811
** generation of the ATU Error interrupt when the ATU initiates a Split Completion Error Message.
3812
** 0=Not Masked
3813
** 1=Masked
3814
** 09 0 2 Received Split Completion Error Message Interrupt Mask- Controls the setting of bit 12 of the ATUISR
3815
** and generation of the ATU Error interrupt when a Split Completion Error Message results in bit 29 of the
3816
** PCIXSR being set.
3817
** 0=Not Masked
3818
** 1=Masked
3819
** 08 1 2 Power State Transition Interrupt Mask - Controls the setting of bit 12 of the ATUISR and generation of the
3820
** ATU Error interrupt when ATU Power Management Control/Status Register is written to transition the
3821
** ATU Function Power State from D0 to D3, D0 to D1, D1 to D3 or D3 to D0.
3822
** 0=Not Masked
3823
** 1=Masked
3824
** 07 0 2 ATU Detected Parity Error Interrupt Mask - Controls the setting of bit 9 of the ATUISR and generation of
3825
** the ATU Error interrupt when a parity error detected on the PCI bus that sets bit 15 of the ATUSR.
3826
** 0=Not Masked
3827
** 1=Masked
3828
** 06 0 2 ATU SERR# Asserted Interrupt Mask - Controls the setting of bit 10 of the ATUISR and generation of the
3829
** ATU Error interrupt when SERR# is asserted on the PCI interface resulting in bit 14 of the ATUSR being set.
3830
** 0=Not Masked
3831
** 1=Masked
3832
** NOTE: This bit is specific to the ATU asserting SERR# and not detecting SERR# from another master.
3833
** 05 0 2 ATU PCI Master Abort Interrupt Mask - Controls the setting of bit 3 of the ATUISR and generation of the
3834
** ATU Error interrupt when a master abort error resulting in bit 13 of the ATUSR being set.
3835
** 0=Not Masked
3836
** 1=Masked
3837
** 04 0 2 ATU PCI Target Abort (Master) Interrupt Mask- Controls the setting of bit 12 of the ATUISR and ATU Error
3838
** generation of the interrupt when a target abort error resulting in bit 12 of the ATUSR being set
3839
** 0=Not Masked
3840
** 1=Masked
3841
** 03 0 2 ATU PCI Target Abort (Target) Interrupt Mask- Controls the setting of bit 1 of the ATUISR and generation
3842
** of the ATU Error interrupt when a target abort error resulting in bit 11 of the ATUSR being set.
3843
** 0=Not Masked
3844
** 1=Masked
3845
** 02 0 2 ATU PCI Master Parity Error Interrupt Mask - Controls the setting of bit 0 of the ATUISR and generation
3846
** of the ATU Error interrupt when a parity error resulting in bit 8 of the ATUSR being set.
3847
** 0=Not Masked
3848
** 1=Masked
3849
** 01 0 2 ATU Inbound Error SERR# Enable - Controls when the ATU asserts (when enabled through the
3850
** ATUCMD) SERR# on the PCI interface in response to a master abort on the internal bus during an
3851
** inbound write transaction.
3852
** 0=SERR# Not Asserted due to error
3853
** 1=SERR# Asserted due to error
3854
** 00 0 2 ATU ECC Target Abort Enable - Controls the ATU response on the PCI interface to a target abort (ECC
3855
** error) from the memory controller on the internal bus. In conventional mode, this action only occurs
3856
** during an inbound read transaction where the data phase that was target aborted on the internal bus is
3857
** actually requested from the inbound read queue.
3858
** 0=Disconnect with data
3859
** (the data being up to 64 bits of 1��s)
3860
** 1=Target Abort
3861
** NOTE: In PCI-X Mode, The ATU initiates a Split Completion Error Message (with message class=2h -
3862
** completer error and message index=81h - 80331 internal bus target abort) on the PCI bus,
3863
** independent of the setting of this bit.
3864
***********************************************************************************
3865
*/
3866
#define ARCMSR_ATU_INTERRUPT_MASK_REG 0x8C /*dword 0x8F,0x8E,0x8D,0x8C*/
3867
/*
3868
***********************************************************************************
3869
** Inbound ATU Base Address Register 3 - IABAR3
3870
**
3871
** . The Inbound ATU Base Address Register 3 (IABAR3) together with the Inbound ATU Upper Base Address Register 3 (IAUBAR3) defines the block
3872
** of memory addresses where the inbound translation window 3 begins.
3873
** . The inbound ATU decodes and forwards the bus request to the 80331 internal bus with a translated address to map into 80331 local memory.
3874
** . The IABAR3 and IAUBAR3 define the base address and describes the required memory block size.
3875
** . Bits 31 through 12 of the IABAR3 is either read/write bits or read only with a value of 0 depending on the value located within the IALR3.
3876
** The programmed value within the base address register must comply with the PCI programming requirements for address alignment.
3877
** Note:
3878
** Since IABAR3 does not appear in the standard PCI configuration header space (offsets 00H - 3CH),
3879
** IABAR3 is not configured by the host during normal system initialization.
3880
** Warning:
3881
** When a non-zero value is not written to IALR3,
3882
** the user should not set either the Prefetchable Indicator
3883
** or the Type Indicator for 64 bit addressability.
3884
** This is the default for IABAR3.
3885
** Assuming a non-zero value is written to IALR3,
3886
** the user may set the Prefetchable Indicator
3887
** or the Type Indicator:
3888
** a. Since non prefetchable memory windows can never be placed above the 4 Gbyte address boundary,
3889
** when the Prefetchable Indicator is not set,
3890
** the user should also leave the Type Indicator set for 32 bit addressability.
3891
** This is the default for IABAR3.
3892
** b. when the Prefetchable Indicator is set,
3893
** the user should also set the Type Indicator for 64 bit addressability.
3894
** -----------------------------------------------------------------
3895
** Bit Default Description
3896
** 31:12 00000H Translation Base Address 3 - These bits define the actual location
3897
** the translation function is to respond to when addressed from the PCI bus.
3898
** 11:04 00H Reserved.
3899
** 03 0 2 Prefetchable Indicator - When set, defines the memory space as prefetchable.
3900
** 02:01 00 2 Type Indicator - Defines the width of the addressability for this memory window:
3901
** 00 - Memory Window is locatable anywhere in 32 bit address space
3902
** 10 - Memory Window is locatable anywhere in 64 bit address space
3903
** 00 0 2 Memory Space Indicator - This bit field describes memory or I/O space base address.
3904
** The ATU does not occupy I/O space,
3905
** thus this bit must be zero.
3906
***********************************************************************************
3907
*/
3908
#define ARCMSR_INBOUND_ATU_BASE_ADDRESS3_REG 0x90 /*dword 0x93,0x92,0x91,0x90*/
3909
/*
3910
***********************************************************************************
3911
** Inbound ATU Upper Base Address Register 3 - IAUBAR3
3912
**
3913
** This register contains the upper base address when decoding PCI addresses beyond 4 GBytes.
3914
** Together with the Translation Base Address this register defines the actual location
3915
** the translation function is to respond to when addressed from the PCI bus for addresses > 4GBytes (for DACs).
3916
** The programmed value within the base address register must comply with the PCI programming
3917
** requirements for address alignment.
3918
** Note:
3919
** When the Type indicator of IABAR3 is set to indicate 32 bit addressability,
3920
** the IAUBAR3 register attributes are read-only.
3921
** This is the default for IABAR3.
3922
** -----------------------------------------------------------------
3923
** Bit Default Description
3924
** 31:0 00000H Translation Upper Base Address 3 - Together with the Translation Base Address 3 these bits define
3925
** the actual location the translation function is to respond to when addressed from the PCI bus for addresses > 4GBytes.
3926
***********************************************************************************
3927
*/
3928
#define ARCMSR_INBOUND_ATU_UPPER_BASE_ADDRESS3_REG 0x94 /*dword 0x97,0x96,0x95,0x94*/
3929
/*
3930
***********************************************************************************
3931
** Inbound ATU Limit Register 3 - IALR3
3932
**
3933
** Inbound address translation for memory window 3 occurs for data transfers occurring from the PCI
3934
** bus (originated from the PCI bus) to the 80331 internal bus. The address translation block converts
3935
** PCI addresses to internal bus addresses.
3936
** The inbound translation base address for inbound window 3 is specified in Section 3.10.15. When
3937
** determining block size requirements �X as described in Section 3.10.21 �X the translation limit
3938
** register provides the block size requirements for the base address register. The remaining registers
3939
** used for performing address translation are discussed in Section 3.2.1.1.
3940
** The 80331 translate value register��s programmed value must be naturally aligned with the base
3941
** address register��s programmed value. The limit register is used as a mask; thus, the lower address
3942
** bits programmed into the 80331 translate value register are invalid. Refer to the PCI Local Bus
3943
** Specification, Revision 2.3 for additional information on programming base address registers.
3944
** Bits 31 to 12 within the IALR3 have a direct effect on the IABAR3 register, bits 31 to 12, with a
3945
** one to one correspondence. A value of 0 in a bit within the IALR3 makes the corresponding bit
3946
** within the IABAR3 a read only bit which always returns 0. A value of 1 in a bit within the IALR3
3947
** makes the corresponding bit within the IABAR3 read/write from PCI. Note that a consequence of
3948
** this programming scheme is that unless a valid value exists within the IALR3, all writes to the
3949
** IABAR3 has no effect since a value of all zeros within the IALR3 makes the IABAR3 a read only
3950
** register.
3951
** -----------------------------------------------------------------
3952
** Bit Default Description
3953
** 31:12 00000H Inbound Translation Limit 3 - This readback value determines the memory block size required
3954
** for the ATUs memory window 3.
3955
** 11:00 000H Reserved
3956
***********************************************************************************
3957
*/
3958
#define ARCMSR_INBOUND_ATU_LIMIT3_REG 0x98 /*dword 0x9B,0x9A,0x99,0x98*/
3959
/*
3960
***********************************************************************************
3961
** Inbound ATU Translate Value Register 3 - IATVR3
3962
**
3963
** The Inbound ATU Translate Value Register 3 (IATVR3) contains the internal bus address used to
3964
** convert PCI bus addresses. The converted address is driven on the internal bus as a result of the
3965
** inbound ATU address translation.
3966
** -----------------------------------------------------------------
3967
** Bit Default Description
3968
** 31:12 00000H Inbound ATU Translation Value 3 - This value is used to convert the PCI address to internal bus addresses.
3969
** This value must be 64-bit aligned on the internal bus. The default address allows the ATU to
3970
** access the internal 80331 memory-mapped registers.
3971
** 11:00 000H Reserved
3972
***********************************************************************************
3973
*/
3974
#define ARCMSR_INBOUND_ATU_TRANSLATE_VALUE3_REG 0x9C /*dword 0x9F,0x9E,0x9D,0x9C*/
3975
/*
3976
***********************************************************************************
3977
** Outbound Configuration Cycle Address Register - OCCAR
3978
**
3979
** The Outbound Configuration Cycle Address Register is used to hold the 32-bit PCI configuration
3980
** cycle address. The Intel XScale core writes the PCI configuration cycles address which then
3981
** enables the outbound configuration read or write. The Intel XScale core then performs a read or
3982
** write to the Outbound Configuration Cycle Data Register to initiate the configuration cycle on the
3983
** PCI bus.
3984
** Note: Bits 15:11 of the configuration cycle address for Type 0 configuration cycles are defined differently
3985
** for Conventional versus PCI-X modes. When 80331 software programs the OCCAR to initiate a
3986
** Type 0 configuration cycle, the OCCAR should always be loaded based on the PCI-X definition for
3987
** the Type 0 configuration cycle address. When operating in Conventional mode, the 80331 clears
3988
** bits 15:11 of the OCCAR prior to initiating an outbound Type 0 configuration cycle. See the PCI-X
3989
** Addendum to the PCI Local Bus Specification, Revision 1.0a for details on the two formats.
3990
** -----------------------------------------------------------------
3991
** Bit Default Description
3992
** 31:00 0000 0000H Configuration Cycle Address - These bits define the 32-bit PCI address used during an outbound
3993
** configuration read or write cycle.
3994
***********************************************************************************
3995
*/
3996
#define ARCMSR_OUTBOUND_CONFIGURATION_CYCLE_ADDRESS_REG 0xA4 /*dword 0xA7,0xA6,0xA5,0xA4*/
3997
/*
3998
***********************************************************************************
3999
** Outbound Configuration Cycle Data Register - OCCDR
4000
**
4001
** The Outbound Configuration Cycle Data Register is used to initiate a configuration read or write
4002
** on the PCI bus. The register is logical rather than physical meaning that it is an address not a
4003
** register. The Intel XScale core reads or writes the data registers memory-mapped address to
4004
** initiate the configuration cycle on the PCI bus with the address found in the OCCAR. For a
4005
** configuration write, the data is latched from the internal bus and forwarded directly to the OWQ.
4006
** For a read, the data is returned directly from the ORQ to the Intel XScale core and is never
4007
** actually entered into the data register (which does not physically exist).
4008
** The OCCDR is only visible from 80331 internal bus address space and appears as a reserved value
4009
** within the ATU configuration space.
4010
** -----------------------------------------------------------------
4011
** Bit Default Description
4012
** 31:00 0000 0000H Configuration Cycle Data - These bits define the data used during an outbound configuration read
4013
** or write cycle.
4014
***********************************************************************************
4015
*/
4016
#define ARCMSR_OUTBOUND_CONFIGURATION_CYCLE_DATA_REG 0xAC /*dword 0xAF,0xAE,0xAD,0xAC*/
4017
/*
4018
***********************************************************************************
4019
** VPD Capability Identifier Register - VPD_CAPID
4020
**
4021
** The Capability Identifier Register bits adhere to the definitions in the PCI Local Bus Specification,
4022
** Revision 2.3. This register in the PCI Extended Capability header identifies the type of Extended
4023
** Capability contained in that header. In the case of the 80331, this is the VPD extended capability
4024
** with an ID of 03H as defined by the PCI Local Bus Specification, Revision 2.3.
4025
** -----------------------------------------------------------------
4026
** Bit Default Description
4027
** 07:00 03H Cap_Id - This field with its�� 03H value identifies this item in the linked list of Extended Capability
4028
** Headers as being the VPD capability registers.
4029
***********************************************************************************
4030
*/
4031
#define ARCMSR_VPD_CAPABILITY_IDENTIFIER_REG 0xB8 /*byte*/
4032
/*
4033
***********************************************************************************
4034
** VPD Next Item Pointer Register - VPD_NXTP
4035
**
4036
** The Next Item Pointer Register bits adhere to the definitions in the PCI Local Bus Specification,
4037
** Revision 2.3. This register describes the location of the next item in the function��s capability list.
4038
** For the 80331, this the final capability list, and hence, this register is set to 00H.
4039
** -----------------------------------------------------------------
4040
** Bit Default Description
4041
** 07:00 00H Next_ Item_ Pointer - This field provides an offset into the function��s configuration space pointing to the
4042
** next item in the function��s capability list. Since the VPD capabilities are the last in the linked list of
4043
** extended capabilities in the 80331, the register is set to 00H.
4044
***********************************************************************************
4045
*/
4046
#define ARCMSR_VPD_NEXT_ITEM_PTR_REG 0xB9 /*byte*/
4047
/*
4048
***********************************************************************************
4049
** VPD Address Register - VPD_AR
4050
**
4051
** The VPD Address register (VPDAR) contains the DWORD-aligned byte address of the VPD to be
4052
** accessed. The register is read/write and the initial value at power-up is indeterminate.
4053
** A PCI Configuration Write to the VPDAR interrupts the Intel XScale core. Software can use
4054
** the Flag setting to determine whether the configuration write was intended to initiate a read or
4055
** write of the VPD through the VPD Data Register.
4056
** -----------------------------------------------------------------
4057
** Bit Default Description
4058
** 15 0 2 Flag - A flag is used to indicate when a transfer of data between the VPD Data Register and the storage
4059
** component has completed. Please see Section 3.9, ��Vital Product Data�� on page 201 for more details on
4060
** how the 80331 handles the data transfer.
4061
** 14:0 0000H VPD Address - This register is written to set the DWORD-aligned byte address used to read or write
4062
** Vital Product Data from the VPD storage component.
4063
***********************************************************************************
4064
*/
4065
#define ARCMSR_VPD_ADDRESS_REG 0xBA /*word 0xBB,0xBA*/
4066
/*
4067
***********************************************************************************
4068
** VPD Data Register - VPD_DR
4069
**
4070
** This register is used to transfer data between the 80331 and the VPD storage component.
4071
** -----------------------------------------------------------------
4072
** Bit Default Description
4073
** 31:00 0000H VPD Data - Four bytes are always read or written through this register to/from the VPD storage component.
4074
***********************************************************************************
4075
*/
4076
#define ARCMSR_VPD_DATA_REG 0xBC /*dword 0xBF,0xBE,0xBD,0xBC*/
4077
/*
4078
***********************************************************************************
4079
** Power Management Capability Identifier Register -PM_CAPID
4080
**
4081
** The Capability Identifier Register bits adhere to the definitions in the PCI Local Bus Specification,
4082
** Revision 2.3. This register in the PCI Extended Capability header identifies the type of Extended
4083
** Capability contained in that header. In the case of the 80331, this is the PCI Bus Power
4084
** Management extended capability with an ID of 01H as defined by the PCI Bus Power Management
4085
** Interface Specification, Revision 1.1.
4086
** -----------------------------------------------------------------
4087
** Bit Default Description
4088
** 07:00 01H Cap_Id - This field with its�� 01H value identifies this item in the linked list of Extended Capability
4089
** Headers as being the PCI Power Management Registers.
4090
***********************************************************************************
4091
*/
4092
#define ARCMSR_POWER_MANAGEMENT_CAPABILITY_IDENTIFIER_REG 0xC0 /*byte*/
4093
/*
4094
***********************************************************************************
4095
** Power Management Next Item Pointer Register - PM_NXTP
4096
**
4097
** The Next Item Pointer Register bits adhere to the definitions in the PCI Local Bus Specification,
4098
** Revision 2.3. This register describes the location of the next item in the function��s capability list.
4099
** For the 80331, the next capability (MSI capability list) is located at off-set D0H.
4100
** -----------------------------------------------------------------
4101
** Bit Default Description
4102
** 07:00 D0H Next_ Item_ Pointer - This field provides an offset into the function��s configuration space pointing to the
4103
** next item in the function��s capability list which in the 80331 is the MSI extended capabilities header.
4104
***********************************************************************************
4105
*/
4106
#define ARCMSR_POWER_NEXT_ITEM_PTR_REG 0xC1 /*byte*/
4107
/*
4108
***********************************************************************************
4109
** Power Management Capabilities Register - PM_CAP
4110
**
4111
** Power Management Capabilities bits adhere to the definitions in the PCI Bus Power Management
4112
** Interface Specification, Revision 1.1. This register is a 16-bit read-only register which provides
4113
** information on the capabilities of the ATU function related to power management.
4114
** -----------------------------------------------------------------
4115
** Bit Default Description
4116
** 15:11 00000 2 PME_Support - This function is not capable of asserting the PME# signal in any state, since PME#
4117
** is not supported by the 80331.
4118
** 10 0 2 D2_Support - This bit is set to 0 2 indicating that the 80331 does not support the D2 Power Management State
4119
** 9 1 2 D1_Support - This bit is set to 1 2 indicating that the 80331 supports the D1 Power Management State
4120
** 8:6 000 2 Aux_Current - This field is set to 000 2 indicating that the 80331 has no current requirements for the
4121
** 3.3Vaux signal as defined in the PCI Bus Power Management Interface Specification, Revision 1.1
4122
** 5 0 2 DSI - This field is set to 0 2 meaning that this function requires a device specific initialization sequence
4123
** following the transition to the D0 uninitialized state.
4124
** 4 0 2 Reserved.
4125
** 3 0 2 PME Clock - Since the 80331 does not support PME# signal generation this bit is cleared to 0 2 .
4126
** 2:0 010 2 Version - Setting these bits to 010 2 means that this function complies with PCI Bus Power Management
4127
** Interface Specification, Revision 1.1
4128
***********************************************************************************
4129
*/
4130
#define ARCMSR_POWER_MANAGEMENT_CAPABILITY_REG 0xC2 /*word 0xC3,0xC2*/
4131
/*
4132
***********************************************************************************
4133
** Power Management Control/Status Register - PM_CSR
4134
**
4135
** Power Management Control/Status bits adhere to the definitions in the PCI Bus Power
4136
** Management Interface Specification, Revision 1.1. This 16-bit register is the control and status
4137
** interface for the power management extended capability.
4138
** -----------------------------------------------------------------
4139
** Bit Default Description
4140
** 15 0 2 PME_Status - This function is not capable of asserting the PME# signal in any state, since PME## is not
4141
** supported by the 80331.
4142
** 14:9 00H Reserved
4143
** 8 0 2 PME_En - This bit is hardwired to read-only 0 2 since this function does not support PME#
4144
** generation from any power state.
4145
** 7:2 000000 2 Reserved
4146
** 1:0 00 2 Power State - This 2-bit field is used both to determine the current power state
4147
** of a function and to set the function into a new power state. The definition of the values is:
4148
** 00 2 - D0
4149
** 01 2 - D1
4150
** 10 2 - D2 (Unsupported)
4151
** 11 2 - D3 hot
4152
** The 80331 supports only the D0 and D3 hot states.
4153
**
4154
***********************************************************************************
4155
*/
4156
#define ARCMSR_POWER_MANAGEMENT_CONTROL_STATUS_REG 0xC4 /*word 0xC5,0xC4*/
4157
/*
4158
***********************************************************************************
4159
** PCI-X Capability Identifier Register - PX_CAPID
4160
**
4161
** The Capability Identifier Register bits adhere to the definitions in the PCI Local Bus Specification,
4162
** Revision 2.3. This register in the PCI Extended Capability header identifies the type of Extended
4163
** Capability contained in that header. In the case of the 80331, this is the PCI-X extended capability with
4164
** an ID of 07H as defined by the PCI-X Addendum to the PCI Local Bus Specification, Revision 1.0a.
4165
** -----------------------------------------------------------------
4166
** Bit Default Description
4167
** 07:00 07H Cap_Id - This field with its�� 07H value identifies this item in the linked list of Extended Capability
4168
** Headers as being the PCI-X capability registers.
4169
***********************************************************************************
4170
*/
4171
#define ARCMSR_PCIX_CAPABILITY_IDENTIFIER_REG 0xE0 /*byte*/
4172
/*
4173
***********************************************************************************
4174
** PCI-X Next Item Pointer Register - PX_NXTP
4175
**
4176
** The Next Item Pointer Register bits adhere to the definitions in the PCI Local Bus Specification,
4177
** Revision 2.3. This register describes the location of the next item in the function��s capability list.
4178
** By default, the PCI-X capability is the last capabilities list for the 80331, thus this register defaults
4179
** to 00H.
4180
** However, this register may be written to B8H prior to host configuration to include the VPD
4181
** capability located at off-set B8H.
4182
** Warning: Writing this register to any value other than 00H (default) or B8H is not supported and may
4183
** produce unpredictable system behavior.
4184
** In order to guarantee that this register is written prior to host configuration, the 80331 must be
4185
** initialized at P_RST# assertion to Retry Type 0 configuration cycles (bit 2 of PCSR). Typically,
4186
** the Intel XScale core would be enabled to boot immediately following P_RST# assertion in
4187
** this case (bit 1 of PCSR), as well. Please see Table 125, ��PCI Configuration and Status Register -
4188
** PCSR�� on page 253 for more details on the 80331 initialization modes.
4189
** -----------------------------------------------------------------
4190
** Bit Default Description
4191
** 07:00 00H Next_ Item_ Pointer - This field provides an offset into the function��s configuration space pointing to the
4192
** next item in the function��s capability list. Since the PCI-X capabilities are the last in the linked list of
4193
** extended capabilities in the 80331, the register is set to 00H.
4194
** However, this field may be written prior to host configuration with B8H to extend the list to include the
4195
** VPD extended capabilities header.
4196
***********************************************************************************
4197
*/
4198
#define ARCMSR_PCIX_NEXT_ITEM_PTR_REG 0xE1 /*byte*/
4199
/*
4200
***********************************************************************************
4201
** PCI-X Command Register - PX_CMD
4202
**
4203
** This register controls various modes and features of ATU and Message Unit when operating in the
4204
** PCI-X mode.
4205
** -----------------------------------------------------------------
4206
** Bit Default Description
4207
** 15:7 000000000 2 Reserved.
4208
** 6:4 011 2 Maximum Outstanding Split Transactions - This register sets the maximum number of Split Transactions
4209
** the device is permitted to have outstanding at one time.
4210
** Register Maximum Outstanding
4211
** 0 1
4212
** 1 2
4213
** 2 3
4214
** 3 4
4215
** 4 8
4216
** 5 12
4217
** 6 16
4218
** 7 32
4219
** 3:2 00 2 Maximum Memory Read Byte Count - This register sets the maximum byte count the device uses when
4220
** initiating a Sequence with one of the burst memory read commands.
4221
** Register Maximum Byte Count
4222
** 0 512
4223
** 1 1024
4224
** 2 2048
4225
** 3 4096
4226
** 1 0 2
4227
** Enable Relaxed Ordering - The 80331 does not set the relaxed ordering bit in the Requester Attributes
4228
** of Transactions.
4229
** 0 0 2 Data Parity Error Recovery Enable - The device driver sets this bit to enable the device to attempt to
4230
** recover from data parity errors. When this bit is 0 and the device is in PCI-X mode, the device asserts
4231
** SERR# (when enabled) whenever the Master Data Parity Error bit (Status register, bit 8) is set.
4232
***********************************************************************************
4233
*/
4234
#define ARCMSR_PCIX_COMMAND_REG 0xE2 /*word 0xE3,0xE2*/
4235
/*
4236
***********************************************************************************
4237
** PCI-X Status Register - PX_SR
4238
**
4239
** This register identifies the capabilities and current operating mode of ATU, DMAs and Message
4240
** Unit when operating in the PCI-X mode.
4241
** -----------------------------------------------------------------
4242
** Bit Default Description
4243
** 31:30 00 2 Reserved
4244
** 29 0 2 Received Split Completion Error Message - This bit is set when the device receives a Split Completion
4245
** Message with the Split Completion Error attribute bit set. Once set, this bit remains set until software
4246
** writes a 1 to this location.
4247
** 0=no Split Completion error message received.
4248
** 1=a Split Completion error message has been received.
4249
** 28:26 001 2 Designed Maximum Cumulative Read Size (DMCRS) - The value of this register depends on the setting
4250
** of the Maximum Memory Read Byte Count field of the PCIXCMD register:
4251
** DMCRS Max ADQs Maximum Memory Read Byte Count Register Setting
4252
** 1 16 512 (Default)
4253
** 2 32 1024
4254
** 2 32 2048
4255
** 2 32 4096
4256
** 25:23 011 2 Designed Maximum Outstanding Split Transactions - The 80331 can have up to four outstanding split transactions.
4257
** 22:21 01 2 Designed Maximum Memory Read Byte Count - The 80331 can generate memory reads with byte counts up
4258
** to 1024 bytes.
4259
** 20 1 2 80331 is a complex device.
4260
** 19 0 2 Unexpected Split Completion - This bit is set when an unexpected Split Completion with this device��s
4261
** Requester ID is received. Once set, this bit remains set until software writes a 1 to this location.
4262
** 0=no unexpected Split Completion has been received.
4263
** 1=an unexpected Split Completion has been received.
4264
** 18 0 2 Split Completion Discarded - This bit is set when the device discards a Split Completion because the
4265
** requester would not accept it. See Section 5.4.4 of the PCI-X Addendum to the PCI Local Bus
4266
** Specification, Revision 1.0a for details. Once set, this bit remains set until software writes a 1 to this
4267
** location.
4268
** 0=no Split Completion has been discarded.
4269
** 1=a Split Completion has been discarded.
4270
** NOTE: The 80331 does not set this bit since there is no Inbound address responding to Inbound Read
4271
** Requests with Split Responses (Memory or Register) that has ��read side effects.��
4272
** 17 1 2 80331 is a 133 MHz capable device.
4273
** 16 1 2 or P_32BITPCI# 80331 with bridge enabled (BRG_EN=1) implements the ATU with a 64-bit interface on the secondary PCI bus,
4274
** therefore this bit is always set.
4275
** 80331 with no bridge and central resource disabled (BRG_EN=0, ARB_EN=0),
4276
** use this bit to identify the add-in card to the system as 64-bit or 32-bit wide via a user-configurable strap (P_32BITPCI#).
4277
** This strap, by default, identifies the add in card based on 80331 with bridge disabled
4278
** as 64-bit unless the user attaches the appropriate pull-down resistor to the strap.
4279
** 0=The bus is 32 bits wide.
4280
** 1=The bus is 64 bits wide.
4281
** 15:8 FFH Bus Number - This register is read for diagnostic purposes only. It indicates the number of the bus
4282
** segment for the device containing this function. The function uses this number as part of its Requester
4283
** ID and Completer ID. For all devices other than the source bridge, each time the function is addressed
4284
** by a Configuration Write transaction, the function must update this register with the contents of AD[7::0]
4285
** of the attribute phase of the Configuration Write, regardless of which register in the function is
4286
** addressed by the transaction. The function is addressed by a Configuration Write transaction when all of
4287
** the following are true:
4288
** 1. The transaction uses a Configuration Write command.
4289
** 2. IDSEL is asserted during the address phase.
4290
** 3. AD[1::0] are 00b (Type 0 configuration transaction).
4291
** 4. AD[10::08] of the configuration address contain the appropriate function number.
4292
** 7:3 1FH Device Number - This register is read for diagnostic purposes only. It indicates the number of the device
4293
** containing this function, i.e., the number in the Device Number field (AD[15::11]) of the address of a
4294
** Type 0 configuration transaction that is assigned to the device containing this function by the connection
4295
** of the system hardware. The system must assign a device number other than 00h (00h is reserved for
4296
** the source bridge). The function uses this number as part of its Requester ID and Completer ID. Each
4297
** time the function is addressed by a Configuration Write transaction, the device must update this register
4298
** with the contents of AD[15::11] of the address phase of the Configuration Write, regardless of which
4299
** register in the function is addressed by the transaction. The function is addressed by a Configuration
4300
** Write transaction when all of the following are true:
4301
** 1. The transaction uses a Configuration Write command.
4302
** 2. IDSEL is asserted during the address phase.
4303
** 3. AD[1::0] are 00b (Type 0 configuration transaction).
4304
** 4. AD[10::08] of the configuration address contain the appropriate function number.
4305
** 2:0 000 2 Function Number - This register is read for diagnostic purposes only. It indicates the number of this
4306
** function; i.e., the number in the Function Number field (AD[10::08]) of the address of a Type 0
4307
** configuration transaction to which this function responds. The function uses this number as part of its
4308
** Requester ID and Completer ID.
4309
**
4310
**************************************************************************
4311
*/
4312
#define ARCMSR_PCIX_STATUS_REG 0xE4 /*dword 0xE7,0xE6,0xE5,0xE4*/
4313
4314
/*
4315
**************************************************************************
4316
** Inbound Read Transaction
4317
** ========================================================================
4318
** An inbound read transaction is initiated by a PCI initiator and is targeted at either 80331 local
4319
** memory or a 80331 memory-mapped register space. The read transaction is propagated through
4320
** the inbound transaction queue (ITQ) and read data is returned through the inbound read queue
4321
** (IRQ).
4322
** When operating in the conventional PCI mode, all inbound read transactions are processed as
4323
** delayed read transactions. When operating in the PCI-X mode, all inbound read transactions are
4324
** processed as split transactions. The ATUs PCI interface claims the read transaction and forwards
4325
** the read request through to the internal bus and returns the read data to the PCI bus. Data flow for
4326
** an inbound read transaction on the PCI bus is summarized in the following statements:
4327
** �E The ATU claims the PCI read transaction when the PCI address is within the inbound
4328
** translation window defined by ATU Inbound Base Address Register (and Inbound Upper Base
4329
** Address Register during DACs) and Inbound Limit Register.
4330
** �E When operating in the conventional PCI mode, when the ITQ is currently holding transaction
4331
** information from a previous delayed read, the current transaction information is compared to
4332
** the previous transaction information (based on the setting of the DRC Alias bit in
4333
** Section 3.10.39, ��ATU Configuration Register - ATUCR�� on page 252). When there is a
4334
** match and the data is in the IRQ, return the data to the master on the PCI bus. When there is a
4335
** match and the data is not available, a Retry is signaled with no other action taken. When there
4336
** is not a match and when the ITQ has less than eight entries, capture the transaction
4337
** information, signal a Retry and initiate a delayed transaction. When there is not a match and
4338
** when the ITQ is full, then signal a Retry with no other action taken.
4339
** �X When an address parity error is detected, the address parity response defined in
4340
** Section 3.7 is used.
4341
** �E When operating in the conventional PCI mode, once read data is driven onto the PCI bus from
4342
** the IRQ, it continues until one of the following is true:
4343
** �X The initiator completes the PCI transaction. When there is data left unread in the IRQ, the
4344
** data is flushed.
4345
** �X An internal bus Target Abort was detected. In this case, the QWORD associated with the
4346
** Target Abort is never entered into the IRQ, and therefore is never returned.
4347
** �X Target Abort or a Disconnect with Data is returned in response to the Internal Bus Error.
4348
** �X The IRQ becomes empty. In this case, the PCI interface signals a Disconnect with data to
4349
** the initiator on the last data word available.
4350
** �E When operating in the PCI-X mode, when ITQ is not full, the PCI address, attribute and
4351
** command are latched into the available ITQ and a Split Response Termination is signalled to
4352
** the initiator.
4353
** �E When operating in the PCI-X mode, when the transaction does not cross a 1024 byte aligned
4354
** boundary, then the ATU waits until it receives the full byte count from the internal bus target
4355
** before returning read data by generating the split completion transaction on the PCI-X bus.
4356
** When the read requested crosses at least one 1024 byte boundary, then ATU completes the
4357
** transfer by returning data in 1024 byte aligned chunks.
4358
** �E When operating in the PCI-X mode, once a split completion transaction has started, it
4359
** continues until one of the following is true:
4360
** �X The requester (now the target) generates a Retry Termination, or a Disconnection at Next
4361
** ADB (when the requester is a bridge)
4362
** �X The byte count is satisfied.
4363
** �X An internal bus Target Abort was detected. The ATU generates a Split Completion
4364
** Message (message class=2h - completer error, and message index=81h - target abort) to
4365
** inform the requester about the abnormal condition. The ITQ for this transaction is flushed.
4366
** Refer to Section 3.7.1.
4367
** �X An internal bus Master Abort was detected. The ATU generates a Split Completion
4368
** Message (message class=2h - completer error, and message index=80h - Master abort) to
4369
** inform the requester about the abnormal condition. The ITQ for this transaction is flushed.
4370
** Refer to Section 3.7.1
4371
** �E When operating in the conventional PCI mode, when the master inserts wait states on the PCI
4372
** bus, the ATU PCI slave interface waits with no premature disconnects.
4373
** �E When a data parity error occurs signified by PERR# asserted from the initiator, no action is
4374
** taken by the target interface. Refer to Section 3.7.2.5.
4375
** �E When operating in the conventional PCI mode, when the read on the internal bus is
4376
** target-aborted, either a target-abort or a disconnect with data is signaled to the initiator. This is
4377
** based on the ATU ECC Target Abort Enable bit (bit 0 of the ATUIMR for ATU). When set, a
4378
** target abort is used, when clear, a disconnect is used.
4379
** �E When operating in the PCI-X mode (with the exception of the MU queue ports at offsets 40h
4380
** and 44h), when the transaction on the internal bus resulted in a target abort, the ATU generates
4381
** a Split Completion Message (message class=2h - completer error, and message index=81h -
4382
** internal bus target abort) to inform the requester about the abnormal condition. For the MU
4383
** queue ports, the ATU returns either a target abort or a single data phase disconnect depending
4384
** on the ATU ECC Target Abort Enable bit (bit 0 of the ATUIMR for ATU). The ITQ for this
4385
** transaction is flushed. Refer to Section 3.7.1.
4386
** �E When operating in the conventional PCI mode, when the transaction on the internal bus
4387
** resulted in a master abort, the ATU returns a target abort to inform the requester about the
4388
** abnormal condition. The ITQ for this transaction is flushed. Refer to Section 3.7.1
4389
** �E When operating in the PCI-X mode, when the transaction on the internal bus resulted in a
4390
** master abort, the ATU generates a Split Completion Message (message class=2h - completer
4391
** error, and message index=80h - internal bus master abort) to inform the requester about the
4392
** abnormal condition. The ITQ for this transaction is flushed. Refer to Section 3.7.1.
4393
** �E When operating in the PCI-X mode, when the Split Completion transaction completes with
4394
** either Master-Abort or Target-Abort, the requester is indicating a failure condition that
4395
** prevents it from accepting the completion it requested. In this case, since the Split Request
4396
** addresses a location that has no read side effects, the completer must discard the Split
4397
** Completion and take no further action.
4398
** The data flow for an inbound read transaction on the internal bus is summarized in the following
4399
** statements:
4400
** �E The ATU internal bus master interface requests the internal bus when a PCI address appears in
4401
** an ITQ and transaction ordering has been satisfied. When operating in the PCI-X mode the
4402
** ATU does not use the information provided by the Relax Ordering Attribute bit. That is, ATU
4403
** always uses conventional PCI ordering rules.
4404
** �E Once the internal bus is granted, the internal bus master interface drives the translated address
4405
** onto the bus and wait for IB_DEVSEL#. When a Retry is signaled, the request is repeated.
4406
** When a master abort occurs, the transaction is considered complete and a target abort is loaded
4407
** into the associated IRQ for return to the PCI initiator (transaction is flushed once the PCI
4408
** master has been delivered the target abort).
4409
** �E Once the translated address is on the bus and the transaction has been accepted, the internal
4410
** bus target starts returning data with the assertion of IB_TRDY#. Read data is continuously
4411
** received by the IRQ until one of the following is true:
4412
** �X The full byte count requested by the ATU read request is received. The ATU internal bus
4413
** initiator interface performs a initiator completion in this case.
4414
** �X When operating in the conventional PCI mode, a Target Abort is received on the internal
4415
** bus from the internal bus target. In this case, the transaction is aborted and the PCI side is
4416
** informed.
4417
** �X When operating in the PCI-X mode, a Target Abort is received on the internal bus from
4418
** the internal bus target. In this case, the transaction is aborted. The ATU generates a Split
4419
** Completion Message (message class=2h - completer error, and message index=81h -
4420
** target abort) on the PCI bus to inform the requester about the abnormal condition. The
4421
** ITQ for this transaction is flushed.
4422
** �X When operating in the conventional PCI mode, a single data phase disconnection is
4423
** received from the internal bus target. When the data has not been received up to the next
4424
** QWORD boundary, the ATU internal bus master interface attempts to reacquire the bus.
4425
** When not, the bus returns to idle.
4426
** �X When operating in the PCI-X mode, a single data phase disconnection is received from
4427
** the internal bus target. The ATU IB initiator interface attempts to reacquire the bus to
4428
** obtain remaining data.
4429
** �X When operating in the conventional PCI mode, a disconnection at Next ADB is received
4430
** from the internal bus target. The bus returns to idle.
4431
** �X When operating in the PCI-X mode, a disconnection at Next ADB is received from the
4432
** internal bus target. The ATU IB initiator interface attempts to reacquire the bus to obtain
4433
** remaining data.
4434
** To support PCI Local Bus Specification, Revision 2.0 devices, the ATU can be programmed to
4435
** ignore the memory read command (Memory Read, Memory Read Line, and Memory Read
4436
** Multiple) when trying to match the current inbound read transaction with data in a DRC queue
4437
** which was read previously (DRC on target bus). When the Read Command Alias Bit in the
4438
** ATUCR register is set, the ATU does not distinguish the read commands on transactions. For
4439
** example, the ATU enqueues a DRR with a Memory Read Multiple command and performs the read
4440
** on the internal bus. Some time later, a PCI master attempts a Memory Read with the same address
4441
** as the previous Memory Read Multiple. When the Read Command Bit is set, the ATU would return
4442
** the read data from the DRC queue and consider the Delayed Read transaction complete. When the
4443
** Read Command bit in the ATUCR was clear, the ATU would not return data since the PCI read
4444
** commands did not match, only the address.
4445
**************************************************************************
4446
*/
4447
/*
4448
**************************************************************************
4449
** Inbound Write Transaction
4450
**========================================================================
4451
** An inbound write transaction is initiated by a PCI master and is targeted at either 80331 local
4452
** memory or a 80331 memory-mapped register.
4453
** Data flow for an inbound write transaction on the PCI bus is summarized as:
4454
** �E The ATU claims the PCI write transaction when the PCI address is within the inbound
4455
** translation window defined by the ATU Inbound Base Address Register (and Inbound Upper
4456
** Base Address Register during DACs) and Inbound Limit Register.
4457
** �E When the IWADQ has at least one address entry available and the IWQ has at least one buffer
4458
** available, the address is captured and the first data phase is accepted.
4459
** �E The PCI interface continues to accept write data until one of the following is true:
4460
** �X The initiator performs a disconnect.
4461
** �X The transaction crosses a buffer boundary.
4462
** �E When an address parity error is detected during the address phase of the transaction, the
4463
** address parity error mechanisms are used. Refer to Section 3.7.1 for details of the address
4464
** parity error response.
4465
** �E When operating in the PCI-X mode when an attribute parity error is detected, the attribute
4466
** parity error mechanism described in Section 3.7.1 is used.
4467
** �E When a data parity error is detected while accepting data, the slave interface sets the
4468
** appropriate bits based on PCI specifications. No other action is taken. Refer to Section 3.7.2.6
4469
** for details of the inbound write data parity error response.
4470
** Once the PCI interface places a PCI address in the IWADQ, when IWQ has received data sufficient
4471
** to cross a buffer boundary or the master disconnects on the PCI bus, the ATUs internal bus
4472
** interface becomes aware of the inbound write. When there are additional write transactions ahead
4473
** in the IWQ/IWADQ, the current transaction remains posted until ordering and priority have been
4474
** satisfied (Refer to Section 3.5.3) and the transaction is attempted on the internal bus by the ATU
4475
** internal master interface. The ATU does not insert target wait states nor do data merging on the PCI
4476
** interface, when operating in the PCI mode.
4477
** In the PCI-X mode memory writes are always executed as immediate transactions, while
4478
** configuration write transactions are processed as split transactions. The ATU generates a Split
4479
** Completion Message, (with Message class=0h - Write Completion Class and Message index =
4480
** 00h - Write Completion Message) once a configuration write is successfully executed.
4481
** Also, when operating in the PCI-X mode a write sequence may contain multiple write transactions.
4482
** The ATU handles such transactions as independent transactions.
4483
** Data flow for the inbound write transaction on the internal bus is summarized as:
4484
** �E The ATU internal bus master requests the internal bus when IWADQ has at least one entry
4485
** with associated data in the IWQ.
4486
** �E When the internal bus is granted, the internal bus master interface initiates the write
4487
** transaction by driving the translated address onto the internal bus. For details on inbound
4488
** address translation.
4489
** �E When IB_DEVSEL# is not returned, a master abort condition is signaled on the internal bus.
4490
** The current transaction is flushed from the queue and SERR# may be asserted on the PCI
4491
** interface.
4492
** �E The ATU initiator interface asserts IB_REQ64# to attempt a 64-bit transfer. When
4493
** IB_ACK64# is not returned, a 32-bit transfer is used. Transfers of less than 64-bits use the
4494
** IB_C/BE[7:0]# to mask the bytes not written in the 64-bit data phase. Write data is transferred
4495
** from the IWQ to the internal bus when data is available and the internal bus interface retains
4496
** internal bus ownership.
4497
** �E The internal bus interface stops transferring data from the current transaction to the internal
4498
** bus when one of the following conditions becomes true:
4499
** �X The internal bus initiator interface loses bus ownership. The ATU internal initiator
4500
** terminates the transfer (initiator disconnection) at the next ADB (for the internal bus ADB
4501
** is defined as a naturally aligned 128-byte boundary) and attempt to reacquire the bus to
4502
** complete the delivery of remaining data using the same sequence ID but with the
4503
** modified starting address and byte count.
4504
** �X A Disconnect at Next ADB is signaled on the internal bus from the internal target. When
4505
** the transaction in the IWQ completes at that ADB, the initiator returns to idle. When the
4506
** transaction in the IWQ is not complete, the initiator attempts to reacquire the bus to
4507
** complete the delivery of remaining data using the same sequence ID but with the
4508
** modified starting address and byte count.
4509
** �X A Single Data Phase Disconnect is signaled on the internal bus from the internal target.
4510
** When the transaction in the IWQ needs only a single data phase, the master returns to idle.
4511
** When the transaction in the IWQ is not complete, the initiator attempts to reacquire the
4512
** bus to complete the delivery of remaining data using the same sequence ID but with the
4513
** modified starting address and byte count.
4514
** �X The data from the current transaction has completed (satisfaction of byte count). An
4515
** initiator termination is performed and the bus returns to idle.
4516
** �X A Master Abort is signaled on the internal bus. SERR# may be asserted on the PCI bus.
4517
** Data is flushed from the IWQ.
4518
*****************************************************************
4519
*/
4520
4521
/*
4522
**************************************************************************
4523
** Inbound Read Completions Data Parity Errors
4524
**========================================================================
4525
** As an initiator, the ATU may encounter this error condition when operating in the PCI-X mode.
4526
** When as the completer of a Split Read Request the ATU observes PERR# assertion during the split
4527
** completion transaction, the ATU attempts to complete the transaction normally and no further
4528
** action is taken.
4529
**************************************************************************
4530
*/
4531
4532
/*
4533
**************************************************************************
4534
** Inbound Configuration Write Completion Message Data Parity Errors
4535
**========================================================================
4536
** As an initiator, the ATU may encounter this error condition when operating in the PCI-X mode.
4537
** When as the completer of a Configuration (Split) Write Request the ATU observes PERR#
4538
** assertion during the split completion transaction, the ATU attempts to complete the transaction
4539
** normally and no further action is taken.
4540
**************************************************************************
4541
*/
4542
4543
/*
4544
**************************************************************************
4545
** Inbound Read Request Data Parity Errors
4546
**===================== Immediate Data Transfer ==========================
4547
** As a target, the ATU may encounter this error when operating in the Conventional PCI or PCI-X modes.
4548
** Inbound read data parity errors occur when read data delivered from the IRQ is detected as having
4549
** bad parity by the initiator of the transaction who is receiving the data. The initiator may optionally
4550
** report the error to the system by asserting PERR#. As a target device in this scenario, no action is
4551
** required and no error bits are set.
4552
**=====================Split Response Termination=========================
4553
** As a target, the ATU may encounter this error when operating in the PCI-X mode.
4554
** Inbound read data parity errors occur during the Split Response Termination. The initiator may
4555
** optionally report the error to the system by asserting PERR#. As a target device in this scenario, no
4556
** action is required and no error bits are set.
4557
**************************************************************************
4558
*/
4559
4560
/*
4561
**************************************************************************
4562
** Inbound Write Request Data Parity Errors
4563
**========================================================================
4564
** As a target, the ATU may encounter this error when operating in the Conventional or PCI-X modes.
4565
** Data parity errors occurring during write operations received by the ATU may assert PERR# on
4566
** the PCI Bus. When an error occurs, the ATU continues accepting data until the initiator of the write
4567
** transaction completes or a queue fill condition is reached. Specifically, the following actions with
4568
** the given constraints are taken by the ATU:
4569
** �E PERR# is asserted two clocks cycles (three clock cycles when operating in the PCI-X mode)
4570
** following the data phase in which the data parity error is detected on the bus. This is only
4571
** done when the Parity Error Response bit in the ATUCMD is set.
4572
** �E The Detected Parity Error bit in the ATUSR is set. When the ATU sets this bit, additional
4573
** actions is taken:
4574
** �X When the ATU Detected Parity Error Interrupt Mask bit in the ATUIMR is clear, set the
4575
** Detected Parity Error bit in the ATUISR. When set, no action.
4576
***************************************************************************
4577
*/
4578
4579
/*
4580
***************************************************************************
4581
** Inbound Configuration Write Request
4582
** =====================================================================
4583
** As a target, the ATU may encounter this error when operating in the Conventional or PCI-X modes.
4584
** ===============================================
4585
** Conventional PCI Mode
4586
** ===============================================
4587
** To allow for correct data parity calculations for delayed write transactions, the ATU delays the
4588
** assertion of STOP# (signalling a Retry) until PAR is driven by the master. A parity error during a
4589
** delayed write transaction (inbound configuration write cycle) can occur in any of the following
4590
** parts of the transactions:
4591
** �E During the initial Delayed Write Request cycle on the PCI bus when the ATU latches the
4592
** address/command and data for delayed delivery to the internal configuration register.
4593
** �E During the Delayed Write Completion cycle on the PCI bus when the ATU delivers the status
4594
** of the operation back to the original master.
4595
** The 80331 ATU PCI interface has the following responses to a delayed write parity error for
4596
** inbound transactions during Delayed Write Request cycles with the given constraints:
4597
** �E When the Parity Error Response bit in the ATUCMD is set, the ATU asserts TRDY#
4598
** (disconnects with data) and two clock cycles later asserts PERR# notifying the initiator of the
4599
** parity error. The delayed write cycle is not enqueued and forwarded to the internal bus.
4600
** When the Parity Error Response bit in the ATUCMD is cleared, the ATU retries the
4601
** transaction by asserting STOP# and enqueues the Delayed Write Request cycle to be
4602
** forwarded to the internal bus. PERR# is not asserted.
4603
** �E The Detected Parity Error bit in the ATUSR is set. When the ATU sets this bit, additional
4604
** actions is taken:
4605
** �X When the ATU Detected Parity Error Interrupt Mask bit in the ATUIMR is clear, set the
4606
** Detected Parity Error bit in the ATUISR. When set, no action.
4607
** For the original write transaction to be completed, the initiator retries the transaction on the PCI
4608
** bus and the ATU returns the status from the internal bus, completing the transaction.
4609
** For the Delayed Write Completion transaction on the PCI bus where a data parity error occurs and
4610
** therefore does not agree with the status being returned from the internal bus (i.e. status being
4611
** returned is normal completion) the ATU performs the following actions with the given constraints:
4612
** �E When the Parity Error Response Bit is set in the ATUCMD, the ATU asserts TRDY#
4613
** (disconnects with data) and two clocks later asserts PERR#. The Delayed Completion cycle in
4614
** the IDWQ remains since the data of retried command did not match the data within the queue.
4615
** �E The Detected Parity Error bit in the ATUSR is set. When the ATU sets this bit, additional
4616
** actions is taken:
4617
** �X When the ATU Detected Parity Error Interrupt Mask bit in the ATUIMR is clear, set the
4618
** Detected Parity Error bit in the ATUISR. When set, no action.
4619
** ===================================================
4620
** PCI-X Mode
4621
** ===================================================
4622
** Data parity errors occurring during configuration write operations received by the ATU may cause
4623
** PERR# assertion and delivery of a Split Completion Error Message on the PCI Bus. When an error
4624
** occurs, the ATU accepts the write data and complete with a Split Response Termination.
4625
** Specifically, the following actions with the given constraints are then taken by the ATU:
4626
** �E When the Parity Error Response bit in the ATUCMD is set, PERR# is asserted three clocks
4627
** cycles following the Split Response Termination in which the data parity error is detected on
4628
** the bus. When the ATU asserts PERR#, additional actions is taken:
4629
** �X A Split Write Data Parity Error message (with message class=2h - completer error and
4630
** message index=01h - Split Write Data Parity Error) is initiated by the ATU on the PCI bus
4631
** that addresses the requester of the configuration write.
4632
** �X When the Initiated Split Completion Error Message Interrupt Mask in the ATUIMR is
4633
** clear, set the Initiated Split Completion Error Message bit in the ATUISR. When set, no
4634
** action.
4635
** �X The Split Write Request is not enqueued and forwarded to the internal bus.
4636
** �E The Detected Parity Error bit in the ATUSR is set. When the ATU sets this bit, additional
4637
** actions is taken:
4638
** �X When the ATU Detected Parity Error Interrupt Mask bit in the ATUIMR is clear, set the
4639
** Detected Parity Error bit in the ATUISR. When set, no action.
4640
**
4641
***************************************************************************
4642
*/
4643
4644
/*
4645
***************************************************************************
4646
** Split Completion Messages
4647
** =======================================================================
4648
** As a target, the ATU may encounter this error when operating in the PCI-X mode.
4649
** Data parity errors occurring during Split Completion Messages claimed by the ATU may assert
4650
** PERR# (when enabled) or SERR# (when enabled) on the PCI Bus. When an error occurs, the
4651
** ATU accepts the data and complete normally. Specifically, the following actions with the given
4652
** constraints are taken by the ATU:
4653
** �E PERR# is asserted three clocks cycles following the data phase in which the data parity error
4654
** is detected on the bus. This is only done when the Parity Error Response bit in the ATUCMD
4655
** is set. When the ATU asserts PERR#, additional actions is taken:
4656
** �X The Master Parity Error bit in the ATUSR is set.
4657
** �X When the ATU PCI Master Parity Error Interrupt Mask Bit in the ATUIMR is clear, set the
4658
** PCI Master Parity Error bit in the ATUISR. When set, no action.
4659
** �X When the SERR# Enable bit in the ATUCMD is set, and the Data Parity Error Recover
4660
** Enable bit in the PCIXCMD register is clear, assert SERR#; otherwise no action is taken.
4661
** When the ATU asserts SERR#, additional actions is taken:
4662
** Set the SERR# Asserted bit in the ATUSR.
4663
** When the ATU SERR# Asserted Interrupt Mask Bit in the ATUIMR is clear, set the
4664
** SERR# Asserted bit in the ATUISR. When set, no action.
4665
** When the ATU SERR# Detected Interrupt Enable Bit in the ATUCR is set, set the
4666
** SERR# Detected bit in the ATUISR. When clear, no action.
4667
** �E When the SCE bit (Split Completion Error -- bit 30 of the Completer Attributes) is set during
4668
** the Attribute phase, the Received Split Completion Error Message bit in the PCIXSR is set.
4669
** When the ATU sets this bit, additional actions is taken:
4670
** �X When the ATU Received Split Completion Error Message Interrupt Mask bit in the
4671
** ATUIMR is clear, set the Received Split Completion Error Message bit in the ATUISR.
4672
** When set, no action.
4673
** �E The Detected Parity Error bit in the ATUSR is set. When the ATU sets this bit, additional
4674
** actions is taken:
4675
** �X When the ATU Detected Parity Error Interrupt Mask bit in the ATUIMR is clear, set the
4676
** Detected Parity Error bit in the ATUISR. When set, no action.
4677
** �E The transaction associated with the Split Completion Message is discarded.
4678
** �E When the discarded transaction was a read, a completion error message (with message
4679
** class=2h - completer error and message index=82h - PCI bus read parity error) is generated on
4680
** the internal bus of the 80331.
4681
*****************************************************************************
4682
*/
4683
4684
/*
4685
******************************************************************************************************
4686
** Messaging Unit (MU) of the Intel R 80331 I/O processor (80331)
4687
** ==================================================================================================
4688
** The Messaging Unit (MU) transfers data between the PCI system and the 80331
4689
** notifies the respective system when new data arrives.
4690
** The PCI window for messaging transactions is always the first 4 Kbytes of the inbound translation.
4691
** window defined by:
4692
** 1.Inbound ATU Base Address Register 0 (IABAR0)
4693
** 2.Inbound ATU Limit Register 0 (IALR0)
4694
** All of the Messaging Unit errors are reported in the same manner as ATU errors.
4695
** Error conditions and status can be found in :
4696
** 1.ATUSR
4697
** 2.ATUISR
4698
**====================================================================================================
4699
** Mechanism Quantity Assert PCI Interrupt Signals Generate I/O Processor Interrupt
4700
**----------------------------------------------------------------------------------------------------
4701
** Message Registers 2 Inbound Optional Optional
4702
** 2 Outbound
4703
**----------------------------------------------------------------------------------------------------
4704
** Doorbell Registers 1 Inbound Optional Optional
4705
** 1 Outbound
4706
**----------------------------------------------------------------------------------------------------
4707
** Circular Queues 4 Circular Queues Under certain conditions Under certain conditions
4708
**----------------------------------------------------------------------------------------------------
4709
** Index Registers 1004 32-bit Memory Locations No Optional
4710
**====================================================================================================
4711
** PCI Memory Map: First 4 Kbytes of the ATU Inbound PCI Address Space
4712
**====================================================================================================
4713
** 0000H Reserved
4714
** 0004H Reserved
4715
** 0008H Reserved
4716
** 000CH Reserved
4717
**------------------------------------------------------------------------
4718
** 0010H Inbound Message Register 0 ]
4719
** 0014H Inbound Message Register 1 ]
4720
** 0018H Outbound Message Register 0 ]
4721
** 001CH Outbound Message Register 1 ] 4 Message Registers
4722
**------------------------------------------------------------------------
4723
** 0020H Inbound Doorbell Register ]
4724
** 0024H Inbound Interrupt Status Register ]
4725
** 0028H Inbound Interrupt Mask Register ]
4726
** 002CH Outbound Doorbell Register ]
4727
** 0030H Outbound Interrupt Status Register ]
4728
** 0034H Outbound Interrupt Mask Register ] 2 Doorbell Registers and 4 Interrupt Registers
4729
**------------------------------------------------------------------------
4730
** 0038H Reserved
4731
** 003CH Reserved
4732
**------------------------------------------------------------------------
4733
** 0040H Inbound Queue Port ]
4734
** 0044H Outbound Queue Port ] 2 Queue Ports
4735
**------------------------------------------------------------------------
4736
** 0048H Reserved
4737
** 004CH Reserved
4738
**------------------------------------------------------------------------
4739
** 0050H ]
4740
** : ]
4741
** : Intel Xscale Microarchitecture Local Memory ]
4742
** : ]
4743
** 0FFCH ] 1004 Index Registers
4744
*******************************************************************************
4745
*/
4746
/*
4747
*****************************************************************************
4748
** Theory of MU Operation
4749
*****************************************************************************
4750
**--------------------
4751
** inbound_msgaddr0:
4752
** inbound_msgaddr1:
4753
** outbound_msgaddr0:
4754
** outbound_msgaddr1:
4755
** . The MU has four independent messaging mechanisms.
4756
** There are four Message Registers that are similar to a combination of mailbox and doorbell registers.
4757
** Each holds a 32-bit value and generates an interrupt when written.
4758
**--------------------
4759
** inbound_doorbell:
4760
** outbound_doorbell:
4761
** . The two Doorbell Registers support software interrupts.
4762
** When a bit is set in a Doorbell Register, an interrupt is generated.
4763
**--------------------
4764
** inbound_queueport:
4765
** outbound_queueport:
4766
**
4767
**
4768
** . The Circular Queues support a message passing scheme that uses 4 circular queues.
4769
** The 4 circular queues are implemented in 80331 local memory.
4770
** Two queues are used for inbound messages and two are used for outbound messages.
4771
** Interrupts may be generated when the queue is written.
4772
**--------------------
4773
** local_buffer 0x0050 ....0x0FFF
4774
** . The Index Registers use a portion of the 80331 local memory to implement a large set of message registers.
4775
** When one of the Index Registers is written, an interrupt is generated and the address of the register written is captured.
4776
** Interrupt status for all interrupts is recorded in the Inbound Interrupt Status Register and the Outbound Interrupt Status Register.
4777
** Each interrupt generated by the Messaging Unit can be masked.
4778
**--------------------
4779
** . Multi-DWORD PCI burst accesses are not supported by the Messaging Unit,
4780
** with the exception of Multi-DWORD reads to the index registers.
4781
** In Conventional mode: the MU terminates Multi-DWORD PCI transactions
4782
** (other than index register reads) with a disconnect at the next Qword boundary, with the exception of queue ports.
4783
** In PCI-X mode : the MU terminates a Multi-DWORD PCI read transaction with a Split Response
4784
** and the data is returned through split completion transaction(s).
4785
** however, when the burst request crosses into or through the range of offsets 40h to 4Ch
4786
** (e.g., this includes the queue ports) the transaction is signaled target-abort immediately on the PCI bus.
4787
** In PCI-X mode, Multi-DWORD PCI writes is signaled a Single-Data-Phase Disconnect
4788
** which means that no data beyond the first Qword (Dword when the MU does not assert P_ACK64#) is written.
4789
**--------------------
4790
** . All registers needed to configure and control the Messaging Unit are memory-mapped registers.
4791
** The MU uses the first 4 Kbytes of the inbound translation window in the Address Translation Unit (ATU).
4792
** This PCI address window is used for PCI transactions that access the 80331 local memory.
4793
** The PCI address of the inbound translation window is contained in the Inbound ATU Base Address Register.
4794
**--------------------
4795
** . From the PCI perspective, the Messaging Unit is part of the Address Translation Unit.
4796
** The Messaging Unit uses the PCI configuration registers of the ATU for control and status information.
4797
** The Messaging Unit must observe all PCI control bits in the ATU Command Register and ATU Configuration Register.
4798
** The Messaging Unit reports all PCI errors in the ATU Status Register.
4799
**--------------------
4800
** . Parts of the Messaging Unit can be accessed as a 64-bit PCI device.
4801
** The register interface, message registers, doorbell registers,
4802
** and index registers returns a P_ACK64# in response to a P_REQ64# on the PCI interface.
4803
** Up to 1 Qword of data can be read or written per transaction (except Index Register reads).
4804
** The Inbound and Outbound Queue Ports are always 32-bit addresses and the MU does not assert P_ACK64# to offsets 40H and 44H.
4805
**************************************************************************
4806
*/
4807
/*
4808
**************************************************************************
4809
** Message Registers
4810
** ==============================
4811
** . Messages can be sent and received by the 80331 through the use of the Message Registers.
4812
** . When written, the message registers may cause an interrupt to be generated to either the Intel XScale core or the host processor.
4813
** . Inbound messages are sent by the host processor and received by the 80331.
4814
** Outbound messages are sent by the 80331 and received by the host processor.
4815
** . The interrupt status for outbound messages is recorded in the Outbound Interrupt Status Register.
4816
** Interrupt status for inbound messages is recorded in the Inbound Interrupt Status Register.
4817
**
4818
** Inbound Messages:
4819
** -----------------
4820
** . When an inbound message register is written by an external PCI agent, an interrupt may be generated to the Intel XScale core.
4821
** . The interrupt may be masked by the mask bits in the Inbound Interrupt Mask Register.
4822
** . The Intel XScale core interrupt is recorded in the Inbound Interrupt Status Register.
4823
** The interrupt causes the Inbound Message Interrupt bit to be set in the Inbound Interrupt Status Register.
4824
** This is a Read/Clear bit that is set by the MU hardware and cleared by software.
4825
** The interrupt is cleared when the Intel XScale core writes a value of
4826
** 1 to the Inbound Message Interrupt bit in the Inbound Interrupt Status Register.
4827
** ------------------------------------------------------------------------
4828
** Inbound Message Register - IMRx
4829
**
4830
** . There are two Inbound Message Registers: IMR0 and IMR1.
4831
** . When the IMR register is written, an interrupt to the Intel XScale core may be generated.
4832
** The interrupt is recorded in the Inbound Interrupt Status Register and may be masked
4833
** by the Inbound Message Interrupt Mask bit in the Inbound Interrupt Mask Register.
4834
** -----------------------------------------------------------------
4835
** Bit Default Description
4836
** 31:00 0000 0000H Inbound Message - This is a 32-bit message written by an external PCI agent.
4837
** When written, an interrupt to the Intel XScale core may be generated.
4838
**************************************************************************
4839
*/
4840
#define ARCMSR_MU_INBOUND_MESSAGE_REG0 0x10 /*dword 0x13,0x12,0x11,0x10*/
4841
#define ARCMSR_MU_INBOUND_MESSAGE_REG1 0x14 /*dword 0x17,0x16,0x15,0x14*/
4842
/*
4843
**************************************************************************
4844
** Outbound Message Register - OMRx
4845
** --------------------------------
4846
** There are two Outbound Message Registers: OMR0 and OMR1. When the OMR register is
4847
** written, a PCI interrupt may be generated. The interrupt is recorded in the Outbound Interrupt
4848
** Status Register and may be masked by the Outbound Message Interrupt Mask bit in the Outbound
4849
** Interrupt Mask Register.
4850
**
4851
** Bit Default Description
4852
** 31:00 00000000H Outbound Message - This is 32-bit message written by the Intel XScale core. When written, an
4853
** interrupt may be generated on the PCI Interrupt pin determined by the ATU Interrupt Pin Register.
4854
**************************************************************************
4855
*/
4856
#define ARCMSR_MU_OUTBOUND_MESSAGE_REG0 0x18 /*dword 0x1B,0x1A,0x19,0x18*/
4857
#define ARCMSR_MU_OUTBOUND_MESSAGE_REG1 0x1C /*dword 0x1F,0x1E,0x1D,0x1C*/
4858
/*
4859
**************************************************************************
4860
** Doorbell Registers
4861
** ==============================
4862
** There are two Doorbell Registers:
4863
** Inbound Doorbell Register
4864
** Outbound Doorbell Register
4865
** The Inbound Doorbell Register allows external PCI agents to generate interrupts to the Intel R XScale core.
4866
** The Outbound Doorbell Register allows the Intel R XScale core to generate a PCI interrupt.
4867
** Both Doorbell Registers may generate interrupts whenever a bit in the register is set.
4868
**
4869
** Inbound Doorbells:
4870
** ------------------
4871
** . When the Inbound Doorbell Register is written by an external PCI agent, an interrupt may be generated to the Intel R XScale core.
4872
** An interrupt is generated when any of the bits in the doorbell register is written to a value of 1.
4873
** Writing a value of 0 to any bit does not change the value of that bit and does not cause an interrupt to be generated.
4874
** . Once a bit is set in the Inbound Doorbell Register, it cannot be cleared by any external PCI agent.
4875
** The interrupt is recorded in the Inbound Interrupt Status Register.
4876
** . The interrupt may be masked by the Inbound Doorbell Interrupt mask bit in the Inbound Interrupt Mask Register.
4877
** When the mask bit is set for a particular bit, no interrupt is generated for that bit.
4878
** The Inbound Interrupt Mask Register affects only the generation of the normal messaging unit interrupt
4879
** and not the values written to the Inbound Doorbell Register.
4880
** One bit in the Inbound Doorbell Register is reserved for an Error Doorbell interrupt.
4881
** . The interrupt is cleared when the Intel R XScale core writes a value of 1 to the bits in the Inbound Doorbell Register that are set.
4882
** Writing a value of 0 to any bit does not change the value of that bit and does not clear the interrupt.
4883
** ------------------------------------------------------------------------
4884
** Inbound Doorbell Register - IDR
4885
**
4886
** . The Inbound Doorbell Register (IDR) is used to generate interrupts to the Intel XScale core.
4887
** . Bit 31 is reserved for generating an Error Doorbell interrupt.
4888
** When bit 31 is set, an Error interrupt may be generated to the Intel XScale core.
4889
** All other bits, when set, cause the Normal Messaging Unit interrupt line of the Intel XScale core to be asserted,
4890
** when the interrupt is not masked by the Inbound Doorbell Interrupt Mask bit in the Inbound Interrupt Mask Register.
4891
** The bits in the IDR register can only be set by an external PCI agent and can only be cleared by the Intel XScale core.
4892
** ------------------------------------------------------------------------
4893
** Bit Default Description
4894
** 31 0 2 Error Interrupt - Generate an Error Interrupt to the Intel XScale core.
4895
** 30:00 00000000H Normal Interrupt - When any bit is set, generate a Normal interrupt to the Intel XScale core.
4896
** When all bits are clear, do not generate a Normal Interrupt.
4897
**************************************************************************
4898
*/
4899
#define ARCMSR_MU_INBOUND_DOORBELL_REG 0x20 /*dword 0x23,0x22,0x21,0x20*/
4900
/*
4901
**************************************************************************
4902
** Inbound Interrupt Status Register - IISR
4903
**
4904
** . The Inbound Interrupt Status Register (IISR) contains hardware interrupt status.
4905
** It records the status of Intel XScale core interrupts generated by the Message Registers, Doorbell Registers, and the Circular Queues.
4906
** All interrupts are routed to the Normal Messaging Unit interrupt input of the Intel XScale core,
4907
** except for the Error Doorbell Interrupt and the Outbound Free Queue Full interrupt;
4908
** these two are routed to the Messaging Unit Error interrupt input.
4909
** The generation of interrupts recorded in the Inbound Interrupt Status Register
4910
** may be masked by setting the corresponding bit in the Inbound Interrupt Mask Register.
4911
** Some of the bits in this register are Read Only.
4912
** For those bits, the interrupt must be cleared through another register.
4913
**
4914
** Bit Default Description
4915
** 31:07 0000000H 0 2 Reserved
4916
** 06 0 2 Index Register Interrupt - This bit is set by the MU hardware
4917
** when an Index Register has been written after a PCI transaction.
4918
** 05 0 2 Outbound Free Queue Full Interrupt - This bit is set
4919
** when the Outbound Free Head Pointer becomes equal to the Tail Pointer and the queue is full.
4920
** An Error interrupt is generated for this condition.
4921
** 04 0 2 Inbound Post Queue Interrupt - This bit is set by the MU hardware when the Inbound Post Queue has been written.
4922
** Once cleared, an interrupt does NOT be generated
4923
** when the head and tail pointers remain unequal (i.e. queue status is Not Empty).
4924
** Therefore, when software leaves any unprocessed messages in the post queue when the interrupt is cleared,
4925
** software must retain the information that the Inbound Post queue status is not empty.
4926
** NOTE: This interrupt is provided with dedicated support in the 80331 Interrupt Controller.
4927
** 03 0 2 Error Doorbell Interrupt - This bit is set when the Error Interrupt of the Inbound Doorbell Register is set.
4928
** To clear this bit (and the interrupt), the Error Interrupt bit of the Inbound Doorbell Register must be clear.
4929
** 02 0 2 Inbound Doorbell Interrupt - This bit is set when at least one
4930
** Normal Interrupt bit in the Inbound Doorbell Register is set.
4931
** To clear this bit (and the interrupt), the Normal Interrupt bits in the Inbound Doorbell Register must all be clear.
4932
** 01 0 2 Inbound Message 1 Interrupt - This bit is set by the MU hardware when the Inbound Message 1 Register has been written.
4933
** 00 0 2 Inbound Message 0 Interrupt - This bit is set by the MU hardware when the Inbound Message 0 Register has been written.
4934
**************************************************************************
4935
*/
4936
#define ARCMSR_MU_INBOUND_INTERRUPT_STATUS_REG 0x24 /*dword 0x27,0x26,0x25,0x24*/
4937
#define ARCMSR_MU_INBOUND_INDEX_INT 0x40
4938
#define ARCMSR_MU_INBOUND_QUEUEFULL_INT 0x20
4939
#define ARCMSR_MU_INBOUND_POSTQUEUE_INT 0x10
4940
#define ARCMSR_MU_INBOUND_ERROR_DOORBELL_INT 0x08
4941
#define ARCMSR_MU_INBOUND_DOORBELL_INT 0x04
4942
#define ARCMSR_MU_INBOUND_MESSAGE1_INT 0x02
4943
#define ARCMSR_MU_INBOUND_MESSAGE0_INT 0x01
4944
/*
4945
**************************************************************************
4946
** Inbound Interrupt Mask Register - IIMR
4947
**
4948
** . The Inbound Interrupt Mask Register (IIMR) provides the ability to mask Intel XScale core interrupts generated by the Messaging Unit.
4949
** Each bit in the Mask register corresponds to an interrupt bit in the Inbound Interrupt Status Register.
4950
** Setting or clearing bits in this register does not affect the Inbound Interrupt Status Register.
4951
** They only affect the generation of the Intel XScale core interrupt.
4952
** ------------------------------------------------------------------------
4953
** Bit Default Description
4954
** 31:07 000000H 0 2 Reserved
4955
** 06 0 2 Index Register Interrupt Mask - When set, this bit masks the interrupt generated by the MU hardware
4956
** when an Index Register has been written after a PCI transaction.
4957
** 05 0 2 Outbound Free Queue Full Interrupt Mask - When set, this bit masks the Error interrupt generated
4958
** when the Outbound Free Head Pointer becomes equal to the Tail Pointer and the queue is full.
4959
** 04 0 2 Inbound Post Queue Interrupt Mask - When set, this bit masks the interrupt generated
4960
** by the MU hardware when the Inbound Post Queue has been written.
4961
** 03 0 2 Error Doorbell Interrupt Mask - When set, this bit masks the Error Interrupt
4962
** when the Error Interrupt bit of the Inbound Doorbell Register is set.
4963
** 02 0 2 Inbound Doorbell Interrupt Mask - When set, this bit masks the interrupt generated
4964
** when at least one Normal Interrupt bit in the Inbound Doorbell Register is set.
4965
** 01 0 2 Inbound Message 1 Interrupt Mask - When set, this bit masks the Inbound Message 1
4966
** Interrupt generated by a write to the Inbound Message 1 Register.
4967
** 00 0 2 Inbound Message 0 Interrupt Mask - When set,
4968
** this bit masks the Inbound Message 0 Interrupt generated by a write to the Inbound Message 0 Register.
4969
**************************************************************************
4970
*/
4971
#define ARCMSR_MU_INBOUND_INTERRUPT_MASK_REG 0x28 /*dword 0x2B,0x2A,0x29,0x28*/
4972
#define ARCMSR_MU_INBOUND_INDEX_INTMASKENABLE 0x40
4973
#define ARCMSR_MU_INBOUND_QUEUEFULL_INTMASKENABLE 0x20
4974
#define ARCMSR_MU_INBOUND_POSTQUEUE_INTMASKENABLE 0x10
4975
#define ARCMSR_MU_INBOUND_DOORBELL_ERROR_INTMASKENABLE 0x08
4976
#define ARCMSR_MU_INBOUND_DOORBELL_INTMASKENABLE 0x04
4977
#define ARCMSR_MU_INBOUND_MESSAGE1_INTMASKENABLE 0x02
4978
#define ARCMSR_MU_INBOUND_MESSAGE0_INTMASKENABLE 0x01
4979
/*
4980
**************************************************************************
4981
** Outbound Doorbell Register - ODR
4982
**
4983
** The Outbound Doorbell Register (ODR) allows software interrupt generation. It allows the Intel
4984
** XScale core to generate PCI interrupts to the host processor by writing to this register. The
4985
** generation of PCI interrupts through the Outbound Doorbell Register may be masked by setting the
4986
** Outbound Doorbell Interrupt Mask bit in the Outbound Interrupt Mask Register.
4987
** The Software Interrupt bits in this register can only be set by the Intel XScale core and can only
4988
** be cleared by an external PCI agent.
4989
** ----------------------------------------------------------------------
4990
** Bit Default Description
4991
** 31 0 2 Reserved
4992
** 30 0 2 Reserved.
4993
** 29 0 2 Reserved
4994
** 28 0000 0000H PCI Interrupt - When set, this bit causes the P_INTC# interrupt output
4995
** (P_INTA# with BRG_EN and ARB_EN straps low)
4996
** signal to be asserted or a Message-signaled Interrupt is generated (when enabled).
4997
** When this bit is cleared, the P_INTC# interrupt output
4998
** (P_INTA# with BRG_EN and ARB_EN straps low)
4999
** signal is deasserted.
5000
** 27:00 000 0000H Software Interrupts - When any bit is set the P_INTC# interrupt output
5001
** (P_INTA# with BRG_EN and ARB_EN straps low)
5002
** signal is asserted or a Message-signaled Interrupt is generated (when enabled).
5003
** When all bits are cleared, the P_INTC# interrupt output (P_INTA# with BRG_EN and ARB_EN straps low)
5004
** signal is deasserted.
5005
**************************************************************************
5006
*/
5007
#define ARCMSR_MU_OUTBOUND_DOORBELL_REG 0x2C /*dword 0x2F,0x2E,0x2D,0x2C*/
5008
/*
5009
**************************************************************************
5010
** Outbound Interrupt Status Register - OISR
5011
**
5012
** The Outbound Interrupt Status Register (OISR) contains hardware interrupt status. It records the
5013
** status of PCI interrupts generated by the Message Registers, Doorbell Registers, and the Circular
5014
** Queues. The generation of PCI interrupts recorded in the Outbound Interrupt Status Register may
5015
** be masked by setting the corresponding bit in the Outbound Interrupt Mask Register. Some of the
5016
** bits in this register are Read Only. For those bits, the interrupt must be cleared through another
5017
** register.
5018
** ----------------------------------------------------------------------
5019
** Bit Default Description
5020
** 31:05 000000H 000 2 Reserved
5021
** 04 0 2 PCI Interrupt - This bit is set when the PCI Interrupt bit (bit 28) is set in the Outbound Doorbell Register.
5022
** To clear this bit (and the interrupt), the PCI Interrupt bit must be cleared.
5023
** 03 0 2 Outbound Post Queue Interrupt - This bit is set when data in the prefetch buffer is valid. This bit is
5024
** cleared when any prefetch data has been read from the Outbound Queue Port.
5025
** 02 0 2 Outbound Doorbell Interrupt - This bit is set when at least one Software Interrupt bit in the Outbound
5026
** Doorbell Register is set. To clear this bit (and the interrupt), the Software Interrupt bits in the Outbound
5027
** Doorbell Register must all be clear.
5028
** 01 0 2 Outbound Message 1 Interrupt - This bit is set by the MU when the Outbound Message 1 Register is
5029
** written. Clearing this bit clears the interrupt.
5030
** 00 0 2 Outbound Message 0 Interrupt - This bit is set by the MU when the Outbound Message 0 Register is
5031
** written. Clearing this bit clears the interrupt.
5032
**************************************************************************
5033
*/
5034
#define ARCMSR_MU_OUTBOUND_INTERRUPT_STATUS_REG 0x30 /*dword 0x33,0x32,0x31,0x30*/
5035
#define ARCMSR_MU_OUTBOUND_PCI_INT 0x10
5036
#define ARCMSR_MU_OUTBOUND_POSTQUEUE_INT 0x08
5037
#define ARCMSR_MU_OUTBOUND_DOORBELL_INT 0x04
5038
#define ARCMSR_MU_OUTBOUND_MESSAGE1_INT 0x02
5039
#define ARCMSR_MU_OUTBOUND_MESSAGE0_INT 0x01
5040
/*
5041
**************************************************************************
5042
** Outbound Interrupt Mask Register - OIMR
5043
** The Outbound Interrupt Mask Register (OIMR) provides the ability to mask outbound PCI
5044
** interrupts generated by the Messaging Unit. Each bit in the mask register corresponds to a
5045
** hardware interrupt bit in the Outbound Interrupt Status Register. When the bit is set, the PCI
5046
** interrupt is not generated. When the bit is clear, the interrupt is allowed to be generated.
5047
** Setting or clearing bits in this register does not affect the Outbound Interrupt Status Register. They
5048
** only affect the generation of the PCI interrupt.
5049
** ----------------------------------------------------------------------
5050
** Bit Default Description
5051
** 31:05 000000H Reserved
5052
** 04 0 2 PCI Interrupt Mask - When set, this bit masks the interrupt generation when the PCI Interrupt bit (bit 28)
5053
** in the Outbound Doorbell Register is set.
5054
** 03 0 2 Outbound Post Queue Interrupt Mask - When set, this bit masks the interrupt generated when data in
5055
** the prefetch buffer is valid.
5056
** 02 0 2 Outbound Doorbell Interrupt Mask - When set, this bit masks the interrupt generated by the Outbound
5057
** Doorbell Register.
5058
** 01 0 2 Outbound Message 1 Interrupt Mask - When set, this bit masks the Outbound Message 1 Interrupt
5059
** generated by a write to the Outbound Message 1 Register.
5060
** 00 0 2 Outbound Message 0 Interrupt Mask- When set, this bit masks the Outbound Message 0 Interrupt
5061
** generated by a write to the Outbound Message 0 Register.
5062
**************************************************************************
5063
*/
5064
#define ARCMSR_MU_OUTBOUND_INTERRUPT_MASK_REG 0x34 /*dword 0x37,0x36,0x35,0x34*/
5065
#define ARCMSR_MU_OUTBOUND_PCI_INTMASKENABLE 0x10
5066
#define ARCMSR_MU_OUTBOUND_POSTQUEUE_INTMASKENABLE 0x08
5067
#define ARCMSR_MU_OUTBOUND_DOORBELL_INTMASKENABLE 0x04
5068
#define ARCMSR_MU_OUTBOUND_MESSAGE1_INTMASKENABLE 0x02
5069
#define ARCMSR_MU_OUTBOUND_MESSAGE0_INTMASKENABLE 0x01
5070
#define ARCMSR_MU_OUTBOUND_ALL_INTMASKENABLE 0x1F
5071
/*
5072
**************************************************************************
5073
**
5074
**************************************************************************
5075
*/
5076
#define ARCMSR_MU_INBOUND_QUEUE_PORT_REG 0x40 /*dword 0x43,0x42,0x41,0x40*/
5077
#define ARCMSR_MU_OUTBOUND_QUEUE_PORT_REG 0x44 /*dword 0x47,0x46,0x45,0x44*/
5078
/*
5079
**************************************************************************
5080
** Circular Queues
5081
** ======================================================================
5082
** The MU implements four circular queues. There are 2 inbound queues and 2 outbound queues. In
5083
** this case, inbound and outbound refer to the direction of the flow of posted messages.
5084
** Inbound messages are either:
5085
** �E posted messages by other processors for the Intel XScale core to process or
5086
** �E free (or empty) messages that can be reused by other processors.
5087
** Outbound messages are either:
5088
** �E posted messages by the Intel XScale core for other processors to process or
5089
** �E free (or empty) messages that can be reused by the Intel XScale core.
5090
** Therefore, free inbound messages flow away from the 80331 and free outbound messages flow toward the 80331.
5091
** The four Circular Queues are used to pass messages in the following manner.
5092
** . The two inbound queues are used to handle inbound messages
5093
** and the two outbound queues are used to handle outbound messages.
5094
** . One of the inbound queues is designated the Free queue and it contains inbound free messages.
5095
** The other inbound queue is designated the Post queue and it contains inbound posted messages.
5096
** Similarly, one of the outbound queues is designated the Free queue and the other outbound queue is designated the Post queue.
5097
**
5098
** =============================================================================================================
5099
** Circular Queue Summary
5100
** _____________________________________________________________________________________________________________
5101
** | Queue Name | Purpose | Action on PCI Interface|
5102
** |______________________|____________________________________________________________|_________________________|
5103
** |Inbound Post Queue | Queue for inbound messages from other processors | Written |
5104
** | | waiting to be processed by the 80331 | |
5105
** |Inbound Free Queue | Queue for empty inbound messages from the 80331 | Read |
5106
** | | available for use by other processors | |
5107
** |Outbound Post Queue | Queue for outbound messages from the 80331 | Read |
5108
** | | that are being posted to the other processors | |
5109
** |Outbound Free Queue | Queue for empty outbound messages from other processors | Written |
5110
** | | available for use by the 80331 | |
5111
** |______________________|____________________________________________________________|_________________________|
5112
**
5113
** . The two inbound queues allow the host processor to post inbound messages for the 80331 in one
5114
** queue and to receive free messages returning from the 80331.
5115
** The host processor posts inbound messages,
5116
** the Intel XScale core receives the posted message and when it is finished with the message,
5117
** places it back on the inbound free queue for reuse by the host processor.
5118
**
5119
** The circular queues are accessed by external PCI agents through two port locations in the PCI
5120
** address space:
5121
** Inbound Queue Port
5122
** and Outbound Queue Port.
5123
** The Inbound Queue Port is used by external PCI agents to read the Inbound Free Queue and write the Inbound Post Queue.
5124
** The Outbound Queue Port is used by external PCI agents to read the Outbound Post Queue and write the Outbound Free Queue.
5125
** Note that a PCI transaction to the inbound or outbound queue ports with null byte enables (P_C/BE[3:0]#=1111 2 )
5126
** does not cause the MU hardware to increment the queue pointers.
5127
** This is treated as when the PCI transaction did not occur.
5128
** The Inbound and Outbound Queue Ports never respond with P_ACK64# on the PCI interface.
5129
** ======================================================================================
5130
** Overview of Circular Queue Operation
5131
** ======================================================================================
5132
** . The data storage for the circular queues must be provided by the 80331 local memory.
5133
** . The base address of the circular queues is contained in the Queue Base Address Register.
5134
** Each entry in the queue is a 32-bit data value.
5135
** . Each read from or write to the queue may access only one queue entry.
5136
** . Multi-DWORD accesses to the circular queues are not allowed.
5137
** Sub-DWORD accesses are promoted to DWORD accesses.
5138
** . Each circular queue has a head pointer and a tail pointer.
5139
** The pointers are offsets from the Queue Base Address.
5140
** . Writes to a queue occur at the head of the queue and reads occur from the tail.
5141
** The head and tail pointers are incremented by either the Intel XScale core or the Messaging Unit hardware.
5142
** Which unit maintains the pointer is determined by the writer of the queue.
5143
** More details about the pointers are given in the queue descriptions below.
5144
** The pointers are incremented after the queue access.
5145
** Both pointers wrap around to the first address of the circular queue when they reach the circular queue size.
5146
**
5147
** Messaging Unit...
5148
**
5149
** The Messaging Unit generates an interrupt to the Intel XScale core or generate a PCI interrupt under certain conditions.
5150
** . In general, when a Post queue is written, an interrupt is generated to notify the receiver that a message was posted.
5151
** The size of each circular queue can range from 4K entries (16 Kbytes) to 64K entries (256 Kbytes).
5152
** . All four queues must be the same size and may be contiguous.
5153
** Therefore, the total amount of local memory needed by the circular queues ranges from 64 Kbytes to 1 Mbytes.
5154
** The Queue size is determined by the Queue Size field in the MU Configuration Register.
5155
** . There is one base address for all four queues.
5156
** It is stored in the Queue Base Address Register (QBAR).
5157
** The starting addresses of each queue is based on the Queue Base Address and the Queue Size field.
5158
** here shows an example of how the circular queues should be set up based on the
5159
** Intelligent I/O (I 2 O) Architecture Specification.
5160
** Other ordering of the circular queues is possible.
5161
**
5162
** Queue Starting Address
5163
** Inbound Free Queue QBAR
5164
** Inbound Post Queue QBAR + Queue Size
5165
** Outbound Post Queue QBAR + 2 * Queue Size
5166
** Outbound Free Queue QBAR + 3 * Queue Size
5167
** ===================================================================================
5168
** Inbound Post Queue
5169
** ------------------
5170
** The Inbound Post Queue holds posted messages placed there by other processors for the Intel XScale core to process.
5171
** This queue is read from the queue tail by the Intel XScale core. It is written to the queue head by external PCI agents.
5172
** The tail pointer is maintained by the Intel XScale core. The head pointer is maintained by the MU hardware.
5173
** For a PCI write transaction that accesses the Inbound Queue Port,
5174
** the MU writes the data to the local memory location address in the Inbound Post Head Pointer Register.
5175
** When the data written to the Inbound Queue Port is written to local memory, the MU hardware increments the Inbound Post Head Pointer Register.
5176
** An Intel XScale core interrupt may be generated when the Inbound Post Queue is written.
5177
** The Inbound Post Queue Interrupt bit in the Inbound Interrupt Status Register indicates the interrupt status.
5178
** The interrupt is cleared when the Inbound Post Queue Interrupt bit is cleared.
5179
** The interrupt can be masked by the Inbound Interrupt Mask Register.
5180
** Software must be aware of the state of the Inbound Post Queue Interrupt Mask bit to guarantee
5181
** that the full condition is recognized by the core processor.
5182
** In addition, to guarantee that the queue does not get overwritten,
5183
** software must process messages from the tail of the queue before incrementing the tail pointer and clearing this interrupt.
5184
** Once cleared, an interrupt is NOT generated when the head and tail pointers remain unequal (i.e. queue status is Not Empty).
5185
** Only a new message posting the in the inbound queue generates a new interrupt.
5186
** Therefore, when software leaves any unprocessed messages in the post queue when the interrupt is cleared,
5187
** software must retain the information that the Inbound Post queue status.
5188
** From the time that the PCI write transaction is received until the data is written
5189
** in local memory and the Inbound Post Head Pointer Register is incremented,
5190
** any PCI transaction that attempts to access the Inbound Post Queue Port is signalled a Retry.
5191
** The Intel XScale core may read messages from the Inbound Post Queue
5192
** by reading the data from the local memory location pointed to by the Inbound Post Tail Pointer Register.
5193
** The Intel XScale core must then increment the Inbound Post Tail Pointer Register.
5194
** When the Inbound Post Queue is full (head and tail pointers are equal and the head pointer was last updated by hardware),
5195
** the hardware retries any PCI writes until a slot in the queue becomes available.
5196
** A slot in the post queue becomes available by the Intel XScale core incrementing the tail pointer.
5197
** ===================================================================================
5198
** Inbound Free Queue
5199
** ------------------
5200
** The Inbound Free Queue holds free inbound messages placed there by the Intel XScale core for other processors to use.
5201
** This queue is read from the queue tail by external PCI agents.
5202
** It is written to the queue head by the Intel XScale core.
5203
** The tail pointer is maintained by the MU hardware.
5204
** The head pointer is maintained by the Intel XScale core.
5205
** For a PCI read transaction that accesses the Inbound Queue Port,
5206
** the MU attempts to read the data at the local memory address in the Inbound Free Tail Pointer.
5207
** When the queue is not empty (head and tail pointers are not equal)
5208
** or full (head and tail pointers are equal but the head pointer was last written by software), the data is returned.
5209
** When the queue is empty (head and tail pointers are equal and the head pointer was last updated by hardware),
5210
** the value of -1 (FFFF.FFFFH) is returned.
5211
** When the queue was not empty and the MU succeeded in returning the data at the tail,
5212
** the MU hardware must increment the value in the Inbound Free Tail Pointer Register.
5213
** To reduce latency for the PCI read access, the MU implements a prefetch mechanism to anticipate accesses to the Inbound Free Queue.
5214
** The MU hardware prefetches the data at the tail of the Inbound Free Queue and load it into an internal prefetch register.
5215
** When the PCI read access occurs, the data is read directly from the prefetch register.
5216
** The prefetch mechanism loads a value of -1 (FFFF.FFFFH) into the prefetch register
5217
** when the head and tail pointers are equal and the queue is empty.
5218
** In order to update the prefetch register when messages are added to the queue and it becomes non-empty,
5219
** the prefetch mechanism automatically starts a prefetch when the prefetch register contains FFFF.FFFFH
5220
** and the Inbound Free Head Pointer Register is written.
5221
** The Intel XScale core needs to update the Inbound Free Head Pointer Register when it adds messages to the queue.
5222
** A prefetch must appear atomic from the perspective of the external PCI agent.
5223
** When a prefetch is started, any PCI transaction that attempts to access the Inbound Free Queue is signalled a Retry until the prefetch is completed.
5224
** The Intel XScale core may place messages in the Inbound Free Queue by writing the data to the
5225
** local memory location pointed to by the Inbound Free Head Pointer Register.
5226
** The processor must then increment the Inbound Free Head Pointer Register.
5227
** ==================================================================================
5228
** Outbound Post Queue
5229
** -------------------
5230
** The Outbound Post Queue holds outbound posted messages placed there by the Intel XScale
5231
** core for other processors to process. This queue is read from the queue tail by external PCI agents.
5232
** It is written to the queue head by the Intel XScale core. The tail pointer is maintained by the
5233
** MU hardware. The head pointer is maintained by the Intel XScale core.
5234
** For a PCI read transaction that accesses the Outbound Queue Port, the MU attempts to read the
5235
** data at the local memory address in the Outbound Post Tail Pointer Register. When the queue is not
5236
** empty (head and tail pointers are not equal) or full (head and tail pointers are equal but the head
5237
** pointer was last written by software), the data is returned. When the queue is empty (head and tail
5238
** pointers are equal and the head pointer was last updated by hardware), the value of -1
5239
** (FFFF.FFFFH) is returned. When the queue was not empty and the MU succeeded in returning the
5240
** data at the tail, the MU hardware must increment the value in the Outbound Post Tail Pointer
5241
** Register.
5242
** To reduce latency for the PCI read access, the MU implements a prefetch mechanism to anticipate
5243
** accesses to the Outbound Post Queue. The MU hardware prefetches the data at the tail of the
5244
** Outbound Post Queue and load it into an internal prefetch register. When the PCI read access
5245
** occurs, the data is read directly from the prefetch register.
5246
** The prefetch mechanism loads a value of -1 (FFFF.FFFFH) into the prefetch register when the head
5247
** and tail pointers are equal and the queue is empty. In order to update the prefetch register when
5248
** messages are added to the queue and it becomes non-empty, the prefetch mechanism automatically
5249
** starts a prefetch when the prefetch register contains FFFF.FFFFH and the Outbound Post Head
5250
** Pointer Register is written. The Intel XScale core needs to update the Outbound Post Head
5251
** Pointer Register when it adds messages to the queue.
5252
** A prefetch must appear atomic from the perspective of the external PCI agent. When a prefetch is
5253
** started, any PCI transaction that attempts to access the Outbound Post Queue is signalled a Retry
5254
** until the prefetch is completed.
5255
** A PCI interrupt may be generated when data in the prefetch buffer is valid. When the prefetch
5256
** queue is clear, no interrupt is generated. The Outbound Post Queue Interrupt bit in the Outbound
5257
** Interrupt Status Register shall indicate the status of the prefetch buffer data and therefore the
5258
** interrupt status. The interrupt is cleared when any prefetched data has been read from the Outbound
5259
** Queue Port. The interrupt can be masked by the Outbound Interrupt Mask Register.
5260
** The Intel XScale core may place messages in the Outbound Post Queue by writing the data to
5261
** the local memory address in the Outbound Post Head Pointer Register. The processor must then
5262
** increment the Outbound Post Head Pointer Register.
5263
** ==================================================
5264
** Outbound Free Queue
5265
** -----------------------
5266
** The Outbound Free Queue holds free messages placed there by other processors for the Intel
5267
** XScale core to use. This queue is read from the queue tail by the Intel XScale core. It is
5268
** written to the queue head by external PCI agents. The tail pointer is maintained by the Intel
5269
** XScale core. The head pointer is maintained by the MU hardware.
5270
** For a PCI write transaction that accesses the Outbound Queue Port, the MU writes the data to the
5271
** local memory address in the Outbound Free Head Pointer Register. When the data written to the
5272
** Outbound Queue Port is written to local memory, the MU hardware increments the Outbound Free
5273
** Head Pointer Register.
5274
** When the head pointer and the tail pointer become equal and the queue is full, the MU may signal
5275
** an interrupt to the Intel XScale core to register the queue full condition. This interrupt is
5276
** recorded in the Inbound Interrupt Status Register. The interrupt is cleared when the Outbound Free
5277
** Queue Full Interrupt bit is cleared and not by writing to the head or tail pointers. The interrupt can
5278
** be masked by the Inbound Interrupt Mask Register. Software must be aware of the state of the
5279
** Outbound Free Queue Interrupt Mask bit to guarantee that the full condition is recognized by the
5280
** core processor.
5281
** From the time that a PCI write transaction is received until the data is written in local memory and
5282
** the Outbound Free Head Pointer Register is incremented, any PCI transaction that attempts to
5283
** access the Outbound Free Queue Port is signalled a retry.
5284
** The Intel XScale core may read messages from the Outbound Free Queue by reading the data
5285
** from the local memory address in the Outbound Free Tail Pointer Register. The processor must
5286
** then increment the Outbound Free Tail Pointer Register. When the Outbound Free Queue is full,
5287
** the hardware must retry any PCI writes until a slot in the queue becomes available.
5288
**
5289
** ==================================================================================
5290
** Circular Queue Summary
5291
** ----------------------
5292
** ________________________________________________________________________________________________________________________________________________
5293
** | Queue Name | PCI Port |Generate PCI Interrupt |Generate Intel Xscale Core Interrupt|Head Pointer maintained by|Tail Pointer maintained by|
5294
** |_____________|_______________|_______________________|____________________________________|__________________________|__________________________|
5295
** |Inbound Post | Inbound Queue | | | | |
5296
** | Queue | Port | NO | Yes, when queue is written | MU hardware | Intel XScale |
5297
** |_____________|_______________|_______________________|____________________________________|__________________________|__________________________|
5298
** |Inbound Free | Inbound Queue | | | | |
5299
** | Queue | Port | NO | NO | Intel XScale | MU hardware |
5300
** |_____________|_______________|_______________________|____________________________________|__________________________|__________________________|
5301
** ==================================================================================
5302
** Circular Queue Status Summary
5303
** ----------------------
5304
** ____________________________________________________________________________________________________
5305
** | Queue Name | Queue Status | Head & Tail Pointer | Last Pointer Update |
5306
** |_____________________|________________|_____________________|_______________________________________|
5307
** | Inbound Post Queue | Empty | Equal | Tail pointer last updated by software |
5308
** |_____________________|________________|_____________________|_______________________________________|
5309
** | Inbound Free Queue | Empty | Equal | Head pointer last updated by hardware |
5310
** |_____________________|________________|_____________________|_______________________________________|
5311
**************************************************************************
5312
*/
5313
5314
/*
5315
**************************************************************************
5316
** Index Registers
5317
** ========================
5318
** . The Index Registers are a set of 1004 registers that when written by an external PCI agent can generate an interrupt to the Intel XScale core.
5319
** These registers are for inbound messages only.
5320
** The interrupt is recorded in the Inbound Interrupt Status Register.
5321
** The storage for the Index Registers is allocated from the 80331 local memory.
5322
** PCI write accesses to the Index Registers write the data to local memory.
5323
** PCI read accesses to the Index Registers read the data from local memory.
5324
** . The local memory used for the Index Registers ranges from Inbound ATU Translate Value Register + 050H
5325
** to Inbound ATU Translate Value Register + FFFH.
5326
** . The address of the first write access is stored in the Index Address Register.
5327
** This register is written during the earliest write access and provides a means to determine which Index Register was written.
5328
** Once updated by the MU, the Index Address Register is not updated until the Index Register
5329
** Interrupt bit in the Inbound Interrupt Status Register is cleared.
5330
** . When the interrupt is cleared, the Index Address Register is re-enabled and stores the address of the next Index Register write access.
5331
** Writes by the Intel XScale core to the local memory used by the Index Registers
5332
** does not cause an interrupt and does not update the Index Address Register.
5333
** . The index registers can be accessed with Multi-DWORD reads and single QWORD aligned writes.
5334
**************************************************************************
5335
*/
5336
/*
5337
**************************************************************************
5338
** Messaging Unit Internal Bus Memory Map
5339
** =======================================
5340
** Internal Bus Address___Register Description (Name)____________________|_PCI Configuration Space Register Number_
5341
** FFFF E300H reserved |
5342
** .. .. |
5343
** FFFF E30CH reserved |
5344
** FFFF E310H Inbound Message Register 0 | Available through
5345
** FFFF E314H Inbound Message Register 1 | ATU Inbound Translation Window
5346
** FFFF E318H Outbound Message Register 0 |
5347
** FFFF E31CH Outbound Message Register 1 | or
5348
** FFFF E320H Inbound Doorbell Register |
5349
** FFFF E324H Inbound Interrupt Status Register | must translate PCI address to
5350
** FFFF E328H Inbound Interrupt Mask Register | the Intel Xscale Core
5351
** FFFF E32CH Outbound Doorbell Register | Memory-Mapped Address
5352
** FFFF E330H Outbound Interrupt Status Register |
5353
** FFFF E334H Outbound Interrupt Mask Register |
5354
** ______________________________________________________________________|________________________________________
5355
** FFFF E338H reserved |
5356
** FFFF E33CH reserved |
5357
** FFFF E340H reserved |
5358
** FFFF E344H reserved |
5359
** FFFF E348H reserved |
5360
** FFFF E34CH reserved |
5361
** FFFF E350H MU Configuration Register |
5362
** FFFF E354H Queue Base Address Register |
5363
** FFFF E358H reserved |
5364
** FFFF E35CH reserved | must translate PCI address to
5365
** FFFF E360H Inbound Free Head Pointer Register | the Intel Xscale Core
5366
** FFFF E364H Inbound Free Tail Pointer Register | Memory-Mapped Address
5367
** FFFF E368H Inbound Post Head pointer Register |
5368
** FFFF E36CH Inbound Post Tail Pointer Register |
5369
** FFFF E370H Outbound Free Head Pointer Register |
5370
** FFFF E374H Outbound Free Tail Pointer Register |
5371
** FFFF E378H Outbound Post Head pointer Register |
5372
** FFFF E37CH Outbound Post Tail Pointer Register |
5373
** FFFF E380H Index Address Register |
5374
** FFFF E384H reserved |
5375
** .. .. |
5376
** FFFF E3FCH reserved |
5377
** ______________________________________________________________________|_______________________________________
5378
**************************************************************************
5379
*/
5380
/*
5381
**************************************************************************
5382
** MU Configuration Register - MUCR FFFF.E350H
5383
**
5384
** . The MU Configuration Register (MUCR) contains the Circular Queue Enable bit and the size of one Circular Queue.
5385
** . The Circular Queue Enable bit enables or disables the Circular Queues.
5386
** The Circular Queues are disabled at reset to allow the software to initialize the head
5387
** and tail pointer registers before any PCI accesses to the Queue Ports.
5388
** . Each Circular Queue may range from 4 K entries (16 Kbytes) to 64 K entries (256 Kbytes) and there are four Circular Queues.
5389
** ------------------------------------------------------------------------
5390
** Bit Default Description
5391
** 31:06 000000H 00 2 Reserved
5392
** 05:01 00001 2 Circular Queue Size - This field determines the size of each Circular Queue.
5393
** All four queues are the same size.
5394
** �E 00001 2 - 4K Entries (16 Kbytes)
5395
** �E 00010 2 - 8K Entries (32 Kbytes)
5396
** �E 00100 2 - 16K Entries (64 Kbytes)
5397
** �E 01000 2 - 32K Entries (128 Kbytes)
5398
** �E 10000 2 - 64K Entries (256 Kbytes)
5399
** 00 0 2 Circular Queue Enable - This bit enables or disables the Circular Queues. When clear the Circular
5400
** Queues are disabled, however the MU accepts PCI accesses to the Circular Queue Ports but ignores
5401
** the data for Writes and return FFFF.FFFFH for Reads. Interrupts are not generated to the core when
5402
** disabled. When set, the Circular Queues are fully enabled.
5403
**************************************************************************
5404
*/
5405
#define ARCMSR_MU_CONFIGURATION_REG 0xFFFFE350
5406
#define ARCMSR_MU_CIRCULAR_QUEUE_SIZE64K 0x0020
5407
#define ARCMSR_MU_CIRCULAR_QUEUE_SIZE32K 0x0010
5408
#define ARCMSR_MU_CIRCULAR_QUEUE_SIZE16K 0x0008
5409
#define ARCMSR_MU_CIRCULAR_QUEUE_SIZE8K 0x0004
5410
#define ARCMSR_MU_CIRCULAR_QUEUE_SIZE4K 0x0002
5411
#define ARCMSR_MU_CIRCULAR_QUEUE_ENABLE 0x0001 /*0:disable 1:enable*/
5412
/*
5413
**************************************************************************
5414
** Queue Base Address Register - QBAR
5415
**
5416
** . The Queue Base Address Register (QBAR) contains the local memory address of the Circular Queues.
5417
** The base address is required to be located on a 1 Mbyte address boundary.
5418
** . All Circular Queue head and tail pointers are based on the QBAR.
5419
** When the head and tail pointer registers are read, the Queue Base Address is returned in the upper 12 bits.
5420
** Writing to the upper 12 bits of the head and tail pointer registers does not affect the Queue Base Address or Queue Base Address Register.
5421
** Warning:
5422
** The QBAR must designate a range allocated to the 80331 DDR SDRAM interface
5423
** ------------------------------------------------------------------------
5424
** Bit Default Description
5425
** 31:20 000H Queue Base Address - Local memory address of the circular queues.
5426
** 19:00 00000H Reserved
5427
**************************************************************************
5428
*/
5429
#define ARCMSR_MU_QUEUE_BASE_ADDRESS_REG 0xFFFFE354
5430
/*
5431
**************************************************************************
5432
** Inbound Free Head Pointer Register - IFHPR
5433
**
5434
** . The Inbound Free Head Pointer Register (IFHPR) contains the local memory offset from
5435
** the Queue Base Address of the head pointer for the Inbound Free Queue.
5436
** The Head Pointer must be aligned on a DWORD address boundary.
5437
** When read, the Queue Base Address is provided in the upper 12 bits of the register.
5438
** Writes to the upper 12 bits of the register are ignored.
5439
** This register is maintained by software.
5440
** ------------------------------------------------------------------------
5441
** Bit Default Description
5442
** 31:20 000H Queue Base Address - Local memory address of the circular queues.
5443
** 19:02 0000H 00 2 Inbound Free Head Pointer - Local memory offset of the head pointer for the Inbound Free Queue.
5444
** 01:00 00 2 Reserved
5445
**************************************************************************
5446
*/
5447
#define ARCMSR_MU_INBOUND_FREE_HEAD_PTR_REG 0xFFFFE360
5448
/*
5449
**************************************************************************
5450
** Inbound Free Tail Pointer Register - IFTPR
5451
**
5452
** . The Inbound Free Tail Pointer Register (IFTPR) contains the local memory offset from the Queue
5453
** Base Address of the tail pointer for the Inbound Free Queue. The Tail Pointer must be aligned on a
5454
** DWORD address boundary. When read, the Queue Base Address is provided in the upper 12 bits
5455
** of the register. Writes to the upper 12 bits of the register are ignored.
5456
** ------------------------------------------------------------------------
5457
** Bit Default Description
5458
** 31:20 000H Queue Base Address - Local memory address of the circular queues.
5459
** 19:02 0000H 00 2 Inbound Free Tail Pointer - Local memory offset of the tail pointer for the Inbound Free Queue.
5460
** 01:00 00 2 Reserved
5461
**************************************************************************
5462
*/
5463
#define ARCMSR_MU_INBOUND_FREE_TAIL_PTR_REG 0xFFFFE364
5464
/*
5465
**************************************************************************
5466
** Inbound Post Head Pointer Register - IPHPR
5467
**
5468
** . The Inbound Post Head Pointer Register (IPHPR) contains the local memory offset from the Queue
5469
** Base Address of the head pointer for the Inbound Post Queue. The Head Pointer must be aligned on
5470
** a DWORD address boundary. When read, the Queue Base Address is provided in the upper 12 bits
5471
** of the register. Writes to the upper 12 bits of the register are ignored.
5472
** ------------------------------------------------------------------------
5473
** Bit Default Description
5474
** 31:20 000H Queue Base Address - Local memory address of the circular queues.
5475
** 19:02 0000H 00 2 Inbound Post Head Pointer - Local memory offset of the head pointer for the Inbound Post Queue.
5476
** 01:00 00 2 Reserved
5477
**************************************************************************
5478
*/
5479
#define ARCMSR_MU_INBOUND_POST_HEAD_PTR_REG 0xFFFFE368
5480
/*
5481
**************************************************************************
5482
** Inbound Post Tail Pointer Register - IPTPR
5483
**
5484
** . The Inbound Post Tail Pointer Register (IPTPR) contains the local memory offset from the Queue
5485
** Base Address of the tail pointer for the Inbound Post Queue. The Tail Pointer must be aligned on a
5486
** DWORD address boundary. When read, the Queue Base Address is provided in the upper 12 bits
5487
** of the register. Writes to the upper 12 bits of the register are ignored.
5488
** ------------------------------------------------------------------------
5489
** Bit Default Description
5490
** 31:20 000H Queue Base Address - Local memory address of the circular queues.
5491
** 19:02 0000H 00 2 Inbound Post Tail Pointer - Local memory offset of the tail pointer for the Inbound Post Queue.
5492
** 01:00 00 2 Reserved
5493
**************************************************************************
5494
*/
5495
#define ARCMSR_MU_INBOUND_POST_TAIL_PTR_REG 0xFFFFE36C
5496
/*
5497
**************************************************************************
5498
** Index Address Register - IAR
5499
**
5500
** . The Index Address Register (IAR) contains the offset of the least recently accessed Index Register.
5501
** It is written by the MU when the Index Registers are written by a PCI agent.
5502
** The register is not updated until the Index Interrupt bit in the Inbound Interrupt Status Register is cleared.
5503
** . The local memory address of the Index Register least recently accessed is computed
5504
** by adding the Index Address Register to the Inbound ATU Translate Value Register.
5505
** ------------------------------------------------------------------------
5506
** Bit Default Description
5507
** 31:12 000000H Reserved
5508
** 11:02 00H 00 2 Index Address - is the local memory offset of the Index Register written (050H to FFCH)
5509
** 01:00 00 2 Reserved
5510
**************************************************************************
5511
*/
5512
#define ARCMSR_MU_LOCAL_MEMORY_INDEX_REG 0xFFFFE380 /*1004 dwords 0x0050....0x0FFC, 4016 bytes 0x0050...0x0FFF*/
5513
/*
5514
**********************************************************************************************************
5515
** RS-232 Interface for Areca Raid Controller
5516
** The low level command interface is exclusive with VT100 terminal
5517
** --------------------------------------------------------------------
5518
** 1. Sequence of command execution
5519
** --------------------------------------------------------------------
5520
** (A) Header : 3 bytes sequence (0x5E, 0x01, 0x61)
5521
** (B) Command block : variable length of data including length, command code, data and checksum byte
5522
** (C) Return data : variable length of data
5523
** --------------------------------------------------------------------
5524
** 2. Command block
5525
** --------------------------------------------------------------------
5526
** (A) 1st byte : command block length (low byte)
5527
** (B) 2nd byte : command block length (high byte)
5528
** note ..command block length shouldn't > 2040 bytes, length excludes these two bytes
5529
** (C) 3rd byte : command code
5530
** (D) 4th and following bytes : variable length data bytes depends on command code
5531
** (E) last byte : checksum byte (sum of 1st byte until last data byte)
5532
** --------------------------------------------------------------------
5533
** 3. Command code and associated data
5534
** --------------------------------------------------------------------
5535
** The following are command code defined in raid controller Command code 0x10--0x1? are used for system level management,
5536
** no password checking is needed and should be implemented in separate well controlled utility and not for end user access.
5537
** Command code 0x20--0x?? always check the password, password must be entered to enable these command.
5538
** enum
5539
** {
5540
** GUI_SET_SERIAL=0x10,
5541
** GUI_SET_VENDOR,
5542
** GUI_SET_MODEL,
5543
** GUI_IDENTIFY,
5544
** GUI_CHECK_PASSWORD,
5545
** GUI_LOGOUT,
5546
** GUI_HTTP,
5547
** GUI_SET_ETHERNET_ADDR,
5548
** GUI_SET_LOGO,
5549
** GUI_POLL_EVENT,
5550
** GUI_GET_EVENT,
5551
** GUI_GET_HW_MONITOR,
5552
**
5553
** // GUI_QUICK_CREATE=0x20, (function removed)
5554
** GUI_GET_INFO_R=0x20,
5555
** GUI_GET_INFO_V,
5556
** GUI_GET_INFO_P,
5557
** GUI_GET_INFO_S,
5558
** GUI_CLEAR_EVENT,
5559
**
5560
** GUI_MUTE_BEEPER=0x30,
5561
** GUI_BEEPER_SETTING,
5562
** GUI_SET_PASSWORD,
5563
** GUI_HOST_INTERFACE_MODE,
5564
** GUI_REBUILD_PRIORITY,
5565
** GUI_MAX_ATA_MODE,
5566
** GUI_RESET_CONTROLLER,
5567
** GUI_COM_PORT_SETTING,
5568
** GUI_NO_OPERATION,
5569
** GUI_DHCP_IP,
5570
**
5571
** GUI_CREATE_PASS_THROUGH=0x40,
5572
** GUI_MODIFY_PASS_THROUGH,
5573
** GUI_DELETE_PASS_THROUGH,
5574
** GUI_IDENTIFY_DEVICE,
5575
**
5576
** GUI_CREATE_RAIDSET=0x50,
5577
** GUI_DELETE_RAIDSET,
5578
** GUI_EXPAND_RAIDSET,
5579
** GUI_ACTIVATE_RAIDSET,
5580
** GUI_CREATE_HOT_SPARE,
5581
** GUI_DELETE_HOT_SPARE,
5582
**
5583
** GUI_CREATE_VOLUME=0x60,
5584
** GUI_MODIFY_VOLUME,
5585
** GUI_DELETE_VOLUME,
5586
** GUI_START_CHECK_VOLUME,
5587
** GUI_STOP_CHECK_VOLUME
5588
** };
5589
**
5590
** Command description :
5591
**
5592
** GUI_SET_SERIAL : Set the controller serial#
5593
** byte 0,1 : length
5594
** byte 2 : command code 0x10
5595
** byte 3 : password length (should be 0x0f)
5596
** byte 4-0x13 : should be "ArEcATecHnoLogY"
5597
** byte 0x14--0x23 : Serial number string (must be 16 bytes)
5598
** GUI_SET_VENDOR : Set vendor string for the controller
5599
** byte 0,1 : length
5600
** byte 2 : command code 0x11
5601
** byte 3 : password length (should be 0x08)
5602
** byte 4-0x13 : should be "ArEcAvAr"
5603
** byte 0x14--0x3B : vendor string (must be 40 bytes)
5604
** GUI_SET_MODEL : Set the model name of the controller
5605
** byte 0,1 : length
5606
** byte 2 : command code 0x12
5607
** byte 3 : password length (should be 0x08)
5608
** byte 4-0x13 : should be "ArEcAvAr"
5609
** byte 0x14--0x1B : model string (must be 8 bytes)
5610
** GUI_IDENTIFY : Identify device
5611
** byte 0,1 : length
5612
** byte 2 : command code 0x13
5613
** return "Areca RAID Subsystem "
5614
** GUI_CHECK_PASSWORD : Verify password
5615
** byte 0,1 : length
5616
** byte 2 : command code 0x14
5617
** byte 3 : password length
5618
** byte 4-0x?? : user password to be checked
5619
** GUI_LOGOUT : Logout GUI (force password checking on next command)
5620
** byte 0,1 : length
5621
** byte 2 : command code 0x15
5622
** GUI_HTTP : HTTP interface (reserved for Http proxy service)(0x16)
5623
**
5624
** GUI_SET_ETHERNET_ADDR : Set the ethernet MAC address
5625
** byte 0,1 : length
5626
** byte 2 : command code 0x17
5627
** byte 3 : password length (should be 0x08)
5628
** byte 4-0x13 : should be "ArEcAvAr"
5629
** byte 0x14--0x19 : Ethernet MAC address (must be 6 bytes)
5630
** GUI_SET_LOGO : Set logo in HTTP
5631
** byte 0,1 : length
5632
** byte 2 : command code 0x18
5633
** byte 3 : Page# (0/1/2/3) (0xff --> clear OEM logo)
5634
** byte 4/5/6/7 : 0x55/0xaa/0xa5/0x5a
5635
** byte 8 : TITLE.JPG data (each page must be 2000 bytes)
5636
** note .... page0 1st 2 byte must be actual length of the JPG file
5637
** GUI_POLL_EVENT : Poll If Event Log Changed
5638
** byte 0,1 : length
5639
** byte 2 : command code 0x19
5640
** GUI_GET_EVENT : Read Event
5641
** byte 0,1 : length
5642
** byte 2 : command code 0x1a
5643
** byte 3 : Event Page (0:1st page/1/2/3:last page)
5644
** GUI_GET_HW_MONITOR : Get HW monitor data
5645
** byte 0,1 : length
5646
** byte 2 : command code 0x1b
5647
** byte 3 : # of FANs(example 2)
5648
** byte 4 : # of Voltage sensor(example 3)
5649
** byte 5 : # of temperature sensor(example 2)
5650
** byte 6 : # of power
5651
** byte 7/8 : Fan#0 (RPM)
5652
** byte 9/10 : Fan#1
5653
** byte 11/12 : Voltage#0 original value in *1000
5654
** byte 13/14 : Voltage#0 value
5655
** byte 15/16 : Voltage#1 org
5656
** byte 17/18 : Voltage#1
5657
** byte 19/20 : Voltage#2 org
5658
** byte 21/22 : Voltage#2
5659
** byte 23 : Temp#0
5660
** byte 24 : Temp#1
5661
** byte 25 : Power indicator (bit0 : power#0, bit1 : power#1)
5662
** byte 26 : UPS indicator
5663
** GUI_QUICK_CREATE : Quick create raid/volume set
5664
** byte 0,1 : length
5665
** byte 2 : command code 0x20
5666
** byte 3/4/5/6 : raw capacity
5667
** byte 7 : raid level
5668
** byte 8 : stripe size
5669
** byte 9 : spare
5670
** byte 10/11/12/13: device mask (the devices to create raid/volume)
5671
** This function is removed, application like to implement quick create function
5672
** need to use GUI_CREATE_RAIDSET and GUI_CREATE_VOLUMESET function.
5673
** GUI_GET_INFO_R : Get Raid Set Information
5674
** byte 0,1 : length
5675
** byte 2 : command code 0x20
5676
** byte 3 : raidset#
5677
**
5678
** typedef struct sGUI_RAIDSET
5679
** {
5680
** BYTE grsRaidSetName[16];
5681
** DWORD grsCapacity;
5682
** DWORD grsCapacityX;
5683
** DWORD grsFailMask;
5684
** BYTE grsDevArray[32];
5685
** BYTE grsMemberDevices;
5686
** BYTE grsNewMemberDevices;
5687
** BYTE grsRaidState;
5688
** BYTE grsVolumes;
5689
** BYTE grsVolumeList[16];
5690
** BYTE grsRes1;
5691
** BYTE grsRes2;
5692
** BYTE grsRes3;
5693
** BYTE grsFreeSegments;
5694
** DWORD grsRawStripes[8];
5695
** DWORD grsRes4;
5696
** DWORD grsRes5; // Total to 128 bytes
5697
** DWORD grsRes6; // Total to 128 bytes
5698
** } sGUI_RAIDSET, *pGUI_RAIDSET;
5699
** GUI_GET_INFO_V : Get Volume Set Information
5700
** byte 0,1 : length
5701
** byte 2 : command code 0x21
5702
** byte 3 : volumeset#
5703
**
5704
** typedef struct sGUI_VOLUMESET
5705
** {
5706
** BYTE gvsVolumeName[16]; // 16
5707
** DWORD gvsCapacity;
5708
** DWORD gvsCapacityX;
5709
** DWORD gvsFailMask;
5710
** DWORD gvsStripeSize;
5711
** DWORD gvsNewFailMask;
5712
** DWORD gvsNewStripeSize;
5713
** DWORD gvsVolumeStatus;
5714
** DWORD gvsProgress; // 32
5715
** sSCSI_ATTR gvsScsi;
5716
** BYTE gvsMemberDisks;
5717
** BYTE gvsRaidLevel; // 8
5718
**
5719
** BYTE gvsNewMemberDisks;
5720
** BYTE gvsNewRaidLevel;
5721
** BYTE gvsRaidSetNumber;
5722
** BYTE gvsRes0; // 4
5723
** BYTE gvsRes1[4]; // 64 bytes
5724
** } sGUI_VOLUMESET, *pGUI_VOLUMESET;
5725
**
5726
** GUI_GET_INFO_P : Get Physical Drive Information
5727
** byte 0,1 : length
5728
** byte 2 : command code 0x22
5729
** byte 3 : drive # (from 0 to max-channels - 1)
5730
**
5731
** typedef struct sGUI_PHY_DRV
5732
** {
5733
** BYTE gpdModelName[40];
5734
** BYTE gpdSerialNumber[20];
5735
** BYTE gpdFirmRev[8];
5736
** DWORD gpdCapacity;
5737
** DWORD gpdCapacityX; // Reserved for expansion
5738
** BYTE gpdDeviceState;
5739
** BYTE gpdPioMode;
5740
** BYTE gpdCurrentUdmaMode;
5741
** BYTE gpdUdmaMode;
5742
** BYTE gpdDriveSelect;
5743
** BYTE gpdRaidNumber; // 0xff if not belongs to a raid set
5744
** sSCSI_ATTR gpdScsi;
5745
** BYTE gpdReserved[40]; // Total to 128 bytes
5746
** } sGUI_PHY_DRV, *pGUI_PHY_DRV;
5747
**
5748
** GUI_GET_INFO_S : Get System Information
5749
** byte 0,1 : length
5750
** byte 2 : command code 0x23
5751
**
5752
** typedef struct sCOM_ATTR
5753
** {
5754
** BYTE comBaudRate;
5755
** BYTE comDataBits;
5756
** BYTE comStopBits;
5757
** BYTE comParity;
5758
** BYTE comFlowControl;
5759
** } sCOM_ATTR, *pCOM_ATTR;
5760
**
5761
** typedef struct sSYSTEM_INFO
5762
** {
5763
** BYTE gsiVendorName[40];
5764
** BYTE gsiSerialNumber[16];
5765
** BYTE gsiFirmVersion[16];
5766
** BYTE gsiBootVersion[16];
5767
** BYTE gsiMbVersion[16];
5768
** BYTE gsiModelName[8];
5769
** BYTE gsiLocalIp[4];
5770
** BYTE gsiCurrentIp[4];
5771
** DWORD gsiTimeTick;
5772
** DWORD gsiCpuSpeed;
5773
** DWORD gsiICache;
5774
** DWORD gsiDCache;
5775
** DWORD gsiScache;
5776
** DWORD gsiMemorySize;
5777
** DWORD gsiMemorySpeed;
5778
** DWORD gsiEvents;
5779
** BYTE gsiMacAddress[6];
5780
** BYTE gsiDhcp;
5781
** BYTE gsiBeeper;
5782
** BYTE gsiChannelUsage;
5783
** BYTE gsiMaxAtaMode;
5784
** BYTE gsiSdramEcc; // 1:if ECC enabled
5785
** BYTE gsiRebuildPriority;
5786
** sCOM_ATTR gsiComA; // 5 bytes
5787
** sCOM_ATTR gsiComB; // 5 bytes
5788
** BYTE gsiIdeChannels;
5789
** BYTE gsiScsiHostChannels;
5790
** BYTE gsiIdeHostChannels;
5791
** BYTE gsiMaxVolumeSet;
5792
** BYTE gsiMaxRaidSet;
5793
** BYTE gsiEtherPort; // 1:if ether net port supported
5794
** BYTE gsiRaid6Engine; // 1:Raid6 engine supported
5795
** BYTE gsiRes[75];
5796
** } sSYSTEM_INFO, *pSYSTEM_INFO;
5797
**
5798
** GUI_CLEAR_EVENT : Clear System Event
5799
** byte 0,1 : length
5800
** byte 2 : command code 0x24
5801
**
5802
** GUI_MUTE_BEEPER : Mute current beeper
5803
** byte 0,1 : length
5804
** byte 2 : command code 0x30
5805
**
5806
** GUI_BEEPER_SETTING : Disable beeper
5807
** byte 0,1 : length
5808
** byte 2 : command code 0x31
5809
** byte 3 : 0->disable, 1->enable
5810
**
5811
** GUI_SET_PASSWORD : Change password
5812
** byte 0,1 : length
5813
** byte 2 : command code 0x32
5814
** byte 3 : pass word length ( must <= 15 )
5815
** byte 4 : password (must be alpha-numerical)
5816
**
5817
** GUI_HOST_INTERFACE_MODE : Set host interface mode
5818
** byte 0,1 : length
5819
** byte 2 : command code 0x33
5820
** byte 3 : 0->Independent, 1->cluster
5821
**
5822
** GUI_REBUILD_PRIORITY : Set rebuild priority
5823
** byte 0,1 : length
5824
** byte 2 : command code 0x34
5825
** byte 3 : 0/1/2/3 (low->high)
5826
**
5827
** GUI_MAX_ATA_MODE : Set maximum ATA mode to be used
5828
** byte 0,1 : length
5829
** byte 2 : command code 0x35
5830
** byte 3 : 0/1/2/3 (133/100/66/33)
5831
**
5832
** GUI_RESET_CONTROLLER : Reset Controller
5833
** byte 0,1 : length
5834
** byte 2 : command code 0x36
5835
** *Response with VT100 screen (discard it)
5836
**
5837
** GUI_COM_PORT_SETTING : COM port setting
5838
** byte 0,1 : length
5839
** byte 2 : command code 0x37
5840
** byte 3 : 0->COMA (term port), 1->COMB (debug port)
5841
** byte 4 : 0/1/2/3/4/5/6/7 (1200/2400/4800/9600/19200/38400/57600/115200)
5842
** byte 5 : data bit (0:7 bit, 1:8 bit : must be 8 bit)
5843
** byte 6 : stop bit (0:1, 1:2 stop bits)
5844
** byte 7 : parity (0:none, 1:off, 2:even)
5845
** byte 8 : flow control (0:none, 1:xon/xoff, 2:hardware => must use none)
5846
**
5847
** GUI_NO_OPERATION : No operation
5848
** byte 0,1 : length
5849
** byte 2 : command code 0x38
5850
**
5851
** GUI_DHCP_IP : Set DHCP option and local IP address
5852
** byte 0,1 : length
5853
** byte 2 : command code 0x39
5854
** byte 3 : 0:dhcp disabled, 1:dhcp enabled
5855
** byte 4/5/6/7 : IP address
5856
**
5857
** GUI_CREATE_PASS_THROUGH : Create pass through disk
5858
** byte 0,1 : length
5859
** byte 2 : command code 0x40
5860
** byte 3 : device #
5861
** byte 4 : scsi channel (0/1)
5862
** byte 5 : scsi id (0-->15)
5863
** byte 6 : scsi lun (0-->7)
5864
** byte 7 : tagged queue (1 : enabled)
5865
** byte 8 : cache mode (1 : enabled)
5866
** byte 9 : max speed (0/1/2/3/4, async/20/40/80/160 for scsi)
5867
** (0/1/2/3/4, 33/66/100/133/150 for ide )
5868
**
5869
** GUI_MODIFY_PASS_THROUGH : Modify pass through disk
5870
** byte 0,1 : length
5871
** byte 2 : command code 0x41
5872
** byte 3 : device #
5873
** byte 4 : scsi channel (0/1)
5874
** byte 5 : scsi id (0-->15)
5875
** byte 6 : scsi lun (0-->7)
5876
** byte 7 : tagged queue (1 : enabled)
5877
** byte 8 : cache mode (1 : enabled)
5878
** byte 9 : max speed (0/1/2/3/4, async/20/40/80/160 for scsi)
5879
** (0/1/2/3/4, 33/66/100/133/150 for ide )
5880
**
5881
** GUI_DELETE_PASS_THROUGH : Delete pass through disk
5882
** byte 0,1 : length
5883
** byte 2 : command code 0x42
5884
** byte 3 : device# to be deleted
5885
**
5886
** GUI_IDENTIFY_DEVICE : Identify Device
5887
** byte 0,1 : length
5888
** byte 2 : command code 0x43
5889
** byte 3 : Flash Method(0:flash selected, 1:flash not selected)
5890
** byte 4/5/6/7 : IDE device mask to be flashed
5891
** note .... no response data available
5892
**
5893
** GUI_CREATE_RAIDSET : Create Raid Set
5894
** byte 0,1 : length
5895
** byte 2 : command code 0x50
5896
** byte 3/4/5/6 : device mask
5897
** byte 7-22 : raidset name (if byte 7 == 0:use default)
5898
**
5899
** GUI_DELETE_RAIDSET : Delete Raid Set
5900
** byte 0,1 : length
5901
** byte 2 : command code 0x51
5902
** byte 3 : raidset#
5903
**
5904
** GUI_EXPAND_RAIDSET : Expand Raid Set
5905
** byte 0,1 : length
5906
** byte 2 : command code 0x52
5907
** byte 3 : raidset#
5908
** byte 4/5/6/7 : device mask for expansion
5909
** byte 8/9/10 : (8:0 no change, 1 change, 0xff:terminate, 9:new raid level,10:new stripe size 0/1/2/3/4/5->4/8/16/32/64/128K )
5910
** byte 11/12/13 : repeat for each volume in the raidset ....
5911
**
5912
** GUI_ACTIVATE_RAIDSET : Activate incomplete raid set
5913
** byte 0,1 : length
5914
** byte 2 : command code 0x53
5915
** byte 3 : raidset#
5916
**
5917
** GUI_CREATE_HOT_SPARE : Create hot spare disk
5918
** byte 0,1 : length
5919
** byte 2 : command code 0x54
5920
** byte 3/4/5/6 : device mask for hot spare creation
5921
**
5922
** GUI_DELETE_HOT_SPARE : Delete hot spare disk
5923
** byte 0,1 : length
5924
** byte 2 : command code 0x55
5925
** byte 3/4/5/6 : device mask for hot spare deletion
5926
**
5927
** GUI_CREATE_VOLUME : Create volume set
5928
** byte 0,1 : length
5929
** byte 2 : command code 0x60
5930
** byte 3 : raidset#
5931
** byte 4-19 : volume set name (if byte4 == 0, use default)
5932
** byte 20-27 : volume capacity (blocks)
5933
** byte 28 : raid level
5934
** byte 29 : stripe size (0/1/2/3/4/5->4/8/16/32/64/128K)
5935
** byte 30 : channel
5936
** byte 31 : ID
5937
** byte 32 : LUN
5938
** byte 33 : 1 enable tag
5939
** byte 34 : 1 enable cache
5940
** byte 35 : speed (0/1/2/3/4->async/20/40/80/160 for scsi)
5941
** (0/1/2/3/4->33/66/100/133/150 for IDE )
5942
** byte 36 : 1 to select quick init
5943
**
5944
** GUI_MODIFY_VOLUME : Modify volume Set
5945
** byte 0,1 : length
5946
** byte 2 : command code 0x61
5947
** byte 3 : volumeset#
5948
** byte 4-19 : new volume set name (if byte4 == 0, not change)
5949
** byte 20-27 : new volume capacity (reserved)
5950
** byte 28 : new raid level
5951
** byte 29 : new stripe size (0/1/2/3/4/5->4/8/16/32/64/128K)
5952
** byte 30 : new channel
5953
** byte 31 : new ID
5954
** byte 32 : new LUN
5955
** byte 33 : 1 enable tag
5956
** byte 34 : 1 enable cache
5957
** byte 35 : speed (0/1/2/3/4->async/20/40/80/160 for scsi)
5958
** (0/1/2/3/4->33/66/100/133/150 for IDE )
5959
**
5960
** GUI_DELETE_VOLUME : Delete volume set
5961
** byte 0,1 : length
5962
** byte 2 : command code 0x62
5963
** byte 3 : volumeset#
5964
**
5965
** GUI_START_CHECK_VOLUME : Start volume consistency check
5966
** byte 0,1 : length
5967
** byte 2 : command code 0x63
5968
** byte 3 : volumeset#
5969
**
5970
** GUI_STOP_CHECK_VOLUME : Stop volume consistency check
5971
** byte 0,1 : length
5972
** byte 2 : command code 0x64
5973
** ---------------------------------------------------------------------
5974
** 4. Returned data
5975
** ---------------------------------------------------------------------
5976
** (A) Header : 3 bytes sequence (0x5E, 0x01, 0x61)
5977
** (B) Length : 2 bytes (low byte 1st, excludes length and checksum byte)
5978
** (C) status or data :
5979
** <1> If length == 1 ==> 1 byte status code
5980
** #define GUI_OK 0x41
5981
** #define GUI_RAIDSET_NOT_NORMAL 0x42
5982
** #define GUI_VOLUMESET_NOT_NORMAL 0x43
5983
** #define GUI_NO_RAIDSET 0x44
5984
** #define GUI_NO_VOLUMESET 0x45
5985
** #define GUI_NO_PHYSICAL_DRIVE 0x46
5986
** #define GUI_PARAMETER_ERROR 0x47
5987
** #define GUI_UNSUPPORTED_COMMAND 0x48
5988
** #define GUI_DISK_CONFIG_CHANGED 0x49
5989
** #define GUI_INVALID_PASSWORD 0x4a
5990
** #define GUI_NO_DISK_SPACE 0x4b
5991
** #define GUI_CHECKSUM_ERROR 0x4c
5992
** #define GUI_PASSWORD_REQUIRED 0x4d
5993
** <2> If length > 1 ==> data block returned from controller and the contents depends on the command code
5994
** (E) Checksum : checksum of length and status or data byte
5995
**************************************************************************
5996
*/
5997
5998