Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/ath_hal/ar5212/ar5111.c
39566 views
1
/*-
2
* SPDX-License-Identifier: ISC
3
*
4
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5
* Copyright (c) 2002-2008 Atheros Communications, Inc.
6
*
7
* Permission to use, copy, modify, and/or distribute this software for any
8
* purpose with or without fee is hereby granted, provided that the above
9
* copyright notice and this permission notice appear in all copies.
10
*
11
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
*/
19
#include "opt_ah.h"
20
21
#include "ah.h"
22
#include "ah_internal.h"
23
24
#include "ah_eeprom_v3.h"
25
26
#include "ar5212/ar5212.h"
27
#include "ar5212/ar5212reg.h"
28
#include "ar5212/ar5212phy.h"
29
30
#define AH_5212_5111
31
#include "ar5212/ar5212.ini"
32
33
#define N(a) (sizeof(a)/sizeof(a[0]))
34
35
struct ar5111State {
36
RF_HAL_FUNCS base; /* public state, must be first */
37
uint16_t pcdacTable[PWR_TABLE_SIZE];
38
39
uint32_t Bank0Data[N(ar5212Bank0_5111)];
40
uint32_t Bank1Data[N(ar5212Bank1_5111)];
41
uint32_t Bank2Data[N(ar5212Bank2_5111)];
42
uint32_t Bank3Data[N(ar5212Bank3_5111)];
43
uint32_t Bank6Data[N(ar5212Bank6_5111)];
44
uint32_t Bank7Data[N(ar5212Bank7_5111)];
45
};
46
#define AR5111(ah) ((struct ar5111State *) AH5212(ah)->ah_rfHal)
47
48
static uint16_t ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
49
const PCDACS_EEPROM *pSrcStruct);
50
static HAL_BOOL ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
51
const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue);
52
static void ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
53
const PCDACS_EEPROM *pSrcStruct,
54
uint16_t *pLowerPcdac, uint16_t *pUpperPcdac);
55
56
extern void ar5212GetLowerUpperValues(uint16_t value,
57
const uint16_t *pList, uint16_t listSize,
58
uint16_t *pLowerValue, uint16_t *pUpperValue);
59
extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
60
uint32_t numBits, uint32_t firstBit, uint32_t column);
61
62
static void
63
ar5111WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
64
int writes)
65
{
66
HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5111, modesIndex, writes);
67
HAL_INI_WRITE_ARRAY(ah, ar5212Common_5111, 1, writes);
68
HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5111, freqIndex, writes);
69
}
70
71
/*
72
* Take the MHz channel value and set the Channel value
73
*
74
* ASSUMES: Writes enabled to analog bus
75
*/
76
static HAL_BOOL
77
ar5111SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
78
{
79
#define CI_2GHZ_INDEX_CORRECTION 19
80
uint16_t freq = ath_hal_gethwchannel(ah, chan);
81
uint32_t refClk, reg32, data2111;
82
int16_t chan5111, chanIEEE;
83
84
/*
85
* Structure to hold 11b tuning information for 5111/2111
86
* 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
87
*/
88
typedef struct {
89
uint32_t refClkSel; /* reference clock, 1 for 16 MHz */
90
uint32_t channelSelect; /* P[7:4]S[3:0] bits */
91
uint16_t channel5111; /* 11a channel for 5111 */
92
} CHAN_INFO_2GHZ;
93
94
static const CHAN_INFO_2GHZ chan2GHzData[] = {
95
{ 1, 0x46, 96 }, /* 2312 -19 */
96
{ 1, 0x46, 97 }, /* 2317 -18 */
97
{ 1, 0x46, 98 }, /* 2322 -17 */
98
{ 1, 0x46, 99 }, /* 2327 -16 */
99
{ 1, 0x46, 100 }, /* 2332 -15 */
100
{ 1, 0x46, 101 }, /* 2337 -14 */
101
{ 1, 0x46, 102 }, /* 2342 -13 */
102
{ 1, 0x46, 103 }, /* 2347 -12 */
103
{ 1, 0x46, 104 }, /* 2352 -11 */
104
{ 1, 0x46, 105 }, /* 2357 -10 */
105
{ 1, 0x46, 106 }, /* 2362 -9 */
106
{ 1, 0x46, 107 }, /* 2367 -8 */
107
{ 1, 0x46, 108 }, /* 2372 -7 */
108
/* index -6 to 0 are pad to make this a nolookup table */
109
{ 1, 0x46, 116 }, /* -6 */
110
{ 1, 0x46, 116 }, /* -5 */
111
{ 1, 0x46, 116 }, /* -4 */
112
{ 1, 0x46, 116 }, /* -3 */
113
{ 1, 0x46, 116 }, /* -2 */
114
{ 1, 0x46, 116 }, /* -1 */
115
{ 1, 0x46, 116 }, /* 0 */
116
{ 1, 0x46, 116 }, /* 2412 1 */
117
{ 1, 0x46, 117 }, /* 2417 2 */
118
{ 1, 0x46, 118 }, /* 2422 3 */
119
{ 1, 0x46, 119 }, /* 2427 4 */
120
{ 1, 0x46, 120 }, /* 2432 5 */
121
{ 1, 0x46, 121 }, /* 2437 6 */
122
{ 1, 0x46, 122 }, /* 2442 7 */
123
{ 1, 0x46, 123 }, /* 2447 8 */
124
{ 1, 0x46, 124 }, /* 2452 9 */
125
{ 1, 0x46, 125 }, /* 2457 10 */
126
{ 1, 0x46, 126 }, /* 2462 11 */
127
{ 1, 0x46, 127 }, /* 2467 12 */
128
{ 1, 0x46, 128 }, /* 2472 13 */
129
{ 1, 0x44, 124 }, /* 2484 14 */
130
{ 1, 0x46, 136 }, /* 2512 15 */
131
{ 1, 0x46, 140 }, /* 2532 16 */
132
{ 1, 0x46, 144 }, /* 2552 17 */
133
{ 1, 0x46, 148 }, /* 2572 18 */
134
{ 1, 0x46, 152 }, /* 2592 19 */
135
{ 1, 0x46, 156 }, /* 2612 20 */
136
{ 1, 0x46, 160 }, /* 2632 21 */
137
{ 1, 0x46, 164 }, /* 2652 22 */
138
{ 1, 0x46, 168 }, /* 2672 23 */
139
{ 1, 0x46, 172 }, /* 2692 24 */
140
{ 1, 0x46, 176 }, /* 2712 25 */
141
{ 1, 0x46, 180 } /* 2732 26 */
142
};
143
144
OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
145
146
chanIEEE = chan->ic_ieee;
147
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
148
const CHAN_INFO_2GHZ* ci =
149
&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
150
uint32_t txctl;
151
152
data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
153
<< 5)
154
| (ci->refClkSel << 4);
155
chan5111 = ci->channel5111;
156
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
157
if (freq == 2484) {
158
/* Enable channel spreading for channel 14 */
159
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
160
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
161
} else {
162
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
163
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
164
}
165
} else {
166
chan5111 = chanIEEE; /* no conversion needed */
167
data2111 = 0;
168
}
169
170
/* Rest of the code is common for 5 GHz and 2.4 GHz. */
171
if (chan5111 >= 145 || (chan5111 & 0x1)) {
172
reg32 = ath_hal_reverseBits(chan5111 - 24, 8) & 0xff;
173
refClk = 1;
174
} else {
175
reg32 = ath_hal_reverseBits(((chan5111 - 24)/2), 8) & 0xff;
176
refClk = 0;
177
}
178
179
reg32 = (reg32 << 2) | (refClk << 1) | (1 << 10) | 0x1;
180
OS_REG_WRITE(ah, AR_PHY(0x27), ((data2111 & 0xff) << 8) | (reg32 & 0xff));
181
reg32 >>= 8;
182
OS_REG_WRITE(ah, AR_PHY(0x34), (data2111 & 0xff00) | (reg32 & 0xff));
183
184
AH_PRIVATE(ah)->ah_curchan = chan;
185
return AH_TRUE;
186
#undef CI_2GHZ_INDEX_CORRECTION
187
}
188
189
/*
190
* Return a reference to the requested RF Bank.
191
*/
192
static uint32_t *
193
ar5111GetRfBank(struct ath_hal *ah, int bank)
194
{
195
struct ar5111State *priv = AR5111(ah);
196
197
HALASSERT(priv != AH_NULL);
198
switch (bank) {
199
case 0: return priv->Bank0Data;
200
case 1: return priv->Bank1Data;
201
case 2: return priv->Bank2Data;
202
case 3: return priv->Bank3Data;
203
case 6: return priv->Bank6Data;
204
case 7: return priv->Bank7Data;
205
}
206
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
207
__func__, bank);
208
return AH_NULL;
209
}
210
211
/*
212
* Reads EEPROM header info from device structure and programs
213
* all rf registers
214
*
215
* REQUIRES: Access to the analog rf device
216
*/
217
static HAL_BOOL
218
ar5111SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
219
uint16_t modesIndex, uint16_t *rfXpdGain)
220
{
221
uint16_t freq = ath_hal_gethwchannel(ah, chan);
222
struct ath_hal_5212 *ahp = AH5212(ah);
223
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
224
uint16_t rfXpdGainFixed, rfPloSel, rfPwdXpd, gainI;
225
uint16_t tempOB, tempDB;
226
uint32_t ob2GHz, db2GHz, rfReg[N(ar5212Bank6_5111)];
227
int i, regWrites = 0;
228
229
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
230
__func__, chan->ic_freq, chan->ic_flags, modesIndex);
231
232
/* Setup rf parameters */
233
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
234
case IEEE80211_CHAN_A:
235
if (4000 < freq && freq < 5260) {
236
tempOB = ee->ee_ob1;
237
tempDB = ee->ee_db1;
238
} else if (5260 <= freq && freq < 5500) {
239
tempOB = ee->ee_ob2;
240
tempDB = ee->ee_db2;
241
} else if (5500 <= freq && freq < 5725) {
242
tempOB = ee->ee_ob3;
243
tempDB = ee->ee_db3;
244
} else if (freq >= 5725) {
245
tempOB = ee->ee_ob4;
246
tempDB = ee->ee_db4;
247
} else {
248
/* XXX when does this happen??? */
249
tempOB = tempDB = 0;
250
}
251
ob2GHz = db2GHz = 0;
252
253
rfXpdGainFixed = ee->ee_xgain[headerInfo11A];
254
rfPloSel = ee->ee_xpd[headerInfo11A];
255
rfPwdXpd = !ee->ee_xpd[headerInfo11A];
256
gainI = ee->ee_gainI[headerInfo11A];
257
break;
258
case IEEE80211_CHAN_B:
259
tempOB = ee->ee_obFor24;
260
tempDB = ee->ee_dbFor24;
261
ob2GHz = ee->ee_ob2GHz[0];
262
db2GHz = ee->ee_db2GHz[0];
263
264
rfXpdGainFixed = ee->ee_xgain[headerInfo11B];
265
rfPloSel = ee->ee_xpd[headerInfo11B];
266
rfPwdXpd = !ee->ee_xpd[headerInfo11B];
267
gainI = ee->ee_gainI[headerInfo11B];
268
break;
269
case IEEE80211_CHAN_G:
270
case IEEE80211_CHAN_PUREG: /* NB: really 108G */
271
tempOB = ee->ee_obFor24g;
272
tempDB = ee->ee_dbFor24g;
273
ob2GHz = ee->ee_ob2GHz[1];
274
db2GHz = ee->ee_db2GHz[1];
275
276
rfXpdGainFixed = ee->ee_xgain[headerInfo11G];
277
rfPloSel = ee->ee_xpd[headerInfo11G];
278
rfPwdXpd = !ee->ee_xpd[headerInfo11G];
279
gainI = ee->ee_gainI[headerInfo11G];
280
break;
281
default:
282
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
283
__func__, chan->ic_flags);
284
return AH_FALSE;
285
}
286
287
HALASSERT(1 <= tempOB && tempOB <= 5);
288
HALASSERT(1 <= tempDB && tempDB <= 5);
289
290
/* Bank 0 Write */
291
for (i = 0; i < N(ar5212Bank0_5111); i++)
292
rfReg[i] = ar5212Bank0_5111[i][modesIndex];
293
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
294
ar5212ModifyRfBuffer(rfReg, ob2GHz, 3, 119, 0);
295
ar5212ModifyRfBuffer(rfReg, db2GHz, 3, 122, 0);
296
}
297
HAL_INI_WRITE_BANK(ah, ar5212Bank0_5111, rfReg, regWrites);
298
299
/* Bank 1 Write */
300
HAL_INI_WRITE_ARRAY(ah, ar5212Bank1_5111, 1, regWrites);
301
302
/* Bank 2 Write */
303
HAL_INI_WRITE_ARRAY(ah, ar5212Bank2_5111, modesIndex, regWrites);
304
305
/* Bank 3 Write */
306
HAL_INI_WRITE_ARRAY(ah, ar5212Bank3_5111, modesIndex, regWrites);
307
308
/* Bank 6 Write */
309
for (i = 0; i < N(ar5212Bank6_5111); i++)
310
rfReg[i] = ar5212Bank6_5111[i][modesIndex];
311
if (IEEE80211_IS_CHAN_A(chan)) { /* NB: CHANNEL_A | CHANNEL_T */
312
ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd84, 1, 51, 3);
313
ar5212ModifyRfBuffer(rfReg, ee->ee_cornerCal.pd90, 1, 45, 3);
314
}
315
ar5212ModifyRfBuffer(rfReg, rfPwdXpd, 1, 95, 0);
316
ar5212ModifyRfBuffer(rfReg, rfXpdGainFixed, 4, 96, 0);
317
/* Set 5212 OB & DB */
318
ar5212ModifyRfBuffer(rfReg, tempOB, 3, 104, 0);
319
ar5212ModifyRfBuffer(rfReg, tempDB, 3, 107, 0);
320
HAL_INI_WRITE_BANK(ah, ar5212Bank6_5111, rfReg, regWrites);
321
322
/* Bank 7 Write */
323
for (i = 0; i < N(ar5212Bank7_5111); i++)
324
rfReg[i] = ar5212Bank7_5111[i][modesIndex];
325
ar5212ModifyRfBuffer(rfReg, gainI, 6, 29, 0);
326
ar5212ModifyRfBuffer(rfReg, rfPloSel, 1, 4, 0);
327
328
if (IEEE80211_IS_CHAN_QUARTER(chan) || IEEE80211_IS_CHAN_HALF(chan)) {
329
uint32_t rfWaitI, rfWaitS, rfMaxTime;
330
331
rfWaitS = 0x1f;
332
rfWaitI = (IEEE80211_IS_CHAN_HALF(chan)) ? 0x10 : 0x1f;
333
rfMaxTime = 3;
334
ar5212ModifyRfBuffer(rfReg, rfWaitS, 5, 19, 0);
335
ar5212ModifyRfBuffer(rfReg, rfWaitI, 5, 24, 0);
336
ar5212ModifyRfBuffer(rfReg, rfMaxTime, 2, 49, 0);
337
}
338
339
HAL_INI_WRITE_BANK(ah, ar5212Bank7_5111, rfReg, regWrites);
340
341
/* Now that we have reprogrammed rfgain value, clear the flag. */
342
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
343
344
return AH_TRUE;
345
}
346
347
/*
348
* Returns interpolated or the scaled up interpolated value
349
*/
350
static uint16_t
351
interpolate(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
352
uint16_t targetLeft, uint16_t targetRight)
353
{
354
uint16_t rv;
355
int16_t lRatio;
356
357
/* to get an accurate ratio, always scale, if want to scale, then don't scale back down */
358
if ((targetLeft * targetRight) == 0)
359
return 0;
360
361
if (srcRight != srcLeft) {
362
/*
363
* Note the ratio always need to be scaled,
364
* since it will be a fraction.
365
*/
366
lRatio = (target - srcLeft) * EEP_SCALE / (srcRight - srcLeft);
367
if (lRatio < 0) {
368
/* Return as Left target if value would be negative */
369
rv = targetLeft;
370
} else if (lRatio > EEP_SCALE) {
371
/* Return as Right target if Ratio is greater than 100% (SCALE) */
372
rv = targetRight;
373
} else {
374
rv = (lRatio * targetRight + (EEP_SCALE - lRatio) *
375
targetLeft) / EEP_SCALE;
376
}
377
} else {
378
rv = targetLeft;
379
}
380
return rv;
381
}
382
383
/*
384
* Read the transmit power levels from the structures taken from EEPROM
385
* Interpolate read transmit power values for this channel
386
* Organize the transmit power values into a table for writing into the hardware
387
*/
388
static HAL_BOOL
389
ar5111SetPowerTable(struct ath_hal *ah,
390
int16_t *pMinPower, int16_t *pMaxPower,
391
const struct ieee80211_channel *chan,
392
uint16_t *rfXpdGain)
393
{
394
uint16_t freq = ath_hal_gethwchannel(ah, chan);
395
struct ath_hal_5212 *ahp = AH5212(ah);
396
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
397
FULL_PCDAC_STRUCT pcdacStruct;
398
int i, j;
399
400
uint16_t *pPcdacValues;
401
int16_t *pScaledUpDbm;
402
int16_t minScaledPwr;
403
int16_t maxScaledPwr;
404
int16_t pwr;
405
uint16_t pcdacMin = 0;
406
uint16_t pcdacMax = PCDAC_STOP;
407
uint16_t pcdacTableIndex;
408
uint16_t scaledPcdac;
409
PCDACS_EEPROM *pSrcStruct;
410
PCDACS_EEPROM eepromPcdacs;
411
412
/* setup the pcdac struct to point to the correct info, based on mode */
413
switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
414
case IEEE80211_CHAN_A:
415
case IEEE80211_CHAN_ST:
416
eepromPcdacs.numChannels = ee->ee_numChannels11a;
417
eepromPcdacs.pChannelList = ee->ee_channels11a;
418
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11a;
419
break;
420
case IEEE80211_CHAN_B:
421
eepromPcdacs.numChannels = ee->ee_numChannels2_4;
422
eepromPcdacs.pChannelList = ee->ee_channels11b;
423
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11b;
424
break;
425
case IEEE80211_CHAN_G:
426
case IEEE80211_CHAN_108G:
427
eepromPcdacs.numChannels = ee->ee_numChannels2_4;
428
eepromPcdacs.pChannelList = ee->ee_channels11g;
429
eepromPcdacs.pDataPerChannel = ee->ee_dataPerChannel11g;
430
break;
431
default:
432
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
433
__func__, chan->ic_flags);
434
return AH_FALSE;
435
}
436
437
pSrcStruct = &eepromPcdacs;
438
439
OS_MEMZERO(&pcdacStruct, sizeof(pcdacStruct));
440
pPcdacValues = pcdacStruct.PcdacValues;
441
pScaledUpDbm = pcdacStruct.PwrValues;
442
443
/* Initialize the pcdacs to dBM structs pcdacs to be 1 to 63 */
444
for (i = PCDAC_START, j = 0; i <= PCDAC_STOP; i+= PCDAC_STEP, j++)
445
pPcdacValues[j] = i;
446
447
pcdacStruct.numPcdacValues = j;
448
pcdacStruct.pcdacMin = PCDAC_START;
449
pcdacStruct.pcdacMax = PCDAC_STOP;
450
451
/* Fill out the power values for this channel */
452
for (j = 0; j < pcdacStruct.numPcdacValues; j++ )
453
pScaledUpDbm[j] = ar5212GetScaledPower(freq,
454
pPcdacValues[j], pSrcStruct);
455
456
/* Now scale the pcdac values to fit in the 64 entry power table */
457
minScaledPwr = pScaledUpDbm[0];
458
maxScaledPwr = pScaledUpDbm[pcdacStruct.numPcdacValues - 1];
459
460
/* find minimum and make monotonic */
461
for (j = 0; j < pcdacStruct.numPcdacValues; j++) {
462
if (minScaledPwr >= pScaledUpDbm[j]) {
463
minScaledPwr = pScaledUpDbm[j];
464
pcdacMin = j;
465
}
466
/*
467
* Make the full_hsh monotonically increasing otherwise
468
* interpolation algorithm will get fooled gotta start
469
* working from the top, hence i = 63 - j.
470
*/
471
i = (uint16_t)(pcdacStruct.numPcdacValues - 1 - j);
472
if (i == 0)
473
break;
474
if (pScaledUpDbm[i-1] > pScaledUpDbm[i]) {
475
/*
476
* It could be a glitch, so make the power for
477
* this pcdac the same as the power from the
478
* next highest pcdac.
479
*/
480
pScaledUpDbm[i - 1] = pScaledUpDbm[i];
481
}
482
}
483
484
for (j = 0; j < pcdacStruct.numPcdacValues; j++)
485
if (maxScaledPwr < pScaledUpDbm[j]) {
486
maxScaledPwr = pScaledUpDbm[j];
487
pcdacMax = j;
488
}
489
490
/* Find the first power level with a pcdac */
491
pwr = (uint16_t)(PWR_STEP *
492
((minScaledPwr - PWR_MIN + PWR_STEP / 2) / PWR_STEP) + PWR_MIN);
493
494
/* Write all the first pcdac entries based off the pcdacMin */
495
pcdacTableIndex = 0;
496
for (i = 0; i < (2 * (pwr - PWR_MIN) / EEP_SCALE + 1); i++) {
497
HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
498
ahp->ah_pcdacTable[pcdacTableIndex++] = pcdacMin;
499
}
500
501
i = 0;
502
while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
503
pcdacTableIndex < PWR_TABLE_SIZE) {
504
pwr += PWR_STEP;
505
/* stop if dbM > max_power_possible */
506
while (pwr < pScaledUpDbm[pcdacStruct.numPcdacValues - 1] &&
507
(pwr - pScaledUpDbm[i])*(pwr - pScaledUpDbm[i+1]) > 0)
508
i++;
509
/* scale by 2 and add 1 to enable round up or down as needed */
510
scaledPcdac = (uint16_t)(interpolate(pwr,
511
pScaledUpDbm[i], pScaledUpDbm[i + 1],
512
(uint16_t)(pPcdacValues[i] * 2),
513
(uint16_t)(pPcdacValues[i + 1] * 2)) + 1);
514
515
HALASSERT(pcdacTableIndex < PWR_TABLE_SIZE);
516
ahp->ah_pcdacTable[pcdacTableIndex] = scaledPcdac / 2;
517
if (ahp->ah_pcdacTable[pcdacTableIndex] > pcdacMax)
518
ahp->ah_pcdacTable[pcdacTableIndex] = pcdacMax;
519
pcdacTableIndex++;
520
}
521
522
/* Write all the last pcdac entries based off the last valid pcdac */
523
while (pcdacTableIndex < PWR_TABLE_SIZE) {
524
ahp->ah_pcdacTable[pcdacTableIndex] =
525
ahp->ah_pcdacTable[pcdacTableIndex - 1];
526
pcdacTableIndex++;
527
}
528
529
/* No power table adjustment for 5111 */
530
ahp->ah_txPowerIndexOffset = 0;
531
532
return AH_TRUE;
533
}
534
535
/*
536
* Get or interpolate the pcdac value from the calibrated data.
537
*/
538
static uint16_t
539
ar5212GetScaledPower(uint16_t channel, uint16_t pcdacValue,
540
const PCDACS_EEPROM *pSrcStruct)
541
{
542
uint16_t powerValue;
543
uint16_t lFreq, rFreq; /* left and right frequency values */
544
uint16_t llPcdac, ulPcdac; /* lower and upper left pcdac values */
545
uint16_t lrPcdac, urPcdac; /* lower and upper right pcdac values */
546
uint16_t lPwr, uPwr; /* lower and upper temp pwr values */
547
uint16_t lScaledPwr, rScaledPwr; /* left and right scaled power */
548
549
if (ar5212FindValueInList(channel, pcdacValue, pSrcStruct, &powerValue)) {
550
/* value was copied from srcStruct */
551
return powerValue;
552
}
553
554
ar5212GetLowerUpperValues(channel,
555
pSrcStruct->pChannelList, pSrcStruct->numChannels,
556
&lFreq, &rFreq);
557
ar5212GetLowerUpperPcdacs(pcdacValue,
558
lFreq, pSrcStruct, &llPcdac, &ulPcdac);
559
ar5212GetLowerUpperPcdacs(pcdacValue,
560
rFreq, pSrcStruct, &lrPcdac, &urPcdac);
561
562
/* get the power index for the pcdac value */
563
ar5212FindValueInList(lFreq, llPcdac, pSrcStruct, &lPwr);
564
ar5212FindValueInList(lFreq, ulPcdac, pSrcStruct, &uPwr);
565
lScaledPwr = interpolate(pcdacValue, llPcdac, ulPcdac, lPwr, uPwr);
566
567
ar5212FindValueInList(rFreq, lrPcdac, pSrcStruct, &lPwr);
568
ar5212FindValueInList(rFreq, urPcdac, pSrcStruct, &uPwr);
569
rScaledPwr = interpolate(pcdacValue, lrPcdac, urPcdac, lPwr, uPwr);
570
571
return interpolate(channel, lFreq, rFreq, lScaledPwr, rScaledPwr);
572
}
573
574
/*
575
* Find the value from the calibrated source data struct
576
*/
577
static HAL_BOOL
578
ar5212FindValueInList(uint16_t channel, uint16_t pcdacValue,
579
const PCDACS_EEPROM *pSrcStruct, uint16_t *powerValue)
580
{
581
const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
582
int i;
583
584
for (i = 0; i < pSrcStruct->numChannels; i++ ) {
585
if (pChannelData->channelValue == channel) {
586
const uint16_t* pPcdac = pChannelData->PcdacValues;
587
int j;
588
589
for (j = 0; j < pChannelData->numPcdacValues; j++ ) {
590
if (*pPcdac == pcdacValue) {
591
*powerValue = pChannelData->PwrValues[j];
592
return AH_TRUE;
593
}
594
pPcdac++;
595
}
596
}
597
pChannelData++;
598
}
599
return AH_FALSE;
600
}
601
602
/*
603
* Get the upper and lower pcdac given the channel and the pcdac
604
* used in the search
605
*/
606
static void
607
ar5212GetLowerUpperPcdacs(uint16_t pcdac, uint16_t channel,
608
const PCDACS_EEPROM *pSrcStruct,
609
uint16_t *pLowerPcdac, uint16_t *pUpperPcdac)
610
{
611
const DATA_PER_CHANNEL *pChannelData = pSrcStruct->pDataPerChannel;
612
int i;
613
614
/* Find the channel information */
615
for (i = 0; i < pSrcStruct->numChannels; i++) {
616
if (pChannelData->channelValue == channel)
617
break;
618
pChannelData++;
619
}
620
ar5212GetLowerUpperValues(pcdac, pChannelData->PcdacValues,
621
pChannelData->numPcdacValues,
622
pLowerPcdac, pUpperPcdac);
623
}
624
625
static HAL_BOOL
626
ar5111GetChannelMaxMinPower(struct ath_hal *ah,
627
const struct ieee80211_channel *chan,
628
int16_t *maxPow, int16_t *minPow)
629
{
630
/* XXX - Get 5111 power limits! */
631
/* NB: caller will cope */
632
return AH_FALSE;
633
}
634
635
/*
636
* Adjust NF based on statistical values for 5GHz frequencies.
637
*/
638
static int16_t
639
ar5111GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
640
{
641
static const struct {
642
uint16_t freqLow;
643
int16_t adjust;
644
} adjust5111[] = {
645
{ 5790, 6 }, /* NB: ordered high -> low */
646
{ 5730, 4 },
647
{ 5690, 3 },
648
{ 5660, 2 },
649
{ 5610, 1 },
650
{ 5530, 0 },
651
{ 5450, 0 },
652
{ 5379, 1 },
653
{ 5209, 3 },
654
{ 3000, 5 },
655
{ 0, 0 },
656
};
657
int i;
658
659
for (i = 0; c->channel <= adjust5111[i].freqLow; i++)
660
;
661
return adjust5111[i].adjust;
662
}
663
664
/*
665
* Free memory for analog bank scratch buffers
666
*/
667
static void
668
ar5111RfDetach(struct ath_hal *ah)
669
{
670
struct ath_hal_5212 *ahp = AH5212(ah);
671
672
HALASSERT(ahp->ah_rfHal != AH_NULL);
673
ath_hal_free(ahp->ah_rfHal);
674
ahp->ah_rfHal = AH_NULL;
675
}
676
677
/*
678
* Allocate memory for analog bank scratch buffers
679
* Scratch Buffer will be reinitialized every reset so no need to zero now
680
*/
681
static HAL_BOOL
682
ar5111RfAttach(struct ath_hal *ah, HAL_STATUS *status)
683
{
684
struct ath_hal_5212 *ahp = AH5212(ah);
685
struct ar5111State *priv;
686
687
HALASSERT(ah->ah_magic == AR5212_MAGIC);
688
689
HALASSERT(ahp->ah_rfHal == AH_NULL);
690
priv = ath_hal_malloc(sizeof(struct ar5111State));
691
if (priv == AH_NULL) {
692
HALDEBUG(ah, HAL_DEBUG_ANY,
693
"%s: cannot allocate private state\n", __func__);
694
*status = HAL_ENOMEM; /* XXX */
695
return AH_FALSE;
696
}
697
priv->base.rfDetach = ar5111RfDetach;
698
priv->base.writeRegs = ar5111WriteRegs;
699
priv->base.getRfBank = ar5111GetRfBank;
700
priv->base.setChannel = ar5111SetChannel;
701
priv->base.setRfRegs = ar5111SetRfRegs;
702
priv->base.setPowerTable = ar5111SetPowerTable;
703
priv->base.getChannelMaxMinPower = ar5111GetChannelMaxMinPower;
704
priv->base.getNfAdjust = ar5111GetNfAdjust;
705
706
ahp->ah_pcdacTable = priv->pcdacTable;
707
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
708
ahp->ah_rfHal = &priv->base;
709
710
return AH_TRUE;
711
}
712
713
static HAL_BOOL
714
ar5111Probe(struct ath_hal *ah)
715
{
716
return IS_RAD5111(ah);
717
}
718
AH_RF(RF5111, ar5111Probe, ar5111RfAttach);
719
720