Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/ath_hal/ar9002/ar9287_reset.c
39566 views
1
/*-
2
* SPDX-License-Identifier: ISC
3
*
4
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5
* Copyright (c) 2002-2008 Atheros Communications, Inc.
6
*
7
* Permission to use, copy, modify, and/or distribute this software for any
8
* purpose with or without fee is hereby granted, provided that the above
9
* copyright notice and this permission notice appear in all copies.
10
*
11
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18
*/
19
20
#include "opt_ah.h"
21
22
#include "ah.h"
23
#include "ah_internal.h"
24
#include "ah_devid.h"
25
26
#include "ah_eeprom_v14.h"
27
#include "ah_eeprom_9287.h"
28
29
#include "ar5416/ar5416.h"
30
#include "ar5416/ar5416reg.h"
31
#include "ar5416/ar5416phy.h"
32
33
#include "ar9002/ar9287phy.h"
34
#include "ar9002/ar9287an.h"
35
36
#include "ar9002/ar9287_olc.h"
37
#include "ar9002/ar9287_reset.h"
38
39
/*
40
* Set the TX power calibration table per-chain.
41
*
42
* This only supports open-loop TX power control for the AR9287.
43
*/
44
static void
45
ar9287SetPowerCalTable(struct ath_hal *ah,
46
const struct ieee80211_channel *chan, int16_t *pTxPowerIndexOffset)
47
{
48
struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
49
uint8_t *pCalBChans = NULL;
50
uint16_t pdGainOverlap_t2;
51
uint16_t numPiers = 0, i;
52
uint16_t numXpdGain, xpdMask;
53
uint16_t xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
54
uint32_t regChainOffset;
55
HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
56
struct ar9287_eeprom *pEepData = &ee->ee_base;
57
58
xpdMask = pEepData->modalHeader.xpdGain;
59
60
if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
61
AR9287_EEP_MINOR_VER_2)
62
pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
63
else
64
pdGainOverlap_t2 = (uint16_t)(MS(OS_REG_READ(ah, AR_PHY_TPCRG5),
65
AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
66
67
/* Note: Kiwi should only be 2ghz.. */
68
if (IEEE80211_IS_CHAN_2GHZ(chan)) {
69
pCalBChans = pEepData->calFreqPier2G;
70
numPiers = AR9287_NUM_2G_CAL_PIERS;
71
pRawDatasetOpenLoop = (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
72
AH5416(ah)->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
73
}
74
numXpdGain = 0;
75
76
/* Calculate the value of xpdgains from the xpdGain Mask */
77
for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
78
if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
79
if (numXpdGain >= AR5416_NUM_PD_GAINS)
80
break;
81
xpdGainValues[numXpdGain] =
82
(uint16_t)(AR5416_PD_GAINS_IN_MASK-i);
83
numXpdGain++;
84
}
85
}
86
87
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
88
(numXpdGain - 1) & 0x3);
89
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
90
xpdGainValues[0]);
91
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
92
xpdGainValues[1]);
93
OS_REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
94
xpdGainValues[2]);
95
96
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
97
regChainOffset = i * 0x1000;
98
99
if (pEepData->baseEepHeader.txMask & (1 << i)) {
100
int8_t txPower;
101
pRawDatasetOpenLoop =
102
(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
103
ar9287olcGetTxGainIndex(ah, chan,
104
pRawDatasetOpenLoop,
105
pCalBChans, numPiers,
106
&txPower);
107
ar9287olcSetPDADCs(ah, txPower, i);
108
}
109
}
110
111
*pTxPowerIndexOffset = 0;
112
}
113
114
/* XXX hard-coded values? */
115
#define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
116
117
/*
118
* ar9287SetPowerPerRateTable
119
*
120
* Sets the transmit power in the baseband for the given
121
* operating channel and mode.
122
*
123
* This is like the v14 EEPROM table except the 5GHz code.
124
*/
125
static HAL_BOOL
126
ar9287SetPowerPerRateTable(struct ath_hal *ah,
127
struct ar9287_eeprom *pEepData,
128
const struct ieee80211_channel *chan,
129
int16_t *ratesArray, uint16_t cfgCtl,
130
uint16_t AntennaReduction,
131
uint16_t twiceMaxRegulatoryPower,
132
uint16_t powerLimit)
133
{
134
#define N(a) (sizeof(a)/sizeof(a[0]))
135
/* Local defines to distinguish between extension and control CTL's */
136
#define EXT_ADDITIVE (0x8000)
137
#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
138
#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
139
#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
140
141
uint16_t twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
142
int i;
143
int16_t twiceLargestAntenna;
144
struct cal_ctl_data_ar9287 *rep;
145
CAL_TARGET_POWER_LEG targetPowerOfdm;
146
CAL_TARGET_POWER_LEG targetPowerCck = {0, {0, 0, 0, 0}};
147
CAL_TARGET_POWER_LEG targetPowerOfdmExt = {0, {0, 0, 0, 0}};
148
CAL_TARGET_POWER_LEG targetPowerCckExt = {0, {0, 0, 0, 0}};
149
CAL_TARGET_POWER_HT targetPowerHt20;
150
CAL_TARGET_POWER_HT targetPowerHt40 = {0, {0, 0, 0, 0}};
151
int16_t scaledPower, minCtlPower;
152
153
#define SUB_NUM_CTL_MODES_AT_2G_40 3 /* excluding HT40, EXT-OFDM, EXT-CCK */
154
static const uint16_t ctlModesFor11g[] = {
155
CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
156
};
157
const uint16_t *pCtlMode;
158
uint16_t numCtlModes, ctlMode, freq;
159
CHAN_CENTERS centers;
160
161
ar5416GetChannelCenters(ah, chan, &centers);
162
163
/* Compute TxPower reduction due to Antenna Gain */
164
165
twiceLargestAntenna = AH_MAX(
166
pEepData->modalHeader.antennaGainCh[0],
167
pEepData->modalHeader.antennaGainCh[1]);
168
169
twiceLargestAntenna = (int16_t)AH_MIN((AntennaReduction) - twiceLargestAntenna, 0);
170
171
/* XXX setup for 5212 use (really used?) */
172
ath_hal_eepromSet(ah, AR_EEP_ANTGAINMAX_2, twiceLargestAntenna);
173
174
/*
175
* scaledPower is the minimum of the user input power level and
176
* the regulatory allowed power level
177
*/
178
scaledPower = AH_MIN(powerLimit, twiceMaxRegulatoryPower + twiceLargestAntenna);
179
180
/* Reduce scaled Power by number of chains active to get to per chain tx power level */
181
/* TODO: better value than these? */
182
switch (owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask)) {
183
case 1:
184
break;
185
case 2:
186
scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
187
break;
188
default:
189
return AH_FALSE; /* Unsupported number of chains */
190
}
191
192
scaledPower = AH_MAX(0, scaledPower);
193
194
/* Get target powers from EEPROM - our baseline for TX Power */
195
/* XXX assume channel is 2ghz */
196
if (1) {
197
/* Setup for CTL modes */
198
numCtlModes = N(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40; /* CTL_11B, CTL_11G, CTL_2GHT20 */
199
pCtlMode = ctlModesFor11g;
200
201
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
202
AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCck, 4, AH_FALSE);
203
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
204
AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdm, 4, AH_FALSE);
205
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT20,
206
AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerHt20, 8, AH_FALSE);
207
208
if (IEEE80211_IS_CHAN_HT40(chan)) {
209
numCtlModes = N(ctlModesFor11g); /* All 2G CTL's */
210
211
ar5416GetTargetPowers(ah, chan, pEepData->calTargetPower2GHT40,
212
AR9287_NUM_2G_40_TARGET_POWERS, &targetPowerHt40, 8, AH_TRUE);
213
/* Get target powers for extension channels */
214
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPowerCck,
215
AR9287_NUM_2G_CCK_TARGET_POWERS, &targetPowerCckExt, 4, AH_TRUE);
216
ar5416GetTargetPowersLeg(ah, chan, pEepData->calTargetPower2G,
217
AR9287_NUM_2G_20_TARGET_POWERS, &targetPowerOfdmExt, 4, AH_TRUE);
218
}
219
}
220
221
/*
222
* For MIMO, need to apply regulatory caps individually across dynamically
223
* running modes: CCK, OFDM, HT20, HT40
224
*
225
* The outer loop walks through each possible applicable runtime mode.
226
* The inner loop walks through each ctlIndex entry in EEPROM.
227
* The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
228
*
229
*/
230
for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
231
HAL_BOOL isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
232
(pCtlMode[ctlMode] == CTL_2GHT40);
233
if (isHt40CtlMode) {
234
freq = centers.ctl_center;
235
} else if (pCtlMode[ctlMode] & EXT_ADDITIVE) {
236
freq = centers.ext_center;
237
} else {
238
freq = centers.ctl_center;
239
}
240
241
/* walk through each CTL index stored in EEPROM */
242
for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
243
uint16_t twiceMinEdgePower;
244
245
/* compare test group from regulatory channel list with test mode from pCtlMode list */
246
if ((((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == pEepData->ctlIndex[i]) ||
247
(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) ==
248
((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
249
rep = &(pEepData->ctlData[i]);
250
twiceMinEdgePower = ar5416GetMaxEdgePower(freq,
251
rep->ctlEdges[owl_get_ntxchains(AH5416(ah)->ah_tx_chainmask) - 1],
252
IEEE80211_IS_CHAN_2GHZ(chan));
253
if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
254
/* Find the minimum of all CTL edge powers that apply to this channel */
255
twiceMaxEdgePower = AH_MIN(twiceMaxEdgePower, twiceMinEdgePower);
256
} else {
257
/* specific */
258
twiceMaxEdgePower = twiceMinEdgePower;
259
break;
260
}
261
}
262
}
263
minCtlPower = (uint8_t)AH_MIN(twiceMaxEdgePower, scaledPower);
264
/* Apply ctl mode to correct target power set */
265
switch(pCtlMode[ctlMode]) {
266
case CTL_11B:
267
for (i = 0; i < N(targetPowerCck.tPow2x); i++) {
268
targetPowerCck.tPow2x[i] = (uint8_t)AH_MIN(targetPowerCck.tPow2x[i], minCtlPower);
269
}
270
break;
271
case CTL_11A:
272
case CTL_11G:
273
for (i = 0; i < N(targetPowerOfdm.tPow2x); i++) {
274
targetPowerOfdm.tPow2x[i] = (uint8_t)AH_MIN(targetPowerOfdm.tPow2x[i], minCtlPower);
275
}
276
break;
277
case CTL_5GHT20:
278
case CTL_2GHT20:
279
for (i = 0; i < N(targetPowerHt20.tPow2x); i++) {
280
targetPowerHt20.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt20.tPow2x[i], minCtlPower);
281
}
282
break;
283
case CTL_11B_EXT:
284
targetPowerCckExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerCckExt.tPow2x[0], minCtlPower);
285
break;
286
case CTL_11A_EXT:
287
case CTL_11G_EXT:
288
targetPowerOfdmExt.tPow2x[0] = (uint8_t)AH_MIN(targetPowerOfdmExt.tPow2x[0], minCtlPower);
289
break;
290
case CTL_5GHT40:
291
case CTL_2GHT40:
292
for (i = 0; i < N(targetPowerHt40.tPow2x); i++) {
293
targetPowerHt40.tPow2x[i] = (uint8_t)AH_MIN(targetPowerHt40.tPow2x[i], minCtlPower);
294
}
295
break;
296
default:
297
return AH_FALSE;
298
break;
299
}
300
} /* end ctl mode checking */
301
302
/* Set rates Array from collected data */
303
ar5416SetRatesArrayFromTargetPower(ah, chan, ratesArray,
304
&targetPowerCck,
305
&targetPowerCckExt,
306
&targetPowerOfdm,
307
&targetPowerOfdmExt,
308
&targetPowerHt20,
309
&targetPowerHt40);
310
return AH_TRUE;
311
#undef EXT_ADDITIVE
312
#undef CTL_11A_EXT
313
#undef CTL_11G_EXT
314
#undef CTL_11B_EXT
315
#undef SUB_NUM_CTL_MODES_AT_5G_40
316
#undef SUB_NUM_CTL_MODES_AT_2G_40
317
#undef N
318
}
319
320
#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
321
322
/*
323
* This is based off of the AR5416/AR9285 code and likely could
324
* be unified in the future.
325
*/
326
HAL_BOOL
327
ar9287SetTransmitPower(struct ath_hal *ah,
328
const struct ieee80211_channel *chan, uint16_t *rfXpdGain)
329
{
330
#define POW_SM(_r, _s) (((_r) & 0x3f) << (_s))
331
#define N(a) (sizeof (a) / sizeof (a[0]))
332
333
const struct modal_eep_ar9287_header *pModal;
334
struct ath_hal_5212 *ahp = AH5212(ah);
335
int16_t txPowerIndexOffset = 0;
336
int i;
337
338
uint16_t cfgCtl;
339
uint16_t powerLimit;
340
uint16_t twiceAntennaReduction;
341
uint16_t twiceMaxRegulatoryPower;
342
int16_t maxPower;
343
HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
344
struct ar9287_eeprom *pEepData = &ee->ee_base;
345
346
AH5416(ah)->ah_ht40PowerIncForPdadc = 2;
347
348
/* Setup info for the actual eeprom */
349
OS_MEMZERO(AH5416(ah)->ah_ratesArray,
350
sizeof(AH5416(ah)->ah_ratesArray));
351
cfgCtl = ath_hal_getctl(ah, chan);
352
powerLimit = chan->ic_maxregpower * 2;
353
twiceAntennaReduction = chan->ic_maxantgain;
354
twiceMaxRegulatoryPower = AH_MIN(MAX_RATE_POWER,
355
AH_PRIVATE(ah)->ah_powerLimit);
356
pModal = &pEepData->modalHeader;
357
HALDEBUG(ah, HAL_DEBUG_RESET, "%s Channel=%u CfgCtl=%u\n",
358
__func__,chan->ic_freq, cfgCtl );
359
360
/* XXX Assume Minor is v2 or later */
361
AH5416(ah)->ah_ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
362
363
/* Fetch per-rate power table for the given channel */
364
if (! ar9287SetPowerPerRateTable(ah, pEepData, chan,
365
&AH5416(ah)->ah_ratesArray[0],
366
cfgCtl,
367
twiceAntennaReduction,
368
twiceMaxRegulatoryPower, powerLimit)) {
369
HALDEBUG(ah, HAL_DEBUG_ANY,
370
"%s: unable to set tx power per rate table\n", __func__);
371
return AH_FALSE;
372
}
373
374
/* Set TX power control calibration curves for each TX chain */
375
ar9287SetPowerCalTable(ah, chan, &txPowerIndexOffset);
376
377
/* Calculate maximum power level */
378
maxPower = AH_MAX(AH5416(ah)->ah_ratesArray[rate6mb],
379
AH5416(ah)->ah_ratesArray[rateHt20_0]);
380
maxPower = AH_MAX(maxPower,
381
AH5416(ah)->ah_ratesArray[rate1l]);
382
383
if (IEEE80211_IS_CHAN_HT40(chan))
384
maxPower = AH_MAX(maxPower,
385
AH5416(ah)->ah_ratesArray[rateHt40_0]);
386
387
ahp->ah_tx6PowerInHalfDbm = maxPower;
388
AH_PRIVATE(ah)->ah_maxPowerLevel = maxPower;
389
ahp->ah_txPowerIndexOffset = txPowerIndexOffset;
390
391
/*
392
* txPowerIndexOffset is set by the SetPowerTable() call -
393
* adjust the rate table (0 offset if rates EEPROM not loaded)
394
*/
395
/* XXX what about the pwrTableOffset? */
396
for (i = 0; i < N(AH5416(ah)->ah_ratesArray); i++) {
397
AH5416(ah)->ah_ratesArray[i] =
398
(int16_t)(txPowerIndexOffset +
399
AH5416(ah)->ah_ratesArray[i]);
400
/* -5 dBm offset for Merlin and later; this includes Kiwi */
401
AH5416(ah)->ah_ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
402
if (AH5416(ah)->ah_ratesArray[i] > AR5416_MAX_RATE_POWER)
403
AH5416(ah)->ah_ratesArray[i] = AR5416_MAX_RATE_POWER;
404
if (AH5416(ah)->ah_ratesArray[i] < 0)
405
AH5416(ah)->ah_ratesArray[i] = 0;
406
}
407
408
#ifdef AH_EEPROM_DUMP
409
ar5416PrintPowerPerRate(ah, AH5416(ah)->ah_ratesArray);
410
#endif
411
412
/*
413
* Adjust the HT40 power to meet the correct target TX power
414
* for 40MHz mode, based on TX power curves that are established
415
* for 20MHz mode.
416
*
417
* XXX handle overflow/too high power level?
418
*/
419
if (IEEE80211_IS_CHAN_HT40(chan)) {
420
AH5416(ah)->ah_ratesArray[rateHt40_0] +=
421
AH5416(ah)->ah_ht40PowerIncForPdadc;
422
AH5416(ah)->ah_ratesArray[rateHt40_1] +=
423
AH5416(ah)->ah_ht40PowerIncForPdadc;
424
AH5416(ah)->ah_ratesArray[rateHt40_2] +=
425
AH5416(ah)->ah_ht40PowerIncForPdadc;
426
AH5416(ah)->ah_ratesArray[rateHt40_3] +=
427
AH5416(ah)->ah_ht40PowerIncForPdadc;
428
AH5416(ah)->ah_ratesArray[rateHt40_4] +=
429
AH5416(ah)->ah_ht40PowerIncForPdadc;
430
AH5416(ah)->ah_ratesArray[rateHt40_5] +=
431
AH5416(ah)->ah_ht40PowerIncForPdadc;
432
AH5416(ah)->ah_ratesArray[rateHt40_6] +=
433
AH5416(ah)->ah_ht40PowerIncForPdadc;
434
AH5416(ah)->ah_ratesArray[rateHt40_7] +=
435
AH5416(ah)->ah_ht40PowerIncForPdadc;
436
}
437
438
/* Write the TX power rate registers */
439
ar5416WriteTxPowerRateRegisters(ah, chan, AH5416(ah)->ah_ratesArray);
440
441
return AH_TRUE;
442
#undef POW_SM
443
#undef N
444
}
445
446
/*
447
* Read EEPROM header info and program the device for correct operation
448
* given the channel value.
449
*/
450
HAL_BOOL
451
ar9287SetBoardValues(struct ath_hal *ah, const struct ieee80211_channel *chan)
452
{
453
const HAL_EEPROM_9287 *ee = AH_PRIVATE(ah)->ah_eeprom;
454
const struct ar9287_eeprom *eep = &ee->ee_base;
455
const struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
456
uint16_t antWrites[AR9287_ANT_16S];
457
uint32_t regChainOffset, regval;
458
uint8_t txRxAttenLocal;
459
int i, j, offset_num;
460
461
pModal = &eep->modalHeader;
462
463
antWrites[0] = (uint16_t)((pModal->antCtrlCommon >> 28) & 0xF);
464
antWrites[1] = (uint16_t)((pModal->antCtrlCommon >> 24) & 0xF);
465
antWrites[2] = (uint16_t)((pModal->antCtrlCommon >> 20) & 0xF);
466
antWrites[3] = (uint16_t)((pModal->antCtrlCommon >> 16) & 0xF);
467
antWrites[4] = (uint16_t)((pModal->antCtrlCommon >> 12) & 0xF);
468
antWrites[5] = (uint16_t)((pModal->antCtrlCommon >> 8) & 0xF);
469
antWrites[6] = (uint16_t)((pModal->antCtrlCommon >> 4) & 0xF);
470
antWrites[7] = (uint16_t)(pModal->antCtrlCommon & 0xF);
471
472
offset_num = 8;
473
474
for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
475
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 28) & 0xf);
476
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 10) & 0x3);
477
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 8) & 0x3);
478
antWrites[j++] = 0;
479
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 6) & 0x3);
480
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 4) & 0x3);
481
antWrites[j++] = (uint16_t)((pModal->antCtrlChain[i] >> 2) & 0x3);
482
antWrites[j++] = (uint16_t)(pModal->antCtrlChain[i] & 0x3);
483
}
484
485
OS_REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
486
487
for (i = 0; i < AR9287_MAX_CHAINS; i++) {
488
regChainOffset = i * 0x1000;
489
490
OS_REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
491
pModal->antCtrlChain[i]);
492
493
OS_REG_WRITE(ah, AR_PHY_TIMING_CTRL4_CHAIN(0) + regChainOffset,
494
(OS_REG_READ(ah, AR_PHY_TIMING_CTRL4_CHAIN(0)
495
+ regChainOffset)
496
& ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
497
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
498
SM(pModal->iqCalICh[i],
499
AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
500
SM(pModal->iqCalQCh[i],
501
AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
502
503
txRxAttenLocal = pModal->txRxAttenCh[i];
504
505
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
506
AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
507
pModal->bswMargin[i]);
508
OS_REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
509
AR_PHY_GAIN_2GHZ_XATTEN1_DB,
510
pModal->bswAtten[i]);
511
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
512
AR9280_PHY_RXGAIN_TXRX_ATTEN,
513
txRxAttenLocal);
514
OS_REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
515
AR9280_PHY_RXGAIN_TXRX_MARGIN,
516
pModal->rxTxMarginCh[i]);
517
}
518
519
if (IEEE80211_IS_CHAN_HT40(chan))
520
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
521
AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
522
else
523
OS_REG_RMW_FIELD(ah, AR_PHY_SETTLING,
524
AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
525
526
OS_REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
527
AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
528
529
OS_REG_WRITE(ah, AR_PHY_RF_CTL4,
530
SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
531
| SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
532
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
533
| SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
534
535
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
536
AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
537
538
OS_REG_RMW_FIELD(ah, AR_PHY_CCA,
539
AR9280_PHY_CCA_THRESH62, pModal->thresh62);
540
OS_REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
541
AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
542
543
regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH0);
544
regval &= ~(AR9287_AN_RF2G3_DB1 |
545
AR9287_AN_RF2G3_DB2 |
546
AR9287_AN_RF2G3_OB_CCK |
547
AR9287_AN_RF2G3_OB_PSK |
548
AR9287_AN_RF2G3_OB_QAM |
549
AR9287_AN_RF2G3_OB_PAL_OFF);
550
regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
551
SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
552
SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
553
SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
554
SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
555
SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
556
557
/* Analog write - requires a 100usec delay */
558
OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH0, regval);
559
560
regval = OS_REG_READ(ah, AR9287_AN_RF2G3_CH1);
561
regval &= ~(AR9287_AN_RF2G3_DB1 |
562
AR9287_AN_RF2G3_DB2 |
563
AR9287_AN_RF2G3_OB_CCK |
564
AR9287_AN_RF2G3_OB_PSK |
565
AR9287_AN_RF2G3_OB_QAM |
566
AR9287_AN_RF2G3_OB_PAL_OFF);
567
regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
568
SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
569
SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
570
SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
571
SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
572
SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
573
574
OS_A_REG_WRITE(ah, AR9287_AN_RF2G3_CH1, regval);
575
576
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
577
AR_PHY_TX_FRAME_TO_DATA_START, pModal->txFrameToDataStart);
578
OS_REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
579
AR_PHY_TX_FRAME_TO_PA_ON, pModal->txFrameToPaOn);
580
581
OS_A_REG_RMW_FIELD(ah, AR9287_AN_TOP2,
582
AR9287_AN_TOP2_XPABIAS_LVL, pModal->xpaBiasLvl);
583
584
return AH_TRUE;
585
}
586
587