Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/ath_hal/ar5211/ar5211_reset.c
39566 views
1
/*-
2
* SPDX-License-Identifier: ISC
3
*
4
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5
* Copyright (c) 2002-2006 Atheros Communications, Inc.
6
*
7
* Permission to use, copy, modify, and/or distribute this software for any
8
* purpose with or without fee is hereby granted, provided that the above
9
* copyright notice and this permission notice appear in all copies.
10
*
11
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
*/
19
#include "opt_ah.h"
20
21
/*
22
* Chips specific device attachment and device info collection
23
* Connects Init Reg Vectors, EEPROM Data, and device Functions.
24
*/
25
#include "ah.h"
26
#include "ah_internal.h"
27
#include "ah_devid.h"
28
29
#include "ar5211/ar5211.h"
30
#include "ar5211/ar5211reg.h"
31
#include "ar5211/ar5211phy.h"
32
33
#include "ah_eeprom_v3.h"
34
35
/* Add static register initialization vectors */
36
#include "ar5211/boss.ini"
37
38
/*
39
* Structure to hold 11b tuning information for Beanie/Sombrero
40
* 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
41
*/
42
typedef struct {
43
uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
44
uint32_t channelSelect; /* P[7:4]S[3:0] bits */
45
uint16_t channel5111; /* 11a channel for 5111 */
46
} CHAN_INFO_2GHZ;
47
48
#define CI_2GHZ_INDEX_CORRECTION 19
49
static const CHAN_INFO_2GHZ chan2GHzData[] = {
50
{ 1, 0x46, 96 }, /* 2312 -19 */
51
{ 1, 0x46, 97 }, /* 2317 -18 */
52
{ 1, 0x46, 98 }, /* 2322 -17 */
53
{ 1, 0x46, 99 }, /* 2327 -16 */
54
{ 1, 0x46, 100 }, /* 2332 -15 */
55
{ 1, 0x46, 101 }, /* 2337 -14 */
56
{ 1, 0x46, 102 }, /* 2342 -13 */
57
{ 1, 0x46, 103 }, /* 2347 -12 */
58
{ 1, 0x46, 104 }, /* 2352 -11 */
59
{ 1, 0x46, 105 }, /* 2357 -10 */
60
{ 1, 0x46, 106 }, /* 2362 -9 */
61
{ 1, 0x46, 107 }, /* 2367 -8 */
62
{ 1, 0x46, 108 }, /* 2372 -7 */
63
/* index -6 to 0 are pad to make this a nolookup table */
64
{ 1, 0x46, 116 }, /* -6 */
65
{ 1, 0x46, 116 }, /* -5 */
66
{ 1, 0x46, 116 }, /* -4 */
67
{ 1, 0x46, 116 }, /* -3 */
68
{ 1, 0x46, 116 }, /* -2 */
69
{ 1, 0x46, 116 }, /* -1 */
70
{ 1, 0x46, 116 }, /* 0 */
71
{ 1, 0x46, 116 }, /* 2412 1 */
72
{ 1, 0x46, 117 }, /* 2417 2 */
73
{ 1, 0x46, 118 }, /* 2422 3 */
74
{ 1, 0x46, 119 }, /* 2427 4 */
75
{ 1, 0x46, 120 }, /* 2432 5 */
76
{ 1, 0x46, 121 }, /* 2437 6 */
77
{ 1, 0x46, 122 }, /* 2442 7 */
78
{ 1, 0x46, 123 }, /* 2447 8 */
79
{ 1, 0x46, 124 }, /* 2452 9 */
80
{ 1, 0x46, 125 }, /* 2457 10 */
81
{ 1, 0x46, 126 }, /* 2462 11 */
82
{ 1, 0x46, 127 }, /* 2467 12 */
83
{ 1, 0x46, 128 }, /* 2472 13 */
84
{ 1, 0x44, 124 }, /* 2484 14 */
85
{ 1, 0x46, 136 }, /* 2512 15 */
86
{ 1, 0x46, 140 }, /* 2532 16 */
87
{ 1, 0x46, 144 }, /* 2552 17 */
88
{ 1, 0x46, 148 }, /* 2572 18 */
89
{ 1, 0x46, 152 }, /* 2592 19 */
90
{ 1, 0x46, 156 }, /* 2612 20 */
91
{ 1, 0x46, 160 }, /* 2632 21 */
92
{ 1, 0x46, 164 }, /* 2652 22 */
93
{ 1, 0x46, 168 }, /* 2672 23 */
94
{ 1, 0x46, 172 }, /* 2692 24 */
95
{ 1, 0x46, 176 }, /* 2712 25 */
96
{ 1, 0x46, 180 } /* 2732 26 */
97
};
98
99
/* Power timeouts in usec to wait for chip to wake-up. */
100
#define POWER_UP_TIME 2000
101
102
#define DELAY_PLL_SETTLE 300 /* 300 us */
103
#define DELAY_BASE_ACTIVATE 100 /* 100 us */
104
105
#define NUM_RATES 8
106
107
static HAL_BOOL ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask);
108
static HAL_BOOL ar5211SetChannel(struct ath_hal *,
109
const struct ieee80211_channel *);
110
static int16_t ar5211RunNoiseFloor(struct ath_hal *,
111
uint8_t runTime, int16_t startingNF);
112
static HAL_BOOL ar5211IsNfGood(struct ath_hal *,
113
struct ieee80211_channel *chan);
114
static HAL_BOOL ar5211SetRf6and7(struct ath_hal *,
115
const struct ieee80211_channel *chan);
116
static HAL_BOOL ar5211SetBoardValues(struct ath_hal *,
117
const struct ieee80211_channel *chan);
118
static void ar5211SetPowerTable(struct ath_hal *,
119
PCDACS_EEPROM *pSrcStruct, uint16_t channel);
120
static HAL_BOOL ar5211SetTransmitPower(struct ath_hal *,
121
const struct ieee80211_channel *);
122
static void ar5211SetRateTable(struct ath_hal *,
123
RD_EDGES_POWER *pRdEdgesPower, TRGT_POWER_INFO *pPowerInfo,
124
uint16_t numChannels, const struct ieee80211_channel *chan);
125
static uint16_t ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
126
const PCDACS_EEPROM *pSrcStruct);
127
static HAL_BOOL ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
128
const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
129
static uint16_t ar5211GetInterpolatedValue(uint16_t target,
130
uint16_t srcLeft, uint16_t srcRight,
131
uint16_t targetLeft, uint16_t targetRight, HAL_BOOL scaleUp);
132
static void ar5211GetLowerUpperValues(uint16_t value,
133
const uint16_t *pList, uint16_t listSize,
134
uint16_t *pLowerValue, uint16_t *pUpperValue);
135
static void ar5211GetLowerUpperPcdacs(uint16_t pcdac,
136
uint16_t channel, const PCDACS_EEPROM *pSrcStruct,
137
uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
138
139
static void ar5211SetRfgain(struct ath_hal *, const GAIN_VALUES *);
140
static void ar5211RequestRfgain(struct ath_hal *);
141
static HAL_BOOL ar5211InvalidGainReadback(struct ath_hal *, GAIN_VALUES *);
142
static HAL_BOOL ar5211IsGainAdjustNeeded(struct ath_hal *, const GAIN_VALUES *);
143
static int32_t ar5211AdjustGain(struct ath_hal *, GAIN_VALUES *);
144
static void ar5211SetOperatingMode(struct ath_hal *, int opmode);
145
146
/*
147
* Places the device in and out of reset and then places sane
148
* values in the registers based on EEPROM config, initialization
149
* vectors (as determined by the mode), and station configuration
150
*
151
* bChannelChange is used to preserve DMA/PCU registers across
152
* a HW Reset during channel change.
153
*/
154
HAL_BOOL
155
ar5211Reset(struct ath_hal *ah, HAL_OPMODE opmode,
156
struct ieee80211_channel *chan, HAL_BOOL bChannelChange,
157
HAL_RESET_TYPE resetType,
158
HAL_STATUS *status)
159
{
160
uint32_t softLedCfg, softLedState;
161
#define N(a) (sizeof (a) /sizeof (a[0]))
162
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
163
struct ath_hal_5211 *ahp = AH5211(ah);
164
HAL_CHANNEL_INTERNAL *ichan;
165
uint32_t i, ledstate;
166
HAL_STATUS ecode;
167
int q;
168
169
uint32_t data, synthDelay;
170
uint32_t macStaId1;
171
uint16_t modesIndex = 0, freqIndex = 0;
172
uint32_t saveFrameSeqCount[AR_NUM_DCU];
173
uint32_t saveTsfLow = 0, saveTsfHigh = 0;
174
uint32_t saveDefAntenna;
175
176
HALDEBUG(ah, HAL_DEBUG_RESET,
177
"%s: opmode %u channel %u/0x%x %s channel\n",
178
__func__, opmode, chan->ic_freq, chan->ic_flags,
179
bChannelChange ? "change" : "same");
180
181
OS_MARK(ah, AH_MARK_RESET, bChannelChange);
182
/*
183
* Map public channel to private.
184
*/
185
ichan = ath_hal_checkchannel(ah, chan);
186
if (ichan == AH_NULL)
187
FAIL(HAL_EINVAL);
188
switch (opmode) {
189
case HAL_M_STA:
190
case HAL_M_IBSS:
191
case HAL_M_HOSTAP:
192
case HAL_M_MONITOR:
193
break;
194
default:
195
HALDEBUG(ah, HAL_DEBUG_ANY,
196
"%s: invalid operating mode %u\n", __func__, opmode);
197
FAIL(HAL_EINVAL);
198
break;
199
}
200
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3);
201
202
/* Preserve certain DMA hardware registers on a channel change */
203
if (bChannelChange) {
204
/*
205
* Need to save/restore the TSF because of an issue
206
* that accelerates the TSF during a chip reset.
207
*
208
* We could use system timer routines to more
209
* accurately restore the TSF, but
210
* 1. Timer routines on certain platforms are
211
* not accurate enough (e.g. 1 ms resolution).
212
* 2. It would still not be accurate.
213
*
214
* The most important aspect of this workaround,
215
* is that, after reset, the TSF is behind
216
* other STAs TSFs. This will allow the STA to
217
* properly resynchronize its TSF in adhoc mode.
218
*/
219
saveTsfLow = OS_REG_READ(ah, AR_TSF_L32);
220
saveTsfHigh = OS_REG_READ(ah, AR_TSF_U32);
221
222
/* Read frame sequence count */
223
if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
224
saveFrameSeqCount[0] = OS_REG_READ(ah, AR_D0_SEQNUM);
225
} else {
226
for (i = 0; i < AR_NUM_DCU; i++)
227
saveFrameSeqCount[i] = OS_REG_READ(ah, AR_DSEQNUM(i));
228
}
229
if (!IEEE80211_IS_CHAN_DFS(chan))
230
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
231
}
232
233
/*
234
* Preserve the antenna on a channel change
235
*/
236
saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
237
if (saveDefAntenna == 0)
238
saveDefAntenna = 1;
239
240
/* Save hardware flag before chip reset clears the register */
241
macStaId1 = OS_REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
242
243
/* Save led state from pci config register */
244
ledstate = OS_REG_READ(ah, AR_PCICFG) &
245
(AR_PCICFG_LEDCTL | AR_PCICFG_LEDMODE | AR_PCICFG_LEDBLINK |
246
AR_PCICFG_LEDSLOW);
247
softLedCfg = OS_REG_READ(ah, AR_GPIOCR);
248
softLedState = OS_REG_READ(ah, AR_GPIODO);
249
250
if (!ar5211ChipReset(ah, chan)) {
251
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
252
FAIL(HAL_EIO);
253
}
254
255
/* Setup the indices for the next set of register array writes */
256
if (IEEE80211_IS_CHAN_5GHZ(chan)) {
257
freqIndex = 1;
258
if (IEEE80211_IS_CHAN_TURBO(chan))
259
modesIndex = 2;
260
else if (IEEE80211_IS_CHAN_A(chan))
261
modesIndex = 1;
262
else {
263
HALDEBUG(ah, HAL_DEBUG_ANY,
264
"%s: invalid channel %u/0x%x\n",
265
__func__, chan->ic_freq, chan->ic_flags);
266
FAIL(HAL_EINVAL);
267
}
268
} else {
269
freqIndex = 2;
270
if (IEEE80211_IS_CHAN_B(chan))
271
modesIndex = 3;
272
else if (IEEE80211_IS_CHAN_PUREG(chan))
273
modesIndex = 4;
274
else {
275
HALDEBUG(ah, HAL_DEBUG_ANY,
276
"%s: invalid channel %u/0x%x\n",
277
__func__, chan->ic_freq, chan->ic_flags);
278
FAIL(HAL_EINVAL);
279
}
280
}
281
282
/* Set correct Baseband to analog shift setting to access analog chips. */
283
if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
284
OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000007);
285
} else {
286
OS_REG_WRITE(ah, AR_PHY_BASE, 0x00000047);
287
}
288
289
/* Write parameters specific to AR5211 */
290
if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
291
if (IEEE80211_IS_CHAN_2GHZ(chan) &&
292
AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1) {
293
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
294
uint32_t ob2GHz, db2GHz;
295
296
if (IEEE80211_IS_CHAN_CCK(chan)) {
297
ob2GHz = ee->ee_ob2GHz[0];
298
db2GHz = ee->ee_db2GHz[0];
299
} else {
300
ob2GHz = ee->ee_ob2GHz[1];
301
db2GHz = ee->ee_db2GHz[1];
302
}
303
ob2GHz = ath_hal_reverseBits(ob2GHz, 3);
304
db2GHz = ath_hal_reverseBits(db2GHz, 3);
305
ar5211Mode2_4[25][freqIndex] =
306
(ar5211Mode2_4[25][freqIndex] & ~0xC0) |
307
((ob2GHz << 6) & 0xC0);
308
ar5211Mode2_4[26][freqIndex] =
309
(ar5211Mode2_4[26][freqIndex] & ~0x0F) |
310
(((ob2GHz >> 2) & 0x1) |
311
((db2GHz << 1) & 0x0E));
312
}
313
for (i = 0; i < N(ar5211Mode2_4); i++)
314
OS_REG_WRITE(ah, ar5211Mode2_4[i][0],
315
ar5211Mode2_4[i][freqIndex]);
316
}
317
318
/* Write the analog registers 6 and 7 before other config */
319
ar5211SetRf6and7(ah, chan);
320
321
/* Write registers that vary across all modes */
322
for (i = 0; i < N(ar5211Modes); i++)
323
OS_REG_WRITE(ah, ar5211Modes[i][0], ar5211Modes[i][modesIndex]);
324
325
/* Write RFGain Parameters that differ between 2.4 and 5 GHz */
326
for (i = 0; i < N(ar5211BB_RfGain); i++)
327
OS_REG_WRITE(ah, ar5211BB_RfGain[i][0], ar5211BB_RfGain[i][freqIndex]);
328
329
/* Write Common Array Parameters */
330
for (i = 0; i < N(ar5211Common); i++) {
331
uint32_t reg = ar5211Common[i][0];
332
/* On channel change, don't reset the PCU registers */
333
if (!(bChannelChange && (0x8000 <= reg && reg < 0x9000)))
334
OS_REG_WRITE(ah, reg, ar5211Common[i][1]);
335
}
336
337
/* Fix pre-AR5211 register values, this includes AR5311s. */
338
if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
339
/*
340
* The TX and RX latency values have changed locations
341
* within the USEC register in AR5211. Since they're
342
* set via the .ini, for both AR5211 and AR5311, they
343
* are written properly here for AR5311.
344
*/
345
data = OS_REG_READ(ah, AR_USEC);
346
/* Must be 0 for proper write in AR5311 */
347
HALASSERT((data & 0x00700000) == 0);
348
OS_REG_WRITE(ah, AR_USEC,
349
(data & (AR_USEC_M | AR_USEC_32_M | AR5311_USEC_TX_LAT_M)) |
350
((29 << AR5311_USEC_RX_LAT_S) & AR5311_USEC_RX_LAT_M));
351
/* The following registers exist only on AR5311. */
352
OS_REG_WRITE(ah, AR5311_QDCLKGATE, 0);
353
354
/* Set proper ADC & DAC delays for AR5311. */
355
OS_REG_WRITE(ah, 0x00009878, 0x00000008);
356
357
/* Enable the PCU FIFO corruption ECO on AR5311. */
358
OS_REG_WRITE(ah, AR_DIAG_SW,
359
OS_REG_READ(ah, AR_DIAG_SW) | AR5311_DIAG_SW_USE_ECO);
360
}
361
362
/* Restore certain DMA hardware registers on a channel change */
363
if (bChannelChange) {
364
/* Restore TSF */
365
OS_REG_WRITE(ah, AR_TSF_L32, saveTsfLow);
366
OS_REG_WRITE(ah, AR_TSF_U32, saveTsfHigh);
367
368
if (AH_PRIVATE(ah)->ah_macVersion >= AR_SREV_VERSION_OAHU) {
369
OS_REG_WRITE(ah, AR_D0_SEQNUM, saveFrameSeqCount[0]);
370
} else {
371
for (i = 0; i < AR_NUM_DCU; i++)
372
OS_REG_WRITE(ah, AR_DSEQNUM(i), saveFrameSeqCount[i]);
373
}
374
}
375
376
OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
377
OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
378
| macStaId1
379
);
380
ar5211SetOperatingMode(ah, opmode);
381
382
/* Restore previous led state */
383
OS_REG_WRITE(ah, AR_PCICFG, OS_REG_READ(ah, AR_PCICFG) | ledstate);
384
OS_REG_WRITE(ah, AR_GPIOCR, softLedCfg);
385
OS_REG_WRITE(ah, AR_GPIODO, softLedState);
386
387
/* Restore previous antenna */
388
OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
389
390
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
391
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4));
392
393
/* Restore bmiss rssi & count thresholds */
394
OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
395
396
OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
397
398
/*
399
* for pre-Production Oahu only.
400
* Disable clock gating in all DMA blocks. Helps when using
401
* 11B and AES but results in higher power consumption.
402
*/
403
if (AH_PRIVATE(ah)->ah_macVersion == AR_SREV_VERSION_OAHU &&
404
AH_PRIVATE(ah)->ah_macRev < AR_SREV_OAHU_PROD) {
405
OS_REG_WRITE(ah, AR_CFG,
406
OS_REG_READ(ah, AR_CFG) | AR_CFG_CLK_GATE_DIS);
407
}
408
409
/* Setup the transmit power values. */
410
if (!ar5211SetTransmitPower(ah, chan)) {
411
HALDEBUG(ah, HAL_DEBUG_ANY,
412
"%s: error init'ing transmit power\n", __func__);
413
FAIL(HAL_EIO);
414
}
415
416
/*
417
* Configurable OFDM spoofing for 11n compatibility; used
418
* only when operating in station mode.
419
*/
420
if (opmode != HAL_M_HOSTAP &&
421
(AH_PRIVATE(ah)->ah_11nCompat & HAL_DIAG_11N_SERVICES) != 0) {
422
/* NB: override the .ini setting */
423
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
424
AR_PHY_FRAME_CTL_ERR_SERV,
425
MS(AH_PRIVATE(ah)->ah_11nCompat, HAL_DIAG_11N_SERVICES)&1);
426
}
427
428
/* Setup board specific options for EEPROM version 3 */
429
ar5211SetBoardValues(ah, chan);
430
431
if (!ar5211SetChannel(ah, chan)) {
432
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set channel\n",
433
__func__);
434
FAIL(HAL_EIO);
435
}
436
437
/* Activate the PHY */
438
if (AH_PRIVATE(ah)->ah_devid == AR5211_FPGA11B &&
439
IEEE80211_IS_CHAN_2GHZ(chan))
440
OS_REG_WRITE(ah, 0xd808, 0x502); /* required for FPGA */
441
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
442
443
/*
444
* Wait for the frequency synth to settle (synth goes on
445
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
446
* Value is in 100ns increments.
447
*/
448
data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_M;
449
if (IEEE80211_IS_CHAN_CCK(chan)) {
450
synthDelay = (4 * data) / 22;
451
} else {
452
synthDelay = data / 10;
453
}
454
/*
455
* There is an issue if the AP starts the calibration before
456
* the baseband timeout completes. This could result in the
457
* rxclear false triggering. Add an extra delay to ensure this
458
* this does not happen.
459
*/
460
OS_DELAY(synthDelay + DELAY_BASE_ACTIVATE);
461
462
/* Calibrate the AGC and wait for completion. */
463
OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
464
OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_CAL);
465
(void) ath_hal_wait(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL, 0);
466
467
/* Perform noise floor and set status */
468
if (!ar5211CalNoiseFloor(ah, chan)) {
469
if (!IEEE80211_IS_CHAN_CCK(chan))
470
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
471
HALDEBUG(ah, HAL_DEBUG_ANY,
472
"%s: noise floor calibration failed\n", __func__);
473
FAIL(HAL_EIO);
474
}
475
476
/* Start IQ calibration w/ 2^(INIT_IQCAL_LOG_COUNT_MAX+1) samples */
477
if (ahp->ah_calibrationTime != 0) {
478
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4,
479
AR_PHY_TIMING_CTRL4_DO_IQCAL | (INIT_IQCAL_LOG_COUNT_MAX << AR_PHY_TIMING_CTRL4_IQCAL_LOG_COUNT_MAX_S));
480
ahp->ah_bIQCalibration = AH_TRUE;
481
}
482
483
/* set 1:1 QCU to DCU mapping for all queues */
484
for (q = 0; q < AR_NUM_DCU; q++)
485
OS_REG_WRITE(ah, AR_DQCUMASK(q), 1<<q);
486
487
for (q = 0; q < HAL_NUM_TX_QUEUES; q++)
488
ar5211ResetTxQueue(ah, q);
489
490
/* Setup QCU0 transmit interrupt masks (TX_ERR, TX_OK, TX_DESC, TX_URN) */
491
OS_REG_WRITE(ah, AR_IMR_S0,
492
(AR_IMR_S0_QCU_TXOK & AR_QCU_0) |
493
(AR_IMR_S0_QCU_TXDESC & (AR_QCU_0<<AR_IMR_S0_QCU_TXDESC_S)));
494
OS_REG_WRITE(ah, AR_IMR_S1, (AR_IMR_S1_QCU_TXERR & AR_QCU_0));
495
OS_REG_WRITE(ah, AR_IMR_S2, (AR_IMR_S2_QCU_TXURN & AR_QCU_0));
496
497
/*
498
* GBL_EIFS must always be written after writing
499
* to any QCUMASK register.
500
*/
501
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, OS_REG_READ(ah, AR_D_GBL_IFS_EIFS));
502
503
/* Now set up the Interrupt Mask Register and save it for future use */
504
OS_REG_WRITE(ah, AR_IMR, INIT_INTERRUPT_MASK);
505
ahp->ah_maskReg = INIT_INTERRUPT_MASK;
506
507
/* Enable bus error interrupts */
508
OS_REG_WRITE(ah, AR_IMR_S2, OS_REG_READ(ah, AR_IMR_S2) |
509
AR_IMR_S2_MCABT | AR_IMR_S2_SSERR | AR_IMR_S2_DPERR);
510
511
/* Enable interrupts specific to AP */
512
if (opmode == HAL_M_HOSTAP) {
513
OS_REG_WRITE(ah, AR_IMR, OS_REG_READ(ah, AR_IMR) | AR_IMR_MIB);
514
ahp->ah_maskReg |= AR_IMR_MIB;
515
}
516
517
if (AH_PRIVATE(ah)->ah_rfkillEnabled)
518
ar5211EnableRfKill(ah);
519
520
/*
521
* Writing to AR_BEACON will start timers. Hence it should
522
* be the last register to be written. Do not reset tsf, do
523
* not enable beacons at this point, but preserve other values
524
* like beaconInterval.
525
*/
526
OS_REG_WRITE(ah, AR_BEACON,
527
(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_EN | AR_BEACON_RESET_TSF)));
528
529
/* Restore user-specified slot time and timeouts */
530
if (ahp->ah_sifstime != (u_int) -1)
531
ar5211SetSifsTime(ah, ahp->ah_sifstime);
532
if (ahp->ah_slottime != (u_int) -1)
533
ar5211SetSlotTime(ah, ahp->ah_slottime);
534
if (ahp->ah_acktimeout != (u_int) -1)
535
ar5211SetAckTimeout(ah, ahp->ah_acktimeout);
536
if (ahp->ah_ctstimeout != (u_int) -1)
537
ar5211SetCTSTimeout(ah, ahp->ah_ctstimeout);
538
if (AH_PRIVATE(ah)->ah_diagreg != 0)
539
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
540
541
AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
542
543
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
544
545
return AH_TRUE;
546
bad:
547
if (status != AH_NULL)
548
*status = ecode;
549
return AH_FALSE;
550
#undef FAIL
551
#undef N
552
}
553
554
/*
555
* Places the PHY and Radio chips into reset. A full reset
556
* must be called to leave this state. The PCI/MAC/PCU are
557
* not placed into reset as we must receive interrupt to
558
* re-enable the hardware.
559
*/
560
HAL_BOOL
561
ar5211PhyDisable(struct ath_hal *ah)
562
{
563
return ar5211SetResetReg(ah, AR_RC_BB);
564
}
565
566
/*
567
* Places all of hardware into reset
568
*/
569
HAL_BOOL
570
ar5211Disable(struct ath_hal *ah)
571
{
572
if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
573
return AH_FALSE;
574
/*
575
* Reset the HW - PCI must be reset after the rest of the
576
* device has been reset.
577
*/
578
if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
579
return AH_FALSE;
580
OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
581
582
return AH_TRUE;
583
}
584
585
/*
586
* Places the hardware into reset and then pulls it out of reset
587
*
588
* Only write the PLL if we're changing to or from CCK mode
589
*
590
* Attach calls with channelFlags = 0, as the coldreset should have
591
* us in the correct mode and we cannot check the hwchannel flags.
592
*/
593
HAL_BOOL
594
ar5211ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan)
595
{
596
if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
597
return AH_FALSE;
598
599
/* NB: called from attach with chan null */
600
if (chan != AH_NULL) {
601
/* Set CCK and Turbo modes correctly */
602
OS_REG_WRITE(ah, AR_PHY_TURBO, IEEE80211_IS_CHAN_TURBO(chan) ?
603
AR_PHY_FC_TURBO_MODE | AR_PHY_FC_TURBO_SHORT : 0);
604
if (IEEE80211_IS_CHAN_B(chan)) {
605
OS_REG_WRITE(ah, AR5211_PHY_MODE,
606
AR5211_PHY_MODE_CCK | AR5211_PHY_MODE_RF2GHZ);
607
OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_44);
608
/* Wait for the PLL to settle */
609
OS_DELAY(DELAY_PLL_SETTLE);
610
} else if (AH_PRIVATE(ah)->ah_devid == AR5211_DEVID) {
611
OS_REG_WRITE(ah, AR_PHY_PLL_CTL, AR_PHY_PLL_CTL_40);
612
OS_DELAY(DELAY_PLL_SETTLE);
613
OS_REG_WRITE(ah, AR5211_PHY_MODE,
614
AR5211_PHY_MODE_OFDM | (IEEE80211_IS_CHAN_2GHZ(chan) ?
615
AR5211_PHY_MODE_RF2GHZ :
616
AR5211_PHY_MODE_RF5GHZ));
617
}
618
}
619
620
/*
621
* Reset the HW - PCI must be reset after the rest of the
622
* device has been reset
623
*/
624
if (!ar5211SetResetReg(ah, AR_RC_MAC | AR_RC_BB | AR_RC_PCI))
625
return AH_FALSE;
626
OS_DELAY(2100); /* 8245 @ 96Mhz hangs with 2000us. */
627
628
/* Bring out of sleep mode (AGAIN) */
629
if (!ar5211SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
630
return AH_FALSE;
631
632
/* Clear warm reset register */
633
return ar5211SetResetReg(ah, 0);
634
}
635
636
/*
637
* Recalibrate the lower PHY chips to account for temperature/environment
638
* changes.
639
*/
640
HAL_BOOL
641
ar5211PerCalibrationN(struct ath_hal *ah, struct ieee80211_channel *chan,
642
u_int chainMask, HAL_BOOL longCal, HAL_BOOL *isCalDone)
643
{
644
struct ath_hal_5211 *ahp = AH5211(ah);
645
HAL_CHANNEL_INTERNAL *ichan;
646
int32_t qCoff, qCoffDenom;
647
uint32_t data;
648
int32_t iqCorrMeas;
649
int32_t iCoff, iCoffDenom;
650
uint32_t powerMeasQ, powerMeasI;
651
652
ichan = ath_hal_checkchannel(ah, chan);
653
if (ichan == AH_NULL) {
654
HALDEBUG(ah, HAL_DEBUG_ANY,
655
"%s: invalid channel %u/0x%x; no mapping\n",
656
__func__, chan->ic_freq, chan->ic_flags);
657
return AH_FALSE;
658
}
659
/* IQ calibration in progress. Check to see if it has finished. */
660
if (ahp->ah_bIQCalibration &&
661
!(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) & AR_PHY_TIMING_CTRL4_DO_IQCAL)) {
662
/* IQ Calibration has finished. */
663
ahp->ah_bIQCalibration = AH_FALSE;
664
665
/* Read calibration results. */
666
powerMeasI = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_I);
667
powerMeasQ = OS_REG_READ(ah, AR_PHY_IQCAL_RES_PWR_MEAS_Q);
668
iqCorrMeas = OS_REG_READ(ah, AR_PHY_IQCAL_RES_IQ_CORR_MEAS);
669
670
/*
671
* Prescale these values to remove 64-bit operation requirement at the loss
672
* of a little precision.
673
*/
674
iCoffDenom = (powerMeasI / 2 + powerMeasQ / 2) / 128;
675
qCoffDenom = powerMeasQ / 64;
676
677
/* Protect against divide-by-0. */
678
if (iCoffDenom != 0 && qCoffDenom != 0) {
679
iCoff = (-iqCorrMeas) / iCoffDenom;
680
/* IQCORR_Q_I_COFF is a signed 6 bit number */
681
iCoff = iCoff & 0x3f;
682
683
qCoff = ((int32_t)powerMeasI / qCoffDenom) - 64;
684
/* IQCORR_Q_Q_COFF is a signed 5 bit number */
685
qCoff = qCoff & 0x1f;
686
687
HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasI = 0x%08x\n",
688
powerMeasI);
689
HALDEBUG(ah, HAL_DEBUG_PERCAL, "powerMeasQ = 0x%08x\n",
690
powerMeasQ);
691
HALDEBUG(ah, HAL_DEBUG_PERCAL, "iqCorrMeas = 0x%08x\n",
692
iqCorrMeas);
693
HALDEBUG(ah, HAL_DEBUG_PERCAL, "iCoff = %d\n",
694
iCoff);
695
HALDEBUG(ah, HAL_DEBUG_PERCAL, "qCoff = %d\n",
696
qCoff);
697
698
/* Write IQ */
699
data = OS_REG_READ(ah, AR_PHY_TIMING_CTRL4) |
700
AR_PHY_TIMING_CTRL4_IQCORR_ENABLE |
701
(((uint32_t)iCoff) << AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF_S) |
702
((uint32_t)qCoff);
703
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4, data);
704
}
705
}
706
*isCalDone = !ahp->ah_bIQCalibration;
707
708
if (longCal) {
709
/* Perform noise floor and set status */
710
if (!ar5211IsNfGood(ah, chan)) {
711
/* report up and clear internal state */
712
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
713
return AH_FALSE;
714
}
715
if (!ar5211CalNoiseFloor(ah, chan)) {
716
/*
717
* Delay 5ms before retrying the noise floor
718
* just to make sure, as we are in an error
719
* condition here.
720
*/
721
OS_DELAY(5000);
722
if (!ar5211CalNoiseFloor(ah, chan)) {
723
if (!IEEE80211_IS_CHAN_CCK(chan))
724
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
725
return AH_FALSE;
726
}
727
}
728
ar5211RequestRfgain(ah);
729
}
730
return AH_TRUE;
731
}
732
733
HAL_BOOL
734
ar5211PerCalibration(struct ath_hal *ah, struct ieee80211_channel *chan,
735
HAL_BOOL *isIQdone)
736
{
737
return ar5211PerCalibrationN(ah, chan, 0x1, AH_TRUE, isIQdone);
738
}
739
740
HAL_BOOL
741
ar5211ResetCalValid(struct ath_hal *ah, const struct ieee80211_channel *chan)
742
{
743
/* XXX */
744
return AH_TRUE;
745
}
746
747
/*
748
* Writes the given reset bit mask into the reset register
749
*/
750
static HAL_BOOL
751
ar5211SetResetReg(struct ath_hal *ah, uint32_t resetMask)
752
{
753
uint32_t mask = resetMask ? resetMask : ~0;
754
HAL_BOOL rt;
755
756
(void) OS_REG_READ(ah, AR_RXDP);/* flush any pending MMR writes */
757
OS_REG_WRITE(ah, AR_RC, resetMask);
758
759
/* need to wait at least 128 clocks when reseting PCI before read */
760
OS_DELAY(15);
761
762
resetMask &= AR_RC_MAC | AR_RC_BB;
763
mask &= AR_RC_MAC | AR_RC_BB;
764
rt = ath_hal_wait(ah, AR_RC, mask, resetMask);
765
if ((resetMask & AR_RC_MAC) == 0) {
766
if (isBigEndian()) {
767
/*
768
* Set CFG, little-endian for descriptor accesses.
769
*/
770
mask = INIT_CONFIG_STATUS | AR_CFG_SWTD | AR_CFG_SWRD;
771
OS_REG_WRITE(ah, AR_CFG, mask);
772
} else
773
OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
774
}
775
return rt;
776
}
777
778
/*
779
* Takes the MHz channel value and sets the Channel value
780
*
781
* ASSUMES: Writes enabled to analog bus before AGC is active
782
* or by disabling the AGC.
783
*/
784
static HAL_BOOL
785
ar5211SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
786
{
787
uint32_t refClk, reg32, data2111;
788
int16_t chan5111, chanIEEE;
789
790
chanIEEE = chan->ic_ieee;
791
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
792
const CHAN_INFO_2GHZ* ci =
793
&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
794
795
data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
796
<< 5)
797
| (ci->refClkSel << 4);
798
chan5111 = ci->channel5111;
799
} else {
800
data2111 = 0;
801
chan5111 = chanIEEE;
802
}
803
804
/* Rest of the code is common for 5 GHz and 2.4 GHz. */
805
if (chan5111 >= 145 || (chan5111 & 0x1)) {
806
reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xFF;
807
refClk = 1;
808
} else {
809
reg32 = ath_hal_reverseBits(((chan5111 - 24) / 2), 8) & 0xFF;
810
refClk = 0;
811
}
812
813
reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
814
OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
815
reg32 >>= 8;
816
OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
817
818
AH_PRIVATE(ah)->ah_curchan = chan;
819
return AH_TRUE;
820
}
821
822
static int16_t
823
ar5211GetNoiseFloor(struct ath_hal *ah)
824
{
825
int16_t nf;
826
827
nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
828
if (nf & 0x100)
829
nf = 0 - ((nf ^ 0x1ff) + 1);
830
return nf;
831
}
832
833
/*
834
* Peform the noisefloor calibration for the length of time set
835
* in runTime (valid values 1 to 7)
836
*
837
* Returns: The NF value at the end of the given time (or 0 for failure)
838
*/
839
int16_t
840
ar5211RunNoiseFloor(struct ath_hal *ah, uint8_t runTime, int16_t startingNF)
841
{
842
int i, searchTime;
843
844
HALASSERT(runTime <= 7);
845
846
/* Setup noise floor run time and starting value */
847
OS_REG_WRITE(ah, AR_PHY(25),
848
(OS_REG_READ(ah, AR_PHY(25)) & ~0xFFF) |
849
((runTime << 9) & 0xE00) | (startingNF & 0x1FF));
850
/* Calibrate the noise floor */
851
OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
852
OS_REG_READ(ah, AR_PHY_AGC_CONTROL) | AR_PHY_AGC_CONTROL_NF);
853
854
/* Compute the required amount of searchTime needed to finish NF */
855
if (runTime == 0) {
856
/* 8 search windows * 6.4us each */
857
searchTime = 8 * 7;
858
} else {
859
/* 512 * runtime search windows * 6.4us each */
860
searchTime = (runTime * 512) * 7;
861
}
862
863
/*
864
* Do not read noise floor until it has been updated
865
*
866
* As a guesstimate - we may only get 1/60th the time on
867
* the air to see search windows in a heavily congested
868
* network (40 us every 2400 us of time)
869
*/
870
for (i = 0; i < 60; i++) {
871
if ((OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) == 0)
872
break;
873
OS_DELAY(searchTime);
874
}
875
if (i >= 60) {
876
HALDEBUG(ah, HAL_DEBUG_NFCAL,
877
"NF with runTime %d failed to end on channel %d\n",
878
runTime, AH_PRIVATE(ah)->ah_curchan->ic_freq);
879
HALDEBUG(ah, HAL_DEBUG_NFCAL,
880
" PHY NF Reg state: 0x%x\n",
881
OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
882
HALDEBUG(ah, HAL_DEBUG_NFCAL,
883
" PHY Active Reg state: 0x%x\n",
884
OS_REG_READ(ah, AR_PHY_ACTIVE));
885
return 0;
886
}
887
888
return ar5211GetNoiseFloor(ah);
889
}
890
891
static HAL_BOOL
892
getNoiseFloorThresh(struct ath_hal *ah, const struct ieee80211_channel *chan,
893
int16_t *nft)
894
{
895
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
896
897
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
898
case IEEE80211_CHAN_A:
899
*nft = ee->ee_noiseFloorThresh[0];
900
break;
901
case IEEE80211_CHAN_B:
902
*nft = ee->ee_noiseFloorThresh[1];
903
break;
904
case IEEE80211_CHAN_PUREG:
905
*nft = ee->ee_noiseFloorThresh[2];
906
break;
907
default:
908
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
909
__func__, chan->ic_flags);
910
return AH_FALSE;
911
}
912
return AH_TRUE;
913
}
914
915
/*
916
* Read the NF and check it against the noise floor threshold
917
*
918
* Returns: TRUE if the NF is good
919
*/
920
static HAL_BOOL
921
ar5211IsNfGood(struct ath_hal *ah, struct ieee80211_channel *chan)
922
{
923
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
924
int16_t nf, nfThresh;
925
926
if (!getNoiseFloorThresh(ah, chan, &nfThresh))
927
return AH_FALSE;
928
if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
929
HALDEBUG(ah, HAL_DEBUG_ANY,
930
"%s: NF did not complete in calibration window\n", __func__);
931
}
932
nf = ar5211GetNoiseFloor(ah);
933
if (nf > nfThresh) {
934
HALDEBUG(ah, HAL_DEBUG_ANY,
935
"%s: noise floor failed; detected %u, threshold %u\n",
936
__func__, nf, nfThresh);
937
/*
938
* NB: Don't discriminate 2.4 vs 5Ghz, if this
939
* happens it indicates a problem regardless
940
* of the band.
941
*/
942
chan->ic_state |= IEEE80211_CHANSTATE_CWINT;
943
}
944
ichan->rawNoiseFloor = nf;
945
return (nf <= nfThresh);
946
}
947
948
/*
949
* Peform the noisefloor calibration and check for any constant channel
950
* interference.
951
*
952
* NOTE: preAR5211 have a lengthy carrier wave detection process - hence
953
* it is if'ed for MKK regulatory domain only.
954
*
955
* Returns: TRUE for a successful noise floor calibration; else FALSE
956
*/
957
HAL_BOOL
958
ar5211CalNoiseFloor(struct ath_hal *ah, const struct ieee80211_channel *chan)
959
{
960
#define N(a) (sizeof (a) / sizeof (a[0]))
961
/* Check for Carrier Wave interference in MKK regulatory zone */
962
if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU &&
963
(chan->ic_flags & CHANNEL_NFCREQUIRED)) {
964
static const uint8_t runtime[3] = { 0, 2, 7 };
965
HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
966
int16_t nf, nfThresh;
967
int i;
968
969
if (!getNoiseFloorThresh(ah, chan, &nfThresh))
970
return AH_FALSE;
971
/*
972
* Run a quick noise floor that will hopefully
973
* complete (decrease delay time).
974
*/
975
for (i = 0; i < N(runtime); i++) {
976
nf = ar5211RunNoiseFloor(ah, runtime[i], 0);
977
if (nf > nfThresh) {
978
HALDEBUG(ah, HAL_DEBUG_ANY,
979
"%s: run failed with %u > threshold %u "
980
"(runtime %u)\n", __func__,
981
nf, nfThresh, runtime[i]);
982
ichan->rawNoiseFloor = 0;
983
} else
984
ichan->rawNoiseFloor = nf;
985
}
986
return (i <= N(runtime));
987
} else {
988
/* Calibrate the noise floor */
989
OS_REG_WRITE(ah, AR_PHY_AGC_CONTROL,
990
OS_REG_READ(ah, AR_PHY_AGC_CONTROL) |
991
AR_PHY_AGC_CONTROL_NF);
992
}
993
return AH_TRUE;
994
#undef N
995
}
996
997
/*
998
* Adjust NF based on statistical values for 5GHz frequencies.
999
*/
1000
int16_t
1001
ar5211GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
1002
{
1003
static const struct {
1004
uint16_t freqLow;
1005
int16_t adjust;
1006
} adjust5111[] = {
1007
{ 5790, 11 }, /* NB: ordered high -> low */
1008
{ 5730, 10 },
1009
{ 5690, 9 },
1010
{ 5660, 8 },
1011
{ 5610, 7 },
1012
{ 5530, 5 },
1013
{ 5450, 4 },
1014
{ 5379, 2 },
1015
{ 5209, 0 }, /* XXX? bogus but doesn't matter */
1016
{ 0, 1 },
1017
};
1018
int i;
1019
1020
for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
1021
;
1022
/* NB: placeholder for 5111's less severe requirement */
1023
return adjust5111[i].adjust / 3;
1024
}
1025
1026
/*
1027
* Reads EEPROM header info from device structure and programs
1028
* analog registers 6 and 7
1029
*
1030
* REQUIRES: Access to the analog device
1031
*/
1032
static HAL_BOOL
1033
ar5211SetRf6and7(struct ath_hal *ah, const struct ieee80211_channel *chan)
1034
{
1035
#define N(a) (sizeof (a) / sizeof (a[0]))
1036
uint16_t freq = ath_hal_gethwchannel(ah, chan);
1037
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1038
struct ath_hal_5211 *ahp = AH5211(ah);
1039
uint16_t rfXpdGain, rfPloSel, rfPwdXpd;
1040
uint16_t tempOB, tempDB;
1041
uint16_t freqIndex;
1042
int i;
1043
1044
freqIndex = IEEE80211_IS_CHAN_2GHZ(chan) ? 2 : 1;
1045
1046
/*
1047
* TODO: This array mode correspondes with the index used
1048
* during the read.
1049
* For readability, this should be changed to an enum or #define
1050
*/
1051
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1052
case IEEE80211_CHAN_A:
1053
if (freq > 4000 && freq < 5260) {
1054
tempOB = ee->ee_ob1;
1055
tempDB = ee->ee_db1;
1056
} else if (freq >= 5260 && freq < 5500) {
1057
tempOB = ee->ee_ob2;
1058
tempDB = ee->ee_db2;
1059
} else if (freq >= 5500 && freq < 5725) {
1060
tempOB = ee->ee_ob3;
1061
tempDB = ee->ee_db3;
1062
} else if (freq >= 5725) {
1063
tempOB = ee->ee_ob4;
1064
tempDB = ee->ee_db4;
1065
} else {
1066
/* XXX panic?? */
1067
tempOB = tempDB = 0;
1068
}
1069
1070
rfXpdGain = ee->ee_xgain[0];
1071
rfPloSel = ee->ee_xpd[0];
1072
rfPwdXpd = !ee->ee_xpd[0];
1073
1074
ar5211Rf6n7[5][freqIndex] =
1075
(ar5211Rf6n7[5][freqIndex] & ~0x10000000) |
1076
(ee->ee_cornerCal.pd84<< 28);
1077
ar5211Rf6n7[6][freqIndex] =
1078
(ar5211Rf6n7[6][freqIndex] & ~0x04000000) |
1079
(ee->ee_cornerCal.pd90 << 26);
1080
ar5211Rf6n7[21][freqIndex] =
1081
(ar5211Rf6n7[21][freqIndex] & ~0x08) |
1082
(ee->ee_cornerCal.gSel << 3);
1083
break;
1084
case IEEE80211_CHAN_B:
1085
tempOB = ee->ee_obFor24;
1086
tempDB = ee->ee_dbFor24;
1087
rfXpdGain = ee->ee_xgain[1];
1088
rfPloSel = ee->ee_xpd[1];
1089
rfPwdXpd = !ee->ee_xpd[1];
1090
break;
1091
case IEEE80211_CHAN_PUREG:
1092
tempOB = ee->ee_obFor24g;
1093
tempDB = ee->ee_dbFor24g;
1094
rfXpdGain = ee->ee_xgain[2];
1095
rfPloSel = ee->ee_xpd[2];
1096
rfPwdXpd = !ee->ee_xpd[2];
1097
break;
1098
default:
1099
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1100
__func__, chan->ic_flags);
1101
return AH_FALSE;
1102
}
1103
1104
HALASSERT(1 <= tempOB && tempOB <= 5);
1105
HALASSERT(1 <= tempDB && tempDB <= 5);
1106
1107
/* Set rfXpdGain and rfPwdXpd */
1108
ar5211Rf6n7[11][freqIndex] = (ar5211Rf6n7[11][freqIndex] & ~0xC0) |
1109
(((ath_hal_reverseBits(rfXpdGain, 4) << 7) | (rfPwdXpd << 6)) & 0xC0);
1110
ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x07) |
1111
((ath_hal_reverseBits(rfXpdGain, 4) >> 1) & 0x07);
1112
1113
/* Set OB */
1114
ar5211Rf6n7[12][freqIndex] = (ar5211Rf6n7[12][freqIndex] & ~0x80) |
1115
((ath_hal_reverseBits(tempOB, 3) << 7) & 0x80);
1116
ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x03) |
1117
((ath_hal_reverseBits(tempOB, 3) >> 1) & 0x03);
1118
1119
/* Set DB */
1120
ar5211Rf6n7[13][freqIndex] = (ar5211Rf6n7[13][freqIndex] & ~0x1C) |
1121
((ath_hal_reverseBits(tempDB, 3) << 2) & 0x1C);
1122
1123
/* Set rfPloSel */
1124
ar5211Rf6n7[17][freqIndex] = (ar5211Rf6n7[17][freqIndex] & ~0x08) |
1125
((rfPloSel << 3) & 0x08);
1126
1127
/* Write the Rf registers 6 & 7 */
1128
for (i = 0; i < N(ar5211Rf6n7); i++)
1129
OS_REG_WRITE(ah, ar5211Rf6n7[i][0], ar5211Rf6n7[i][freqIndex]);
1130
1131
/* Now that we have reprogrammed rfgain value, clear the flag. */
1132
ahp->ah_rfgainState = RFGAIN_INACTIVE;
1133
1134
return AH_TRUE;
1135
#undef N
1136
}
1137
1138
HAL_BOOL
1139
ar5211SetAntennaSwitchInternal(struct ath_hal *ah, HAL_ANT_SETTING settings,
1140
const struct ieee80211_channel *chan)
1141
{
1142
#define ANT_SWITCH_TABLE1 0x9960
1143
#define ANT_SWITCH_TABLE2 0x9964
1144
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1145
struct ath_hal_5211 *ahp = AH5211(ah);
1146
uint32_t antSwitchA, antSwitchB;
1147
int ix;
1148
1149
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1150
case IEEE80211_CHAN_A: ix = 0; break;
1151
case IEEE80211_CHAN_B: ix = 1; break;
1152
case IEEE80211_CHAN_PUREG: ix = 2; break;
1153
default:
1154
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1155
__func__, chan->ic_flags);
1156
return AH_FALSE;
1157
}
1158
1159
antSwitchA = ee->ee_antennaControl[1][ix]
1160
| (ee->ee_antennaControl[2][ix] << 6)
1161
| (ee->ee_antennaControl[3][ix] << 12)
1162
| (ee->ee_antennaControl[4][ix] << 18)
1163
| (ee->ee_antennaControl[5][ix] << 24)
1164
;
1165
antSwitchB = ee->ee_antennaControl[6][ix]
1166
| (ee->ee_antennaControl[7][ix] << 6)
1167
| (ee->ee_antennaControl[8][ix] << 12)
1168
| (ee->ee_antennaControl[9][ix] << 18)
1169
| (ee->ee_antennaControl[10][ix] << 24)
1170
;
1171
/*
1172
* For fixed antenna, give the same setting for both switch banks
1173
*/
1174
switch (settings) {
1175
case HAL_ANT_FIXED_A:
1176
antSwitchB = antSwitchA;
1177
break;
1178
case HAL_ANT_FIXED_B:
1179
antSwitchA = antSwitchB;
1180
break;
1181
case HAL_ANT_VARIABLE:
1182
break;
1183
default:
1184
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad antenna setting %u\n",
1185
__func__, settings);
1186
return AH_FALSE;
1187
}
1188
ahp->ah_diversityControl = settings;
1189
1190
OS_REG_WRITE(ah, ANT_SWITCH_TABLE1, antSwitchA);
1191
OS_REG_WRITE(ah, ANT_SWITCH_TABLE2, antSwitchB);
1192
1193
return AH_TRUE;
1194
#undef ANT_SWITCH_TABLE1
1195
#undef ANT_SWITCH_TABLE2
1196
}
1197
1198
/*
1199
* Reads EEPROM header info and programs the device for correct operation
1200
* given the channel value
1201
*/
1202
static HAL_BOOL
1203
ar5211SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1204
{
1205
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1206
struct ath_hal_5211 *ahp = AH5211(ah);
1207
int arrayMode, falseDectectBackoff;
1208
1209
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1210
case IEEE80211_CHAN_A:
1211
arrayMode = 0;
1212
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
1213
AR_PHY_FRAME_CTL_TX_CLIP, ee->ee_cornerCal.clip);
1214
break;
1215
case IEEE80211_CHAN_B:
1216
arrayMode = 1;
1217
break;
1218
case IEEE80211_CHAN_PUREG:
1219
arrayMode = 2;
1220
break;
1221
default:
1222
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1223
__func__, chan->ic_flags);
1224
return AH_FALSE;
1225
}
1226
1227
/* Set the antenna register(s) correctly for the chip revision */
1228
if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
1229
OS_REG_WRITE(ah, AR_PHY(68),
1230
(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFFFC) | 0x3);
1231
} else {
1232
OS_REG_WRITE(ah, AR_PHY(68),
1233
(OS_REG_READ(ah, AR_PHY(68)) & 0xFFFFFC06) |
1234
(ee->ee_antennaControl[0][arrayMode] << 4) | 0x1);
1235
1236
ar5211SetAntennaSwitchInternal(ah,
1237
ahp->ah_diversityControl, chan);
1238
1239
/* Set the Noise Floor Thresh on ar5211 devices */
1240
OS_REG_WRITE(ah, AR_PHY_BASE + (90 << 2),
1241
(ee->ee_noiseFloorThresh[arrayMode] & 0x1FF) | (1<<9));
1242
}
1243
OS_REG_WRITE(ah, AR_PHY_BASE + (17 << 2),
1244
(OS_REG_READ(ah, AR_PHY_BASE + (17 << 2)) & 0xFFFFC07F) |
1245
((ee->ee_switchSettling[arrayMode] << 7) & 0x3F80));
1246
OS_REG_WRITE(ah, AR_PHY_BASE + (18 << 2),
1247
(OS_REG_READ(ah, AR_PHY_BASE + (18 << 2)) & 0xFFFC0FFF) |
1248
((ee->ee_txrxAtten[arrayMode] << 12) & 0x3F000));
1249
OS_REG_WRITE(ah, AR_PHY_BASE + (20 << 2),
1250
(OS_REG_READ(ah, AR_PHY_BASE + (20 << 2)) & 0xFFFF0000) |
1251
((ee->ee_pgaDesiredSize[arrayMode] << 8) & 0xFF00) |
1252
(ee->ee_adcDesiredSize[arrayMode] & 0x00FF));
1253
OS_REG_WRITE(ah, AR_PHY_BASE + (13 << 2),
1254
(ee->ee_txEndToXPAOff[arrayMode] << 24) |
1255
(ee->ee_txEndToXPAOff[arrayMode] << 16) |
1256
(ee->ee_txFrameToXPAOn[arrayMode] << 8) |
1257
ee->ee_txFrameToXPAOn[arrayMode]);
1258
OS_REG_WRITE(ah, AR_PHY_BASE + (10 << 2),
1259
(OS_REG_READ(ah, AR_PHY_BASE + (10 << 2)) & 0xFFFF00FF) |
1260
(ee->ee_txEndToXLNAOn[arrayMode] << 8));
1261
OS_REG_WRITE(ah, AR_PHY_BASE + (25 << 2),
1262
(OS_REG_READ(ah, AR_PHY_BASE + (25 << 2)) & 0xFFF80FFF) |
1263
((ee->ee_thresh62[arrayMode] << 12) & 0x7F000));
1264
1265
#define NO_FALSE_DETECT_BACKOFF 2
1266
#define CB22_FALSE_DETECT_BACKOFF 6
1267
/*
1268
* False detect backoff - suspected 32 MHz spur causes
1269
* false detects in OFDM, causing Tx Hangs. Decrease
1270
* weak signal sensitivity for this card.
1271
*/
1272
falseDectectBackoff = NO_FALSE_DETECT_BACKOFF;
1273
if (AH_PRIVATE(ah)->ah_eeversion < AR_EEPROM_VER3_3) {
1274
if (AH_PRIVATE(ah)->ah_subvendorid == 0x1022 &&
1275
IEEE80211_IS_CHAN_OFDM(chan))
1276
falseDectectBackoff += CB22_FALSE_DETECT_BACKOFF;
1277
} else {
1278
uint16_t freq = ath_hal_gethwchannel(ah, chan);
1279
uint32_t remainder = freq % 32;
1280
1281
if (remainder && (remainder < 10 || remainder > 22))
1282
falseDectectBackoff += ee->ee_falseDetectBackoff[arrayMode];
1283
}
1284
OS_REG_WRITE(ah, 0x9924,
1285
(OS_REG_READ(ah, 0x9924) & 0xFFFFFF01)
1286
| ((falseDectectBackoff << 1) & 0xF7));
1287
1288
return AH_TRUE;
1289
#undef NO_FALSE_DETECT_BACKOFF
1290
#undef CB22_FALSE_DETECT_BACKOFF
1291
}
1292
1293
/*
1294
* Set the limit on the overall output power. Used for dynamic
1295
* transmit power control and the like.
1296
*
1297
* NOTE: The power is passed in is in units of 0.5 dBm.
1298
*/
1299
HAL_BOOL
1300
ar5211SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
1301
{
1302
1303
AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
1304
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, limit);
1305
return AH_TRUE;
1306
}
1307
1308
/*
1309
* Sets the transmit power in the baseband for the given
1310
* operating channel and mode.
1311
*/
1312
static HAL_BOOL
1313
ar5211SetTransmitPower(struct ath_hal *ah, const struct ieee80211_channel *chan)
1314
{
1315
uint16_t freq = ath_hal_gethwchannel(ah, chan);
1316
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1317
TRGT_POWER_INFO *pi;
1318
RD_EDGES_POWER *rep;
1319
PCDACS_EEPROM eepromPcdacs;
1320
u_int nchan, cfgCtl;
1321
int i;
1322
1323
/* setup the pcdac struct to point to the correct info, based on mode */
1324
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
1325
case IEEE80211_CHAN_A:
1326
eepromPcdacs.numChannels = ee->ee_numChannels11a;
1327
eepromPcdacs.pChannelList= ee->ee_channels11a;
1328
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
1329
nchan = ee->ee_numTargetPwr_11a;
1330
pi = ee->ee_trgtPwr_11a;
1331
break;
1332
case IEEE80211_CHAN_PUREG:
1333
eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1334
eepromPcdacs.pChannelList= ee->ee_channels11g;
1335
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
1336
nchan = ee->ee_numTargetPwr_11g;
1337
pi = ee->ee_trgtPwr_11g;
1338
break;
1339
case IEEE80211_CHAN_B:
1340
eepromPcdacs.numChannels = ee->ee_numChannels2_4;
1341
eepromPcdacs.pChannelList= ee->ee_channels11b;
1342
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
1343
nchan = ee->ee_numTargetPwr_11b;
1344
pi = ee->ee_trgtPwr_11b;
1345
break;
1346
default:
1347
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
1348
__func__, chan->ic_flags);
1349
return AH_FALSE;
1350
}
1351
1352
ar5211SetPowerTable(ah, &eepromPcdacs, freq);
1353
1354
rep = AH_NULL;
1355
/* Match CTL to EEPROM value */
1356
cfgCtl = ath_hal_getctl(ah, chan);
1357
for (i = 0; i < ee->ee_numCtls; i++)
1358
if (ee->ee_ctl[i] != 0 && ee->ee_ctl[i] == cfgCtl) {
1359
rep = &ee->ee_rdEdgesPower[i * NUM_EDGES];
1360
break;
1361
}
1362
ar5211SetRateTable(ah, rep, pi, nchan, chan);
1363
1364
return AH_TRUE;
1365
}
1366
1367
/*
1368
* Read the transmit power levels from the structures taken
1369
* from EEPROM. Interpolate read transmit power values for
1370
* this channel. Organize the transmit power values into a
1371
* table for writing into the hardware.
1372
*/
1373
void
1374
ar5211SetPowerTable(struct ath_hal *ah, PCDACS_EEPROM *pSrcStruct,
1375
uint16_t channel)
1376
{
1377
static FULL_PCDAC_STRUCT pcdacStruct;
1378
static uint16_t pcdacTable[PWR_TABLE_SIZE];
1379
1380
uint16_t i, j;
1381
uint16_t *pPcdacValues;
1382
int16_t *pScaledUpDbm;
1383
int16_t minScaledPwr;
1384
int16_t maxScaledPwr;
1385
int16_t pwr;
1386
uint16_t pcdacMin = 0;
1387
uint16_t pcdacMax = 63;
1388
uint16_t pcdacTableIndex;
1389
uint16_t scaledPcdac;
1390
uint32_t addr;
1391
uint32_t temp32;
1392
1393
OS_MEMZERO(&pcdacStruct, sizeof(FULL_PCDAC_STRUCT));
1394
OS_MEMZERO(pcdacTable, sizeof(uint16_t) * PWR_TABLE_SIZE);
1395
pPcdacValues = pcdacStruct.PcdacValues;
1396
pScaledUpDbm = pcdacStruct.PwrValues;
1397
1398
/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
1399
for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
1400
pPcdacValues[j] = i;
1401
1402
pcdacStruct.numPcdacValues = j;
1403
pcdacStruct.pcdacMin = PCDAC_START;
1404
pcdacStruct.pcdacMax = PCDAC_STOP;
1405
1406
/* Fill out the power values for this channel */
1407
for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
1408
pScaledUpDbm[j] = ar5211GetScaledPower(channel, pPcdacValues[j], pSrcStruct);
1409
1410
/* Now scale the pcdac values to fit in the 64 entry power table */
1411
minScaledPwr = pScaledUpDbm[0];
1412
maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
1413
1414
/* find minimum and make monotonic */
1415
for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
1416
if (minScaledPwr >= pScaledUpDbm[j]) {
1417
minScaledPwr = pScaledUpDbm[j];
1418
pcdacMin = j;
1419
}
1420
/*
1421
* Make the full_hsh monotonically increasing otherwise
1422
* interpolation algorithm will get fooled gotta start
1423
* working from the top, hence i = 63 - j.
1424
*/
1425
i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
1426
if (i == 0)
1427
break;
1428
if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
1429
/*
1430
* It could be a glitch, so make the power for
1431
* this pcdac the same as the power from the
1432
* next highest pcdac.
1433
*/
1434
pScaledUpDbm[i - 1] = pScaledUpDbm[i];
1435
}
1436
}
1437
1438
for (j = 0; j < pcdacStruct.numPcdacValues; j++)
1439
if (maxScaledPwr < pScaledUpDbm[j]) {
1440
maxScaledPwr = pScaledUpDbm[j];
1441
pcdacMax = j;
1442
}
1443
1444
/* Find the first power level with a pcdac */
1445
pwr = (uint16_t)(PWR_STEP * ((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
1446
1447
/* Write all the first pcdac entries based off the pcdacMin */
1448
pcdacTableIndex = 0;
1449
for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++)
1450
pcdacTable[pcdacTableIndex++] = pcdacMin;
1451
1452
i = 0;
1453
while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1]) {
1454
pwr += PWR_STEP;
1455
/* stop if dbM > max_power_possible */
1456
while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
1457
(pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
1458
i++;
1459
/* scale by 2 and add 1 to enable round up or down as needed */
1460
scaledPcdac = (uint16_t)(ar5211GetInterpolatedValue(pwr,
1461
pScaledUpDbm[i], pScaledUpDbm[i+1],
1462
(uint16_t)(pPcdacValues[i] * 2),
1463
(uint16_t)(pPcdacValues[i+1] * 2), 0) + 1);
1464
1465
pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
1466
if (pcdacTable[pcdacTableIndex] > pcdacMax)
1467
pcdacTable[pcdacTableIndex] = pcdacMax;
1468
pcdacTableIndex++;
1469
}
1470
1471
/* Write all the last pcdac entries based off the last valid pcdac */
1472
while (pcdacTableIndex < PWR_TABLE_SIZE) {
1473
pcdacTable[pcdacTableIndex] = pcdacTable[pcdacTableIndex - 1];
1474
pcdacTableIndex++;
1475
}
1476
1477
/* Finally, write the power values into the baseband power table */
1478
addr = AR_PHY_BASE + (608 << 2);
1479
for (i = 0; i < 32; i++) {
1480
temp32 = 0xffff & ((pcdacTable[2 * i + 1] << 8) | 0xff);
1481
temp32 = (temp32 << 16) | (0xffff & ((pcdacTable[2 * i] << 8) | 0xff));
1482
OS_REG_WRITE(ah, addr, temp32);
1483
addr += 4;
1484
}
1485
1486
}
1487
1488
/*
1489
* Set the transmit power in the baseband for the given
1490
* operating channel and mode.
1491
*/
1492
static void
1493
ar5211SetRateTable(struct ath_hal *ah, RD_EDGES_POWER *pRdEdgesPower,
1494
TRGT_POWER_INFO *pPowerInfo, uint16_t numChannels,
1495
const struct ieee80211_channel *chan)
1496
{
1497
uint16_t freq = ath_hal_gethwchannel(ah, chan);
1498
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
1499
struct ath_hal_5211 *ahp = AH5211(ah);
1500
static uint16_t ratesArray[NUM_RATES];
1501
static const uint16_t tpcScaleReductionTable[5] =
1502
{ 0, 3, 6, 9, MAX_RATE_POWER };
1503
1504
uint16_t *pRatesPower;
1505
uint16_t lowerChannel, lowerIndex=0, lowerPower=0;
1506
uint16_t upperChannel, upperIndex=0, upperPower=0;
1507
uint16_t twiceMaxEdgePower=63;
1508
uint16_t twicePower = 0;
1509
uint16_t i, numEdges;
1510
uint16_t tempChannelList[NUM_EDGES]; /* temp array for holding edge channels */
1511
uint16_t twiceMaxRDPower;
1512
int16_t scaledPower = 0; /* for gcc -O2 */
1513
uint16_t mask = 0x3f;
1514
HAL_BOOL paPreDEnable = 0;
1515
int8_t twiceAntennaGain, twiceAntennaReduction = 0;
1516
1517
pRatesPower = ratesArray;
1518
twiceMaxRDPower = chan->ic_maxregpower * 2;
1519
1520
if (IEEE80211_IS_CHAN_5GHZ(chan)) {
1521
twiceAntennaGain = ee->ee_antennaGainMax[0];
1522
} else {
1523
twiceAntennaGain = ee->ee_antennaGainMax[1];
1524
}
1525
1526
twiceAntennaReduction = ath_hal_getantennareduction(ah, chan, twiceAntennaGain);
1527
1528
if (pRdEdgesPower) {
1529
/* Get the edge power */
1530
for (i = 0; i < NUM_EDGES; i++) {
1531
if (pRdEdgesPower[i].rdEdge == 0)
1532
break;
1533
tempChannelList[i] = pRdEdgesPower[i].rdEdge;
1534
}
1535
numEdges = i;
1536
1537
ar5211GetLowerUpperValues(freq, tempChannelList,
1538
numEdges, &lowerChannel, &upperChannel);
1539
/* Get the index for this channel */
1540
for (i = 0; i < numEdges; i++)
1541
if (lowerChannel == tempChannelList[i])
1542
break;
1543
HALASSERT(i != numEdges);
1544
1545
if ((lowerChannel == upperChannel &&
1546
lowerChannel == freq) ||
1547
pRdEdgesPower[i].flag) {
1548
twiceMaxEdgePower = pRdEdgesPower[i].twice_rdEdgePower;
1549
HALASSERT(twiceMaxEdgePower > 0);
1550
}
1551
}
1552
1553
/* extrapolate the power values for the test Groups */
1554
for (i = 0; i < numChannels; i++)
1555
tempChannelList[i] = pPowerInfo[i].testChannel;
1556
1557
ar5211GetLowerUpperValues(freq, tempChannelList,
1558
numChannels, &lowerChannel, &upperChannel);
1559
1560
/* get the index for the channel */
1561
for (i = 0; i < numChannels; i++) {
1562
if (lowerChannel == tempChannelList[i])
1563
lowerIndex = i;
1564
if (upperChannel == tempChannelList[i]) {
1565
upperIndex = i;
1566
break;
1567
}
1568
}
1569
1570
for (i = 0; i < NUM_RATES; i++) {
1571
if (IEEE80211_IS_CHAN_OFDM(chan)) {
1572
/* power for rates 6,9,12,18,24 is all the same */
1573
if (i < 5) {
1574
lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1575
upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1576
} else if (i == 5) {
1577
lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1578
upperPower = pPowerInfo[upperIndex].twicePwr36;
1579
} else if (i == 6) {
1580
lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1581
upperPower = pPowerInfo[upperIndex].twicePwr48;
1582
} else if (i == 7) {
1583
lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1584
upperPower = pPowerInfo[upperIndex].twicePwr54;
1585
}
1586
} else {
1587
switch (i) {
1588
case 0:
1589
case 1:
1590
lowerPower = pPowerInfo[lowerIndex].twicePwr6_24;
1591
upperPower = pPowerInfo[upperIndex].twicePwr6_24;
1592
break;
1593
case 2:
1594
case 3:
1595
lowerPower = pPowerInfo[lowerIndex].twicePwr36;
1596
upperPower = pPowerInfo[upperIndex].twicePwr36;
1597
break;
1598
case 4:
1599
case 5:
1600
lowerPower = pPowerInfo[lowerIndex].twicePwr48;
1601
upperPower = pPowerInfo[upperIndex].twicePwr48;
1602
break;
1603
case 6:
1604
case 7:
1605
lowerPower = pPowerInfo[lowerIndex].twicePwr54;
1606
upperPower = pPowerInfo[upperIndex].twicePwr54;
1607
break;
1608
}
1609
}
1610
1611
twicePower = ar5211GetInterpolatedValue(freq,
1612
lowerChannel, upperChannel, lowerPower, upperPower, 0);
1613
1614
/* Reduce power by band edge restrictions */
1615
twicePower = AH_MIN(twicePower, twiceMaxEdgePower);
1616
1617
/*
1618
* If turbo is set, reduce power to keep power
1619
* consumption under 2 Watts. Note that we always do
1620
* this unless specially configured. Then we limit
1621
* power only for non-AP operation.
1622
*/
1623
if (IEEE80211_IS_CHAN_TURBO(chan) &&
1624
AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1
1625
#ifdef AH_ENABLE_AP_SUPPORT
1626
&& AH_PRIVATE(ah)->ah_opmode != HAL_M_HOSTAP
1627
#endif
1628
) {
1629
twicePower = AH_MIN(twicePower, ee->ee_turbo2WMaxPower5);
1630
}
1631
1632
/* Reduce power by max regulatory domain allowed restrictions */
1633
pRatesPower[i] = AH_MIN(twicePower, twiceMaxRDPower - twiceAntennaReduction);
1634
1635
/* Use 6 Mb power level for transmit power scaling reduction */
1636
/* We don't want to reduce higher rates if its not needed */
1637
if (i == 0) {
1638
scaledPower = pRatesPower[0] -
1639
(tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2);
1640
if (scaledPower < 1)
1641
scaledPower = 1;
1642
}
1643
1644
pRatesPower[i] = AH_MIN(pRatesPower[i], scaledPower);
1645
}
1646
1647
/* Record txPower at Rate 6 for info gathering */
1648
ahp->ah_tx6PowerInHalfDbm = pRatesPower[0];
1649
1650
#ifdef AH_DEBUG
1651
HALDEBUG(ah, HAL_DEBUG_RESET,
1652
"%s: final output power setting %d MHz:\n",
1653
__func__, chan->ic_freq);
1654
HALDEBUG(ah, HAL_DEBUG_RESET,
1655
"6 Mb %d dBm, MaxRD: %d dBm, MaxEdge %d dBm\n",
1656
scaledPower / 2, twiceMaxRDPower / 2, twiceMaxEdgePower / 2);
1657
HALDEBUG(ah, HAL_DEBUG_RESET, "TPC Scale %d dBm - Ant Red %d dBm\n",
1658
tpcScaleReductionTable[AH_PRIVATE(ah)->ah_tpScale] * 2,
1659
twiceAntennaReduction / 2);
1660
if (IEEE80211_IS_CHAN_TURBO(chan) &&
1661
AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER3_1)
1662
HALDEBUG(ah, HAL_DEBUG_RESET, "Max Turbo %d dBm\n",
1663
ee->ee_turbo2WMaxPower5);
1664
HALDEBUG(ah, HAL_DEBUG_RESET,
1665
" %2d | %2d | %2d | %2d | %2d | %2d | %2d | %2d dBm\n",
1666
pRatesPower[0] / 2, pRatesPower[1] / 2, pRatesPower[2] / 2,
1667
pRatesPower[3] / 2, pRatesPower[4] / 2, pRatesPower[5] / 2,
1668
pRatesPower[6] / 2, pRatesPower[7] / 2);
1669
#endif /* AH_DEBUG */
1670
1671
/* Write the power table into the hardware */
1672
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1673
((paPreDEnable & 1)<< 30) | ((pRatesPower[3] & mask) << 24) |
1674
((paPreDEnable & 1)<< 22) | ((pRatesPower[2] & mask) << 16) |
1675
((paPreDEnable & 1)<< 14) | ((pRatesPower[1] & mask) << 8) |
1676
((paPreDEnable & 1)<< 6 ) | (pRatesPower[0] & mask));
1677
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1678
((paPreDEnable & 1)<< 30) | ((pRatesPower[7] & mask) << 24) |
1679
((paPreDEnable & 1)<< 22) | ((pRatesPower[6] & mask) << 16) |
1680
((paPreDEnable & 1)<< 14) | ((pRatesPower[5] & mask) << 8) |
1681
((paPreDEnable & 1)<< 6 ) | (pRatesPower[4] & mask));
1682
1683
/* set max power to the power value at rate 6 */
1684
ar5211SetTxPowerLimit(ah, pRatesPower[0]);
1685
1686
AH_PRIVATE(ah)->ah_maxPowerLevel = pRatesPower[0];
1687
}
1688
1689
/*
1690
* Get or interpolate the pcdac value from the calibrated data
1691
*/
1692
uint16_t
1693
ar5211GetScaledPower(uint16_t channel, uint16_t pcdacValue,
1694
const PCDACS_EEPROM *pSrcStruct)
1695
{
1696
uint16_t powerValue;
1697
uint16_t lFreq, rFreq; /* left and right frequency values */
1698
uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */
1699
uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */
1700
uint16_t lPwr, uPwr; /* lower and upper temp pwr values */
1701
uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
1702
1703
if (ar5211FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue))
1704
/* value was copied from srcStruct */
1705
return powerValue;
1706
1707
ar5211GetLowerUpperValues(channel, pSrcStruct->pChannelList,
1708
pSrcStruct->numChannels, &lFreq, &rFreq);
1709
ar5211GetLowerUpperPcdacs(pcdacValue, lFreq, pSrcStruct,
1710
&llPcdac, &ulPcdac);
1711
ar5211GetLowerUpperPcdacs(pcdacValue, rFreq, pSrcStruct,
1712
&lrPcdac, &urPcdac);
1713
1714
/* get the power index for the pcdac value */
1715
ar5211FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
1716
ar5211FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
1717
lScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1718
llPcdac, ulPcdac, lPwr, uPwr, 0);
1719
1720
ar5211FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
1721
ar5211FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
1722
rScaledPwr = ar5211GetInterpolatedValue(pcdacValue,
1723
lrPcdac, urPcdac, lPwr, uPwr, 0);
1724
1725
return ar5211GetInterpolatedValue(channel, lFreq, rFreq,
1726
lScaledPwr, rScaledPwr, 0);
1727
}
1728
1729
/*
1730
* Find the value from the calibrated source data struct
1731
*/
1732
HAL_BOOL
1733
ar5211FindValueInList(uint16_t channel, uint16_t pcdacValue,
1734
const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
1735
{
1736
const DATA_PER_CHANNEL *pChannelData;
1737
const uint16_t *pPcdac;
1738
uint16_t i, j;
1739
1740
pChannelData = pSrcStruct->pDataPerChannel;
1741
for (i = 0; i < pSrcStruct->numChannels; i++ ) {
1742
if (pChannelData->channelValue == channel) {
1743
pPcdac = pChannelData->PcdacValues;
1744
for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
1745
if (*pPcdac == pcdacValue) {
1746
*powerValue = pChannelData->PwrValues[j];
1747
return AH_TRUE;
1748
}
1749
pPcdac++;
1750
}
1751
}
1752
pChannelData++;
1753
}
1754
return AH_FALSE;
1755
}
1756
1757
/*
1758
* Returns interpolated or the scaled up interpolated value
1759
*/
1760
uint16_t
1761
ar5211GetInterpolatedValue(uint16_t target,
1762
uint16_t srcLeft, uint16_t srcRight,
1763
uint16_t targetLeft, uint16_t targetRight,
1764
HAL_BOOL scaleUp)
1765
{
1766
uint16_t rv;
1767
int16_t lRatio;
1768
uint16_t scaleValue = EEP_SCALE;
1769
1770
/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
1771
if ((targetLeft * targetRight) == 0)
1772
return 0;
1773
if (scaleUp)
1774
scaleValue = 1;
1775
1776
if (srcRight != srcLeft) {
1777
/*
1778
* Note the ratio always need to be scaled,
1779
* since it will be a fraction.
1780
*/
1781
lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
1782
if (lRatio < 0) {
1783
/* Return as Left target if value would be negative */
1784
rv = targetLeft * (scaleUp ? EEP_SCALE : 1);
1785
} else if (lRatio > EEP_SCALE) {
1786
/* Return as Right target if Ratio is greater than 100% (SCALE) */
1787
rv = targetRight * (scaleUp ? EEP_SCALE : 1);
1788
} else {
1789
rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
1790
targetLeft) / scaleValue;
1791
}
1792
} else {
1793
rv = targetLeft;
1794
if (scaleUp)
1795
rv *= EEP_SCALE;
1796
}
1797
return rv;
1798
}
1799
1800
/*
1801
* Look for value being within 0.1 of the search values
1802
* however, NDIS can't do float calculations, so multiply everything
1803
* up by EEP_SCALE so can do integer arithmatic
1804
*
1805
* INPUT value -value to search for
1806
* INPUT pList -ptr to the list to search
1807
* INPUT listSize -number of entries in list
1808
* OUTPUT pLowerValue -return the lower value
1809
* OUTPUT pUpperValue -return the upper value
1810
*/
1811
void
1812
ar5211GetLowerUpperValues(uint16_t value,
1813
const uint16_t *pList, uint16_t listSize,
1814
uint16_t *pLowerValue, uint16_t *pUpperValue)
1815
{
1816
const uint16_t listEndValue = *(pList + listSize - 1);
1817
uint32_t target = value * EEP_SCALE;
1818
int i;
1819
1820
/*
1821
* See if value is lower than the first value in the list
1822
* if so return first value
1823
*/
1824
if (target < (uint32_t)(*pList * EEP_SCALE - EEP_DELTA)) {
1825
*pLowerValue = *pList;
1826
*pUpperValue = *pList;
1827
return;
1828
}
1829
1830
/*
1831
* See if value is greater than last value in list
1832
* if so return last value
1833
*/
1834
if (target > (uint32_t)(listEndValue * EEP_SCALE + EEP_DELTA)) {
1835
*pLowerValue = listEndValue;
1836
*pUpperValue = listEndValue;
1837
return;
1838
}
1839
1840
/* look for value being near or between 2 values in list */
1841
for (i = 0; i < listSize; i++) {
1842
/*
1843
* If value is close to the current value of the list
1844
* then target is not between values, it is one of the values
1845
*/
1846
if (abs(pList[i] * EEP_SCALE - (int32_t) target) < EEP_DELTA) {
1847
*pLowerValue = pList[i];
1848
*pUpperValue = pList[i];
1849
return;
1850
}
1851
1852
/*
1853
* Look for value being between current value and next value
1854
* if so return these 2 values
1855
*/
1856
if (target < (uint32_t)(pList[i + 1] * EEP_SCALE - EEP_DELTA)) {
1857
*pLowerValue = pList[i];
1858
*pUpperValue = pList[i + 1];
1859
return;
1860
}
1861
}
1862
}
1863
1864
/*
1865
* Get the upper and lower pcdac given the channel and the pcdac
1866
* used in the search
1867
*/
1868
void
1869
ar5211GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
1870
const PCDACS_EEPROM *pSrcStruct,
1871
uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
1872
{
1873
const DATA_PER_CHANNEL *pChannelData;
1874
int i;
1875
1876
/* Find the channel information */
1877
pChannelData = pSrcStruct->pDataPerChannel;
1878
for (i = 0; i < pSrcStruct->numChannels; i++) {
1879
if (pChannelData->channelValue == channel)
1880
break;
1881
pChannelData++;
1882
}
1883
ar5211GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
1884
pChannelData->numPcdacValues, pLowerPcdac, pUpperPcdac);
1885
}
1886
1887
#define DYN_ADJ_UP_MARGIN 15
1888
#define DYN_ADJ_LO_MARGIN 20
1889
1890
static const GAIN_OPTIMIZATION_LADDER gainLadder = {
1891
9, /* numStepsInLadder */
1892
4, /* defaultStepNum */
1893
{ { {4, 1, 1, 1}, 6, "FG8"},
1894
{ {4, 0, 1, 1}, 4, "FG7"},
1895
{ {3, 1, 1, 1}, 3, "FG6"},
1896
{ {4, 0, 0, 1}, 1, "FG5"},
1897
{ {4, 1, 1, 0}, 0, "FG4"}, /* noJack */
1898
{ {4, 0, 1, 0}, -2, "FG3"}, /* halfJack */
1899
{ {3, 1, 1, 0}, -3, "FG2"}, /* clip3 */
1900
{ {4, 0, 0, 0}, -4, "FG1"}, /* noJack */
1901
{ {2, 1, 1, 0}, -6, "FG0"} /* clip2 */
1902
}
1903
};
1904
1905
/*
1906
* Initialize the gain structure to good values
1907
*/
1908
void
1909
ar5211InitializeGainValues(struct ath_hal *ah)
1910
{
1911
struct ath_hal_5211 *ahp = AH5211(ah);
1912
GAIN_VALUES *gv = &ahp->ah_gainValues;
1913
1914
/* initialize gain optimization values */
1915
gv->currStepNum = gainLadder.defaultStepNum;
1916
gv->currStep = &gainLadder.optStep[gainLadder.defaultStepNum];
1917
gv->active = AH_TRUE;
1918
gv->loTrig = 20;
1919
gv->hiTrig = 35;
1920
}
1921
1922
static HAL_BOOL
1923
ar5211InvalidGainReadback(struct ath_hal *ah, GAIN_VALUES *gv)
1924
{
1925
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
1926
uint32_t gStep, g;
1927
uint32_t L1, L2, L3, L4;
1928
1929
if (IEEE80211_IS_CHAN_CCK(chan)) {
1930
gStep = 0x18;
1931
L1 = 0;
1932
L2 = gStep + 4;
1933
L3 = 0x40;
1934
L4 = L3 + 50;
1935
1936
gv->loTrig = L1;
1937
gv->hiTrig = L4+5;
1938
} else {
1939
gStep = 0x3f;
1940
L1 = 0;
1941
L2 = 50;
1942
L3 = L1;
1943
L4 = L3 + 50;
1944
1945
gv->loTrig = L1 + DYN_ADJ_LO_MARGIN;
1946
gv->hiTrig = L4 - DYN_ADJ_UP_MARGIN;
1947
}
1948
g = gv->currGain;
1949
1950
return !((g >= L1 && g<= L2) || (g >= L3 && g <= L4));
1951
}
1952
1953
/*
1954
* Enable the probe gain check on the next packet
1955
*/
1956
static void
1957
ar5211RequestRfgain(struct ath_hal *ah)
1958
{
1959
struct ath_hal_5211 *ahp = AH5211(ah);
1960
1961
/* Enable the gain readback probe */
1962
OS_REG_WRITE(ah, AR_PHY_PAPD_PROBE,
1963
SM(ahp->ah_tx6PowerInHalfDbm, AR_PHY_PAPD_PROBE_POWERTX)
1964
| AR_PHY_PAPD_PROBE_NEXT_TX);
1965
1966
ahp->ah_rfgainState = HAL_RFGAIN_READ_REQUESTED;
1967
}
1968
1969
/*
1970
* Exported call to check for a recent gain reading and return
1971
* the current state of the thermal calibration gain engine.
1972
*/
1973
HAL_RFGAIN
1974
ar5211GetRfgain(struct ath_hal *ah)
1975
{
1976
struct ath_hal_5211 *ahp = AH5211(ah);
1977
GAIN_VALUES *gv = &ahp->ah_gainValues;
1978
uint32_t rddata;
1979
1980
if (!gv->active)
1981
return HAL_RFGAIN_INACTIVE;
1982
1983
if (ahp->ah_rfgainState == HAL_RFGAIN_READ_REQUESTED) {
1984
/* Caller had asked to setup a new reading. Check it. */
1985
rddata = OS_REG_READ(ah, AR_PHY_PAPD_PROBE);
1986
1987
if ((rddata & AR_PHY_PAPD_PROBE_NEXT_TX) == 0) {
1988
/* bit got cleared, we have a new reading. */
1989
gv->currGain = rddata >> AR_PHY_PAPD_PROBE_GAINF_S;
1990
/* inactive by default */
1991
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
1992
1993
if (!ar5211InvalidGainReadback(ah, gv) &&
1994
ar5211IsGainAdjustNeeded(ah, gv) &&
1995
ar5211AdjustGain(ah, gv) > 0) {
1996
/*
1997
* Change needed. Copy ladder info
1998
* into eeprom info.
1999
*/
2000
ar5211SetRfgain(ah, gv);
2001
ahp->ah_rfgainState = HAL_RFGAIN_NEED_CHANGE;
2002
}
2003
}
2004
}
2005
return ahp->ah_rfgainState;
2006
}
2007
2008
/*
2009
* Check to see if our readback gain level sits within the linear
2010
* region of our current variable attenuation window
2011
*/
2012
static HAL_BOOL
2013
ar5211IsGainAdjustNeeded(struct ath_hal *ah, const GAIN_VALUES *gv)
2014
{
2015
return (gv->currGain <= gv->loTrig || gv->currGain >= gv->hiTrig);
2016
}
2017
2018
/*
2019
* Move the rabbit ears in the correct direction.
2020
*/
2021
static int32_t
2022
ar5211AdjustGain(struct ath_hal *ah, GAIN_VALUES *gv)
2023
{
2024
/* return > 0 for valid adjustments. */
2025
if (!gv->active)
2026
return -1;
2027
2028
gv->currStep = &gainLadder.optStep[gv->currStepNum];
2029
if (gv->currGain >= gv->hiTrig) {
2030
if (gv->currStepNum == 0) {
2031
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2032
"%s: Max gain limit.\n", __func__);
2033
return -1;
2034
}
2035
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2036
"%s: Adding gain: currG=%d [%s] --> ",
2037
__func__, gv->currGain, gv->currStep->stepName);
2038
gv->targetGain = gv->currGain;
2039
while (gv->targetGain >= gv->hiTrig && gv->currStepNum > 0) {
2040
gv->targetGain -= 2 * (gainLadder.optStep[--(gv->currStepNum)].stepGain -
2041
gv->currStep->stepGain);
2042
gv->currStep = &gainLadder.optStep[gv->currStepNum];
2043
}
2044
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2045
gv->targetGain, gv->currStep->stepName);
2046
return 1;
2047
}
2048
if (gv->currGain <= gv->loTrig) {
2049
if (gv->currStepNum == gainLadder.numStepsInLadder-1) {
2050
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2051
"%s: Min gain limit.\n", __func__);
2052
return -2;
2053
}
2054
HALDEBUG(ah, HAL_DEBUG_RFPARAM,
2055
"%s: Deducting gain: currG=%d [%s] --> ",
2056
__func__, gv->currGain, gv->currStep->stepName);
2057
gv->targetGain = gv->currGain;
2058
while (gv->targetGain <= gv->loTrig &&
2059
gv->currStepNum < (gainLadder.numStepsInLadder - 1)) {
2060
gv->targetGain -= 2 *
2061
(gainLadder.optStep[++(gv->currStepNum)].stepGain - gv->currStep->stepGain);
2062
gv->currStep = &gainLadder.optStep[gv->currStepNum];
2063
}
2064
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "targG=%d [%s]\n",
2065
gv->targetGain, gv->currStep->stepName);
2066
return 2;
2067
}
2068
return 0; /* caller didn't call needAdjGain first */
2069
}
2070
2071
/*
2072
* Adjust the 5GHz EEPROM information with the desired calibration values.
2073
*/
2074
static void
2075
ar5211SetRfgain(struct ath_hal *ah, const GAIN_VALUES *gv)
2076
{
2077
HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
2078
2079
if (!gv->active)
2080
return;
2081
ee->ee_cornerCal.clip = gv->currStep->paramVal[0]; /* bb_tx_clip */
2082
ee->ee_cornerCal.pd90 = gv->currStep->paramVal[1]; /* rf_pwd_90 */
2083
ee->ee_cornerCal.pd84 = gv->currStep->paramVal[2]; /* rf_pwd_84 */
2084
ee->ee_cornerCal.gSel = gv->currStep->paramVal[3]; /* rf_rfgainsel */
2085
}
2086
2087
static void
2088
ar5211SetOperatingMode(struct ath_hal *ah, int opmode)
2089
{
2090
struct ath_hal_5211 *ahp = AH5211(ah);
2091
uint32_t val;
2092
2093
val = OS_REG_READ(ah, AR_STA_ID1) & 0xffff;
2094
switch (opmode) {
2095
case HAL_M_HOSTAP:
2096
OS_REG_WRITE(ah, AR_STA_ID1, val
2097
| AR_STA_ID1_STA_AP
2098
| AR_STA_ID1_RTS_USE_DEF
2099
| ahp->ah_staId1Defaults);
2100
break;
2101
case HAL_M_IBSS:
2102
OS_REG_WRITE(ah, AR_STA_ID1, val
2103
| AR_STA_ID1_ADHOC
2104
| AR_STA_ID1_DESC_ANTENNA
2105
| ahp->ah_staId1Defaults);
2106
break;
2107
case HAL_M_STA:
2108
case HAL_M_MONITOR:
2109
OS_REG_WRITE(ah, AR_STA_ID1, val
2110
| AR_STA_ID1_DEFAULT_ANTENNA
2111
| ahp->ah_staId1Defaults);
2112
break;
2113
}
2114
}
2115
2116
void
2117
ar5211SetPCUConfig(struct ath_hal *ah)
2118
{
2119
ar5211SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
2120
}
2121
2122