Path: blob/main/sys/dev/ath/ath_hal/ar5212/ar5112.c
39566 views
/*-1* SPDX-License-Identifier: ISC2*3* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting4* Copyright (c) 2002-2008 Atheros Communications, Inc.5*6* Permission to use, copy, modify, and/or distribute this software for any7* purpose with or without fee is hereby granted, provided that the above8* copyright notice and this permission notice appear in all copies.9*10* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES11* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF12* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR13* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES14* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN15* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF16* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.17*/18#include "opt_ah.h"1920#include "ah.h"21#include "ah_internal.h"2223#include "ah_eeprom_v3.h"2425#include "ar5212/ar5212.h"26#include "ar5212/ar5212reg.h"27#include "ar5212/ar5212phy.h"2829#define AH_5212_511230#include "ar5212/ar5212.ini"3132#define N(a) (sizeof(a)/sizeof(a[0]))3334struct ar5112State {35RF_HAL_FUNCS base; /* public state, must be first */36uint16_t pcdacTable[PWR_TABLE_SIZE];3738uint32_t Bank1Data[N(ar5212Bank1_5112)];39uint32_t Bank2Data[N(ar5212Bank2_5112)];40uint32_t Bank3Data[N(ar5212Bank3_5112)];41uint32_t Bank6Data[N(ar5212Bank6_5112)];42uint32_t Bank7Data[N(ar5212Bank7_5112)];43};44#define AR5112(ah) ((struct ar5112State *) AH5212(ah)->ah_rfHal)4546static void ar5212GetLowerUpperIndex(uint16_t v,47uint16_t *lp, uint16_t listSize,48uint32_t *vlo, uint32_t *vhi);49static HAL_BOOL getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs,50int16_t *power, int16_t maxPower, int16_t *retVals);51static int16_t getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4,52uint16_t retVals[]);53static int16_t getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,54int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid);55static int16_t interpolate_signed(uint16_t target,56uint16_t srcLeft, uint16_t srcRight,57int16_t targetLeft, int16_t targetRight);5859extern void ar5212ModifyRfBuffer(uint32_t *rfBuf, uint32_t reg32,60uint32_t numBits, uint32_t firstBit, uint32_t column);6162static void63ar5112WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,64int writes)65{66HAL_INI_WRITE_ARRAY(ah, ar5212Modes_5112, modesIndex, writes);67HAL_INI_WRITE_ARRAY(ah, ar5212Common_5112, 1, writes);68HAL_INI_WRITE_ARRAY(ah, ar5212BB_RfGain_5112, freqIndex, writes);69}7071/*72* Take the MHz channel value and set the Channel value73*74* ASSUMES: Writes enabled to analog bus75*/76static HAL_BOOL77ar5112SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)78{79uint16_t freq = ath_hal_gethwchannel(ah, chan);80uint32_t channelSel = 0;81uint32_t bModeSynth = 0;82uint32_t aModeRefSel = 0;83uint32_t reg32 = 0;8485OS_MARK(ah, AH_MARK_SETCHANNEL, freq);8687if (freq < 4800) {88uint32_t txctl;8990if (((freq - 2192) % 5) == 0) {91channelSel = ((freq - 672) * 2 - 3040)/10;92bModeSynth = 0;93} else if (((freq - 2224) % 5) == 0) {94channelSel = ((freq - 704) * 2 - 3040) / 10;95bModeSynth = 1;96} else {97HALDEBUG(ah, HAL_DEBUG_ANY,98"%s: invalid channel %u MHz\n",99__func__, freq);100return AH_FALSE;101}102103channelSel = (channelSel << 2) & 0xff;104channelSel = ath_hal_reverseBits(channelSel, 8);105106txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);107if (freq == 2484) {108/* Enable channel spreading for channel 14 */109OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,110txctl | AR_PHY_CCK_TX_CTRL_JAPAN);111} else {112OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,113txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);114}115} else if (((freq % 5) == 2) && (freq <= 5435)) {116freq = freq - 2; /* Align to even 5MHz raster */117channelSel = ath_hal_reverseBits(118(uint32_t)(((freq - 4800)*10)/25 + 1), 8);119aModeRefSel = ath_hal_reverseBits(0, 2);120} else if ((freq % 20) == 0 && freq >= 5120) {121channelSel = ath_hal_reverseBits(122((freq - 4800) / 20 << 2), 8);123aModeRefSel = ath_hal_reverseBits(3, 2);124} else if ((freq % 10) == 0) {125channelSel = ath_hal_reverseBits(126((freq - 4800) / 10 << 1), 8);127aModeRefSel = ath_hal_reverseBits(2, 2);128} else if ((freq % 5) == 0) {129channelSel = ath_hal_reverseBits(130(freq - 4800) / 5, 8);131aModeRefSel = ath_hal_reverseBits(1, 2);132} else {133HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",134__func__, freq);135return AH_FALSE;136}137138reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |139(1 << 12) | 0x1;140OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);141142reg32 >>= 8;143OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);144145AH_PRIVATE(ah)->ah_curchan = chan;146return AH_TRUE;147}148149/*150* Return a reference to the requested RF Bank.151*/152static uint32_t *153ar5112GetRfBank(struct ath_hal *ah, int bank)154{155struct ar5112State *priv = AR5112(ah);156157HALASSERT(priv != AH_NULL);158switch (bank) {159case 1: return priv->Bank1Data;160case 2: return priv->Bank2Data;161case 3: return priv->Bank3Data;162case 6: return priv->Bank6Data;163case 7: return priv->Bank7Data;164}165HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",166__func__, bank);167return AH_NULL;168}169170/*171* Reads EEPROM header info from device structure and programs172* all rf registers173*174* REQUIRES: Access to the analog rf device175*/176static HAL_BOOL177ar5112SetRfRegs(struct ath_hal *ah,178const struct ieee80211_channel *chan,179uint16_t modesIndex, uint16_t *rfXpdGain)180{181#define RF_BANK_SETUP(_priv, _ix, _col) do { \182int i; \183for (i = 0; i < N(ar5212Bank##_ix##_5112); i++) \184(_priv)->Bank##_ix##Data[i] = ar5212Bank##_ix##_5112[i][_col];\185} while (0)186uint16_t freq = ath_hal_gethwchannel(ah, chan);187struct ath_hal_5212 *ahp = AH5212(ah);188const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;189uint16_t rfXpdSel, gainI;190uint16_t ob5GHz = 0, db5GHz = 0;191uint16_t ob2GHz = 0, db2GHz = 0;192struct ar5112State *priv = AR5112(ah);193GAIN_VALUES *gv = &ahp->ah_gainValues;194int regWrites = 0;195196HALASSERT(priv);197198HALDEBUG(ah, HAL_DEBUG_RFPARAM, "%s: chan %u/0x%x modesIndex %u\n",199__func__, chan->ic_freq, chan->ic_flags, modesIndex);200201/* Setup rf parameters */202switch (chan->ic_flags & IEEE80211_CHAN_ALLFULL) {203case IEEE80211_CHAN_A:204if (freq > 4000 && freq < 5260) {205ob5GHz = ee->ee_ob1;206db5GHz = ee->ee_db1;207} else if (freq >= 5260 && freq < 5500) {208ob5GHz = ee->ee_ob2;209db5GHz = ee->ee_db2;210} else if (freq >= 5500 && freq < 5725) {211ob5GHz = ee->ee_ob3;212db5GHz = ee->ee_db3;213} else if (freq >= 5725) {214ob5GHz = ee->ee_ob4;215db5GHz = ee->ee_db4;216} else {217/* XXX else */218}219rfXpdSel = ee->ee_xpd[headerInfo11A];220gainI = ee->ee_gainI[headerInfo11A];221break;222case IEEE80211_CHAN_B:223ob2GHz = ee->ee_ob2GHz[0];224db2GHz = ee->ee_db2GHz[0];225rfXpdSel = ee->ee_xpd[headerInfo11B];226gainI = ee->ee_gainI[headerInfo11B];227break;228case IEEE80211_CHAN_G:229case IEEE80211_CHAN_PUREG: /* NB: really 108G */230ob2GHz = ee->ee_ob2GHz[1];231db2GHz = ee->ee_ob2GHz[1];232rfXpdSel = ee->ee_xpd[headerInfo11G];233gainI = ee->ee_gainI[headerInfo11G];234break;235default:236HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel flags 0x%x\n",237__func__, chan->ic_flags);238return AH_FALSE;239}240241/* Setup Bank 1 Write */242RF_BANK_SETUP(priv, 1, 1);243244/* Setup Bank 2 Write */245RF_BANK_SETUP(priv, 2, modesIndex);246247/* Setup Bank 3 Write */248RF_BANK_SETUP(priv, 3, modesIndex);249250/* Setup Bank 6 Write */251RF_BANK_SETUP(priv, 6, modesIndex);252253ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdSel, 1, 302, 0);254255ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[0], 2, 270, 0);256ar5212ModifyRfBuffer(priv->Bank6Data, rfXpdGain[1], 2, 257, 0);257258if (IEEE80211_IS_CHAN_OFDM(chan)) {259ar5212ModifyRfBuffer(priv->Bank6Data,260gv->currStep->paramVal[GP_PWD_138], 1, 168, 3);261ar5212ModifyRfBuffer(priv->Bank6Data,262gv->currStep->paramVal[GP_PWD_137], 1, 169, 3);263ar5212ModifyRfBuffer(priv->Bank6Data,264gv->currStep->paramVal[GP_PWD_136], 1, 170, 3);265ar5212ModifyRfBuffer(priv->Bank6Data,266gv->currStep->paramVal[GP_PWD_132], 1, 174, 3);267ar5212ModifyRfBuffer(priv->Bank6Data,268gv->currStep->paramVal[GP_PWD_131], 1, 175, 3);269ar5212ModifyRfBuffer(priv->Bank6Data,270gv->currStep->paramVal[GP_PWD_130], 1, 176, 3);271}272273/* Only the 5 or 2 GHz OB/DB need to be set for a mode */274if (IEEE80211_IS_CHAN_2GHZ(chan)) {275ar5212ModifyRfBuffer(priv->Bank6Data, ob2GHz, 3, 287, 0);276ar5212ModifyRfBuffer(priv->Bank6Data, db2GHz, 3, 290, 0);277} else {278ar5212ModifyRfBuffer(priv->Bank6Data, ob5GHz, 3, 279, 0);279ar5212ModifyRfBuffer(priv->Bank6Data, db5GHz, 3, 282, 0);280}281282/* Lower synth voltage for X112 Rev 2.0 only */283if (IS_RADX112_REV2(ah)) {284/* Non-Reversed analyg registers - so values are pre-reversed */285ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 90, 2);286ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 92, 2);287ar5212ModifyRfBuffer(priv->Bank6Data, 2, 2, 94, 2);288ar5212ModifyRfBuffer(priv->Bank6Data, 2, 1, 254, 2);289}290291/* Decrease Power Consumption for 5312/5213 and up */292if (AH_PRIVATE(ah)->ah_phyRev >= AR_PHY_CHIP_ID_REV_2) {293ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 281, 1);294ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 1, 3);295ar5212ModifyRfBuffer(priv->Bank6Data, 1, 2, 3, 3);296ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 139, 3);297ar5212ModifyRfBuffer(priv->Bank6Data, 1, 1, 140, 3);298}299300/* Setup Bank 7 Setup */301RF_BANK_SETUP(priv, 7, modesIndex);302if (IEEE80211_IS_CHAN_OFDM(chan))303ar5212ModifyRfBuffer(priv->Bank7Data,304gv->currStep->paramVal[GP_MIXGAIN_OVR], 2, 37, 0);305306ar5212ModifyRfBuffer(priv->Bank7Data, gainI, 6, 14, 0);307308/* Adjust params for Derby TX power control */309if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {310uint32_t rfDelay, rfPeriod;311312rfDelay = 0xf;313rfPeriod = (IEEE80211_IS_CHAN_HALF(chan)) ? 0x8 : 0xf;314ar5212ModifyRfBuffer(priv->Bank7Data, rfDelay, 4, 58, 0);315ar5212ModifyRfBuffer(priv->Bank7Data, rfPeriod, 4, 70, 0);316}317318#ifdef notyet319/* Analog registers are setup - EAR can modify */320if (ar5212IsEarEngaged(pDev, chan))321uint32_t modifier;322ar5212EarModify(pDev, EAR_LC_RF_WRITE, chan, &modifier);323#endif324/* Write Analog registers */325HAL_INI_WRITE_BANK(ah, ar5212Bank1_5112, priv->Bank1Data, regWrites);326HAL_INI_WRITE_BANK(ah, ar5212Bank2_5112, priv->Bank2Data, regWrites);327HAL_INI_WRITE_BANK(ah, ar5212Bank3_5112, priv->Bank3Data, regWrites);328HAL_INI_WRITE_BANK(ah, ar5212Bank6_5112, priv->Bank6Data, regWrites);329HAL_INI_WRITE_BANK(ah, ar5212Bank7_5112, priv->Bank7Data, regWrites);330331/* Now that we have reprogrammed rfgain value, clear the flag. */332ahp->ah_rfgainState = HAL_RFGAIN_INACTIVE;333return AH_TRUE;334#undef RF_BANK_SETUP335}336337/*338* Read the transmit power levels from the structures taken from EEPROM339* Interpolate read transmit power values for this channel340* Organize the transmit power values into a table for writing into the hardware341*/342static HAL_BOOL343ar5112SetPowerTable(struct ath_hal *ah,344int16_t *pPowerMin, int16_t *pPowerMax,345const struct ieee80211_channel *chan,346uint16_t *rfXpdGain)347{348uint16_t freq = ath_hal_gethwchannel(ah, chan);349struct ath_hal_5212 *ahp = AH5212(ah);350const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;351uint32_t numXpdGain = IS_RADX112_REV2(ah) ? 2 : 1;352uint32_t xpdGainMask = 0;353int16_t powerMid, *pPowerMid = &powerMid;354355const EXPN_DATA_PER_CHANNEL_5112 *pRawCh;356const EEPROM_POWER_EXPN_5112 *pPowerExpn = AH_NULL;357358uint32_t ii, jj, kk;359int16_t minPwr_t4, maxPwr_t4, Pmin, Pmid;360361uint32_t chan_idx_L = 0, chan_idx_R = 0;362uint16_t chan_L, chan_R;363364int16_t pwr_table0[64];365int16_t pwr_table1[64];366uint16_t pcdacs[10];367int16_t powers[10];368uint16_t numPcd;369int16_t powTableLXPD[2][64];370int16_t powTableHXPD[2][64];371int16_t tmpPowerTable[64];372uint16_t xgainList[2];373uint16_t xpdMask;374375switch (chan->ic_flags & IEEE80211_CHAN_ALLTURBOFULL) {376case IEEE80211_CHAN_A:377case IEEE80211_CHAN_ST:378pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11A];379xpdGainMask = ee->ee_xgain[headerInfo11A];380break;381case IEEE80211_CHAN_B:382pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11B];383xpdGainMask = ee->ee_xgain[headerInfo11B];384break;385case IEEE80211_CHAN_G:386case IEEE80211_CHAN_108G:387pPowerExpn = &ee->ee_modePowerArray5112[headerInfo11G];388xpdGainMask = ee->ee_xgain[headerInfo11G];389break;390default:391HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown channel flags 0x%x\n",392__func__, chan->ic_flags);393return AH_FALSE;394}395396if ((xpdGainMask & pPowerExpn->xpdMask) < 1) {397HALDEBUG(ah, HAL_DEBUG_ANY,398"%s: desired xpdGainMask 0x%x not supported by "399"calibrated xpdMask 0x%x\n", __func__,400xpdGainMask, pPowerExpn->xpdMask);401return AH_FALSE;402}403404maxPwr_t4 = (int16_t)(2*(*pPowerMax)); /* pwr_t2 -> pwr_t4 */405minPwr_t4 = (int16_t)(2*(*pPowerMin)); /* pwr_t2 -> pwr_t4 */406407xgainList[0] = 0xDEAD;408xgainList[1] = 0xDEAD;409410kk = 0;411xpdMask = pPowerExpn->xpdMask;412for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) {413if (((xpdMask >> jj) & 1) > 0) {414if (kk > 1) {415HALDEBUG(ah, HAL_DEBUG_ANY,416"A maximum of 2 xpdGains supported"417"in pExpnPower data\n");418return AH_FALSE;419}420xgainList[kk++] = (uint16_t)jj;421}422}423424ar5212GetLowerUpperIndex(freq, &pPowerExpn->pChannels[0],425pPowerExpn->numChannels, &chan_idx_L, &chan_idx_R);426427kk = 0;428for (ii = chan_idx_L; ii <= chan_idx_R; ii++) {429pRawCh = &(pPowerExpn->pDataPerChannel[ii]);430if (xgainList[1] == 0xDEAD) {431jj = xgainList[0];432numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;433OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],434numPcd * sizeof(uint16_t));435OS_MEMCPY(&powers[0], &pRawCh->pDataPerXPD[jj].pwr_t4[0],436numPcd * sizeof(int16_t));437if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],438pRawCh->maxPower_t4, &tmpPowerTable[0])) {439return AH_FALSE;440}441OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],44264*sizeof(int16_t));443} else {444jj = xgainList[0];445numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;446OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],447numPcd*sizeof(uint16_t));448OS_MEMCPY(&powers[0],449&pRawCh->pDataPerXPD[jj].pwr_t4[0],450numPcd*sizeof(int16_t));451if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],452pRawCh->maxPower_t4, &tmpPowerTable[0])) {453return AH_FALSE;454}455OS_MEMCPY(&powTableLXPD[kk][0], &tmpPowerTable[0],45664 * sizeof(int16_t));457458jj = xgainList[1];459numPcd = pRawCh->pDataPerXPD[jj].numPcdacs;460OS_MEMCPY(&pcdacs[0], &pRawCh->pDataPerXPD[jj].pcdac[0],461numPcd * sizeof(uint16_t));462OS_MEMCPY(&powers[0],463&pRawCh->pDataPerXPD[jj].pwr_t4[0],464numPcd * sizeof(int16_t));465if (!getFullPwrTable(numPcd, &pcdacs[0], &powers[0],466pRawCh->maxPower_t4, &tmpPowerTable[0])) {467return AH_FALSE;468}469OS_MEMCPY(&powTableHXPD[kk][0], &tmpPowerTable[0],47064 * sizeof(int16_t));471}472kk++;473}474475chan_L = pPowerExpn->pChannels[chan_idx_L];476chan_R = pPowerExpn->pChannels[chan_idx_R];477kk = chan_idx_R - chan_idx_L;478479if (xgainList[1] == 0xDEAD) {480for (jj = 0; jj < 64; jj++) {481pwr_table0[jj] = interpolate_signed(482freq, chan_L, chan_R,483powTableLXPD[0][jj], powTableLXPD[kk][jj]);484}485Pmin = getPminAndPcdacTableFromPowerTable(&pwr_table0[0],486ahp->ah_pcdacTable);487*pPowerMin = (int16_t) (Pmin / 2);488*pPowerMid = (int16_t) (pwr_table0[63] / 2);489*pPowerMax = (int16_t) (pwr_table0[63] / 2);490rfXpdGain[0] = xgainList[0];491rfXpdGain[1] = rfXpdGain[0];492} else {493for (jj = 0; jj < 64; jj++) {494pwr_table0[jj] = interpolate_signed(495freq, chan_L, chan_R,496powTableLXPD[0][jj], powTableLXPD[kk][jj]);497pwr_table1[jj] = interpolate_signed(498freq, chan_L, chan_R,499powTableHXPD[0][jj], powTableHXPD[kk][jj]);500}501if (numXpdGain == 2) {502Pmin = getPminAndPcdacTableFromTwoPowerTables(503&pwr_table0[0], &pwr_table1[0],504ahp->ah_pcdacTable, &Pmid);505*pPowerMin = (int16_t) (Pmin / 2);506*pPowerMid = (int16_t) (Pmid / 2);507*pPowerMax = (int16_t) (pwr_table0[63] / 2);508rfXpdGain[0] = xgainList[0];509rfXpdGain[1] = xgainList[1];510} else if (minPwr_t4 <= pwr_table1[63] &&511maxPwr_t4 <= pwr_table1[63]) {512Pmin = getPminAndPcdacTableFromPowerTable(513&pwr_table1[0], ahp->ah_pcdacTable);514rfXpdGain[0] = xgainList[1];515rfXpdGain[1] = rfXpdGain[0];516*pPowerMin = (int16_t) (Pmin / 2);517*pPowerMid = (int16_t) (pwr_table1[63] / 2);518*pPowerMax = (int16_t) (pwr_table1[63] / 2);519} else {520Pmin = getPminAndPcdacTableFromPowerTable(521&pwr_table0[0], ahp->ah_pcdacTable);522rfXpdGain[0] = xgainList[0];523rfXpdGain[1] = rfXpdGain[0];524*pPowerMin = (int16_t) (Pmin/2);525*pPowerMid = (int16_t) (pwr_table0[63] / 2);526*pPowerMax = (int16_t) (pwr_table0[63] / 2);527}528}529530/*531* Move 5112 rates to match power tables where the max532* power table entry corresponds with maxPower.533*/534HALASSERT(*pPowerMax <= PCDAC_STOP);535ahp->ah_txPowerIndexOffset = PCDAC_STOP - *pPowerMax;536537return AH_TRUE;538}539540/*541* Returns interpolated or the scaled up interpolated value542*/543static int16_t544interpolate_signed(uint16_t target, uint16_t srcLeft, uint16_t srcRight,545int16_t targetLeft, int16_t targetRight)546{547int16_t rv;548549if (srcRight != srcLeft) {550rv = ((target - srcLeft)*targetRight +551(srcRight - target)*targetLeft) / (srcRight - srcLeft);552} else {553rv = targetLeft;554}555return rv;556}557558/*559* Return indices surrounding the value in sorted integer lists.560*561* NB: the input list is assumed to be sorted in ascending order562*/563static void564ar5212GetLowerUpperIndex(uint16_t v, uint16_t *lp, uint16_t listSize,565uint32_t *vlo, uint32_t *vhi)566{567uint32_t target = v;568uint16_t *ep = lp+listSize;569uint16_t *tp;570571/*572* Check first and last elements for out-of-bounds conditions.573*/574if (target < lp[0]) {575*vlo = *vhi = 0;576return;577}578if (target >= ep[-1]) {579*vlo = *vhi = listSize - 1;580return;581}582583/* look for value being near or between 2 values in list */584for (tp = lp; tp < ep; tp++) {585/*586* If value is close to the current value of the list587* then target is not between values, it is one of the values588*/589if (*tp == target) {590*vlo = *vhi = tp - lp;591return;592}593/*594* Look for value being between current value and next value595* if so return these 2 values596*/597if (target < tp[1]) {598*vlo = tp - lp;599*vhi = *vlo + 1;600return;601}602}603}604605static HAL_BOOL606getFullPwrTable(uint16_t numPcdacs, uint16_t *pcdacs, int16_t *power, int16_t maxPower, int16_t *retVals)607{608uint16_t ii;609uint16_t idxL = 0;610uint16_t idxR = 1;611612if (numPcdacs < 2) {613HALDEBUG(AH_NULL, HAL_DEBUG_ANY,614"%s: at least 2 pcdac values needed [%d]\n",615__func__, numPcdacs);616return AH_FALSE;617}618for (ii = 0; ii < 64; ii++) {619if (ii>pcdacs[idxR] && idxR < numPcdacs-1) {620idxL++;621idxR++;622}623retVals[ii] = interpolate_signed(ii,624pcdacs[idxL], pcdacs[idxR], power[idxL], power[idxR]);625if (retVals[ii] >= maxPower) {626while (ii < 64)627retVals[ii++] = maxPower;628}629}630return AH_TRUE;631}632633/*634* Takes a single calibration curve and creates a power table.635* Adjusts the new power table so the max power is relative636* to the maximum index in the power table.637*638* WARNING: rates must be adjusted for this relative power table639*/640static int16_t641getPminAndPcdacTableFromPowerTable(int16_t *pwrTableT4, uint16_t retVals[])642{643int16_t ii, jj, jjMax;644int16_t pMin, currPower, pMax;645646/* If the spread is > 31.5dB, keep the upper 31.5dB range */647if ((pwrTableT4[63] - pwrTableT4[0]) > 126) {648pMin = pwrTableT4[63] - 126;649} else {650pMin = pwrTableT4[0];651}652653pMax = pwrTableT4[63];654jjMax = 63;655656/* Search for highest pcdac 0.25dB below maxPower */657while ((pwrTableT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)) {658jjMax--;659}660661jj = jjMax;662currPower = pMax;663for (ii = 63; ii >= 0; ii--) {664while ((jj < 64) && (jj > 0) && (pwrTableT4[jj] >= currPower)) {665jj--;666}667if (jj == 0) {668while (ii >= 0) {669retVals[ii] = retVals[ii + 1];670ii--;671}672break;673}674retVals[ii] = jj;675currPower -= 2; // corresponds to a 0.5dB step676}677return pMin;678}679680/*681* Combines the XPD curves from two calibration sets into a single682* power table and adjusts the power table so the max power is relative683* to the maximum index in the power table684*685* WARNING: rates must be adjusted for this relative power table686*/687static int16_t688getPminAndPcdacTableFromTwoPowerTables(int16_t *pwrTableLXpdT4,689int16_t *pwrTableHXpdT4, uint16_t retVals[], int16_t *pMid)690{691int16_t ii, jj, jjMax;692int16_t pMin, pMax, currPower;693int16_t *pwrTableT4;694uint16_t msbFlag = 0x40; // turns on the 7th bit of the pcdac695696/* If the spread is > 31.5dB, keep the upper 31.5dB range */697if ((pwrTableLXpdT4[63] - pwrTableHXpdT4[0]) > 126) {698pMin = pwrTableLXpdT4[63] - 126;699} else {700pMin = pwrTableHXpdT4[0];701}702703pMax = pwrTableLXpdT4[63];704jjMax = 63;705/* Search for highest pcdac 0.25dB below maxPower */706while ((pwrTableLXpdT4[jjMax] > (pMax - 1) ) && (jjMax >= 0)){707jjMax--;708}709710*pMid = pwrTableHXpdT4[63];711jj = jjMax;712ii = 63;713currPower = pMax;714pwrTableT4 = &(pwrTableLXpdT4[0]);715while (ii >= 0) {716if ((currPower <= *pMid) || ( (jj == 0) && (msbFlag == 0x40))){717msbFlag = 0x00;718pwrTableT4 = &(pwrTableHXpdT4[0]);719jj = 63;720}721while ((jj > 0) && (pwrTableT4[jj] >= currPower)) {722jj--;723}724if ((jj == 0) && (msbFlag == 0x00)) {725while (ii >= 0) {726retVals[ii] = retVals[ii+1];727ii--;728}729break;730}731retVals[ii] = jj | msbFlag;732currPower -= 2; // corresponds to a 0.5dB step733ii--;734}735return pMin;736}737738static int16_t739ar5112GetMinPower(struct ath_hal *ah, const EXPN_DATA_PER_CHANNEL_5112 *data)740{741int i, minIndex;742int16_t minGain,minPwr,minPcdac,retVal;743744/* Assume NUM_POINTS_XPD0 > 0 */745minGain = data->pDataPerXPD[0].xpd_gain;746for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {747if (data->pDataPerXPD[i].xpd_gain < minGain) {748minIndex = i;749minGain = data->pDataPerXPD[i].xpd_gain;750}751}752minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];753minPcdac = data->pDataPerXPD[minIndex].pcdac[0];754for (i=1; i<NUM_POINTS_XPD0; i++) {755if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {756minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];757minPcdac = data->pDataPerXPD[minIndex].pcdac[i];758}759}760retVal = minPwr - (minPcdac*2);761return(retVal);762}763764static HAL_BOOL765ar5112GetChannelMaxMinPower(struct ath_hal *ah,766const struct ieee80211_channel *chan,767int16_t *maxPow, int16_t *minPow)768{769uint16_t freq = chan->ic_freq; /* NB: never mapped */770const HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;771int numChannels=0,i,last;772int totalD, totalF,totalMin;773const EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;774const EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;775776*maxPow = 0;777if (IEEE80211_IS_CHAN_A(chan)) {778powerArray = ee->ee_modePowerArray5112;779data = powerArray[headerInfo11A].pDataPerChannel;780numChannels = powerArray[headerInfo11A].numChannels;781} else if (IEEE80211_IS_CHAN_G(chan) || IEEE80211_IS_CHAN_108G(chan)) {782/* XXX - is this correct? Should we also use the same power for turbo G? */783powerArray = ee->ee_modePowerArray5112;784data = powerArray[headerInfo11G].pDataPerChannel;785numChannels = powerArray[headerInfo11G].numChannels;786} else if (IEEE80211_IS_CHAN_B(chan)) {787powerArray = ee->ee_modePowerArray5112;788data = powerArray[headerInfo11B].pDataPerChannel;789numChannels = powerArray[headerInfo11B].numChannels;790} else {791return (AH_TRUE);792}793/* Make sure the channel is in the range of the TP values794* (freq piers)795*/796if (numChannels < 1)797return(AH_FALSE);798799if ((freq < data[0].channelValue) ||800(freq > data[numChannels-1].channelValue)) {801if (freq < data[0].channelValue) {802*maxPow = data[0].maxPower_t4;803*minPow = ar5112GetMinPower(ah, &data[0]);804return(AH_TRUE);805} else {806*maxPow = data[numChannels - 1].maxPower_t4;807*minPow = ar5112GetMinPower(ah, &data[numChannels - 1]);808return(AH_TRUE);809}810}811812/* Linearly interpolate the power value now */813for (last=0,i=0;814(i<numChannels) && (freq > data[i].channelValue);815last=i++);816totalD = data[i].channelValue - data[last].channelValue;817if (totalD > 0) {818totalF = data[i].maxPower_t4 - data[last].maxPower_t4;819*maxPow = (int8_t) ((totalF*(freq-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);820821totalMin = ar5112GetMinPower(ah,&data[i]) - ar5112GetMinPower(ah, &data[last]);822*minPow = (int8_t) ((totalMin*(freq-data[last].channelValue) + ar5112GetMinPower(ah, &data[last])*totalD)/totalD);823return (AH_TRUE);824} else {825if (freq == data[i].channelValue) {826*maxPow = data[i].maxPower_t4;827*minPow = ar5112GetMinPower(ah, &data[i]);828return(AH_TRUE);829} else830return(AH_FALSE);831}832}833834/*835* Free memory for analog bank scratch buffers836*/837static void838ar5112RfDetach(struct ath_hal *ah)839{840struct ath_hal_5212 *ahp = AH5212(ah);841842HALASSERT(ahp->ah_rfHal != AH_NULL);843ath_hal_free(ahp->ah_rfHal);844ahp->ah_rfHal = AH_NULL;845}846847/*848* Allocate memory for analog bank scratch buffers849* Scratch Buffer will be reinitialized every reset so no need to zero now850*/851static HAL_BOOL852ar5112RfAttach(struct ath_hal *ah, HAL_STATUS *status)853{854struct ath_hal_5212 *ahp = AH5212(ah);855struct ar5112State *priv;856857HALASSERT(ah->ah_magic == AR5212_MAGIC);858859HALASSERT(ahp->ah_rfHal == AH_NULL);860priv = ath_hal_malloc(sizeof(struct ar5112State));861if (priv == AH_NULL) {862HALDEBUG(ah, HAL_DEBUG_ANY,863"%s: cannot allocate private state\n", __func__);864*status = HAL_ENOMEM; /* XXX */865return AH_FALSE;866}867priv->base.rfDetach = ar5112RfDetach;868priv->base.writeRegs = ar5112WriteRegs;869priv->base.getRfBank = ar5112GetRfBank;870priv->base.setChannel = ar5112SetChannel;871priv->base.setRfRegs = ar5112SetRfRegs;872priv->base.setPowerTable = ar5112SetPowerTable;873priv->base.getChannelMaxMinPower = ar5112GetChannelMaxMinPower;874priv->base.getNfAdjust = ar5212GetNfAdjust;875876ahp->ah_pcdacTable = priv->pcdacTable;877ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);878ahp->ah_rfHal = &priv->base;879880return AH_TRUE;881}882883static HAL_BOOL884ar5112Probe(struct ath_hal *ah)885{886return IS_RAD5112(ah);887}888AH_RF(RF5112, ar5112Probe, ar5112RfAttach);889890891