Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/ath_hal/ar9002/ar9287.c
39566 views
1
/*-
2
* SPDX-License-Identifier: ISC
3
*
4
* Copyright (c) 2008-2009 Sam Leffler, Errno Consulting
5
* Copyright (c) 2008 Atheros Communications, Inc.
6
*
7
* Permission to use, copy, modify, and/or distribute this software for any
8
* purpose with or without fee is hereby granted, provided that the above
9
* copyright notice and this permission notice appear in all copies.
10
*
11
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
*/
19
#include "opt_ah.h"
20
21
/*
22
* NB: Merlin and later have a simpler RF backend.
23
*/
24
#include "ah.h"
25
#include "ah_internal.h"
26
27
#include "ah_eeprom_v14.h"
28
29
#include "ar9002/ar9287.h"
30
#include "ar5416/ar5416reg.h"
31
#include "ar5416/ar5416phy.h"
32
33
#define N(a) (sizeof(a)/sizeof(a[0]))
34
35
struct ar9287State {
36
RF_HAL_FUNCS base; /* public state, must be first */
37
uint16_t pcdacTable[1]; /* XXX */
38
};
39
#define AR9287(ah) ((struct ar9287State *) AH5212(ah)->ah_rfHal)
40
41
static HAL_BOOL ar9287GetChannelMaxMinPower(struct ath_hal *,
42
const struct ieee80211_channel *, int16_t *maxPow,int16_t *minPow);
43
int16_t ar9287GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c);
44
45
static void
46
ar9287WriteRegs(struct ath_hal *ah, u_int modesIndex, u_int freqIndex,
47
int writes)
48
{
49
(void) ath_hal_ini_write(ah, &AH5416(ah)->ah_ini_bb_rfgain,
50
freqIndex, writes);
51
}
52
53
/*
54
* Take the MHz channel value and set the Channel value
55
*
56
* ASSUMES: Writes enabled to analog bus
57
*
58
* Actual Expression,
59
*
60
* For 2GHz channel,
61
* Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
62
* (freq_ref = 40MHz)
63
*
64
* For 5GHz channel,
65
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
66
* (freq_ref = 40MHz/(24>>amodeRefSel))
67
*
68
* For 5GHz channels which are 5MHz spaced,
69
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
70
* (freq_ref = 40MHz)
71
*/
72
static HAL_BOOL
73
ar9287SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
74
{
75
uint16_t bMode, fracMode, aModeRefSel = 0;
76
uint32_t freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0;
77
CHAN_CENTERS centers;
78
uint32_t refDivA = 24;
79
80
OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);
81
82
ar5416GetChannelCenters(ah, chan, &centers);
83
freq = centers.synth_center;
84
85
reg32 = OS_REG_READ(ah, AR_PHY_SYNTH_CONTROL);
86
reg32 &= 0xc0000000;
87
88
if (freq < 4800) { /* 2 GHz, fractional mode */
89
uint32_t txctl;
90
int regWrites = 0;
91
92
bMode = 1;
93
fracMode = 1;
94
aModeRefSel = 0;
95
channelSel = (freq * 0x10000)/15;
96
97
if (AR_SREV_KIWI_11_OR_LATER(ah)) {
98
if (freq == 2484) {
99
ath_hal_ini_write(ah,
100
&AH9287(ah)->ah_ini_cckFirJapan2484, 1,
101
regWrites);
102
} else {
103
ath_hal_ini_write(ah,
104
&AH9287(ah)->ah_ini_cckFirNormal, 1,
105
regWrites);
106
}
107
}
108
109
txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
110
if (freq == 2484) {
111
/* Enable channel spreading for channel 14 */
112
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
113
txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
114
} else {
115
OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
116
txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
117
}
118
} else {
119
bMode = 0;
120
fracMode = 0;
121
122
if ((freq % 20) == 0) {
123
aModeRefSel = 3;
124
} else if ((freq % 10) == 0) {
125
aModeRefSel = 2;
126
} else {
127
aModeRefSel = 0;
128
/*
129
* Enable 2G (fractional) mode for channels which
130
* are 5MHz spaced
131
*/
132
fracMode = 1;
133
refDivA = 1;
134
channelSel = (freq * 0x8000)/15;
135
136
/* RefDivA setting */
137
OS_A_REG_RMW_FIELD(ah, AR_AN_SYNTH9,
138
AR_AN_SYNTH9_REFDIVA, refDivA);
139
}
140
if (!fracMode) {
141
ndiv = (freq * (refDivA >> aModeRefSel))/60;
142
channelSel = ndiv & 0x1ff;
143
channelFrac = (ndiv & 0xfffffe00) * 2;
144
channelSel = (channelSel << 17) | channelFrac;
145
}
146
}
147
148
reg32 = reg32 | (bMode << 29) | (fracMode << 28) |
149
(aModeRefSel << 26) | (channelSel);
150
151
OS_REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
152
153
AH_PRIVATE(ah)->ah_curchan = chan;
154
155
return AH_TRUE;
156
}
157
158
/*
159
* Return a reference to the requested RF Bank.
160
*/
161
static uint32_t *
162
ar9287GetRfBank(struct ath_hal *ah, int bank)
163
{
164
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unknown RF Bank %d requested\n",
165
__func__, bank);
166
return AH_NULL;
167
}
168
169
/*
170
* Reads EEPROM header info from device structure and programs
171
* all rf registers
172
*/
173
static HAL_BOOL
174
ar9287SetRfRegs(struct ath_hal *ah, const struct ieee80211_channel *chan,
175
uint16_t modesIndex, uint16_t *rfXpdGain)
176
{
177
return AH_TRUE; /* nothing to do */
178
}
179
180
/*
181
* Read the transmit power levels from the structures taken from EEPROM
182
* Interpolate read transmit power values for this channel
183
* Organize the transmit power values into a table for writing into the hardware
184
*/
185
186
static HAL_BOOL
187
ar9287SetPowerTable(struct ath_hal *ah, int16_t *pPowerMin, int16_t *pPowerMax,
188
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
189
{
190
return AH_TRUE;
191
}
192
193
#if 0
194
static int16_t
195
ar9287GetMinPower(struct ath_hal *ah, EXPN_DATA_PER_CHANNEL_5112 *data)
196
{
197
int i, minIndex;
198
int16_t minGain,minPwr,minPcdac,retVal;
199
200
/* Assume NUM_POINTS_XPD0 > 0 */
201
minGain = data->pDataPerXPD[0].xpd_gain;
202
for (minIndex=0,i=1; i<NUM_XPD_PER_CHANNEL; i++) {
203
if (data->pDataPerXPD[i].xpd_gain < minGain) {
204
minIndex = i;
205
minGain = data->pDataPerXPD[i].xpd_gain;
206
}
207
}
208
minPwr = data->pDataPerXPD[minIndex].pwr_t4[0];
209
minPcdac = data->pDataPerXPD[minIndex].pcdac[0];
210
for (i=1; i<NUM_POINTS_XPD0; i++) {
211
if (data->pDataPerXPD[minIndex].pwr_t4[i] < minPwr) {
212
minPwr = data->pDataPerXPD[minIndex].pwr_t4[i];
213
minPcdac = data->pDataPerXPD[minIndex].pcdac[i];
214
}
215
}
216
retVal = minPwr - (minPcdac*2);
217
return(retVal);
218
}
219
#endif
220
221
static HAL_BOOL
222
ar9287GetChannelMaxMinPower(struct ath_hal *ah,
223
const struct ieee80211_channel *chan,
224
int16_t *maxPow, int16_t *minPow)
225
{
226
#if 0
227
struct ath_hal_5212 *ahp = AH5212(ah);
228
int numChannels=0,i,last;
229
int totalD, totalF,totalMin;
230
EXPN_DATA_PER_CHANNEL_5112 *data=AH_NULL;
231
EEPROM_POWER_EXPN_5112 *powerArray=AH_NULL;
232
233
*maxPow = 0;
234
if (IS_CHAN_A(chan)) {
235
powerArray = ahp->ah_modePowerArray5112;
236
data = powerArray[headerInfo11A].pDataPerChannel;
237
numChannels = powerArray[headerInfo11A].numChannels;
238
} else if (IS_CHAN_G(chan) || IS_CHAN_108G(chan)) {
239
/* XXX - is this correct? Should we also use the same power for turbo G? */
240
powerArray = ahp->ah_modePowerArray5112;
241
data = powerArray[headerInfo11G].pDataPerChannel;
242
numChannels = powerArray[headerInfo11G].numChannels;
243
} else if (IS_CHAN_B(chan)) {
244
powerArray = ahp->ah_modePowerArray5112;
245
data = powerArray[headerInfo11B].pDataPerChannel;
246
numChannels = powerArray[headerInfo11B].numChannels;
247
} else {
248
return (AH_TRUE);
249
}
250
/* Make sure the channel is in the range of the TP values
251
* (freq piers)
252
*/
253
if ((numChannels < 1) ||
254
(chan->channel < data[0].channelValue) ||
255
(chan->channel > data[numChannels-1].channelValue))
256
return(AH_FALSE);
257
258
/* Linearly interpolate the power value now */
259
for (last=0,i=0;
260
(i<numChannels) && (chan->channel > data[i].channelValue);
261
last=i++);
262
totalD = data[i].channelValue - data[last].channelValue;
263
if (totalD > 0) {
264
totalF = data[i].maxPower_t4 - data[last].maxPower_t4;
265
*maxPow = (int8_t) ((totalF*(chan->channel-data[last].channelValue) + data[last].maxPower_t4*totalD)/totalD);
266
267
totalMin = ar9287GetMinPower(ah,&data[i]) - ar9287GetMinPower(ah, &data[last]);
268
*minPow = (int8_t) ((totalMin*(chan->channel-data[last].channelValue) + ar9287GetMinPower(ah, &data[last])*totalD)/totalD);
269
return (AH_TRUE);
270
} else {
271
if (chan->channel == data[i].channelValue) {
272
*maxPow = data[i].maxPower_t4;
273
*minPow = ar9287GetMinPower(ah, &data[i]);
274
return(AH_TRUE);
275
} else
276
return(AH_FALSE);
277
}
278
#else
279
*maxPow = *minPow = 0;
280
return AH_FALSE;
281
#endif
282
}
283
284
/*
285
* The ordering of nfarray is thus:
286
*
287
* nfarray[0]: Chain 0 ctl
288
* nfarray[1]: Chain 1 ctl
289
* nfarray[2]: Chain 2 ctl
290
* nfarray[3]: Chain 0 ext
291
* nfarray[4]: Chain 1 ext
292
* nfarray[5]: Chain 2 ext
293
*/
294
static void
295
ar9287GetNoiseFloor(struct ath_hal *ah, int16_t nfarray[])
296
{
297
int16_t nf;
298
299
nf = MS(OS_REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR);
300
if (nf & 0x100)
301
nf = 0 - ((nf ^ 0x1ff) + 1);
302
HALDEBUG(ah, HAL_DEBUG_NFCAL,
303
"NF calibrated [ctl] [chain 0] is %d\n", nf);
304
nfarray[0] = nf;
305
306
nf = MS(OS_REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR);
307
if (nf & 0x100)
308
nf = 0 - ((nf ^ 0x1ff) + 1);
309
HALDEBUG(ah, HAL_DEBUG_NFCAL,
310
"NF calibrated [ctl] [chain 1] is %d\n", nf);
311
nfarray[1] = nf;
312
313
nf = MS(OS_REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR);
314
if (nf & 0x100)
315
nf = 0 - ((nf ^ 0x1ff) + 1);
316
HALDEBUG(ah, HAL_DEBUG_NFCAL,
317
"NF calibrated [ext] [chain 0] is %d\n", nf);
318
nfarray[3] = nf;
319
320
nf = MS(OS_REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR);
321
if (nf & 0x100)
322
nf = 0 - ((nf ^ 0x1ff) + 1);
323
HALDEBUG(ah, HAL_DEBUG_NFCAL,
324
"NF calibrated [ext] [chain 1] is %d\n", nf);
325
nfarray[4] = nf;
326
327
/* Chain 2 - invalid */
328
nfarray[2] = 0;
329
nfarray[5] = 0;
330
331
}
332
333
/*
334
* Adjust NF based on statistical values for 5GHz frequencies.
335
* Stubbed:Not used by Fowl
336
*/
337
int16_t
338
ar9287GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
339
{
340
return 0;
341
}
342
343
/*
344
* Free memory for analog bank scratch buffers
345
*/
346
static void
347
ar9287RfDetach(struct ath_hal *ah)
348
{
349
struct ath_hal_5212 *ahp = AH5212(ah);
350
351
HALASSERT(ahp->ah_rfHal != AH_NULL);
352
ath_hal_free(ahp->ah_rfHal);
353
ahp->ah_rfHal = AH_NULL;
354
}
355
356
HAL_BOOL
357
ar9287RfAttach(struct ath_hal *ah, HAL_STATUS *status)
358
{
359
struct ath_hal_5212 *ahp = AH5212(ah);
360
struct ar9287State *priv;
361
362
HALDEBUG(ah, HAL_DEBUG_ATTACH, "%s: attach AR9280 radio\n", __func__);
363
364
HALASSERT(ahp->ah_rfHal == AH_NULL);
365
priv = ath_hal_malloc(sizeof(struct ar9287State));
366
if (priv == AH_NULL) {
367
HALDEBUG(ah, HAL_DEBUG_ANY,
368
"%s: cannot allocate private state\n", __func__);
369
*status = HAL_ENOMEM; /* XXX */
370
return AH_FALSE;
371
}
372
priv->base.rfDetach = ar9287RfDetach;
373
priv->base.writeRegs = ar9287WriteRegs;
374
priv->base.getRfBank = ar9287GetRfBank;
375
priv->base.setChannel = ar9287SetChannel;
376
priv->base.setRfRegs = ar9287SetRfRegs;
377
priv->base.setPowerTable = ar9287SetPowerTable;
378
priv->base.getChannelMaxMinPower = ar9287GetChannelMaxMinPower;
379
priv->base.getNfAdjust = ar9287GetNfAdjust;
380
381
ahp->ah_pcdacTable = priv->pcdacTable;
382
ahp->ah_pcdacTableSize = sizeof(priv->pcdacTable);
383
ahp->ah_rfHal = &priv->base;
384
/*
385
* Set noise floor adjust method; we arrange a
386
* direct call instead of thunking.
387
*/
388
AH_PRIVATE(ah)->ah_getNfAdjust = priv->base.getNfAdjust;
389
AH_PRIVATE(ah)->ah_getNoiseFloor = ar9287GetNoiseFloor;
390
391
return AH_TRUE;
392
}
393
394
static HAL_BOOL
395
ar9287RfProbe(struct ath_hal *ah)
396
{
397
return (AR_SREV_KIWI(ah));
398
}
399
400
AH_RF(RF9287, ar9287RfProbe, ar9287RfAttach);
401
402