Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/ath_hal/ar5210/ar5210_reset.c
39566 views
1
/*-
2
* SPDX-License-Identifier: ISC
3
*
4
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5
* Copyright (c) 2002-2004 Atheros Communications, Inc.
6
*
7
* Permission to use, copy, modify, and/or distribute this software for any
8
* purpose with or without fee is hereby granted, provided that the above
9
* copyright notice and this permission notice appear in all copies.
10
*
11
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
*/
19
#include "opt_ah.h"
20
21
#include "ah.h"
22
#include "ah_internal.h"
23
24
#include "ar5210/ar5210.h"
25
#include "ar5210/ar5210reg.h"
26
#include "ar5210/ar5210phy.h"
27
28
#include "ah_eeprom_v1.h"
29
30
typedef struct {
31
uint32_t Offset;
32
uint32_t Value;
33
} REGISTER_VAL;
34
35
static const REGISTER_VAL ar5k0007_init[] = {
36
#include "ar5210/ar5k_0007.ini"
37
};
38
39
/* Default Power Settings for channels outside of EEPROM range */
40
static const uint8_t ar5k0007_pwrSettings[17] = {
41
/* gain delta pc dac */
42
/* 54 48 36 24 18 12 9 54 48 36 24 18 12 9 6 ob db */
43
9, 9, 0, 0, 0, 0, 0, 2, 2, 6, 6, 6, 6, 6, 6, 2, 2
44
};
45
46
/*
47
* The delay, in usecs, between writing AR_RC with a reset
48
* request and waiting for the chip to settle. If this is
49
* too short then the chip does not come out of sleep state.
50
* Note this value was empirically derived and may be dependent
51
* on the host machine (don't know--the problem was identified
52
* on an IBM 570e laptop; 10us delays worked on other systems).
53
*/
54
#define AR_RC_SETTLE_TIME 20000
55
56
static HAL_BOOL ar5210SetResetReg(struct ath_hal *,
57
uint32_t resetMask, u_int delay);
58
static HAL_BOOL ar5210SetChannel(struct ath_hal *, struct ieee80211_channel *);
59
static void ar5210SetOperatingMode(struct ath_hal *, int opmode);
60
61
/*
62
* Places the device in and out of reset and then places sane
63
* values in the registers based on EEPROM config, initialization
64
* vectors (as determined by the mode), and station configuration
65
*
66
* bChannelChange is used to preserve DMA/PCU registers across
67
* a HW Reset during channel change.
68
*/
69
HAL_BOOL
70
ar5210Reset(struct ath_hal *ah, HAL_OPMODE opmode,
71
struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
72
HAL_RESET_TYPE resetType,
73
HAL_STATUS *status)
74
{
75
#define N(a) (sizeof (a) /sizeof (a[0]))
76
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
77
struct ath_hal_5210 *ahp = AH5210(ah);
78
const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
79
HAL_CHANNEL_INTERNAL *ichan;
80
HAL_STATUS ecode;
81
uint32_t ledstate;
82
int i, q;
83
84
HALDEBUG(ah, HAL_DEBUG_RESET,
85
"%s: opmode %u channel %u/0x%x %s channel\n", __func__,
86
opmode, chan->ic_freq, chan->ic_flags,
87
bChannelChange ? "change" : "same");
88
89
if (!IEEE80211_IS_CHAN_5GHZ(chan)) {
90
/* Only 11a mode */
91
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: channel not 5GHz\n", __func__);
92
FAIL(HAL_EINVAL);
93
}
94
/*
95
* Map public channel to private.
96
*/
97
ichan = ath_hal_checkchannel(ah, chan);
98
if (ichan == AH_NULL) {
99
HALDEBUG(ah, HAL_DEBUG_ANY,
100
"%s: invalid channel %u/0x%x; no mapping\n",
101
__func__, chan->ic_freq, chan->ic_flags);
102
FAIL(HAL_EINVAL);
103
}
104
switch (opmode) {
105
case HAL_M_STA:
106
case HAL_M_IBSS:
107
case HAL_M_HOSTAP:
108
case HAL_M_MONITOR:
109
break;
110
default:
111
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
112
__func__, opmode);
113
FAIL(HAL_EINVAL);
114
break;
115
}
116
117
ledstate = OS_REG_READ(ah, AR_PCICFG) &
118
(AR_PCICFG_LED_PEND | AR_PCICFG_LED_ACT);
119
120
if (!ar5210ChipReset(ah, chan)) {
121
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n",
122
__func__);
123
FAIL(HAL_EIO);
124
}
125
126
OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
127
OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4));
128
ar5210SetOperatingMode(ah, opmode);
129
130
switch (opmode) {
131
case HAL_M_HOSTAP:
132
OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
133
OS_REG_WRITE(ah, AR_PCICFG,
134
AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
135
break;
136
case HAL_M_IBSS:
137
OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG | AR_BCR_BCMD);
138
OS_REG_WRITE(ah, AR_PCICFG,
139
AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
140
break;
141
case HAL_M_STA:
142
OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
143
OS_REG_WRITE(ah, AR_PCICFG,
144
AR_PCICFG_CLKRUNEN | AR_PCICFG_LED_PEND | AR_PCICFG_LED_BCTL);
145
break;
146
case HAL_M_MONITOR:
147
OS_REG_WRITE(ah, AR_BCR, INIT_BCON_CNTRL_REG);
148
OS_REG_WRITE(ah, AR_PCICFG,
149
AR_PCICFG_LED_ACT | AR_PCICFG_LED_BCTL);
150
break;
151
}
152
153
/* Restore previous led state */
154
OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
155
156
#if 0
157
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
158
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
159
#endif
160
/* BSSID, association id, ps-poll */
161
ar5210WriteAssocid(ah, ahp->ah_bssid, ahp->ah_associd);
162
163
OS_REG_WRITE(ah, AR_TXDP0, 0);
164
OS_REG_WRITE(ah, AR_TXDP1, 0);
165
OS_REG_WRITE(ah, AR_RXDP, 0);
166
167
/*
168
* Initialize interrupt state.
169
*/
170
(void) OS_REG_READ(ah, AR_ISR); /* cleared on read */
171
OS_REG_WRITE(ah, AR_IMR, 0);
172
OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
173
ahp->ah_maskReg = 0;
174
175
(void) OS_REG_READ(ah, AR_BSR); /* cleared on read */
176
OS_REG_WRITE(ah, AR_TXCFG, AR_DMASIZE_128B);
177
OS_REG_WRITE(ah, AR_RXCFG, AR_DMASIZE_128B);
178
179
OS_REG_WRITE(ah, AR_TOPS, 8); /* timeout prescale */
180
OS_REG_WRITE(ah, AR_RXNOFRM, 8); /* RX no frame timeout */
181
OS_REG_WRITE(ah, AR_RPGTO, 0); /* RX frame gap timeout */
182
OS_REG_WRITE(ah, AR_TXNOFRM, 0); /* TX no frame timeout */
183
184
OS_REG_WRITE(ah, AR_SFR, 0);
185
OS_REG_WRITE(ah, AR_MIBC, 0); /* unfreeze ctrs + clr state */
186
OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
187
OS_REG_WRITE(ah, AR_CFP_DUR, 0);
188
189
ar5210SetRxFilter(ah, 0); /* nothing for now */
190
OS_REG_WRITE(ah, AR_MCAST_FIL0, 0); /* multicast filter */
191
OS_REG_WRITE(ah, AR_MCAST_FIL1, 0); /* XXX was 2 */
192
193
OS_REG_WRITE(ah, AR_TX_MASK0, 0);
194
OS_REG_WRITE(ah, AR_TX_MASK1, 0);
195
OS_REG_WRITE(ah, AR_CLR_TMASK, 1);
196
OS_REG_WRITE(ah, AR_TRIG_LEV, 1); /* minimum */
197
198
ar5210UpdateDiagReg(ah, 0);
199
200
OS_REG_WRITE(ah, AR_CFP_PERIOD, 0);
201
OS_REG_WRITE(ah, AR_TIMER0, 0); /* next beacon time */
202
OS_REG_WRITE(ah, AR_TSF_L32, 0); /* local clock */
203
OS_REG_WRITE(ah, AR_TIMER1, ~0); /* next DMA beacon alert */
204
OS_REG_WRITE(ah, AR_TIMER2, ~0); /* next SW beacon alert */
205
OS_REG_WRITE(ah, AR_TIMER3, 1); /* next ATIM window */
206
207
/* Write the INI values for PHYreg initialization */
208
for (i = 0; i < N(ar5k0007_init); i++) {
209
uint32_t reg = ar5k0007_init[i].Offset;
210
/* On channel change, don't reset the PCU registers */
211
if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
212
OS_REG_WRITE(ah, reg, ar5k0007_init[i].Value);
213
}
214
215
/* Setup the transmit power values for cards since 0x0[0-2]05 */
216
if (!ar5210SetTransmitPower(ah, chan)) {
217
HALDEBUG(ah, HAL_DEBUG_ANY,
218
"%s: error init'ing transmit power\n", __func__);
219
FAIL(HAL_EIO);
220
}
221
222
OS_REG_WRITE(ah, AR_PHY(10),
223
(OS_REG_READ(ah, AR_PHY(10)) & 0xFFFF00FF) |
224
(ee->ee_xlnaOn << 8));
225
OS_REG_WRITE(ah, AR_PHY(13),
226
(ee->ee_xpaOff << 24) | (ee->ee_xpaOff << 16) |
227
(ee->ee_xpaOn << 8) | ee->ee_xpaOn);
228
OS_REG_WRITE(ah, AR_PHY(17),
229
(OS_REG_READ(ah, AR_PHY(17)) & 0xFFFFC07F) |
230
((ee->ee_antenna >> 1) & 0x3F80));
231
OS_REG_WRITE(ah, AR_PHY(18),
232
(OS_REG_READ(ah, AR_PHY(18)) & 0xFFFC0FFF) |
233
((ee->ee_antenna << 10) & 0x3F000));
234
OS_REG_WRITE(ah, AR_PHY(25),
235
(OS_REG_READ(ah, AR_PHY(25)) & 0xFFF80FFF) |
236
((ee->ee_thresh62 << 12) & 0x7F000));
237
OS_REG_WRITE(ah, AR_PHY(68),
238
(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) |
239
(ee->ee_antenna & 0x3));
240
241
if (!ar5210SetChannel(ah, chan)) {
242
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
243
__func__);
244
FAIL(HAL_EIO);
245
}
246
if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
247
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
248
249
/* Activate the PHY */
250
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ENABLE);
251
252
OS_DELAY(1000); /* Wait a bit (1 msec) */
253
254
/* calibrate the HW and poll the bit going to 0 for completion */
255
OS_REG_WRITE(ah, AR_PHY_AGCCTL,
256
OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
257
(void) ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0);
258
259
/* Perform noise floor calibration and set status */
260
if (!ar5210CalNoiseFloor(ah, ichan)) {
261
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
262
HALDEBUG(ah, HAL_DEBUG_ANY,
263
"%s: noise floor calibration failed\n", __func__);
264
FAIL(HAL_EIO);
265
}
266
267
for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
268
ar5210ResetTxQueue(ah, q);
269
270
if (AH_PRIVATE(ah)->ah_rfkillEnabled)
271
ar5210EnableRfKill(ah);
272
273
/*
274
* Writing to AR_BEACON will start timers. Hence it should be
275
* the last register to be written. Do not reset tsf, do not
276
* enable beacons at this point, but preserve other values
277
* like beaconInterval.
278
*/
279
OS_REG_WRITE(ah, AR_BEACON,
280
(OS_REG_READ(ah, AR_BEACON) &
281
~(AR_BEACON_EN | AR_BEACON_RESET_TSF)));
282
283
/* Restore user-specified slot time and timeouts */
284
if (ahp->ah_sifstime != (u_int) -1)
285
ar5210SetSifsTime(ah, ahp->ah_sifstime);
286
if (ahp->ah_slottime != (u_int) -1)
287
ar5210SetSlotTime(ah, ahp->ah_slottime);
288
if (ahp->ah_acktimeout != (u_int) -1)
289
ar5210SetAckTimeout(ah, ahp->ah_acktimeout);
290
if (ahp->ah_ctstimeout != (u_int) -1)
291
ar5210SetCTSTimeout(ah, ahp->ah_ctstimeout);
292
if (AH_PRIVATE(ah)->ah_diagreg != 0)
293
ar5210UpdateDiagReg(ah, AH_PRIVATE(ah)->ah_diagreg);
294
295
AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
296
297
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
298
299
return AH_TRUE;
300
bad:
301
if (status != AH_NULL)
302
*status = ecode;
303
return AH_FALSE;
304
#undef FAIL
305
#undef N
306
}
307
308
static void
309
ar5210SetOperatingMode(struct ath_hal *ah, int opmode)
310
{
311
struct ath_hal_5210 *ahp = AH5210(ah);
312
uint32_t val;
313
314
val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
315
switch (opmode) {
316
case HAL_M_HOSTAP:
317
OS_REG_WRITE(ah, AR_STA_ID1, val
318
| AR_STA_ID1_AP
319
| AR_STA_ID1_NO_PSPOLL
320
| AR_STA_ID1_DESC_ANTENNA
321
| ahp->ah_staId1Defaults);
322
break;
323
case HAL_M_IBSS:
324
OS_REG_WRITE(ah, AR_STA_ID1, val
325
| AR_STA_ID1_ADHOC
326
| AR_STA_ID1_NO_PSPOLL
327
| AR_STA_ID1_DESC_ANTENNA
328
| ahp->ah_staId1Defaults);
329
break;
330
case HAL_M_STA:
331
OS_REG_WRITE(ah, AR_STA_ID1, val
332
| AR_STA_ID1_NO_PSPOLL
333
| AR_STA_ID1_PWR_SV
334
| ahp->ah_staId1Defaults);
335
break;
336
case HAL_M_MONITOR:
337
OS_REG_WRITE(ah, AR_STA_ID1, val
338
| AR_STA_ID1_NO_PSPOLL
339
| ahp->ah_staId1Defaults);
340
break;
341
}
342
}
343
344
void
345
ar5210SetPCUConfig(struct ath_hal *ah)
346
{
347
ar5210SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
348
}
349
350
/*
351
* Places the PHY and Radio chips into reset. A full reset
352
* must be called to leave this state. The PCI/MAC/PCU are
353
* not placed into reset as we must receive interrupt to
354
* re-enable the hardware.
355
*/
356
HAL_BOOL
357
ar5210PhyDisable(struct ath_hal *ah)
358
{
359
return ar5210SetResetReg(ah, AR_RC_RPHY, 10);
360
}
361
362
/*
363
* Places all of hardware into reset
364
*/
365
HAL_BOOL
366
ar5210Disable(struct ath_hal *ah)
367
{
368
#define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
369
if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
370
return AH_FALSE;
371
372
/*
373
* Reset the HW - PCI must be reset after the rest of the
374
* device has been reset
375
*/
376
if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
377
return AH_FALSE;
378
OS_DELAY(1000);
379
(void) ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME);
380
OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
381
382
return AH_TRUE;
383
#undef AR_RC_HW
384
}
385
386
/*
387
* Places the hardware into reset and then pulls it out of reset
388
*/
389
HAL_BOOL
390
ar5210ChipReset(struct ath_hal *ah, struct ieee80211_channel *chan)
391
{
392
#define AR_RC_HW (AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC)
393
394
HALDEBUG(ah, HAL_DEBUG_RESET, "%s turbo %s\n", __func__,
395
chan && IEEE80211_IS_CHAN_TURBO(chan) ?
396
"enabled" : "disabled");
397
398
if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
399
return AH_FALSE;
400
401
/* Place chip in turbo before reset to cleanly reset clocks */
402
OS_REG_WRITE(ah, AR_PHY_FRCTL,
403
chan && IEEE80211_IS_CHAN_TURBO(chan) ? AR_PHY_TURBO_MODE : 0);
404
405
/*
406
* Reset the HW.
407
* PCI must be reset after the rest of the device has been reset.
408
*/
409
if (!ar5210SetResetReg(ah, AR_RC_HW, AR_RC_SETTLE_TIME))
410
return AH_FALSE;
411
OS_DELAY(1000);
412
if (!ar5210SetResetReg(ah, AR_RC_HW | AR_RC_RPCI, AR_RC_SETTLE_TIME))
413
return AH_FALSE;
414
OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
415
416
/*
417
* Bring out of sleep mode (AGAIN)
418
*
419
* WARNING WARNING WARNING
420
*
421
* There is a problem with the chip where it doesn't always indicate
422
* that it's awake, so initializePowerUp() will fail.
423
*/
424
if (!ar5210SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
425
return AH_FALSE;
426
427
/* Clear warm reset reg */
428
return ar5210SetResetReg(ah, 0, 10);
429
#undef AR_RC_HW
430
}
431
432
enum {
433
FIRPWR_M = 0x03fc0000,
434
FIRPWR_S = 18,
435
KCOARSEHIGH_M = 0x003f8000,
436
KCOARSEHIGH_S = 15,
437
KCOARSELOW_M = 0x00007f80,
438
KCOARSELOW_S = 7,
439
ADCSAT_ICOUNT_M = 0x0001f800,
440
ADCSAT_ICOUNT_S = 11,
441
ADCSAT_THRESH_M = 0x000007e0,
442
ADCSAT_THRESH_S = 5
443
};
444
445
/*
446
* Recalibrate the lower PHY chips to account for temperature/environment
447
* changes.
448
*/
449
HAL_BOOL
450
ar5210PerCalibrationN(struct ath_hal *ah,
451
struct ieee80211_channel *chan, u_int chainMask,
452
HAL_BOOL longCal, HAL_BOOL *isCalDone)
453
{
454
uint32_t regBeacon;
455
uint32_t reg9858, reg985c, reg9868;
456
HAL_CHANNEL_INTERNAL *ichan;
457
458
ichan = ath_hal_checkchannel(ah, chan);
459
if (ichan == AH_NULL)
460
return AH_FALSE;
461
/* Disable tx and rx */
462
ar5210UpdateDiagReg(ah,
463
OS_REG_READ(ah, AR_DIAG_SW) | (AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
464
465
/* Disable Beacon Enable */
466
regBeacon = OS_REG_READ(ah, AR_BEACON);
467
OS_REG_WRITE(ah, AR_BEACON, regBeacon & ~AR_BEACON_EN);
468
469
/* Delay 4ms to ensure that all tx and rx activity has ceased */
470
OS_DELAY(4000);
471
472
/* Disable AGC to radio traffic */
473
OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
474
/* Wait for the AGC traffic to cease. */
475
OS_DELAY(10);
476
477
/* Change Channel to relock synth */
478
if (!ar5210SetChannel(ah, chan))
479
return AH_FALSE;
480
481
/* wait for the synthesizer lock to stabilize */
482
OS_DELAY(1000);
483
484
/* Re-enable AGC to radio traffic */
485
OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
486
487
/*
488
* Configure the AGC so that it is highly unlikely (if not
489
* impossible) for it to send any gain changes to the analog
490
* chip. We store off the current values so that they can
491
* be rewritten below. Setting the following values:
492
* firpwr = -1
493
* Kcoursehigh = -1
494
* Kcourselow = -127
495
* ADCsat_icount = 2
496
* ADCsat_thresh = 12
497
*/
498
reg9858 = OS_REG_READ(ah, 0x9858);
499
reg985c = OS_REG_READ(ah, 0x985c);
500
reg9868 = OS_REG_READ(ah, 0x9868);
501
502
OS_REG_WRITE(ah, 0x9858, (reg9858 & ~FIRPWR_M) |
503
((-1 << FIRPWR_S) & FIRPWR_M));
504
OS_REG_WRITE(ah, 0x985c,
505
(reg985c & ~(KCOARSEHIGH_M | KCOARSELOW_M)) |
506
((-1 << KCOARSEHIGH_S) & KCOARSEHIGH_M) |
507
((-127 << KCOARSELOW_S) & KCOARSELOW_M));
508
OS_REG_WRITE(ah, 0x9868,
509
(reg9868 & ~(ADCSAT_ICOUNT_M | ADCSAT_THRESH_M)) |
510
((2 << ADCSAT_ICOUNT_S) & ADCSAT_ICOUNT_M) |
511
((12 << ADCSAT_THRESH_S) & ADCSAT_THRESH_M));
512
513
/* Wait for AGC changes to be enacted */
514
OS_DELAY(20);
515
516
/*
517
* We disable RF mix/gain stages for the PGA to avoid a
518
* race condition that will occur with receiving a frame
519
* and performing the AGC calibration. This will be
520
* re-enabled at the end of offset cal. We turn off AGC
521
* writes during this write as it will go over the analog bus.
522
*/
523
OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) | 0x08000000);
524
OS_DELAY(10); /* wait for the AGC traffic to cease */
525
OS_REG_WRITE(ah, 0x98D4, 0x21);
526
OS_REG_WRITE(ah, 0x9808, OS_REG_READ(ah, 0x9808) & (~0x08000000));
527
528
/* wait to make sure that additional AGC traffic has quiesced */
529
OS_DELAY(1000);
530
531
/* AGC calibration (this was added to make the NF threshold check work) */
532
OS_REG_WRITE(ah, AR_PHY_AGCCTL,
533
OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_CAL);
534
if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_CAL, 0)) {
535
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: AGC calibration timeout\n",
536
__func__);
537
}
538
539
/* Rewrite our AGC values we stored off earlier (return AGC to normal operation) */
540
OS_REG_WRITE(ah, 0x9858, reg9858);
541
OS_REG_WRITE(ah, 0x985c, reg985c);
542
OS_REG_WRITE(ah, 0x9868, reg9868);
543
544
/* Perform noise floor and set status */
545
if (!ar5210CalNoiseFloor(ah, ichan)) {
546
/*
547
* Delay 5ms before retrying the noise floor -
548
* just to make sure. We're in an error
549
* condition here
550
*/
551
HALDEBUG(ah, HAL_DEBUG_NFCAL | HAL_DEBUG_PERCAL,
552
"%s: Performing 2nd Noise Cal\n", __func__);
553
OS_DELAY(5000);
554
if (!ar5210CalNoiseFloor(ah, ichan))
555
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
556
}
557
558
/* Clear tx and rx disable bit */
559
ar5210UpdateDiagReg(ah,
560
OS_REG_READ(ah, AR_DIAG_SW) & ~(AR_DIAG_SW_DIS_TX | AR_DIAG_SW_DIS_RX));
561
562
/* Re-enable Beacons */
563
OS_REG_WRITE(ah, AR_BEACON, regBeacon);
564
565
*isCalDone = AH_TRUE;
566
567
return AH_TRUE;
568
}
569
570
HAL_BOOL
571
ar5210PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
572
HAL_BOOL *isIQdone)
573
{
574
return ar5210PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
575
}
576
577
HAL_BOOL
578
ar5210ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
579
{
580
return AH_TRUE;
581
}
582
583
/*
584
* Writes the given reset bit mask into the reset register
585
*/
586
static HAL_BOOL
587
ar5210SetResetReg(struct ath_hal *ah, uint32_t resetMask, u_int delay)
588
{
589
uint32_t mask = resetMask ? resetMask : ~0;
590
HAL_BOOL rt;
591
592
OS_REG_WRITE(ah, AR_RC, resetMask);
593
/* need to wait at least 128 clocks when reseting PCI before read */
594
OS_DELAY(delay);
595
596
resetMask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
597
mask &= AR_RC_RPCU | AR_RC_RDMA | AR_RC_RPHY | AR_RC_RMAC;
598
rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
599
if ((resetMask & AR_RC_RMAC) == 0) {
600
if (isBigEndian()) {
601
/*
602
* Set CFG, little-endian for descriptor accesses.
603
*/
604
mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
605
OS_REG_WRITE(ah, AR_CFG, mask);
606
} else
607
OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
608
}
609
return rt;
610
}
611
612
/*
613
* Returns: the pcdac value
614
*/
615
static uint8_t
616
getPcdac(struct ath_hal *ah, const struct tpcMap *pRD, uint8_t dBm)
617
{
618
int32_t i;
619
int useNextEntry = AH_FALSE;
620
uint32_t interp;
621
622
for (i = AR_TP_SCALING_ENTRIES - 1; i >= 0; i--) {
623
/* Check for exact entry */
624
if (dBm == AR_I2DBM(i)) {
625
if (pRD->pcdac[i] != 63)
626
return pRD->pcdac[i];
627
useNextEntry = AH_TRUE;
628
} else if (dBm + 1 == AR_I2DBM(i) && i > 0) {
629
/* Interpolate for between entry with a logish scale */
630
if (pRD->pcdac[i] != 63 && pRD->pcdac[i-1] != 63) {
631
interp = (350 * (pRD->pcdac[i] - pRD->pcdac[i-1])) + 999;
632
interp = (interp / 1000) + pRD->pcdac[i-1];
633
return interp;
634
}
635
useNextEntry = AH_TRUE;
636
} else if (useNextEntry == AH_TRUE) {
637
/* Grab the next lowest */
638
if (pRD->pcdac[i] != 63)
639
return pRD->pcdac[i];
640
}
641
}
642
643
/* Return the lowest Entry if we haven't returned */
644
for (i = 0; i < AR_TP_SCALING_ENTRIES; i++)
645
if (pRD->pcdac[i] != 63)
646
return pRD->pcdac[i];
647
648
/* No value to return from table */
649
#ifdef AH_DEBUG
650
ath_hal_printf(ah, "%s: empty transmit power table?\n", __func__);
651
#endif
652
return 1;
653
}
654
655
/*
656
* Find or interpolates the gainF value from the table ptr.
657
*/
658
static uint8_t
659
getGainF(struct ath_hal *ah, const struct tpcMap *pRD,
660
uint8_t pcdac, uint8_t *dBm)
661
{
662
uint32_t interp;
663
int low, high, i;
664
665
low = high = -1;
666
667
for (i = 0; i < AR_TP_SCALING_ENTRIES; i++) {
668
if(pRD->pcdac[i] == 63)
669
continue;
670
if (pcdac == pRD->pcdac[i]) {
671
*dBm = AR_I2DBM(i);
672
return pRD->gainF[i]; /* Exact Match */
673
}
674
if (pcdac > pRD->pcdac[i])
675
low = i;
676
if (pcdac < pRD->pcdac[i]) {
677
high = i;
678
if (low == -1) {
679
*dBm = AR_I2DBM(i);
680
/* PCDAC is lower than lowest setting */
681
return pRD->gainF[i];
682
}
683
break;
684
}
685
}
686
if (i >= AR_TP_SCALING_ENTRIES && low == -1) {
687
/* No settings were found */
688
#ifdef AH_DEBUG
689
ath_hal_printf(ah,
690
"%s: no valid entries in the pcdac table: %d\n",
691
__func__, pcdac);
692
#endif
693
return 63;
694
}
695
if (i >= AR_TP_SCALING_ENTRIES) {
696
/* PCDAC setting was above the max setting in the table */
697
*dBm = AR_I2DBM(low);
698
return pRD->gainF[low];
699
}
700
/* Only exact if table has no missing entries */
701
*dBm = (low + high) + 3;
702
703
/*
704
* Perform interpolation between low and high values to find gainF
705
* linearly scale the pcdac between low and high
706
*/
707
interp = ((pcdac - pRD->pcdac[low]) * 1000) /
708
(pRD->pcdac[high] - pRD->pcdac[low]);
709
/*
710
* Multiply the scale ratio by the gainF difference
711
* (plus a rnd up factor)
712
*/
713
interp = ((interp * (pRD->gainF[high] - pRD->gainF[low])) + 999) / 1000;
714
715
/* Add ratioed gain_f to low gain_f value */
716
return interp + pRD->gainF[low];
717
}
718
719
HAL_BOOL
720
ar5210SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
721
{
722
AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, AR5210_MAX_RATE_POWER);
723
/* XXX flush to h/w */
724
return AH_TRUE;
725
}
726
727
/*
728
* Get TXPower values and set them in the radio
729
*/
730
static HAL_BOOL
731
setupPowerSettings(struct ath_hal *ah, const struct ieee80211_channel *chan,
732
uint8_t cp[17])
733
{
734
uint16_t freq = ath_hal_gethwchannel(ah, chan);
735
const HAL_EEPROM_v1 *ee = AH_PRIVATE(ah)->ah_eeprom;
736
uint8_t gainFRD, gainF36, gainF48, gainF54;
737
uint8_t dBmRD, dBm36, dBm48, dBm54, dontcare;
738
uint32_t rd, group;
739
const struct tpcMap *pRD;
740
741
/* Set OB/DB Values regardless of channel */
742
cp[15] = (ee->ee_biasCurrents >> 4) & 0x7;
743
cp[16] = ee->ee_biasCurrents & 0x7;
744
745
if (freq < 5170 || freq > 5320) {
746
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u\n",
747
__func__, freq);
748
return AH_FALSE;
749
}
750
751
HALASSERT(ee->ee_version >= AR_EEPROM_VER1 &&
752
ee->ee_version < AR_EEPROM_VER3);
753
754
/* Match regulatory domain */
755
for (rd = 0; rd < AR_REG_DOMAINS_MAX; rd++)
756
if (AH_PRIVATE(ah)->ah_currentRD == ee->ee_regDomain[rd])
757
break;
758
if (rd == AR_REG_DOMAINS_MAX) {
759
#ifdef AH_DEBUG
760
ath_hal_printf(ah,
761
"%s: no calibrated regulatory domain matches the "
762
"current regularly domain (0x%0x)\n", __func__,
763
AH_PRIVATE(ah)->ah_currentRD);
764
#endif
765
return AH_FALSE;
766
}
767
group = ((freq - 5170) / 10);
768
769
if (group > 11) {
770
/* Pull 5.29 into the 5.27 group */
771
group--;
772
}
773
774
/* Integer divide will set group from 0 to 4 */
775
group = group / 3;
776
pRD = &ee->ee_tpc[group];
777
778
/* Set PC DAC Values */
779
cp[14] = pRD->regdmn[rd];
780
cp[9] = AH_MIN(pRD->regdmn[rd], pRD->rate36);
781
cp[8] = AH_MIN(pRD->regdmn[rd], pRD->rate48);
782
cp[7] = AH_MIN(pRD->regdmn[rd], pRD->rate54);
783
784
/* Find Corresponding gainF values for RD, 36, 48, 54 */
785
gainFRD = getGainF(ah, pRD, pRD->regdmn[rd], &dBmRD);
786
gainF36 = getGainF(ah, pRD, cp[9], &dBm36);
787
gainF48 = getGainF(ah, pRD, cp[8], &dBm48);
788
gainF54 = getGainF(ah, pRD, cp[7], &dBm54);
789
790
/* Power Scale if requested */
791
if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
792
static const uint16_t tpcScaleReductionTable[5] =
793
{ 0, 3, 6, 9, AR5210_MAX_RATE_POWER };
794
uint16_t tpScale;
795
796
tpScale = tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale];
797
if (dBmRD < tpScale+3)
798
dBmRD = 3; /* min */
799
else
800
dBmRD -= tpScale;
801
cp[14] = getPcdac(ah, pRD, dBmRD);
802
gainFRD = getGainF(ah, pRD, cp[14], &dontcare);
803
dBm36 = AH_MIN(dBm36, dBmRD);
804
cp[9] = getPcdac(ah, pRD, dBm36);
805
gainF36 = getGainF(ah, pRD, cp[9], &dontcare);
806
dBm48 = AH_MIN(dBm48, dBmRD);
807
cp[8] = getPcdac(ah, pRD, dBm48);
808
gainF48 = getGainF(ah, pRD, cp[8], &dontcare);
809
dBm54 = AH_MIN(dBm54, dBmRD);
810
cp[7] = getPcdac(ah, pRD, dBm54);
811
gainF54 = getGainF(ah, pRD, cp[7], &dontcare);
812
}
813
/* Record current dBm at rate 6 */
814
AH_PRIVATE(ah)->ah_maxPowerLevel = 2*dBmRD;
815
816
cp[13] = cp[12] = cp[11] = cp[10] = cp[14];
817
818
/* Set GainF Values */
819
cp[0] = gainFRD - gainF54;
820
cp[1] = gainFRD - gainF48;
821
cp[2] = gainFRD - gainF36;
822
/* 9, 12, 18, 24 have no gain_delta from 6 */
823
cp[3] = cp[4] = cp[5] = cp[6] = 0;
824
return AH_TRUE;
825
}
826
827
/*
828
* Places the device in and out of reset and then places sane
829
* values in the registers based on EEPROM config, initialization
830
* vectors (as determined by the mode), and station configuration
831
*/
832
HAL_BOOL
833
ar5210SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
834
{
835
#define N(a) (sizeof (a) / sizeof (a[0]))
836
static const uint32_t pwr_regs_start[17] = {
837
0x00000000, 0x00000000, 0x00000000,
838
0x00000000, 0x00000000, 0xf0000000,
839
0xcc000000, 0x00000000, 0x00000000,
840
0x00000000, 0x0a000000, 0x000000e2,
841
0x0a000020, 0x01000002, 0x01000018,
842
0x40000000, 0x00000418
843
};
844
uint16_t i;
845
uint8_t cp[sizeof(ar5k0007_pwrSettings)];
846
uint32_t pwr_regs[17];
847
848
OS_MEMCPY(pwr_regs, pwr_regs_start, sizeof(pwr_regs));
849
OS_MEMCPY(cp, ar5k0007_pwrSettings, sizeof(cp));
850
851
/* Check the EEPROM tx power calibration settings */
852
if (!setupPowerSettings(ah, chan, cp)) {
853
#ifdef AH_DEBUG
854
ath_hal_printf(ah, "%s: unable to setup power settings\n",
855
__func__);
856
#endif
857
return AH_FALSE;
858
}
859
if (cp[15] < 1 || cp[15] > 5) {
860
#ifdef AH_DEBUG
861
ath_hal_printf(ah, "%s: OB out of range (%u)\n",
862
__func__, cp[15]);
863
#endif
864
return AH_FALSE;
865
}
866
if (cp[16] < 1 || cp[16] > 5) {
867
#ifdef AH_DEBUG
868
ath_hal_printf(ah, "%s: DB out of range (%u)\n",
869
__func__, cp[16]);
870
#endif
871
return AH_FALSE;
872
}
873
874
/* reverse bits of the transmit power array */
875
for (i = 0; i < 7; i++)
876
cp[i] = ath_hal_reverseBits(cp[i], 5);
877
for (i = 7; i < 15; i++)
878
cp[i] = ath_hal_reverseBits(cp[i], 6);
879
880
/* merge transmit power values into the register - quite gross */
881
pwr_regs[0] |= ((cp[1] << 5) & 0xE0) | (cp[0] & 0x1F);
882
pwr_regs[1] |= ((cp[3] << 7) & 0x80) | ((cp[2] << 2) & 0x7C) |
883
((cp[1] >> 3) & 0x03);
884
pwr_regs[2] |= ((cp[4] << 4) & 0xF0) | ((cp[3] >> 1) & 0x0F);
885
pwr_regs[3] |= ((cp[6] << 6) & 0xC0) | ((cp[5] << 1) & 0x3E) |
886
((cp[4] >> 4) & 0x01);
887
pwr_regs[4] |= ((cp[7] << 3) & 0xF8) | ((cp[6] >> 2) & 0x07);
888
pwr_regs[5] |= ((cp[9] << 7) & 0x80) | ((cp[8] << 1) & 0x7E) |
889
((cp[7] >> 5) & 0x01);
890
pwr_regs[6] |= ((cp[10] << 5) & 0xE0) | ((cp[9] >> 1) & 0x1F);
891
pwr_regs[7] |= ((cp[11] << 3) & 0xF8) | ((cp[10] >> 3) & 0x07);
892
pwr_regs[8] |= ((cp[12] << 1) & 0x7E) | ((cp[11] >> 5) & 0x01);
893
pwr_regs[9] |= ((cp[13] << 5) & 0xE0);
894
pwr_regs[10] |= ((cp[14] << 3) & 0xF8) | ((cp[13] >> 3) & 0x07);
895
pwr_regs[11] |= ((cp[14] >> 5) & 0x01);
896
897
/* Set OB */
898
pwr_regs[8] |= (ath_hal_reverseBits(cp[15], 3) << 7) & 0x80;
899
pwr_regs[9] |= (ath_hal_reverseBits(cp[15], 3) >> 1) & 0x03;
900
901
/* Set DB */
902
pwr_regs[9] |= (ath_hal_reverseBits(cp[16], 3) << 2) & 0x1C;
903
904
/* Write the registers */
905
for (i = 0; i < N(pwr_regs)-1; i++)
906
OS_REG_WRITE(ah, 0x0000989c, pwr_regs[i]);
907
/* last write is a flush */
908
OS_REG_WRITE(ah, 0x000098d4, pwr_regs[i]);
909
910
return AH_TRUE;
911
#undef N
912
}
913
914
/*
915
* Takes the MHz channel value and sets the Channel value
916
*
917
* ASSUMES: Writes enabled to analog bus before AGC is active
918
* or by disabling the AGC.
919
*/
920
static HAL_BOOL
921
ar5210SetChannel(struct ath_hal *ah, struct ieee80211_channel *chan)
922
{
923
uint16_t freq = ath_hal_gethwchannel(ah, chan);
924
uint32_t data;
925
926
/* Set the Channel */
927
data = ath_hal_reverseBits((freq - 5120)/10, 5);
928
data = (data << 1) | 0x41;
929
OS_REG_WRITE(ah, AR_PHY(0x27), data);
930
OS_REG_WRITE(ah, AR_PHY(0x30), 0);
931
AH_PRIVATE(ah)->ah_curchan = chan;
932
return AH_TRUE;
933
}
934
935
int16_t
936
ar5210GetNoiseFloor(struct ath_hal *ah)
937
{
938
int16_t nf;
939
940
nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
941
if (nf & 0x100)
942
nf = 0 - ((nf ^ 0x1ff) + 1);
943
return nf;
944
}
945
946
#define NORMAL_NF_THRESH (-72)
947
/*
948
* Peform the noisefloor calibration and check for
949
* any constant channel interference
950
*
951
* Returns: TRUE for a successful noise floor calibration; else FALSE
952
*/
953
HAL_BOOL
954
ar5210CalNoiseFloor(struct ath_hal *ah, HAL_CHANNEL_INTERNAL *ichan)
955
{
956
int32_t nf, nfLoops;
957
958
/* Calibrate the noise floor */
959
OS_REG_WRITE(ah, AR_PHY_AGCCTL,
960
OS_REG_READ(ah, AR_PHY_AGCCTL) | AR_PHY_AGC_NF);
961
962
/* Do not read noise floor until it has done the first update */
963
if (!ath_hal_wait(ah, AR_PHY_AGCCTL, AR_PHY_AGC_NF, 0)) {
964
#ifdef ATH_HAL_DEBUG
965
ath_hal_printf(ah, " -PHY NF Reg state: 0x%x\n",
966
OS_REG_READ(ah, AR_PHY_AGCCTL));
967
ath_hal_printf(ah, " -MAC Reset Reg state: 0x%x\n",
968
OS_REG_READ(ah, AR_RC));
969
ath_hal_printf(ah, " -PHY Active Reg state: 0x%x\n",
970
OS_REG_READ(ah, AR_PHY_ACTIVE));
971
#endif /* ATH_HAL_DEBUG */
972
return AH_FALSE;
973
}
974
975
nf = 0;
976
/* Keep checking until the floor is below the threshold or the nf is done */
977
for (nfLoops = 0; ((nfLoops < 21) && (nf > NORMAL_NF_THRESH)); nfLoops++) {
978
OS_DELAY(1000); /* Sleep for 1 ms */
979
nf = ar5210GetNoiseFloor(ah);
980
}
981
982
if (nf > NORMAL_NF_THRESH) {
983
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: Bad noise cal %d\n",
984
__func__, nf);
985
ichan->rawNoiseFloor = 0;
986
return AH_FALSE;
987
}
988
ichan->rawNoiseFloor = nf;
989
return AH_TRUE;
990
}
991
992
/*
993
* Adjust NF based on statistical values for 5GHz frequencies.
994
*/
995
int16_t
996
ar5210GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
997
{
998
return 0;
999
}
1000
1001
HAL_RFGAIN
1002
ar5210GetRfgain(struct ath_hal *ah)
1003
{
1004
return HAL_RFGAIN_INACTIVE;
1005
}
1006
1007