Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/ath_hal/ar5212/ar5112.c
39566 views
1
/*-
2
* SPDX-License-Identifier: ISC
3
*
4
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5
* Copyright (c) 2002-2008 Atheros Communications, Inc.
6
*
7
* Permission to use, copy, modify, and/or distribute this software for any
8
* purpose with or without fee is hereby granted, provided that the above
9
* copyright notice and this permission notice appear in all copies.
10
*
11
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
*/
19
#include "opt_ah.h"
20
21
#include "ah.h"
22
#include "ah_internal.h"
23
24
#include "ah_eeprom_v3.h"
25
26
#include "ar5212/ar5212.h"
27
#include "ar5212/ar5212reg.h"
28
#include "ar5212/ar5212phy.h"
29
30
#define AH_5212_5112
31
#include "ar5212/ar5212.ini"
32
33
#define N(a) (sizeof(a)/sizeof(a[0]))
34
35
struct ar5112State {
36
RF_HAL_FUNCS base; /* public state, must be first */
37
uint16_t pcdacTable[PWR_TABLE_SIZE];
38
39
uint32_t Bank1Data[N(ar5212Bank1_5112)];
40
uint32_t Bank2Data[N(ar5212Bank2_5112)];
41
uint32_t Bank3Data[N(ar5212Bank3_5112)];
42
uint32_t Bank6Data[N(ar5212Bank6_5112)];
43
uint32_t Bank7Data[N(ar5212Bank7_5112)];
44
};
45
#define AR5112(ah) ((struct ar5112State *) AH5212(ah)->ah_rfHal)
46
47
static void ar5212GetLowerUpperIndex(uint16_t v,
48
uint16_t *lp, uint16_t listSize,
49
uint32_t *vlo, uint32_t *vhi);
50
static HAL_BOOL getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs,
51
int16_t *power, int16_t maxPower, int16_t *retVals);
52
static int16_t getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4,
53
uint16_t retVals[]);
54
static int16_t getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
55
int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid);
56
static int16_t interpolate_signed(uint16_t target,
57
uint16_t srcLeft, uint16_t srcRight,
58
int16_t targetLeft, int16_t targetRight);
59
60
extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,
61
uint32_t numBits, uint32_t firstBit, uint32_t column);
62
63
static void
64
ar5112WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
65
int writes)
66
{
67
HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5112, modesIndex, writes);
68
HAL_INI_WRITE_ARRAY(ah, ar5212Common_5112, 1, writes);
69
HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5112, freqIndex, writes);
70
}
71
72
/*
73
* Take the MHz channel value and set the Channel value
74
*
75
* ASSUMES: Writes enabled to analog bus
76
*/
77
static HAL_BOOL
78
ar5112SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
79
{
80
uint16_t freq = ath_hal_gethwchannel(ah, chan);
81
uint32_t channelSel = 0;
82
uint32_t bModeSynth = 0;
83
uint32_t aModeRefSel = 0;
84
uint32_t reg32 = 0;
85
86
OS_MARK(ah, AH_MARK_SETCHANNEL, freq);
87
88
if (freq < 4800) {
89
uint32_t txctl;
90
91
if (((freq - 2192) % 5) == 0) {
92
channelSel = ((freq - 672) * 2 - 3040)/10;
93
bModeSynth = 0;
94
} else if (((freq - 2224) % 5) == 0) {
95
channelSel = ((freq - 704) * 2 - 3040) / 10;
96
bModeSynth = 1;
97
} else {
98
HALDEBUG(ah, HAL_DEBUG_ANY,
99
"%s: invalid channel %u MHz\n",
100
__func__, freq);
101
return AH_FALSE;
102
}
103
104
channelSel = (channelSel << 2) & 0xff;
105
channelSel = ath_hal_reverseBits(channelSel, 8);
106
107
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
108
if (freq == 2484) {
109
/* Enable channel spreading for channel 14 */
110
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
111
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
112
} else {
113
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
114
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
115
}
116
} else if (((freq % 5) == 2) && (freq <= 5435)) {
117
freq = freq - 2; /* Align to even 5MHz raster */
118
channelSel = ath_hal_reverseBits(
119
(uint32_t)(((freq - 4800)*10)/25 + 1), 8);
120
aModeRefSel = ath_hal_reverseBits(0, 2);
121
} else if ((freq % 20) == 0 && freq >= 5120) {
122
channelSel = ath_hal_reverseBits(
123
((freq - 4800) / 20 << 2), 8);
124
aModeRefSel = ath_hal_reverseBits(3, 2);
125
} else if ((freq % 10) == 0) {
126
channelSel = ath_hal_reverseBits(
127
((freq - 4800) / 10 << 1), 8);
128
aModeRefSel = ath_hal_reverseBits(2, 2);
129
} else if ((freq % 5) == 0) {
130
channelSel = ath_hal_reverseBits(
131
(freq - 4800) / 5, 8);
132
aModeRefSel = ath_hal_reverseBits(1, 2);
133
} else {
134
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
135
__func__, freq);
136
return AH_FALSE;
137
}
138
139
reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
140
(1 << 12) | 0x1;
141
OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);
142
143
reg32 >>= 8;
144
OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);
145
146
AH_PRIVATE(ah)->ah_curchan = chan;
147
return AH_TRUE;
148
}
149
150
/*
151
* Return a reference to the requested RF Bank.
152
*/
153
static uint32_t *
154
ar5112GetRfBank(struct ath_hal *ah, int bank)
155
{
156
struct ar5112State *priv = AR5112(ah);
157
158
HALASSERT(priv != AH_NULL);
159
switch (bank) {
160
case 1: return priv->Bank1Data;
161
case 2: return priv->Bank2Data;
162
case 3: return priv->Bank3Data;
163
case 6: return priv->Bank6Data;
164
case 7: return priv->Bank7Data;
165
}
166
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
167
__func__, bank);
168
return AH_NULL;
169
}
170
171
/*
172
* Reads EEPROM header info from device structure and programs
173
* all rf registers
174
*
175
* REQUIRES: Access to the analog rf device
176
*/
177
static HAL_BOOL
178
ar5112SetRfRegs(struct ath_hal *ah,
179
const struct ieee80211_channel *chan,
180
uint16_t modesIndex, uint16_t *rfXpdGain)
181
{
182
#define RF_BANK_SETUP(_priv, _ix, _col) do { \
183
int i; \
184
for (i = 0; i < N(ar5212Bank##_ix##_5112); i++) \
185
(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5112[i][_col];\
186
} while (0)
187
uint16_t freq = ath_hal_gethwchannel(ah, chan);
188
struct ath_hal_5212 *ahp = AH5212(ah);
189
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
190
uint16_t rfXpdSel, gainI;
191
uint16_t ob5GHz = 0, db5GHz = 0;
192
uint16_t ob2GHz = 0, db2GHz = 0;
193
struct ar5112State *priv = AR5112(ah);
194
GAIN_VALUES *gv = &ahp->ah_gainValues;
195
int regWrites = 0;
196
197
HALASSERT(priv);
198
199
HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",
200
__func__, chan->ic_freq, chan->ic_flags, modesIndex);
201
202
/* Setup rf parameters */
203
switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {
204
case IEEE80211_CHAN_A:
205
if (freq > 4000 && freq < 5260) {
206
ob5GHz = ee->ee_ob1;
207
db5GHz = ee->ee_db1;
208
} else if (freq >= 5260 && freq < 5500) {
209
ob5GHz = ee->ee_ob2;
210
db5GHz = ee->ee_db2;
211
} else if (freq >= 5500 && freq < 5725) {
212
ob5GHz = ee->ee_ob3;
213
db5GHz = ee->ee_db3;
214
} else if (freq >= 5725) {
215
ob5GHz = ee->ee_ob4;
216
db5GHz = ee->ee_db4;
217
} else {
218
/* XXX else */
219
}
220
rfXpdSel = ee->ee_xpd[headerInfo11A];
221
gainI = ee->ee_gainI[headerInfo11A];
222
break;
223
case IEEE80211_CHAN_B:
224
ob2GHz = ee->ee_ob2GHz[0];
225
db2GHz = ee->ee_db2GHz[0];
226
rfXpdSel = ee->ee_xpd[headerInfo11B];
227
gainI = ee->ee_gainI[headerInfo11B];
228
break;
229
case IEEE80211_CHAN_G:
230
case IEEE80211_CHAN_PUREG: /* NB: really 108G */
231
ob2GHz = ee->ee_ob2GHz[1];
232
db2GHz = ee->ee_ob2GHz[1];
233
rfXpdSel = ee->ee_xpd[headerInfo11G];
234
gainI = ee->ee_gainI[headerInfo11G];
235
break;
236
default:
237
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",
238
__func__, chan->ic_flags);
239
return AH_FALSE;
240
}
241
242
/* Setup Bank 1 Write */
243
RF_BANK_SETUP(priv, 1, 1);
244
245
/* Setup Bank 2 Write */
246
RF_BANK_SETUP(priv, 2, modesIndex);
247
248
/* Setup Bank 3 Write */
249
RF_BANK_SETUP(priv, 3, modesIndex);
250
251
/* Setup Bank 6 Write */
252
RF_BANK_SETUP(priv, 6, modesIndex);
253
254
ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdSel, 1, 302, 0);
255
256
ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[0], 2, 270, 0);
257
ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[1], 2, 257, 0);
258
259
if (IEEE80211_IS_CHAN_OFDM(chan)) {
260
ar5212ModifyRfBuffer(priv->Bank6Data,
261
gv->currStep->paramVal[GP_PWD_138], 1, 168, 3);
262
ar5212ModifyRfBuffer(priv->Bank6Data,
263
gv->currStep->paramVal[GP_PWD_137], 1, 169, 3);
264
ar5212ModifyRfBuffer(priv->Bank6Data,
265
gv->currStep->paramVal[GP_PWD_136], 1, 170, 3);
266
ar5212ModifyRfBuffer(priv->Bank6Data,
267
gv->currStep->paramVal[GP_PWD_132], 1, 174, 3);
268
ar5212ModifyRfBuffer(priv->Bank6Data,
269
gv->currStep->paramVal[GP_PWD_131], 1, 175, 3);
270
ar5212ModifyRfBuffer(priv->Bank6Data,
271
gv->currStep->paramVal[GP_PWD_130], 1, 176, 3);
272
}
273
274
/* Only the 5 or 2 GHz OB/DB need to be set for a mode */
275
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
276
ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 287, 0);
277
ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 290, 0);
278
} else {
279
ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 279, 0);
280
ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 282, 0);
281
}
282
283
/* Lower synth voltage for X112 Rev 2.0 only */
284
if (IS_RADX112_REV2(ah)) {
285
/* Non-Reversed analyg registers - so values are pre-reversed */
286
ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 90, 2);
287
ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 92, 2);
288
ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 94, 2);
289
ar5212ModifyRfBuffer(priv->Bank6Data, 2, 1, 254, 2);
290
}
291
292
/* Decrease Power Consumption for 5312/5213 and up */
293
if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {
294
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 281, 1);
295
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 1, 3);
296
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 3, 3);
297
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 139, 3);
298
ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 140, 3);
299
}
300
301
/* Setup Bank 7 Setup */
302
RF_BANK_SETUP(priv, 7, modesIndex);
303
if (IEEE80211_IS_CHAN_OFDM(chan))
304
ar5212ModifyRfBuffer(priv->Bank7Data,
305
gv->currStep->paramVal[GP_MIXGAIN_OVR], 2, 37, 0);
306
307
ar5212ModifyRfBuffer(priv->Bank7Data, gainI, 6, 14, 0);
308
309
/* Adjust params for Derby TX power control */
310
if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
311
uint32_t rfDelay, rfPeriod;
312
313
rfDelay = 0xf;
314
rfPeriod = (IEEE80211_IS_CHAN_HALF(chan)) ? 0x8 : 0xf;
315
ar5212ModifyRfBuffer(priv->Bank7Data, rfDelay, 4, 58, 0);
316
ar5212ModifyRfBuffer(priv->Bank7Data, rfPeriod, 4, 70, 0);
317
}
318
319
#ifdef notyet
320
/* Analog registers are setup - EAR can modify */
321
if (ar5212IsEarEngaged(pDev, chan))
322
uint32_t modifier;
323
ar5212EarModify(pDev, EAR_LC_RF_WRITE, chan, &modifier);
324
#endif
325
/* Write Analog registers */
326
HAL_INI_WRITE_BANK(ah, ar5212Bank1_5112, priv->Bank1Data, regWrites);
327
HAL_INI_WRITE_BANK(ah, ar5212Bank2_5112, priv->Bank2Data, regWrites);
328
HAL_INI_WRITE_BANK(ah, ar5212Bank3_5112, priv->Bank3Data, regWrites);
329
HAL_INI_WRITE_BANK(ah, ar5212Bank6_5112, priv->Bank6Data, regWrites);
330
HAL_INI_WRITE_BANK(ah, ar5212Bank7_5112, priv->Bank7Data, regWrites);
331
332
/* Now that we have reprogrammed rfgain value, clear the flag. */
333
ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;
334
return AH_TRUE;
335
#undef RF_BANK_SETUP
336
}
337
338
/*
339
* Read the transmit power levels from the structures taken from EEPROM
340
* Interpolate read transmit power values for this channel
341
* Organize the transmit power values into a table for writing into the hardware
342
*/
343
static HAL_BOOL
344
ar5112SetPowerTable(struct ath_hal *ah,
345
int16_t *pPowerMin, int16_t *pPowerMax,
346
const struct ieee80211_channel *chan,
347
uint16_t *rfXpdGain)
348
{
349
uint16_t freq = ath_hal_gethwchannel(ah, chan);
350
struct ath_hal_5212 *ahp = AH5212(ah);
351
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
352
uint32_t numXpdGain = IS_RADX112_REV2(ah) ? 2 : 1;
353
uint32_t xpdGainMask = 0;
354
int16_t powerMid, *pPowerMid = &powerMid;
355
356
const EXPN_DATA_PER_CHANNEL_5112 *pRawCh;
357
const EEPROM_POWER_EXPN_5112 *pPowerExpn = AH_NULL;
358
359
uint32_t ii, jj, kk;
360
int16_t minPwr_t4, maxPwr_t4, Pmin, Pmid;
361
362
uint32_t chan_idx_L = 0, chan_idx_R = 0;
363
uint16_t chan_L, chan_R;
364
365
int16_t pwr_table0[64];
366
int16_t pwr_table1[64];
367
uint16_t pcdacs[10];
368
int16_t powers[10];
369
uint16_t numPcd;
370
int16_t powTableLXPD[2][64];
371
int16_t powTableHXPD[2][64];
372
int16_t tmpPowerTable[64];
373
uint16_t xgainList[2];
374
uint16_t xpdMask;
375
376
switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {
377
case IEEE80211_CHAN_A:
378
case IEEE80211_CHAN_ST:
379
pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11A];
380
xpdGainMask = ee->ee_xgain[headerInfo11A];
381
break;
382
case IEEE80211_CHAN_B:
383
pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11B];
384
xpdGainMask = ee->ee_xgain[headerInfo11B];
385
break;
386
case IEEE80211_CHAN_G:
387
case IEEE80211_CHAN_108G:
388
pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11G];
389
xpdGainMask = ee->ee_xgain[headerInfo11G];
390
break;
391
default:
392
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown channel flags 0x%x\n",
393
__func__, chan->ic_flags);
394
return AH_FALSE;
395
}
396
397
if ((xpdGainMask & pPowerExpn->xpdMask) < 1) {
398
HALDEBUG(ah, HAL_DEBUG_ANY,
399
"%s: desired xpdGainMask 0x%x not supported by "
400
"calibrated xpdMask 0x%x\n", __func__,
401
xpdGainMask, pPowerExpn->xpdMask);
402
return AH_FALSE;
403
}
404
405
maxPwr_t4 = (int16_t)(2*(*pPowerMax)); /* pwr_t2 -> pwr_t4 */
406
minPwr_t4 = (int16_t)(2*(*pPowerMin)); /* pwr_t2 -> pwr_t4 */
407
408
xgainList[0] = 0xDEAD;
409
xgainList[1] = 0xDEAD;
410
411
kk = 0;
412
xpdMask = pPowerExpn->xpdMask;
413
for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) {
414
if (((xpdMask >> jj) & 1) > 0) {
415
if (kk > 1) {
416
HALDEBUG(ah, HAL_DEBUG_ANY,
417
"A maximum of 2 xpdGains supported"
418
"in pExpnPower data\n");
419
return AH_FALSE;
420
}
421
xgainList[kk++] = (uint16_t)jj;
422
}
423
}
424
425
ar5212GetLowerUpperIndex(freq, &pPowerExpn->pChannels[0],
426
pPowerExpn->numChannels, &chan_idx_L, &chan_idx_R);
427
428
kk = 0;
429
for (ii = chan_idx_L; ii <= chan_idx_R; ii++) {
430
pRawCh = &(pPowerExpn->pDataPerChannel[ii]);
431
if (xgainList[1] == 0xDEAD) {
432
jj = xgainList[0];
433
numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
434
OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
435
numPcd * sizeof(uint16_t));
436
OS_MEMCPY(&powers[0], &pRawCh->pDataPerXPD[jj].pwr_t4[0],
437
numPcd * sizeof(int16_t));
438
if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
439
pRawCh->maxPower_t4, &tmpPowerTable[0])) {
440
return AH_FALSE;
441
}
442
OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
443
64*sizeof(int16_t));
444
} else {
445
jj = xgainList[0];
446
numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
447
OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
448
numPcd*sizeof(uint16_t));
449
OS_MEMCPY(&powers[0],
450
&pRawCh->pDataPerXPD[jj].pwr_t4[0],
451
numPcd*sizeof(int16_t));
452
if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
453
pRawCh->maxPower_t4, &tmpPowerTable[0])) {
454
return AH_FALSE;
455
}
456
OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],
457
64 * sizeof(int16_t));
458
459
jj = xgainList[1];
460
numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;
461
OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],
462
numPcd * sizeof(uint16_t));
463
OS_MEMCPY(&powers[0],
464
&pRawCh->pDataPerXPD[jj].pwr_t4[0],
465
numPcd * sizeof(int16_t));
466
if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],
467
pRawCh->maxPower_t4, &tmpPowerTable[0])) {
468
return AH_FALSE;
469
}
470
OS_MEMCPY(&powTableHXPD[kk][0], &tmpPowerTable[0],
471
64 * sizeof(int16_t));
472
}
473
kk++;
474
}
475
476
chan_L = pPowerExpn->pChannels[chan_idx_L];
477
chan_R = pPowerExpn->pChannels[chan_idx_R];
478
kk = chan_idx_R - chan_idx_L;
479
480
if (xgainList[1] == 0xDEAD) {
481
for (jj = 0; jj < 64; jj++) {
482
pwr_table0[jj] = interpolate_signed(
483
freq, chan_L, chan_R,
484
powTableLXPD[0][jj], powTableLXPD[kk][jj]);
485
}
486
Pmin = getPminAndPcdacTableFromPowerTable(&pwr_table0[0],
487
ahp->ah_pcdacTable);
488
*pPowerMin = (int16_t) (Pmin / 2);
489
*pPowerMid = (int16_t) (pwr_table0[63] / 2);
490
*pPowerMax = (int16_t) (pwr_table0[63] / 2);
491
rfXpdGain[0] = xgainList[0];
492
rfXpdGain[1] = rfXpdGain[0];
493
} else {
494
for (jj = 0; jj < 64; jj++) {
495
pwr_table0[jj] = interpolate_signed(
496
freq, chan_L, chan_R,
497
powTableLXPD[0][jj], powTableLXPD[kk][jj]);
498
pwr_table1[jj] = interpolate_signed(
499
freq, chan_L, chan_R,
500
powTableHXPD[0][jj], powTableHXPD[kk][jj]);
501
}
502
if (numXpdGain == 2) {
503
Pmin = getPminAndPcdacTableFromTwoPowerTables(
504
&pwr_table0[0], &pwr_table1[0],
505
ahp->ah_pcdacTable, &Pmid);
506
*pPowerMin = (int16_t) (Pmin / 2);
507
*pPowerMid = (int16_t) (Pmid / 2);
508
*pPowerMax = (int16_t) (pwr_table0[63] / 2);
509
rfXpdGain[0] = xgainList[0];
510
rfXpdGain[1] = xgainList[1];
511
} else if (minPwr_t4 <= pwr_table1[63] &&
512
maxPwr_t4 <= pwr_table1[63]) {
513
Pmin = getPminAndPcdacTableFromPowerTable(
514
&pwr_table1[0], ahp->ah_pcdacTable);
515
rfXpdGain[0] = xgainList[1];
516
rfXpdGain[1] = rfXpdGain[0];
517
*pPowerMin = (int16_t) (Pmin / 2);
518
*pPowerMid = (int16_t) (pwr_table1[63] / 2);
519
*pPowerMax = (int16_t) (pwr_table1[63] / 2);
520
} else {
521
Pmin = getPminAndPcdacTableFromPowerTable(
522
&pwr_table0[0], ahp->ah_pcdacTable);
523
rfXpdGain[0] = xgainList[0];
524
rfXpdGain[1] = rfXpdGain[0];
525
*pPowerMin = (int16_t) (Pmin/2);
526
*pPowerMid = (int16_t) (pwr_table0[63] / 2);
527
*pPowerMax = (int16_t) (pwr_table0[63] / 2);
528
}
529
}
530
531
/*
532
* Move 5112 rates to match power tables where the max
533
* power table entry corresponds with maxPower.
534
*/
535
HALASSERT(*pPowerMax <= PCDAC_STOP);
536
ahp->ah_txPowerIndexOffset = PCDAC_STOP - *pPowerMax;
537
538
return AH_TRUE;
539
}
540
541
/*
542
* Returns interpolated or the scaled up interpolated value
543
*/
544
static int16_t
545
interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,
546
int16_t targetLeft, int16_t targetRight)
547
{
548
int16_t rv;
549
550
if (srcRight != srcLeft) {
551
rv = ((target - srcLeft)*targetRight +
552
(srcRight - target)*targetLeft) / (srcRight - srcLeft);
553
} else {
554
rv = targetLeft;
555
}
556
return rv;
557
}
558
559
/*
560
* Return indices surrounding the value in sorted integer lists.
561
*
562
* NB: the input list is assumed to be sorted in ascending order
563
*/
564
static void
565
ar5212GetLowerUpperIndex(uint16_t v, uint16_t *lp, uint16_t listSize,
566
uint32_t *vlo, uint32_t *vhi)
567
{
568
uint32_t target = v;
569
uint16_t *ep = lp+listSize;
570
uint16_t *tp;
571
572
/*
573
* Check first and last elements for out-of-bounds conditions.
574
*/
575
if (target < lp[0]) {
576
*vlo = *vhi = 0;
577
return;
578
}
579
if (target >= ep[-1]) {
580
*vlo = *vhi = listSize - 1;
581
return;
582
}
583
584
/* look for value being near or between 2 values in list */
585
for (tp = lp; tp < ep; tp++) {
586
/*
587
* If value is close to the current value of the list
588
* then target is not between values, it is one of the values
589
*/
590
if (*tp == target) {
591
*vlo = *vhi = tp - lp;
592
return;
593
}
594
/*
595
* Look for value being between current value and next value
596
* if so return these 2 values
597
*/
598
if (target < tp[1]) {
599
*vlo = tp - lp;
600
*vhi = *vlo + 1;
601
return;
602
}
603
}
604
}
605
606
static HAL_BOOL
607
getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, int16_t *power, int16_t maxPower, int16_t *retVals)
608
{
609
uint16_t ii;
610
uint16_t idxL = 0;
611
uint16_t idxR = 1;
612
613
if (numPcdacs < 2) {
614
HALDEBUG(AH_NULL, HAL_DEBUG_ANY,
615
"%s: at least 2 pcdac values needed [%d]\n",
616
__func__, numPcdacs);
617
return AH_FALSE;
618
}
619
for (ii = 0; ii < 64; ii++) {
620
if (ii>pcdacs[idxR] && idxR < numPcdacs-1) {
621
idxL++;
622
idxR++;
623
}
624
retVals[ii] = interpolate_signed(ii,
625
pcdacs[idxL], pcdacs[idxR], power[idxL], power[idxR]);
626
if (retVals[ii] >= maxPower) {
627
while (ii < 64)
628
retVals[ii++] = maxPower;
629
}
630
}
631
return AH_TRUE;
632
}
633
634
/*
635
* Takes a single calibration curve and creates a power table.
636
* Adjusts the new power table so the max power is relative
637
* to the maximum index in the power table.
638
*
639
* WARNING: rates must be adjusted for this relative power table
640
*/
641
static int16_t
642
getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, uint16_t retVals[])
643
{
644
int16_t ii, jj, jjMax;
645
int16_t pMin, currPower, pMax;
646
647
/* If the spread is > 31.5dB, keep the upper 31.5dB range */
648
if ((pwrTableT4[63] - pwrTableT4[0]) > 126) {
649
pMin = pwrTableT4[63] - 126;
650
} else {
651
pMin = pwrTableT4[0];
652
}
653
654
pMax = pwrTableT4[63];
655
jjMax = 63;
656
657
/* Search for highest pcdac 0.25dB below maxPower */
658
while ((pwrTableT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)) {
659
jjMax--;
660
}
661
662
jj = jjMax;
663
currPower = pMax;
664
for (ii = 63; ii >= 0; ii--) {
665
while ((jj < 64) && (jj > 0) && (pwrTableT4[jj] >= currPower)) {
666
jj--;
667
}
668
if (jj == 0) {
669
while (ii >= 0) {
670
retVals[ii] = retVals[ii + 1];
671
ii--;
672
}
673
break;
674
}
675
retVals[ii] = jj;
676
currPower -= 2; // corresponds to a 0.5dB step
677
}
678
return pMin;
679
}
680
681
/*
682
* Combines the XPD curves from two calibration sets into a single
683
* power table and adjusts the power table so the max power is relative
684
* to the maximum index in the power table
685
*
686
* WARNING: rates must be adjusted for this relative power table
687
*/
688
static int16_t
689
getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,
690
int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid)
691
{
692
int16_t ii, jj, jjMax;
693
int16_t pMin, pMax, currPower;
694
int16_t *pwrTableT4;
695
uint16_t msbFlag = 0x40; // turns on the 7th bit of the pcdac
696
697
/* If the spread is > 31.5dB, keep the upper 31.5dB range */
698
if ((pwrTableLXpdT4[63] - pwrTableHXpdT4[0]) > 126) {
699
pMin = pwrTableLXpdT4[63] - 126;
700
} else {
701
pMin = pwrTableHXpdT4[0];
702
}
703
704
pMax = pwrTableLXpdT4[63];
705
jjMax = 63;
706
/* Search for highest pcdac 0.25dB below maxPower */
707
while ((pwrTableLXpdT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)){
708
jjMax--;
709
}
710
711
*pMid = pwrTableHXpdT4[63];
712
jj = jjMax;
713
ii = 63;
714
currPower = pMax;
715
pwrTableT4 = &(pwrTableLXpdT4[0]);
716
while (ii >= 0) {
717
if ((currPower <= *pMid) || ( (jj == 0) && (msbFlag == 0x40))){
718
msbFlag = 0x00;
719
pwrTableT4 = &(pwrTableHXpdT4[0]);
720
jj = 63;
721
}
722
while ((jj > 0) && (pwrTableT4[jj] >= currPower)) {
723
jj--;
724
}
725
if ((jj == 0) && (msbFlag == 0x00)) {
726
while (ii >= 0) {
727
retVals[ii] = retVals[ii+1];
728
ii--;
729
}
730
break;
731
}
732
retVals[ii] = jj | msbFlag;
733
currPower -= 2; // corresponds to a 0.5dB step
734
ii--;
735
}
736
return pMin;
737
}
738
739
static int16_t
740
ar5112GetMinPower(struct ath_hal *ah, const EXPN_DATA_PER_CHANNEL_5112 *data)
741
{
742
int i, minIndex;
743
int16_t minGain,minPwr,minPcdac,retVal;
744
745
/* Assume NUM_POINTS_XPD0 > 0 */
746
minGain = data->pDataPerXPD[0].xpd_gain;
747
for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
748
if (data->pDataPerXPD[i].xpd_gain < minGain) {
749
minIndex = i;
750
minGain = data->pDataPerXPD[i].xpd_gain;
751
}
752
}
753
minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
754
minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
755
for (i=1; i<NUM_POINTS_XPD0; i++) {
756
if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
757
minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
758
minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
759
}
760
}
761
retVal = minPwr - (minPcdac*2);
762
return(retVal);
763
}
764
765
static HAL_BOOL
766
ar5112GetChannelMaxMinPower(struct ath_hal *ah,
767
const struct ieee80211_channel *chan,
768
int16_t *maxPow, int16_t *minPow)
769
{
770
uint16_t freq = chan->ic_freq; /* NB: never mapped */
771
const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
772
int numChannels=0,i,last;
773
int totalD, totalF,totalMin;
774
const EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
775
const EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
776
777
*maxPow = 0;
778
if (IEEE80211_IS_CHAN_A(chan)) {
779
powerArray = ee->ee_modePowerArray5112;
780
data = powerArray[headerInfo11A].pDataPerChannel;
781
numChannels = powerArray[headerInfo11A].numChannels;
782
} else if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) {
783
/* XXX - is this correct? Should we also use the same power for turbo G? */
784
powerArray = ee->ee_modePowerArray5112;
785
data = powerArray[headerInfo11G].pDataPerChannel;
786
numChannels = powerArray[headerInfo11G].numChannels;
787
} else if (IEEE80211_IS_CHAN_B(chan)) {
788
powerArray = ee->ee_modePowerArray5112;
789
data = powerArray[headerInfo11B].pDataPerChannel;
790
numChannels = powerArray[headerInfo11B].numChannels;
791
} else {
792
return (AH_TRUE);
793
}
794
/* Make sure the channel is in the range of the TP values
795
* (freq piers)
796
*/
797
if (numChannels < 1)
798
return(AH_FALSE);
799
800
if ((freq < data[0].channelValue) ||
801
(freq > data[numChannels-1].channelValue)) {
802
if (freq < data[0].channelValue) {
803
*maxPow = data[0].maxPower_t4;
804
*minPow = ar5112GetMinPower(ah, &data[0]);
805
return(AH_TRUE);
806
} else {
807
*maxPow = data[numChannels - 1].maxPower_t4;
808
*minPow = ar5112GetMinPower(ah, &data[numChannels - 1]);
809
return(AH_TRUE);
810
}
811
}
812
813
/* Linearly interpolate the power value now */
814
for (last=0,i=0;
815
(i<numChannels) && (freq > data[i].channelValue);
816
last=i++);
817
totalD = data[i].channelValue - data[last].channelValue;
818
if (totalD > 0) {
819
totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
820
*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
821
822
totalMin = ar5112GetMinPower(ah,&data[i]) - ar5112GetMinPower(ah, &data[last]);
823
*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + ar5112GetMinPower(ah, &data[last])*totalD)/totalD);
824
return (AH_TRUE);
825
} else {
826
if (freq == data[i].channelValue) {
827
*maxPow = data[i].maxPower_t4;
828
*minPow = ar5112GetMinPower(ah, &data[i]);
829
return(AH_TRUE);
830
} else
831
return(AH_FALSE);
832
}
833
}
834
835
/*
836
* Free memory for analog bank scratch buffers
837
*/
838
static void
839
ar5112RfDetach(struct ath_hal *ah)
840
{
841
struct ath_hal_5212 *ahp = AH5212(ah);
842
843
HALASSERT(ahp->ah_rfHal != AH_NULL);
844
ath_hal_free(ahp->ah_rfHal);
845
ahp->ah_rfHal = AH_NULL;
846
}
847
848
/*
849
* Allocate memory for analog bank scratch buffers
850
* Scratch Buffer will be reinitialized every reset so no need to zero now
851
*/
852
static HAL_BOOL
853
ar5112RfAttach(struct ath_hal *ah, HAL_STATUS *status)
854
{
855
struct ath_hal_5212 *ahp = AH5212(ah);
856
struct ar5112State *priv;
857
858
HALASSERT(ah->ah_magic == AR5212_MAGIC);
859
860
HALASSERT(ahp->ah_rfHal == AH_NULL);
861
priv = ath_hal_malloc(sizeof(struct ar5112State));
862
if (priv == AH_NULL) {
863
HALDEBUG(ah, HAL_DEBUG_ANY,
864
"%s: cannot allocate private state\n", __func__);
865
*status = HAL_ENOMEM; /* XXX */
866
return AH_FALSE;
867
}
868
priv->base.rfDetach = ar5112RfDetach;
869
priv->base.writeRegs = ar5112WriteRegs;
870
priv->base.getRfBank = ar5112GetRfBank;
871
priv->base.setChannel = ar5112SetChannel;
872
priv->base.setRfRegs = ar5112SetRfRegs;
873
priv->base.setPowerTable = ar5112SetPowerTable;
874
priv->base.getChannelMaxMinPower = ar5112GetChannelMaxMinPower;
875
priv->base.getNfAdjust = ar5212GetNfAdjust;
876
877
ahp->ah_pcdacTable = priv->pcdacTable;
878
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
879
ahp->ah_rfHal = &priv->base;
880
881
return AH_TRUE;
882
}
883
884
static HAL_BOOL
885
ar5112Probe(struct ath_hal *ah)
886
{
887
return IS_RAD5112(ah);
888
}
889
AH_RF(RF5112, ar5112Probe, ar5112RfAttach);
890
891