Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/ath_hal/ar5212/ar2425.c
39566 views
1
/*-
2
* SPDX-License-Identifier: ISC
3
*
4
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5
* Copyright (c) 2002-2008 Atheros Communications, Inc.
6
*
7
* Permission to use, copy, modify, and/or distribute this software for any
8
* purpose with or without fee is hereby granted, provided that the above
9
* copyright notice and this permission notice appear in all copies.
10
*
11
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
*/
19
#include "opt_ah.h"
20
21
#include "ah.h"
22
#include "ah_internal.h"
23
24
#include "ar5212/ar5212.h"
25
#include "ar5212/ar5212reg.h"
26
#include "ar5212/ar5212phy.h"
27
28
#include "ah_eeprom_v3.h"
29
30
#define AH_5212_2425
31
#define AH_5212_2417
32
#include "ar5212/ar5212.ini"
33
34
#define N(a) (sizeof(a)/sizeof(a[0]))
35
36
struct ar2425State {
37
RF_HAL_FUNCS base; /* public state, must be first */
38
uint16_t pcdacTable[PWR_TABLE_SIZE_2413];
39
40
uint32_t Bank1Data[N(ar5212Bank1_2425)];
41
uint32_t Bank2Data[N(ar5212Bank2_2425)];
42
uint32_t Bank3Data[N(ar5212Bank3_2425)];
43
uint32_t Bank6Data[N(ar5212Bank6_2425)]; /* 2417 is same size */
44
uint32_t Bank7Data[N(ar5212Bank7_2425)];
45
};
46
#define AR2425(ah) ((struct ar2425State *) AH5212(ah)->ah_rfHal)
47
48
extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
49
uint32_t numBits, uint32_t firstBit, uint32_t column);
50
51
static void
52
ar2425WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
53
int writes)
54
{
55
HAL_INI_WRITE_ARRAY(ah, ar5212Modes_2425, modesIndex, writes);
56
HAL_INI_WRITE_ARRAY(ah, ar5212Common_2425, 1, writes);
57
HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_2425, freqIndex, writes);
58
#if 0
59
/*
60
* for SWAN similar to Condor
61
* Bit 0 enables link to go to L1 when MAC goes to sleep.
62
* Bit 3 enables the loop back the link down to reset.
63
*/
64
if (AH_PRIVATE(ah)->ah_ispcie && && ath_hal_pcieL1SKPEnable) {
65
OS_REG_WRITE(ah, AR_PCIE_PMC,
66
AR_PCIE_PMC_ENA_L1 | AR_PCIE_PMC_ENA_RESET);
67
}
68
/*
69
* for Standby issue in Swan/Condor.
70
* Bit 9 (MAC_WOW_PWR_STATE_MASK_D2)to be set to avoid skips
71
* before last Training Sequence 2 (TS2)
72
* Bit 8 (MAC_WOW_PWR_STATE_MASK_D1)to be unset to assert
73
* Power Reset along with PCI Reset
74
*/
75
OS_REG_SET_BIT(ah, AR_PCIE_PMC, MAC_WOW_PWR_STATE_MASK_D2);
76
#endif
77
}
78
79
/*
80
* Take the MHz channel value and set the Channel value
81
*
82
* ASSUMES: Writes enabled to analog bus
83
*/
84
static HAL_BOOL
85
ar2425SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
86
{
87
uint16_t freq = ath_hal_gethwchannel(ah, chan);
88
uint32_t channelSel = 0;
89
uint32_t bModeSynth = 0;
90
uint32_t aModeRefSel = 0;
91
uint32_t reg32 = 0;
92
93
OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
94
95
if (freq < 4800) {
96
uint32_t txctl;
97
98
channelSel = freq - 2272;
99
channelSel = ath_hal_reverseBits(channelSel, 8);
100
101
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
102
if (freq == 2484) {
103
// Enable channel spreading for channel 14
104
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
105
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
106
} else {
107
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
108
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
109
}
110
111
} else if (((freq % 5) == 2) && (freq <= 5435)) {
112
freq = freq - 2; /* Align to even 5MHz raster */
113
channelSel = ath_hal_reverseBits(
114
(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
115
aModeRefSel = ath_hal_reverseBits(0, 2);
116
} else if ((freq % 20) == 0 && freq >= 5120) {
117
channelSel = ath_hal_reverseBits(
118
((freq - 4800) / 20 << 2), 8);
119
aModeRefSel = ath_hal_reverseBits(1, 2);
120
} else if ((freq % 10) == 0) {
121
channelSel = ath_hal_reverseBits(
122
((freq - 4800) / 10 << 1), 8);
123
aModeRefSel = ath_hal_reverseBits(1, 2);
124
} else if ((freq % 5) == 0) {
125
channelSel = ath_hal_reverseBits(
126
(freq - 4800) / 5, 8);
127
aModeRefSel = ath_hal_reverseBits(1, 2);
128
} else {
129
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
130
__func__, freq);
131
return AH_FALSE;
132
}
133
134
reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
135
(1 << 12) | 0x1;
136
OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
137
138
reg32 >>= 8;
139
OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
140
141
AH_PRIVATE(ah)->ah_curchan = chan;
142
return AH_TRUE;
143
}
144
145
/*
146
* Reads EEPROM header info from device structure and programs
147
* all rf registers
148
*
149
* REQUIRES: Access to the analog rf device
150
*/
151
static HAL_BOOL
152
ar2425SetRfRegs(struct ath_hal *ah,
153
const struct ieee80211_channel *chan,
154
uint16_t modesIndex, uint16_t *rfXpdGain)
155
{
156
#define RF_BANK_SETUP(_priv, _ix, _col) do { \
157
int i; \
158
for (i = 0; i < N(ar5212Bank##_ix##_2425); i++) \
159
(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_2425[i][_col];\
160
} while (0)
161
struct ath_hal_5212 *ahp = AH5212(ah);
162
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
163
struct ar2425State *priv = AR2425(ah);
164
uint16_t ob2GHz = 0, db2GHz = 0;
165
int regWrites = 0;
166
167
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
168
__func__, chan->ic_freq, chan->ic_flags, modesIndex);
169
170
HALASSERT(priv);
171
172
/* Setup rf parameters */
173
if (IEEE80211_IS_CHAN_B(chan)) {
174
ob2GHz = ee->ee_obFor24;
175
db2GHz = ee->ee_dbFor24;
176
} else {
177
ob2GHz = ee->ee_obFor24g;
178
db2GHz = ee->ee_dbFor24g;
179
}
180
181
/* Bank 1 Write */
182
RF_BANK_SETUP(priv, 1, 1);
183
184
/* Bank 2 Write */
185
RF_BANK_SETUP(priv, 2, modesIndex);
186
187
/* Bank 3 Write */
188
RF_BANK_SETUP(priv, 3, modesIndex);
189
190
/* Bank 6 Write */
191
RF_BANK_SETUP(priv, 6, modesIndex);
192
193
ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 193, 0);
194
ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 190, 0);
195
196
/* Bank 7 Setup */
197
RF_BANK_SETUP(priv, 7, modesIndex);
198
199
/* Write Analog registers */
200
HAL_INI_WRITE_BANK(ah, ar5212Bank1_2425, priv->Bank1Data, regWrites);
201
HAL_INI_WRITE_BANK(ah, ar5212Bank2_2425, priv->Bank2Data, regWrites);
202
HAL_INI_WRITE_BANK(ah, ar5212Bank3_2425, priv->Bank3Data, regWrites);
203
if (IS_2417(ah)) {
204
HALASSERT(N(ar5212Bank6_2425) == N(ar5212Bank6_2417));
205
HAL_INI_WRITE_BANK(ah, ar5212Bank6_2417, priv->Bank6Data,
206
regWrites);
207
} else
208
HAL_INI_WRITE_BANK(ah, ar5212Bank6_2425, priv->Bank6Data,
209
regWrites);
210
HAL_INI_WRITE_BANK(ah, ar5212Bank7_2425, priv->Bank7Data, regWrites);
211
212
/* Now that we have reprogrammed rfgain value, clear the flag. */
213
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
214
215
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
216
return AH_TRUE;
217
#undef RF_BANK_SETUP
218
}
219
220
/*
221
* Return a reference to the requested RF Bank.
222
*/
223
static uint32_t *
224
ar2425GetRfBank(struct ath_hal *ah, int bank)
225
{
226
struct ar2425State *priv = AR2425(ah);
227
228
HALASSERT(priv != AH_NULL);
229
switch (bank) {
230
case 1: return priv->Bank1Data;
231
case 2: return priv->Bank2Data;
232
case 3: return priv->Bank3Data;
233
case 6: return priv->Bank6Data;
234
case 7: return priv->Bank7Data;
235
}
236
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
237
__func__, bank);
238
return AH_NULL;
239
}
240
241
/*
242
* Return indices surrounding the value in sorted integer lists.
243
*
244
* NB: the input list is assumed to be sorted in ascending order
245
*/
246
static void
247
GetLowerUpperIndex(int16_t v, const uint16_t *lp, uint16_t listSize,
248
uint32_t *vlo, uint32_t *vhi)
249
{
250
int16_t target = v;
251
const uint16_t *ep = lp+listSize;
252
const uint16_t *tp;
253
254
/*
255
* Check first and last elements for out-of-bounds conditions.
256
*/
257
if (target < lp[0]) {
258
*vlo = *vhi = 0;
259
return;
260
}
261
if (target >= ep[-1]) {
262
*vlo = *vhi = listSize - 1;
263
return;
264
}
265
266
/* look for value being near or between 2 values in list */
267
for (tp = lp; tp < ep; tp++) {
268
/*
269
* If value is close to the current value of the list
270
* then target is not between values, it is one of the values
271
*/
272
if (*tp == target) {
273
*vlo = *vhi = tp - (const uint16_t *) lp;
274
return;
275
}
276
/*
277
* Look for value being between current value and next value
278
* if so return these 2 values
279
*/
280
if (target < tp[1]) {
281
*vlo = tp - (const uint16_t *) lp;
282
*vhi = *vlo + 1;
283
return;
284
}
285
}
286
}
287
288
/*
289
* Fill the Vpdlist for indices Pmax-Pmin
290
*/
291
static HAL_BOOL
292
ar2425FillVpdTable(uint32_t pdGainIdx, int16_t Pmin, int16_t Pmax,
293
const int16_t *pwrList, const uint16_t *VpdList,
294
uint16_t numIntercepts,
295
uint16_t retVpdList[][64])
296
{
297
uint16_t ii, jj, kk;
298
int16_t currPwr = (int16_t)(2*Pmin);
299
/* since Pmin is pwr*2 and pwrList is 4*pwr */
300
uint32_t idxL, idxR;
301
302
ii = 0;
303
jj = 0;
304
305
if (numIntercepts < 2)
306
return AH_FALSE;
307
308
while (ii <= (uint16_t)(Pmax - Pmin)) {
309
GetLowerUpperIndex(currPwr, (const uint16_t *) pwrList,
310
numIntercepts, &(idxL), &(idxR));
311
if (idxR < 1)
312
idxR = 1; /* extrapolate below */
313
if (idxL == (uint32_t)(numIntercepts - 1))
314
idxL = numIntercepts - 2; /* extrapolate above */
315
if (pwrList[idxL] == pwrList[idxR])
316
kk = VpdList[idxL];
317
else
318
kk = (uint16_t)
319
(((currPwr - pwrList[idxL])*VpdList[idxR]+
320
(pwrList[idxR] - currPwr)*VpdList[idxL])/
321
(pwrList[idxR] - pwrList[idxL]));
322
retVpdList[pdGainIdx][ii] = kk;
323
ii++;
324
currPwr += 2; /* half dB steps */
325
}
326
327
return AH_TRUE;
328
}
329
330
/*
331
* Returns interpolated or the scaled up interpolated value
332
*/
333
static int16_t
334
interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
335
int16_t targetLeft, int16_t targetRight)
336
{
337
int16_t rv;
338
339
if (srcRight != srcLeft) {
340
rv = ((target - srcLeft)*targetRight +
341
(srcRight - target)*targetLeft) / (srcRight - srcLeft);
342
} else {
343
rv = targetLeft;
344
}
345
return rv;
346
}
347
348
/*
349
* Uses the data points read from EEPROM to reconstruct the pdadc power table
350
* Called by ar2425SetPowerTable()
351
*/
352
static void
353
ar2425getGainBoundariesAndPdadcsForPowers(struct ath_hal *ah, uint16_t channel,
354
const RAW_DATA_STRUCT_2413 *pRawDataset,
355
uint16_t pdGainOverlap_t2,
356
int16_t *pMinCalPower, uint16_t pPdGainBoundaries[],
357
uint16_t pPdGainValues[], uint16_t pPDADCValues[])
358
{
359
/* Note the items statically allocated below are to reduce stack usage */
360
uint32_t ii, jj, kk;
361
int32_t ss;/* potentially -ve index for taking care of pdGainOverlap */
362
uint32_t idxL, idxR;
363
uint32_t numPdGainsUsed = 0;
364
static uint16_t VpdTable_L[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
365
/* filled out Vpd table for all pdGains (chanL) */
366
static uint16_t VpdTable_R[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
367
/* filled out Vpd table for all pdGains (chanR) */
368
static uint16_t VpdTable_I[MAX_NUM_PDGAINS_PER_CHANNEL][MAX_PWR_RANGE_IN_HALF_DB];
369
/* filled out Vpd table for all pdGains (interpolated) */
370
/*
371
* If desired to support -ve power levels in future, just
372
* change pwr_I_0 to signed 5-bits.
373
*/
374
static int16_t Pmin_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
375
/* to accommodate -ve power levels later on. */
376
static int16_t Pmax_t2[MAX_NUM_PDGAINS_PER_CHANNEL];
377
/* to accommodate -ve power levels later on */
378
uint16_t numVpd = 0;
379
uint16_t Vpd_step;
380
int16_t tmpVal ;
381
uint32_t sizeCurrVpdTable, maxIndex, tgtIndex;
382
383
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "==>%s:\n", __func__);
384
385
/* Get upper lower index */
386
GetLowerUpperIndex(channel, pRawDataset->pChannels,
387
pRawDataset->numChannels, &(idxL), &(idxR));
388
389
for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
390
jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
391
/* work backwards 'cause highest pdGain for lowest power */
392
numVpd = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].numVpd;
393
if (numVpd > 0) {
394
pPdGainValues[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pd_gain;
395
Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0];
396
if (Pmin_t2[numPdGainsUsed] >pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]) {
397
Pmin_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0];
398
}
399
Pmin_t2[numPdGainsUsed] = (int16_t)
400
(Pmin_t2[numPdGainsUsed] / 2);
401
Pmax_t2[numPdGainsUsed] = pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[numVpd-1];
402
if (Pmax_t2[numPdGainsUsed] > pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1])
403
Pmax_t2[numPdGainsUsed] =
404
pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[numVpd-1];
405
Pmax_t2[numPdGainsUsed] = (int16_t)(Pmax_t2[numPdGainsUsed] / 2);
406
ar2425FillVpdTable(
407
numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
408
&(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].pwr_t4[0]),
409
&(pRawDataset->pDataPerChannel[idxL].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_L
410
);
411
ar2425FillVpdTable(
412
numPdGainsUsed, Pmin_t2[numPdGainsUsed], Pmax_t2[numPdGainsUsed],
413
&(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].pwr_t4[0]),
414
&(pRawDataset->pDataPerChannel[idxR].pDataPerPDGain[jj].Vpd[0]), numVpd, VpdTable_R
415
);
416
for (kk = 0; kk < (uint16_t)(Pmax_t2[numPdGainsUsed] - Pmin_t2[numPdGainsUsed]); kk++) {
417
VpdTable_I[numPdGainsUsed][kk] =
418
interpolate_signed(
419
channel, pRawDataset->pChannels[idxL], pRawDataset->pChannels[idxR],
420
(int16_t)VpdTable_L[numPdGainsUsed][kk], (int16_t)VpdTable_R[numPdGainsUsed][kk]);
421
}
422
/* fill VpdTable_I for this pdGain */
423
numPdGainsUsed++;
424
}
425
/* if this pdGain is used */
426
}
427
428
*pMinCalPower = Pmin_t2[0];
429
kk = 0; /* index for the final table */
430
for (ii = 0; ii < numPdGainsUsed; ii++) {
431
if (ii == (numPdGainsUsed - 1))
432
pPdGainBoundaries[ii] = Pmax_t2[ii] +
433
PD_GAIN_BOUNDARY_STRETCH_IN_HALF_DB;
434
else
435
pPdGainBoundaries[ii] = (uint16_t)
436
((Pmax_t2[ii] + Pmin_t2[ii+1]) / 2 );
437
438
/* Find starting index for this pdGain */
439
if (ii == 0)
440
ss = 0; /* for the first pdGain, start from index 0 */
441
else
442
ss = (pPdGainBoundaries[ii-1] - Pmin_t2[ii]) -
443
pdGainOverlap_t2;
444
Vpd_step = (uint16_t)(VpdTable_I[ii][1] - VpdTable_I[ii][0]);
445
Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
446
/*
447
*-ve ss indicates need to extrapolate data below for this pdGain
448
*/
449
while (ss < 0) {
450
tmpVal = (int16_t)(VpdTable_I[ii][0] + ss*Vpd_step);
451
pPDADCValues[kk++] = (uint16_t)((tmpVal < 0) ? 0 : tmpVal);
452
ss++;
453
}
454
455
sizeCurrVpdTable = Pmax_t2[ii] - Pmin_t2[ii];
456
tgtIndex = pPdGainBoundaries[ii] + pdGainOverlap_t2 - Pmin_t2[ii];
457
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
458
459
while (ss < (int16_t)maxIndex)
460
pPDADCValues[kk++] = VpdTable_I[ii][ss++];
461
462
Vpd_step = (uint16_t)(VpdTable_I[ii][sizeCurrVpdTable-1] -
463
VpdTable_I[ii][sizeCurrVpdTable-2]);
464
Vpd_step = (uint16_t)((Vpd_step < 1) ? 1 : Vpd_step);
465
/*
466
* for last gain, pdGainBoundary == Pmax_t2, so will
467
* have to extrapolate
468
*/
469
if (tgtIndex > maxIndex) { /* need to extrapolate above */
470
while(ss < (int16_t)tgtIndex) {
471
tmpVal = (uint16_t)
472
(VpdTable_I[ii][sizeCurrVpdTable-1] +
473
(ss-maxIndex)*Vpd_step);
474
pPDADCValues[kk++] = (tmpVal > 127) ?
475
127 : tmpVal;
476
ss++;
477
}
478
} /* extrapolated above */
479
} /* for all pdGainUsed */
480
481
while (ii < MAX_NUM_PDGAINS_PER_CHANNEL) {
482
pPdGainBoundaries[ii] = pPdGainBoundaries[ii-1];
483
ii++;
484
}
485
while (kk < 128) {
486
pPDADCValues[kk] = pPDADCValues[kk-1];
487
kk++;
488
}
489
490
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "<==%s\n", __func__);
491
}
492
493
/* Same as 2413 set power table */
494
static HAL_BOOL
495
ar2425SetPowerTable(struct ath_hal *ah,
496
int16_t *minPower, int16_t *maxPower,
497
const struct ieee80211_channel *chan,
498
uint16_t *rfXpdGain)
499
{
500
uint16_t freq = ath_hal_gethwchannel(ah, chan);
501
struct ath_hal_5212 *ahp = AH5212(ah);
502
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
503
const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
504
uint16_t pdGainOverlap_t2;
505
int16_t minCalPower2413_t2;
506
uint16_t *pdadcValues = ahp->ah_pcdacTable;
507
uint16_t gainBoundaries[4];
508
uint32_t i, reg32, regoffset;
509
510
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s:chan 0x%x flag 0x%x\n",
511
__func__, freq, chan->ic_flags);
512
513
if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
514
pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
515
else if (IEEE80211_IS_CHAN_B(chan))
516
pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
517
else {
518
HALDEBUG(ah, HAL_DEBUG_ANY, "%s:illegal mode\n", __func__);
519
return AH_FALSE;
520
}
521
522
pdGainOverlap_t2 = (uint16_t) SM(OS_REG_READ(ah, AR_PHY_TPCRG5),
523
AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
524
525
ar2425getGainBoundariesAndPdadcsForPowers(ah, freq,
526
pRawDataset, pdGainOverlap_t2,&minCalPower2413_t2,gainBoundaries,
527
rfXpdGain, pdadcValues);
528
529
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
530
(pRawDataset->pDataPerChannel[0].numPdGains - 1));
531
532
/*
533
* Note the pdadc table may not start at 0 dBm power, could be
534
* negative or greater than 0. Need to offset the power
535
* values by the amount of minPower for griffin
536
*/
537
if (minCalPower2413_t2 != 0)
538
ahp->ah_txPowerIndexOffset = (int16_t)(0 - minCalPower2413_t2);
539
else
540
ahp->ah_txPowerIndexOffset = 0;
541
542
/* Finally, write the power values into the baseband power table */
543
regoffset = 0x9800 + (672 <<2); /* beginning of pdadc table in griffin */
544
for (i = 0; i < 32; i++) {
545
reg32 = ((pdadcValues[4*i + 0] & 0xFF) << 0) |
546
((pdadcValues[4*i + 1] & 0xFF) << 8) |
547
((pdadcValues[4*i + 2] & 0xFF) << 16) |
548
((pdadcValues[4*i + 3] & 0xFF) << 24) ;
549
OS_REG_WRITE(ah, regoffset, reg32);
550
regoffset += 4;
551
}
552
553
OS_REG_WRITE(ah, AR_PHY_TPCRG5,
554
SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
555
SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
556
SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
557
SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
558
SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
559
560
return AH_TRUE;
561
}
562
563
static int16_t
564
ar2425GetMinPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
565
{
566
uint32_t ii,jj;
567
uint16_t Pmin=0,numVpd;
568
569
for (ii = 0; ii < MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
570
jj = MAX_NUM_PDGAINS_PER_CHANNEL - ii - 1;
571
/* work backwards 'cause highest pdGain for lowest power */
572
numVpd = data->pDataPerPDGain[jj].numVpd;
573
if (numVpd > 0) {
574
Pmin = data->pDataPerPDGain[jj].pwr_t4[0];
575
return(Pmin);
576
}
577
}
578
return(Pmin);
579
}
580
581
static int16_t
582
ar2425GetMaxPower(struct ath_hal *ah, const RAW_DATA_PER_CHANNEL_2413 *data)
583
{
584
uint32_t ii;
585
uint16_t Pmax=0,numVpd;
586
587
for (ii=0; ii< MAX_NUM_PDGAINS_PER_CHANNEL; ii++) {
588
/* work forwards cuase lowest pdGain for highest power */
589
numVpd = data->pDataPerPDGain[ii].numVpd;
590
if (numVpd > 0) {
591
Pmax = data->pDataPerPDGain[ii].pwr_t4[numVpd-1];
592
return(Pmax);
593
}
594
}
595
return(Pmax);
596
}
597
598
static
599
HAL_BOOL
600
ar2425GetChannelMaxMinPower(struct ath_hal *ah,
601
const struct ieee80211_channel *chan,
602
int16_t *maxPow, int16_t *minPow)
603
{
604
uint16_t freq = chan->ic_freq; /* NB: never mapped */
605
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
606
const RAW_DATA_STRUCT_2413 *pRawDataset = AH_NULL;
607
const RAW_DATA_PER_CHANNEL_2413 *data = AH_NULL;
608
uint16_t numChannels;
609
int totalD,totalF, totalMin,last, i;
610
611
*maxPow = 0;
612
613
if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan))
614
pRawDataset = &ee->ee_rawDataset2413[headerInfo11G];
615
else if (IEEE80211_IS_CHAN_B(chan))
616
pRawDataset = &ee->ee_rawDataset2413[headerInfo11B];
617
else
618
return(AH_FALSE);
619
620
numChannels = pRawDataset->numChannels;
621
data = pRawDataset->pDataPerChannel;
622
623
/* Make sure the channel is in the range of the TP values
624
* (freq piers)
625
*/
626
if (numChannels < 1)
627
return(AH_FALSE);
628
629
if ((freq < data[0].channelValue) ||
630
(freq > data[numChannels-1].channelValue)) {
631
if (freq < data[0].channelValue) {
632
*maxPow = ar2425GetMaxPower(ah, &data[0]);
633
*minPow = ar2425GetMinPower(ah, &data[0]);
634
return(AH_TRUE);
635
} else {
636
*maxPow = ar2425GetMaxPower(ah, &data[numChannels - 1]);
637
*minPow = ar2425GetMinPower(ah, &data[numChannels - 1]);
638
return(AH_TRUE);
639
}
640
}
641
642
/* Linearly interpolate the power value now */
643
for (last=0,i=0; (i<numChannels) && (freq > data[i].channelValue);
644
last = i++);
645
totalD = data[i].channelValue - data[last].channelValue;
646
if (totalD > 0) {
647
totalF = ar2425GetMaxPower(ah, &data[i]) - ar2425GetMaxPower(ah, &data[last]);
648
*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) +
649
ar2425GetMaxPower(ah, &data[last])*totalD)/totalD);
650
totalMin = ar2425GetMinPower(ah, &data[i]) - ar2425GetMinPower(ah, &data[last]);
651
*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) +
652
ar2425GetMinPower(ah, &data[last])*totalD)/totalD);
653
return(AH_TRUE);
654
} else {
655
if (freq == data[i].channelValue) {
656
*maxPow = ar2425GetMaxPower(ah, &data[i]);
657
*minPow = ar2425GetMinPower(ah, &data[i]);
658
return(AH_TRUE);
659
} else
660
return(AH_FALSE);
661
}
662
}
663
664
/*
665
* Free memory for analog bank scratch buffers
666
*/
667
static void
668
ar2425RfDetach(struct ath_hal *ah)
669
{
670
struct ath_hal_5212 *ahp = AH5212(ah);
671
672
HALASSERT(ahp->ah_rfHal != AH_NULL);
673
ath_hal_free(ahp->ah_rfHal);
674
ahp->ah_rfHal = AH_NULL;
675
}
676
677
/*
678
* Allocate memory for analog bank scratch buffers
679
* Scratch Buffer will be reinitialized every reset so no need to zero now
680
*/
681
static HAL_BOOL
682
ar2425RfAttach(struct ath_hal *ah, HAL_STATUS *status)
683
{
684
struct ath_hal_5212 *ahp = AH5212(ah);
685
struct ar2425State *priv;
686
687
HALASSERT(ah->ah_magic == AR5212_MAGIC);
688
689
HALASSERT(ahp->ah_rfHal == AH_NULL);
690
priv = ath_hal_malloc(sizeof(struct ar2425State));
691
if (priv == AH_NULL) {
692
HALDEBUG(ah, HAL_DEBUG_ANY,
693
"%s: cannot allocate private state\n", __func__);
694
*status = HAL_ENOMEM; /* XXX */
695
return AH_FALSE;
696
}
697
priv->base.rfDetach = ar2425RfDetach;
698
priv->base.writeRegs = ar2425WriteRegs;
699
priv->base.getRfBank = ar2425GetRfBank;
700
priv->base.setChannel = ar2425SetChannel;
701
priv->base.setRfRegs = ar2425SetRfRegs;
702
priv->base.setPowerTable = ar2425SetPowerTable;
703
priv->base.getChannelMaxMinPower = ar2425GetChannelMaxMinPower;
704
priv->base.getNfAdjust = ar5212GetNfAdjust;
705
706
ahp->ah_pcdacTable = priv->pcdacTable;
707
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
708
ahp->ah_rfHal = &priv->base;
709
710
return AH_TRUE;
711
}
712
713
static HAL_BOOL
714
ar2425Probe(struct ath_hal *ah)
715
{
716
return IS_2425(ah) || IS_2417(ah);
717
}
718
AH_RF(RF2425, ar2425Probe, ar2425RfAttach);
719
720