Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/ath_hal/ar5416/ar5416_reset.c
39566 views
1
/*-
2
* SPDX-License-Identifier: ISC
3
*
4
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5
* Copyright (c) 2002-2008 Atheros Communications, Inc.
6
*
7
* Permission to use, copy, modify, and/or distribute this software for any
8
* purpose with or without fee is hereby granted, provided that the above
9
* copyright notice and this permission notice appear in all copies.
10
*
11
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
*/
19
#include "opt_ah.h"
20
21
#include "ah.h"
22
#include "ah_internal.h"
23
#include "ah_devid.h"
24
25
#include "ah_eeprom_v14.h"
26
27
#include "ar5416/ar5416.h"
28
#include "ar5416/ar5416reg.h"
29
#include "ar5416/ar5416phy.h"
30
31
/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
32
#define EEP_MINOR(_ah) \
33
(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
34
#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
35
#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
36
37
/* Additional Time delay to wait after activiting the Base band */
38
#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
39
#define PLL_SETTLE_DELAY 300 /* 300 usec */
40
#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
41
42
static void ar5416InitDMA(struct ath_hal *ah);
43
static void ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *);
44
static void ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode);
45
static void ar5416InitQoS(struct ath_hal *ah);
46
static void ar5416InitUserSettings(struct ath_hal *ah);
47
static void ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *);
48
49
#if 0
50
static HAL_BOOL ar5416ChannelChange(struct ath_hal *, const struct ieee80211_channel *);
51
#endif
52
static void ar5416SetDeltaSlope(struct ath_hal *, const struct ieee80211_channel *);
53
54
static HAL_BOOL ar5416SetResetPowerOn(struct ath_hal *ah);
55
static HAL_BOOL ar5416SetReset(struct ath_hal *ah, int type);
56
static HAL_BOOL ar5416SetPowerPerRateTable(struct ath_hal *ah,
57
struct ar5416eeprom *pEepData,
58
const struct ieee80211_channel *chan, int16_t *ratesArray,
59
uint16_t cfgCtl, uint16_t AntennaReduction,
60
uint16_t twiceMaxRegulatoryPower,
61
uint16_t powerLimit);
62
static void ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan);
63
static void ar5416MarkPhyInactive(struct ath_hal *ah);
64
static void ar5416SetIFSTiming(struct ath_hal *ah,
65
const struct ieee80211_channel *chan);
66
67
/*
68
* Places the device in and out of reset and then places sane
69
* values in the registers based on EEPROM config, initialization
70
* vectors (as determined by the mode), and station configuration
71
*
72
* bChannelChange is used to preserve DMA/PCU registers across
73
* a HW Reset during channel change.
74
*/
75
HAL_BOOL
76
ar5416Reset(struct ath_hal *ah, HAL_OPMODE opmode,
77
struct ieee80211_channel *chan,
78
HAL_BOOL bChannelChange,
79
HAL_RESET_TYPE resetType,
80
HAL_STATUS *status)
81
{
82
#define N(a) (sizeof (a) / sizeof (a[0]))
83
#define FAIL(_code) do { ecode = _code; goto bad; } while (0)
84
struct ath_hal_5212 *ahp = AH5212(ah);
85
HAL_CHANNEL_INTERNAL *ichan;
86
uint32_t saveDefAntenna, saveLedState;
87
uint32_t macStaId1;
88
uint16_t rfXpdGain[2];
89
HAL_STATUS ecode;
90
uint32_t powerVal, rssiThrReg;
91
uint32_t ackTpcPow, ctsTpcPow, chirpTpcPow;
92
int i;
93
uint64_t tsf = 0;
94
95
OS_MARK(ah, AH_MARK_RESET, bChannelChange);
96
97
/* Bring out of sleep mode */
98
if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE)) {
99
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip did not wakeup\n",
100
__func__);
101
FAIL(HAL_EIO);
102
}
103
104
/*
105
* Map public channel to private.
106
*/
107
ichan = ath_hal_checkchannel(ah, chan);
108
if (ichan == AH_NULL)
109
FAIL(HAL_EINVAL);
110
switch (opmode) {
111
case HAL_M_STA:
112
case HAL_M_IBSS:
113
case HAL_M_HOSTAP:
114
case HAL_M_MONITOR:
115
break;
116
default:
117
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid operating mode %u\n",
118
__func__, opmode);
119
FAIL(HAL_EINVAL);
120
break;
121
}
122
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
123
124
/* Blank the channel survey statistics */
125
ath_hal_survey_clear(ah);
126
127
/* XXX Turn on fast channel change for 5416 */
128
129
/*
130
* Preserve the bmiss rssi threshold and count threshold
131
* across resets
132
*/
133
rssiThrReg = OS_REG_READ(ah, AR_RSSI_THR);
134
/* If reg is zero, first time thru set to default val */
135
if (rssiThrReg == 0)
136
rssiThrReg = INIT_RSSI_THR;
137
138
/*
139
* Preserve the antenna on a channel change
140
*/
141
saveDefAntenna = OS_REG_READ(ah, AR_DEF_ANTENNA);
142
143
/*
144
* Don't do this for the AR9285 - it breaks RX for single
145
* antenna designs when diversity is disabled.
146
*
147
* I'm not sure what this was working around; it may be
148
* something to do with the AR5416. Certainly this register
149
* isn't supposed to be used by the MIMO chips for anything
150
* except for defining the default antenna when an external
151
* phase array / smart antenna is connected.
152
*
153
* See PR: kern/179269 .
154
*/
155
if ((! AR_SREV_KITE(ah)) && saveDefAntenna == 0) /* XXX magic constants */
156
saveDefAntenna = 1;
157
158
/* Save hardware flag before chip reset clears the register */
159
macStaId1 = OS_REG_READ(ah, AR_STA_ID1) &
160
(AR_STA_ID1_BASE_RATE_11B | AR_STA_ID1_USE_DEFANT);
161
162
/* Save led state from pci config register */
163
saveLedState = OS_REG_READ(ah, AR_MAC_LED) &
164
(AR_MAC_LED_ASSOC | AR_MAC_LED_MODE |
165
AR_MAC_LED_BLINK_THRESH_SEL | AR_MAC_LED_BLINK_SLOW);
166
167
/* For chips on which the RTC reset is done, save TSF before it gets cleared */
168
if (AR_SREV_HOWL(ah) ||
169
(AR_SREV_MERLIN(ah) &&
170
ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) ||
171
(resetType == HAL_RESET_FORCE_COLD) ||
172
(resetType == HAL_RESET_BBPANIC) ||
173
(ah->ah_config.ah_force_full_reset))
174
tsf = ar5416GetTsf64(ah);
175
176
/* Mark PHY as inactive; marked active in ar5416InitBB() */
177
ar5416MarkPhyInactive(ah);
178
179
if (!ar5416ChipReset(ah, chan, resetType)) {
180
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
181
FAIL(HAL_EIO);
182
}
183
184
/* Restore TSF */
185
if (tsf)
186
ar5416SetTsf64(ah, tsf);
187
188
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
189
if (AR_SREV_MERLIN_10_OR_LATER(ah))
190
OS_REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
191
192
AH5416(ah)->ah_writeIni(ah, chan);
193
194
if(AR_SREV_KIWI_13_OR_LATER(ah) ) {
195
/* Enable ASYNC FIFO */
196
OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
197
AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
198
OS_REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
199
OS_REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
200
AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
201
OS_REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
202
AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
203
}
204
205
/* Override ini values (that can be overridden in this fashion) */
206
ar5416OverrideIni(ah, chan);
207
208
/* Setup 11n MAC/Phy mode registers */
209
ar5416Set11nRegs(ah, chan);
210
211
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
212
213
/*
214
* Some AR91xx SoC devices frequently fail to accept TSF writes
215
* right after the chip reset. When that happens, write a new
216
* value after the initvals have been applied, with an offset
217
* based on measured time difference
218
*/
219
if (AR_SREV_HOWL(ah) && (ar5416GetTsf64(ah) < tsf)) {
220
tsf += 1500;
221
ar5416SetTsf64(ah, tsf);
222
}
223
224
HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_DAG_CTRLCCK=0x%x\n",
225
__func__, OS_REG_READ(ah,AR_PHY_DAG_CTRLCCK));
226
HALDEBUG(ah, HAL_DEBUG_RESET, ">>>2 %s: AR_PHY_ADC_CTL=0x%x\n",
227
__func__, OS_REG_READ(ah,AR_PHY_ADC_CTL));
228
229
/*
230
* This routine swaps the analog chains - it should be done
231
* before any radio register twiddling is done.
232
*/
233
ar5416InitChainMasks(ah);
234
235
/* Setup the open-loop power calibration if required */
236
if (ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
237
AH5416(ah)->ah_olcInit(ah);
238
AH5416(ah)->ah_olcTempCompensation(ah);
239
}
240
241
/* Setup the transmit power values. */
242
if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
243
HALDEBUG(ah, HAL_DEBUG_ANY,
244
"%s: error init'ing transmit power\n", __func__);
245
FAIL(HAL_EIO);
246
}
247
248
/* Write the analog registers */
249
if (!ahp->ah_rfHal->setRfRegs(ah, chan,
250
IEEE80211_IS_CHAN_2GHZ(chan) ? 2: 1, rfXpdGain)) {
251
HALDEBUG(ah, HAL_DEBUG_ANY,
252
"%s: ar5212SetRfRegs failed\n", __func__);
253
FAIL(HAL_EIO);
254
}
255
256
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
257
if (IEEE80211_IS_CHAN_OFDM(chan)|| IEEE80211_IS_CHAN_HT(chan))
258
ar5416SetDeltaSlope(ah, chan);
259
260
AH5416(ah)->ah_spurMitigate(ah, chan);
261
262
/* Setup board specific options for EEPROM version 3 */
263
if (!ah->ah_setBoardValues(ah, chan)) {
264
HALDEBUG(ah, HAL_DEBUG_ANY,
265
"%s: error setting board options\n", __func__);
266
FAIL(HAL_EIO);
267
}
268
269
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
270
271
OS_REG_WRITE(ah, AR_STA_ID0, LE_READ_4(ahp->ah_macaddr));
272
OS_REG_WRITE(ah, AR_STA_ID1, LE_READ_2(ahp->ah_macaddr + 4)
273
| macStaId1
274
| AR_STA_ID1_RTS_USE_DEF
275
| ahp->ah_staId1Defaults
276
);
277
ar5212SetOperatingMode(ah, opmode);
278
279
/* Set Venice BSSID mask according to current state */
280
OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
281
OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
282
283
/* Restore previous led state */
284
if (AR_SREV_HOWL(ah))
285
OS_REG_WRITE(ah, AR_MAC_LED,
286
AR_MAC_LED_ASSOC_ACTIVE | AR_CFG_SCLK_32KHZ);
287
else
288
OS_REG_WRITE(ah, AR_MAC_LED, OS_REG_READ(ah, AR_MAC_LED) |
289
saveLedState);
290
291
/* Start TSF2 for generic timer 8-15 */
292
#ifdef NOTYET
293
if (AR_SREV_KIWI(ah))
294
ar5416StartTsf2(ah);
295
#endif
296
297
/*
298
* Enable Bluetooth Coexistence if it's enabled.
299
*/
300
if (AH5416(ah)->ah_btCoexConfigType != HAL_BT_COEX_CFG_NONE)
301
ar5416InitBTCoex(ah);
302
303
/* Restore previous antenna */
304
OS_REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
305
306
/* then our BSSID and associate id */
307
OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
308
OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid + 4) |
309
(ahp->ah_assocId & 0x3fff) << AR_BSS_ID1_AID_S);
310
311
/* Restore bmiss rssi & count thresholds */
312
OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);
313
314
OS_REG_WRITE(ah, AR_ISR, ~0); /* cleared on write */
315
316
/* Restore bmiss rssi & count thresholds */
317
OS_REG_WRITE(ah, AR_RSSI_THR, rssiThrReg);
318
319
if (!ar5212SetChannel(ah, chan))
320
FAIL(HAL_EIO);
321
322
OS_MARK(ah, AH_MARK_RESET_LINE, __LINE__);
323
324
/* Set 1:1 QCU to DCU mapping for all queues */
325
for (i = 0; i < AR_NUM_DCU; i++)
326
OS_REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
327
328
ahp->ah_intrTxqs = 0;
329
for (i = 0; i < AH_PRIVATE(ah)->ah_caps.halTotalQueues; i++)
330
ah->ah_resetTxQueue(ah, i);
331
332
ar5416InitIMR(ah, opmode);
333
ar5416SetCoverageClass(ah, AH_PRIVATE(ah)->ah_coverageClass, 1);
334
ar5416InitQoS(ah);
335
/* This may override the AR_DIAG_SW register */
336
ar5416InitUserSettings(ah);
337
338
/* XXX this won't work for AR9287! */
339
if (IEEE80211_IS_CHAN_HALF(chan) || IEEE80211_IS_CHAN_QUARTER(chan)) {
340
ar5416SetIFSTiming(ah, chan);
341
#if 0
342
/*
343
* AR5413?
344
* Force window_length for 1/2 and 1/4 rate channels,
345
* the ini file sets this to zero otherwise.
346
*/
347
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL,
348
AR_PHY_FRAME_CTL_WINLEN, 3);
349
}
350
#endif
351
}
352
353
if (AR_SREV_KIWI_13_OR_LATER(ah)) {
354
/*
355
* Enable ASYNC FIFO
356
*
357
* If Async FIFO is enabled, the following counters change
358
* as MAC now runs at 117 Mhz instead of 88/44MHz when
359
* async FIFO is disabled.
360
*
361
* Overwrite the delay/timeouts initialized in ProcessIni()
362
* above.
363
*/
364
OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
365
AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
366
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
367
AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
368
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
369
AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
370
371
OS_REG_WRITE(ah, AR_TIME_OUT,
372
AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
373
OS_REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
374
375
OS_REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
376
AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
377
OS_REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
378
AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
379
}
380
381
if (AR_SREV_KIWI_13_OR_LATER(ah)) {
382
/* Enable AGGWEP to accelerate encryption engine */
383
OS_REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
384
AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
385
}
386
387
/*
388
* disable seq number generation in hw
389
*/
390
OS_REG_WRITE(ah, AR_STA_ID1,
391
OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
392
393
ar5416InitDMA(ah);
394
395
/*
396
* program OBS bus to see MAC interrupts
397
*/
398
OS_REG_WRITE(ah, AR_OBS, 8);
399
400
/*
401
* Disable the "general" TX/RX mitigation timers.
402
*/
403
OS_REG_WRITE(ah, AR_MIRT, 0);
404
405
#ifdef AH_AR5416_INTERRUPT_MITIGATION
406
/*
407
* This initialises the RX interrupt mitigation timers.
408
*
409
* The mitigation timers begin at idle and are triggered
410
* upon the RXOK of a single frame (or sub-frame, for A-MPDU.)
411
* Then, the RX mitigation interrupt will fire:
412
*
413
* + 250uS after the last RX'ed frame, or
414
* + 700uS after the first RX'ed frame
415
*
416
* Thus, the LAST field dictates the extra latency
417
* induced by the RX mitigation method and the FIRST
418
* field dictates how long to delay before firing an
419
* RX mitigation interrupt.
420
*
421
* Please note this only seems to be for RXOK frames;
422
* not CRC or PHY error frames.
423
*
424
*/
425
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 250);
426
OS_REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 700);
427
#endif
428
ar5416InitBB(ah, chan);
429
430
/* Setup compression registers */
431
ar5212SetCompRegs(ah); /* XXX not needed? */
432
433
/*
434
* 5416 baseband will check the per rate power table
435
* and select the lower of the two
436
*/
437
ackTpcPow = 63;
438
ctsTpcPow = 63;
439
chirpTpcPow = 63;
440
powerVal = SM(ackTpcPow, AR_TPC_ACK) |
441
SM(ctsTpcPow, AR_TPC_CTS) |
442
SM(chirpTpcPow, AR_TPC_CHIRP);
443
OS_REG_WRITE(ah, AR_TPC, powerVal);
444
445
if (!ar5416InitCal(ah, chan))
446
FAIL(HAL_ESELFTEST);
447
448
ar5416RestoreChainMask(ah);
449
450
AH_PRIVATE(ah)->ah_opmode = opmode; /* record operating mode */
451
452
if (bChannelChange && !IEEE80211_IS_CHAN_DFS(chan))
453
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
454
455
if (AR_SREV_HOWL(ah)) {
456
/*
457
* Enable the MBSSID block-ack fix for HOWL.
458
* This feature is only supported on Howl 1.4, but it is safe to
459
* set bit 22 of STA_ID1 on other Howl revisions (1.1, 1.2, 1.3),
460
* since bit 22 is unused in those Howl revisions.
461
*/
462
unsigned int reg;
463
reg = (OS_REG_READ(ah, AR_STA_ID1) | (1<<22));
464
OS_REG_WRITE(ah,AR_STA_ID1, reg);
465
ath_hal_printf(ah, "MBSSID Set bit 22 of AR_STA_ID 0x%x\n", reg);
466
}
467
468
HALDEBUG(ah, HAL_DEBUG_RESET, "%s: done\n", __func__);
469
470
OS_MARK(ah, AH_MARK_RESET_DONE, 0);
471
472
return AH_TRUE;
473
bad:
474
OS_MARK(ah, AH_MARK_RESET_DONE, ecode);
475
if (status != AH_NULL)
476
*status = ecode;
477
return AH_FALSE;
478
#undef FAIL
479
#undef N
480
}
481
482
#if 0
483
/*
484
* This channel change evaluates whether the selected hardware can
485
* perform a synthesizer-only channel change (no reset). If the
486
* TX is not stopped, or the RFBus cannot be granted in the given
487
* time, the function returns false as a reset is necessary
488
*/
489
HAL_BOOL
490
ar5416ChannelChange(struct ath_hal *ah, const structu ieee80211_channel *chan)
491
{
492
uint32_t ulCount;
493
uint32_t data, synthDelay, qnum;
494
uint16_t rfXpdGain[4];
495
struct ath_hal_5212 *ahp = AH5212(ah);
496
HAL_CHANNEL_INTERNAL *ichan;
497
498
/*
499
* Map public channel to private.
500
*/
501
ichan = ath_hal_checkchannel(ah, chan);
502
503
/* TX must be stopped or RF Bus grant will not work */
504
for (qnum = 0; qnum < AH_PRIVATE(ah)->ah_caps.halTotalQueues; qnum++) {
505
if (ar5212NumTxPending(ah, qnum)) {
506
HALDEBUG(ah, HAL_DEBUG_ANY,
507
"%s: frames pending on queue %d\n", __func__, qnum);
508
return AH_FALSE;
509
}
510
}
511
512
/*
513
* Kill last Baseband Rx Frame - Request analog bus grant
514
*/
515
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_REQUEST);
516
if (!ath_hal_wait(ah, AR_PHY_RFBUS_GNT, AR_PHY_RFBUS_GRANT_EN, AR_PHY_RFBUS_GRANT_EN)) {
517
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: could not kill baseband rx\n",
518
__func__);
519
return AH_FALSE;
520
}
521
522
ar5416Set11nRegs(ah, chan); /* NB: setup 5416-specific regs */
523
524
/* Change the synth */
525
if (!ar5212SetChannel(ah, chan))
526
return AH_FALSE;
527
528
/* Setup the transmit power values. */
529
if (!ah->ah_setTxPower(ah, chan, rfXpdGain)) {
530
HALDEBUG(ah, HAL_DEBUG_ANY,
531
"%s: error init'ing transmit power\n", __func__);
532
return AH_FALSE;
533
}
534
535
/*
536
* Wait for the frequency synth to settle (synth goes on
537
* via PHY_ACTIVE_EN). Read the phy active delay register.
538
* Value is in 100ns increments.
539
*/
540
data = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
541
if (IS_CHAN_CCK(ichan)) {
542
synthDelay = (4 * data) / 22;
543
} else {
544
synthDelay = data / 10;
545
}
546
547
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
548
549
/* Release the RFBus Grant */
550
OS_REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
551
552
/* Write delta slope for OFDM enabled modes (A, G, Turbo) */
553
if (IEEE80211_IS_CHAN_OFDM(ichan)|| IEEE80211_IS_CHAN_HT(chan)) {
554
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER5_3);
555
ar5212SetSpurMitigation(ah, chan);
556
ar5416SetDeltaSlope(ah, chan);
557
}
558
559
/* XXX spur mitigation for Melin */
560
561
if (!IEEE80211_IS_CHAN_DFS(chan))
562
chan->ic_state &= ~IEEE80211_CHANSTATE_CWINT;
563
564
ichan->channel_time = 0;
565
ichan->tsf_last = ar5416GetTsf64(ah);
566
ar5212TxEnable(ah, AH_TRUE);
567
return AH_TRUE;
568
}
569
#endif
570
571
static void
572
ar5416InitDMA(struct ath_hal *ah)
573
{
574
struct ath_hal_5212 *ahp = AH5212(ah);
575
576
/*
577
* set AHB_MODE not to do cacheline prefetches
578
*/
579
OS_REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
580
581
/*
582
* let mac dma reads be in 128 byte chunks
583
*/
584
OS_REG_WRITE(ah, AR_TXCFG,
585
(OS_REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK) | AR_TXCFG_DMASZ_128B);
586
587
/*
588
* let mac dma writes be in 128 byte chunks
589
*/
590
/*
591
* XXX If you change this, you must change the headroom
592
* assigned in ah_maxTxTrigLev - see ar5416InitState().
593
*/
594
OS_REG_WRITE(ah, AR_RXCFG,
595
(OS_REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK) | AR_RXCFG_DMASZ_128B);
596
597
/* restore TX trigger level */
598
OS_REG_WRITE(ah, AR_TXCFG,
599
(OS_REG_READ(ah, AR_TXCFG) &~ AR_FTRIG) |
600
SM(ahp->ah_txTrigLev, AR_FTRIG));
601
602
/*
603
* Setup receive FIFO threshold to hold off TX activities
604
*/
605
OS_REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
606
607
/*
608
* reduce the number of usable entries in PCU TXBUF to avoid
609
* wrap around.
610
*/
611
if (AR_SREV_KITE(ah))
612
/*
613
* For AR9285 the number of Fifos are reduced to half.
614
* So set the usable tx buf size also to half to
615
* avoid data/delimiter underruns
616
*/
617
OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
618
else
619
OS_REG_WRITE(ah, AR_PCU_TXBUF_CTRL, AR_PCU_TXBUF_CTRL_USABLE_SIZE);
620
}
621
622
static void
623
ar5416InitBB(struct ath_hal *ah, const struct ieee80211_channel *chan)
624
{
625
uint32_t synthDelay;
626
627
/*
628
* Wait for the frequency synth to settle (synth goes on
629
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
630
* Value is in 100ns increments.
631
*/
632
synthDelay = OS_REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
633
if (IEEE80211_IS_CHAN_CCK(chan)) {
634
synthDelay = (4 * synthDelay) / 22;
635
} else {
636
synthDelay /= 10;
637
}
638
639
/* Turn on PLL on 5416 */
640
HALDEBUG(ah, HAL_DEBUG_RESET, "%s %s channel\n",
641
__func__, IEEE80211_IS_CHAN_5GHZ(chan) ? "5GHz" : "2GHz");
642
643
/* Activate the PHY (includes baseband activate and synthesizer on) */
644
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
645
646
/*
647
* If the AP starts the calibration before the base band timeout
648
* completes we could get rx_clear false triggering. Add an
649
* extra BASE_ACTIVATE_DELAY usecs to ensure this condition
650
* does not happen.
651
*/
652
if (IEEE80211_IS_CHAN_HALF(chan)) {
653
OS_DELAY((synthDelay << 1) + BASE_ACTIVATE_DELAY);
654
} else if (IEEE80211_IS_CHAN_QUARTER(chan)) {
655
OS_DELAY((synthDelay << 2) + BASE_ACTIVATE_DELAY);
656
} else {
657
OS_DELAY(synthDelay + BASE_ACTIVATE_DELAY);
658
}
659
}
660
661
static void
662
ar5416InitIMR(struct ath_hal *ah, HAL_OPMODE opmode)
663
{
664
struct ath_hal_5212 *ahp = AH5212(ah);
665
666
/*
667
* Setup interrupt handling. Note that ar5212ResetTxQueue
668
* manipulates the secondary IMR's as queues are enabled
669
* and disabled. This is done with RMW ops to insure the
670
* settings we make here are preserved.
671
*/
672
ahp->ah_maskReg = AR_IMR_TXERR | AR_IMR_TXURN
673
| AR_IMR_RXERR | AR_IMR_RXORN
674
| AR_IMR_BCNMISC;
675
676
#ifdef AH_AR5416_INTERRUPT_MITIGATION
677
ahp->ah_maskReg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
678
#else
679
ahp->ah_maskReg |= AR_IMR_RXOK;
680
#endif
681
ahp->ah_maskReg |= AR_IMR_TXOK;
682
683
if (opmode == HAL_M_HOSTAP)
684
ahp->ah_maskReg |= AR_IMR_MIB;
685
OS_REG_WRITE(ah, AR_IMR, ahp->ah_maskReg);
686
687
#ifdef ADRIAN_NOTYET
688
/* This is straight from ath9k */
689
if (! AR_SREV_HOWL(ah)) {
690
OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
691
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
692
OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
693
}
694
#endif
695
696
/* Enable bus errors that are OR'd to set the HIUERR bit */
697
#if 0
698
OS_REG_WRITE(ah, AR_IMR_S2,
699
OS_REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT | AR_IMR_S2_CST);
700
#endif
701
}
702
703
static void
704
ar5416InitQoS(struct ath_hal *ah)
705
{
706
/* QoS support */
707
OS_REG_WRITE(ah, AR_QOS_CONTROL, 0x100aa); /* XXX magic */
708
OS_REG_WRITE(ah, AR_QOS_SELECT, 0x3210); /* XXX magic */
709
710
/* Turn on NOACK Support for QoS packets */
711
OS_REG_WRITE(ah, AR_NOACK,
712
SM(2, AR_NOACK_2BIT_VALUE) |
713
SM(5, AR_NOACK_BIT_OFFSET) |
714
SM(0, AR_NOACK_BYTE_OFFSET));
715
716
/*
717
* initialize TXOP for all TIDs
718
*/
719
OS_REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
720
OS_REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
721
OS_REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
722
OS_REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
723
OS_REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
724
}
725
726
static void
727
ar5416InitUserSettings(struct ath_hal *ah)
728
{
729
struct ath_hal_5212 *ahp = AH5212(ah);
730
731
/* Restore user-specified settings */
732
if (ahp->ah_miscMode != 0)
733
OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE)
734
| ahp->ah_miscMode);
735
if (ahp->ah_sifstime != (u_int) -1)
736
ar5212SetSifsTime(ah, ahp->ah_sifstime);
737
if (ahp->ah_slottime != (u_int) -1)
738
ar5212SetSlotTime(ah, ahp->ah_slottime);
739
if (ahp->ah_acktimeout != (u_int) -1)
740
ar5212SetAckTimeout(ah, ahp->ah_acktimeout);
741
if (ahp->ah_ctstimeout != (u_int) -1)
742
ar5212SetCTSTimeout(ah, ahp->ah_ctstimeout);
743
if (AH_PRIVATE(ah)->ah_diagreg != 0)
744
OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
745
if (AH5416(ah)->ah_globaltxtimeout != (u_int) -1)
746
ar5416SetGlobalTxTimeout(ah, AH5416(ah)->ah_globaltxtimeout);
747
}
748
749
static void
750
ar5416SetRfMode(struct ath_hal *ah, const struct ieee80211_channel *chan)
751
{
752
uint32_t rfMode;
753
754
if (chan == AH_NULL)
755
return;
756
757
/* treat channel B as channel G , no B mode suport in owl */
758
rfMode = IEEE80211_IS_CHAN_CCK(chan) ?
759
AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
760
761
if (AR_SREV_MERLIN_20(ah) && IS_5GHZ_FAST_CLOCK_EN(ah, chan)) {
762
/* phy mode bits for 5GHz channels require Fast Clock */
763
rfMode |= AR_PHY_MODE_DYNAMIC
764
| AR_PHY_MODE_DYN_CCK_DISABLE;
765
} else if (!AR_SREV_MERLIN_10_OR_LATER(ah)) {
766
rfMode |= IEEE80211_IS_CHAN_5GHZ(chan) ?
767
AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
768
}
769
770
OS_REG_WRITE(ah, AR_PHY_MODE, rfMode);
771
}
772
773
/*
774
* Places the hardware into reset and then pulls it out of reset
775
*/
776
HAL_BOOL
777
ar5416ChipReset(struct ath_hal *ah, const struct ieee80211_channel *chan,
778
HAL_RESET_TYPE resetType)
779
{
780
OS_MARK(ah, AH_MARK_CHIPRESET, chan ? chan->ic_freq : 0);
781
/*
782
* Warm reset is optimistic for open-loop TX power control.
783
*/
784
if (AR_SREV_MERLIN(ah) &&
785
ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
786
if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
787
return AH_FALSE;
788
} else if (ah->ah_config.ah_force_full_reset) {
789
if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
790
return AH_FALSE;
791
} else if ((resetType == HAL_RESET_FORCE_COLD) ||
792
(resetType == HAL_RESET_BBPANIC)) {
793
HALDEBUG(ah, HAL_DEBUG_RESET,
794
"%s: full reset; resetType=%d\n",
795
__func__, resetType);
796
if (!ar5416SetResetReg(ah, HAL_RESET_POWER_ON))
797
return AH_FALSE;
798
} else {
799
if (!ar5416SetResetReg(ah, HAL_RESET_WARM))
800
return AH_FALSE;
801
}
802
803
/* Bring out of sleep mode (AGAIN) */
804
if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
805
return AH_FALSE;
806
807
#ifdef notyet
808
ahp->ah_chipFullSleep = AH_FALSE;
809
#endif
810
811
AH5416(ah)->ah_initPLL(ah, chan);
812
813
/*
814
* Perform warm reset before the mode/PLL/turbo registers
815
* are changed in order to deactivate the radio. Mode changes
816
* with an active radio can result in corrupted shifts to the
817
* radio device.
818
*/
819
ar5416SetRfMode(ah, chan);
820
821
return AH_TRUE;
822
}
823
824
/*
825
* Delta slope coefficient computation.
826
* Required for OFDM operation.
827
*/
828
static void
829
ar5416GetDeltaSlopeValues(struct ath_hal *ah, uint32_t coef_scaled,
830
uint32_t *coef_mantissa, uint32_t *coef_exponent)
831
{
832
#define COEF_SCALE_S 24
833
uint32_t coef_exp, coef_man;
834
/*
835
* ALGO -> coef_exp = 14-floor(log2(coef));
836
* floor(log2(x)) is the highest set bit position
837
*/
838
for (coef_exp = 31; coef_exp > 0; coef_exp--)
839
if ((coef_scaled >> coef_exp) & 0x1)
840
break;
841
/* A coef_exp of 0 is a legal bit position but an unexpected coef_exp */
842
HALASSERT(coef_exp);
843
coef_exp = 14 - (coef_exp - COEF_SCALE_S);
844
845
/*
846
* ALGO -> coef_man = floor(coef* 2^coef_exp+0.5);
847
* The coefficient is already shifted up for scaling
848
*/
849
coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
850
851
*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
852
*coef_exponent = coef_exp - 16;
853
854
#undef COEF_SCALE_S
855
}
856
857
void
858
ar5416SetDeltaSlope(struct ath_hal *ah, const struct ieee80211_channel *chan)
859
{
860
#define INIT_CLOCKMHZSCALED 0x64000000
861
uint32_t coef_scaled, ds_coef_exp, ds_coef_man;
862
uint32_t clockMhzScaled;
863
864
CHAN_CENTERS centers;
865
866
/* half and quarter rate can divide the scaled clock by 2 or 4 respectively */
867
/* scale for selected channel bandwidth */
868
clockMhzScaled = INIT_CLOCKMHZSCALED;
869
if (IEEE80211_IS_CHAN_TURBO(chan))
870
clockMhzScaled <<= 1;
871
else if (IEEE80211_IS_CHAN_HALF(chan))
872
clockMhzScaled >>= 1;
873
else if (IEEE80211_IS_CHAN_QUARTER(chan))
874
clockMhzScaled >>= 2;
875
876
/*
877
* ALGO -> coef = 1e8/fcarrier*fclock/40;
878
* scaled coef to provide precision for this floating calculation
879
*/
880
ar5416GetChannelCenters(ah, chan, &centers);
881
coef_scaled = clockMhzScaled / centers.synth_center;
882
883
ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
884
885
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
886
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
887
OS_REG_RMW_FIELD(ah, AR_PHY_TIMING3,
888
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
889
890
/*
891
* For Short GI,
892
* scaled coeff is 9/10 that of normal coeff
893
*/
894
coef_scaled = (9 * coef_scaled)/10;
895
896
ar5416GetDeltaSlopeValues(ah, coef_scaled, &ds_coef_man, &ds_coef_exp);
897
898
/* for short gi */
899
OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
900
AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
901
OS_REG_RMW_FIELD(ah, AR_PHY_HALFGI,
902
AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
903
#undef INIT_CLOCKMHZSCALED
904
}
905
906
/*
907
* Set a limit on the overall output power. Used for dynamic
908
* transmit power control and the like.
909
*
910
* NB: limit is in units of 0.5 dbM.
911
*/
912
HAL_BOOL
913
ar5416SetTxPowerLimit(struct ath_hal *ah, uint32_t limit)
914
{
915
uint16_t dummyXpdGains[2];
916
917
AH_PRIVATE(ah)->ah_powerLimit = AH_MIN(limit, MAX_RATE_POWER);
918
return ah->ah_setTxPower(ah, AH_PRIVATE(ah)->ah_curchan,
919
dummyXpdGains);
920
}
921
922
HAL_BOOL
923
ar5416GetChipPowerLimits(struct ath_hal *ah,
924
struct ieee80211_channel *chan)
925
{
926
struct ath_hal_5212 *ahp = AH5212(ah);
927
int16_t minPower, maxPower;
928
929
/*
930
* Get Pier table max and min powers.
931
*/
932
if (ahp->ah_rfHal->getChannelMaxMinPower(ah, chan, &maxPower, &minPower)) {
933
/* NB: rf code returns 1/4 dBm units, convert */
934
chan->ic_maxpower = maxPower / 2;
935
chan->ic_minpower = minPower / 2;
936
} else {
937
HALDEBUG(ah, HAL_DEBUG_ANY,
938
"%s: no min/max power for %u/0x%x\n",
939
__func__, chan->ic_freq, chan->ic_flags);
940
chan->ic_maxpower = AR5416_MAX_RATE_POWER;
941
chan->ic_minpower = 0;
942
}
943
HALDEBUG(ah, HAL_DEBUG_RESET,
944
"Chan %d: MaxPow = %d MinPow = %d\n",
945
chan->ic_freq, chan->ic_maxpower, chan->ic_minpower);
946
return AH_TRUE;
947
}
948
949
/**************************************************************
950
* ar5416WriteTxPowerRateRegisters
951
*
952
* Write the TX power rate registers from the raw values given
953
* in ratesArray[].
954
*
955
* The CCK and HT40 rate registers are only written if needed.
956
* HT20 and 11g/11a OFDM rate registers are always written.
957
*
958
* The values written are raw values which should be written
959
* to the registers - so it's up to the caller to pre-adjust
960
* them (eg CCK power offset value, or Merlin TX power offset,
961
* etc.)
962
*/
963
void
964
ar5416WriteTxPowerRateRegisters(struct ath_hal *ah,
965
const struct ieee80211_channel *chan, const int16_t ratesArray[])
966
{
967
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
968
969
/* Write the OFDM power per rate set */
970
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
971
POW_SM(ratesArray[rate18mb], 24)
972
| POW_SM(ratesArray[rate12mb], 16)
973
| POW_SM(ratesArray[rate9mb], 8)
974
| POW_SM(ratesArray[rate6mb], 0)
975
);
976
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
977
POW_SM(ratesArray[rate54mb], 24)
978
| POW_SM(ratesArray[rate48mb], 16)
979
| POW_SM(ratesArray[rate36mb], 8)
980
| POW_SM(ratesArray[rate24mb], 0)
981
);
982
983
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
984
/* Write the CCK power per rate set */
985
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
986
POW_SM(ratesArray[rate2s], 24)
987
| POW_SM(ratesArray[rate2l], 16)
988
| POW_SM(ratesArray[rateXr], 8) /* XR target power */
989
| POW_SM(ratesArray[rate1l], 0)
990
);
991
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
992
POW_SM(ratesArray[rate11s], 24)
993
| POW_SM(ratesArray[rate11l], 16)
994
| POW_SM(ratesArray[rate5_5s], 8)
995
| POW_SM(ratesArray[rate5_5l], 0)
996
);
997
HALDEBUG(ah, HAL_DEBUG_RESET,
998
"%s AR_PHY_POWER_TX_RATE3=0x%x AR_PHY_POWER_TX_RATE4=0x%x\n",
999
__func__, OS_REG_READ(ah,AR_PHY_POWER_TX_RATE3),
1000
OS_REG_READ(ah,AR_PHY_POWER_TX_RATE4));
1001
}
1002
1003
/* Write the HT20 power per rate set */
1004
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1005
POW_SM(ratesArray[rateHt20_3], 24)
1006
| POW_SM(ratesArray[rateHt20_2], 16)
1007
| POW_SM(ratesArray[rateHt20_1], 8)
1008
| POW_SM(ratesArray[rateHt20_0], 0)
1009
);
1010
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1011
POW_SM(ratesArray[rateHt20_7], 24)
1012
| POW_SM(ratesArray[rateHt20_6], 16)
1013
| POW_SM(ratesArray[rateHt20_5], 8)
1014
| POW_SM(ratesArray[rateHt20_4], 0)
1015
);
1016
1017
if (IEEE80211_IS_CHAN_HT40(chan)) {
1018
/* Write the HT40 power per rate set */
1019
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1020
POW_SM(ratesArray[rateHt40_3], 24)
1021
| POW_SM(ratesArray[rateHt40_2], 16)
1022
| POW_SM(ratesArray[rateHt40_1], 8)
1023
| POW_SM(ratesArray[rateHt40_0], 0)
1024
);
1025
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1026
POW_SM(ratesArray[rateHt40_7], 24)
1027
| POW_SM(ratesArray[rateHt40_6], 16)
1028
| POW_SM(ratesArray[rateHt40_5], 8)
1029
| POW_SM(ratesArray[rateHt40_4], 0)
1030
);
1031
/* Write the Dup/Ext 40 power per rate set */
1032
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1033
POW_SM(ratesArray[rateExtOfdm], 24)
1034
| POW_SM(ratesArray[rateExtCck], 16)
1035
| POW_SM(ratesArray[rateDupOfdm], 8)
1036
| POW_SM(ratesArray[rateDupCck], 0)
1037
);
1038
}
1039
1040
/*
1041
* Set max power to 30 dBm and, optionally,
1042
* enable TPC in tx descriptors.
1043
*/
1044
OS_REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER |
1045
(AH5212(ah)->ah_tpcEnabled ? AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE : 0));
1046
#undef POW_SM
1047
}
1048
1049
/**************************************************************
1050
* ar5416SetTransmitPower
1051
*
1052
* Set the transmit power in the baseband for the given
1053
* operating channel and mode.
1054
*/
1055
HAL_BOOL
1056
ar5416SetTransmitPower(struct ath_hal *ah,
1057
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
1058
{
1059
#define N(a) (sizeof (a) / sizeof (a[0]))
1060
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
1061
1062
MODAL_EEP_HEADER *pModal;
1063
struct ath_hal_5212 *ahp = AH5212(ah);
1064
int16_t txPowerIndexOffset = 0;
1065
int i;
1066
1067
uint16_t cfgCtl;
1068
uint16_t powerLimit;
1069
uint16_t twiceAntennaReduction;
1070
uint16_t twiceMaxRegulatoryPower;
1071
int16_t maxPower;
1072
HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1073
struct ar5416eeprom *pEepData = &ee->ee_base;
1074
1075
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1076
1077
/*
1078
* Default to 2, is overridden based on the EEPROM version / value.
1079
*/
1080
AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
1081
1082
/* Setup info for the actual eeprom */
1083
OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
1084
cfgCtl = ath_hal_getctl(ah, chan);
1085
powerLimit = chan->ic_maxregpower * 2;
1086
twiceAntennaReduction = chan->ic_maxantgain;
1087
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
1088
pModal = &pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1089
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
1090
__func__,chan->ic_freq, cfgCtl );
1091
1092
if (IS_EEP_MINOR_V2(ah)) {
1093
AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1094
}
1095
1096
if (!ar5416SetPowerPerRateTable(ah, pEepData, chan,
1097
&AH5416(ah)->ah_ratesArray[0],
1098
cfgCtl,
1099
twiceAntennaReduction,
1100
twiceMaxRegulatoryPower, powerLimit)) {
1101
HALDEBUG(ah, HAL_DEBUG_ANY,
1102
"%s: unable to set tx power per rate table\n", __func__);
1103
return AH_FALSE;
1104
}
1105
1106
if (!AH5416(ah)->ah_setPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
1107
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
1108
__func__);
1109
return AH_FALSE;
1110
}
1111
1112
maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
1113
AH5416(ah)->ah_ratesArray[rateHt20_0]);
1114
1115
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1116
maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
1117
}
1118
1119
if (IEEE80211_IS_CHAN_HT40(chan)) {
1120
maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
1121
}
1122
1123
ahp->ah_tx6PowerInHalfDbm = maxPower;
1124
AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
1125
ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
1126
1127
/*
1128
* txPowerIndexOffset is set by the SetPowerTable() call -
1129
* adjust the rate table (0 offset if rates EEPROM not loaded)
1130
*/
1131
for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1132
AH5416(ah)->ah_ratesArray[i] =
1133
(int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
1134
if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1135
AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1136
}
1137
1138
#ifdef AH_EEPROM_DUMP
1139
/*
1140
* Dump the rate array whilst it represents the intended dBm*2
1141
* values versus what's being adjusted before being programmed
1142
* in. Keep this in mind if you code up this function and enable
1143
* this debugging; the values won't necessarily be what's being
1144
* programmed into the hardware.
1145
*/
1146
ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
1147
#endif
1148
1149
/*
1150
* Merlin and later have a power offset, so subtract
1151
* pwr_table_offset * 2 from each value. The default
1152
* power offset is -5 dBm - ie, a register value of 0
1153
* equates to a TX power of -5 dBm.
1154
*/
1155
if (AR_SREV_MERLIN_20_OR_LATER(ah)) {
1156
int8_t pwr_table_offset;
1157
1158
(void) ath_hal_eepromGet(ah, AR_EEP_PWR_TABLE_OFFSET,
1159
&pwr_table_offset);
1160
/* Underflow power gets clamped at raw value 0 */
1161
/* Overflow power gets camped at AR5416_MAX_RATE_POWER */
1162
for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
1163
/*
1164
* + pwr_table_offset is in dBm
1165
* + ratesArray is in 1/2 dBm
1166
*/
1167
AH5416(ah)->ah_ratesArray[i] -= (pwr_table_offset * 2);
1168
if (AH5416(ah)->ah_ratesArray[i] < 0)
1169
AH5416(ah)->ah_ratesArray[i] = 0;
1170
else if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
1171
AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
1172
}
1173
}
1174
1175
/*
1176
* Adjust rates for OLC where needed
1177
*
1178
* The following CCK rates need adjusting when doing 2.4ghz
1179
* CCK transmission.
1180
*
1181
* + rate2s, rate2l, rate1l, rate11s, rate11l, rate5_5s, rate5_5l
1182
* + rateExtCck, rateDupCck
1183
*
1184
* They're adjusted here regardless. The hardware then gets
1185
* programmed as needed. 5GHz operation doesn't program in CCK
1186
* rates for legacy mode but they seem to be initialised for
1187
* HT40 regardless of channel type.
1188
*/
1189
if (AR_SREV_MERLIN_20_OR_LATER(ah) &&
1190
ath_hal_eepromGetFlag(ah, AR_EEP_OL_PWRCTRL)) {
1191
int adj[] = {
1192
rate2s, rate2l, rate1l, rate11s, rate11l,
1193
rate5_5s, rate5_5l, rateExtCck, rateDupCck
1194
};
1195
int cck_ofdm_delta = 2;
1196
int i;
1197
for (i = 0; i < N(adj); i++) {
1198
AH5416(ah)->ah_ratesArray[adj[i]] -= cck_ofdm_delta;
1199
if (AH5416(ah)->ah_ratesArray[adj[i]] < 0)
1200
AH5416(ah)->ah_ratesArray[adj[i]] = 0;
1201
}
1202
}
1203
1204
/*
1205
* Adjust the HT40 power to meet the correct target TX power
1206
* for 40MHz mode, based on TX power curves that are established
1207
* for 20MHz mode.
1208
*
1209
* XXX handle overflow/too high power level?
1210
*/
1211
if (IEEE80211_IS_CHAN_HT40(chan)) {
1212
AH5416(ah)->ah_ratesArray[rateHt40_0] +=
1213
AH5416(ah)->ah_ht40PowerIncForPdadc;
1214
AH5416(ah)->ah_ratesArray[rateHt40_1] +=
1215
AH5416(ah)->ah_ht40PowerIncForPdadc;
1216
AH5416(ah)->ah_ratesArray[rateHt40_2] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1217
AH5416(ah)->ah_ratesArray[rateHt40_3] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1218
AH5416(ah)->ah_ratesArray[rateHt40_4] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1219
AH5416(ah)->ah_ratesArray[rateHt40_5] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1220
AH5416(ah)->ah_ratesArray[rateHt40_6] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1221
AH5416(ah)->ah_ratesArray[rateHt40_7] += AH5416(ah)->ah_ht40PowerIncForPdadc;
1222
}
1223
1224
/* Write the TX power rate registers */
1225
ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
1226
1227
/* Write the Power subtraction for dynamic chain changing, for per-packet powertx */
1228
OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1229
POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1230
| POW_SM(pModal->pwrDecreaseFor2Chain, 0)
1231
);
1232
return AH_TRUE;
1233
#undef POW_SM
1234
#undef N
1235
}
1236
1237
/*
1238
* Exported call to check for a recent gain reading and return
1239
* the current state of the thermal calibration gain engine.
1240
*/
1241
HAL_RFGAIN
1242
ar5416GetRfgain(struct ath_hal *ah)
1243
{
1244
1245
return (HAL_RFGAIN_INACTIVE);
1246
}
1247
1248
/*
1249
* Places all of hardware into reset
1250
*/
1251
HAL_BOOL
1252
ar5416Disable(struct ath_hal *ah)
1253
{
1254
1255
if (!ar5416SetPowerMode(ah, HAL_PM_AWAKE, AH_TRUE))
1256
return AH_FALSE;
1257
if (! ar5416SetResetReg(ah, HAL_RESET_COLD))
1258
return AH_FALSE;
1259
1260
AH5416(ah)->ah_initPLL(ah, AH_NULL);
1261
return (AH_TRUE);
1262
}
1263
1264
/*
1265
* Places the PHY and Radio chips into reset. A full reset
1266
* must be called to leave this state. The PCI/MAC/PCU are
1267
* not placed into reset as we must receive interrupt to
1268
* re-enable the hardware.
1269
*/
1270
HAL_BOOL
1271
ar5416PhyDisable(struct ath_hal *ah)
1272
{
1273
1274
if (! ar5416SetResetReg(ah, HAL_RESET_WARM))
1275
return AH_FALSE;
1276
1277
AH5416(ah)->ah_initPLL(ah, AH_NULL);
1278
return (AH_TRUE);
1279
}
1280
1281
/*
1282
* Write the given reset bit mask into the reset register
1283
*/
1284
HAL_BOOL
1285
ar5416SetResetReg(struct ath_hal *ah, uint32_t type)
1286
{
1287
/*
1288
* Set force wake
1289
*/
1290
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1291
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1292
1293
switch (type) {
1294
case HAL_RESET_POWER_ON:
1295
return ar5416SetResetPowerOn(ah);
1296
case HAL_RESET_WARM:
1297
case HAL_RESET_COLD:
1298
return ar5416SetReset(ah, type);
1299
default:
1300
HALASSERT(AH_FALSE);
1301
return AH_FALSE;
1302
}
1303
}
1304
1305
static HAL_BOOL
1306
ar5416SetResetPowerOn(struct ath_hal *ah)
1307
{
1308
/* Power On Reset (Hard Reset) */
1309
1310
/*
1311
* Set force wake
1312
*
1313
* If the MAC was running, previously calling
1314
* reset will wake up the MAC but it may go back to sleep
1315
* before we can start polling.
1316
* Set force wake stops that
1317
* This must be called before initiating a hard reset.
1318
*/
1319
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1320
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1321
1322
/*
1323
* PowerOn reset can be used in open loop power control or failure recovery.
1324
* If we do RTC reset while DMA is still running, hardware may corrupt memory.
1325
* Therefore, we need to reset AHB first to stop DMA.
1326
*/
1327
if (! AR_SREV_HOWL(ah))
1328
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1329
/*
1330
* RTC reset and clear
1331
*/
1332
OS_REG_WRITE(ah, AR_RTC_RESET, 0);
1333
OS_DELAY(20);
1334
1335
if (! AR_SREV_HOWL(ah))
1336
OS_REG_WRITE(ah, AR_RC, 0);
1337
1338
OS_REG_WRITE(ah, AR_RTC_RESET, 1);
1339
1340
/*
1341
* Poll till RTC is ON
1342
*/
1343
if (!ath_hal_wait(ah, AR_RTC_STATUS, AR_RTC_PM_STATUS_M, AR_RTC_STATUS_ON)) {
1344
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC not waking up\n", __func__);
1345
return AH_FALSE;
1346
}
1347
1348
return ar5416SetReset(ah, HAL_RESET_COLD);
1349
}
1350
1351
static HAL_BOOL
1352
ar5416SetReset(struct ath_hal *ah, int type)
1353
{
1354
uint32_t tmpReg, mask;
1355
uint32_t rst_flags;
1356
1357
#ifdef AH_SUPPORT_AR9130 /* Because of the AR9130 specific registers */
1358
if (AR_SREV_HOWL(ah)) {
1359
HALDEBUG(ah, HAL_DEBUG_ANY, "[ath] HOWL: Fiddling with derived clk!\n");
1360
uint32_t val = OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1361
val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1362
val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1363
OS_REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1364
(void) OS_REG_READ(ah, AR_RTC_DERIVED_CLK);
1365
}
1366
#endif /* AH_SUPPORT_AR9130 */
1367
1368
/*
1369
* Force wake
1370
*/
1371
OS_REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1372
AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1373
1374
#ifdef AH_SUPPORT_AR9130
1375
if (AR_SREV_HOWL(ah)) {
1376
rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1377
AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1378
} else {
1379
#endif /* AH_SUPPORT_AR9130 */
1380
/*
1381
* Reset AHB
1382
*
1383
* (In case the last interrupt source was a bus timeout.)
1384
* XXX TODO: this is not the way to do it! It should be recorded
1385
* XXX by the interrupt handler and passed _into_ the
1386
* XXX reset path routine so this occurs.
1387
*/
1388
tmpReg = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
1389
if (tmpReg & (AR_INTR_SYNC_LOCAL_TIMEOUT|AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1390
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1391
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB|AR_RC_HOSTIF);
1392
} else {
1393
OS_REG_WRITE(ah, AR_RC, AR_RC_AHB);
1394
}
1395
rst_flags = AR_RTC_RC_MAC_WARM;
1396
if (type == HAL_RESET_COLD)
1397
rst_flags |= AR_RTC_RC_MAC_COLD;
1398
#ifdef AH_SUPPORT_AR9130
1399
}
1400
#endif /* AH_SUPPORT_AR9130 */
1401
1402
OS_REG_WRITE(ah, AR_RTC_RC, rst_flags);
1403
1404
if (AR_SREV_HOWL(ah))
1405
OS_DELAY(10000);
1406
else
1407
OS_DELAY(100);
1408
1409
/*
1410
* Clear resets and force wakeup
1411
*/
1412
OS_REG_WRITE(ah, AR_RTC_RC, 0);
1413
if (!ath_hal_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0)) {
1414
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RTC stuck in MAC reset\n", __func__);
1415
return AH_FALSE;
1416
}
1417
1418
/* Clear AHB reset */
1419
if (! AR_SREV_HOWL(ah))
1420
OS_REG_WRITE(ah, AR_RC, 0);
1421
1422
if (AR_SREV_HOWL(ah))
1423
OS_DELAY(50);
1424
1425
if (AR_SREV_HOWL(ah)) {
1426
uint32_t mask;
1427
mask = OS_REG_READ(ah, AR_CFG);
1428
if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1429
HALDEBUG(ah, HAL_DEBUG_RESET,
1430
"CFG Byte Swap Set 0x%x\n", mask);
1431
} else {
1432
mask =
1433
INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1434
OS_REG_WRITE(ah, AR_CFG, mask);
1435
HALDEBUG(ah, HAL_DEBUG_RESET,
1436
"Setting CFG 0x%x\n", OS_REG_READ(ah, AR_CFG));
1437
}
1438
} else {
1439
if (type == HAL_RESET_COLD) {
1440
if (isBigEndian()) {
1441
/*
1442
* Set CFG, little-endian for descriptor accesses.
1443
*/
1444
mask = INIT_CONFIG_STATUS | AR_CFG_SWRD;
1445
#ifndef AH_NEED_DESC_SWAP
1446
mask |= AR_CFG_SWTD;
1447
#endif
1448
HALDEBUG(ah, HAL_DEBUG_RESET,
1449
"%s Applying descriptor swap\n", __func__);
1450
OS_REG_WRITE(ah, AR_CFG, mask);
1451
} else
1452
OS_REG_WRITE(ah, AR_CFG, INIT_CONFIG_STATUS);
1453
}
1454
}
1455
1456
return AH_TRUE;
1457
}
1458
1459
void
1460
ar5416InitChainMasks(struct ath_hal *ah)
1461
{
1462
int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1463
1464
/* Flip this for this chainmask regardless of chip */
1465
if (rx_chainmask == 0x5)
1466
OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1467
1468
/*
1469
* Workaround for OWL 1.0 calibration failure; enable multi-chain;
1470
* then set true mask after calibration.
1471
*/
1472
if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1473
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1474
OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1475
} else {
1476
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1477
OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, AH5416(ah)->ah_rx_chainmask);
1478
}
1479
OS_REG_WRITE(ah, AR_SELFGEN_MASK, AH5416(ah)->ah_tx_chainmask);
1480
1481
if (AH5416(ah)->ah_tx_chainmask == 0x5)
1482
OS_REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1483
1484
if (AR_SREV_HOWL(ah)) {
1485
OS_REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1486
OS_REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1487
}
1488
}
1489
1490
/*
1491
* Work-around for Owl 1.0 calibration failure.
1492
*
1493
* ar5416InitChainMasks sets the RX chainmask to 0x7 if it's Owl 1.0
1494
* due to init calibration failures. ar5416RestoreChainMask restores
1495
* these registers to the correct setting.
1496
*/
1497
void
1498
ar5416RestoreChainMask(struct ath_hal *ah)
1499
{
1500
int rx_chainmask = AH5416(ah)->ah_rx_chainmask;
1501
1502
if (IS_5416V1(ah) && (rx_chainmask == 0x5 || rx_chainmask == 0x3)) {
1503
OS_REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1504
OS_REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1505
}
1506
}
1507
1508
void
1509
ar5416InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
1510
{
1511
uint32_t pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1512
if (chan != AH_NULL) {
1513
if (IEEE80211_IS_CHAN_HALF(chan))
1514
pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1515
else if (IEEE80211_IS_CHAN_QUARTER(chan))
1516
pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1517
1518
if (IEEE80211_IS_CHAN_5GHZ(chan))
1519
pll |= SM(0xa, AR_RTC_PLL_DIV);
1520
else
1521
pll |= SM(0xb, AR_RTC_PLL_DIV);
1522
} else
1523
pll |= SM(0xb, AR_RTC_PLL_DIV);
1524
1525
OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1526
1527
/* TODO:
1528
* For multi-band owl, switch between bands by reiniting the PLL.
1529
*/
1530
1531
OS_DELAY(RTC_PLL_SETTLE_DELAY);
1532
1533
OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
1534
}
1535
1536
static void
1537
ar5416SetDefGainValues(struct ath_hal *ah,
1538
const MODAL_EEP_HEADER *pModal,
1539
const struct ar5416eeprom *eep,
1540
uint8_t txRxAttenLocal, int regChainOffset, int i)
1541
{
1542
1543
if (IS_EEP_MINOR_V3(ah)) {
1544
txRxAttenLocal = pModal->txRxAttenCh[i];
1545
1546
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1547
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1548
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
1549
pModal->bswMargin[i]);
1550
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1551
AR_PHY_GAIN_2GHZ_XATTEN1_DB,
1552
pModal->bswAtten[i]);
1553
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1554
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
1555
pModal->xatten2Margin[i]);
1556
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1557
AR_PHY_GAIN_2GHZ_XATTEN2_DB,
1558
pModal->xatten2Db[i]);
1559
} else {
1560
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1561
AR_PHY_GAIN_2GHZ_BSW_MARGIN,
1562
pModal->bswMargin[i]);
1563
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
1564
AR_PHY_GAIN_2GHZ_BSW_ATTEN,
1565
pModal->bswAtten[i]);
1566
}
1567
}
1568
1569
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1570
OS_REG_RMW_FIELD(ah,
1571
AR_PHY_RXGAIN + regChainOffset,
1572
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1573
OS_REG_RMW_FIELD(ah,
1574
AR_PHY_RXGAIN + regChainOffset,
1575
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
1576
} else {
1577
OS_REG_RMW_FIELD(ah,
1578
AR_PHY_RXGAIN + regChainOffset,
1579
AR_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
1580
OS_REG_RMW_FIELD(ah,
1581
AR_PHY_GAIN_2GHZ + regChainOffset,
1582
AR_PHY_GAIN_2GHZ_RXTX_MARGIN, pModal->rxTxMarginCh[i]);
1583
}
1584
}
1585
1586
/*
1587
* Get the register chain offset for the given chain.
1588
*
1589
* Take into account the register chain swapping with AR5416 v2.0.
1590
*
1591
* XXX make sure that the reg chain swapping is only done for
1592
* XXX AR5416 v2.0 or greater, and not later chips?
1593
*/
1594
int
1595
ar5416GetRegChainOffset(struct ath_hal *ah, int i)
1596
{
1597
int regChainOffset;
1598
1599
if (AR_SREV_5416_V20_OR_LATER(ah) &&
1600
(AH5416(ah)->ah_rx_chainmask == 0x5 ||
1601
AH5416(ah)->ah_tx_chainmask == 0x5) && (i != 0)) {
1602
/* Regs are swapped from chain 2 to 1 for 5416 2_0 with
1603
* only chains 0 and 2 populated
1604
*/
1605
regChainOffset = (i == 1) ? 0x2000 : 0x1000;
1606
} else {
1607
regChainOffset = i * 0x1000;
1608
}
1609
1610
return regChainOffset;
1611
}
1612
1613
/*
1614
* Read EEPROM header info and program the device for correct operation
1615
* given the channel value.
1616
*/
1617
HAL_BOOL
1618
ar5416SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
1619
{
1620
const HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
1621
const struct ar5416eeprom *eep = &ee->ee_base;
1622
const MODAL_EEP_HEADER *pModal;
1623
int i, regChainOffset;
1624
uint8_t txRxAttenLocal; /* workaround for eeprom versions <= 14.2 */
1625
1626
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
1627
pModal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)];
1628
1629
/* NB: workaround for eeprom versions <= 14.2 */
1630
txRxAttenLocal = IEEE80211_IS_CHAN_2GHZ(chan) ? 23 : 44;
1631
1632
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
1633
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
1634
if (AR_SREV_MERLIN(ah)) {
1635
if (i >= 2) break;
1636
}
1637
regChainOffset = ar5416GetRegChainOffset(ah, i);
1638
1639
OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset, pModal->antCtrlChain[i]);
1640
1641
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4 + regChainOffset,
1642
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4 + regChainOffset) &
1643
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF | AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
1644
SM(pModal->iqCalICh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
1645
SM(pModal->iqCalQCh[i], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
1646
1647
/*
1648
* Large signal upgrade,
1649
* If 14.3 or later EEPROM, use
1650
* txRxAttenLocal = pModal->txRxAttenCh[i]
1651
* else txRxAttenLocal is fixed value above.
1652
*/
1653
1654
if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah))
1655
ar5416SetDefGainValues(ah, pModal, eep, txRxAttenLocal, regChainOffset, i);
1656
}
1657
1658
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1659
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1660
OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_OB, pModal->ob);
1661
OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH0, AR_AN_RF2G1_CH0_DB, pModal->db);
1662
OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_OB, pModal->ob_ch1);
1663
OS_A_REG_RMW_FIELD(ah, AR_AN_RF2G1_CH1, AR_AN_RF2G1_CH1_DB, pModal->db_ch1);
1664
} else {
1665
OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_OB5, pModal->ob);
1666
OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH0, AR_AN_RF5G1_CH0_DB5, pModal->db);
1667
OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_OB5, pModal->ob_ch1);
1668
OS_A_REG_RMW_FIELD(ah, AR_AN_RF5G1_CH1, AR_AN_RF5G1_CH1_DB5, pModal->db_ch1);
1669
}
1670
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
1671
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP2, AR_AN_TOP2_LOCALBIAS,
1672
!!(pModal->flagBits & AR5416_EEP_FLAG_LOCALBIAS));
1673
OS_A_REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
1674
!!(pModal->flagBits & AR5416_EEP_FLAG_FORCEXPAON));
1675
}
1676
1677
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
1678
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
1679
1680
if (! AR_SREV_MERLIN_10_OR_LATER(ah))
1681
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_PGA, pModal->pgaDesiredSize);
1682
1683
OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
1684
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
1685
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
1686
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
1687
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1688
1689
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1690
pModal->txEndToRxOn);
1691
1692
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
1693
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1694
pModal->thresh62);
1695
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1696
pModal->thresh62);
1697
} else {
1698
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
1699
pModal->thresh62);
1700
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA, AR_PHY_EXT_CCA_THRESH62,
1701
pModal->thresh62);
1702
}
1703
1704
/* Minor Version Specific application */
1705
if (IS_EEP_MINOR_V2(ah)) {
1706
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
1707
pModal->txFrameToDataStart);
1708
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
1709
pModal->txFrameToPaOn);
1710
}
1711
1712
if (IS_EEP_MINOR_V3(ah) && IEEE80211_IS_CHAN_HT40(chan))
1713
/* Overwrite switch settling with HT40 value */
1714
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1715
pModal->swSettleHt40);
1716
1717
if (AR_SREV_MERLIN_20_OR_LATER(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_19)
1718
OS_REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL, AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK, pModal->miscBits);
1719
1720
if (AR_SREV_MERLIN_20(ah) && EEP_MINOR(ah) >= AR5416_EEP_MINOR_VER_20) {
1721
if (IEEE80211_IS_CHAN_2GHZ(chan))
1722
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1723
eep->baseEepHeader.dacLpMode);
1724
else if (eep->baseEepHeader.dacHiPwrMode_5G)
1725
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
1726
else
1727
OS_A_REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
1728
eep->baseEepHeader.dacLpMode);
1729
1730
OS_DELAY(100);
1731
1732
OS_REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
1733
pModal->miscBits >> 2);
1734
OS_REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9, AR_PHY_TX_DESIRED_SCALE_CCK,
1735
eep->baseEepHeader.desiredScaleCCK);
1736
}
1737
1738
return (AH_TRUE);
1739
}
1740
1741
/*
1742
* Helper functions common for AP/CB/XB
1743
*/
1744
1745
/*
1746
* Set the target power array "ratesArray" from the
1747
* given set of target powers.
1748
*
1749
* This is used by the various chipset/EEPROM TX power
1750
* setup routines.
1751
*/
1752
void
1753
ar5416SetRatesArrayFromTargetPower(struct ath_hal *ah,
1754
const struct ieee80211_channel *chan,
1755
int16_t *ratesArray,
1756
const CAL_TARGET_POWER_LEG *targetPowerCck,
1757
const CAL_TARGET_POWER_LEG *targetPowerCckExt,
1758
const CAL_TARGET_POWER_LEG *targetPowerOfdm,
1759
const CAL_TARGET_POWER_LEG *targetPowerOfdmExt,
1760
const CAL_TARGET_POWER_HT *targetPowerHt20,
1761
const CAL_TARGET_POWER_HT *targetPowerHt40)
1762
{
1763
#define N(a) (sizeof(a)/sizeof(a[0]))
1764
int i;
1765
1766
/* Blank the rates array, to be consistent */
1767
for (i = 0; i < Ar5416RateSize; i++)
1768
ratesArray[i] = 0;
1769
1770
/* Set rates Array from collected data */
1771
ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1772
ratesArray[rate18mb] = ratesArray[rate24mb] =
1773
targetPowerOfdm->tPow2x[0];
1774
ratesArray[rate36mb] = targetPowerOfdm->tPow2x[1];
1775
ratesArray[rate48mb] = targetPowerOfdm->tPow2x[2];
1776
ratesArray[rate54mb] = targetPowerOfdm->tPow2x[3];
1777
ratesArray[rateXr] = targetPowerOfdm->tPow2x[0];
1778
1779
for (i = 0; i < N(targetPowerHt20->tPow2x); i++) {
1780
ratesArray[rateHt20_0 + i] = targetPowerHt20->tPow2x[i];
1781
}
1782
1783
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1784
ratesArray[rate1l] = targetPowerCck->tPow2x[0];
1785
ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck->tPow2x[1];
1786
ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck->tPow2x[2];
1787
ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck->tPow2x[3];
1788
}
1789
if (IEEE80211_IS_CHAN_HT40(chan)) {
1790
for (i = 0; i < N(targetPowerHt40->tPow2x); i++) {
1791
ratesArray[rateHt40_0 + i] = targetPowerHt40->tPow2x[i];
1792
}
1793
ratesArray[rateDupOfdm] = targetPowerHt40->tPow2x[0];
1794
ratesArray[rateDupCck] = targetPowerHt40->tPow2x[0];
1795
ratesArray[rateExtOfdm] = targetPowerOfdmExt->tPow2x[0];
1796
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1797
ratesArray[rateExtCck] = targetPowerCckExt->tPow2x[0];
1798
}
1799
}
1800
#undef N
1801
}
1802
1803
/*
1804
* ar5416SetPowerPerRateTable
1805
*
1806
* Sets the transmit power in the baseband for the given
1807
* operating channel and mode.
1808
*/
1809
static HAL_BOOL
1810
ar5416SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
1811
const struct ieee80211_channel *chan,
1812
int16_t *ratesArray, uint16_t cfgCtl,
1813
uint16_t AntennaReduction,
1814
uint16_t twiceMaxRegulatoryPower,
1815
uint16_t powerLimit)
1816
{
1817
#define N(a) (sizeof(a)/sizeof(a[0]))
1818
/* Local defines to distinguish between extension and control CTL's */
1819
#define EXT_ADDITIVE (0x8000)
1820
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
1821
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
1822
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
1823
1824
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1825
int i;
1826
int16_t twiceLargestAntenna;
1827
CAL_CTL_DATA *rep;
1828
CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
1829
CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
1830
CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
1831
int16_t scaledPower, minCtlPower;
1832
1833
#define SUB_NUM_CTL_MODES_AT_5G_40 2 /* excluding HT40, EXT-OFDM */
1834
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
1835
static const uint16_t ctlModesFor11a[] = {
1836
CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1837
};
1838
static const uint16_t ctlModesFor11g[] = {
1839
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1840
};
1841
const uint16_t *pCtlMode;
1842
uint16_t numCtlModes, ctlMode, freq;
1843
CHAN_CENTERS centers;
1844
1845
ar5416GetChannelCenters(ah, chan, &centers);
1846
1847
/* Compute TxPower reduction due to Antenna Gain */
1848
1849
twiceLargestAntenna = AH_MAX(AH_MAX(
1850
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1851
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]),
1852
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1853
#if 0
1854
/* Turn it back on if we need to calculate per chain antenna gain reduction */
1855
/* Use only if the expected gain > 6dbi */
1856
/* Chain 0 is always used */
1857
twiceLargestAntenna = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[0];
1858
1859
/* Look at antenna gains of Chains 1 and 2 if the TX mask is set */
1860
if (ahp->ah_tx_chainmask & 0x2)
1861
twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1862
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1863
1864
if (ahp->ah_tx_chainmask & 0x4)
1865
twiceLargestAntenna = AH_MAX(twiceLargestAntenna,
1866
pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1867
#endif
1868
twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
1869
1870
/* XXX setup for 5212 use (really used?) */
1871
ath_hal_eepromSet(ah,
1872
IEEE80211_IS_CHAN_2GHZ(chan) ? AR_EEP_ANTGAINMAX_2 : AR_EEP_ANTGAINMAX_5,
1873
twiceLargestAntenna);
1874
1875
/*
1876
* scaledPower is the minimum of the user input power level and
1877
* the regulatory allowed power level
1878
*/
1879
scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
1880
1881
/* Reduce scaled Power by number of chains active to get to per chain tx power level */
1882
/* TODO: better value than these? */
1883
switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
1884
case 1:
1885
break;
1886
case 2:
1887
scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor2Chain;
1888
break;
1889
case 3:
1890
scaledPower -= pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pwrDecreaseFor3Chain;
1891
break;
1892
default:
1893
return AH_FALSE; /* Unsupported number of chains */
1894
}
1895
1896
scaledPower = AH_MAX(0, scaledPower);
1897
1898
/* Get target powers from EEPROM - our baseline for TX Power */
1899
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
1900
/* Setup for CTL modes */
1901
numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
1902
pCtlMode = ctlModesFor11g;
1903
1904
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
1905
AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
1906
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
1907
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1908
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
1909
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1910
1911
if (IEEE80211_IS_CHAN_HT40(chan)) {
1912
numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
1913
1914
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
1915
AR5416_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1916
/* Get target powers for extension channels */
1917
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
1918
AR5416_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
1919
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
1920
AR5416_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1921
}
1922
} else {
1923
/* Setup for CTL modes */
1924
numCtlModes = N(ctlModesFor11a) - SUB_NUM_CTL_MODES_AT_5G_40; /* CTL_11A, CTL_5GHT20 */
1925
pCtlMode = ctlModesFor11a;
1926
1927
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
1928
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
1929
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT20,
1930
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
1931
1932
if (IEEE80211_IS_CHAN_HT40(chan)) {
1933
numCtlModes = N(ctlModesFor11a); /* All 5G CTL's */
1934
1935
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower5GHT40,
1936
AR5416_NUM_5G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
1937
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower5G,
1938
AR5416_NUM_5G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
1939
}
1940
}
1941
1942
/*
1943
* For MIMO, need to apply regulatory caps individually across dynamically
1944
* running modes: CCK, OFDM, HT20, HT40
1945
*
1946
* The outer loop walks through each possible applicable runtime mode.
1947
* The inner loop walks through each ctlIndex entry in EEPROM.
1948
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
1949
*
1950
*/
1951
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1952
HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1953
(pCtlMode[ctlMode] == CTL_2GHT40);
1954
if (isHt40CtlMode) {
1955
freq = centers.ctl_center;
1956
} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
1957
freq = centers.ext_center;
1958
} else {
1959
freq = centers.ctl_center;
1960
}
1961
1962
/* walk through each CTL index stored in EEPROM */
1963
for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1964
uint16_t twiceMinEdgePower;
1965
1966
/* compare test group from regulatory channel list with test mode from pCtlMode list */
1967
if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
1968
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1969
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1970
rep = &(pEepData->ctlData[i]);
1971
twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
1972
rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
1973
IEEE80211_IS_CHAN_2GHZ(chan));
1974
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1975
/* Find the minimum of all CTL edge powers that apply to this channel */
1976
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
1977
} else {
1978
/* specific */
1979
twiceMaxEdgePower = twiceMinEdgePower;
1980
break;
1981
}
1982
}
1983
}
1984
minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
1985
/* Apply ctl mode to correct target power set */
1986
switch(pCtlMode[ctlMode]) {
1987
case CTL_11B:
1988
for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
1989
targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
1990
}
1991
break;
1992
case CTL_11A:
1993
case CTL_11G:
1994
for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
1995
targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
1996
}
1997
break;
1998
case CTL_5GHT20:
1999
case CTL_2GHT20:
2000
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
2001
targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
2002
}
2003
break;
2004
case CTL_11B_EXT:
2005
targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
2006
break;
2007
case CTL_11A_EXT:
2008
case CTL_11G_EXT:
2009
targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
2010
break;
2011
case CTL_5GHT40:
2012
case CTL_2GHT40:
2013
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
2014
targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
2015
}
2016
break;
2017
default:
2018
return AH_FALSE;
2019
break;
2020
}
2021
} /* end ctl mode checking */
2022
2023
/* Set rates Array from collected data */
2024
ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
2025
&targetPowerCck,
2026
&targetPowerCckExt,
2027
&targetPowerOfdm,
2028
&targetPowerOfdmExt,
2029
&targetPowerHt20,
2030
&targetPowerHt40);
2031
return AH_TRUE;
2032
#undef EXT_ADDITIVE
2033
#undef CTL_11A_EXT
2034
#undef CTL_11G_EXT
2035
#undef CTL_11B_EXT
2036
#undef SUB_NUM_CTL_MODES_AT_5G_40
2037
#undef SUB_NUM_CTL_MODES_AT_2G_40
2038
#undef N
2039
}
2040
2041
/**************************************************************************
2042
* fbin2freq
2043
*
2044
* Get channel value from binary representation held in eeprom
2045
* RETURNS: the frequency in MHz
2046
*/
2047
static uint16_t
2048
fbin2freq(uint8_t fbin, HAL_BOOL is2GHz)
2049
{
2050
/*
2051
* Reserved value 0xFF provides an empty definition both as
2052
* an fbin and as a frequency - do not convert
2053
*/
2054
if (fbin == AR5416_BCHAN_UNUSED) {
2055
return fbin;
2056
}
2057
2058
return (uint16_t)((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
2059
}
2060
2061
/*
2062
* ar5416GetMaxEdgePower
2063
*
2064
* Find the maximum conformance test limit for the given channel and CTL info
2065
*/
2066
uint16_t
2067
ar5416GetMaxEdgePower(uint16_t freq, CAL_CTL_EDGES *pRdEdgesPower, HAL_BOOL is2GHz)
2068
{
2069
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
2070
int i;
2071
2072
/* Get the edge power */
2073
for (i = 0; (i < AR5416_NUM_BAND_EDGES) && (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED) ; i++) {
2074
/*
2075
* If there's an exact channel match or an inband flag set
2076
* on the lower channel use the given rdEdgePower
2077
*/
2078
if (freq == fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
2079
twiceMaxEdgePower = MS(pRdEdgesPower[i].tPowerFlag, CAL_CTL_EDGES_POWER);
2080
break;
2081
} else if ((i > 0) && (freq < fbin2freq(pRdEdgesPower[i].bChannel, is2GHz))) {
2082
if (fbin2freq(pRdEdgesPower[i - 1].bChannel, is2GHz) < freq && (pRdEdgesPower[i - 1].tPowerFlag & CAL_CTL_EDGES_FLAG) != 0) {
2083
twiceMaxEdgePower = MS(pRdEdgesPower[i - 1].tPowerFlag, CAL_CTL_EDGES_POWER);
2084
}
2085
/* Leave loop - no more affecting edges possible in this monotonic increasing list */
2086
break;
2087
}
2088
}
2089
HALASSERT(twiceMaxEdgePower > 0);
2090
return twiceMaxEdgePower;
2091
}
2092
2093
/**************************************************************
2094
* ar5416GetTargetPowers
2095
*
2096
* Return the rates of target power for the given target power table
2097
* channel, and number of channels
2098
*/
2099
void
2100
ar5416GetTargetPowers(struct ath_hal *ah, const struct ieee80211_channel *chan,
2101
CAL_TARGET_POWER_HT *powInfo, uint16_t numChannels,
2102
CAL_TARGET_POWER_HT *pNewPower, uint16_t numRates,
2103
HAL_BOOL isHt40Target)
2104
{
2105
uint16_t clo, chi;
2106
int i;
2107
int matchIndex = -1, lowIndex = -1;
2108
uint16_t freq;
2109
CHAN_CENTERS centers;
2110
2111
ar5416GetChannelCenters(ah, chan, &centers);
2112
freq = isHt40Target ? centers.synth_center : centers.ctl_center;
2113
2114
/* Copy the target powers into the temp channel list */
2115
if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2116
matchIndex = 0;
2117
} else {
2118
for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2119
if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2120
matchIndex = i;
2121
break;
2122
} else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2123
(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2124
{
2125
lowIndex = i - 1;
2126
break;
2127
}
2128
}
2129
if ((matchIndex == -1) && (lowIndex == -1)) {
2130
HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2131
matchIndex = i - 1;
2132
}
2133
}
2134
2135
if (matchIndex != -1) {
2136
OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2137
} else {
2138
HALASSERT(lowIndex != -1);
2139
/*
2140
* Get the lower and upper channels, target powers,
2141
* and interpolate between them.
2142
*/
2143
clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2144
chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2145
2146
for (i = 0; i < numRates; i++) {
2147
pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2148
powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2149
}
2150
}
2151
}
2152
/**************************************************************
2153
* ar5416GetTargetPowersLeg
2154
*
2155
* Return the four rates of target power for the given target power table
2156
* channel, and number of channels
2157
*/
2158
void
2159
ar5416GetTargetPowersLeg(struct ath_hal *ah,
2160
const struct ieee80211_channel *chan,
2161
CAL_TARGET_POWER_LEG *powInfo, uint16_t numChannels,
2162
CAL_TARGET_POWER_LEG *pNewPower, uint16_t numRates,
2163
HAL_BOOL isExtTarget)
2164
{
2165
uint16_t clo, chi;
2166
int i;
2167
int matchIndex = -1, lowIndex = -1;
2168
uint16_t freq;
2169
CHAN_CENTERS centers;
2170
2171
ar5416GetChannelCenters(ah, chan, &centers);
2172
freq = (isExtTarget) ? centers.ext_center :centers.ctl_center;
2173
2174
/* Copy the target powers into the temp channel list */
2175
if (freq <= fbin2freq(powInfo[0].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2176
matchIndex = 0;
2177
} else {
2178
for (i = 0; (i < numChannels) && (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
2179
if (freq == fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) {
2180
matchIndex = i;
2181
break;
2182
} else if ((freq < fbin2freq(powInfo[i].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))) &&
2183
(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan))))
2184
{
2185
lowIndex = i - 1;
2186
break;
2187
}
2188
}
2189
if ((matchIndex == -1) && (lowIndex == -1)) {
2190
HALASSERT(freq > fbin2freq(powInfo[i - 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan)));
2191
matchIndex = i - 1;
2192
}
2193
}
2194
2195
if (matchIndex != -1) {
2196
OS_MEMCPY(pNewPower, &powInfo[matchIndex], sizeof(*pNewPower));
2197
} else {
2198
HALASSERT(lowIndex != -1);
2199
/*
2200
* Get the lower and upper channels, target powers,
2201
* and interpolate between them.
2202
*/
2203
clo = fbin2freq(powInfo[lowIndex].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2204
chi = fbin2freq(powInfo[lowIndex + 1].bChannel, IEEE80211_IS_CHAN_2GHZ(chan));
2205
2206
for (i = 0; i < numRates; i++) {
2207
pNewPower->tPow2x[i] = (uint8_t)ath_ee_interpolate(freq, clo, chi,
2208
powInfo[lowIndex].tPow2x[i], powInfo[lowIndex + 1].tPow2x[i]);
2209
}
2210
}
2211
}
2212
2213
/*
2214
* Set the gain boundaries for the given radio chain.
2215
*
2216
* The gain boundaries tell the hardware at what point in the
2217
* PDADC array to "switch over" from one PD gain setting
2218
* to another. There's also a gain overlap between two
2219
* PDADC array gain curves where there's valid PD values
2220
* for 2 gain settings.
2221
*
2222
* The hardware uses the gain overlap and gain boundaries
2223
* to determine which gain curve to use for the given
2224
* target TX power.
2225
*/
2226
void
2227
ar5416SetGainBoundariesClosedLoop(struct ath_hal *ah, int i,
2228
uint16_t pdGainOverlap_t2, uint16_t gainBoundaries[])
2229
{
2230
int regChainOffset;
2231
2232
regChainOffset = ar5416GetRegChainOffset(ah, i);
2233
2234
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: chain %d: gainOverlap_t2: %d,"
2235
" gainBoundaries: %d, %d, %d, %d\n", __func__, i, pdGainOverlap_t2,
2236
gainBoundaries[0], gainBoundaries[1], gainBoundaries[2],
2237
gainBoundaries[3]);
2238
OS_REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
2239
SM(pdGainOverlap_t2, AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
2240
SM(gainBoundaries[0], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1) |
2241
SM(gainBoundaries[1], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2) |
2242
SM(gainBoundaries[2], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3) |
2243
SM(gainBoundaries[3], AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
2244
}
2245
2246
/*
2247
* Get the gain values and the number of gain levels given
2248
* in xpdMask.
2249
*
2250
* The EEPROM xpdMask determines which power detector gain
2251
* levels were used during calibration. Each of these mask
2252
* bits maps to a fixed gain level in hardware.
2253
*/
2254
uint16_t
2255
ar5416GetXpdGainValues(struct ath_hal *ah, uint16_t xpdMask,
2256
uint16_t xpdGainValues[])
2257
{
2258
int i;
2259
uint16_t numXpdGain = 0;
2260
2261
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
2262
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
2263
if (numXpdGain >= AR5416_NUM_PD_GAINS) {
2264
HALASSERT(0);
2265
break;
2266
}
2267
xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
2268
numXpdGain++;
2269
}
2270
}
2271
return numXpdGain;
2272
}
2273
2274
/*
2275
* Write the detector gain and biases.
2276
*
2277
* There are four power detector gain levels. The xpdMask in the EEPROM
2278
* determines which power detector gain levels have TX power calibration
2279
* data associated with them. This function writes the number of
2280
* PD gain levels and their values into the hardware.
2281
*
2282
* This is valid for all TX chains - the calibration data itself however
2283
* will likely differ per-chain.
2284
*/
2285
void
2286
ar5416WriteDetectorGainBiases(struct ath_hal *ah, uint16_t numXpdGain,
2287
uint16_t xpdGainValues[])
2288
{
2289
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: numXpdGain: %d,"
2290
" xpdGainValues: %d, %d, %d\n", __func__, numXpdGain,
2291
xpdGainValues[0], xpdGainValues[1], xpdGainValues[2]);
2292
2293
OS_REG_WRITE(ah, AR_PHY_TPCRG1, (OS_REG_READ(ah, AR_PHY_TPCRG1) &
2294
~(AR_PHY_TPCRG1_NUM_PD_GAIN | AR_PHY_TPCRG1_PD_GAIN_1 |
2295
AR_PHY_TPCRG1_PD_GAIN_2 | AR_PHY_TPCRG1_PD_GAIN_3)) |
2296
SM(numXpdGain - 1, AR_PHY_TPCRG1_NUM_PD_GAIN) |
2297
SM(xpdGainValues[0], AR_PHY_TPCRG1_PD_GAIN_1 ) |
2298
SM(xpdGainValues[1], AR_PHY_TPCRG1_PD_GAIN_2) |
2299
SM(xpdGainValues[2], AR_PHY_TPCRG1_PD_GAIN_3));
2300
}
2301
2302
/*
2303
* Write the PDADC array to the given radio chain i.
2304
*
2305
* The 32 PDADC registers are written without any care about
2306
* their contents - so if various chips treat values as "special",
2307
* this routine will not care.
2308
*/
2309
void
2310
ar5416WritePdadcValues(struct ath_hal *ah, int i, uint8_t pdadcValues[])
2311
{
2312
int regOffset, regChainOffset;
2313
int j;
2314
int reg32;
2315
2316
regChainOffset = ar5416GetRegChainOffset(ah, i);
2317
regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
2318
2319
for (j = 0; j < 32; j++) {
2320
reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0) |
2321
((pdadcValues[4*j + 1] & 0xFF) << 8) |
2322
((pdadcValues[4*j + 2] & 0xFF) << 16) |
2323
((pdadcValues[4*j + 3] & 0xFF) << 24) ;
2324
OS_REG_WRITE(ah, regOffset, reg32);
2325
HALDEBUG(ah, HAL_DEBUG_EEPROM, "PDADC: Chain %d |"
2326
" PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d"
2327
" Value %3d | PDADC %3d Value %3d |\n",
2328
i,
2329
4*j, pdadcValues[4*j],
2330
4*j+1, pdadcValues[4*j + 1],
2331
4*j+2, pdadcValues[4*j + 2],
2332
4*j+3, pdadcValues[4*j + 3]);
2333
regOffset += 4;
2334
}
2335
}
2336
2337
/**************************************************************
2338
* ar5416SetPowerCalTable
2339
*
2340
* Pull the PDADC piers from cal data and interpolate them across the given
2341
* points as well as from the nearest pier(s) to get a power detector
2342
* linear voltage to power level table.
2343
*/
2344
HAL_BOOL
2345
ar5416SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom *pEepData,
2346
const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
2347
{
2348
CAL_DATA_PER_FREQ *pRawDataset;
2349
uint8_t *pCalBChans = AH_NULL;
2350
uint16_t pdGainOverlap_t2;
2351
static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
2352
uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
2353
uint16_t numPiers, i;
2354
int16_t tMinCalPower;
2355
uint16_t numXpdGain, xpdMask;
2356
uint16_t xpdGainValues[AR5416_NUM_PD_GAINS];
2357
uint32_t regChainOffset;
2358
2359
OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
2360
2361
xpdMask = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].xpdGain;
2362
2363
if (IS_EEP_MINOR_V2(ah)) {
2364
pdGainOverlap_t2 = pEepData->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)].pdGainOverlap;
2365
} else {
2366
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
2367
}
2368
2369
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2370
pCalBChans = pEepData->calFreqPier2G;
2371
numPiers = AR5416_NUM_2G_CAL_PIERS;
2372
} else {
2373
pCalBChans = pEepData->calFreqPier5G;
2374
numPiers = AR5416_NUM_5G_CAL_PIERS;
2375
}
2376
2377
/* Calculate the value of xpdgains from the xpdGain Mask */
2378
numXpdGain = ar5416GetXpdGainValues(ah, xpdMask, xpdGainValues);
2379
2380
/* Write the detector gain biases and their number */
2381
ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
2382
2383
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
2384
regChainOffset = ar5416GetRegChainOffset(ah, i);
2385
2386
if (pEepData->baseEepHeader.txMask & (1 << i)) {
2387
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2388
pRawDataset = pEepData->calPierData2G[i];
2389
} else {
2390
pRawDataset = pEepData->calPierData5G[i];
2391
}
2392
2393
/* Fetch the gain boundaries and the PDADC values */
2394
ar5416GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
2395
pCalBChans, numPiers,
2396
pdGainOverlap_t2,
2397
&tMinCalPower, gainBoundaries,
2398
pdadcValues, numXpdGain);
2399
2400
if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
2401
ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2,
2402
gainBoundaries);
2403
}
2404
2405
/* Write the power values into the baseband power table */
2406
ar5416WritePdadcValues(ah, i, pdadcValues);
2407
}
2408
}
2409
*pTxPowerIndexOffset = 0;
2410
2411
return AH_TRUE;
2412
}
2413
2414
/**************************************************************
2415
* ar5416GetGainBoundariesAndPdadcs
2416
*
2417
* Uses the data points read from EEPROM to reconstruct the pdadc power table
2418
* Called by ar5416SetPowerCalTable only.
2419
*/
2420
void
2421
ar5416GetGainBoundariesAndPdadcs(struct ath_hal *ah,
2422
const struct ieee80211_channel *chan,
2423
CAL_DATA_PER_FREQ *pRawDataSet,
2424
uint8_t * bChans, uint16_t availPiers,
2425
uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
2426
uint8_t * pPDADCValues, uint16_t numXpdGains)
2427
{
2428
2429
int i, j, k;
2430
int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
2431
uint16_t idxL, idxR, numPiers; /* Pier indexes */
2432
2433
/* filled out Vpd table for all pdGains (chanL) */
2434
static uint8_t vpdTableL[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2435
2436
/* filled out Vpd table for all pdGains (chanR) */
2437
static uint8_t vpdTableR[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2438
2439
/* filled out Vpd table for all pdGains (interpolated) */
2440
static uint8_t vpdTableI[AR5416_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
2441
2442
uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
2443
uint8_t minPwrT4[AR5416_NUM_PD_GAINS];
2444
uint8_t maxPwrT4[AR5416_NUM_PD_GAINS];
2445
int16_t vpdStep;
2446
int16_t tmpVal;
2447
uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
2448
HAL_BOOL match;
2449
int16_t minDelta = 0;
2450
CHAN_CENTERS centers;
2451
2452
ar5416GetChannelCenters(ah, chan, &centers);
2453
2454
/* Trim numPiers for the number of populated channel Piers */
2455
for (numPiers = 0; numPiers < availPiers; numPiers++) {
2456
if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
2457
break;
2458
}
2459
}
2460
2461
/* Find pier indexes around the current channel */
2462
match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
2463
IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
2464
2465
if (match) {
2466
/* Directly fill both vpd tables from the matching index */
2467
for (i = 0; i < numXpdGains; i++) {
2468
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
2469
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
2470
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pRawDataSet[idxL].pwrPdg[i],
2471
pRawDataSet[idxL].vpdPdg[i], AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
2472
}
2473
} else {
2474
for (i = 0; i < numXpdGains; i++) {
2475
pVpdL = pRawDataSet[idxL].vpdPdg[i];
2476
pPwrL = pRawDataSet[idxL].pwrPdg[i];
2477
pVpdR = pRawDataSet[idxR].vpdPdg[i];
2478
pPwrR = pRawDataSet[idxR].pwrPdg[i];
2479
2480
/* Start Vpd interpolation from the max of the minimum powers */
2481
minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
2482
2483
/* End Vpd interpolation from the min of the max powers */
2484
maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
2485
HALASSERT(maxPwrT4[i] > minPwrT4[i]);
2486
2487
/* Fill pier Vpds */
2488
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL, AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
2489
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR, AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
2490
2491
/* Interpolate the final vpd */
2492
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
2493
vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
2494
IEEE80211_IS_CHAN_2GHZ(chan)),
2495
bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
2496
}
2497
}
2498
}
2499
*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
2500
2501
k = 0; /* index for the final table */
2502
for (i = 0; i < numXpdGains; i++) {
2503
if (i == (numXpdGains - 1)) {
2504
pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
2505
} else {
2506
pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
2507
}
2508
2509
pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
2510
2511
/* NB: only applies to owl 1.0 */
2512
if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
2513
/*
2514
* fix the gain delta, but get a delta that can be applied to min to
2515
* keep the upper power values accurate, don't think max needs to
2516
* be adjusted because should not be at that area of the table?
2517
*/
2518
minDelta = pPdGainBoundaries[0] - 23;
2519
pPdGainBoundaries[0] = 23;
2520
}
2521
else {
2522
minDelta = 0;
2523
}
2524
2525
/* Find starting index for this pdGain */
2526
if (i == 0) {
2527
if (AR_SREV_MERLIN_10_OR_LATER(ah))
2528
ss = (int16_t)(0 - (minPwrT4[i] / 2));
2529
else
2530
ss = 0; /* for the first pdGain, start from index 0 */
2531
} else {
2532
/* need overlap entries extrapolated below. */
2533
ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
2534
}
2535
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
2536
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2537
/*
2538
*-ve ss indicates need to extrapolate data below for this pdGain
2539
*/
2540
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2541
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
2542
pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
2543
ss++;
2544
}
2545
2546
sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
2547
tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
2548
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
2549
2550
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2551
pPDADCValues[k++] = vpdTableI[i][ss++];
2552
}
2553
2554
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
2555
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
2556
/*
2557
* for last gain, pdGainBoundary == Pmax_t2, so will
2558
* have to extrapolate
2559
*/
2560
if (tgtIndex >= maxIndex) { /* need to extrapolate above */
2561
while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
2562
tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
2563
(ss - maxIndex +1) * vpdStep));
2564
pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
2565
ss++;
2566
}
2567
} /* extrapolated above */
2568
} /* for all pdGainUsed */
2569
2570
/* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
2571
while (i < AR5416_PD_GAINS_IN_MASK) {
2572
pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
2573
i++;
2574
}
2575
2576
while (k < AR5416_NUM_PDADC_VALUES) {
2577
pPDADCValues[k] = pPDADCValues[k-1];
2578
k++;
2579
}
2580
return;
2581
}
2582
2583
/*
2584
* The linux ath9k driver and (from what I've been told) the reference
2585
* Atheros driver enables the 11n PHY by default whether or not it's
2586
* configured.
2587
*/
2588
static void
2589
ar5416Set11nRegs(struct ath_hal *ah, const struct ieee80211_channel *chan)
2590
{
2591
uint32_t phymode;
2592
uint32_t enableDacFifo = 0;
2593
HAL_HT_MACMODE macmode; /* MAC - 20/40 mode */
2594
2595
if (AR_SREV_KITE_10_OR_LATER(ah))
2596
enableDacFifo = (OS_REG_READ(ah, AR_PHY_TURBO) & AR_PHY_FC_ENABLE_DAC_FIFO);
2597
2598
/* Enable 11n HT, 20 MHz */
2599
phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
2600
| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
2601
2602
/* Configure baseband for dynamic 20/40 operation */
2603
if (IEEE80211_IS_CHAN_HT40(chan)) {
2604
phymode |= AR_PHY_FC_DYN2040_EN;
2605
2606
/* Configure control (primary) channel at +-10MHz */
2607
if (IEEE80211_IS_CHAN_HT40U(chan))
2608
phymode |= AR_PHY_FC_DYN2040_PRI_CH;
2609
#if 0
2610
/* Configure 20/25 spacing */
2611
if (ht->ht_extprotspacing == HAL_HT_EXTPROTSPACING_25)
2612
phymode |= AR_PHY_FC_DYN2040_EXT_CH;
2613
#endif
2614
macmode = HAL_HT_MACMODE_2040;
2615
} else
2616
macmode = HAL_HT_MACMODE_20;
2617
OS_REG_WRITE(ah, AR_PHY_TURBO, phymode);
2618
2619
/* Configure MAC for 20/40 operation */
2620
ar5416Set11nMac2040(ah, macmode);
2621
2622
/* global transmit timeout (25 TUs default)*/
2623
/* XXX - put this elsewhere??? */
2624
OS_REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S) ;
2625
2626
/* carrier sense timeout */
2627
OS_REG_SET_BIT(ah, AR_GTTM, AR_GTTM_CST_USEC);
2628
OS_REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
2629
}
2630
2631
void
2632
ar5416GetChannelCenters(struct ath_hal *ah,
2633
const struct ieee80211_channel *chan, CHAN_CENTERS *centers)
2634
{
2635
uint16_t freq = ath_hal_gethwchannel(ah, chan);
2636
2637
centers->ctl_center = freq;
2638
centers->synth_center = freq;
2639
/*
2640
* In 20/40 phy mode, the center frequency is
2641
* "between" the control and extension channels.
2642
*/
2643
if (IEEE80211_IS_CHAN_HT40U(chan)) {
2644
centers->synth_center += HT40_CHANNEL_CENTER_SHIFT;
2645
centers->ext_center =
2646
centers->synth_center + HT40_CHANNEL_CENTER_SHIFT;
2647
} else if (IEEE80211_IS_CHAN_HT40D(chan)) {
2648
centers->synth_center -= HT40_CHANNEL_CENTER_SHIFT;
2649
centers->ext_center =
2650
centers->synth_center - HT40_CHANNEL_CENTER_SHIFT;
2651
} else {
2652
centers->ext_center = freq;
2653
}
2654
}
2655
2656
/*
2657
* Override the INI vals being programmed.
2658
*/
2659
static void
2660
ar5416OverrideIni(struct ath_hal *ah, const struct ieee80211_channel *chan)
2661
{
2662
uint32_t val;
2663
2664
/*
2665
* Set the RX_ABORT and RX_DIS and clear if off only after
2666
* RXE is set for MAC. This prevents frames with corrupted
2667
* descriptor status.
2668
*/
2669
OS_REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
2670
2671
if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
2672
val = OS_REG_READ(ah, AR_PCU_MISC_MODE2);
2673
val &= (~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE);
2674
if (!AR_SREV_9271(ah))
2675
val &= ~AR_PCU_MISC_MODE2_HWWAR1;
2676
2677
if (AR_SREV_KIWI_10_OR_LATER(ah))
2678
val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
2679
2680
OS_REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
2681
}
2682
2683
/*
2684
* Disable RIFS search on some chips to avoid baseband
2685
* hang issues.
2686
*/
2687
if (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah))
2688
(void) ar5416SetRifsDelay(ah, chan, AH_FALSE);
2689
2690
if (!AR_SREV_5416_V20_OR_LATER(ah) || AR_SREV_MERLIN(ah))
2691
return;
2692
2693
/*
2694
* Disable BB clock gating
2695
* Necessary to avoid issues on AR5416 2.0
2696
*/
2697
OS_REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
2698
}
2699
2700
struct ini {
2701
uint32_t *data; /* NB: !const */
2702
int rows, cols;
2703
};
2704
2705
/*
2706
* Override XPA bias level based on operating frequency.
2707
* This is a v14 EEPROM specific thing for the AR9160.
2708
*/
2709
void
2710
ar5416EepromSetAddac(struct ath_hal *ah, const struct ieee80211_channel *chan)
2711
{
2712
#define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
2713
MODAL_EEP_HEADER *pModal;
2714
HAL_EEPROM_v14 *ee = AH_PRIVATE(ah)->ah_eeprom;
2715
struct ar5416eeprom *eep = &ee->ee_base;
2716
uint8_t biaslevel;
2717
2718
if (! AR_SREV_SOWL(ah))
2719
return;
2720
2721
if (EEP_MINOR(ah) < AR5416_EEP_MINOR_VER_7)
2722
return;
2723
2724
pModal = &(eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(chan)]);
2725
2726
if (pModal->xpaBiasLvl != 0xff)
2727
biaslevel = pModal->xpaBiasLvl;
2728
else {
2729
uint16_t resetFreqBin, freqBin, freqCount = 0;
2730
CHAN_CENTERS centers;
2731
2732
ar5416GetChannelCenters(ah, chan, &centers);
2733
2734
resetFreqBin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
2735
freqBin = XPA_LVL_FREQ(0) & 0xff;
2736
biaslevel = (uint8_t) (XPA_LVL_FREQ(0) >> 14);
2737
2738
freqCount++;
2739
2740
while (freqCount < 3) {
2741
if (XPA_LVL_FREQ(freqCount) == 0x0)
2742
break;
2743
2744
freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
2745
if (resetFreqBin >= freqBin)
2746
biaslevel = (uint8_t)(XPA_LVL_FREQ(freqCount) >> 14);
2747
else
2748
break;
2749
freqCount++;
2750
}
2751
}
2752
2753
HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: overriding XPA bias level = %d\n",
2754
__func__, biaslevel);
2755
2756
/*
2757
* This is a dirty workaround for the const initval data,
2758
* which will upset multiple AR9160's on the same board.
2759
*
2760
* The HAL should likely just have a private copy of the addac
2761
* data per instance.
2762
*/
2763
if (IEEE80211_IS_CHAN_2GHZ(chan))
2764
HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 7, 1) =
2765
(HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
2766
else
2767
HAL_INI_VAL((struct ini *) &AH5416(ah)->ah_ini_addac, 6, 1) =
2768
(HAL_INI_VAL(&AH5416(ah)->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
2769
#undef XPA_LVL_FREQ
2770
}
2771
2772
static void
2773
ar5416MarkPhyInactive(struct ath_hal *ah)
2774
{
2775
OS_REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2776
}
2777
2778
#define AR5416_IFS_SLOT_FULL_RATE_40 0x168 /* 9 us half, 40 MHz core clock (9*40) */
2779
#define AR5416_IFS_SLOT_HALF_RATE_40 0x104 /* 13 us half, 20 MHz core clock (13*20) */
2780
#define AR5416_IFS_SLOT_QUARTER_RATE_40 0xD2 /* 21 us quarter, 10 MHz core clock (21*10) */
2781
2782
#define AR5416_IFS_EIFS_FULL_RATE_40 0xE60 /* (74 + (2 * 9)) * 40MHz core clock */
2783
#define AR5416_IFS_EIFS_HALF_RATE_40 0xDAC /* (149 + (2 * 13)) * 20MHz core clock */
2784
#define AR5416_IFS_EIFS_QUARTER_RATE_40 0xD48 /* (298 + (2 * 21)) * 10MHz core clock */
2785
2786
#define AR5416_IFS_SLOT_FULL_RATE_44 0x18c /* 9 us half, 44 MHz core clock (9*44) */
2787
#define AR5416_IFS_SLOT_HALF_RATE_44 0x11e /* 13 us half, 22 MHz core clock (13*22) */
2788
#define AR5416_IFS_SLOT_QUARTER_RATE_44 0xe7 /* 21 us quarter, 11 MHz core clock (21*11) */
2789
2790
#define AR5416_IFS_EIFS_FULL_RATE_44 0xfd0 /* (74 + (2 * 9)) * 44MHz core clock */
2791
#define AR5416_IFS_EIFS_HALF_RATE_44 0xf0a /* (149 + (2 * 13)) * 22MHz core clock */
2792
#define AR5416_IFS_EIFS_QUARTER_RATE_44 0xe9c /* (298 + (2 * 21)) * 11MHz core clock */
2793
2794
#define AR5416_INIT_USEC_40 40
2795
#define AR5416_HALF_RATE_USEC_40 19 /* ((40 / 2) - 1 ) */
2796
#define AR5416_QUARTER_RATE_USEC_40 9 /* ((40 / 4) - 1 ) */
2797
2798
#define AR5416_INIT_USEC_44 44
2799
#define AR5416_HALF_RATE_USEC_44 21 /* ((44 / 2) - 1 ) */
2800
#define AR5416_QUARTER_RATE_USEC_44 10 /* ((44 / 4) - 1 ) */
2801
2802
/* XXX What should these be for 40/44MHz clocks (and half/quarter) ? */
2803
#define AR5416_RX_NON_FULL_RATE_LATENCY 63
2804
#define AR5416_TX_HALF_RATE_LATENCY 108
2805
#define AR5416_TX_QUARTER_RATE_LATENCY 216
2806
2807
/*
2808
* Adjust various register settings based on half/quarter rate clock setting.
2809
* This includes:
2810
*
2811
* + USEC, TX/RX latency,
2812
* + IFS params: slot, eifs, misc etc.
2813
*
2814
* TODO:
2815
*
2816
* + Verify which other registers need to be tweaked;
2817
* + Verify the behaviour of this for 5GHz fast and non-fast clock mode;
2818
* + This just plain won't work for long distance links - the coverage class
2819
* code isn't aware of the slot/ifs/ACK/RTS timeout values that need to
2820
* change;
2821
* + Verify whether the 32KHz USEC value needs to be kept for the 802.11n
2822
* series chips?
2823
* + Calculate/derive values for 2GHz, 5GHz, 5GHz fast clock
2824
*/
2825
static void
2826
ar5416SetIFSTiming(struct ath_hal *ah, const struct ieee80211_channel *chan)
2827
{
2828
uint32_t txLat, rxLat, usec, slot, refClock, eifs, init_usec;
2829
int clk_44 = 0;
2830
2831
HALASSERT(IEEE80211_IS_CHAN_HALF(chan) ||
2832
IEEE80211_IS_CHAN_QUARTER(chan));
2833
2834
/* 2GHz and 5GHz fast clock - 44MHz; else 40MHz */
2835
if (IEEE80211_IS_CHAN_2GHZ(chan))
2836
clk_44 = 1;
2837
else if (IEEE80211_IS_CHAN_5GHZ(chan) &&
2838
IS_5GHZ_FAST_CLOCK_EN(ah, chan))
2839
clk_44 = 1;
2840
2841
/* XXX does this need save/restoring for the 11n chips? */
2842
/*
2843
* XXX TODO: should mask out the txlat/rxlat/usec values?
2844
*/
2845
refClock = OS_REG_READ(ah, AR_USEC) & AR_USEC_USEC32;
2846
2847
/*
2848
* XXX This really should calculate things, not use
2849
* hard coded values! Ew.
2850
*/
2851
if (IEEE80211_IS_CHAN_HALF(chan)) {
2852
if (clk_44) {
2853
slot = AR5416_IFS_SLOT_HALF_RATE_44;
2854
rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2855
AR5416_USEC_RX_LAT_S;
2856
txLat = AR5416_TX_HALF_RATE_LATENCY <<
2857
AR5416_USEC_TX_LAT_S;
2858
usec = AR5416_HALF_RATE_USEC_44;
2859
eifs = AR5416_IFS_EIFS_HALF_RATE_44;
2860
init_usec = AR5416_INIT_USEC_44 >> 1;
2861
} else {
2862
slot = AR5416_IFS_SLOT_HALF_RATE_40;
2863
rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2864
AR5416_USEC_RX_LAT_S;
2865
txLat = AR5416_TX_HALF_RATE_LATENCY <<
2866
AR5416_USEC_TX_LAT_S;
2867
usec = AR5416_HALF_RATE_USEC_40;
2868
eifs = AR5416_IFS_EIFS_HALF_RATE_40;
2869
init_usec = AR5416_INIT_USEC_40 >> 1;
2870
}
2871
} else { /* quarter rate */
2872
if (clk_44) {
2873
slot = AR5416_IFS_SLOT_QUARTER_RATE_44;
2874
rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2875
AR5416_USEC_RX_LAT_S;
2876
txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2877
AR5416_USEC_TX_LAT_S;
2878
usec = AR5416_QUARTER_RATE_USEC_44;
2879
eifs = AR5416_IFS_EIFS_QUARTER_RATE_44;
2880
init_usec = AR5416_INIT_USEC_44 >> 2;
2881
} else {
2882
slot = AR5416_IFS_SLOT_QUARTER_RATE_40;
2883
rxLat = AR5416_RX_NON_FULL_RATE_LATENCY <<
2884
AR5416_USEC_RX_LAT_S;
2885
txLat = AR5416_TX_QUARTER_RATE_LATENCY <<
2886
AR5416_USEC_TX_LAT_S;
2887
usec = AR5416_QUARTER_RATE_USEC_40;
2888
eifs = AR5416_IFS_EIFS_QUARTER_RATE_40;
2889
init_usec = AR5416_INIT_USEC_40 >> 2;
2890
}
2891
}
2892
2893
/* XXX verify these! */
2894
OS_REG_WRITE(ah, AR_USEC, (usec | refClock | txLat | rxLat));
2895
OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
2896
OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
2897
OS_REG_RMW_FIELD(ah, AR_D_GBL_IFS_MISC,
2898
AR_D_GBL_IFS_MISC_USEC_DURATION, init_usec);
2899
}
2900
2901