Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/ath_hal/ar9002/ar9280.c
39566 views
1
/*-
2
* SPDX-License-Identifier: ISC
3
*
4
* Copyright (c) 2008-2009 Sam Leffler, Errno Consulting
5
* Copyright (c) 2008 Atheros Communications, Inc.
6
*
7
* Permission to use, copy, modify, and/or distribute this software for any
8
* purpose with or without fee is hereby granted, provided that the above
9
* copyright notice and this permission notice appear in all copies.
10
*
11
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
*/
19
#include "opt_ah.h"
20
21
/*
22
* NB: Merlin and later have a simpler RF backend.
23
*/
24
#include "ah.h"
25
#include "ah_internal.h"
26
27
#include "ah_eeprom_v14.h"
28
29
#include "ar9002/ar9280.h"
30
#include "ar5416/ar5416reg.h"
31
#include "ar5416/ar5416phy.h"
32
33
#define N(a) (sizeof(a)/sizeof(a[0]))
34
35
struct ar9280State {
36
RF_HAL_FUNCS base; /* public state, must be first */
37
uint16_t pcdacTable[1]; /* XXX */
38
};
39
#define AR9280(ah) ((struct ar9280State *) AH5212(ah)->ah_rfHal)
40
41
static HAL_BOOL ar9280GetChannelMaxMinPower(struct ath_hal *,
42
const struct ieee80211_channel *, int16_t *maxPow,int16_t *minPow);
43
int16_t ar9280GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c);
44
45
static void
46
ar9280WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
47
int writes)
48
{
49
(void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain,
50
freqIndex, writes);
51
}
52
53
/*
54
* Take the MHz channel value and set the Channel value
55
*
56
* ASSUMES: Writes enabled to analog bus
57
*
58
* Actual Expression,
59
*
60
* For 2GHz channel,
61
* Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
62
* (freq_ref = 40MHz)
63
*
64
* For 5GHz channel,
65
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
66
* (freq_ref = 40MHz/(24>>amodeRefSel))
67
*
68
* For 5GHz channels which are 5MHz spaced,
69
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
70
* (freq_ref = 40MHz)
71
*/
72
static HAL_BOOL
73
ar9280SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
74
{
75
uint16_t bMode, fracMode, aModeRefSel = 0;
76
uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
77
CHAN_CENTERS centers;
78
uint32_t refDivA = 24;
79
uint8_t frac_n_5g;
80
81
OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);
82
83
ar5416GetChannelCenters(ah, chan, &centers);
84
freq = centers.synth_center;
85
86
reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL);
87
reg32 &= 0xc0000000;
88
89
if (ath_hal_eepromGet(ah, AR_EEP_FRAC_N_5G, &frac_n_5g) != HAL_OK)
90
frac_n_5g = 0;
91
92
if (freq < 4800) { /* 2 GHz, fractional mode */
93
uint32_t txctl;
94
95
bMode = 1;
96
fracMode = 1;
97
aModeRefSel = 0;
98
channelSel = (freq * 0x10000)/15;
99
100
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
101
if (freq == 2484) {
102
/* Enable channel spreading for channel 14 */
103
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
104
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
105
} else {
106
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
107
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
108
}
109
} else {
110
bMode = 0;
111
fracMode = 0;
112
113
switch (frac_n_5g) {
114
case 0:
115
/*
116
* Enable fractional mode for half/quarter rate
117
* channels.
118
*
119
* This is from the Linux ath9k code, rather than
120
* the Atheros HAL code.
121
*/
122
if (IEEE80211_IS_CHAN_QUARTER(chan) ||
123
IEEE80211_IS_CHAN_HALF(chan))
124
aModeRefSel = 0;
125
else if ((freq % 20) == 0) {
126
aModeRefSel = 3;
127
} else if ((freq % 10) == 0) {
128
aModeRefSel = 2;
129
}
130
if (aModeRefSel) break;
131
case 1:
132
default:
133
aModeRefSel = 0;
134
/* Enable 2G (fractional) mode for channels which are 5MHz spaced */
135
136
/*
137
* Workaround for talking on PSB non-5MHz channels;
138
* the pre-Merlin chips only had a 2.5MHz channel
139
* spacing so some channels aren't reachable.
140
141
*
142
* This interoperates on the quarter rate channels
143
* with the AR5112 and later RF synths. Please note
144
* that the synthesiser isn't able to completely
145
* accurately represent these frequencies (as the
146
* resolution in this reference is 2.5MHz) and thus
147
* it will be slightly "off centre." This matches
148
* the same slightly incorrect centre frequency
149
* behaviour that the AR5112 and later channel
150
* selection code has.
151
*
152
* This also interoperates with the AR5416
153
* synthesiser modification for programming
154
* fractional frequencies in 5GHz mode. However
155
* that modification is also disabled by default.
156
*
157
* This is disabled because it hasn't been tested for
158
* regulatory compliance and neither have the NICs
159
* which would use it. So if you enable this code,
160
* you must first ensure that you've re-certified the
161
* NICs in question beforehand or you will be
162
* violating your local regulatory rules and breaking
163
* the law.
164
*/
165
#if 0
166
if (freq % 5 == 0) {
167
#endif
168
/* Normal */
169
fracMode = 1;
170
refDivA = 1;
171
channelSel = (freq * 0x8000)/15;
172
#if 0
173
} else {
174
/* Offset by 500KHz */
175
uint32_t f, ch, ch2;
176
177
fracMode = 1;
178
refDivA = 1;
179
180
/* Calculate the "adjusted" frequency */
181
f = freq - 2;
182
ch = (((f - 4800) * 10) / 25) + 1;
183
184
ch2 = ((ch * 25) / 5) + 9600;
185
channelSel = (ch2 * 0x4000) / 15;
186
//ath_hal_printf(ah,
187
// "%s: freq=%d, ch=%d, ch2=%d, "
188
// "channelSel=%d\n",
189
// __func__, freq, ch, ch2, channelSel);
190
}
191
#endif
192
193
/* RefDivA setting */
194
OS_A_REG_RMW_FIELD(ah, AR_AN_SYNTH9,
195
AR_AN_SYNTH9_REFDIVA, refDivA);
196
}
197
198
if (!fracMode) {
199
ndiv = (freq * (refDivA >> aModeRefSel))/60;
200
channelSel = ndiv & 0x1ff;
201
channelFrac = (ndiv & 0xfffffe00) * 2;
202
channelSel = (channelSel << 17) | channelFrac;
203
}
204
}
205
206
reg32 = reg32 | (bMode << 29) | (fracMode << 28) |
207
(aModeRefSel << 26) | (channelSel);
208
209
OS_REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
210
211
AH_PRIVATE(ah)->ah_curchan = chan;
212
213
return AH_TRUE;
214
}
215
216
/*
217
* Return a reference to the requested RF Bank.
218
*/
219
static uint32_t *
220
ar9280GetRfBank(struct ath_hal *ah, int bank)
221
{
222
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
223
__func__, bank);
224
return AH_NULL;
225
}
226
227
/*
228
* Reads EEPROM header info from device structure and programs
229
* all rf registers
230
*/
231
static HAL_BOOL
232
ar9280SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
233
uint16_t modesIndex, uint16_t *rfXpdGain)
234
{
235
return AH_TRUE; /* nothing to do */
236
}
237
238
/*
239
* Read the transmit power levels from the structures taken from EEPROM
240
* Interpolate read transmit power values for this channel
241
* Organize the transmit power values into a table for writing into the hardware
242
*/
243
244
static HAL_BOOL
245
ar9280SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax,
246
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
247
{
248
return AH_TRUE;
249
}
250
251
#if 0
252
static int16_t
253
ar9280GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data)
254
{
255
int i, minIndex;
256
int16_t minGain,minPwr,minPcdac,retVal;
257
258
/* Assume NUM_POINTS_XPD0 > 0 */
259
minGain = data->pDataPerXPD[0].xpd_gain;
260
for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
261
if (data->pDataPerXPD[i].xpd_gain < minGain) {
262
minIndex = i;
263
minGain = data->pDataPerXPD[i].xpd_gain;
264
}
265
}
266
minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
267
minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
268
for (i=1; i<NUM_POINTS_XPD0; i++) {
269
if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
270
minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
271
minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
272
}
273
}
274
retVal = minPwr - (minPcdac*2);
275
return(retVal);
276
}
277
#endif
278
279
static HAL_BOOL
280
ar9280GetChannelMaxMinPower(struct ath_hal *ah,
281
const struct ieee80211_channel *chan,
282
int16_t *maxPow, int16_t *minPow)
283
{
284
#if 0
285
struct ath_hal_5212 *ahp = AH5212(ah);
286
int numChannels=0,i,last;
287
int totalD, totalF,totalMin;
288
EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
289
EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
290
291
*maxPow = 0;
292
if (IS_CHAN_A(chan)) {
293
powerArray = ahp->ah_modePowerArray5112;
294
data = powerArray[headerInfo11A].pDataPerChannel;
295
numChannels = powerArray[headerInfo11A].numChannels;
296
} else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
297
/* XXX - is this correct? Should we also use the same power for turbo G? */
298
powerArray = ahp->ah_modePowerArray5112;
299
data = powerArray[headerInfo11G].pDataPerChannel;
300
numChannels = powerArray[headerInfo11G].numChannels;
301
} else if (IS_CHAN_B(chan)) {
302
powerArray = ahp->ah_modePowerArray5112;
303
data = powerArray[headerInfo11B].pDataPerChannel;
304
numChannels = powerArray[headerInfo11B].numChannels;
305
} else {
306
return (AH_TRUE);
307
}
308
/* Make sure the channel is in the range of the TP values
309
* (freq piers)
310
*/
311
if ((numChannels < 1) ||
312
(chan->channel < data[0].channelValue) ||
313
(chan->channel > data[numChannels-1].channelValue))
314
return(AH_FALSE);
315
316
/* Linearly interpolate the power value now */
317
for (last=0,i=0;
318
(i<numChannels) && (chan->channel > data[i].channelValue);
319
last=i++);
320
totalD = data[i].channelValue - data[last].channelValue;
321
if (totalD > 0) {
322
totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
323
*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
324
325
totalMin = ar9280GetMinPower(ah,&data[i]) - ar9280GetMinPower(ah, &data[last]);
326
*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar9280GetMinPower(ah, &data[last])*totalD)/totalD);
327
return (AH_TRUE);
328
} else {
329
if (chan->channel == data[i].channelValue) {
330
*maxPow = data[i].maxPower_t4;
331
*minPow = ar9280GetMinPower(ah, &data[i]);
332
return(AH_TRUE);
333
} else
334
return(AH_FALSE);
335
}
336
#else
337
*maxPow = *minPow = 0;
338
return AH_FALSE;
339
#endif
340
}
341
342
/*
343
* The ordering of nfarray is thus:
344
*
345
* nfarray[0]: Chain 0 ctl
346
* nfarray[1]: Chain 1 ctl
347
* nfarray[2]: Chain 2 ctl
348
* nfarray[3]: Chain 0 ext
349
* nfarray[4]: Chain 1 ext
350
* nfarray[5]: Chain 2 ext
351
*/
352
static void
353
ar9280GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[])
354
{
355
int16_t nf;
356
357
nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
358
if (nf & 0x100)
359
nf = 0 - ((nf ^ 0x1ff) + 1);
360
HALDEBUG(ah, HAL_DEBUG_NFCAL,
361
"NF calibrated [ctl] [chain 0] is %d\n", nf);
362
nfarray[0] = nf;
363
364
nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
365
if (nf & 0x100)
366
nf = 0 - ((nf ^ 0x1ff) + 1);
367
HALDEBUG(ah, HAL_DEBUG_NFCAL,
368
"NF calibrated [ctl] [chain 1] is %d\n", nf);
369
nfarray[1] = nf;
370
371
nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
372
if (nf & 0x100)
373
nf = 0 - ((nf ^ 0x1ff) + 1);
374
HALDEBUG(ah, HAL_DEBUG_NFCAL,
375
"NF calibrated [ext] [chain 0] is %d\n", nf);
376
nfarray[3] = nf;
377
378
nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
379
if (nf & 0x100)
380
nf = 0 - ((nf ^ 0x1ff) + 1);
381
HALDEBUG(ah, HAL_DEBUG_NFCAL,
382
"NF calibrated [ext] [chain 1] is %d\n", nf);
383
nfarray[4] = nf;
384
385
/* Chain 2 - invalid */
386
nfarray[2] = 0;
387
nfarray[5] = 0;
388
389
}
390
391
/*
392
* Adjust NF based on statistical values for 5GHz frequencies.
393
* Stubbed:Not used by Fowl
394
*/
395
int16_t
396
ar9280GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
397
{
398
return 0;
399
}
400
401
/*
402
* Free memory for analog bank scratch buffers
403
*/
404
static void
405
ar9280RfDetach(struct ath_hal *ah)
406
{
407
struct ath_hal_5212 *ahp = AH5212(ah);
408
409
HALASSERT(ahp->ah_rfHal != AH_NULL);
410
ath_hal_free(ahp->ah_rfHal);
411
ahp->ah_rfHal = AH_NULL;
412
}
413
414
HAL_BOOL
415
ar9280RfAttach(struct ath_hal *ah, HAL_STATUS *status)
416
{
417
struct ath_hal_5212 *ahp = AH5212(ah);
418
struct ar9280State *priv;
419
420
HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR9280 radio\n", __func__);
421
422
HALASSERT(ahp->ah_rfHal == AH_NULL);
423
priv = ath_hal_malloc(sizeof(struct ar9280State));
424
if (priv == AH_NULL) {
425
HALDEBUG(ah, HAL_DEBUG_ANY,
426
"%s: cannot allocate private state\n", __func__);
427
*status = HAL_ENOMEM; /* XXX */
428
return AH_FALSE;
429
}
430
priv->base.rfDetach = ar9280RfDetach;
431
priv->base.writeRegs = ar9280WriteRegs;
432
priv->base.getRfBank = ar9280GetRfBank;
433
priv->base.setChannel = ar9280SetChannel;
434
priv->base.setRfRegs = ar9280SetRfRegs;
435
priv->base.setPowerTable = ar9280SetPowerTable;
436
priv->base.getChannelMaxMinPower = ar9280GetChannelMaxMinPower;
437
priv->base.getNfAdjust = ar9280GetNfAdjust;
438
439
ahp->ah_pcdacTable = priv->pcdacTable;
440
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
441
ahp->ah_rfHal = &priv->base;
442
/*
443
* Set noise floor adjust method; we arrange a
444
* direct call instead of thunking.
445
*/
446
AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust;
447
AH_PRIVATE(ah)->ah_getNoiseFloor = ar9280GetNoiseFloor;
448
449
return AH_TRUE;
450
}
451
452
static HAL_BOOL
453
ar9280RfProbe(struct ath_hal *ah)
454
{
455
return (AR_SREV_MERLIN(ah));
456
}
457
458
AH_RF(RF9280, ar9280RfProbe, ar9280RfAttach);
459
460