Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/ath_hal/ar9002/ar9285_reset.c
39566 views
1
/*-
2
* SPDX-License-Identifier: ISC
3
*
4
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5
* Copyright (c) 2002-2008 Atheros Communications, Inc.
6
*
7
* Permission to use, copy, modify, and/or distribute this software for any
8
* purpose with or without fee is hereby granted, provided that the above
9
* copyright notice and this permission notice appear in all copies.
10
*
11
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
*/
19
20
/*
21
* This is almost the same as ar5416_reset.c but uses the v4k EEPROM and
22
* supports only 2Ghz operation.
23
*/
24
25
#include "opt_ah.h"
26
27
#include "ah.h"
28
#include "ah_internal.h"
29
#include "ah_devid.h"
30
31
#include "ah_eeprom_v14.h"
32
#include "ah_eeprom_v4k.h"
33
34
#include "ar9002/ar9285.h"
35
#include "ar5416/ar5416.h"
36
#include "ar5416/ar5416reg.h"
37
#include "ar5416/ar5416phy.h"
38
#include "ar9002/ar9002phy.h"
39
#include "ar9002/ar9285phy.h"
40
#include "ar9002/ar9285an.h"
41
#include "ar9002/ar9285_diversity.h"
42
43
/* Eeprom versioning macros. Returns true if the version is equal or newer than the ver specified */
44
#define EEP_MINOR(_ah) \
45
(AH_PRIVATE(_ah)->ah_eeversion & AR5416_EEP_VER_MINOR_MASK)
46
#define IS_EEP_MINOR_V2(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_2)
47
#define IS_EEP_MINOR_V3(_ah) (EEP_MINOR(_ah) >= AR5416_EEP_MINOR_VER_3)
48
49
/* Additional Time delay to wait after activiting the Base band */
50
#define BASE_ACTIVATE_DELAY 100 /* 100 usec */
51
#define PLL_SETTLE_DELAY 300 /* 300 usec */
52
#define RTC_PLL_SETTLE_DELAY 1000 /* 1 ms */
53
54
static HAL_BOOL ar9285SetPowerPerRateTable(struct ath_hal *ah,
55
struct ar5416eeprom_4k *pEepData,
56
const struct ieee80211_channel *chan, int16_t *ratesArray,
57
uint16_t cfgCtl, uint16_t AntennaReduction,
58
uint16_t twiceMaxRegulatoryPower,
59
uint16_t powerLimit);
60
static HAL_BOOL ar9285SetPowerCalTable(struct ath_hal *ah,
61
struct ar5416eeprom_4k *pEepData,
62
const struct ieee80211_channel *chan,
63
int16_t *pTxPowerIndexOffset);
64
static void ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
65
const struct ieee80211_channel *chan, CAL_DATA_PER_FREQ_4K *pRawDataSet,
66
uint8_t * bChans, uint16_t availPiers,
67
uint16_t tPdGainOverlap, int16_t *pMinCalPower,
68
uint16_t * pPdGainBoundaries, uint8_t * pPDADCValues,
69
uint16_t numXpdGains);
70
71
HAL_BOOL
72
ar9285SetTransmitPower(struct ath_hal *ah,
73
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
74
{
75
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
76
#define N(a) (sizeof (a) / sizeof (a[0]))
77
78
MODAL_EEP4K_HEADER *pModal;
79
struct ath_hal_5212 *ahp = AH5212(ah);
80
int16_t txPowerIndexOffset = 0;
81
int i;
82
83
uint16_t cfgCtl;
84
uint16_t powerLimit;
85
uint16_t twiceAntennaReduction;
86
uint16_t twiceMaxRegulatoryPower;
87
int16_t maxPower;
88
HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
89
struct ar5416eeprom_4k *pEepData = &ee->ee_base;
90
91
HALASSERT(AH_PRIVATE(ah)->ah_eeversion >= AR_EEPROM_VER14_1);
92
93
AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
94
95
/* Setup info for the actual eeprom */
96
OS_MEMZERO(AH5416(ah)->ah_ratesArray, sizeof(AH5416(ah)->ah_ratesArray));
97
cfgCtl = ath_hal_getctl(ah, chan);
98
powerLimit = chan->ic_maxregpower * 2;
99
twiceAntennaReduction = chan->ic_maxantgain;
100
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER, AH_PRIVATE(ah)->ah_powerLimit);
101
pModal = &pEepData->modalHeader;
102
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
103
__func__,chan->ic_freq, cfgCtl );
104
105
if (IS_EEP_MINOR_V2(ah)) {
106
AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
107
}
108
109
if (!ar9285SetPowerPerRateTable(ah, pEepData, chan,
110
&AH5416(ah)->ah_ratesArray[0],cfgCtl,
111
twiceAntennaReduction,
112
twiceMaxRegulatoryPower, powerLimit)) {
113
HALDEBUG(ah, HAL_DEBUG_ANY,
114
"%s: unable to set tx power per rate table\n", __func__);
115
return AH_FALSE;
116
}
117
118
if (!ar9285SetPowerCalTable(ah, pEepData, chan, &txPowerIndexOffset)) {
119
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unable to set power table\n",
120
__func__);
121
return AH_FALSE;
122
}
123
124
maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
125
AH5416(ah)->ah_ratesArray[rateHt20_0]);
126
maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rate1l]);
127
128
if (IEEE80211_IS_CHAN_HT40(chan)) {
129
maxPower = AH_MAX(maxPower, AH5416(ah)->ah_ratesArray[rateHt40_0]);
130
}
131
132
ahp->ah_tx6PowerInHalfDbm = maxPower;
133
AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
134
ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
135
136
/*
137
* txPowerIndexOffset is set by the SetPowerTable() call -
138
* adjust the rate table (0 offset if rates EEPROM not loaded)
139
*/
140
for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
141
AH5416(ah)->ah_ratesArray[i] = (int16_t)(txPowerIndexOffset + AH5416(ah)->ah_ratesArray[i]);
142
/* -5 dBm offset for Merlin and later; this includes Kite */
143
AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
144
if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
145
AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
146
if (AH5416(ah)->ah_ratesArray[i] < 0)
147
AH5416(ah)->ah_ratesArray[i] = 0;
148
}
149
150
#ifdef AH_EEPROM_DUMP
151
ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
152
#endif
153
154
/*
155
* Adjust the HT40 power to meet the correct target TX power
156
* for 40MHz mode, based on TX power curves that are established
157
* for 20MHz mode.
158
*
159
* XXX handle overflow/too high power level?
160
*/
161
if (IEEE80211_IS_CHAN_HT40(chan)) {
162
AH5416(ah)->ah_ratesArray[rateHt40_0] +=
163
AH5416(ah)->ah_ht40PowerIncForPdadc;
164
AH5416(ah)->ah_ratesArray[rateHt40_1] +=
165
AH5416(ah)->ah_ht40PowerIncForPdadc;
166
AH5416(ah)->ah_ratesArray[rateHt40_2] +=
167
AH5416(ah)->ah_ht40PowerIncForPdadc;
168
AH5416(ah)->ah_ratesArray[rateHt40_3] +=
169
AH5416(ah)->ah_ht40PowerIncForPdadc;
170
AH5416(ah)->ah_ratesArray[rateHt40_4] +=
171
AH5416(ah)->ah_ht40PowerIncForPdadc;
172
AH5416(ah)->ah_ratesArray[rateHt40_5] +=
173
AH5416(ah)->ah_ht40PowerIncForPdadc;
174
AH5416(ah)->ah_ratesArray[rateHt40_6] +=
175
AH5416(ah)->ah_ht40PowerIncForPdadc;
176
AH5416(ah)->ah_ratesArray[rateHt40_7] +=
177
AH5416(ah)->ah_ht40PowerIncForPdadc;
178
}
179
180
/* Write the TX power rate registers */
181
ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
182
183
return AH_TRUE;
184
#undef POW_SM
185
#undef N
186
}
187
188
static void
189
ar9285SetBoardGain(struct ath_hal *ah, const MODAL_EEP4K_HEADER *pModal,
190
const struct ar5416eeprom_4k *eep, uint8_t txRxAttenLocal)
191
{
192
OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
193
pModal->antCtrlChain[0]);
194
195
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0),
196
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)) &
197
~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
198
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
199
SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
200
SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
201
202
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
203
AR5416_EEP_MINOR_VER_3) {
204
txRxAttenLocal = pModal->txRxAttenCh[0];
205
206
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
207
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
208
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
209
AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
210
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
211
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, pModal->xatten2Margin[0]);
212
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
213
AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
214
215
/* Set the block 1 value to block 0 value */
216
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
217
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
218
pModal->bswMargin[0]);
219
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
220
AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
221
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
222
AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
223
pModal->xatten2Margin[0]);
224
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
225
AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
226
}
227
228
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
229
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
230
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
231
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
232
233
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
234
AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
235
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
236
AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
237
}
238
239
/*
240
* Read EEPROM header info and program the device for correct operation
241
* given the channel value.
242
*/
243
HAL_BOOL
244
ar9285SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
245
{
246
const HAL_EEPROM_v4k *ee = AH_PRIVATE(ah)->ah_eeprom;
247
const struct ar5416eeprom_4k *eep = &ee->ee_base;
248
const MODAL_EEP4K_HEADER *pModal;
249
uint8_t txRxAttenLocal;
250
uint8_t ob[5], db1[5], db2[5];
251
252
pModal = &eep->modalHeader;
253
txRxAttenLocal = 23;
254
255
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
256
257
/* Single chain for 4K EEPROM*/
258
ar9285SetBoardGain(ah, pModal, eep, txRxAttenLocal);
259
260
/* Initialize Ant Diversity settings if supported */
261
(void) ar9285SetAntennaSwitch(ah, AH5212(ah)->ah_antControl);
262
263
/* Configure TX power calibration */
264
if (pModal->version >= 2) {
265
ob[0] = pModal->ob_0;
266
ob[1] = pModal->ob_1;
267
ob[2] = pModal->ob_2;
268
ob[3] = pModal->ob_3;
269
ob[4] = pModal->ob_4;
270
271
db1[0] = pModal->db1_0;
272
db1[1] = pModal->db1_1;
273
db1[2] = pModal->db1_2;
274
db1[3] = pModal->db1_3;
275
db1[4] = pModal->db1_4;
276
277
db2[0] = pModal->db2_0;
278
db2[1] = pModal->db2_1;
279
db2[2] = pModal->db2_2;
280
db2[3] = pModal->db2_3;
281
db2[4] = pModal->db2_4;
282
} else if (pModal->version == 1) {
283
ob[0] = pModal->ob_0;
284
ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
285
db1[0] = pModal->db1_0;
286
db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
287
db2[0] = pModal->db2_0;
288
db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
289
} else {
290
int i;
291
292
for (i = 0; i < 5; i++) {
293
ob[i] = pModal->ob_0;
294
db1[i] = pModal->db1_0;
295
db2[i] = pModal->db1_0;
296
}
297
}
298
299
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_0, ob[0]);
300
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_1, ob[1]);
301
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_2, ob[2]);
302
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_3, ob[3]);
303
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_OB_4, ob[4]);
304
305
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_0, db1[0]);
306
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_1, db1[1]);
307
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G3, AR9285_AN_RF2G3_DB1_2, db1[2]);
308
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_3, db1[3]);
309
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB1_4, db1[4]);
310
311
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_0, db2[0]);
312
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_1, db2[1]);
313
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_2, db2[2]);
314
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_3, db2[3]);
315
OS_A_REG_RMW_FIELD(ah, AR9285_AN_RF2G4, AR9285_AN_RF2G4_DB2_4, db2[4]);
316
317
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
318
pModal->switchSettling);
319
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
320
pModal->adcDesiredSize);
321
322
OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
323
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
324
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
325
SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
326
SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
327
328
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
329
pModal->txEndToRxOn);
330
331
OS_REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
332
pModal->thresh62);
333
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
334
pModal->thresh62);
335
336
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
337
AR5416_EEP_MINOR_VER_2) {
338
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_DATA_START,
339
pModal->txFrameToDataStart);
340
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_FRAME_TO_PA_ON,
341
pModal->txFrameToPaOn);
342
}
343
344
if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
345
AR5416_EEP_MINOR_VER_3) {
346
if (IEEE80211_IS_CHAN_HT40(chan))
347
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
348
AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
349
}
350
351
/*
352
* Program the CCK TX gain factor appropriately if needed.
353
* The AR9285/AR9271 has a non-constant PA tx gain behaviour
354
* for CCK versus OFDM rates; other chips deal with this
355
* differently.
356
*
357
* The mask/shift/multiply hackery is done so place the same
358
* value (bb_desired_scale) into multiple 5-bit fields.
359
* For example, AR_PHY_TX_PWRCTRL9 has bb_desired_scale written
360
* to three fields: (0..4), (5..9) and (10..14).
361
*/
362
if (AR_SREV_9271(ah) || AR_SREV_KITE(ah)) {
363
uint8_t bb_desired_scale = (pModal->bb_scale_smrt_antenna & EEP_4K_BB_DESIRED_SCALE_MASK);
364
if ((eep->baseEepHeader.txGainType == 0) && (bb_desired_scale != 0)) {
365
ath_hal_printf(ah, "[ath]: adjusting cck tx gain factor\n");
366
uint32_t pwrctrl, mask, clr;
367
368
mask = (1<<0) | (1<<5) | (1<<10) | (1<<15) | (1<<20) | (1<<25);
369
pwrctrl = mask * bb_desired_scale;
370
clr = mask * 0x1f;
371
OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
372
OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
373
OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
374
375
mask = (1<<0) | (1<<5) | (1<<15);
376
pwrctrl = mask * bb_desired_scale;
377
clr = mask * 0x1f;
378
OS_REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
379
380
mask = (1<<0) | (1<<5);
381
pwrctrl = mask * bb_desired_scale;
382
clr = mask * 0x1f;
383
OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
384
OS_REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
385
}
386
}
387
388
return AH_TRUE;
389
}
390
391
/*
392
* Helper functions common for AP/CB/XB
393
*/
394
395
static HAL_BOOL
396
ar9285SetPowerPerRateTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
397
const struct ieee80211_channel *chan,
398
int16_t *ratesArray, uint16_t cfgCtl,
399
uint16_t AntennaReduction,
400
uint16_t twiceMaxRegulatoryPower,
401
uint16_t powerLimit)
402
{
403
#define N(a) (sizeof(a)/sizeof(a[0]))
404
/* Local defines to distinguish between extension and control CTL's */
405
#define EXT_ADDITIVE (0x8000)
406
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
407
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
408
409
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
410
int i;
411
int16_t twiceLargestAntenna;
412
CAL_CTL_DATA_4K *rep;
413
CAL_TARGET_POWER_LEG targetPowerOfdm, targetPowerCck = {0, {0, 0, 0, 0}};
414
CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}}, targetPowerCckExt = {0, {0, 0, 0, 0}};
415
CAL_TARGET_POWER_HT targetPowerHt20, targetPowerHt40 = {0, {0, 0, 0, 0}};
416
int16_t scaledPower, minCtlPower;
417
418
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
419
static const uint16_t ctlModesFor11g[] = {
420
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
421
};
422
const uint16_t *pCtlMode;
423
uint16_t numCtlModes, ctlMode, freq;
424
CHAN_CENTERS centers;
425
426
ar5416GetChannelCenters(ah, chan, &centers);
427
428
/* Compute TxPower reduction due to Antenna Gain */
429
430
twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
431
twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
432
433
/* XXX setup for 5212 use (really used?) */
434
ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
435
436
/*
437
* scaledPower is the minimum of the user input power level and
438
* the regulatory allowed power level
439
*/
440
scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
441
442
/* Get target powers from EEPROM - our baseline for TX Power */
443
/* Setup for CTL modes */
444
numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
445
pCtlMode = ctlModesFor11g;
446
447
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
448
AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
449
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
450
AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
451
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
452
AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
453
454
if (IEEE80211_IS_CHAN_HT40(chan)) {
455
numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
456
457
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
458
AR5416_4K_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
459
/* Get target powers for extension channels */
460
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
461
AR5416_4K_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
462
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
463
AR5416_4K_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
464
}
465
466
/*
467
* For MIMO, need to apply regulatory caps individually across dynamically
468
* running modes: CCK, OFDM, HT20, HT40
469
*
470
* The outer loop walks through each possible applicable runtime mode.
471
* The inner loop walks through each ctlIndex entry in EEPROM.
472
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
473
*
474
*/
475
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
476
HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
477
(pCtlMode[ctlMode] == CTL_2GHT40);
478
if (isHt40CtlMode) {
479
freq = centers.ctl_center;
480
} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
481
freq = centers.ext_center;
482
} else {
483
freq = centers.ctl_center;
484
}
485
486
/* walk through each CTL index stored in EEPROM */
487
for (i = 0; (i < AR5416_4K_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
488
uint16_t twiceMinEdgePower;
489
490
/* compare test group from regulatory channel list with test mode from pCtlMode list */
491
if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
492
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
493
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
494
rep = &(pEepData->ctlData[i]);
495
twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
496
rep->ctlEdges[
497
owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1], AH_TRUE);
498
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
499
/* Find the minimum of all CTL edge powers that apply to this channel */
500
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
501
} else {
502
/* specific */
503
twiceMaxEdgePower = twiceMinEdgePower;
504
break;
505
}
506
}
507
}
508
minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
509
/* Apply ctl mode to correct target power set */
510
switch(pCtlMode[ctlMode]) {
511
case CTL_11B:
512
for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
513
targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
514
}
515
break;
516
case CTL_11A:
517
case CTL_11G:
518
for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
519
targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
520
}
521
break;
522
case CTL_5GHT20:
523
case CTL_2GHT20:
524
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
525
targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
526
}
527
break;
528
case CTL_11B_EXT:
529
targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
530
break;
531
case CTL_11G_EXT:
532
targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
533
break;
534
case CTL_5GHT40:
535
case CTL_2GHT40:
536
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
537
targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
538
}
539
break;
540
default:
541
return AH_FALSE;
542
break;
543
}
544
} /* end ctl mode checking */
545
546
/* Set rates Array from collected data */
547
ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
548
&targetPowerCck,
549
&targetPowerCckExt,
550
&targetPowerOfdm,
551
&targetPowerOfdmExt,
552
&targetPowerHt20,
553
&targetPowerHt40);
554
555
return AH_TRUE;
556
#undef EXT_ADDITIVE
557
#undef CTL_11G_EXT
558
#undef CTL_11B_EXT
559
#undef SUB_NUM_CTL_MODES_AT_2G_40
560
#undef N
561
}
562
563
static HAL_BOOL
564
ar9285SetPowerCalTable(struct ath_hal *ah, struct ar5416eeprom_4k *pEepData,
565
const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
566
{
567
CAL_DATA_PER_FREQ_4K *pRawDataset;
568
uint8_t *pCalBChans = AH_NULL;
569
uint16_t pdGainOverlap_t2;
570
static uint8_t pdadcValues[AR5416_NUM_PDADC_VALUES];
571
uint16_t gainBoundaries[AR5416_PD_GAINS_IN_MASK];
572
uint16_t numPiers, i;
573
int16_t tMinCalPower;
574
uint16_t numXpdGain, xpdMask;
575
uint16_t xpdGainValues[4]; /* v4k eeprom has 2; the other two stay 0 */
576
uint32_t regChainOffset;
577
578
OS_MEMZERO(xpdGainValues, sizeof(xpdGainValues));
579
580
xpdMask = pEepData->modalHeader.xpdGain;
581
582
if (IS_EEP_MINOR_V2(ah)) {
583
pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
584
} else {
585
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5), AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
586
}
587
588
pCalBChans = pEepData->calFreqPier2G;
589
numPiers = AR5416_4K_NUM_2G_CAL_PIERS;
590
numXpdGain = 0;
591
592
/* Calculate the value of xpdgains from the xpdGain Mask */
593
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
594
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
595
if (numXpdGain >= AR5416_4K_NUM_PD_GAINS) {
596
HALASSERT(0);
597
break;
598
}
599
xpdGainValues[numXpdGain] = (uint16_t)(AR5416_PD_GAINS_IN_MASK - i);
600
numXpdGain++;
601
}
602
}
603
604
/* Write the detector gain biases and their number */
605
ar5416WriteDetectorGainBiases(ah, numXpdGain, xpdGainValues);
606
607
for (i = 0; i < AR5416_MAX_CHAINS; i++) {
608
regChainOffset = ar5416GetRegChainOffset(ah, i);
609
if (pEepData->baseEepHeader.txMask & (1 << i)) {
610
pRawDataset = pEepData->calPierData2G[i];
611
612
ar9285GetGainBoundariesAndPdadcs(ah, chan, pRawDataset,
613
pCalBChans, numPiers,
614
pdGainOverlap_t2,
615
&tMinCalPower, gainBoundaries,
616
pdadcValues, numXpdGain);
617
618
if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
619
/*
620
* Note the pdadc table may not start at 0 dBm power, could be
621
* negative or greater than 0. Need to offset the power
622
* values by the amount of minPower for griffin
623
*/
624
ar5416SetGainBoundariesClosedLoop(ah, i, pdGainOverlap_t2, gainBoundaries);
625
}
626
627
/* Write the power values into the baseband power table */
628
ar5416WritePdadcValues(ah, i, pdadcValues);
629
}
630
}
631
*pTxPowerIndexOffset = 0;
632
633
return AH_TRUE;
634
}
635
636
static void
637
ar9285GetGainBoundariesAndPdadcs(struct ath_hal *ah,
638
const struct ieee80211_channel *chan,
639
CAL_DATA_PER_FREQ_4K *pRawDataSet,
640
uint8_t * bChans, uint16_t availPiers,
641
uint16_t tPdGainOverlap, int16_t *pMinCalPower, uint16_t * pPdGainBoundaries,
642
uint8_t * pPDADCValues, uint16_t numXpdGains)
643
{
644
645
int i, j, k;
646
int16_t ss; /* potentially -ve index for taking care of pdGainOverlap */
647
uint16_t idxL, idxR, numPiers; /* Pier indexes */
648
649
/* filled out Vpd table for all pdGains (chanL) */
650
static uint8_t vpdTableL[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
651
652
/* filled out Vpd table for all pdGains (chanR) */
653
static uint8_t vpdTableR[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
654
655
/* filled out Vpd table for all pdGains (interpolated) */
656
static uint8_t vpdTableI[AR5416_4K_NUM_PD_GAINS][AR5416_MAX_PWR_RANGE_IN_HALF_DB];
657
658
uint8_t *pVpdL, *pVpdR, *pPwrL, *pPwrR;
659
uint8_t minPwrT4[AR5416_4K_NUM_PD_GAINS];
660
uint8_t maxPwrT4[AR5416_4K_NUM_PD_GAINS];
661
int16_t vpdStep;
662
int16_t tmpVal;
663
uint16_t sizeCurrVpdTable, maxIndex, tgtIndex;
664
HAL_BOOL match;
665
int16_t minDelta = 0;
666
CHAN_CENTERS centers;
667
668
ar5416GetChannelCenters(ah, chan, &centers);
669
670
/* Trim numPiers for the number of populated channel Piers */
671
for (numPiers = 0; numPiers < availPiers; numPiers++) {
672
if (bChans[numPiers] == AR5416_BCHAN_UNUSED) {
673
break;
674
}
675
}
676
677
/* Find pier indexes around the current channel */
678
match = ath_ee_getLowerUpperIndex((uint8_t)FREQ2FBIN(centers.synth_center,
679
IEEE80211_IS_CHAN_2GHZ(chan)), bChans, numPiers, &idxL, &idxR);
680
681
if (match) {
682
/* Directly fill both vpd tables from the matching index */
683
for (i = 0; i < numXpdGains; i++) {
684
minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
685
maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
686
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i],
687
pRawDataSet[idxL].pwrPdg[i],
688
pRawDataSet[idxL].vpdPdg[i],
689
AR5416_PD_GAIN_ICEPTS, vpdTableI[i]);
690
}
691
} else {
692
for (i = 0; i < numXpdGains; i++) {
693
pVpdL = pRawDataSet[idxL].vpdPdg[i];
694
pPwrL = pRawDataSet[idxL].pwrPdg[i];
695
pVpdR = pRawDataSet[idxR].vpdPdg[i];
696
pPwrR = pRawDataSet[idxR].pwrPdg[i];
697
698
/* Start Vpd interpolation from the max of the minimum powers */
699
minPwrT4[i] = AH_MAX(pPwrL[0], pPwrR[0]);
700
701
/* End Vpd interpolation from the min of the max powers */
702
maxPwrT4[i] = AH_MIN(pPwrL[AR5416_PD_GAIN_ICEPTS - 1], pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
703
HALASSERT(maxPwrT4[i] > minPwrT4[i]);
704
705
/* Fill pier Vpds */
706
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrL, pVpdL,
707
AR5416_PD_GAIN_ICEPTS, vpdTableL[i]);
708
ath_ee_FillVpdTable(minPwrT4[i], maxPwrT4[i], pPwrR, pVpdR,
709
AR5416_PD_GAIN_ICEPTS, vpdTableR[i]);
710
711
/* Interpolate the final vpd */
712
for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
713
vpdTableI[i][j] = (uint8_t)(ath_ee_interpolate((uint16_t)FREQ2FBIN(centers.synth_center,
714
IEEE80211_IS_CHAN_2GHZ(chan)),
715
bChans[idxL], bChans[idxR], vpdTableL[i][j], vpdTableR[i][j]));
716
}
717
}
718
}
719
*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
720
721
k = 0; /* index for the final table */
722
for (i = 0; i < numXpdGains; i++) {
723
if (i == (numXpdGains - 1)) {
724
pPdGainBoundaries[i] = (uint16_t)(maxPwrT4[i] / 2);
725
} else {
726
pPdGainBoundaries[i] = (uint16_t)((maxPwrT4[i] + minPwrT4[i+1]) / 4);
727
}
728
729
pPdGainBoundaries[i] = (uint16_t)AH_MIN(AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
730
731
/* NB: only applies to owl 1.0 */
732
if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah) ) {
733
/*
734
* fix the gain delta, but get a delta that can be applied to min to
735
* keep the upper power values accurate, don't think max needs to
736
* be adjusted because should not be at that area of the table?
737
*/
738
minDelta = pPdGainBoundaries[0] - 23;
739
pPdGainBoundaries[0] = 23;
740
}
741
else {
742
minDelta = 0;
743
}
744
745
/* Find starting index for this pdGain */
746
if (i == 0) {
747
if (AR_SREV_MERLIN_20_OR_LATER(ah))
748
ss = (int16_t)(0 - (minPwrT4[i] / 2));
749
else
750
ss = 0; /* for the first pdGain, start from index 0 */
751
} else {
752
/* need overlap entries extrapolated below. */
753
ss = (int16_t)((pPdGainBoundaries[i-1] - (minPwrT4[i] / 2)) - tPdGainOverlap + 1 + minDelta);
754
}
755
vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
756
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
757
/*
758
*-ve ss indicates need to extrapolate data below for this pdGain
759
*/
760
while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
761
tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
762
pPDADCValues[k++] = (uint8_t)((tmpVal < 0) ? 0 : tmpVal);
763
ss++;
764
}
765
766
sizeCurrVpdTable = (uint8_t)((maxPwrT4[i] - minPwrT4[i]) / 2 +1);
767
tgtIndex = (uint8_t)(pPdGainBoundaries[i] + tPdGainOverlap - (minPwrT4[i] / 2));
768
maxIndex = (tgtIndex < sizeCurrVpdTable) ? tgtIndex : sizeCurrVpdTable;
769
770
while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
771
pPDADCValues[k++] = vpdTableI[i][ss++];
772
}
773
774
vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] - vpdTableI[i][sizeCurrVpdTable - 2]);
775
vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
776
/*
777
* for last gain, pdGainBoundary == Pmax_t2, so will
778
* have to extrapolate
779
*/
780
if (tgtIndex >= maxIndex) { /* need to extrapolate above */
781
while ((ss <= tgtIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
782
tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
783
(ss - maxIndex +1) * vpdStep));
784
pPDADCValues[k++] = (uint8_t)((tmpVal > 255) ? 255 : tmpVal);
785
ss++;
786
}
787
} /* extrapolated above */
788
} /* for all pdGainUsed */
789
790
/* Fill out pdGainBoundaries - only up to 2 allowed here, but hardware allows up to 4 */
791
while (i < AR5416_PD_GAINS_IN_MASK) {
792
pPdGainBoundaries[i] = AR5416_4K_EEP_PD_GAIN_BOUNDARY_DEFAULT;
793
i++;
794
}
795
796
while (k < AR5416_NUM_PDADC_VALUES) {
797
pPDADCValues[k] = pPDADCValues[k-1];
798
k++;
799
}
800
return;
801
}
802
803