Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/if_ath.c
39507 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer,
12
* without modification.
13
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
14
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15
* redistribution must be conditioned upon including a substantially
16
* similar Disclaimer requirement for further binary redistribution.
17
*
18
* NO WARRANTY
19
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29
* THE POSSIBILITY OF SUCH DAMAGES.
30
*/
31
32
#include <sys/cdefs.h>
33
/*
34
* Driver for the Atheros Wireless LAN controller.
35
*
36
* This software is derived from work of Atsushi Onoe; his contribution
37
* is greatly appreciated.
38
*/
39
40
#include "opt_inet.h"
41
#include "opt_ath.h"
42
/*
43
* This is needed for register operations which are performed
44
* by the driver - eg, calls to ath_hal_gettsf32().
45
*
46
* It's also required for any AH_DEBUG checks in here, eg the
47
* module dependencies.
48
*/
49
#include "opt_ah.h"
50
#include "opt_wlan.h"
51
52
#include <sys/param.h>
53
#include <sys/systm.h>
54
#include <sys/sysctl.h>
55
#include <sys/mbuf.h>
56
#include <sys/malloc.h>
57
#include <sys/lock.h>
58
#include <sys/mutex.h>
59
#include <sys/kernel.h>
60
#include <sys/socket.h>
61
#include <sys/sockio.h>
62
#include <sys/errno.h>
63
#include <sys/callout.h>
64
#include <sys/bus.h>
65
#include <sys/endian.h>
66
#include <sys/kthread.h>
67
#include <sys/taskqueue.h>
68
#include <sys/priv.h>
69
#include <sys/module.h>
70
#include <sys/ktr.h>
71
#include <sys/smp.h> /* for mp_ncpus */
72
73
#include <machine/bus.h>
74
75
#include <net/if.h>
76
#include <net/if_var.h>
77
#include <net/if_dl.h>
78
#include <net/if_media.h>
79
#include <net/if_types.h>
80
#include <net/if_arp.h>
81
#include <net/ethernet.h>
82
#include <net/if_llc.h>
83
84
#include <net80211/ieee80211_var.h>
85
#include <net80211/ieee80211_regdomain.h>
86
#ifdef IEEE80211_SUPPORT_SUPERG
87
#include <net80211/ieee80211_superg.h>
88
#endif
89
#ifdef IEEE80211_SUPPORT_TDMA
90
#include <net80211/ieee80211_tdma.h>
91
#endif
92
93
#include <net/bpf.h>
94
95
#ifdef INET
96
#include <netinet/in.h>
97
#include <netinet/if_ether.h>
98
#endif
99
100
#include <dev/ath/if_athvar.h>
101
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
102
#include <dev/ath/ath_hal/ah_diagcodes.h>
103
104
#include <dev/ath/if_ath_debug.h>
105
#include <dev/ath/if_ath_misc.h>
106
#include <dev/ath/if_ath_tsf.h>
107
#include <dev/ath/if_ath_tx.h>
108
#include <dev/ath/if_ath_sysctl.h>
109
#include <dev/ath/if_ath_led.h>
110
#include <dev/ath/if_ath_keycache.h>
111
#include <dev/ath/if_ath_rx.h>
112
#include <dev/ath/if_ath_rx_edma.h>
113
#include <dev/ath/if_ath_tx_edma.h>
114
#include <dev/ath/if_ath_beacon.h>
115
#include <dev/ath/if_ath_btcoex.h>
116
#include <dev/ath/if_ath_btcoex_mci.h>
117
#include <dev/ath/if_ath_spectral.h>
118
#include <dev/ath/if_ath_lna_div.h>
119
#include <dev/ath/if_athdfs.h>
120
#include <dev/ath/if_ath_ioctl.h>
121
#include <dev/ath/if_ath_descdma.h>
122
123
#ifdef ATH_TX99_DIAG
124
#include <dev/ath/ath_tx99/ath_tx99.h>
125
#endif
126
127
#ifdef ATH_DEBUG_ALQ
128
#include <dev/ath/if_ath_alq.h>
129
#endif
130
131
/*
132
* Only enable this if you're working on PS-POLL support.
133
*/
134
#define ATH_SW_PSQ
135
136
/*
137
* ATH_BCBUF determines the number of vap's that can transmit
138
* beacons and also (currently) the number of vap's that can
139
* have unique mac addresses/bssid. When staggering beacons
140
* 4 is probably a good max as otherwise the beacons become
141
* very closely spaced and there is limited time for cab q traffic
142
* to go out. You can burst beacons instead but that is not good
143
* for stations in power save and at some point you really want
144
* another radio (and channel).
145
*
146
* The limit on the number of mac addresses is tied to our use of
147
* the U/L bit and tracking addresses in a byte; it would be
148
* worthwhile to allow more for applications like proxy sta.
149
*/
150
CTASSERT(ATH_BCBUF <= 8);
151
152
static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
153
const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
154
const uint8_t [IEEE80211_ADDR_LEN],
155
const uint8_t [IEEE80211_ADDR_LEN]);
156
static void ath_vap_delete(struct ieee80211vap *);
157
static int ath_init(struct ath_softc *);
158
static void ath_stop(struct ath_softc *);
159
static int ath_reset_vap(struct ieee80211vap *, u_long);
160
static int ath_transmit(struct ieee80211com *, struct mbuf *);
161
static void ath_watchdog(void *);
162
static void ath_parent(struct ieee80211com *);
163
static void ath_fatal_proc(void *, int);
164
static void ath_bmiss_vap(struct ieee80211vap *);
165
static void ath_bmiss_proc(void *, int);
166
static void ath_tsfoor_proc(void *, int);
167
static void ath_key_update_begin(struct ieee80211vap *);
168
static void ath_key_update_end(struct ieee80211vap *);
169
static void ath_update_mcast_hw(struct ath_softc *);
170
static void ath_update_mcast(struct ieee80211com *);
171
static void ath_update_promisc(struct ieee80211com *);
172
static void ath_updateslot(struct ieee80211com *);
173
static void ath_bstuck_proc(void *, int);
174
static void ath_reset_proc(void *, int);
175
static int ath_desc_alloc(struct ath_softc *);
176
static void ath_desc_free(struct ath_softc *);
177
static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
178
const uint8_t [IEEE80211_ADDR_LEN]);
179
static void ath_node_cleanup(struct ieee80211_node *);
180
static void ath_node_free(struct ieee80211_node *);
181
static void ath_node_getsignal(const struct ieee80211_node *,
182
int8_t *, int8_t *);
183
static void ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
184
static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
185
static int ath_tx_setup(struct ath_softc *, int, int);
186
static void ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
187
static void ath_tx_cleanup(struct ath_softc *);
188
static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
189
int dosched);
190
static void ath_tx_proc_q0(void *, int);
191
static void ath_tx_proc_q0123(void *, int);
192
static void ath_tx_proc(void *, int);
193
static void ath_txq_sched_tasklet(void *, int);
194
static int ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
195
static void ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
196
static void ath_scan_start(struct ieee80211com *);
197
static void ath_scan_end(struct ieee80211com *);
198
static void ath_set_channel(struct ieee80211com *);
199
#ifdef ATH_ENABLE_11N
200
static void ath_update_chw(struct ieee80211com *);
201
#endif /* ATH_ENABLE_11N */
202
static int ath_set_quiet_ie(struct ieee80211_node *, uint8_t *);
203
static void ath_calibrate(void *);
204
static int ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
205
static void ath_setup_stationkey(struct ieee80211_node *);
206
static void ath_newassoc(struct ieee80211_node *, int);
207
static int ath_setregdomain(struct ieee80211com *,
208
struct ieee80211_regdomain *, int,
209
struct ieee80211_channel []);
210
static void ath_getradiocaps(struct ieee80211com *, int, int *,
211
struct ieee80211_channel []);
212
static int ath_getchannels(struct ath_softc *);
213
214
static int ath_rate_setup(struct ath_softc *, u_int mode);
215
static void ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
216
217
static void ath_announce(struct ath_softc *);
218
219
static void ath_dfs_tasklet(void *, int);
220
static void ath_node_powersave(struct ieee80211_node *, int);
221
static int ath_node_set_tim(struct ieee80211_node *, int);
222
static void ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
223
224
#ifdef IEEE80211_SUPPORT_TDMA
225
#include <dev/ath/if_ath_tdma.h>
226
#endif
227
228
SYSCTL_DECL(_hw_ath);
229
230
/* XXX validate sysctl values */
231
static int ath_longcalinterval = 30; /* long cals every 30 secs */
232
SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
233
0, "long chip calibration interval (secs)");
234
static int ath_shortcalinterval = 100; /* short cals every 100 ms */
235
SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
236
0, "short chip calibration interval (msecs)");
237
static int ath_resetcalinterval = 20*60; /* reset cal state 20 mins */
238
SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
239
0, "reset chip calibration results (secs)");
240
static int ath_anicalinterval = 100; /* ANI calibration - 100 msec */
241
SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
242
0, "ANI calibration (msecs)");
243
244
int ath_rxbuf = ATH_RXBUF; /* # rx buffers to allocate */
245
SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
246
0, "rx buffers allocated");
247
int ath_txbuf = ATH_TXBUF; /* # tx buffers to allocate */
248
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
249
0, "tx buffers allocated");
250
int ath_txbuf_mgmt = ATH_MGMT_TXBUF; /* # mgmt tx buffers to allocate */
251
SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
252
0, "tx (mgmt) buffers allocated");
253
254
int ath_bstuck_threshold = 4; /* max missed beacons */
255
SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
256
0, "max missed beacon xmits before chip reset");
257
258
MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
259
260
void
261
ath_legacy_attach_comp_func(struct ath_softc *sc)
262
{
263
264
/*
265
* Special case certain configurations. Note the
266
* CAB queue is handled by these specially so don't
267
* include them when checking the txq setup mask.
268
*/
269
switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
270
case 0x01:
271
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
272
break;
273
case 0x0f:
274
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
275
break;
276
default:
277
TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
278
break;
279
}
280
}
281
282
/*
283
* Set the target power mode.
284
*
285
* If this is called during a point in time where
286
* the hardware is being programmed elsewhere, it will
287
* simply store it away and update it when all current
288
* uses of the hardware are completed.
289
*
290
* If the chip is going into network sleep or power off, then
291
* we will wait until all uses of the chip are done before
292
* going into network sleep or power off.
293
*
294
* If the chip is being programmed full-awake, then immediately
295
* program it full-awake so we can actually stay awake rather than
296
* the chip potentially going to sleep underneath us.
297
*/
298
void
299
_ath_power_setpower(struct ath_softc *sc, int power_state, int selfgen,
300
const char *file, int line)
301
{
302
ATH_LOCK_ASSERT(sc);
303
304
DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d, target=%d, cur=%d\n",
305
__func__,
306
file,
307
line,
308
power_state,
309
sc->sc_powersave_refcnt,
310
sc->sc_target_powerstate,
311
sc->sc_cur_powerstate);
312
313
sc->sc_target_powerstate = power_state;
314
315
/*
316
* Don't program the chip into network sleep if the chip
317
* is being programmed elsewhere.
318
*
319
* However, if the chip is being programmed /awake/, force
320
* the chip awake so we stay awake.
321
*/
322
if ((sc->sc_powersave_refcnt == 0 || power_state == HAL_PM_AWAKE) &&
323
power_state != sc->sc_cur_powerstate) {
324
sc->sc_cur_powerstate = power_state;
325
ath_hal_setpower(sc->sc_ah, power_state);
326
327
/*
328
* If the NIC is force-awake, then set the
329
* self-gen frame state appropriately.
330
*
331
* If the nic is in network sleep or full-sleep,
332
* we let the above call leave the self-gen
333
* state as "sleep".
334
*/
335
if (selfgen &&
336
sc->sc_cur_powerstate == HAL_PM_AWAKE &&
337
sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
338
ath_hal_setselfgenpower(sc->sc_ah,
339
sc->sc_target_selfgen_state);
340
}
341
}
342
}
343
344
/*
345
* Set the current self-generated frames state.
346
*
347
* This is separate from the target power mode. The chip may be
348
* awake but the desired state is "sleep", so frames sent to the
349
* destination has PWRMGT=1 in the 802.11 header. The NIC also
350
* needs to know to set PWRMGT=1 in self-generated frames.
351
*/
352
void
353
_ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
354
{
355
356
ATH_LOCK_ASSERT(sc);
357
358
DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
359
__func__,
360
file,
361
line,
362
power_state,
363
sc->sc_target_selfgen_state);
364
365
sc->sc_target_selfgen_state = power_state;
366
367
/*
368
* If the NIC is force-awake, then set the power state.
369
* Network-state and full-sleep will already transition it to
370
* mark self-gen frames as sleeping - and we can't
371
* guarantee the NIC is awake to program the self-gen frame
372
* setting anyway.
373
*/
374
if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
375
ath_hal_setselfgenpower(sc->sc_ah, power_state);
376
}
377
}
378
379
/*
380
* Set the hardware power mode and take a reference.
381
*
382
* This doesn't update the target power mode in the driver;
383
* it just updates the hardware power state.
384
*
385
* XXX it should only ever force the hardware awake; it should
386
* never be called to set it asleep.
387
*/
388
void
389
_ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
390
{
391
ATH_LOCK_ASSERT(sc);
392
393
DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
394
__func__,
395
file,
396
line,
397
power_state,
398
sc->sc_powersave_refcnt);
399
400
sc->sc_powersave_refcnt++;
401
402
/*
403
* Only do the power state change if we're not programming
404
* it elsewhere.
405
*/
406
if (power_state != sc->sc_cur_powerstate) {
407
ath_hal_setpower(sc->sc_ah, power_state);
408
sc->sc_cur_powerstate = power_state;
409
/*
410
* Adjust the self-gen powerstate if appropriate.
411
*/
412
if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
413
sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
414
ath_hal_setselfgenpower(sc->sc_ah,
415
sc->sc_target_selfgen_state);
416
}
417
}
418
}
419
420
/*
421
* Restore the power save mode to what it once was.
422
*
423
* This will decrement the reference counter and once it hits
424
* zero, it'll restore the powersave state.
425
*/
426
void
427
_ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
428
{
429
430
ATH_LOCK_ASSERT(sc);
431
432
DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
433
__func__,
434
file,
435
line,
436
sc->sc_powersave_refcnt,
437
sc->sc_target_powerstate);
438
439
if (sc->sc_powersave_refcnt == 0)
440
device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
441
else
442
sc->sc_powersave_refcnt--;
443
444
if (sc->sc_powersave_refcnt == 0 &&
445
sc->sc_target_powerstate != sc->sc_cur_powerstate) {
446
sc->sc_cur_powerstate = sc->sc_target_powerstate;
447
ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
448
}
449
450
/*
451
* Adjust the self-gen powerstate if appropriate.
452
*/
453
if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
454
sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
455
ath_hal_setselfgenpower(sc->sc_ah,
456
sc->sc_target_selfgen_state);
457
}
458
459
}
460
461
/*
462
* Configure the initial HAL configuration values based on bus
463
* specific parameters.
464
*
465
* Some PCI IDs and other information may need tweaking.
466
*
467
* XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
468
* if BT antenna diversity isn't enabled.
469
*
470
* So, let's also figure out how to enable BT diversity for AR9485.
471
*/
472
static void
473
ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
474
{
475
/* XXX TODO: only for PCI devices? */
476
477
if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
478
ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
479
ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
480
ah_config->ath_hal_min_gainidx = AH_TRUE;
481
ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
482
/* XXX low_rssi_thresh */
483
/* XXX fast_div_bias */
484
device_printf(sc->sc_dev, "configuring for %s\n",
485
(sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
486
"CUS198" : "CUS230");
487
}
488
489
if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
490
device_printf(sc->sc_dev, "CUS217 card detected\n");
491
492
if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
493
device_printf(sc->sc_dev, "CUS252 card detected\n");
494
495
if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
496
device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
497
498
if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
499
device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
500
501
if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV)
502
device_printf(sc->sc_dev,
503
"Bluetooth Antenna Diversity card detected\n");
504
505
if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
506
device_printf(sc->sc_dev, "Killer Wireless card detected\n");
507
508
#if 0
509
/*
510
* Some WB335 cards do not support antenna diversity. Since
511
* we use a hardcoded value for AR9565 instead of using the
512
* EEPROM/OTP data, remove the combining feature from
513
* the HW capabilities bitmap.
514
*/
515
if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
516
if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
517
pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
518
}
519
520
if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
521
pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
522
device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
523
}
524
#endif
525
526
if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
527
ah_config->ath_hal_pcie_waen = 0x0040473b;
528
device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
529
}
530
531
#if 0
532
if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
533
ah->config.no_pll_pwrsave = true;
534
device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
535
}
536
#endif
537
538
}
539
540
/*
541
* Attempt to fetch the MAC address from the kernel environment.
542
*
543
* Returns 0, macaddr in macaddr if successful; -1 otherwise.
544
*/
545
static int
546
ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr)
547
{
548
char devid_str[32];
549
int local_mac = 0;
550
char *local_macstr;
551
552
/*
553
* Fetch from the kenv rather than using hints.
554
*
555
* Hints would be nice but the transition to dynamic
556
* hints/kenv doesn't happen early enough for this
557
* to work reliably (eg on anything embedded.)
558
*/
559
snprintf(devid_str, 32, "hint.%s.%d.macaddr",
560
device_get_name(sc->sc_dev),
561
device_get_unit(sc->sc_dev));
562
563
if ((local_macstr = kern_getenv(devid_str)) != NULL) {
564
uint32_t tmpmac[ETHER_ADDR_LEN];
565
int count;
566
int i;
567
568
/* Have a MAC address; should use it */
569
device_printf(sc->sc_dev,
570
"Overriding MAC address from environment: '%s'\n",
571
local_macstr);
572
573
/* Extract out the MAC address */
574
count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x",
575
&tmpmac[0], &tmpmac[1],
576
&tmpmac[2], &tmpmac[3],
577
&tmpmac[4], &tmpmac[5]);
578
if (count == 6) {
579
/* Valid! */
580
local_mac = 1;
581
for (i = 0; i < ETHER_ADDR_LEN; i++)
582
macaddr[i] = tmpmac[i];
583
}
584
/* Done! */
585
freeenv(local_macstr);
586
local_macstr = NULL;
587
}
588
589
if (local_mac)
590
return (0);
591
return (-1);
592
}
593
594
#define HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
595
#define HAL_MODE_HT40 \
596
(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
597
HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
598
int
599
ath_attach(u_int16_t devid, struct ath_softc *sc)
600
{
601
struct ieee80211com *ic = &sc->sc_ic;
602
struct ath_hal *ah = NULL;
603
HAL_STATUS status;
604
int error = 0, i;
605
u_int wmodes;
606
int rx_chainmask, tx_chainmask;
607
HAL_OPS_CONFIG ah_config;
608
609
DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
610
611
ic->ic_softc = sc;
612
ic->ic_name = device_get_nameunit(sc->sc_dev);
613
614
/*
615
* Configure the initial configuration data.
616
*
617
* This is stuff that may be needed early during attach
618
* rather than done via configuration calls later.
619
*/
620
bzero(&ah_config, sizeof(ah_config));
621
ath_setup_hal_config(sc, &ah_config);
622
623
ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
624
sc->sc_eepromdata, &ah_config, &status);
625
if (ah == NULL) {
626
device_printf(sc->sc_dev,
627
"unable to attach hardware; HAL status %u\n", status);
628
error = ENXIO;
629
goto bad;
630
}
631
sc->sc_ah = ah;
632
sc->sc_invalid = 0; /* ready to go, enable interrupt handling */
633
#ifdef ATH_DEBUG
634
sc->sc_debug = ath_debug;
635
#endif
636
637
/*
638
* Force the chip awake during setup, just to keep
639
* the HAL/driver power tracking happy.
640
*
641
* There are some methods (eg ath_hal_setmac())
642
* that poke the hardware.
643
*/
644
ATH_LOCK(sc);
645
ath_power_setpower(sc, HAL_PM_AWAKE, 1);
646
ATH_UNLOCK(sc);
647
648
/*
649
* Setup the DMA/EDMA functions based on the current
650
* hardware support.
651
*
652
* This is required before the descriptors are allocated.
653
*/
654
if (ath_hal_hasedma(sc->sc_ah)) {
655
sc->sc_isedma = 1;
656
ath_recv_setup_edma(sc);
657
ath_xmit_setup_edma(sc);
658
} else {
659
ath_recv_setup_legacy(sc);
660
ath_xmit_setup_legacy(sc);
661
}
662
663
if (ath_hal_hasmybeacon(sc->sc_ah)) {
664
sc->sc_do_mybeacon = 1;
665
}
666
667
/*
668
* Check if the MAC has multi-rate retry support.
669
* We do this by trying to setup a fake extended
670
* descriptor. MAC's that don't have support will
671
* return false w/o doing anything. MAC's that do
672
* support it will return true w/o doing anything.
673
*/
674
sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
675
676
/*
677
* Check if the device has hardware counters for PHY
678
* errors. If so we need to enable the MIB interrupt
679
* so we can act on stat triggers.
680
*/
681
if (ath_hal_hwphycounters(ah))
682
sc->sc_needmib = 1;
683
684
/*
685
* Get the hardware key cache size.
686
*/
687
sc->sc_keymax = ath_hal_keycachesize(ah);
688
if (sc->sc_keymax > ATH_KEYMAX) {
689
device_printf(sc->sc_dev,
690
"Warning, using only %u of %u key cache slots\n",
691
ATH_KEYMAX, sc->sc_keymax);
692
sc->sc_keymax = ATH_KEYMAX;
693
}
694
/*
695
* Reset the key cache since some parts do not
696
* reset the contents on initial power up.
697
*/
698
for (i = 0; i < sc->sc_keymax; i++)
699
ath_hal_keyreset(ah, i);
700
701
/*
702
* Collect the default channel list.
703
*/
704
error = ath_getchannels(sc);
705
if (error != 0)
706
goto bad;
707
708
/*
709
* Setup rate tables for all potential media types.
710
*/
711
ath_rate_setup(sc, IEEE80211_MODE_11A);
712
ath_rate_setup(sc, IEEE80211_MODE_11B);
713
ath_rate_setup(sc, IEEE80211_MODE_11G);
714
ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
715
ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
716
ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
717
ath_rate_setup(sc, IEEE80211_MODE_11NA);
718
ath_rate_setup(sc, IEEE80211_MODE_11NG);
719
ath_rate_setup(sc, IEEE80211_MODE_HALF);
720
ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
721
722
/* NB: setup here so ath_rate_update is happy */
723
ath_setcurmode(sc, IEEE80211_MODE_11A);
724
725
/*
726
* Allocate TX descriptors and populate the lists.
727
*/
728
error = ath_desc_alloc(sc);
729
if (error != 0) {
730
device_printf(sc->sc_dev,
731
"failed to allocate TX descriptors: %d\n", error);
732
goto bad;
733
}
734
error = ath_txdma_setup(sc);
735
if (error != 0) {
736
device_printf(sc->sc_dev,
737
"failed to allocate TX descriptors: %d\n", error);
738
goto bad;
739
}
740
741
/*
742
* Allocate RX descriptors and populate the lists.
743
*/
744
error = ath_rxdma_setup(sc);
745
if (error != 0) {
746
device_printf(sc->sc_dev,
747
"failed to allocate RX descriptors: %d\n", error);
748
goto bad;
749
}
750
751
callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
752
callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
753
754
ATH_TXBUF_LOCK_INIT(sc);
755
756
sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
757
taskqueue_thread_enqueue, &sc->sc_tq);
758
taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
759
device_get_nameunit(sc->sc_dev));
760
761
TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
762
TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
763
TASK_INIT(&sc->sc_tsfoortask, 0, ath_tsfoor_proc, sc);
764
TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
765
TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
766
TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
767
TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
768
769
/*
770
* Allocate hardware transmit queues: one queue for
771
* beacon frames and one data queue for each QoS
772
* priority. Note that the hal handles resetting
773
* these queues at the needed time.
774
*
775
* XXX PS-Poll
776
*/
777
sc->sc_bhalq = ath_beaconq_setup(sc);
778
if (sc->sc_bhalq == (u_int) -1) {
779
device_printf(sc->sc_dev,
780
"unable to setup a beacon xmit queue!\n");
781
error = EIO;
782
goto bad2;
783
}
784
sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
785
if (sc->sc_cabq == NULL) {
786
device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n");
787
error = EIO;
788
goto bad2;
789
}
790
/* NB: insure BK queue is the lowest priority h/w queue */
791
if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
792
device_printf(sc->sc_dev,
793
"unable to setup xmit queue for %s traffic!\n",
794
ieee80211_wme_acnames[WME_AC_BK]);
795
error = EIO;
796
goto bad2;
797
}
798
if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
799
!ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
800
!ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
801
/*
802
* Not enough hardware tx queues to properly do WME;
803
* just punt and assign them all to the same h/w queue.
804
* We could do a better job of this if, for example,
805
* we allocate queues when we switch from station to
806
* AP mode.
807
*/
808
if (sc->sc_ac2q[WME_AC_VI] != NULL)
809
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
810
if (sc->sc_ac2q[WME_AC_BE] != NULL)
811
ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
812
sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
813
sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
814
sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
815
}
816
817
/*
818
* Attach the TX completion function.
819
*
820
* The non-EDMA chips may have some special case optimisations;
821
* this method gives everyone a chance to attach cleanly.
822
*/
823
sc->sc_tx.xmit_attach_comp_func(sc);
824
825
/*
826
* Setup rate control. Some rate control modules
827
* call back to change the anntena state so expose
828
* the necessary entry points.
829
* XXX maybe belongs in struct ath_ratectrl?
830
*/
831
sc->sc_setdefantenna = ath_setdefantenna;
832
sc->sc_rc = ath_rate_attach(sc);
833
if (sc->sc_rc == NULL) {
834
error = EIO;
835
goto bad2;
836
}
837
838
/* Attach DFS module */
839
if (! ath_dfs_attach(sc)) {
840
device_printf(sc->sc_dev,
841
"%s: unable to attach DFS\n", __func__);
842
error = EIO;
843
goto bad2;
844
}
845
846
/* Attach spectral module */
847
if (ath_spectral_attach(sc) < 0) {
848
device_printf(sc->sc_dev,
849
"%s: unable to attach spectral\n", __func__);
850
error = EIO;
851
goto bad2;
852
}
853
854
/* Attach bluetooth coexistence module */
855
if (ath_btcoex_attach(sc) < 0) {
856
device_printf(sc->sc_dev,
857
"%s: unable to attach bluetooth coexistence\n", __func__);
858
error = EIO;
859
goto bad2;
860
}
861
862
/* Attach LNA diversity module */
863
if (ath_lna_div_attach(sc) < 0) {
864
device_printf(sc->sc_dev,
865
"%s: unable to attach LNA diversity\n", __func__);
866
error = EIO;
867
goto bad2;
868
}
869
870
/* Start DFS processing tasklet */
871
TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
872
873
/* Configure LED state */
874
sc->sc_blinking = 0;
875
sc->sc_ledstate = 1;
876
sc->sc_ledon = 0; /* low true */
877
sc->sc_ledidle = (2700*hz)/1000; /* 2.7sec */
878
callout_init(&sc->sc_ledtimer, 1);
879
880
/*
881
* Don't setup hardware-based blinking.
882
*
883
* Although some NICs may have this configured in the
884
* default reset register values, the user may wish
885
* to alter which pins have which function.
886
*
887
* The reference driver attaches the MAC network LED to GPIO1 and
888
* the MAC power LED to GPIO2. However, the DWA-552 cardbus
889
* NIC has these reversed.
890
*/
891
sc->sc_hardled = (1 == 0);
892
sc->sc_led_net_pin = -1;
893
sc->sc_led_pwr_pin = -1;
894
/*
895
* Auto-enable soft led processing for IBM cards and for
896
* 5211 minipci cards. Users can also manually enable/disable
897
* support with a sysctl.
898
*/
899
sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
900
ath_led_config(sc);
901
ath_hal_setledstate(ah, HAL_LED_INIT);
902
903
/* XXX not right but it's not used anywhere important */
904
ic->ic_phytype = IEEE80211_T_OFDM;
905
ic->ic_opmode = IEEE80211_M_STA;
906
ic->ic_caps =
907
IEEE80211_C_STA /* station mode */
908
| IEEE80211_C_IBSS /* ibss, nee adhoc, mode */
909
| IEEE80211_C_HOSTAP /* hostap mode */
910
| IEEE80211_C_MONITOR /* monitor mode */
911
| IEEE80211_C_AHDEMO /* adhoc demo mode */
912
| IEEE80211_C_WDS /* 4-address traffic works */
913
| IEEE80211_C_MBSS /* mesh point link mode */
914
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
915
| IEEE80211_C_SHSLOT /* short slot time supported */
916
| IEEE80211_C_WPA /* capable of WPA1+WPA2 */
917
#ifndef ATH_ENABLE_11N
918
| IEEE80211_C_BGSCAN /* capable of bg scanning */
919
#endif
920
| IEEE80211_C_TXFRAG /* handle tx frags */
921
#ifdef ATH_ENABLE_DFS
922
| IEEE80211_C_DFS /* Enable radar detection */
923
#endif
924
| IEEE80211_C_PMGT /* Station side power mgmt */
925
| IEEE80211_C_SWSLEEP
926
;
927
928
ic->ic_flags_ext |= IEEE80211_FEXT_SEQNO_OFFLOAD;
929
930
/*
931
* Query the hal to figure out h/w crypto support.
932
*/
933
if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
934
ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
935
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
936
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
937
if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
938
ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
939
if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
940
ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
941
if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
942
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
943
/*
944
* Check if h/w does the MIC and/or whether the
945
* separate key cache entries are required to
946
* handle both tx+rx MIC keys.
947
*/
948
if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
949
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
950
/*
951
* If the h/w supports storing tx+rx MIC keys
952
* in one cache slot automatically enable use.
953
*/
954
if (ath_hal_hastkipsplit(ah) ||
955
!ath_hal_settkipsplit(ah, AH_FALSE))
956
sc->sc_splitmic = 1;
957
/*
958
* If the h/w can do TKIP MIC together with WME then
959
* we use it; otherwise we force the MIC to be done
960
* in software by the net80211 layer.
961
*/
962
if (ath_hal_haswmetkipmic(ah))
963
sc->sc_wmetkipmic = 1;
964
}
965
sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
966
/*
967
* Check for multicast key search support.
968
*/
969
if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
970
!ath_hal_getmcastkeysearch(sc->sc_ah)) {
971
ath_hal_setmcastkeysearch(sc->sc_ah, 1);
972
}
973
sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
974
/*
975
* Mark key cache slots associated with global keys
976
* as in use. If we knew TKIP was not to be used we
977
* could leave the +32, +64, and +32+64 slots free.
978
*/
979
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
980
setbit(sc->sc_keymap, i);
981
setbit(sc->sc_keymap, i+64);
982
if (sc->sc_splitmic) {
983
setbit(sc->sc_keymap, i+32);
984
setbit(sc->sc_keymap, i+32+64);
985
}
986
}
987
/*
988
* TPC support can be done either with a global cap or
989
* per-packet support. The latter is not available on
990
* all parts. We're a bit pedantic here as all parts
991
* support a global cap.
992
*/
993
if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
994
ic->ic_caps |= IEEE80211_C_TXPMGT;
995
996
/*
997
* Mark WME capability only if we have sufficient
998
* hardware queues to do proper priority scheduling.
999
*/
1000
if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
1001
ic->ic_caps |= IEEE80211_C_WME;
1002
/*
1003
* Check for misc other capabilities.
1004
*/
1005
if (ath_hal_hasbursting(ah))
1006
ic->ic_caps |= IEEE80211_C_BURST;
1007
sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
1008
sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
1009
sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
1010
sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
1011
1012
/* XXX TODO: just make this a "store tx/rx timestamp length" operation */
1013
if (ath_hal_get_rx_tsf_prec(ah, &i)) {
1014
if (i == 32) {
1015
sc->sc_rxtsf32 = 1;
1016
}
1017
if (bootverbose)
1018
device_printf(sc->sc_dev, "RX timestamp: %d bits\n", i);
1019
}
1020
if (ath_hal_get_tx_tsf_prec(ah, &i)) {
1021
if (bootverbose)
1022
device_printf(sc->sc_dev, "TX timestamp: %d bits\n", i);
1023
}
1024
1025
sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
1026
sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
1027
sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
1028
1029
/*
1030
* Some WB335 cards do not support antenna diversity. Since
1031
* we use a hardcoded value for AR9565 instead of using the
1032
* EEPROM/OTP data, remove the combining feature from
1033
* the HW capabilities bitmap.
1034
*/
1035
/*
1036
* XXX TODO: check reference driver and ath9k for what to do
1037
* here for WB335. I think we have to actually disable the
1038
* LNA div processing in the HAL and instead use the hard
1039
* coded values; and then use BT diversity.
1040
*
1041
* .. but also need to setup MCI too for WB335..
1042
*/
1043
#if 0
1044
if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
1045
device_printf(sc->sc_dev, "%s: WB335: disabling LNA mixer diversity\n",
1046
__func__);
1047
sc->sc_dolnadiv = 0;
1048
}
1049
#endif
1050
1051
if (ath_hal_hasfastframes(ah))
1052
ic->ic_caps |= IEEE80211_C_FF;
1053
wmodes = ath_hal_getwirelessmodes(ah);
1054
if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
1055
ic->ic_caps |= IEEE80211_C_TURBOP;
1056
#ifdef IEEE80211_SUPPORT_TDMA
1057
if (ath_hal_macversion(ah) > 0x78) {
1058
ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
1059
ic->ic_tdma_update = ath_tdma_update;
1060
}
1061
#endif
1062
1063
/*
1064
* TODO: enforce that at least this many frames are available
1065
* in the txbuf list before allowing data frames (raw or
1066
* otherwise) to be transmitted.
1067
*/
1068
sc->sc_txq_data_minfree = 10;
1069
1070
/*
1071
* Shorten this to 64 packets, or 1/4 ath_txbuf, whichever
1072
* is smaller.
1073
*
1074
* Anything bigger can potentially see the cabq consume
1075
* almost all buffers, starving everything else, only to
1076
* see most fail to transmit in the given beacon interval.
1077
*/
1078
sc->sc_txq_mcastq_maxdepth = MIN(64, ath_txbuf / 4);
1079
1080
/*
1081
* How deep can the node software TX queue get whilst it's asleep.
1082
*/
1083
sc->sc_txq_node_psq_maxdepth = 16;
1084
1085
/*
1086
* Default the maximum queue to 1/4'th the TX buffers, or
1087
* 128, whichever is smaller.
1088
*
1089
* Set it to 128 instead of the previous default (64) because
1090
* at 64, two full A-MPDU subframes of 32 frames each is
1091
* enough to treat this node queue as full and all subsequent
1092
* traffic is dropped. Setting it to 128 means there'll
1093
* hopefully be another 64 frames in the software queue
1094
* to begin making A-MPDU frames out of.
1095
*/
1096
sc->sc_txq_node_maxdepth = MIN(128, ath_txbuf / 4);
1097
1098
/* Enable CABQ by default */
1099
sc->sc_cabq_enable = 1;
1100
1101
/*
1102
* Allow the TX and RX chainmasks to be overridden by
1103
* environment variables and/or device.hints.
1104
*
1105
* This must be done early - before the hardware is
1106
* calibrated or before the 802.11n stream calculation
1107
* is done.
1108
*/
1109
if (resource_int_value(device_get_name(sc->sc_dev),
1110
device_get_unit(sc->sc_dev), "rx_chainmask",
1111
&rx_chainmask) == 0) {
1112
device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
1113
rx_chainmask);
1114
(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
1115
}
1116
if (resource_int_value(device_get_name(sc->sc_dev),
1117
device_get_unit(sc->sc_dev), "tx_chainmask",
1118
&tx_chainmask) == 0) {
1119
device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1120
tx_chainmask);
1121
(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1122
}
1123
1124
/*
1125
* Query the TX/RX chainmask configuration.
1126
*
1127
* This is only relevant for 11n devices.
1128
*/
1129
ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
1130
ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
1131
1132
/*
1133
* Disable MRR with protected frames by default.
1134
* Only 802.11n series NICs can handle this.
1135
*/
1136
sc->sc_mrrprot = 0; /* XXX should be a capability */
1137
1138
/*
1139
* Query the enterprise mode information the HAL.
1140
*/
1141
if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
1142
&sc->sc_ent_cfg) == HAL_OK)
1143
sc->sc_use_ent = 1;
1144
1145
#ifdef ATH_ENABLE_11N
1146
/*
1147
* Query HT capabilities
1148
*/
1149
if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1150
(wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1151
uint32_t rxs, txs;
1152
uint32_t ldpc;
1153
1154
device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1155
1156
sc->sc_mrrprot = 1; /* XXX should be a capability */
1157
1158
ic->ic_htcaps = IEEE80211_HTC_HT /* HT operation */
1159
| IEEE80211_HTC_AMPDU /* A-MPDU tx/rx */
1160
| IEEE80211_HTC_AMSDU /* A-MSDU tx/rx */
1161
| IEEE80211_HTCAP_MAXAMSDU_3839
1162
/* max A-MSDU length */
1163
| IEEE80211_HTCAP_SMPS_OFF; /* SM power save off */
1164
1165
/*
1166
* Enable short-GI for HT20 only if the hardware
1167
* advertises support.
1168
* Notably, anything earlier than the AR9287 doesn't.
1169
*/
1170
if ((ath_hal_getcapability(ah,
1171
HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1172
(wmodes & HAL_MODE_HT20)) {
1173
device_printf(sc->sc_dev,
1174
"[HT] enabling short-GI in 20MHz mode\n");
1175
ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1176
}
1177
1178
if (wmodes & HAL_MODE_HT40)
1179
ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1180
| IEEE80211_HTCAP_SHORTGI40;
1181
1182
/*
1183
* TX/RX streams need to be taken into account when
1184
* negotiating which MCS rates it'll receive and
1185
* what MCS rates are available for TX.
1186
*/
1187
(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1188
(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1189
ic->ic_txstream = txs;
1190
ic->ic_rxstream = rxs;
1191
1192
/*
1193
* Setup TX and RX STBC based on what the HAL allows and
1194
* the currently configured chainmask set.
1195
* Ie - don't enable STBC TX if only one chain is enabled.
1196
* STBC RX is fine on a single RX chain; it just won't
1197
* provide any real benefit.
1198
*/
1199
if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1200
NULL) == HAL_OK) {
1201
sc->sc_rx_stbc = 1;
1202
device_printf(sc->sc_dev,
1203
"[HT] 1 stream STBC receive enabled\n");
1204
ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1205
}
1206
if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1207
NULL) == HAL_OK) {
1208
sc->sc_tx_stbc = 1;
1209
device_printf(sc->sc_dev,
1210
"[HT] 1 stream STBC transmit enabled\n");
1211
ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1212
}
1213
1214
(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1215
&sc->sc_rts_aggr_limit);
1216
if (sc->sc_rts_aggr_limit != (64 * 1024))
1217
device_printf(sc->sc_dev,
1218
"[HT] RTS aggregates limited to %d KiB\n",
1219
sc->sc_rts_aggr_limit / 1024);
1220
1221
/*
1222
* LDPC
1223
*/
1224
if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc))
1225
== HAL_OK && (ldpc == 1)) {
1226
sc->sc_has_ldpc = 1;
1227
device_printf(sc->sc_dev,
1228
"[HT] LDPC transmit/receive enabled\n");
1229
ic->ic_htcaps |= IEEE80211_HTCAP_LDPC |
1230
IEEE80211_HTC_TXLDPC;
1231
}
1232
1233
device_printf(sc->sc_dev,
1234
"[HT] %d RX streams; %d TX streams\n", rxs, txs);
1235
}
1236
#endif
1237
1238
/*
1239
* Initial aggregation settings.
1240
*/
1241
sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1242
sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1243
sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1244
sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1245
sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1246
sc->sc_delim_min_pad = 0;
1247
1248
/*
1249
* Check if the hardware requires PCI register serialisation.
1250
* Some of the Owl based MACs require this.
1251
*/
1252
if (mp_ncpus > 1 &&
1253
ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1254
0, NULL) == HAL_OK) {
1255
sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1256
device_printf(sc->sc_dev,
1257
"Enabling register serialisation\n");
1258
}
1259
1260
/*
1261
* Initialise the deferred completed RX buffer list.
1262
*/
1263
TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1264
TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1265
1266
/*
1267
* Indicate we need the 802.11 header padded to a
1268
* 32-bit boundary for 4-address and QoS frames.
1269
*/
1270
ic->ic_flags |= IEEE80211_F_DATAPAD;
1271
1272
/*
1273
* Query the hal about antenna support.
1274
*/
1275
sc->sc_defant = ath_hal_getdefantenna(ah);
1276
1277
/*
1278
* Not all chips have the VEOL support we want to
1279
* use with IBSS beacons; check here for it.
1280
*/
1281
sc->sc_hasveol = ath_hal_hasveol(ah);
1282
1283
/* get mac address from kenv first, then hardware */
1284
if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) {
1285
/* Tell the HAL now about the new MAC */
1286
ath_hal_setmac(ah, ic->ic_macaddr);
1287
} else {
1288
ath_hal_getmac(ah, ic->ic_macaddr);
1289
}
1290
1291
if (sc->sc_hasbmask)
1292
ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1293
1294
/* NB: used to size node table key mapping array */
1295
ic->ic_max_keyix = sc->sc_keymax;
1296
/* call MI attach routine. */
1297
ieee80211_ifattach(ic);
1298
ic->ic_setregdomain = ath_setregdomain;
1299
ic->ic_getradiocaps = ath_getradiocaps;
1300
sc->sc_opmode = HAL_M_STA;
1301
1302
/* override default methods */
1303
ic->ic_ioctl = ath_ioctl;
1304
ic->ic_parent = ath_parent;
1305
ic->ic_transmit = ath_transmit;
1306
ic->ic_newassoc = ath_newassoc;
1307
ic->ic_updateslot = ath_updateslot;
1308
ic->ic_wme.wme_update = ath_wme_update;
1309
ic->ic_vap_create = ath_vap_create;
1310
ic->ic_vap_delete = ath_vap_delete;
1311
ic->ic_raw_xmit = ath_raw_xmit;
1312
ic->ic_update_mcast = ath_update_mcast;
1313
ic->ic_update_promisc = ath_update_promisc;
1314
ic->ic_node_alloc = ath_node_alloc;
1315
sc->sc_node_free = ic->ic_node_free;
1316
ic->ic_node_free = ath_node_free;
1317
sc->sc_node_cleanup = ic->ic_node_cleanup;
1318
ic->ic_node_cleanup = ath_node_cleanup;
1319
ic->ic_node_getsignal = ath_node_getsignal;
1320
ic->ic_scan_start = ath_scan_start;
1321
ic->ic_scan_end = ath_scan_end;
1322
ic->ic_set_channel = ath_set_channel;
1323
#ifdef ATH_ENABLE_11N
1324
/* 802.11n specific - but just override anyway */
1325
sc->sc_addba_request = ic->ic_addba_request;
1326
sc->sc_addba_response = ic->ic_addba_response;
1327
sc->sc_addba_stop = ic->ic_addba_stop;
1328
sc->sc_bar_response = ic->ic_bar_response;
1329
sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1330
1331
ic->ic_addba_request = ath_addba_request;
1332
ic->ic_addba_response = ath_addba_response;
1333
ic->ic_addba_response_timeout = ath_addba_response_timeout;
1334
ic->ic_addba_stop = ath_addba_stop;
1335
ic->ic_bar_response = ath_bar_response;
1336
1337
ic->ic_update_chw = ath_update_chw;
1338
#endif /* ATH_ENABLE_11N */
1339
ic->ic_set_quiet = ath_set_quiet_ie;
1340
1341
#ifdef ATH_ENABLE_RADIOTAP_VENDOR_EXT
1342
/*
1343
* There's one vendor bitmap entry in the RX radiotap
1344
* header; make sure that's taken into account.
1345
*/
1346
ieee80211_radiotap_attachv(ic,
1347
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1348
ATH_TX_RADIOTAP_PRESENT,
1349
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1350
ATH_RX_RADIOTAP_PRESENT);
1351
#else
1352
/*
1353
* No vendor bitmap/extensions are present.
1354
*/
1355
ieee80211_radiotap_attach(ic,
1356
&sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1357
ATH_TX_RADIOTAP_PRESENT,
1358
&sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1359
ATH_RX_RADIOTAP_PRESENT);
1360
#endif /* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1361
1362
/*
1363
* Setup the ALQ logging if required
1364
*/
1365
#ifdef ATH_DEBUG_ALQ
1366
if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1367
if_ath_alq_setcfg(&sc->sc_alq,
1368
sc->sc_ah->ah_macVersion,
1369
sc->sc_ah->ah_macRev,
1370
sc->sc_ah->ah_phyRev,
1371
sc->sc_ah->ah_magic);
1372
#endif
1373
1374
/*
1375
* Setup dynamic sysctl's now that country code and
1376
* regdomain are available from the hal.
1377
*/
1378
ath_sysctlattach(sc);
1379
ath_sysctl_stats_attach(sc);
1380
ath_sysctl_hal_attach(sc);
1381
1382
if (bootverbose)
1383
ieee80211_announce(ic);
1384
ath_announce(sc);
1385
1386
/*
1387
* Put it to sleep for now.
1388
*/
1389
ATH_LOCK(sc);
1390
ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1);
1391
ATH_UNLOCK(sc);
1392
1393
return 0;
1394
bad2:
1395
ath_tx_cleanup(sc);
1396
ath_desc_free(sc);
1397
ath_txdma_teardown(sc);
1398
ath_rxdma_teardown(sc);
1399
1400
bad:
1401
if (ah)
1402
ath_hal_detach(ah);
1403
sc->sc_invalid = 1;
1404
return error;
1405
}
1406
1407
int
1408
ath_detach(struct ath_softc *sc)
1409
{
1410
1411
/*
1412
* NB: the order of these is important:
1413
* o stop the chip so no more interrupts will fire
1414
* o call the 802.11 layer before detaching the hal to
1415
* insure callbacks into the driver to delete global
1416
* key cache entries can be handled
1417
* o free the taskqueue which drains any pending tasks
1418
* o reclaim the tx queue data structures after calling
1419
* the 802.11 layer as we'll get called back to reclaim
1420
* node state and potentially want to use them
1421
* o to cleanup the tx queues the hal is called, so detach
1422
* it last
1423
* Other than that, it's straightforward...
1424
*/
1425
1426
/*
1427
* XXX Wake the hardware up first. ath_stop() will still
1428
* wake it up first, but I'd rather do it here just to
1429
* ensure it's awake.
1430
*/
1431
ATH_LOCK(sc);
1432
ath_power_set_power_state(sc, HAL_PM_AWAKE);
1433
ath_power_setpower(sc, HAL_PM_AWAKE, 1);
1434
1435
/*
1436
* Stop things cleanly.
1437
*/
1438
ath_stop(sc);
1439
ATH_UNLOCK(sc);
1440
1441
ieee80211_ifdetach(&sc->sc_ic);
1442
taskqueue_free(sc->sc_tq);
1443
#ifdef ATH_TX99_DIAG
1444
if (sc->sc_tx99 != NULL)
1445
sc->sc_tx99->detach(sc->sc_tx99);
1446
#endif
1447
ath_rate_detach(sc->sc_rc);
1448
#ifdef ATH_DEBUG_ALQ
1449
if_ath_alq_tidyup(&sc->sc_alq);
1450
#endif
1451
ath_lna_div_detach(sc);
1452
ath_btcoex_detach(sc);
1453
ath_spectral_detach(sc);
1454
ath_dfs_detach(sc);
1455
ath_desc_free(sc);
1456
ath_txdma_teardown(sc);
1457
ath_rxdma_teardown(sc);
1458
ath_tx_cleanup(sc);
1459
ath_hal_detach(sc->sc_ah); /* NB: sets chip in full sleep */
1460
1461
return 0;
1462
}
1463
1464
/*
1465
* MAC address handling for multiple BSS on the same radio.
1466
* The first vap uses the MAC address from the EEPROM. For
1467
* subsequent vap's we set the U/L bit (bit 1) in the MAC
1468
* address and use the next six bits as an index.
1469
*/
1470
static void
1471
assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1472
{
1473
int i;
1474
1475
if (clone && sc->sc_hasbmask) {
1476
/* NB: we only do this if h/w supports multiple bssid */
1477
for (i = 0; i < 8; i++)
1478
if ((sc->sc_bssidmask & (1<<i)) == 0)
1479
break;
1480
if (i != 0)
1481
mac[0] |= (i << 2)|0x2;
1482
} else
1483
i = 0;
1484
sc->sc_bssidmask |= 1<<i;
1485
sc->sc_hwbssidmask[0] &= ~mac[0];
1486
if (i == 0)
1487
sc->sc_nbssid0++;
1488
}
1489
1490
static void
1491
reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1492
{
1493
int i = mac[0] >> 2;
1494
uint8_t mask;
1495
1496
if (i != 0 || --sc->sc_nbssid0 == 0) {
1497
sc->sc_bssidmask &= ~(1<<i);
1498
/* recalculate bssid mask from remaining addresses */
1499
mask = 0xff;
1500
for (i = 1; i < 8; i++)
1501
if (sc->sc_bssidmask & (1<<i))
1502
mask &= ~((i<<2)|0x2);
1503
sc->sc_hwbssidmask[0] |= mask;
1504
}
1505
}
1506
1507
/*
1508
* Assign a beacon xmit slot. We try to space out
1509
* assignments so when beacons are staggered the
1510
* traffic coming out of the cab q has maximal time
1511
* to go out before the next beacon is scheduled.
1512
*/
1513
static int
1514
assign_bslot(struct ath_softc *sc)
1515
{
1516
u_int slot, free;
1517
1518
free = 0;
1519
for (slot = 0; slot < ATH_BCBUF; slot++)
1520
if (sc->sc_bslot[slot] == NULL) {
1521
if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1522
sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1523
return slot;
1524
free = slot;
1525
/* NB: keep looking for a double slot */
1526
}
1527
return free;
1528
}
1529
1530
static struct ieee80211vap *
1531
ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1532
enum ieee80211_opmode opmode, int flags,
1533
const uint8_t bssid[IEEE80211_ADDR_LEN],
1534
const uint8_t mac0[IEEE80211_ADDR_LEN])
1535
{
1536
struct ath_softc *sc = ic->ic_softc;
1537
struct ath_vap *avp;
1538
struct ieee80211vap *vap;
1539
uint8_t mac[IEEE80211_ADDR_LEN];
1540
int needbeacon, error;
1541
enum ieee80211_opmode ic_opmode;
1542
1543
avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1544
needbeacon = 0;
1545
IEEE80211_ADDR_COPY(mac, mac0);
1546
1547
ATH_LOCK(sc);
1548
ic_opmode = opmode; /* default to opmode of new vap */
1549
switch (opmode) {
1550
case IEEE80211_M_STA:
1551
if (sc->sc_nstavaps != 0) { /* XXX only 1 for now */
1552
device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1553
goto bad;
1554
}
1555
if (sc->sc_nvaps) {
1556
/*
1557
* With multiple vaps we must fall back
1558
* to s/w beacon miss handling.
1559
*/
1560
flags |= IEEE80211_CLONE_NOBEACONS;
1561
}
1562
if (flags & IEEE80211_CLONE_NOBEACONS) {
1563
/*
1564
* Station mode w/o beacons are implemented w/ AP mode.
1565
*/
1566
ic_opmode = IEEE80211_M_HOSTAP;
1567
}
1568
break;
1569
case IEEE80211_M_IBSS:
1570
if (sc->sc_nvaps != 0) { /* XXX only 1 for now */
1571
device_printf(sc->sc_dev,
1572
"only 1 ibss vap supported\n");
1573
goto bad;
1574
}
1575
needbeacon = 1;
1576
break;
1577
case IEEE80211_M_AHDEMO:
1578
#ifdef IEEE80211_SUPPORT_TDMA
1579
if (flags & IEEE80211_CLONE_TDMA) {
1580
if (sc->sc_nvaps != 0) {
1581
device_printf(sc->sc_dev,
1582
"only 1 tdma vap supported\n");
1583
goto bad;
1584
}
1585
needbeacon = 1;
1586
flags |= IEEE80211_CLONE_NOBEACONS;
1587
}
1588
/* fall thru... */
1589
#endif
1590
case IEEE80211_M_MONITOR:
1591
if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1592
/*
1593
* Adopt existing mode. Adding a monitor or ahdemo
1594
* vap to an existing configuration is of dubious
1595
* value but should be ok.
1596
*/
1597
/* XXX not right for monitor mode */
1598
ic_opmode = ic->ic_opmode;
1599
}
1600
break;
1601
case IEEE80211_M_HOSTAP:
1602
case IEEE80211_M_MBSS:
1603
needbeacon = 1;
1604
break;
1605
case IEEE80211_M_WDS:
1606
if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1607
device_printf(sc->sc_dev,
1608
"wds not supported in sta mode\n");
1609
goto bad;
1610
}
1611
/*
1612
* Silently remove any request for a unique
1613
* bssid; WDS vap's always share the local
1614
* mac address.
1615
*/
1616
flags &= ~IEEE80211_CLONE_BSSID;
1617
if (sc->sc_nvaps == 0)
1618
ic_opmode = IEEE80211_M_HOSTAP;
1619
else
1620
ic_opmode = ic->ic_opmode;
1621
break;
1622
default:
1623
device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1624
goto bad;
1625
}
1626
/*
1627
* Check that a beacon buffer is available; the code below assumes it.
1628
*/
1629
if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1630
device_printf(sc->sc_dev, "no beacon buffer available\n");
1631
goto bad;
1632
}
1633
1634
/* STA, AHDEMO? */
1635
if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS || opmode == IEEE80211_M_STA) {
1636
assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1637
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1638
}
1639
1640
vap = &avp->av_vap;
1641
/* XXX can't hold mutex across if_alloc */
1642
ATH_UNLOCK(sc);
1643
error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1644
ATH_LOCK(sc);
1645
if (error != 0) {
1646
device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1647
__func__, error);
1648
goto bad2;
1649
}
1650
1651
/* h/w crypto support */
1652
vap->iv_key_alloc = ath_key_alloc;
1653
vap->iv_key_delete = ath_key_delete;
1654
vap->iv_key_set = ath_key_set;
1655
vap->iv_key_update_begin = ath_key_update_begin;
1656
vap->iv_key_update_end = ath_key_update_end;
1657
1658
/* override various methods */
1659
avp->av_recv_mgmt = vap->iv_recv_mgmt;
1660
vap->iv_recv_mgmt = ath_recv_mgmt;
1661
vap->iv_reset = ath_reset_vap;
1662
vap->iv_update_beacon = ath_beacon_update;
1663
avp->av_newstate = vap->iv_newstate;
1664
vap->iv_newstate = ath_newstate;
1665
avp->av_bmiss = vap->iv_bmiss;
1666
vap->iv_bmiss = ath_bmiss_vap;
1667
1668
avp->av_node_ps = vap->iv_node_ps;
1669
vap->iv_node_ps = ath_node_powersave;
1670
1671
avp->av_set_tim = vap->iv_set_tim;
1672
vap->iv_set_tim = ath_node_set_tim;
1673
1674
avp->av_recv_pspoll = vap->iv_recv_pspoll;
1675
vap->iv_recv_pspoll = ath_node_recv_pspoll;
1676
1677
/* Set default parameters */
1678
1679
/*
1680
* Anything earlier than some AR9300 series MACs don't
1681
* support a smaller MPDU density.
1682
*/
1683
vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1684
/*
1685
* All NICs can handle the maximum size, however
1686
* AR5416 based MACs can only TX aggregates w/ RTS
1687
* protection when the total aggregate size is <= 8k.
1688
* However, for now that's enforced by the TX path.
1689
*/
1690
vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1691
vap->iv_ampdu_limit = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1692
1693
avp->av_bslot = -1;
1694
if (needbeacon) {
1695
/*
1696
* Allocate beacon state and setup the q for buffered
1697
* multicast frames. We know a beacon buffer is
1698
* available because we checked above.
1699
*/
1700
avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1701
TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1702
if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1703
/*
1704
* Assign the vap to a beacon xmit slot. As above
1705
* this cannot fail to find a free one.
1706
*/
1707
avp->av_bslot = assign_bslot(sc);
1708
KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1709
("beacon slot %u not empty", avp->av_bslot));
1710
sc->sc_bslot[avp->av_bslot] = vap;
1711
sc->sc_nbcnvaps++;
1712
}
1713
if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1714
/*
1715
* Multple vaps are to transmit beacons and we
1716
* have h/w support for TSF adjusting; enable
1717
* use of staggered beacons.
1718
*/
1719
sc->sc_stagbeacons = 1;
1720
}
1721
ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1722
}
1723
1724
ic->ic_opmode = ic_opmode;
1725
if (opmode != IEEE80211_M_WDS) {
1726
sc->sc_nvaps++;
1727
if (opmode == IEEE80211_M_STA)
1728
sc->sc_nstavaps++;
1729
if (opmode == IEEE80211_M_MBSS)
1730
sc->sc_nmeshvaps++;
1731
}
1732
switch (ic_opmode) {
1733
case IEEE80211_M_IBSS:
1734
sc->sc_opmode = HAL_M_IBSS;
1735
break;
1736
case IEEE80211_M_STA:
1737
sc->sc_opmode = HAL_M_STA;
1738
break;
1739
case IEEE80211_M_AHDEMO:
1740
#ifdef IEEE80211_SUPPORT_TDMA
1741
if (vap->iv_caps & IEEE80211_C_TDMA) {
1742
sc->sc_tdma = 1;
1743
/* NB: disable tsf adjust */
1744
sc->sc_stagbeacons = 0;
1745
}
1746
/*
1747
* NB: adhoc demo mode is a pseudo mode; to the hal it's
1748
* just ap mode.
1749
*/
1750
/* fall thru... */
1751
#endif
1752
case IEEE80211_M_HOSTAP:
1753
case IEEE80211_M_MBSS:
1754
sc->sc_opmode = HAL_M_HOSTAP;
1755
break;
1756
case IEEE80211_M_MONITOR:
1757
sc->sc_opmode = HAL_M_MONITOR;
1758
break;
1759
default:
1760
/* XXX should not happen */
1761
break;
1762
}
1763
if (sc->sc_hastsfadd) {
1764
/*
1765
* Configure whether or not TSF adjust should be done.
1766
*/
1767
ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1768
}
1769
if (flags & IEEE80211_CLONE_NOBEACONS) {
1770
/*
1771
* Enable s/w beacon miss handling.
1772
*/
1773
sc->sc_swbmiss = 1;
1774
}
1775
ATH_UNLOCK(sc);
1776
1777
/* complete setup */
1778
ieee80211_vap_attach(vap, ieee80211_media_change,
1779
ieee80211_media_status, mac);
1780
return vap;
1781
bad2:
1782
reclaim_address(sc, mac);
1783
ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1784
bad:
1785
free(avp, M_80211_VAP);
1786
ATH_UNLOCK(sc);
1787
return NULL;
1788
}
1789
1790
static void
1791
ath_vap_delete(struct ieee80211vap *vap)
1792
{
1793
struct ieee80211com *ic = vap->iv_ic;
1794
struct ath_softc *sc = ic->ic_softc;
1795
struct ath_hal *ah = sc->sc_ah;
1796
struct ath_vap *avp = ATH_VAP(vap);
1797
1798
ATH_LOCK(sc);
1799
ath_power_set_power_state(sc, HAL_PM_AWAKE);
1800
ATH_UNLOCK(sc);
1801
1802
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1803
if (sc->sc_running) {
1804
/*
1805
* Quiesce the hardware while we remove the vap. In
1806
* particular we need to reclaim all references to
1807
* the vap state by any frames pending on the tx queues.
1808
*/
1809
ath_hal_intrset(ah, 0); /* disable interrupts */
1810
/* XXX Do all frames from all vaps/nodes need draining here? */
1811
ath_stoprecv(sc, 1); /* stop recv side */
1812
ath_rx_flush(sc);
1813
ath_draintxq(sc, ATH_RESET_DEFAULT); /* stop hw xmit side */
1814
}
1815
1816
/* .. leave the hardware awake for now. */
1817
1818
ieee80211_vap_detach(vap);
1819
1820
/*
1821
* XXX Danger Will Robinson! Danger!
1822
*
1823
* Because ieee80211_vap_detach() can queue a frame (the station
1824
* diassociate message?) after we've drained the TXQ and
1825
* flushed the software TXQ, we will end up with a frame queued
1826
* to a node whose vap is about to be freed.
1827
*
1828
* To work around this, flush the hardware/software again.
1829
* This may be racy - the ath task may be running and the packet
1830
* may be being scheduled between sw->hw txq. Tsk.
1831
*
1832
* TODO: figure out why a new node gets allocated somewhere around
1833
* here (after the ath_tx_swq() call; and after an ath_stop()
1834
* call!)
1835
*/
1836
1837
ath_draintxq(sc, ATH_RESET_DEFAULT);
1838
1839
ATH_LOCK(sc);
1840
/*
1841
* Reclaim beacon state. Note this must be done before
1842
* the vap instance is reclaimed as we may have a reference
1843
* to it in the buffer for the beacon frame.
1844
*/
1845
if (avp->av_bcbuf != NULL) {
1846
if (avp->av_bslot != -1) {
1847
sc->sc_bslot[avp->av_bslot] = NULL;
1848
sc->sc_nbcnvaps--;
1849
}
1850
ath_beacon_return(sc, avp->av_bcbuf);
1851
avp->av_bcbuf = NULL;
1852
if (sc->sc_nbcnvaps == 0) {
1853
sc->sc_stagbeacons = 0;
1854
if (sc->sc_hastsfadd)
1855
ath_hal_settsfadjust(sc->sc_ah, 0);
1856
}
1857
/*
1858
* Reclaim any pending mcast frames for the vap.
1859
*/
1860
ath_tx_draintxq(sc, &avp->av_mcastq);
1861
}
1862
/*
1863
* Update bookkeeping.
1864
*/
1865
if (vap->iv_opmode == IEEE80211_M_STA) {
1866
sc->sc_nstavaps--;
1867
if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1868
sc->sc_swbmiss = 0;
1869
} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1870
vap->iv_opmode == IEEE80211_M_STA ||
1871
vap->iv_opmode == IEEE80211_M_MBSS) {
1872
reclaim_address(sc, vap->iv_myaddr);
1873
ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1874
if (vap->iv_opmode == IEEE80211_M_MBSS)
1875
sc->sc_nmeshvaps--;
1876
}
1877
if (vap->iv_opmode != IEEE80211_M_WDS)
1878
sc->sc_nvaps--;
1879
#ifdef IEEE80211_SUPPORT_TDMA
1880
/* TDMA operation ceases when the last vap is destroyed */
1881
if (sc->sc_tdma && sc->sc_nvaps == 0) {
1882
sc->sc_tdma = 0;
1883
sc->sc_swbmiss = 0;
1884
}
1885
#endif
1886
free(avp, M_80211_VAP);
1887
1888
if (sc->sc_running) {
1889
/*
1890
* Restart rx+tx machines if still running (RUNNING will
1891
* be reset if we just destroyed the last vap).
1892
*/
1893
if (ath_startrecv(sc) != 0)
1894
device_printf(sc->sc_dev,
1895
"%s: unable to restart recv logic\n", __func__);
1896
if (sc->sc_beacons) { /* restart beacons */
1897
#ifdef IEEE80211_SUPPORT_TDMA
1898
if (sc->sc_tdma)
1899
ath_tdma_config(sc, NULL);
1900
else
1901
#endif
1902
ath_beacon_config(sc, NULL);
1903
}
1904
ath_hal_intrset(ah, sc->sc_imask);
1905
}
1906
1907
/* Ok, let the hardware asleep. */
1908
ath_power_restore_power_state(sc);
1909
ATH_UNLOCK(sc);
1910
}
1911
1912
void
1913
ath_suspend(struct ath_softc *sc)
1914
{
1915
struct ieee80211com *ic = &sc->sc_ic;
1916
1917
sc->sc_resume_up = ic->ic_nrunning != 0;
1918
1919
ieee80211_suspend_all(ic);
1920
/*
1921
* NB: don't worry about putting the chip in low power
1922
* mode; pci will power off our socket on suspend and
1923
* CardBus detaches the device.
1924
*
1925
* XXX TODO: well, that's great, except for non-cardbus
1926
* devices!
1927
*/
1928
1929
/*
1930
* XXX This doesn't wait until all pending taskqueue
1931
* items and parallel transmit/receive/other threads
1932
* are running!
1933
*/
1934
ath_hal_intrset(sc->sc_ah, 0);
1935
taskqueue_block(sc->sc_tq);
1936
1937
ATH_LOCK(sc);
1938
callout_stop(&sc->sc_cal_ch);
1939
ATH_UNLOCK(sc);
1940
1941
/*
1942
* XXX ensure sc_invalid is 1
1943
*/
1944
1945
/* Disable the PCIe PHY, complete with workarounds */
1946
ath_hal_enablepcie(sc->sc_ah, 1, 1);
1947
}
1948
1949
/*
1950
* Reset the key cache since some parts do not reset the
1951
* contents on resume. First we clear all entries, then
1952
* re-load keys that the 802.11 layer assumes are setup
1953
* in h/w.
1954
*/
1955
static void
1956
ath_reset_keycache(struct ath_softc *sc)
1957
{
1958
struct ieee80211com *ic = &sc->sc_ic;
1959
struct ath_hal *ah = sc->sc_ah;
1960
int i;
1961
1962
ATH_LOCK(sc);
1963
ath_power_set_power_state(sc, HAL_PM_AWAKE);
1964
for (i = 0; i < sc->sc_keymax; i++)
1965
ath_hal_keyreset(ah, i);
1966
ath_power_restore_power_state(sc);
1967
ATH_UNLOCK(sc);
1968
ieee80211_crypto_reload_keys(ic);
1969
}
1970
1971
/*
1972
* Fetch the current chainmask configuration based on the current
1973
* operating channel and options.
1974
*/
1975
static void
1976
ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1977
{
1978
1979
/*
1980
* Set TX chainmask to the currently configured chainmask;
1981
* the TX chainmask depends upon the current operating mode.
1982
*/
1983
sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1984
if (IEEE80211_IS_CHAN_HT(chan)) {
1985
sc->sc_cur_txchainmask = sc->sc_txchainmask;
1986
} else {
1987
sc->sc_cur_txchainmask = 1;
1988
}
1989
1990
DPRINTF(sc, ATH_DEBUG_RESET,
1991
"%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1992
__func__,
1993
sc->sc_cur_txchainmask,
1994
sc->sc_cur_rxchainmask);
1995
}
1996
1997
void
1998
ath_resume(struct ath_softc *sc)
1999
{
2000
struct ieee80211com *ic = &sc->sc_ic;
2001
struct ath_hal *ah = sc->sc_ah;
2002
HAL_STATUS status;
2003
2004
ath_hal_enablepcie(ah, 0, 0);
2005
2006
/*
2007
* Must reset the chip before we reload the
2008
* keycache as we were powered down on suspend.
2009
*/
2010
ath_update_chainmasks(sc,
2011
sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
2012
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2013
sc->sc_cur_rxchainmask);
2014
2015
/* Ensure we set the current power state to on */
2016
ATH_LOCK(sc);
2017
ath_power_setselfgen(sc, HAL_PM_AWAKE);
2018
ath_power_set_power_state(sc, HAL_PM_AWAKE);
2019
ath_power_setpower(sc, HAL_PM_AWAKE, 1);
2020
ATH_UNLOCK(sc);
2021
2022
ath_hal_reset(ah, sc->sc_opmode,
2023
sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
2024
AH_FALSE, HAL_RESET_NORMAL, &status);
2025
ath_reset_keycache(sc);
2026
2027
ATH_RX_LOCK(sc);
2028
sc->sc_rx_stopped = 1;
2029
sc->sc_rx_resetted = 1;
2030
ATH_RX_UNLOCK(sc);
2031
2032
/* Let DFS at it in case it's a DFS channel */
2033
ath_dfs_radar_enable(sc, ic->ic_curchan);
2034
2035
/* Let spectral at in case spectral is enabled */
2036
ath_spectral_enable(sc, ic->ic_curchan);
2037
2038
/*
2039
* Let bluetooth coexistence at in case it's needed for this channel
2040
*/
2041
ath_btcoex_enable(sc, ic->ic_curchan);
2042
2043
/*
2044
* If we're doing TDMA, enforce the TXOP limitation for chips that
2045
* support it.
2046
*/
2047
if (sc->sc_hasenforcetxop && sc->sc_tdma)
2048
ath_hal_setenforcetxop(sc->sc_ah, 1);
2049
else
2050
ath_hal_setenforcetxop(sc->sc_ah, 0);
2051
2052
/* Restore the LED configuration */
2053
ath_led_config(sc);
2054
ath_hal_setledstate(ah, HAL_LED_INIT);
2055
2056
if (sc->sc_resume_up)
2057
ieee80211_resume_all(ic);
2058
2059
ATH_LOCK(sc);
2060
ath_power_restore_power_state(sc);
2061
ATH_UNLOCK(sc);
2062
2063
/* XXX beacons ? */
2064
}
2065
2066
void
2067
ath_shutdown(struct ath_softc *sc)
2068
{
2069
2070
ATH_LOCK(sc);
2071
ath_stop(sc);
2072
ATH_UNLOCK(sc);
2073
/* NB: no point powering down chip as we're about to reboot */
2074
}
2075
2076
/*
2077
* Interrupt handler. Most of the actual processing is deferred.
2078
*/
2079
void
2080
ath_intr(void *arg)
2081
{
2082
struct ath_softc *sc = arg;
2083
struct ath_hal *ah = sc->sc_ah;
2084
HAL_INT status = 0;
2085
uint32_t txqs;
2086
2087
/*
2088
* If we're inside a reset path, just print a warning and
2089
* clear the ISR. The reset routine will finish it for us.
2090
*/
2091
ATH_PCU_LOCK(sc);
2092
if (sc->sc_inreset_cnt) {
2093
HAL_INT status;
2094
ath_hal_getisr(ah, &status); /* clear ISR */
2095
ath_hal_intrset(ah, 0); /* disable further intr's */
2096
DPRINTF(sc, ATH_DEBUG_ANY,
2097
"%s: in reset, ignoring: status=0x%x\n",
2098
__func__, status);
2099
ATH_PCU_UNLOCK(sc);
2100
return;
2101
}
2102
2103
if (sc->sc_invalid) {
2104
/*
2105
* The hardware is not ready/present, don't touch anything.
2106
* Note this can happen early on if the IRQ is shared.
2107
*/
2108
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
2109
ATH_PCU_UNLOCK(sc);
2110
return;
2111
}
2112
if (!ath_hal_intrpend(ah)) { /* shared irq, not for us */
2113
ATH_PCU_UNLOCK(sc);
2114
return;
2115
}
2116
2117
ATH_LOCK(sc);
2118
ath_power_set_power_state(sc, HAL_PM_AWAKE);
2119
ATH_UNLOCK(sc);
2120
2121
if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) {
2122
HAL_INT status;
2123
2124
DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n",
2125
__func__, sc->sc_ic.ic_nrunning, sc->sc_running);
2126
ath_hal_getisr(ah, &status); /* clear ISR */
2127
ath_hal_intrset(ah, 0); /* disable further intr's */
2128
ATH_PCU_UNLOCK(sc);
2129
2130
ATH_LOCK(sc);
2131
ath_power_restore_power_state(sc);
2132
ATH_UNLOCK(sc);
2133
return;
2134
}
2135
2136
/*
2137
* Figure out the reason(s) for the interrupt. Note
2138
* that the hal returns a pseudo-ISR that may include
2139
* bits we haven't explicitly enabled so we mask the
2140
* value to insure we only process bits we requested.
2141
*/
2142
ath_hal_getisr(ah, &status); /* NB: clears ISR too */
2143
DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2144
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2145
#ifdef ATH_DEBUG_ALQ
2146
if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2147
ah->ah_syncstate);
2148
#endif /* ATH_DEBUG_ALQ */
2149
#ifdef ATH_KTR_INTR_DEBUG
2150
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2151
"ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2152
ah->ah_intrstate[0],
2153
ah->ah_intrstate[1],
2154
ah->ah_intrstate[2],
2155
ah->ah_intrstate[3],
2156
ah->ah_intrstate[6]);
2157
#endif
2158
2159
/* Squirrel away SYNC interrupt debugging */
2160
if (ah->ah_syncstate != 0) {
2161
int i;
2162
for (i = 0; i < 32; i++)
2163
if (ah->ah_syncstate & (1 << i))
2164
sc->sc_intr_stats.sync_intr[i]++;
2165
}
2166
2167
status &= sc->sc_imask; /* discard unasked for bits */
2168
2169
/* Short-circuit un-handled interrupts */
2170
if (status == 0x0) {
2171
ATH_PCU_UNLOCK(sc);
2172
2173
ATH_LOCK(sc);
2174
ath_power_restore_power_state(sc);
2175
ATH_UNLOCK(sc);
2176
2177
return;
2178
}
2179
2180
/*
2181
* Take a note that we're inside the interrupt handler, so
2182
* the reset routines know to wait.
2183
*/
2184
sc->sc_intr_cnt++;
2185
ATH_PCU_UNLOCK(sc);
2186
2187
/*
2188
* Handle the interrupt. We won't run concurrent with the reset
2189
* or channel change routines as they'll wait for sc_intr_cnt
2190
* to be 0 before continuing.
2191
*/
2192
if (status & HAL_INT_FATAL) {
2193
sc->sc_stats.ast_hardware++;
2194
ath_hal_intrset(ah, 0); /* disable intr's until reset */
2195
taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2196
} else {
2197
if (status & HAL_INT_SWBA) {
2198
/*
2199
* Software beacon alert--time to send a beacon.
2200
* Handle beacon transmission directly; deferring
2201
* this is too slow to meet timing constraints
2202
* under load.
2203
*/
2204
#ifdef IEEE80211_SUPPORT_TDMA
2205
if (sc->sc_tdma) {
2206
if (sc->sc_tdmaswba == 0) {
2207
struct ieee80211com *ic = &sc->sc_ic;
2208
struct ieee80211vap *vap =
2209
TAILQ_FIRST(&ic->ic_vaps);
2210
ath_tdma_beacon_send(sc, vap);
2211
sc->sc_tdmaswba =
2212
vap->iv_tdma->tdma_bintval;
2213
} else
2214
sc->sc_tdmaswba--;
2215
} else
2216
#endif
2217
{
2218
ath_beacon_proc(sc, 0);
2219
#ifdef IEEE80211_SUPPORT_SUPERG
2220
/*
2221
* Schedule the rx taskq in case there's no
2222
* traffic so any frames held on the staging
2223
* queue are aged and potentially flushed.
2224
*/
2225
sc->sc_rx.recv_sched(sc, 1);
2226
#endif
2227
}
2228
}
2229
if (status & HAL_INT_RXEOL) {
2230
int imask;
2231
ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2232
if (! sc->sc_isedma) {
2233
ATH_PCU_LOCK(sc);
2234
/*
2235
* NB: the hardware should re-read the link when
2236
* RXE bit is written, but it doesn't work at
2237
* least on older hardware revs.
2238
*/
2239
sc->sc_stats.ast_rxeol++;
2240
/*
2241
* Disable RXEOL/RXORN - prevent an interrupt
2242
* storm until the PCU logic can be reset.
2243
* In case the interface is reset some other
2244
* way before "sc_kickpcu" is called, don't
2245
* modify sc_imask - that way if it is reset
2246
* by a call to ath_reset() somehow, the
2247
* interrupt mask will be correctly reprogrammed.
2248
*/
2249
imask = sc->sc_imask;
2250
imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2251
ath_hal_intrset(ah, imask);
2252
/*
2253
* Only blank sc_rxlink if we've not yet kicked
2254
* the PCU.
2255
*
2256
* This isn't entirely correct - the correct solution
2257
* would be to have a PCU lock and engage that for
2258
* the duration of the PCU fiddling; which would include
2259
* running the RX process. Otherwise we could end up
2260
* messing up the RX descriptor chain and making the
2261
* RX desc list much shorter.
2262
*/
2263
if (! sc->sc_kickpcu)
2264
sc->sc_rxlink = NULL;
2265
sc->sc_kickpcu = 1;
2266
ATH_PCU_UNLOCK(sc);
2267
}
2268
/*
2269
* Enqueue an RX proc to handle whatever
2270
* is in the RX queue.
2271
* This will then kick the PCU if required.
2272
*/
2273
sc->sc_rx.recv_sched(sc, 1);
2274
}
2275
if (status & HAL_INT_TXURN) {
2276
sc->sc_stats.ast_txurn++;
2277
/* bump tx trigger level */
2278
ath_hal_updatetxtriglevel(ah, AH_TRUE);
2279
}
2280
/*
2281
* Handle both the legacy and RX EDMA interrupt bits.
2282
* Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2283
*/
2284
if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2285
sc->sc_stats.ast_rx_intr++;
2286
sc->sc_rx.recv_sched(sc, 1);
2287
}
2288
if (status & HAL_INT_TX) {
2289
sc->sc_stats.ast_tx_intr++;
2290
/*
2291
* Grab all the currently set bits in the HAL txq bitmap
2292
* and blank them. This is the only place we should be
2293
* doing this.
2294
*/
2295
if (! sc->sc_isedma) {
2296
ATH_PCU_LOCK(sc);
2297
txqs = 0xffffffff;
2298
ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2299
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2300
"ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2301
txqs,
2302
sc->sc_txq_active,
2303
sc->sc_txq_active | txqs);
2304
sc->sc_txq_active |= txqs;
2305
ATH_PCU_UNLOCK(sc);
2306
}
2307
taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2308
}
2309
if (status & HAL_INT_BMISS) {
2310
sc->sc_stats.ast_bmiss++;
2311
taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2312
}
2313
if (status & HAL_INT_GTT)
2314
sc->sc_stats.ast_tx_timeout++;
2315
if (status & HAL_INT_CST)
2316
sc->sc_stats.ast_tx_cst++;
2317
if (status & HAL_INT_MIB) {
2318
sc->sc_stats.ast_mib++;
2319
ATH_PCU_LOCK(sc);
2320
/*
2321
* Disable interrupts until we service the MIB
2322
* interrupt; otherwise it will continue to fire.
2323
*/
2324
ath_hal_intrset(ah, 0);
2325
/*
2326
* Let the hal handle the event. We assume it will
2327
* clear whatever condition caused the interrupt.
2328
*/
2329
ath_hal_mibevent(ah, &sc->sc_halstats);
2330
/*
2331
* Don't reset the interrupt if we've just
2332
* kicked the PCU, or we may get a nested
2333
* RXEOL before the rxproc has had a chance
2334
* to run.
2335
*/
2336
if (sc->sc_kickpcu == 0)
2337
ath_hal_intrset(ah, sc->sc_imask);
2338
ATH_PCU_UNLOCK(sc);
2339
}
2340
if (status & HAL_INT_RXORN) {
2341
/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2342
ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2343
sc->sc_stats.ast_rxorn++;
2344
}
2345
if (status & HAL_INT_TSFOOR) {
2346
/*
2347
* out of range beacon - wake the chip up,
2348
* but don't modify self-gen frame config.
2349
* Do a full reset to clear any potential stuck
2350
* PHY/MAC that generated this condition.
2351
*/
2352
sc->sc_stats.ast_tsfoor++;
2353
ATH_LOCK(sc);
2354
ath_power_setpower(sc, HAL_PM_AWAKE, 0);
2355
ATH_UNLOCK(sc);
2356
taskqueue_enqueue(sc->sc_tq, &sc->sc_tsfoortask);
2357
device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2358
}
2359
if (status & HAL_INT_MCI) {
2360
ath_btcoex_mci_intr(sc);
2361
}
2362
}
2363
ATH_PCU_LOCK(sc);
2364
sc->sc_intr_cnt--;
2365
ATH_PCU_UNLOCK(sc);
2366
2367
ATH_LOCK(sc);
2368
ath_power_restore_power_state(sc);
2369
ATH_UNLOCK(sc);
2370
}
2371
2372
static void
2373
ath_fatal_proc(void *arg, int pending)
2374
{
2375
struct ath_softc *sc = arg;
2376
u_int32_t *state;
2377
u_int32_t len;
2378
void *sp;
2379
2380
if (sc->sc_invalid)
2381
return;
2382
2383
device_printf(sc->sc_dev, "hardware error; resetting\n");
2384
/*
2385
* Fatal errors are unrecoverable. Typically these
2386
* are caused by DMA errors. Collect h/w state from
2387
* the hal so we can diagnose what's going on.
2388
*/
2389
if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2390
KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2391
state = sp;
2392
device_printf(sc->sc_dev,
2393
"0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0],
2394
state[1] , state[2], state[3], state[4], state[5]);
2395
}
2396
ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
2397
}
2398
2399
static void
2400
ath_bmiss_vap(struct ieee80211vap *vap)
2401
{
2402
struct ath_softc *sc = vap->iv_ic->ic_softc;
2403
2404
/*
2405
* Workaround phantom bmiss interrupts by sanity-checking
2406
* the time of our last rx'd frame. If it is within the
2407
* beacon miss interval then ignore the interrupt. If it's
2408
* truly a bmiss we'll get another interrupt soon and that'll
2409
* be dispatched up for processing. Note this applies only
2410
* for h/w beacon miss events.
2411
*/
2412
2413
/*
2414
* XXX TODO: Just read the TSF during the interrupt path;
2415
* that way we don't have to wake up again just to read it
2416
* again.
2417
*/
2418
ATH_LOCK(sc);
2419
ath_power_set_power_state(sc, HAL_PM_AWAKE);
2420
ATH_UNLOCK(sc);
2421
2422
if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2423
u_int64_t lastrx = sc->sc_lastrx;
2424
u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2425
/* XXX should take a locked ref to iv_bss */
2426
u_int bmisstimeout =
2427
vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2428
2429
DPRINTF(sc, ATH_DEBUG_BEACON,
2430
"%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2431
__func__, (unsigned long long) tsf,
2432
(unsigned long long)(tsf - lastrx),
2433
(unsigned long long) lastrx, bmisstimeout);
2434
2435
if (tsf - lastrx <= bmisstimeout) {
2436
sc->sc_stats.ast_bmiss_phantom++;
2437
2438
ATH_LOCK(sc);
2439
ath_power_restore_power_state(sc);
2440
ATH_UNLOCK(sc);
2441
2442
return;
2443
}
2444
}
2445
2446
/*
2447
* Keep the hardware awake if it's asleep (and leave self-gen
2448
* frame config alone) until the next beacon, so we can resync
2449
* against the next beacon.
2450
*
2451
* This handles three common beacon miss cases in STA powersave mode -
2452
* (a) the beacon TBTT isn't a multiple of bintval;
2453
* (b) the beacon was missed; and
2454
* (c) the beacons are being delayed because the AP is busy and
2455
* isn't reliably able to meet its TBTT.
2456
*/
2457
ATH_LOCK(sc);
2458
ath_power_setpower(sc, HAL_PM_AWAKE, 0);
2459
ath_power_restore_power_state(sc);
2460
ATH_UNLOCK(sc);
2461
2462
DPRINTF(sc, ATH_DEBUG_BEACON,
2463
"%s: forced awake; force syncbeacon=1\n", __func__);
2464
if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2465
/*
2466
* Attempt to force a beacon resync.
2467
*/
2468
sc->sc_syncbeacon = 1;
2469
}
2470
2471
ATH_VAP(vap)->av_bmiss(vap);
2472
}
2473
2474
/* XXX this needs a force wakeup! */
2475
int
2476
ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2477
{
2478
uint32_t rsize;
2479
void *sp;
2480
2481
if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2482
return 0;
2483
KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2484
*hangs = *(uint32_t *)sp;
2485
return 1;
2486
}
2487
2488
static void
2489
ath_bmiss_proc(void *arg, int pending)
2490
{
2491
struct ath_softc *sc = arg;
2492
uint32_t hangs;
2493
2494
DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2495
2496
ATH_LOCK(sc);
2497
ath_power_set_power_state(sc, HAL_PM_AWAKE);
2498
ATH_UNLOCK(sc);
2499
2500
ath_beacon_miss(sc);
2501
2502
/*
2503
* Do a reset upon any beacon miss event.
2504
*
2505
* It may be a non-recognised RX clear hang which needs a reset
2506
* to clear.
2507
*/
2508
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2509
ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_BBPANIC);
2510
device_printf(sc->sc_dev,
2511
"bb hang detected (0x%x), resetting\n", hangs);
2512
} else {
2513
ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
2514
ieee80211_beacon_miss(&sc->sc_ic);
2515
}
2516
2517
/* Force a beacon resync, in case they've drifted */
2518
sc->sc_syncbeacon = 1;
2519
2520
ATH_LOCK(sc);
2521
ath_power_restore_power_state(sc);
2522
ATH_UNLOCK(sc);
2523
}
2524
2525
/*
2526
* Handle a TSF out of range interrupt in STA mode.
2527
*
2528
* This may be due to a partially deaf looking radio, so
2529
* do a full reset just in case it is indeed deaf and
2530
* resync the beacon.
2531
*/
2532
static void
2533
ath_tsfoor_proc(void *arg, int pending)
2534
{
2535
struct ath_softc *sc = arg;
2536
2537
DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2538
2539
ATH_LOCK(sc);
2540
ath_power_set_power_state(sc, HAL_PM_AWAKE);
2541
ATH_UNLOCK(sc);
2542
2543
/*
2544
* Do a full reset after any TSFOOR. It's possible that
2545
* we've gone deaf or partially deaf (eg due to calibration
2546
* failures) and this should clean things up a bit.
2547
*/
2548
ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
2549
2550
/* Force a beacon resync, in case they've drifted */
2551
sc->sc_syncbeacon = 1;
2552
2553
ATH_LOCK(sc);
2554
ath_power_restore_power_state(sc);
2555
ATH_UNLOCK(sc);
2556
}
2557
2558
/*
2559
* Handle TKIP MIC setup to deal hardware that doesn't do MIC
2560
* calcs together with WME. If necessary disable the crypto
2561
* hardware and mark the 802.11 state so keys will be setup
2562
* with the MIC work done in software.
2563
*/
2564
static void
2565
ath_settkipmic(struct ath_softc *sc)
2566
{
2567
struct ieee80211com *ic = &sc->sc_ic;
2568
2569
if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2570
if (ic->ic_flags & IEEE80211_F_WME) {
2571
ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2572
ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2573
} else {
2574
ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2575
ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2576
}
2577
}
2578
}
2579
2580
static void
2581
ath_vap_clear_quiet_ie(struct ath_softc *sc)
2582
{
2583
struct ieee80211com *ic = &sc->sc_ic;
2584
struct ieee80211vap *vap;
2585
struct ath_vap *avp;
2586
2587
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2588
avp = ATH_VAP(vap);
2589
/* Quiet time handling - ensure we resync */
2590
memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
2591
}
2592
}
2593
2594
static int
2595
ath_init(struct ath_softc *sc)
2596
{
2597
struct ieee80211com *ic = &sc->sc_ic;
2598
struct ath_hal *ah = sc->sc_ah;
2599
HAL_STATUS status;
2600
2601
ATH_LOCK_ASSERT(sc);
2602
2603
/*
2604
* Force the sleep state awake.
2605
*/
2606
ath_power_setselfgen(sc, HAL_PM_AWAKE);
2607
ath_power_set_power_state(sc, HAL_PM_AWAKE);
2608
ath_power_setpower(sc, HAL_PM_AWAKE, 1);
2609
2610
/*
2611
* Stop anything previously setup. This is safe
2612
* whether this is the first time through or not.
2613
*/
2614
ath_stop(sc);
2615
2616
/*
2617
* The basic interface to setting the hardware in a good
2618
* state is ``reset''. On return the hardware is known to
2619
* be powered up and with interrupts disabled. This must
2620
* be followed by initialization of the appropriate bits
2621
* and then setup of the interrupt mask.
2622
*/
2623
ath_settkipmic(sc);
2624
ath_update_chainmasks(sc, ic->ic_curchan);
2625
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2626
sc->sc_cur_rxchainmask);
2627
2628
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE,
2629
HAL_RESET_NORMAL, &status)) {
2630
device_printf(sc->sc_dev,
2631
"unable to reset hardware; hal status %u\n", status);
2632
return (ENODEV);
2633
}
2634
2635
ATH_RX_LOCK(sc);
2636
sc->sc_rx_stopped = 1;
2637
sc->sc_rx_resetted = 1;
2638
ATH_RX_UNLOCK(sc);
2639
2640
/* Clear quiet IE state for each VAP */
2641
ath_vap_clear_quiet_ie(sc);
2642
2643
ath_chan_change(sc, ic->ic_curchan);
2644
2645
/* Let DFS at it in case it's a DFS channel */
2646
ath_dfs_radar_enable(sc, ic->ic_curchan);
2647
2648
/* Let spectral at in case spectral is enabled */
2649
ath_spectral_enable(sc, ic->ic_curchan);
2650
2651
/*
2652
* Let bluetooth coexistence at in case it's needed for this channel
2653
*/
2654
ath_btcoex_enable(sc, ic->ic_curchan);
2655
2656
/*
2657
* If we're doing TDMA, enforce the TXOP limitation for chips that
2658
* support it.
2659
*/
2660
if (sc->sc_hasenforcetxop && sc->sc_tdma)
2661
ath_hal_setenforcetxop(sc->sc_ah, 1);
2662
else
2663
ath_hal_setenforcetxop(sc->sc_ah, 0);
2664
2665
/*
2666
* Likewise this is set during reset so update
2667
* state cached in the driver.
2668
*/
2669
sc->sc_diversity = ath_hal_getdiversity(ah);
2670
sc->sc_lastlongcal = ticks;
2671
sc->sc_resetcal = 1;
2672
sc->sc_lastcalreset = 0;
2673
sc->sc_lastani = ticks;
2674
sc->sc_lastshortcal = ticks;
2675
sc->sc_doresetcal = AH_FALSE;
2676
/*
2677
* Beacon timers were cleared here; give ath_newstate()
2678
* a hint that the beacon timers should be poked when
2679
* things transition to the RUN state.
2680
*/
2681
sc->sc_beacons = 0;
2682
2683
/*
2684
* Setup the hardware after reset: the key cache
2685
* is filled as needed and the receive engine is
2686
* set going. Frame transmit is handled entirely
2687
* in the frame output path; there's nothing to do
2688
* here except setup the interrupt mask.
2689
*/
2690
if (ath_startrecv(sc) != 0) {
2691
device_printf(sc->sc_dev, "unable to start recv logic\n");
2692
ath_power_restore_power_state(sc);
2693
return (ENODEV);
2694
}
2695
2696
/*
2697
* Enable interrupts.
2698
*/
2699
sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2700
| HAL_INT_RXORN | HAL_INT_TXURN
2701
| HAL_INT_FATAL | HAL_INT_GLOBAL;
2702
2703
/*
2704
* Enable RX EDMA bits. Note these overlap with
2705
* HAL_INT_RX and HAL_INT_RXDESC respectively.
2706
*/
2707
if (sc->sc_isedma)
2708
sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2709
2710
/*
2711
* If we're an EDMA NIC, we don't care about RXEOL.
2712
* Writing a new descriptor in will simply restart
2713
* RX DMA.
2714
*/
2715
if (! sc->sc_isedma)
2716
sc->sc_imask |= HAL_INT_RXEOL;
2717
2718
/*
2719
* Enable MCI interrupt for MCI devices.
2720
*/
2721
if (sc->sc_btcoex_mci)
2722
sc->sc_imask |= HAL_INT_MCI;
2723
2724
/*
2725
* Enable MIB interrupts when there are hardware phy counters.
2726
* Note we only do this (at the moment) for station mode.
2727
*/
2728
if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2729
sc->sc_imask |= HAL_INT_MIB;
2730
2731
/*
2732
* XXX add capability for this.
2733
*
2734
* If we're in STA mode (and maybe IBSS?) then register for
2735
* TSFOOR interrupts.
2736
*/
2737
if (ic->ic_opmode == IEEE80211_M_STA)
2738
sc->sc_imask |= HAL_INT_TSFOOR;
2739
2740
/* Enable global TX timeout and carrier sense timeout if available */
2741
if (ath_hal_gtxto_supported(ah))
2742
sc->sc_imask |= HAL_INT_GTT;
2743
2744
DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2745
__func__, sc->sc_imask);
2746
2747
sc->sc_running = 1;
2748
callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2749
ath_hal_intrset(ah, sc->sc_imask);
2750
2751
ath_power_restore_power_state(sc);
2752
2753
return (0);
2754
}
2755
2756
static void
2757
ath_stop(struct ath_softc *sc)
2758
{
2759
struct ath_hal *ah = sc->sc_ah;
2760
2761
ATH_LOCK_ASSERT(sc);
2762
2763
/*
2764
* Wake the hardware up before fiddling with it.
2765
*/
2766
ath_power_set_power_state(sc, HAL_PM_AWAKE);
2767
2768
if (sc->sc_running) {
2769
/*
2770
* Shutdown the hardware and driver:
2771
* reset 802.11 state machine
2772
* turn off timers
2773
* disable interrupts
2774
* turn off the radio
2775
* clear transmit machinery
2776
* clear receive machinery
2777
* drain and release tx queues
2778
* reclaim beacon resources
2779
* power down hardware
2780
*
2781
* Note that some of this work is not possible if the
2782
* hardware is gone (invalid).
2783
*/
2784
#ifdef ATH_TX99_DIAG
2785
if (sc->sc_tx99 != NULL)
2786
sc->sc_tx99->stop(sc->sc_tx99);
2787
#endif
2788
callout_stop(&sc->sc_wd_ch);
2789
sc->sc_wd_timer = 0;
2790
sc->sc_running = 0;
2791
if (!sc->sc_invalid) {
2792
if (sc->sc_softled) {
2793
callout_stop(&sc->sc_ledtimer);
2794
ath_hal_gpioset(ah, sc->sc_ledpin,
2795
!sc->sc_ledon);
2796
sc->sc_blinking = 0;
2797
}
2798
ath_hal_intrset(ah, 0);
2799
}
2800
/* XXX we should stop RX regardless of whether it's valid */
2801
if (!sc->sc_invalid) {
2802
ath_stoprecv(sc, 1);
2803
ath_hal_phydisable(ah);
2804
} else
2805
sc->sc_rxlink = NULL;
2806
ath_draintxq(sc, ATH_RESET_DEFAULT);
2807
ath_beacon_free(sc); /* XXX not needed */
2808
}
2809
2810
/* And now, restore the current power state */
2811
ath_power_restore_power_state(sc);
2812
}
2813
2814
/*
2815
* Wait until all pending TX/RX has completed.
2816
*
2817
* This waits until all existing transmit, receive and interrupts
2818
* have completed. It's assumed that the caller has first
2819
* grabbed the reset lock so it doesn't try to do overlapping
2820
* chip resets.
2821
*/
2822
#define MAX_TXRX_ITERATIONS 100
2823
static void
2824
ath_txrx_stop_locked(struct ath_softc *sc)
2825
{
2826
int i = MAX_TXRX_ITERATIONS;
2827
2828
ATH_UNLOCK_ASSERT(sc);
2829
ATH_PCU_LOCK_ASSERT(sc);
2830
2831
/*
2832
* Sleep until all the pending operations have completed.
2833
*
2834
* The caller must ensure that reset has been incremented
2835
* or the pending operations may continue being queued.
2836
*/
2837
while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2838
sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2839
if (i <= 0)
2840
break;
2841
msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2842
msecs_to_ticks(10));
2843
i--;
2844
}
2845
2846
if (i <= 0)
2847
device_printf(sc->sc_dev,
2848
"%s: didn't finish after %d iterations\n",
2849
__func__, MAX_TXRX_ITERATIONS);
2850
}
2851
#undef MAX_TXRX_ITERATIONS
2852
2853
#if 0
2854
static void
2855
ath_txrx_stop(struct ath_softc *sc)
2856
{
2857
ATH_UNLOCK_ASSERT(sc);
2858
ATH_PCU_UNLOCK_ASSERT(sc);
2859
2860
ATH_PCU_LOCK(sc);
2861
ath_txrx_stop_locked(sc);
2862
ATH_PCU_UNLOCK(sc);
2863
}
2864
#endif
2865
2866
static void
2867
ath_txrx_start(struct ath_softc *sc)
2868
{
2869
2870
taskqueue_unblock(sc->sc_tq);
2871
}
2872
2873
/*
2874
* Grab the reset lock, and wait around until no one else
2875
* is trying to do anything with it.
2876
*
2877
* This is totally horrible but we can't hold this lock for
2878
* long enough to do TX/RX or we end up with net80211/ip stack
2879
* LORs and eventual deadlock.
2880
*
2881
* "dowait" signals whether to spin, waiting for the reset
2882
* lock count to reach 0. This should (for now) only be used
2883
* during the reset path, as the rest of the code may not
2884
* be locking-reentrant enough to behave correctly.
2885
*
2886
* Another, cleaner way should be found to serialise all of
2887
* these operations.
2888
*/
2889
#define MAX_RESET_ITERATIONS 25
2890
static int
2891
ath_reset_grablock(struct ath_softc *sc, int dowait)
2892
{
2893
int w = 0;
2894
int i = MAX_RESET_ITERATIONS;
2895
2896
ATH_PCU_LOCK_ASSERT(sc);
2897
do {
2898
if (sc->sc_inreset_cnt == 0) {
2899
w = 1;
2900
break;
2901
}
2902
if (dowait == 0) {
2903
w = 0;
2904
break;
2905
}
2906
ATH_PCU_UNLOCK(sc);
2907
/*
2908
* 1 tick is likely not enough time for long calibrations
2909
* to complete. So we should wait quite a while.
2910
*/
2911
pause("ath_reset_grablock", msecs_to_ticks(100));
2912
i--;
2913
ATH_PCU_LOCK(sc);
2914
} while (i > 0);
2915
2916
/*
2917
* We always increment the refcounter, regardless
2918
* of whether we succeeded to get it in an exclusive
2919
* way.
2920
*/
2921
sc->sc_inreset_cnt++;
2922
2923
if (i <= 0)
2924
device_printf(sc->sc_dev,
2925
"%s: didn't finish after %d iterations\n",
2926
__func__, MAX_RESET_ITERATIONS);
2927
2928
if (w == 0)
2929
device_printf(sc->sc_dev,
2930
"%s: warning, recursive reset path!\n",
2931
__func__);
2932
2933
return w;
2934
}
2935
#undef MAX_RESET_ITERATIONS
2936
2937
/*
2938
* Reset the hardware w/o losing operational state. This is
2939
* basically a more efficient way of doing ath_stop, ath_init,
2940
* followed by state transitions to the current 802.11
2941
* operational state. Used to recover from various errors and
2942
* to reset or reload hardware state.
2943
*/
2944
int
2945
ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type,
2946
HAL_RESET_TYPE ah_reset_type)
2947
{
2948
struct ieee80211com *ic = &sc->sc_ic;
2949
struct ath_hal *ah = sc->sc_ah;
2950
HAL_STATUS status;
2951
int i;
2952
2953
DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2954
2955
/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2956
ATH_PCU_UNLOCK_ASSERT(sc);
2957
ATH_UNLOCK_ASSERT(sc);
2958
2959
/* Try to (stop any further TX/RX from occurring */
2960
taskqueue_block(sc->sc_tq);
2961
2962
/*
2963
* Wake the hardware up.
2964
*/
2965
ATH_LOCK(sc);
2966
ath_power_set_power_state(sc, HAL_PM_AWAKE);
2967
ATH_UNLOCK(sc);
2968
2969
ATH_PCU_LOCK(sc);
2970
2971
/*
2972
* Grab the reset lock before TX/RX is stopped.
2973
*
2974
* This is needed to ensure that when the TX/RX actually does finish,
2975
* no further TX/RX/reset runs in parallel with this.
2976
*/
2977
if (ath_reset_grablock(sc, 1) == 0) {
2978
device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2979
__func__);
2980
}
2981
2982
/* disable interrupts */
2983
ath_hal_intrset(ah, 0);
2984
2985
/*
2986
* Now, ensure that any in progress TX/RX completes before we
2987
* continue.
2988
*/
2989
ath_txrx_stop_locked(sc);
2990
2991
ATH_PCU_UNLOCK(sc);
2992
2993
/*
2994
* Regardless of whether we're doing a no-loss flush or
2995
* not, stop the PCU and handle what's in the RX queue.
2996
* That way frames aren't dropped which shouldn't be.
2997
*/
2998
ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2999
ath_rx_flush(sc);
3000
3001
/*
3002
* Should now wait for pending TX/RX to complete
3003
* and block future ones from occurring. This needs to be
3004
* done before the TX queue is drained.
3005
*/
3006
ath_draintxq(sc, reset_type); /* stop xmit side */
3007
3008
ath_settkipmic(sc); /* configure TKIP MIC handling */
3009
/* NB: indicate channel change so we do a full reset */
3010
ath_update_chainmasks(sc, ic->ic_curchan);
3011
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
3012
sc->sc_cur_rxchainmask);
3013
if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE,
3014
ah_reset_type, &status))
3015
device_printf(sc->sc_dev,
3016
"%s: unable to reset hardware; hal status %u\n",
3017
__func__, status);
3018
sc->sc_diversity = ath_hal_getdiversity(ah);
3019
3020
ATH_RX_LOCK(sc);
3021
sc->sc_rx_stopped = 1;
3022
sc->sc_rx_resetted = 1;
3023
ATH_RX_UNLOCK(sc);
3024
3025
/* Quiet time handling - ensure we resync */
3026
ath_vap_clear_quiet_ie(sc);
3027
3028
/* Let DFS at it in case it's a DFS channel */
3029
ath_dfs_radar_enable(sc, ic->ic_curchan);
3030
3031
/* Let spectral at in case spectral is enabled */
3032
ath_spectral_enable(sc, ic->ic_curchan);
3033
3034
/*
3035
* Let bluetooth coexistence at in case it's needed for this channel
3036
*/
3037
ath_btcoex_enable(sc, ic->ic_curchan);
3038
3039
/*
3040
* If we're doing TDMA, enforce the TXOP limitation for chips that
3041
* support it.
3042
*/
3043
if (sc->sc_hasenforcetxop && sc->sc_tdma)
3044
ath_hal_setenforcetxop(sc->sc_ah, 1);
3045
else
3046
ath_hal_setenforcetxop(sc->sc_ah, 0);
3047
3048
if (ath_startrecv(sc) != 0) /* restart recv */
3049
device_printf(sc->sc_dev,
3050
"%s: unable to start recv logic\n", __func__);
3051
/*
3052
* We may be doing a reset in response to an ioctl
3053
* that changes the channel so update any state that
3054
* might change as a result.
3055
*/
3056
ath_chan_change(sc, ic->ic_curchan);
3057
if (sc->sc_beacons) { /* restart beacons */
3058
#ifdef IEEE80211_SUPPORT_TDMA
3059
if (sc->sc_tdma)
3060
ath_tdma_config(sc, NULL);
3061
else
3062
#endif
3063
ath_beacon_config(sc, NULL);
3064
}
3065
3066
/*
3067
* Release the reset lock and re-enable interrupts here.
3068
* If an interrupt was being processed in ath_intr(),
3069
* it would disable interrupts at this point. So we have
3070
* to atomically enable interrupts and decrement the
3071
* reset counter - this way ath_intr() doesn't end up
3072
* disabling interrupts without a corresponding enable
3073
* in the rest or channel change path.
3074
*
3075
* Grab the TX reference in case we need to transmit.
3076
* That way a parallel transmit doesn't.
3077
*/
3078
ATH_PCU_LOCK(sc);
3079
sc->sc_inreset_cnt--;
3080
sc->sc_txstart_cnt++;
3081
/* XXX only do this if sc_inreset_cnt == 0? */
3082
ath_hal_intrset(ah, sc->sc_imask);
3083
ATH_PCU_UNLOCK(sc);
3084
3085
/*
3086
* TX and RX can be started here. If it were started with
3087
* sc_inreset_cnt > 0, the TX and RX path would abort.
3088
* Thus if this is a nested call through the reset or
3089
* channel change code, TX completion will occur but
3090
* RX completion and ath_start / ath_tx_start will not
3091
* run.
3092
*/
3093
3094
/* Restart TX/RX as needed */
3095
ath_txrx_start(sc);
3096
3097
/* XXX TODO: we need to hold the tx refcount here! */
3098
3099
/* Restart TX completion and pending TX */
3100
if (reset_type == ATH_RESET_NOLOSS) {
3101
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3102
if (ATH_TXQ_SETUP(sc, i)) {
3103
ATH_TXQ_LOCK(&sc->sc_txq[i]);
3104
ath_txq_restart_dma(sc, &sc->sc_txq[i]);
3105
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3106
3107
ATH_TX_LOCK(sc);
3108
ath_txq_sched(sc, &sc->sc_txq[i]);
3109
ATH_TX_UNLOCK(sc);
3110
}
3111
}
3112
}
3113
3114
ATH_LOCK(sc);
3115
ath_power_restore_power_state(sc);
3116
ATH_UNLOCK(sc);
3117
3118
ATH_PCU_LOCK(sc);
3119
sc->sc_txstart_cnt--;
3120
ATH_PCU_UNLOCK(sc);
3121
3122
/* Handle any frames in the TX queue */
3123
/*
3124
* XXX should this be done by the caller, rather than
3125
* ath_reset() ?
3126
*/
3127
ath_tx_kick(sc); /* restart xmit */
3128
return 0;
3129
}
3130
3131
static int
3132
ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
3133
{
3134
struct ieee80211com *ic = vap->iv_ic;
3135
struct ath_softc *sc = ic->ic_softc;
3136
struct ath_hal *ah = sc->sc_ah;
3137
3138
switch (cmd) {
3139
case IEEE80211_IOC_TXPOWER:
3140
/*
3141
* If per-packet TPC is enabled, then we have nothing
3142
* to do; otherwise we need to force the global limit.
3143
* All this can happen directly; no need to reset.
3144
*/
3145
if (!ath_hal_gettpc(ah))
3146
ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
3147
return 0;
3148
}
3149
/* XXX? Full or NOLOSS? */
3150
return ath_reset(sc, ATH_RESET_FULL, HAL_RESET_NORMAL);
3151
}
3152
3153
struct ath_buf *
3154
_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
3155
{
3156
struct ath_buf *bf;
3157
3158
ATH_TXBUF_LOCK_ASSERT(sc);
3159
3160
if (btype == ATH_BUFTYPE_MGMT)
3161
bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
3162
else
3163
bf = TAILQ_FIRST(&sc->sc_txbuf);
3164
3165
if (bf == NULL) {
3166
sc->sc_stats.ast_tx_getnobuf++;
3167
} else {
3168
if (bf->bf_flags & ATH_BUF_BUSY) {
3169
sc->sc_stats.ast_tx_getbusybuf++;
3170
bf = NULL;
3171
}
3172
}
3173
3174
if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
3175
if (btype == ATH_BUFTYPE_MGMT)
3176
TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
3177
else {
3178
TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
3179
sc->sc_txbuf_cnt--;
3180
3181
/*
3182
* This shuldn't happen; however just to be
3183
* safe print a warning and fudge the txbuf
3184
* count.
3185
*/
3186
if (sc->sc_txbuf_cnt < 0) {
3187
device_printf(sc->sc_dev,
3188
"%s: sc_txbuf_cnt < 0?\n",
3189
__func__);
3190
sc->sc_txbuf_cnt = 0;
3191
}
3192
}
3193
} else
3194
bf = NULL;
3195
3196
if (bf == NULL) {
3197
/* XXX should check which list, mgmt or otherwise */
3198
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3199
TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3200
"out of xmit buffers" : "xmit buffer busy");
3201
return NULL;
3202
}
3203
3204
/* XXX TODO: should do this at buffer list initialisation */
3205
/* XXX (then, ensure the buffer has the right flag set) */
3206
bf->bf_flags = 0;
3207
if (btype == ATH_BUFTYPE_MGMT)
3208
bf->bf_flags |= ATH_BUF_MGMT;
3209
else
3210
bf->bf_flags &= (~ATH_BUF_MGMT);
3211
3212
/* Valid bf here; clear some basic fields */
3213
bf->bf_next = NULL; /* XXX just to be sure */
3214
bf->bf_last = NULL; /* XXX again, just to be sure */
3215
bf->bf_comp = NULL; /* XXX again, just to be sure */
3216
bzero(&bf->bf_state, sizeof(bf->bf_state));
3217
3218
/*
3219
* Track the descriptor ID only if doing EDMA
3220
*/
3221
if (sc->sc_isedma) {
3222
bf->bf_descid = sc->sc_txbuf_descid;
3223
sc->sc_txbuf_descid++;
3224
}
3225
3226
return bf;
3227
}
3228
3229
/*
3230
* When retrying a software frame, buffers marked ATH_BUF_BUSY
3231
* can't be thrown back on the queue as they could still be
3232
* in use by the hardware.
3233
*
3234
* This duplicates the buffer, or returns NULL.
3235
*
3236
* The descriptor is also copied but the link pointers and
3237
* the DMA segments aren't copied; this frame should thus
3238
* be again passed through the descriptor setup/chain routines
3239
* so the link is correct.
3240
*
3241
* The caller must free the buffer using ath_freebuf().
3242
*/
3243
struct ath_buf *
3244
ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3245
{
3246
struct ath_buf *tbf;
3247
3248
tbf = ath_getbuf(sc,
3249
(bf->bf_flags & ATH_BUF_MGMT) ?
3250
ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
3251
if (tbf == NULL)
3252
return NULL; /* XXX failure? Why? */
3253
3254
/* Copy basics */
3255
tbf->bf_next = NULL;
3256
tbf->bf_nseg = bf->bf_nseg;
3257
tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
3258
tbf->bf_status = bf->bf_status;
3259
tbf->bf_m = bf->bf_m;
3260
tbf->bf_node = bf->bf_node;
3261
KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3262
/* will be setup by the chain/setup function */
3263
tbf->bf_lastds = NULL;
3264
/* for now, last == self */
3265
tbf->bf_last = tbf;
3266
tbf->bf_comp = bf->bf_comp;
3267
3268
/* NOTE: DMA segments will be setup by the setup/chain functions */
3269
3270
/* The caller has to re-init the descriptor + links */
3271
3272
/*
3273
* Free the DMA mapping here, before we NULL the mbuf.
3274
* We must only call bus_dmamap_unload() once per mbuf chain
3275
* or behaviour is undefined.
3276
*/
3277
if (bf->bf_m != NULL) {
3278
/*
3279
* XXX is this POSTWRITE call required?
3280
*/
3281
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3282
BUS_DMASYNC_POSTWRITE);
3283
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3284
}
3285
3286
bf->bf_m = NULL;
3287
bf->bf_node = NULL;
3288
3289
/* Copy state */
3290
memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3291
3292
return tbf;
3293
}
3294
3295
struct ath_buf *
3296
ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3297
{
3298
struct ath_buf *bf;
3299
3300
ATH_TXBUF_LOCK(sc);
3301
bf = _ath_getbuf_locked(sc, btype);
3302
/*
3303
* If a mgmt buffer was requested but we're out of those,
3304
* try requesting a normal one.
3305
*/
3306
if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3307
bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3308
ATH_TXBUF_UNLOCK(sc);
3309
if (bf == NULL) {
3310
DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3311
sc->sc_stats.ast_tx_qstop++;
3312
}
3313
return bf;
3314
}
3315
3316
/*
3317
* Transmit a single frame.
3318
*
3319
* net80211 will free the node reference if the transmit
3320
* fails, so don't free the node reference here.
3321
*/
3322
static int
3323
ath_transmit(struct ieee80211com *ic, struct mbuf *m)
3324
{
3325
struct ath_softc *sc = ic->ic_softc;
3326
struct ieee80211_node *ni;
3327
struct mbuf *next;
3328
struct ath_buf *bf;
3329
ath_bufhead frags;
3330
int retval = 0;
3331
3332
/*
3333
* Tell the reset path that we're currently transmitting.
3334
*/
3335
ATH_PCU_LOCK(sc);
3336
if (sc->sc_inreset_cnt > 0) {
3337
DPRINTF(sc, ATH_DEBUG_XMIT,
3338
"%s: sc_inreset_cnt > 0; bailing\n", __func__);
3339
ATH_PCU_UNLOCK(sc);
3340
sc->sc_stats.ast_tx_qstop++;
3341
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3342
return (ENOBUFS); /* XXX should be EINVAL or? */
3343
}
3344
sc->sc_txstart_cnt++;
3345
ATH_PCU_UNLOCK(sc);
3346
3347
/* Wake the hardware up already */
3348
ATH_LOCK(sc);
3349
ath_power_set_power_state(sc, HAL_PM_AWAKE);
3350
ATH_UNLOCK(sc);
3351
3352
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3353
/*
3354
* Grab the TX lock - it's ok to do this here; we haven't
3355
* yet started transmitting.
3356
*/
3357
ATH_TX_LOCK(sc);
3358
3359
/*
3360
* Node reference, if there's one.
3361
*/
3362
ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3363
3364
/*
3365
* Enforce how deep a node queue can get.
3366
*
3367
* XXX it would be nicer if we kept an mbuf queue per
3368
* node and only whacked them into ath_bufs when we
3369
* are ready to schedule some traffic from them.
3370
* .. that may come later.
3371
*
3372
* XXX we should also track the per-node hardware queue
3373
* depth so it is easy to limit the _SUM_ of the swq and
3374
* hwq frames. Since we only schedule two HWQ frames
3375
* at a time, this should be OK for now.
3376
*/
3377
if ((!(m->m_flags & M_EAPOL)) &&
3378
(ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3379
sc->sc_stats.ast_tx_nodeq_overflow++;
3380
retval = ENOBUFS;
3381
goto finish;
3382
}
3383
3384
/*
3385
* Check how many TX buffers are available.
3386
*
3387
* If this is for non-EAPOL traffic, just leave some
3388
* space free in order for buffer cloning and raw
3389
* frame transmission to occur.
3390
*
3391
* If it's for EAPOL traffic, ignore this for now.
3392
* Management traffic will be sent via the raw transmit
3393
* method which bypasses this check.
3394
*
3395
* This is needed to ensure that EAPOL frames during
3396
* (re) keying have a chance to go out.
3397
*
3398
* See kern/138379 for more information.
3399
*/
3400
if ((!(m->m_flags & M_EAPOL)) &&
3401
(sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3402
sc->sc_stats.ast_tx_nobuf++;
3403
retval = ENOBUFS;
3404
goto finish;
3405
}
3406
3407
/*
3408
* Grab a TX buffer and associated resources.
3409
*
3410
* If it's an EAPOL frame, allocate a MGMT ath_buf.
3411
* That way even with temporary buffer exhaustion due to
3412
* the data path doesn't leave us without the ability
3413
* to transmit management frames.
3414
*
3415
* Otherwise allocate a normal buffer.
3416
*/
3417
if (m->m_flags & M_EAPOL)
3418
bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3419
else
3420
bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3421
3422
if (bf == NULL) {
3423
/*
3424
* If we failed to allocate a buffer, fail.
3425
*
3426
* We shouldn't fail normally, due to the check
3427
* above.
3428
*/
3429
sc->sc_stats.ast_tx_nobuf++;
3430
retval = ENOBUFS;
3431
goto finish;
3432
}
3433
3434
/*
3435
* At this point we have a buffer; so we need to free it
3436
* if we hit any error conditions.
3437
*/
3438
3439
/*
3440
* Check for fragmentation. If this frame
3441
* has been broken up verify we have enough
3442
* buffers to send all the fragments so all
3443
* go out or none...
3444
*/
3445
TAILQ_INIT(&frags);
3446
if ((m->m_flags & M_FRAG) &&
3447
!ath_txfrag_setup(sc, &frags, m, ni)) {
3448
DPRINTF(sc, ATH_DEBUG_XMIT,
3449
"%s: out of txfrag buffers\n", __func__);
3450
sc->sc_stats.ast_tx_nofrag++;
3451
if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3452
/*
3453
* XXXGL: is mbuf valid after ath_txfrag_setup? If yes,
3454
* we shouldn't free it but return back.
3455
*/
3456
ieee80211_free_mbuf(m);
3457
m = NULL;
3458
goto bad;
3459
}
3460
3461
/*
3462
* At this point if we have any TX fragments, then we will
3463
* have bumped the node reference once for each of those.
3464
*/
3465
3466
/*
3467
* XXX Is there anything actually _enforcing_ that the
3468
* fragments are being transmitted in one hit, rather than
3469
* being interleaved with other transmissions on that
3470
* hardware queue?
3471
*
3472
* The ATH TX output lock is the only thing serialising this
3473
* right now.
3474
*/
3475
3476
/*
3477
* Calculate the "next fragment" length field in ath_buf
3478
* in order to let the transmit path know enough about
3479
* what to next write to the hardware.
3480
*/
3481
if (m->m_flags & M_FRAG) {
3482
struct ath_buf *fbf = bf;
3483
struct ath_buf *n_fbf = NULL;
3484
struct mbuf *fm = m->m_nextpkt;
3485
3486
/*
3487
* We need to walk the list of fragments and set
3488
* the next size to the following buffer.
3489
* However, the first buffer isn't in the frag
3490
* list, so we have to do some gymnastics here.
3491
*/
3492
TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3493
fbf->bf_nextfraglen = fm->m_pkthdr.len;
3494
fbf = n_fbf;
3495
fm = fm->m_nextpkt;
3496
}
3497
}
3498
3499
nextfrag:
3500
/*
3501
* Pass the frame to the h/w for transmission.
3502
* Fragmented frames have each frag chained together
3503
* with m_nextpkt. We know there are sufficient ath_buf's
3504
* to send all the frags because of work done by
3505
* ath_txfrag_setup. We leave m_nextpkt set while
3506
* calling ath_tx_start so it can use it to extend the
3507
* the tx duration to cover the subsequent frag and
3508
* so it can reclaim all the mbufs in case of an error;
3509
* ath_tx_start clears m_nextpkt once it commits to
3510
* handing the frame to the hardware.
3511
*
3512
* Note: if this fails, then the mbufs are freed but
3513
* not the node reference.
3514
*
3515
* So, we now have to free the node reference ourselves here
3516
* and return OK up to the stack.
3517
*/
3518
next = m->m_nextpkt;
3519
if (ath_tx_start(sc, ni, bf, m)) {
3520
bad:
3521
if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3522
reclaim:
3523
bf->bf_m = NULL;
3524
bf->bf_node = NULL;
3525
ATH_TXBUF_LOCK(sc);
3526
ath_returnbuf_head(sc, bf);
3527
/*
3528
* Free the rest of the node references and
3529
* buffers for the fragment list.
3530
*/
3531
ath_txfrag_cleanup(sc, &frags, ni);
3532
ATH_TXBUF_UNLOCK(sc);
3533
3534
/*
3535
* XXX: And free the node/return OK; ath_tx_start() may have
3536
* modified the buffer. We currently have no way to
3537
* signify that the mbuf was freed but there was an error.
3538
*/
3539
ieee80211_free_node(ni);
3540
retval = 0;
3541
goto finish;
3542
}
3543
3544
/*
3545
* Check here if the node is in power save state.
3546
*/
3547
ath_tx_update_tim(sc, ni, 1);
3548
3549
if (next != NULL) {
3550
/*
3551
* Beware of state changing between frags.
3552
* XXX check sta power-save state?
3553
*/
3554
if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3555
DPRINTF(sc, ATH_DEBUG_XMIT,
3556
"%s: flush fragmented packet, state %s\n",
3557
__func__,
3558
ieee80211_state_name[ni->ni_vap->iv_state]);
3559
/* XXX dmamap */
3560
ieee80211_free_mbuf(next);
3561
goto reclaim;
3562
}
3563
m = next;
3564
bf = TAILQ_FIRST(&frags);
3565
KASSERT(bf != NULL, ("no buf for txfrag"));
3566
TAILQ_REMOVE(&frags, bf, bf_list);
3567
goto nextfrag;
3568
}
3569
3570
/*
3571
* Bump watchdog timer.
3572
*/
3573
sc->sc_wd_timer = 5;
3574
3575
finish:
3576
ATH_TX_UNLOCK(sc);
3577
3578
/*
3579
* Finished transmitting!
3580
*/
3581
ATH_PCU_LOCK(sc);
3582
sc->sc_txstart_cnt--;
3583
ATH_PCU_UNLOCK(sc);
3584
3585
/* Sleep the hardware if required */
3586
ATH_LOCK(sc);
3587
ath_power_restore_power_state(sc);
3588
ATH_UNLOCK(sc);
3589
3590
ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3591
3592
return (retval);
3593
}
3594
3595
/*
3596
* Block/unblock tx+rx processing while a key change is done.
3597
* We assume the caller serializes key management operations
3598
* so we only need to worry about synchronization with other
3599
* uses that originate in the driver.
3600
*/
3601
static void
3602
ath_key_update_begin(struct ieee80211vap *vap)
3603
{
3604
struct ath_softc *sc = vap->iv_ic->ic_softc;
3605
3606
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3607
taskqueue_block(sc->sc_tq);
3608
}
3609
3610
static void
3611
ath_key_update_end(struct ieee80211vap *vap)
3612
{
3613
struct ath_softc *sc = vap->iv_ic->ic_softc;
3614
3615
DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3616
taskqueue_unblock(sc->sc_tq);
3617
}
3618
3619
static void
3620
ath_update_promisc(struct ieee80211com *ic)
3621
{
3622
struct ath_softc *sc = ic->ic_softc;
3623
u_int32_t rfilt;
3624
3625
/* configure rx filter */
3626
ATH_LOCK(sc);
3627
ath_power_set_power_state(sc, HAL_PM_AWAKE);
3628
rfilt = ath_calcrxfilter(sc);
3629
ath_hal_setrxfilter(sc->sc_ah, rfilt);
3630
ath_power_restore_power_state(sc);
3631
ATH_UNLOCK(sc);
3632
3633
DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3634
}
3635
3636
static u_int
3637
ath_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
3638
{
3639
uint32_t val, *mfilt = arg;
3640
char *dl;
3641
uint8_t pos;
3642
3643
/* calculate XOR of eight 6bit values */
3644
dl = LLADDR(sdl);
3645
val = le32dec(dl + 0);
3646
pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3647
val = le32dec(dl + 3);
3648
pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3649
pos &= 0x3f;
3650
mfilt[pos / 32] |= (1 << (pos % 32));
3651
3652
return (1);
3653
}
3654
3655
/*
3656
* Driver-internal mcast update call.
3657
*
3658
* Assumes the hardware is already awake.
3659
*/
3660
static void
3661
ath_update_mcast_hw(struct ath_softc *sc)
3662
{
3663
struct ieee80211com *ic = &sc->sc_ic;
3664
u_int32_t mfilt[2];
3665
3666
/* calculate and install multicast filter */
3667
if (ic->ic_allmulti == 0) {
3668
struct ieee80211vap *vap;
3669
3670
/*
3671
* Merge multicast addresses to form the hardware filter.
3672
*/
3673
mfilt[0] = mfilt[1] = 0;
3674
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
3675
if_foreach_llmaddr(vap->iv_ifp, ath_hash_maddr, &mfilt);
3676
} else
3677
mfilt[0] = mfilt[1] = ~0;
3678
3679
ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3680
3681
DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3682
__func__, mfilt[0], mfilt[1]);
3683
}
3684
3685
/*
3686
* Called from the net80211 layer - force the hardware
3687
* awake before operating.
3688
*/
3689
static void
3690
ath_update_mcast(struct ieee80211com *ic)
3691
{
3692
struct ath_softc *sc = ic->ic_softc;
3693
3694
ATH_LOCK(sc);
3695
ath_power_set_power_state(sc, HAL_PM_AWAKE);
3696
ATH_UNLOCK(sc);
3697
3698
ath_update_mcast_hw(sc);
3699
3700
ATH_LOCK(sc);
3701
ath_power_restore_power_state(sc);
3702
ATH_UNLOCK(sc);
3703
}
3704
3705
void
3706
ath_mode_init(struct ath_softc *sc)
3707
{
3708
struct ieee80211com *ic = &sc->sc_ic;
3709
struct ath_hal *ah = sc->sc_ah;
3710
u_int32_t rfilt;
3711
3712
/* XXX power state? */
3713
3714
/* configure rx filter */
3715
rfilt = ath_calcrxfilter(sc);
3716
ath_hal_setrxfilter(ah, rfilt);
3717
3718
/* configure operational mode */
3719
ath_hal_setopmode(ah);
3720
3721
/* handle any link-level address change */
3722
ath_hal_setmac(ah, ic->ic_macaddr);
3723
3724
/* calculate and install multicast filter */
3725
ath_update_mcast_hw(sc);
3726
}
3727
3728
/*
3729
* Set the slot time based on the current setting.
3730
*/
3731
void
3732
ath_setslottime(struct ath_softc *sc)
3733
{
3734
struct ieee80211com *ic = &sc->sc_ic;
3735
struct ath_hal *ah = sc->sc_ah;
3736
u_int usec;
3737
3738
if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3739
usec = 13;
3740
else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3741
usec = 21;
3742
else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3743
/* honor short/long slot time only in 11g */
3744
/* XXX shouldn't honor on pure g or turbo g channel */
3745
if (ic->ic_flags & IEEE80211_F_SHSLOT)
3746
usec = HAL_SLOT_TIME_9;
3747
else
3748
usec = HAL_SLOT_TIME_20;
3749
} else
3750
usec = HAL_SLOT_TIME_9;
3751
3752
DPRINTF(sc, ATH_DEBUG_RESET,
3753
"%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3754
__func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3755
ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3756
3757
/* Wake up the hardware first before updating the slot time */
3758
ATH_LOCK(sc);
3759
ath_power_set_power_state(sc, HAL_PM_AWAKE);
3760
ath_hal_setslottime(ah, usec);
3761
ath_power_restore_power_state(sc);
3762
sc->sc_updateslot = OK;
3763
ATH_UNLOCK(sc);
3764
}
3765
3766
/*
3767
* Callback from the 802.11 layer to update the
3768
* slot time based on the current setting.
3769
*/
3770
static void
3771
ath_updateslot(struct ieee80211com *ic)
3772
{
3773
struct ath_softc *sc = ic->ic_softc;
3774
3775
/*
3776
* When not coordinating the BSS, change the hardware
3777
* immediately. For other operation we defer the change
3778
* until beacon updates have propagated to the stations.
3779
*
3780
* XXX sc_updateslot isn't changed behind a lock?
3781
*/
3782
if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3783
ic->ic_opmode == IEEE80211_M_MBSS)
3784
sc->sc_updateslot = UPDATE;
3785
else
3786
ath_setslottime(sc);
3787
}
3788
3789
/*
3790
* Append the contents of src to dst; both queues
3791
* are assumed to be locked.
3792
*/
3793
void
3794
ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3795
{
3796
3797
ATH_TXQ_LOCK_ASSERT(src);
3798
ATH_TXQ_LOCK_ASSERT(dst);
3799
3800
TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3801
dst->axq_link = src->axq_link;
3802
src->axq_link = NULL;
3803
dst->axq_depth += src->axq_depth;
3804
dst->axq_aggr_depth += src->axq_aggr_depth;
3805
src->axq_depth = 0;
3806
src->axq_aggr_depth = 0;
3807
}
3808
3809
/*
3810
* Reset the hardware, with no loss.
3811
*
3812
* This can't be used for a general case reset.
3813
*/
3814
static void
3815
ath_reset_proc(void *arg, int pending)
3816
{
3817
struct ath_softc *sc = arg;
3818
3819
#if 0
3820
device_printf(sc->sc_dev, "%s: resetting\n", __func__);
3821
#endif
3822
ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
3823
}
3824
3825
/*
3826
* Reset the hardware after detecting beacons have stopped.
3827
*/
3828
static void
3829
ath_bstuck_proc(void *arg, int pending)
3830
{
3831
struct ath_softc *sc = arg;
3832
uint32_t hangs = 0;
3833
3834
if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3835
device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs);
3836
3837
#ifdef ATH_DEBUG_ALQ
3838
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3839
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3840
#endif
3841
3842
device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n",
3843
sc->sc_bmisscount);
3844
sc->sc_stats.ast_bstuck++;
3845
/*
3846
* This assumes that there's no simultaneous channel mode change
3847
* occurring.
3848
*/
3849
ath_reset(sc, ATH_RESET_NOLOSS, HAL_RESET_FORCE_COLD);
3850
}
3851
3852
static int
3853
ath_desc_alloc(struct ath_softc *sc)
3854
{
3855
int error;
3856
3857
error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3858
"tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3859
if (error != 0) {
3860
return error;
3861
}
3862
sc->sc_txbuf_cnt = ath_txbuf;
3863
3864
error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3865
"tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3866
ATH_TXDESC);
3867
if (error != 0) {
3868
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3869
return error;
3870
}
3871
3872
/*
3873
* XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3874
* flag doesn't have to be set in ath_getbuf_locked().
3875
*/
3876
3877
error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3878
"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3879
if (error != 0) {
3880
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3881
ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3882
&sc->sc_txbuf_mgmt);
3883
return error;
3884
}
3885
return 0;
3886
}
3887
3888
static void
3889
ath_desc_free(struct ath_softc *sc)
3890
{
3891
3892
if (sc->sc_bdma.dd_desc_len != 0)
3893
ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3894
if (sc->sc_txdma.dd_desc_len != 0)
3895
ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3896
if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3897
ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3898
&sc->sc_txbuf_mgmt);
3899
}
3900
3901
static struct ieee80211_node *
3902
ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3903
{
3904
struct ieee80211com *ic = vap->iv_ic;
3905
struct ath_softc *sc = ic->ic_softc;
3906
const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3907
struct ath_node *an;
3908
3909
an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3910
if (an == NULL) {
3911
/* XXX stat+msg */
3912
return NULL;
3913
}
3914
ath_rate_node_init(sc, an);
3915
3916
/* Setup the mutex - there's no associd yet so set the name to NULL */
3917
snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3918
device_get_nameunit(sc->sc_dev), an);
3919
mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3920
3921
/* XXX setup ath_tid */
3922
ath_tx_tid_init(sc, an);
3923
3924
an->an_node_stats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
3925
an->an_node_stats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
3926
an->an_node_stats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
3927
3928
DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
3929
return &an->an_node;
3930
}
3931
3932
static void
3933
ath_node_cleanup(struct ieee80211_node *ni)
3934
{
3935
struct ieee80211com *ic = ni->ni_ic;
3936
struct ath_softc *sc = ic->ic_softc;
3937
3938
DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3939
ni->ni_macaddr, ":", ATH_NODE(ni));
3940
3941
/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3942
ath_tx_node_flush(sc, ATH_NODE(ni));
3943
ath_rate_node_cleanup(sc, ATH_NODE(ni));
3944
sc->sc_node_cleanup(ni);
3945
}
3946
3947
static void
3948
ath_node_free(struct ieee80211_node *ni)
3949
{
3950
struct ieee80211com *ic = ni->ni_ic;
3951
struct ath_softc *sc = ic->ic_softc;
3952
3953
DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3954
ni->ni_macaddr, ":", ATH_NODE(ni));
3955
mtx_destroy(&ATH_NODE(ni)->an_mtx);
3956
sc->sc_node_free(ni);
3957
}
3958
3959
static void
3960
ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3961
{
3962
struct ieee80211com *ic = ni->ni_ic;
3963
struct ath_softc *sc = ic->ic_softc;
3964
struct ath_hal *ah = sc->sc_ah;
3965
3966
*rssi = ic->ic_node_getrssi(ni);
3967
if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3968
*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3969
else
3970
*noise = -95; /* nominally correct */
3971
}
3972
3973
/*
3974
* Set the default antenna.
3975
*/
3976
void
3977
ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3978
{
3979
struct ath_hal *ah = sc->sc_ah;
3980
3981
/* XXX block beacon interrupts */
3982
ath_hal_setdefantenna(ah, antenna);
3983
if (sc->sc_defant != antenna)
3984
sc->sc_stats.ast_ant_defswitch++;
3985
sc->sc_defant = antenna;
3986
sc->sc_rxotherant = 0;
3987
}
3988
3989
static void
3990
ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3991
{
3992
txq->axq_qnum = qnum;
3993
txq->axq_ac = 0;
3994
txq->axq_depth = 0;
3995
txq->axq_aggr_depth = 0;
3996
txq->axq_intrcnt = 0;
3997
txq->axq_link = NULL;
3998
txq->axq_softc = sc;
3999
TAILQ_INIT(&txq->axq_q);
4000
TAILQ_INIT(&txq->axq_tidq);
4001
TAILQ_INIT(&txq->fifo.axq_q);
4002
ATH_TXQ_LOCK_INIT(sc, txq);
4003
}
4004
4005
/*
4006
* Setup a h/w transmit queue.
4007
*/
4008
static struct ath_txq *
4009
ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4010
{
4011
struct ath_hal *ah = sc->sc_ah;
4012
HAL_TXQ_INFO qi;
4013
int qnum;
4014
4015
memset(&qi, 0, sizeof(qi));
4016
qi.tqi_subtype = subtype;
4017
qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4018
qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4019
qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4020
/*
4021
* Enable interrupts only for EOL and DESC conditions.
4022
* We mark tx descriptors to receive a DESC interrupt
4023
* when a tx queue gets deep; otherwise waiting for the
4024
* EOL to reap descriptors. Note that this is done to
4025
* reduce interrupt load and this only defers reaping
4026
* descriptors, never transmitting frames. Aside from
4027
* reducing interrupts this also permits more concurrency.
4028
* The only potential downside is if the tx queue backs
4029
* up in which case the top half of the kernel may backup
4030
* due to a lack of tx descriptors.
4031
*/
4032
if (sc->sc_isedma)
4033
qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4034
HAL_TXQ_TXOKINT_ENABLE;
4035
else
4036
qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4037
HAL_TXQ_TXDESCINT_ENABLE;
4038
4039
qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4040
if (qnum == -1) {
4041
/*
4042
* NB: don't print a message, this happens
4043
* normally on parts with too few tx queues
4044
*/
4045
return NULL;
4046
}
4047
if (qnum >= nitems(sc->sc_txq)) {
4048
device_printf(sc->sc_dev,
4049
"hal qnum %u out of range, max %zu!\n",
4050
qnum, nitems(sc->sc_txq));
4051
ath_hal_releasetxqueue(ah, qnum);
4052
return NULL;
4053
}
4054
if (!ATH_TXQ_SETUP(sc, qnum)) {
4055
ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4056
sc->sc_txqsetup |= 1<<qnum;
4057
}
4058
return &sc->sc_txq[qnum];
4059
}
4060
4061
/*
4062
* Setup a hardware data transmit queue for the specified
4063
* access control. The hal may not support all requested
4064
* queues in which case it will return a reference to a
4065
* previously setup queue. We record the mapping from ac's
4066
* to h/w queues for use by ath_tx_start and also track
4067
* the set of h/w queues being used to optimize work in the
4068
* transmit interrupt handler and related routines.
4069
*/
4070
static int
4071
ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4072
{
4073
struct ath_txq *txq;
4074
4075
if (ac >= nitems(sc->sc_ac2q)) {
4076
device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4077
ac, nitems(sc->sc_ac2q));
4078
return 0;
4079
}
4080
txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4081
if (txq != NULL) {
4082
txq->axq_ac = ac;
4083
sc->sc_ac2q[ac] = txq;
4084
return 1;
4085
} else
4086
return 0;
4087
}
4088
4089
/*
4090
* Update WME parameters for a transmit queue.
4091
*/
4092
static int
4093
ath_txq_update(struct ath_softc *sc, int ac)
4094
{
4095
#define ATH_EXPONENT_TO_VALUE(v) ((1<<v)-1)
4096
struct ieee80211com *ic = &sc->sc_ic;
4097
struct ath_txq *txq = sc->sc_ac2q[ac];
4098
struct chanAccParams chp;
4099
struct wmeParams *wmep;
4100
struct ath_hal *ah = sc->sc_ah;
4101
HAL_TXQ_INFO qi;
4102
4103
ieee80211_wme_ic_getparams(ic, &chp);
4104
wmep = &chp.cap_wmeParams[ac];
4105
4106
ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4107
#ifdef IEEE80211_SUPPORT_TDMA
4108
if (sc->sc_tdma) {
4109
/*
4110
* AIFS is zero so there's no pre-transmit wait. The
4111
* burst time defines the slot duration and is configured
4112
* through net80211. The QCU is setup to not do post-xmit
4113
* back off, lockout all lower-priority QCU's, and fire
4114
* off the DMA beacon alert timer which is setup based
4115
* on the slot configuration.
4116
*/
4117
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4118
| HAL_TXQ_TXERRINT_ENABLE
4119
| HAL_TXQ_TXURNINT_ENABLE
4120
| HAL_TXQ_TXEOLINT_ENABLE
4121
| HAL_TXQ_DBA_GATED
4122
| HAL_TXQ_BACKOFF_DISABLE
4123
| HAL_TXQ_ARB_LOCKOUT_GLOBAL
4124
;
4125
qi.tqi_aifs = 0;
4126
/* XXX +dbaprep? */
4127
qi.tqi_readyTime = sc->sc_tdmaslotlen;
4128
qi.tqi_burstTime = qi.tqi_readyTime;
4129
} else {
4130
#endif
4131
/*
4132
* XXX shouldn't this just use the default flags
4133
* used in the previous queue setup?
4134
*/
4135
qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4136
| HAL_TXQ_TXERRINT_ENABLE
4137
| HAL_TXQ_TXDESCINT_ENABLE
4138
| HAL_TXQ_TXURNINT_ENABLE
4139
| HAL_TXQ_TXEOLINT_ENABLE
4140
;
4141
qi.tqi_aifs = wmep->wmep_aifsn;
4142
qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4143
qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4144
qi.tqi_readyTime = 0;
4145
qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit);
4146
#ifdef IEEE80211_SUPPORT_TDMA
4147
}
4148
#endif
4149
4150
DPRINTF(sc, ATH_DEBUG_RESET,
4151
"%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4152
__func__, txq->axq_qnum, qi.tqi_qflags,
4153
qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4154
4155
if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4156
device_printf(sc->sc_dev, "unable to update hardware queue "
4157
"parameters for %s traffic!\n", ieee80211_wme_acnames[ac]);
4158
return 0;
4159
} else {
4160
ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4161
return 1;
4162
}
4163
#undef ATH_EXPONENT_TO_VALUE
4164
}
4165
4166
/*
4167
* Callback from the 802.11 layer to update WME parameters.
4168
*/
4169
int
4170
ath_wme_update(struct ieee80211com *ic)
4171
{
4172
struct ath_softc *sc = ic->ic_softc;
4173
4174
return !ath_txq_update(sc, WME_AC_BE) ||
4175
!ath_txq_update(sc, WME_AC_BK) ||
4176
!ath_txq_update(sc, WME_AC_VI) ||
4177
!ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4178
}
4179
4180
/*
4181
* Reclaim resources for a setup queue.
4182
*/
4183
static void
4184
ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4185
{
4186
4187
ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4188
sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4189
ATH_TXQ_LOCK_DESTROY(txq);
4190
}
4191
4192
/*
4193
* Reclaim all tx queue resources.
4194
*/
4195
static void
4196
ath_tx_cleanup(struct ath_softc *sc)
4197
{
4198
int i;
4199
4200
ATH_TXBUF_LOCK_DESTROY(sc);
4201
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4202
if (ATH_TXQ_SETUP(sc, i))
4203
ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4204
}
4205
4206
/*
4207
* Return h/w rate index for an IEEE rate (w/o basic rate bit)
4208
* using the current rates in sc_rixmap.
4209
*/
4210
int
4211
ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4212
{
4213
int rix = sc->sc_rixmap[rate];
4214
/* NB: return lowest rix for invalid rate */
4215
return (rix == 0xff ? 0 : rix);
4216
}
4217
4218
static void
4219
ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4220
struct ath_buf *bf)
4221
{
4222
struct ieee80211_node *ni = bf->bf_node;
4223
struct ieee80211com *ic = &sc->sc_ic;
4224
int sr, lr, pri;
4225
4226
if (ts->ts_status == 0) {
4227
u_int8_t txant = ts->ts_antenna;
4228
/*
4229
* Handle weird/corrupted tx antenna field
4230
*/
4231
if (txant >= ATH_IOCTL_STATS_NUM_TX_ANTENNA)
4232
txant = 0;
4233
sc->sc_stats.ast_ant_tx[txant]++;
4234
sc->sc_ant_tx[txant]++;
4235
if (ts->ts_finaltsi != 0)
4236
sc->sc_stats.ast_tx_altrate++;
4237
4238
/* XXX TODO: should do per-pri conuters */
4239
pri = M_WME_GETAC(bf->bf_m);
4240
if (pri >= WME_AC_VO)
4241
ic->ic_wme.wme_hipri_traffic++;
4242
4243
if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4244
ni->ni_inact = ni->ni_inact_reload;
4245
} else {
4246
if (ts->ts_status & HAL_TXERR_XRETRY)
4247
sc->sc_stats.ast_tx_xretries++;
4248
if (ts->ts_status & HAL_TXERR_FIFO)
4249
sc->sc_stats.ast_tx_fifoerr++;
4250
if (ts->ts_status & HAL_TXERR_FILT)
4251
sc->sc_stats.ast_tx_filtered++;
4252
if (ts->ts_status & HAL_TXERR_XTXOP)
4253
sc->sc_stats.ast_tx_xtxop++;
4254
if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4255
sc->sc_stats.ast_tx_timerexpired++;
4256
4257
if (bf->bf_m->m_flags & M_FF)
4258
sc->sc_stats.ast_ff_txerr++;
4259
}
4260
/* XXX when is this valid? */
4261
if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4262
sc->sc_stats.ast_tx_desccfgerr++;
4263
/*
4264
* This can be valid for successful frame transmission!
4265
* If there's a TX FIFO underrun during aggregate transmission,
4266
* the MAC will pad the rest of the aggregate with delimiters.
4267
* If a BA is returned, the frame is marked as "OK" and it's up
4268
* to the TX completion code to notice which frames weren't
4269
* successfully transmitted.
4270
*/
4271
if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4272
sc->sc_stats.ast_tx_data_underrun++;
4273
if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4274
sc->sc_stats.ast_tx_delim_underrun++;
4275
4276
sr = ts->ts_shortretry;
4277
lr = ts->ts_longretry;
4278
sc->sc_stats.ast_tx_shortretry += sr;
4279
sc->sc_stats.ast_tx_longretry += lr;
4280
4281
}
4282
4283
/*
4284
* The default completion. If fail is 1, this means
4285
* "please don't retry the frame, and just return -1 status
4286
* to the net80211 stack.
4287
*/
4288
void
4289
ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4290
{
4291
struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4292
int st;
4293
4294
if (fail == 1)
4295
st = -1;
4296
else
4297
st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4298
ts->ts_status : HAL_TXERR_XRETRY;
4299
4300
#if 0
4301
if (bf->bf_state.bfs_dobaw)
4302
device_printf(sc->sc_dev,
4303
"%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4304
__func__,
4305
bf,
4306
SEQNO(bf->bf_state.bfs_seqno));
4307
#endif
4308
if (bf->bf_next != NULL)
4309
device_printf(sc->sc_dev,
4310
"%s: bf %p: seqno %d: bf_next not NULL!\n",
4311
__func__,
4312
bf,
4313
SEQNO(bf->bf_state.bfs_seqno));
4314
4315
/*
4316
* Check if the node software queue is empty; if so
4317
* then clear the TIM.
4318
*
4319
* This needs to be done before the buffer is freed as
4320
* otherwise the node reference will have been released
4321
* and the node may not actually exist any longer.
4322
*
4323
* XXX I don't like this belonging here, but it's cleaner
4324
* to do it here right now then all the other places
4325
* where ath_tx_default_comp() is called.
4326
*
4327
* XXX TODO: during drain, ensure that the callback is
4328
* being called so we get a chance to update the TIM.
4329
*/
4330
if (bf->bf_node) {
4331
ATH_TX_LOCK(sc);
4332
ath_tx_update_tim(sc, bf->bf_node, 0);
4333
ATH_TX_UNLOCK(sc);
4334
}
4335
4336
/*
4337
* Do any tx complete callback. Note this must
4338
* be done before releasing the node reference.
4339
* This will free the mbuf, release the net80211
4340
* node and recycle the ath_buf.
4341
*/
4342
ath_tx_freebuf(sc, bf, st);
4343
}
4344
4345
/*
4346
* Update rate control with the given completion status.
4347
*/
4348
void
4349
ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4350
struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4351
int rc_framelen, int nframes, int nbad)
4352
{
4353
struct ath_node *an;
4354
4355
/* Only for unicast frames */
4356
if (ni == NULL)
4357
return;
4358
4359
an = ATH_NODE(ni);
4360
ATH_NODE_UNLOCK_ASSERT(an);
4361
4362
/*
4363
* XXX TODO: teach the rate control about TXERR_FILT and
4364
* see about handling it (eg see how many attempts were
4365
* made before it got filtered and account for that.)
4366
*/
4367
4368
if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4369
ATH_NODE_LOCK(an);
4370
ath_rate_tx_complete(sc, an, rc, ts, frmlen, rc_framelen,
4371
nframes, nbad);
4372
ATH_NODE_UNLOCK(an);
4373
}
4374
}
4375
4376
/*
4377
* Process the completion of the given buffer.
4378
*
4379
* This calls the rate control update and then the buffer completion.
4380
* This will either free the buffer or requeue it. In any case, the
4381
* bf pointer should be treated as invalid after this function is called.
4382
*/
4383
void
4384
ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4385
struct ath_tx_status *ts, struct ath_buf *bf)
4386
{
4387
struct ieee80211_node *ni = bf->bf_node;
4388
4389
ATH_TX_UNLOCK_ASSERT(sc);
4390
ATH_TXQ_UNLOCK_ASSERT(txq);
4391
4392
/* If unicast frame, update general statistics */
4393
if (ni != NULL) {
4394
/* update statistics */
4395
ath_tx_update_stats(sc, ts, bf);
4396
}
4397
4398
/*
4399
* Call the completion handler.
4400
* The completion handler is responsible for
4401
* calling the rate control code.
4402
*
4403
* Frames with no completion handler get the
4404
* rate control code called here.
4405
*/
4406
if (bf->bf_comp == NULL) {
4407
if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4408
(bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4409
/*
4410
* XXX assume this isn't an aggregate
4411
* frame.
4412
*
4413
* XXX TODO: also do this for filtered frames?
4414
* Once rate control knows about them?
4415
*/
4416
ath_tx_update_ratectrl(sc, ni,
4417
bf->bf_state.bfs_rc, ts,
4418
bf->bf_state.bfs_pktlen,
4419
bf->bf_state.bfs_pktlen,
4420
1,
4421
(ts->ts_status == 0 ? 0 : 1));
4422
}
4423
ath_tx_default_comp(sc, bf, 0);
4424
} else
4425
bf->bf_comp(sc, bf, 0);
4426
}
4427
4428
/*
4429
* Process completed xmit descriptors from the specified queue.
4430
* Kick the packet scheduler if needed. This can occur from this
4431
* particular task.
4432
*/
4433
static int
4434
ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4435
{
4436
struct ath_hal *ah = sc->sc_ah;
4437
struct ath_buf *bf;
4438
struct ath_desc *ds;
4439
struct ath_tx_status *ts;
4440
struct ieee80211_node *ni;
4441
#ifdef IEEE80211_SUPPORT_SUPERG
4442
struct ieee80211com *ic = &sc->sc_ic;
4443
#endif /* IEEE80211_SUPPORT_SUPERG */
4444
int nacked;
4445
HAL_STATUS status;
4446
4447
DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4448
__func__, txq->axq_qnum,
4449
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4450
txq->axq_link);
4451
4452
ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4453
"ath_tx_processq: txq=%u head %p link %p depth %p",
4454
txq->axq_qnum,
4455
(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4456
txq->axq_link,
4457
txq->axq_depth);
4458
4459
nacked = 0;
4460
for (;;) {
4461
ATH_TXQ_LOCK(txq);
4462
txq->axq_intrcnt = 0; /* reset periodic desc intr count */
4463
bf = TAILQ_FIRST(&txq->axq_q);
4464
if (bf == NULL) {
4465
ATH_TXQ_UNLOCK(txq);
4466
break;
4467
}
4468
ds = bf->bf_lastds; /* XXX must be setup correctly! */
4469
ts = &bf->bf_status.ds_txstat;
4470
4471
status = ath_hal_txprocdesc(ah, ds, ts);
4472
#ifdef ATH_DEBUG
4473
if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4474
ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4475
status == HAL_OK);
4476
else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4477
ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4478
status == HAL_OK);
4479
#endif
4480
#ifdef ATH_DEBUG_ALQ
4481
if (if_ath_alq_checkdebug(&sc->sc_alq,
4482
ATH_ALQ_EDMA_TXSTATUS)) {
4483
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4484
sc->sc_tx_statuslen,
4485
(char *) ds);
4486
}
4487
#endif
4488
4489
if (status == HAL_EINPROGRESS) {
4490
ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4491
"ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4492
txq->axq_qnum, bf, ds);
4493
ATH_TXQ_UNLOCK(txq);
4494
break;
4495
}
4496
ATH_TXQ_REMOVE(txq, bf, bf_list);
4497
4498
/*
4499
* Sanity check.
4500
*/
4501
if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4502
device_printf(sc->sc_dev,
4503
"%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4504
__func__,
4505
txq->axq_qnum,
4506
bf,
4507
bf->bf_state.bfs_tx_queue);
4508
}
4509
if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4510
device_printf(sc->sc_dev,
4511
"%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4512
__func__,
4513
txq->axq_qnum,
4514
bf->bf_last,
4515
bf->bf_last->bf_state.bfs_tx_queue);
4516
}
4517
4518
#if 0
4519
if (txq->axq_depth > 0) {
4520
/*
4521
* More frames follow. Mark the buffer busy
4522
* so it's not re-used while the hardware may
4523
* still re-read the link field in the descriptor.
4524
*
4525
* Use the last buffer in an aggregate as that
4526
* is where the hardware may be - intermediate
4527
* descriptors won't be "busy".
4528
*/
4529
bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4530
} else
4531
txq->axq_link = NULL;
4532
#else
4533
bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4534
#endif
4535
if (bf->bf_state.bfs_aggr)
4536
txq->axq_aggr_depth--;
4537
4538
ni = bf->bf_node;
4539
4540
ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4541
"ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4542
txq->axq_qnum, bf, ds, ni, ts->ts_status);
4543
/*
4544
* If unicast frame was ack'd update RSSI,
4545
* including the last rx time used to
4546
* workaround phantom bmiss interrupts.
4547
*/
4548
if (ni != NULL && ts->ts_status == 0 &&
4549
((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4550
nacked++;
4551
sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4552
ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4553
ts->ts_rssi);
4554
ATH_RSSI_LPF(ATH_NODE(ni)->an_node_stats.ns_avgtxrssi,
4555
ts->ts_rssi);
4556
}
4557
ATH_TXQ_UNLOCK(txq);
4558
4559
/*
4560
* Update statistics and call completion
4561
*/
4562
ath_tx_process_buf_completion(sc, txq, ts, bf);
4563
4564
/* XXX at this point, bf and ni may be totally invalid */
4565
}
4566
#ifdef IEEE80211_SUPPORT_SUPERG
4567
/*
4568
* Flush fast-frame staging queue when traffic slows.
4569
*/
4570
if (txq->axq_depth <= 1)
4571
ieee80211_ff_flush(ic, txq->axq_ac);
4572
#endif
4573
4574
/* Kick the software TXQ scheduler */
4575
if (dosched) {
4576
ATH_TX_LOCK(sc);
4577
ath_txq_sched(sc, txq);
4578
ATH_TX_UNLOCK(sc);
4579
}
4580
4581
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4582
"ath_tx_processq: txq=%u: done",
4583
txq->axq_qnum);
4584
4585
return nacked;
4586
}
4587
4588
#define TXQACTIVE(t, q) ( (t) & (1 << (q)))
4589
4590
/*
4591
* Deferred processing of transmit interrupt; special-cased
4592
* for a single hardware transmit queue (e.g. 5210 and 5211).
4593
*/
4594
static void
4595
ath_tx_proc_q0(void *arg, int npending)
4596
{
4597
struct ath_softc *sc = arg;
4598
uint32_t txqs;
4599
4600
ATH_PCU_LOCK(sc);
4601
sc->sc_txproc_cnt++;
4602
txqs = sc->sc_txq_active;
4603
sc->sc_txq_active &= ~txqs;
4604
ATH_PCU_UNLOCK(sc);
4605
4606
ATH_LOCK(sc);
4607
ath_power_set_power_state(sc, HAL_PM_AWAKE);
4608
ATH_UNLOCK(sc);
4609
4610
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4611
"ath_tx_proc_q0: txqs=0x%08x", txqs);
4612
4613
if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4614
/* XXX why is lastrx updated in tx code? */
4615
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4616
if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4617
ath_tx_processq(sc, sc->sc_cabq, 1);
4618
sc->sc_wd_timer = 0;
4619
4620
if (sc->sc_softled)
4621
ath_led_event(sc, sc->sc_txrix);
4622
4623
ATH_PCU_LOCK(sc);
4624
sc->sc_txproc_cnt--;
4625
ATH_PCU_UNLOCK(sc);
4626
4627
ATH_LOCK(sc);
4628
ath_power_restore_power_state(sc);
4629
ATH_UNLOCK(sc);
4630
4631
ath_tx_kick(sc);
4632
}
4633
4634
/*
4635
* Deferred processing of transmit interrupt; special-cased
4636
* for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4637
*/
4638
static void
4639
ath_tx_proc_q0123(void *arg, int npending)
4640
{
4641
struct ath_softc *sc = arg;
4642
int nacked;
4643
uint32_t txqs;
4644
4645
ATH_PCU_LOCK(sc);
4646
sc->sc_txproc_cnt++;
4647
txqs = sc->sc_txq_active;
4648
sc->sc_txq_active &= ~txqs;
4649
ATH_PCU_UNLOCK(sc);
4650
4651
ATH_LOCK(sc);
4652
ath_power_set_power_state(sc, HAL_PM_AWAKE);
4653
ATH_UNLOCK(sc);
4654
4655
ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4656
"ath_tx_proc_q0123: txqs=0x%08x", txqs);
4657
4658
/*
4659
* Process each active queue.
4660
*/
4661
nacked = 0;
4662
if (TXQACTIVE(txqs, 0))
4663
nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4664
if (TXQACTIVE(txqs, 1))
4665
nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4666
if (TXQACTIVE(txqs, 2))
4667
nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4668
if (TXQACTIVE(txqs, 3))
4669
nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4670
if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4671
ath_tx_processq(sc, sc->sc_cabq, 1);
4672
if (nacked)
4673
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4674
4675
sc->sc_wd_timer = 0;
4676
4677
if (sc->sc_softled)
4678
ath_led_event(sc, sc->sc_txrix);
4679
4680
ATH_PCU_LOCK(sc);
4681
sc->sc_txproc_cnt--;
4682
ATH_PCU_UNLOCK(sc);
4683
4684
ATH_LOCK(sc);
4685
ath_power_restore_power_state(sc);
4686
ATH_UNLOCK(sc);
4687
4688
ath_tx_kick(sc);
4689
}
4690
4691
/*
4692
* Deferred processing of transmit interrupt.
4693
*/
4694
static void
4695
ath_tx_proc(void *arg, int npending)
4696
{
4697
struct ath_softc *sc = arg;
4698
int i, nacked;
4699
uint32_t txqs;
4700
4701
ATH_PCU_LOCK(sc);
4702
sc->sc_txproc_cnt++;
4703
txqs = sc->sc_txq_active;
4704
sc->sc_txq_active &= ~txqs;
4705
ATH_PCU_UNLOCK(sc);
4706
4707
ATH_LOCK(sc);
4708
ath_power_set_power_state(sc, HAL_PM_AWAKE);
4709
ATH_UNLOCK(sc);
4710
4711
ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4712
4713
/*
4714
* Process each active queue.
4715
*/
4716
nacked = 0;
4717
for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4718
if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4719
nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4720
if (nacked)
4721
sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4722
4723
sc->sc_wd_timer = 0;
4724
4725
if (sc->sc_softled)
4726
ath_led_event(sc, sc->sc_txrix);
4727
4728
ATH_PCU_LOCK(sc);
4729
sc->sc_txproc_cnt--;
4730
ATH_PCU_UNLOCK(sc);
4731
4732
ATH_LOCK(sc);
4733
ath_power_restore_power_state(sc);
4734
ATH_UNLOCK(sc);
4735
4736
ath_tx_kick(sc);
4737
}
4738
#undef TXQACTIVE
4739
4740
/*
4741
* Deferred processing of TXQ rescheduling.
4742
*/
4743
static void
4744
ath_txq_sched_tasklet(void *arg, int npending)
4745
{
4746
struct ath_softc *sc = arg;
4747
int i;
4748
4749
/* XXX is skipping ok? */
4750
ATH_PCU_LOCK(sc);
4751
#if 0
4752
if (sc->sc_inreset_cnt > 0) {
4753
device_printf(sc->sc_dev,
4754
"%s: sc_inreset_cnt > 0; skipping\n", __func__);
4755
ATH_PCU_UNLOCK(sc);
4756
return;
4757
}
4758
#endif
4759
sc->sc_txproc_cnt++;
4760
ATH_PCU_UNLOCK(sc);
4761
4762
ATH_LOCK(sc);
4763
ath_power_set_power_state(sc, HAL_PM_AWAKE);
4764
ATH_UNLOCK(sc);
4765
4766
ATH_TX_LOCK(sc);
4767
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4768
if (ATH_TXQ_SETUP(sc, i)) {
4769
ath_txq_sched(sc, &sc->sc_txq[i]);
4770
}
4771
}
4772
ATH_TX_UNLOCK(sc);
4773
4774
ATH_LOCK(sc);
4775
ath_power_restore_power_state(sc);
4776
ATH_UNLOCK(sc);
4777
4778
ATH_PCU_LOCK(sc);
4779
sc->sc_txproc_cnt--;
4780
ATH_PCU_UNLOCK(sc);
4781
}
4782
4783
void
4784
ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4785
{
4786
4787
ATH_TXBUF_LOCK_ASSERT(sc);
4788
4789
if (bf->bf_flags & ATH_BUF_MGMT)
4790
TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4791
else {
4792
TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4793
sc->sc_txbuf_cnt++;
4794
if (sc->sc_txbuf_cnt > ath_txbuf) {
4795
device_printf(sc->sc_dev,
4796
"%s: sc_txbuf_cnt > %d?\n",
4797
__func__,
4798
ath_txbuf);
4799
sc->sc_txbuf_cnt = ath_txbuf;
4800
}
4801
}
4802
}
4803
4804
void
4805
ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4806
{
4807
4808
ATH_TXBUF_LOCK_ASSERT(sc);
4809
4810
if (bf->bf_flags & ATH_BUF_MGMT)
4811
TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4812
else {
4813
TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4814
sc->sc_txbuf_cnt++;
4815
if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4816
device_printf(sc->sc_dev,
4817
"%s: sc_txbuf_cnt > %d?\n",
4818
__func__,
4819
ATH_TXBUF);
4820
sc->sc_txbuf_cnt = ATH_TXBUF;
4821
}
4822
}
4823
}
4824
4825
/*
4826
* Free the holding buffer if it exists
4827
*/
4828
void
4829
ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4830
{
4831
ATH_TXBUF_UNLOCK_ASSERT(sc);
4832
ATH_TXQ_LOCK_ASSERT(txq);
4833
4834
if (txq->axq_holdingbf == NULL)
4835
return;
4836
4837
txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4838
4839
ATH_TXBUF_LOCK(sc);
4840
ath_returnbuf_tail(sc, txq->axq_holdingbf);
4841
ATH_TXBUF_UNLOCK(sc);
4842
4843
txq->axq_holdingbf = NULL;
4844
}
4845
4846
/*
4847
* Add this buffer to the holding queue, freeing the previous
4848
* one if it exists.
4849
*/
4850
static void
4851
ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4852
{
4853
struct ath_txq *txq;
4854
4855
txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4856
4857
ATH_TXBUF_UNLOCK_ASSERT(sc);
4858
ATH_TXQ_LOCK_ASSERT(txq);
4859
4860
/* XXX assert ATH_BUF_BUSY is set */
4861
4862
/* XXX assert the tx queue is under the max number */
4863
if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4864
device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4865
__func__,
4866
bf,
4867
bf->bf_state.bfs_tx_queue);
4868
bf->bf_flags &= ~ATH_BUF_BUSY;
4869
ath_returnbuf_tail(sc, bf);
4870
return;
4871
}
4872
ath_txq_freeholdingbuf(sc, txq);
4873
txq->axq_holdingbf = bf;
4874
}
4875
4876
/*
4877
* Return a buffer to the pool and update the 'busy' flag on the
4878
* previous 'tail' entry.
4879
*
4880
* This _must_ only be called when the buffer is involved in a completed
4881
* TX. The logic is that if it was part of an active TX, the previous
4882
* buffer on the list is now not involved in a halted TX DMA queue, waiting
4883
* for restart (eg for TDMA.)
4884
*
4885
* The caller must free the mbuf and recycle the node reference.
4886
*
4887
* XXX This method of handling busy / holding buffers is insanely stupid.
4888
* It requires bf_state.bfs_tx_queue to be correctly assigned. It would
4889
* be much nicer if buffers in the processq() methods would instead be
4890
* always completed there (pushed onto a txq or ath_bufhead) so we knew
4891
* exactly what hardware queue they came from in the first place.
4892
*/
4893
void
4894
ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4895
{
4896
struct ath_txq *txq;
4897
4898
txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4899
4900
KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4901
KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4902
4903
/*
4904
* If this buffer is busy, push it onto the holding queue.
4905
*/
4906
if (bf->bf_flags & ATH_BUF_BUSY) {
4907
ATH_TXQ_LOCK(txq);
4908
ath_txq_addholdingbuf(sc, bf);
4909
ATH_TXQ_UNLOCK(txq);
4910
return;
4911
}
4912
4913
/*
4914
* Not a busy buffer, so free normally
4915
*/
4916
ATH_TXBUF_LOCK(sc);
4917
ath_returnbuf_tail(sc, bf);
4918
ATH_TXBUF_UNLOCK(sc);
4919
}
4920
4921
/*
4922
* This is currently used by ath_tx_draintxq() and
4923
* ath_tx_tid_free_pkts().
4924
*
4925
* It recycles a single ath_buf.
4926
*/
4927
void
4928
ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4929
{
4930
struct ieee80211_node *ni = bf->bf_node;
4931
struct mbuf *m0 = bf->bf_m;
4932
4933
/*
4934
* Make sure that we only sync/unload if there's an mbuf.
4935
* If not (eg we cloned a buffer), the unload will have already
4936
* occurred.
4937
*/
4938
if (bf->bf_m != NULL) {
4939
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4940
BUS_DMASYNC_POSTWRITE);
4941
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4942
}
4943
4944
bf->bf_node = NULL;
4945
bf->bf_m = NULL;
4946
4947
/* Free the buffer, it's not needed any longer */
4948
ath_freebuf(sc, bf);
4949
4950
/* Pass the buffer back to net80211 - completing it */
4951
ieee80211_tx_complete(ni, m0, status);
4952
}
4953
4954
static struct ath_buf *
4955
ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
4956
{
4957
struct ath_buf *bf;
4958
4959
ATH_TXQ_LOCK_ASSERT(txq);
4960
4961
/*
4962
* Drain the FIFO queue first, then if it's
4963
* empty, move to the normal frame queue.
4964
*/
4965
bf = TAILQ_FIRST(&txq->fifo.axq_q);
4966
if (bf != NULL) {
4967
/*
4968
* Is it the last buffer in this set?
4969
* Decrement the FIFO counter.
4970
*/
4971
if (bf->bf_flags & ATH_BUF_FIFOEND) {
4972
if (txq->axq_fifo_depth == 0) {
4973
device_printf(sc->sc_dev,
4974
"%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4975
__func__,
4976
txq->axq_qnum,
4977
txq->fifo.axq_depth);
4978
} else
4979
txq->axq_fifo_depth--;
4980
}
4981
ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4982
return (bf);
4983
}
4984
4985
/*
4986
* Debugging!
4987
*/
4988
if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4989
device_printf(sc->sc_dev,
4990
"%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4991
__func__,
4992
txq->axq_qnum,
4993
txq->axq_fifo_depth,
4994
txq->fifo.axq_depth);
4995
}
4996
4997
/*
4998
* Now drain the pending queue.
4999
*/
5000
bf = TAILQ_FIRST(&txq->axq_q);
5001
if (bf == NULL) {
5002
txq->axq_link = NULL;
5003
return (NULL);
5004
}
5005
ATH_TXQ_REMOVE(txq, bf, bf_list);
5006
return (bf);
5007
}
5008
5009
void
5010
ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5011
{
5012
#ifdef ATH_DEBUG
5013
struct ath_hal *ah = sc->sc_ah;
5014
#endif
5015
struct ath_buf *bf;
5016
u_int ix;
5017
5018
/*
5019
* NB: this assumes output has been stopped and
5020
* we do not need to block ath_tx_proc
5021
*/
5022
for (ix = 0;; ix++) {
5023
ATH_TXQ_LOCK(txq);
5024
bf = ath_tx_draintxq_get_one(sc, txq);
5025
if (bf == NULL) {
5026
ATH_TXQ_UNLOCK(txq);
5027
break;
5028
}
5029
if (bf->bf_state.bfs_aggr)
5030
txq->axq_aggr_depth--;
5031
#ifdef ATH_DEBUG
5032
if (sc->sc_debug & ATH_DEBUG_RESET) {
5033
struct ieee80211com *ic = &sc->sc_ic;
5034
int status = 0;
5035
5036
/*
5037
* EDMA operation has a TX completion FIFO
5038
* separate from the TX descriptor, so this
5039
* method of checking the "completion" status
5040
* is wrong.
5041
*/
5042
if (! sc->sc_isedma) {
5043
status = (ath_hal_txprocdesc(ah,
5044
bf->bf_lastds,
5045
&bf->bf_status.ds_txstat) == HAL_OK);
5046
}
5047
ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5048
ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5049
bf->bf_m->m_len, 0, -1);
5050
}
5051
#endif /* ATH_DEBUG */
5052
/*
5053
* Since we're now doing magic in the completion
5054
* functions, we -must- call it for aggregation
5055
* destinations or BAW tracking will get upset.
5056
*/
5057
/*
5058
* Clear ATH_BUF_BUSY; the completion handler
5059
* will free the buffer.
5060
*/
5061
ATH_TXQ_UNLOCK(txq);
5062
bf->bf_flags &= ~ATH_BUF_BUSY;
5063
if (bf->bf_comp)
5064
bf->bf_comp(sc, bf, 1);
5065
else
5066
ath_tx_default_comp(sc, bf, 1);
5067
}
5068
5069
/*
5070
* Free the holding buffer if it exists
5071
*/
5072
ATH_TXQ_LOCK(txq);
5073
ath_txq_freeholdingbuf(sc, txq);
5074
ATH_TXQ_UNLOCK(txq);
5075
5076
/*
5077
* Drain software queued frames which are on
5078
* active TIDs.
5079
*/
5080
ath_tx_txq_drain(sc, txq);
5081
}
5082
5083
static void
5084
ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5085
{
5086
struct ath_hal *ah = sc->sc_ah;
5087
5088
ATH_TXQ_LOCK_ASSERT(txq);
5089
5090
DPRINTF(sc, ATH_DEBUG_RESET,
5091
"%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5092
"link %p, holdingbf=%p\n",
5093
__func__,
5094
txq->axq_qnum,
5095
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5096
(int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5097
(int) ath_hal_numtxpending(ah, txq->axq_qnum),
5098
txq->axq_flags,
5099
txq->axq_link,
5100
txq->axq_holdingbf);
5101
5102
(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5103
/* We've stopped TX DMA, so mark this as stopped. */
5104
txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5105
5106
#ifdef ATH_DEBUG
5107
if ((sc->sc_debug & ATH_DEBUG_RESET)
5108
&& (txq->axq_holdingbf != NULL)) {
5109
ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5110
}
5111
#endif
5112
}
5113
5114
int
5115
ath_stoptxdma(struct ath_softc *sc)
5116
{
5117
struct ath_hal *ah = sc->sc_ah;
5118
int i;
5119
5120
/* XXX return value */
5121
if (sc->sc_invalid)
5122
return 0;
5123
5124
if (!sc->sc_invalid) {
5125
/* don't touch the hardware if marked invalid */
5126
DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5127
__func__, sc->sc_bhalq,
5128
(caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5129
NULL);
5130
5131
/* stop the beacon queue */
5132
(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5133
5134
/* Stop the data queues */
5135
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5136
if (ATH_TXQ_SETUP(sc, i)) {
5137
ATH_TXQ_LOCK(&sc->sc_txq[i]);
5138
ath_tx_stopdma(sc, &sc->sc_txq[i]);
5139
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5140
}
5141
}
5142
}
5143
5144
return 1;
5145
}
5146
5147
#ifdef ATH_DEBUG
5148
void
5149
ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5150
{
5151
struct ath_hal *ah = sc->sc_ah;
5152
struct ath_buf *bf;
5153
int i = 0;
5154
5155
if (! (sc->sc_debug & ATH_DEBUG_RESET))
5156
return;
5157
5158
device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5159
__func__, txq->axq_qnum);
5160
TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5161
ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5162
ath_hal_txprocdesc(ah, bf->bf_lastds,
5163
&bf->bf_status.ds_txstat) == HAL_OK);
5164
i++;
5165
}
5166
device_printf(sc->sc_dev, "%s: Q%d: end\n",
5167
__func__, txq->axq_qnum);
5168
}
5169
#endif /* ATH_DEBUG */
5170
5171
/*
5172
* Drain the transmit queues and reclaim resources.
5173
*/
5174
void
5175
ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5176
{
5177
struct ath_hal *ah = sc->sc_ah;
5178
struct ath_buf *bf_last;
5179
int i;
5180
5181
(void) ath_stoptxdma(sc);
5182
5183
/*
5184
* Dump the queue contents
5185
*/
5186
for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5187
/*
5188
* XXX TODO: should we just handle the completed TX frames
5189
* here, whether or not the reset is a full one or not?
5190
*/
5191
if (ATH_TXQ_SETUP(sc, i)) {
5192
#ifdef ATH_DEBUG
5193
if (sc->sc_debug & ATH_DEBUG_RESET)
5194
ath_tx_dump(sc, &sc->sc_txq[i]);
5195
#endif /* ATH_DEBUG */
5196
if (reset_type == ATH_RESET_NOLOSS) {
5197
ath_tx_processq(sc, &sc->sc_txq[i], 0);
5198
ATH_TXQ_LOCK(&sc->sc_txq[i]);
5199
/*
5200
* Free the holding buffer; DMA is now
5201
* stopped.
5202
*/
5203
ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5204
/*
5205
* Setup the link pointer to be the
5206
* _last_ buffer/descriptor in the list.
5207
* If there's nothing in the list, set it
5208
* to NULL.
5209
*/
5210
bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5211
axq_q_s);
5212
if (bf_last != NULL) {
5213
ath_hal_gettxdesclinkptr(ah,
5214
bf_last->bf_lastds,
5215
&sc->sc_txq[i].axq_link);
5216
} else {
5217
sc->sc_txq[i].axq_link = NULL;
5218
}
5219
ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5220
} else
5221
ath_tx_draintxq(sc, &sc->sc_txq[i]);
5222
}
5223
}
5224
#ifdef ATH_DEBUG
5225
if (sc->sc_debug & ATH_DEBUG_RESET) {
5226
struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5227
if (bf != NULL && bf->bf_m != NULL) {
5228
ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5229
ath_hal_txprocdesc(ah, bf->bf_lastds,
5230
&bf->bf_status.ds_txstat) == HAL_OK);
5231
ieee80211_dump_pkt(&sc->sc_ic,
5232
mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5233
0, -1);
5234
}
5235
}
5236
#endif /* ATH_DEBUG */
5237
sc->sc_wd_timer = 0;
5238
}
5239
5240
/*
5241
* Update internal state after a channel change.
5242
*/
5243
static void
5244
ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5245
{
5246
enum ieee80211_phymode mode;
5247
5248
/*
5249
* Change channels and update the h/w rate map
5250
* if we're switching; e.g. 11a to 11b/g.
5251
*/
5252
mode = ieee80211_chan2mode(chan);
5253
if (mode != sc->sc_curmode)
5254
ath_setcurmode(sc, mode);
5255
sc->sc_curchan = chan;
5256
}
5257
5258
/*
5259
* Set/change channels. If the channel is really being changed,
5260
* it's done by resetting the chip. To accomplish this we must
5261
* first cleanup any pending DMA, then restart stuff after a la
5262
* ath_init.
5263
*/
5264
static int
5265
ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5266
{
5267
struct ieee80211com *ic = &sc->sc_ic;
5268
struct ath_hal *ah = sc->sc_ah;
5269
int ret = 0;
5270
5271
/* Treat this as an interface reset */
5272
ATH_PCU_UNLOCK_ASSERT(sc);
5273
ATH_UNLOCK_ASSERT(sc);
5274
5275
/* (Try to) stop TX/RX from occurring */
5276
taskqueue_block(sc->sc_tq);
5277
5278
ATH_PCU_LOCK(sc);
5279
5280
/* Disable interrupts */
5281
ath_hal_intrset(ah, 0);
5282
5283
/* Stop new RX/TX/interrupt completion */
5284
if (ath_reset_grablock(sc, 1) == 0) {
5285
device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5286
__func__);
5287
}
5288
5289
/* Stop pending RX/TX completion */
5290
ath_txrx_stop_locked(sc);
5291
5292
ATH_PCU_UNLOCK(sc);
5293
5294
DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5295
__func__, ieee80211_chan2ieee(ic, chan),
5296
chan->ic_freq, chan->ic_flags);
5297
if (chan != sc->sc_curchan) {
5298
HAL_STATUS status;
5299
/*
5300
* To switch channels clear any pending DMA operations;
5301
* wait long enough for the RX fifo to drain, reset the
5302
* hardware at the new frequency, and then re-enable
5303
* the relevant bits of the h/w.
5304
*/
5305
#if 0
5306
ath_hal_intrset(ah, 0); /* disable interrupts */
5307
#endif
5308
ath_stoprecv(sc, 1); /* turn off frame recv */
5309
/*
5310
* First, handle completed TX/RX frames.
5311
*/
5312
ath_rx_flush(sc);
5313
ath_draintxq(sc, ATH_RESET_NOLOSS);
5314
/*
5315
* Next, flush the non-scheduled frames.
5316
*/
5317
ath_draintxq(sc, ATH_RESET_FULL); /* clear pending tx frames */
5318
5319
ath_update_chainmasks(sc, chan);
5320
ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5321
sc->sc_cur_rxchainmask);
5322
if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE,
5323
HAL_RESET_NORMAL, &status)) {
5324
device_printf(sc->sc_dev, "%s: unable to reset "
5325
"channel %u (%u MHz, flags 0x%x), hal status %u\n",
5326
__func__, ieee80211_chan2ieee(ic, chan),
5327
chan->ic_freq, chan->ic_flags, status);
5328
ret = EIO;
5329
goto finish;
5330
}
5331
sc->sc_diversity = ath_hal_getdiversity(ah);
5332
5333
ATH_RX_LOCK(sc);
5334
sc->sc_rx_stopped = 1;
5335
sc->sc_rx_resetted = 1;
5336
ATH_RX_UNLOCK(sc);
5337
5338
/* Quiet time handling - ensure we resync */
5339
ath_vap_clear_quiet_ie(sc);
5340
5341
/* Let DFS at it in case it's a DFS channel */
5342
ath_dfs_radar_enable(sc, chan);
5343
5344
/* Let spectral at in case spectral is enabled */
5345
ath_spectral_enable(sc, chan);
5346
5347
/*
5348
* Let bluetooth coexistence at in case it's needed for this
5349
* channel
5350
*/
5351
ath_btcoex_enable(sc, ic->ic_curchan);
5352
5353
/*
5354
* If we're doing TDMA, enforce the TXOP limitation for chips
5355
* that support it.
5356
*/
5357
if (sc->sc_hasenforcetxop && sc->sc_tdma)
5358
ath_hal_setenforcetxop(sc->sc_ah, 1);
5359
else
5360
ath_hal_setenforcetxop(sc->sc_ah, 0);
5361
5362
/*
5363
* Re-enable rx framework.
5364
*/
5365
if (ath_startrecv(sc) != 0) {
5366
device_printf(sc->sc_dev,
5367
"%s: unable to restart recv logic\n", __func__);
5368
ret = EIO;
5369
goto finish;
5370
}
5371
5372
/*
5373
* Change channels and update the h/w rate map
5374
* if we're switching; e.g. 11a to 11b/g.
5375
*/
5376
ath_chan_change(sc, chan);
5377
5378
/*
5379
* Reset clears the beacon timers; reset them
5380
* here if needed.
5381
*/
5382
if (sc->sc_beacons) { /* restart beacons */
5383
#ifdef IEEE80211_SUPPORT_TDMA
5384
if (sc->sc_tdma)
5385
ath_tdma_config(sc, NULL);
5386
else
5387
#endif
5388
ath_beacon_config(sc, NULL);
5389
}
5390
5391
/*
5392
* Re-enable interrupts.
5393
*/
5394
#if 0
5395
ath_hal_intrset(ah, sc->sc_imask);
5396
#endif
5397
}
5398
5399
finish:
5400
ATH_PCU_LOCK(sc);
5401
sc->sc_inreset_cnt--;
5402
/* XXX only do this if sc_inreset_cnt == 0? */
5403
ath_hal_intrset(ah, sc->sc_imask);
5404
ATH_PCU_UNLOCK(sc);
5405
5406
ath_txrx_start(sc);
5407
/* XXX ath_start? */
5408
5409
return ret;
5410
}
5411
5412
/*
5413
* Periodically recalibrate the PHY to account
5414
* for temperature/environment changes.
5415
*/
5416
static void
5417
ath_calibrate(void *arg)
5418
{
5419
struct ath_softc *sc = arg;
5420
struct ath_hal *ah = sc->sc_ah;
5421
struct ieee80211com *ic = &sc->sc_ic;
5422
HAL_BOOL longCal, isCalDone = AH_TRUE;
5423
HAL_BOOL aniCal, shortCal = AH_FALSE;
5424
int nextcal;
5425
5426
ATH_LOCK_ASSERT(sc);
5427
5428
/*
5429
* Force the hardware awake for ANI work.
5430
*/
5431
ath_power_set_power_state(sc, HAL_PM_AWAKE);
5432
5433
/* Skip trying to do this if we're in reset */
5434
if (sc->sc_inreset_cnt)
5435
goto restart;
5436
5437
if (ic->ic_flags & IEEE80211_F_SCAN) /* defer, off channel */
5438
goto restart;
5439
longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5440
aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5441
if (sc->sc_doresetcal)
5442
shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5443
5444
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5445
if (aniCal) {
5446
sc->sc_stats.ast_ani_cal++;
5447
sc->sc_lastani = ticks;
5448
ath_hal_ani_poll(ah, sc->sc_curchan);
5449
}
5450
5451
if (longCal) {
5452
sc->sc_stats.ast_per_cal++;
5453
sc->sc_lastlongcal = ticks;
5454
if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5455
/*
5456
* Rfgain is out of bounds, reset the chip
5457
* to load new gain values.
5458
*/
5459
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5460
"%s: rfgain change\n", __func__);
5461
sc->sc_stats.ast_per_rfgain++;
5462
sc->sc_resetcal = 0;
5463
sc->sc_doresetcal = AH_TRUE;
5464
taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5465
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5466
ath_power_restore_power_state(sc);
5467
return;
5468
}
5469
/*
5470
* If this long cal is after an idle period, then
5471
* reset the data collection state so we start fresh.
5472
*/
5473
if (sc->sc_resetcal) {
5474
(void) ath_hal_calreset(ah, sc->sc_curchan);
5475
sc->sc_lastcalreset = ticks;
5476
sc->sc_lastshortcal = ticks;
5477
sc->sc_resetcal = 0;
5478
sc->sc_doresetcal = AH_TRUE;
5479
}
5480
}
5481
5482
/* Only call if we're doing a short/long cal, not for ANI calibration */
5483
if (shortCal || longCal) {
5484
isCalDone = AH_FALSE;
5485
if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5486
if (longCal) {
5487
/*
5488
* Calibrate noise floor data again in case of change.
5489
*/
5490
ath_hal_process_noisefloor(ah);
5491
}
5492
} else {
5493
DPRINTF(sc, ATH_DEBUG_ANY,
5494
"%s: calibration of channel %u failed\n",
5495
__func__, sc->sc_curchan->ic_freq);
5496
sc->sc_stats.ast_per_calfail++;
5497
}
5498
/*
5499
* XXX TODO: get the NF calibration results from the HAL.
5500
* If we failed NF cal then schedule a hard reset to potentially
5501
* un-freeze the PHY.
5502
*
5503
* Note we have to be careful here to not get stuck in an
5504
* infinite NIC restart. Ideally we'd not restart if we
5505
* failed the first NF cal - that /can/ fail sometimes in
5506
* a noisy environment.
5507
*
5508
* Instead, we should likely temporarily shorten the longCal
5509
* period to happen pretty quickly and if a subsequent one
5510
* fails, do a full reset.
5511
*/
5512
if (shortCal)
5513
sc->sc_lastshortcal = ticks;
5514
}
5515
if (!isCalDone) {
5516
restart:
5517
/*
5518
* Use a shorter interval to potentially collect multiple
5519
* data samples required to complete calibration. Once
5520
* we're told the work is done we drop back to a longer
5521
* interval between requests. We're more aggressive doing
5522
* work when operating as an AP to improve operation right
5523
* after startup.
5524
*/
5525
sc->sc_lastshortcal = ticks;
5526
nextcal = ath_shortcalinterval*hz/1000;
5527
if (sc->sc_opmode != HAL_M_HOSTAP)
5528
nextcal *= 10;
5529
sc->sc_doresetcal = AH_TRUE;
5530
} else {
5531
/* nextcal should be the shortest time for next event */
5532
nextcal = ath_longcalinterval*hz;
5533
if (sc->sc_lastcalreset == 0)
5534
sc->sc_lastcalreset = sc->sc_lastlongcal;
5535
else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5536
sc->sc_resetcal = 1; /* setup reset next trip */
5537
sc->sc_doresetcal = AH_FALSE;
5538
}
5539
/* ANI calibration may occur more often than short/long/resetcal */
5540
if (ath_anicalinterval > 0)
5541
nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5542
5543
if (nextcal != 0) {
5544
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5545
__func__, nextcal, isCalDone ? "" : "!");
5546
callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5547
} else {
5548
DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5549
__func__);
5550
/* NB: don't rearm timer */
5551
}
5552
/*
5553
* Restore power state now that we're done.
5554
*/
5555
ath_power_restore_power_state(sc);
5556
}
5557
5558
static void
5559
ath_scan_start(struct ieee80211com *ic)
5560
{
5561
struct ath_softc *sc = ic->ic_softc;
5562
struct ath_hal *ah = sc->sc_ah;
5563
u_int32_t rfilt;
5564
5565
/* XXX calibration timer? */
5566
/* XXXGL: is constant ieee80211broadcastaddr a correct choice? */
5567
5568
ATH_LOCK(sc);
5569
sc->sc_scanning = 1;
5570
sc->sc_syncbeacon = 0;
5571
rfilt = ath_calcrxfilter(sc);
5572
ATH_UNLOCK(sc);
5573
5574
ATH_PCU_LOCK(sc);
5575
ath_hal_setrxfilter(ah, rfilt);
5576
ath_hal_setassocid(ah, ieee80211broadcastaddr, 0);
5577
ATH_PCU_UNLOCK(sc);
5578
5579
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5580
__func__, rfilt, ether_sprintf(ieee80211broadcastaddr));
5581
}
5582
5583
static void
5584
ath_scan_end(struct ieee80211com *ic)
5585
{
5586
struct ath_softc *sc = ic->ic_softc;
5587
struct ath_hal *ah = sc->sc_ah;
5588
u_int32_t rfilt;
5589
5590
ATH_LOCK(sc);
5591
sc->sc_scanning = 0;
5592
rfilt = ath_calcrxfilter(sc);
5593
ATH_UNLOCK(sc);
5594
5595
ATH_PCU_LOCK(sc);
5596
ath_hal_setrxfilter(ah, rfilt);
5597
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5598
5599
ath_hal_process_noisefloor(ah);
5600
ATH_PCU_UNLOCK(sc);
5601
5602
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5603
__func__, rfilt, ether_sprintf(sc->sc_curbssid),
5604
sc->sc_curaid);
5605
}
5606
5607
#ifdef ATH_ENABLE_11N
5608
/*
5609
* For now, just do a channel change.
5610
*
5611
* Later, we'll go through the hard slog of suspending tx/rx, changing rate
5612
* control state and resetting the hardware without dropping frames out
5613
* of the queue.
5614
*
5615
* The unfortunate trouble here is making absolutely sure that the
5616
* channel width change has propagated enough so the hardware
5617
* absolutely isn't handed bogus frames for it's current operating
5618
* mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5619
* does occur in parallel, we need to make certain we've blocked
5620
* any further ongoing TX (and RX, that can cause raw TX)
5621
* before we do this.
5622
*/
5623
static void
5624
ath_update_chw(struct ieee80211com *ic)
5625
{
5626
struct ath_softc *sc = ic->ic_softc;
5627
5628
//DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5629
device_printf(sc->sc_dev, "%s: called\n", __func__);
5630
5631
/*
5632
* XXX TODO: schedule a tasklet that stops things without freeing,
5633
* walks the now stopped TX queue(s) looking for frames to retry
5634
* as if we TX filtered them (whch may mean dropping non-ampdu frames!)
5635
* but okay) then place them back on the software queue so they
5636
* can have the rate control lookup done again.
5637
*/
5638
ath_set_channel(ic);
5639
}
5640
#endif /* ATH_ENABLE_11N */
5641
5642
/*
5643
* This is called by the beacon parsing routine in the receive
5644
* path to update the current quiet time information provided by
5645
* an AP.
5646
*
5647
* This is STA specific, it doesn't take the AP TBTT/beacon slot
5648
* offset into account.
5649
*
5650
* The quiet IE doesn't control the /now/ beacon interval - it
5651
* controls the upcoming beacon interval. So, when tbtt=1,
5652
* the quiet element programming shall be for the next beacon
5653
* interval. There's no tbtt=0 behaviour defined, so don't.
5654
*
5655
* Since we're programming the next quiet interval, we have
5656
* to keep in mind what we will see when the next beacon
5657
* is received with potentially a quiet IE. For example, if
5658
* quiet_period is 1, then we are always getting a quiet interval
5659
* each TBTT - so if we just program it in upon each beacon received,
5660
* it will constantly reflect the "next" TBTT and we will never
5661
* let the counter stay programmed correctly.
5662
*
5663
* So:
5664
* + the first time we see the quiet IE, program it and store
5665
* the details somewhere;
5666
* + if the quiet parameters don't change (ie, period/duration/offset)
5667
* then just leave the programming enabled;
5668
* + (we can "skip" beacons, so don't try to enforce tbttcount unless
5669
* you're willing to also do the skipped beacon math);
5670
* + if the quiet IE is removed, then halt quiet time.
5671
*/
5672
static int
5673
ath_set_quiet_ie(struct ieee80211_node *ni, uint8_t *ie)
5674
{
5675
struct ieee80211_quiet_ie *q;
5676
struct ieee80211vap *vap = ni->ni_vap;
5677
struct ath_vap *avp = ATH_VAP(vap);
5678
struct ieee80211com *ic = vap->iv_ic;
5679
struct ath_softc *sc = ic->ic_softc;
5680
5681
if (vap->iv_opmode != IEEE80211_M_STA)
5682
return (0);
5683
5684
/* Verify we have a quiet time IE */
5685
if (ie == NULL) {
5686
DPRINTF(sc, ATH_DEBUG_QUIETIE,
5687
"%s: called; NULL IE, disabling\n", __func__);
5688
5689
ath_hal_set_quiet(sc->sc_ah, 0, 0, 0, HAL_QUIET_DISABLE);
5690
memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
5691
return (0);
5692
}
5693
5694
/* If we do, verify it's actually legit */
5695
if (ie[0] != IEEE80211_ELEMID_QUIET)
5696
return 0;
5697
if (ie[1] != 6)
5698
return 0;
5699
5700
/* Note: this belongs in net80211, parsed out and everything */
5701
q = (void *) ie;
5702
5703
/*
5704
* Compare what we have stored to what we last saw.
5705
* If they're the same then don't program in anything.
5706
*/
5707
if ((q->period == avp->quiet_ie.period) &&
5708
(le16dec(&q->duration) == le16dec(&avp->quiet_ie.duration)) &&
5709
(le16dec(&q->offset) == le16dec(&avp->quiet_ie.offset)))
5710
return (0);
5711
5712
DPRINTF(sc, ATH_DEBUG_QUIETIE,
5713
"%s: called; tbttcount=%d, period=%d, duration=%d, offset=%d\n",
5714
__func__,
5715
(int) q->tbttcount,
5716
(int) q->period,
5717
(int) le16dec(&q->duration),
5718
(int) le16dec(&q->offset));
5719
5720
/*
5721
* Don't program in garbage values.
5722
*/
5723
if ((le16dec(&q->duration) == 0) ||
5724
(le16dec(&q->duration) >= ni->ni_intval)) {
5725
DPRINTF(sc, ATH_DEBUG_QUIETIE,
5726
"%s: invalid duration (%d)\n", __func__,
5727
le16dec(&q->duration));
5728
return (0);
5729
}
5730
/*
5731
* Can have a 0 offset, but not a duration - so just check
5732
* they don't exceed the intval.
5733
*/
5734
if (le16dec(&q->duration) + le16dec(&q->offset) >= ni->ni_intval) {
5735
DPRINTF(sc, ATH_DEBUG_QUIETIE,
5736
"%s: invalid duration + offset (%d+%d)\n", __func__,
5737
le16dec(&q->duration),
5738
le16dec(&q->offset));
5739
return (0);
5740
}
5741
if (q->tbttcount == 0) {
5742
DPRINTF(sc, ATH_DEBUG_QUIETIE,
5743
"%s: invalid tbttcount (0)\n", __func__);
5744
return (0);
5745
}
5746
if (q->period == 0) {
5747
DPRINTF(sc, ATH_DEBUG_QUIETIE,
5748
"%s: invalid period (0)\n", __func__);
5749
return (0);
5750
}
5751
5752
/*
5753
* This is a new quiet time IE config, so wait until tbttcount
5754
* is equal to 1, and program it in.
5755
*/
5756
if (q->tbttcount == 1) {
5757
DPRINTF(sc, ATH_DEBUG_QUIETIE,
5758
"%s: programming\n", __func__);
5759
ath_hal_set_quiet(sc->sc_ah,
5760
q->period * ni->ni_intval, /* convert to TU */
5761
le16dec(&q->duration), /* already in TU */
5762
le16dec(&q->offset) + ni->ni_intval,
5763
HAL_QUIET_ENABLE | HAL_QUIET_ADD_CURRENT_TSF);
5764
/*
5765
* Note: no HAL_QUIET_ADD_SWBA_RESP_TIME; as this is for
5766
* STA mode
5767
*/
5768
5769
/* Update local state */
5770
memcpy(&avp->quiet_ie, ie, sizeof(struct ieee80211_quiet_ie));
5771
}
5772
5773
return (0);
5774
}
5775
5776
static void
5777
ath_set_channel(struct ieee80211com *ic)
5778
{
5779
struct ath_softc *sc = ic->ic_softc;
5780
5781
ATH_LOCK(sc);
5782
ath_power_set_power_state(sc, HAL_PM_AWAKE);
5783
ATH_UNLOCK(sc);
5784
5785
(void) ath_chan_set(sc, ic->ic_curchan);
5786
/*
5787
* If we are returning to our bss channel then mark state
5788
* so the next recv'd beacon's tsf will be used to sync the
5789
* beacon timers. Note that since we only hear beacons in
5790
* sta/ibss mode this has no effect in other operating modes.
5791
*/
5792
ATH_LOCK(sc);
5793
if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5794
sc->sc_syncbeacon = 1;
5795
ath_power_restore_power_state(sc);
5796
ATH_UNLOCK(sc);
5797
}
5798
5799
/*
5800
* Walk the vap list and check if there any vap's in RUN state.
5801
*/
5802
static int
5803
ath_isanyrunningvaps(struct ieee80211vap *this)
5804
{
5805
struct ieee80211com *ic = this->iv_ic;
5806
struct ieee80211vap *vap;
5807
5808
IEEE80211_LOCK_ASSERT(ic);
5809
5810
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5811
if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5812
return 1;
5813
}
5814
return 0;
5815
}
5816
5817
static int
5818
ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5819
{
5820
struct ieee80211com *ic = vap->iv_ic;
5821
struct ath_softc *sc = ic->ic_softc;
5822
struct ath_vap *avp = ATH_VAP(vap);
5823
struct ath_hal *ah = sc->sc_ah;
5824
struct ieee80211_node *ni = NULL;
5825
int i, error, stamode;
5826
u_int32_t rfilt;
5827
int csa_run_transition = 0;
5828
enum ieee80211_state ostate = vap->iv_state;
5829
5830
static const HAL_LED_STATE leds[] = {
5831
HAL_LED_INIT, /* IEEE80211_S_INIT */
5832
HAL_LED_SCAN, /* IEEE80211_S_SCAN */
5833
HAL_LED_AUTH, /* IEEE80211_S_AUTH */
5834
HAL_LED_ASSOC, /* IEEE80211_S_ASSOC */
5835
HAL_LED_RUN, /* IEEE80211_S_CAC */
5836
HAL_LED_RUN, /* IEEE80211_S_RUN */
5837
HAL_LED_RUN, /* IEEE80211_S_CSA */
5838
HAL_LED_RUN, /* IEEE80211_S_SLEEP */
5839
};
5840
5841
DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5842
ieee80211_state_name[ostate],
5843
ieee80211_state_name[nstate]);
5844
5845
/*
5846
* net80211 _should_ have the comlock asserted at this point.
5847
* There are some comments around the calls to vap->iv_newstate
5848
* which indicate that it (newstate) may end up dropping the
5849
* lock. This and the subsequent lock assert check after newstate
5850
* are an attempt to catch these and figure out how/why.
5851
*/
5852
IEEE80211_LOCK_ASSERT(ic);
5853
5854
/* Before we touch the hardware - wake it up */
5855
ATH_LOCK(sc);
5856
/*
5857
* If the NIC is in anything other than SLEEP state,
5858
* we need to ensure that self-generated frames are
5859
* set for PWRMGT=0. Otherwise we may end up with
5860
* strange situations.
5861
*
5862
* XXX TODO: is this actually the case? :-)
5863
*/
5864
if (nstate != IEEE80211_S_SLEEP)
5865
ath_power_setselfgen(sc, HAL_PM_AWAKE);
5866
5867
/*
5868
* Now, wake the thing up.
5869
*/
5870
ath_power_set_power_state(sc, HAL_PM_AWAKE);
5871
5872
/*
5873
* And stop the calibration callout whilst we have
5874
* ATH_LOCK held.
5875
*/
5876
callout_stop(&sc->sc_cal_ch);
5877
ATH_UNLOCK(sc);
5878
5879
if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5880
csa_run_transition = 1;
5881
5882
ath_hal_setledstate(ah, leds[nstate]); /* set LED */
5883
5884
if (nstate == IEEE80211_S_SCAN) {
5885
/*
5886
* Scanning: turn off beacon miss and don't beacon.
5887
* Mark beacon state so when we reach RUN state we'll
5888
* [re]setup beacons. Unblock the task q thread so
5889
* deferred interrupt processing is done.
5890
*/
5891
5892
/* Ensure we stay awake during scan */
5893
ATH_LOCK(sc);
5894
ath_power_setselfgen(sc, HAL_PM_AWAKE);
5895
ath_power_setpower(sc, HAL_PM_AWAKE, 1);
5896
ATH_UNLOCK(sc);
5897
5898
ath_hal_intrset(ah,
5899
sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5900
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5901
sc->sc_beacons = 0;
5902
taskqueue_unblock(sc->sc_tq);
5903
}
5904
5905
ni = ieee80211_ref_node(vap->iv_bss);
5906
rfilt = ath_calcrxfilter(sc);
5907
stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5908
vap->iv_opmode == IEEE80211_M_AHDEMO ||
5909
vap->iv_opmode == IEEE80211_M_IBSS);
5910
5911
/*
5912
* XXX Dont need to do this (and others) if we've transitioned
5913
* from SLEEP->RUN.
5914
*/
5915
if (stamode && nstate == IEEE80211_S_RUN) {
5916
sc->sc_curaid = ni->ni_associd;
5917
IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5918
ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5919
}
5920
DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5921
__func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5922
ath_hal_setrxfilter(ah, rfilt);
5923
5924
/* XXX is this to restore keycache on resume? */
5925
if (vap->iv_opmode != IEEE80211_M_STA &&
5926
(vap->iv_flags & IEEE80211_F_PRIVACY)) {
5927
for (i = 0; i < IEEE80211_WEP_NKID; i++)
5928
if (ath_hal_keyisvalid(ah, i))
5929
ath_hal_keysetmac(ah, i, ni->ni_bssid);
5930
}
5931
5932
/*
5933
* Invoke the parent method to do net80211 work.
5934
*/
5935
error = avp->av_newstate(vap, nstate, arg);
5936
if (error != 0)
5937
goto bad;
5938
5939
/*
5940
* See above: ensure av_newstate() doesn't drop the lock
5941
* on us.
5942
*/
5943
IEEE80211_LOCK_ASSERT(ic);
5944
5945
/*
5946
* XXX TODO: if nstate is _S_CAC, then we should disable
5947
* ACK processing until CAC is completed.
5948
*/
5949
5950
/*
5951
* XXX TODO: if we're on a passive channel, then we should
5952
* not allow any ACKs or self-generated frames until we hear
5953
* a beacon. Unfortunately there isn't a notification from
5954
* net80211 so perhaps we could slot that particular check
5955
* into the mgmt receive path and just ensure that we clear
5956
* it on RX of beacons in passive mode (and only clear it
5957
* once, obviously.)
5958
*/
5959
5960
/*
5961
* XXX TODO: net80211 should be tracking whether channels
5962
* have heard beacons and are thus considered "OK" for
5963
* transmitting - and then inform the driver about this
5964
* state change. That way if we hear an AP go quiet
5965
* (and nothing else is beaconing on a channel) the
5966
* channel can go back to being passive until another
5967
* beacon is heard.
5968
*/
5969
5970
/*
5971
* XXX TODO: if nstate is _S_CAC, then we should disable
5972
* ACK processing until CAC is completed.
5973
*/
5974
5975
/*
5976
* XXX TODO: if we're on a passive channel, then we should
5977
* not allow any ACKs or self-generated frames until we hear
5978
* a beacon. Unfortunately there isn't a notification from
5979
* net80211 so perhaps we could slot that particular check
5980
* into the mgmt receive path and just ensure that we clear
5981
* it on RX of beacons in passive mode (and only clear it
5982
* once, obviously.)
5983
*/
5984
5985
/*
5986
* XXX TODO: net80211 should be tracking whether channels
5987
* have heard beacons and are thus considered "OK" for
5988
* transmitting - and then inform the driver about this
5989
* state change. That way if we hear an AP go quiet
5990
* (and nothing else is beaconing on a channel) the
5991
* channel can go back to being passive until another
5992
* beacon is heard.
5993
*/
5994
5995
if (nstate == IEEE80211_S_RUN) {
5996
/* NB: collect bss node again, it may have changed */
5997
ieee80211_free_node(ni);
5998
ni = ieee80211_ref_node(vap->iv_bss);
5999
6000
DPRINTF(sc, ATH_DEBUG_STATE,
6001
"%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
6002
"capinfo 0x%04x chan %d\n", __func__,
6003
vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
6004
ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
6005
6006
switch (vap->iv_opmode) {
6007
#ifdef IEEE80211_SUPPORT_TDMA
6008
case IEEE80211_M_AHDEMO:
6009
if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
6010
break;
6011
/* fall thru... */
6012
#endif
6013
case IEEE80211_M_HOSTAP:
6014
case IEEE80211_M_IBSS:
6015
case IEEE80211_M_MBSS:
6016
6017
/*
6018
* TODO: Enable ACK processing (ie, clear AR_DIAG_ACK_DIS.)
6019
* For channels that are in CAC, we may have disabled
6020
* this during CAC to ensure we don't ACK frames
6021
* sent to us.
6022
*/
6023
6024
/*
6025
* Allocate and setup the beacon frame.
6026
*
6027
* Stop any previous beacon DMA. This may be
6028
* necessary, for example, when an ibss merge
6029
* causes reconfiguration; there will be a state
6030
* transition from RUN->RUN that means we may
6031
* be called with beacon transmission active.
6032
*/
6033
ath_hal_stoptxdma(ah, sc->sc_bhalq);
6034
6035
error = ath_beacon_alloc(sc, ni);
6036
if (error != 0)
6037
goto bad;
6038
/*
6039
* If joining an adhoc network defer beacon timer
6040
* configuration to the next beacon frame so we
6041
* have a current TSF to use. Otherwise we're
6042
* starting an ibss/bss so there's no need to delay;
6043
* if this is the first vap moving to RUN state, then
6044
* beacon state needs to be [re]configured.
6045
*/
6046
if (vap->iv_opmode == IEEE80211_M_IBSS &&
6047
ni->ni_tstamp.tsf != 0) {
6048
sc->sc_syncbeacon = 1;
6049
} else if (!sc->sc_beacons) {
6050
#ifdef IEEE80211_SUPPORT_TDMA
6051
if (vap->iv_caps & IEEE80211_C_TDMA)
6052
ath_tdma_config(sc, vap);
6053
else
6054
#endif
6055
ath_beacon_config(sc, vap);
6056
sc->sc_beacons = 1;
6057
}
6058
break;
6059
case IEEE80211_M_STA:
6060
/*
6061
* Defer beacon timer configuration to the next
6062
* beacon frame so we have a current TSF to use
6063
* (any TSF collected when scanning is likely old).
6064
* However if it's due to a CSA -> RUN transition,
6065
* force a beacon update so we pick up a lack of
6066
* beacons from an AP in CAC and thus force a
6067
* scan.
6068
*
6069
* And, there's also corner cases here where
6070
* after a scan, the AP may have disappeared.
6071
* In that case, we may not receive an actual
6072
* beacon to update the beacon timer and thus we
6073
* won't get notified of the missing beacons.
6074
*
6075
* Also, don't do any of this if we're not running
6076
* with hardware beacon support, as that'll interfere
6077
* with an AP VAP.
6078
*/
6079
if (ostate != IEEE80211_S_RUN &&
6080
ostate != IEEE80211_S_SLEEP) {
6081
6082
if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
6083
DPRINTF(sc, ATH_DEBUG_BEACON,
6084
"%s: STA; syncbeacon=1\n", __func__);
6085
sc->sc_syncbeacon = 1;
6086
if (csa_run_transition)
6087
ath_beacon_config(sc, vap);
6088
}
6089
6090
/* Quiet time handling - ensure we resync */
6091
memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6092
6093
/*
6094
* PR: kern/175227
6095
*
6096
* Reconfigure beacons during reset; as otherwise
6097
* we won't get the beacon timers reprogrammed
6098
* after a reset and thus we won't pick up a
6099
* beacon miss interrupt.
6100
*
6101
* Hopefully we'll see a beacon before the BMISS
6102
* timer fires (too often), leading to a STA
6103
* disassociation.
6104
*/
6105
if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
6106
sc->sc_beacons = 1;
6107
}
6108
}
6109
break;
6110
case IEEE80211_M_MONITOR:
6111
/*
6112
* Monitor mode vaps have only INIT->RUN and RUN->RUN
6113
* transitions so we must re-enable interrupts here to
6114
* handle the case of a single monitor mode vap.
6115
*/
6116
ath_hal_intrset(ah, sc->sc_imask);
6117
break;
6118
case IEEE80211_M_WDS:
6119
break;
6120
default:
6121
break;
6122
}
6123
/*
6124
* Let the hal process statistics collected during a
6125
* scan so it can provide calibrated noise floor data.
6126
*/
6127
ath_hal_process_noisefloor(ah);
6128
/*
6129
* Reset rssi stats; maybe not the best place...
6130
*/
6131
sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6132
sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6133
sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6134
6135
/*
6136
* Force awake for RUN mode.
6137
*/
6138
ATH_LOCK(sc);
6139
ath_power_setselfgen(sc, HAL_PM_AWAKE);
6140
ath_power_setpower(sc, HAL_PM_AWAKE, 1);
6141
6142
/*
6143
* Finally, start any timers and the task q thread
6144
* (in case we didn't go through SCAN state).
6145
*/
6146
if (ath_longcalinterval != 0) {
6147
/* start periodic recalibration timer */
6148
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6149
} else {
6150
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6151
"%s: calibration disabled\n", __func__);
6152
}
6153
ATH_UNLOCK(sc);
6154
6155
taskqueue_unblock(sc->sc_tq);
6156
} else if (nstate == IEEE80211_S_INIT) {
6157
/* Quiet time handling - ensure we resync */
6158
memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6159
6160
/*
6161
* If there are no vaps left in RUN state then
6162
* shutdown host/driver operation:
6163
* o disable interrupts
6164
* o disable the task queue thread
6165
* o mark beacon processing as stopped
6166
*/
6167
if (!ath_isanyrunningvaps(vap)) {
6168
sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6169
/* disable interrupts */
6170
ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6171
taskqueue_block(sc->sc_tq);
6172
sc->sc_beacons = 0;
6173
}
6174
6175
/*
6176
* For at least STA mode we likely should clear the ANI
6177
* and NF calibration state and allow the NIC/HAL to figure
6178
* out optimal parameters at runtime. Otherwise if we
6179
* disassociate due to interference / deafness it may persist
6180
* when we reconnect.
6181
*
6182
* Note: may need to do this for other states too, not just
6183
* _S_INIT.
6184
*/
6185
#ifdef IEEE80211_SUPPORT_TDMA
6186
ath_hal_setcca(ah, AH_TRUE);
6187
#endif
6188
} else if (nstate == IEEE80211_S_SLEEP) {
6189
/* We're going to sleep, so transition appropriately */
6190
/* For now, only do this if we're a single STA vap */
6191
if (sc->sc_nvaps == 1 &&
6192
vap->iv_opmode == IEEE80211_M_STA) {
6193
DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6194
ATH_LOCK(sc);
6195
/*
6196
* Always at least set the self-generated
6197
* frame config to set PWRMGT=1.
6198
*/
6199
ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6200
6201
/*
6202
* If we're not syncing beacons, transition
6203
* to NETWORK_SLEEP.
6204
*
6205
* We stay awake if syncbeacon > 0 in case
6206
* we need to listen for some beacons otherwise
6207
* our beacon timer config may be wrong.
6208
*/
6209
if (sc->sc_syncbeacon == 0) {
6210
ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP, 1);
6211
}
6212
ATH_UNLOCK(sc);
6213
}
6214
6215
/*
6216
* Note - the ANI/calibration timer isn't re-enabled during
6217
* network sleep for now. One unfortunate side-effect is that
6218
* the PHY/airtime statistics aren't gathered on the channel
6219
* but I haven't yet tested to see if reading those registers
6220
* CAN occur during network sleep.
6221
*
6222
* This should be revisited in a future commit, even if it's
6223
* just to split out the airtime polling from ANI/calibration.
6224
*/
6225
} else if (nstate == IEEE80211_S_SCAN) {
6226
/* Quiet time handling - ensure we resync */
6227
memset(&avp->quiet_ie, 0, sizeof(avp->quiet_ie));
6228
6229
/*
6230
* If we're in scan mode then startpcureceive() is
6231
* hopefully being called with "reset ANI" for this channel;
6232
* but once we attempt to reassociate we program in the previous
6233
* ANI values and.. not do any calibration until we're running.
6234
* This may mean we stay deaf unless we can associate successfully.
6235
*
6236
* So do kick off the cal timer to get NF/ANI going.
6237
*/
6238
ATH_LOCK(sc);
6239
if (ath_longcalinterval != 0) {
6240
/* start periodic recalibration timer */
6241
callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6242
} else {
6243
DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6244
"%s: calibration disabled\n", __func__);
6245
}
6246
ATH_UNLOCK(sc);
6247
}
6248
bad:
6249
ieee80211_free_node(ni);
6250
6251
/*
6252
* Restore the power state - either to what it was, or
6253
* to network_sleep if it's alright.
6254
*/
6255
ATH_LOCK(sc);
6256
ath_power_restore_power_state(sc);
6257
ATH_UNLOCK(sc);
6258
return error;
6259
}
6260
6261
/*
6262
* Allocate a key cache slot to the station so we can
6263
* setup a mapping from key index to node. The key cache
6264
* slot is needed for managing antenna state and for
6265
* compression when stations do not use crypto. We do
6266
* it uniliaterally here; if crypto is employed this slot
6267
* will be reassigned.
6268
*/
6269
static void
6270
ath_setup_stationkey(struct ieee80211_node *ni)
6271
{
6272
struct ieee80211vap *vap = ni->ni_vap;
6273
struct ath_softc *sc = vap->iv_ic->ic_softc;
6274
ieee80211_keyix keyix, rxkeyix;
6275
6276
/* XXX should take a locked ref to vap->iv_bss */
6277
if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6278
/*
6279
* Key cache is full; we'll fall back to doing
6280
* the more expensive lookup in software. Note
6281
* this also means no h/w compression.
6282
*/
6283
/* XXX msg+statistic */
6284
} else {
6285
/* XXX locking? */
6286
ni->ni_ucastkey.wk_keyix = keyix;
6287
ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6288
/* NB: must mark device key to get called back on delete */
6289
ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6290
IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6291
/* NB: this will create a pass-thru key entry */
6292
ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6293
}
6294
}
6295
6296
/*
6297
* Setup driver-specific state for a newly associated node.
6298
* Note that we're called also on a re-associate, the isnew
6299
* param tells us if this is the first time or not.
6300
*/
6301
static void
6302
ath_newassoc(struct ieee80211_node *ni, int isnew)
6303
{
6304
struct ath_node *an = ATH_NODE(ni);
6305
struct ieee80211vap *vap = ni->ni_vap;
6306
struct ath_softc *sc = vap->iv_ic->ic_softc;
6307
const struct ieee80211_txparam *tp = ni->ni_txparms;
6308
6309
an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6310
an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6311
6312
DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
6313
__func__,
6314
ni->ni_macaddr,
6315
":",
6316
isnew,
6317
an->an_is_powersave);
6318
6319
ATH_NODE_LOCK(an);
6320
ath_rate_newassoc(sc, an, isnew);
6321
ATH_NODE_UNLOCK(an);
6322
6323
if (isnew &&
6324
(vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6325
ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6326
ath_setup_stationkey(ni);
6327
6328
/*
6329
* If we're reassociating, make sure that any paused queues
6330
* get unpaused.
6331
*
6332
* Now, we may have frames in the hardware queue for this node.
6333
* So if we are reassociating and there are frames in the queue,
6334
* we need to go through the cleanup path to ensure that they're
6335
* marked as non-aggregate.
6336
*/
6337
if (! isnew) {
6338
DPRINTF(sc, ATH_DEBUG_NODE,
6339
"%s: %6D: reassoc; is_powersave=%d\n",
6340
__func__,
6341
ni->ni_macaddr,
6342
":",
6343
an->an_is_powersave);
6344
6345
/* XXX for now, we can't hold the lock across assoc */
6346
ath_tx_node_reassoc(sc, an);
6347
6348
/* XXX for now, we can't hold the lock across wakeup */
6349
if (an->an_is_powersave)
6350
ath_tx_node_wakeup(sc, an);
6351
}
6352
}
6353
6354
static int
6355
ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6356
int nchans, struct ieee80211_channel chans[])
6357
{
6358
struct ath_softc *sc = ic->ic_softc;
6359
struct ath_hal *ah = sc->sc_ah;
6360
HAL_STATUS status;
6361
6362
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6363
"%s: rd %u cc %u location %c%s\n",
6364
__func__, reg->regdomain, reg->country, reg->location,
6365
reg->ecm ? " ecm" : "");
6366
6367
status = ath_hal_set_channels(ah, chans, nchans,
6368
reg->country, reg->regdomain);
6369
if (status != HAL_OK) {
6370
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6371
__func__, status);
6372
return EINVAL; /* XXX */
6373
}
6374
6375
return 0;
6376
}
6377
6378
static void
6379
ath_getradiocaps(struct ieee80211com *ic,
6380
int maxchans, int *nchans, struct ieee80211_channel chans[])
6381
{
6382
struct ath_softc *sc = ic->ic_softc;
6383
struct ath_hal *ah = sc->sc_ah;
6384
6385
DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6386
__func__, SKU_DEBUG, CTRY_DEFAULT);
6387
6388
/* XXX check return */
6389
(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6390
HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6391
6392
}
6393
6394
static int
6395
ath_getchannels(struct ath_softc *sc)
6396
{
6397
struct ieee80211com *ic = &sc->sc_ic;
6398
struct ath_hal *ah = sc->sc_ah;
6399
HAL_STATUS status;
6400
6401
/*
6402
* Collect channel set based on EEPROM contents.
6403
*/
6404
status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6405
&ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6406
if (status != HAL_OK) {
6407
device_printf(sc->sc_dev,
6408
"%s: unable to collect channel list from hal, status %d\n",
6409
__func__, status);
6410
return EINVAL;
6411
}
6412
(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6413
ath_hal_getcountrycode(ah, &sc->sc_eecc); /* NB: cannot fail */
6414
/* XXX map Atheros sku's to net80211 SKU's */
6415
/* XXX net80211 types too small */
6416
ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6417
ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6418
ic->ic_regdomain.isocc[0] = ' '; /* XXX don't know */
6419
ic->ic_regdomain.isocc[1] = ' ';
6420
6421
ic->ic_regdomain.ecm = 1;
6422
ic->ic_regdomain.location = 'I';
6423
6424
DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6425
"%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6426
__func__, sc->sc_eerd, sc->sc_eecc,
6427
ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6428
ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6429
return 0;
6430
}
6431
6432
static int
6433
ath_rate_setup(struct ath_softc *sc, u_int mode)
6434
{
6435
struct ath_hal *ah = sc->sc_ah;
6436
const HAL_RATE_TABLE *rt;
6437
6438
switch (mode) {
6439
case IEEE80211_MODE_11A:
6440
rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6441
break;
6442
case IEEE80211_MODE_HALF:
6443
rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6444
break;
6445
case IEEE80211_MODE_QUARTER:
6446
rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6447
break;
6448
case IEEE80211_MODE_11B:
6449
rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6450
break;
6451
case IEEE80211_MODE_11G:
6452
rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6453
break;
6454
case IEEE80211_MODE_TURBO_A:
6455
rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6456
break;
6457
case IEEE80211_MODE_TURBO_G:
6458
rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6459
break;
6460
case IEEE80211_MODE_STURBO_A:
6461
rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6462
break;
6463
case IEEE80211_MODE_11NA:
6464
rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6465
break;
6466
case IEEE80211_MODE_11NG:
6467
rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6468
break;
6469
default:
6470
DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6471
__func__, mode);
6472
return 0;
6473
}
6474
sc->sc_rates[mode] = rt;
6475
return (rt != NULL);
6476
}
6477
6478
static void
6479
ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6480
{
6481
/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6482
static const struct {
6483
u_int rate; /* tx/rx 802.11 rate */
6484
u_int16_t timeOn; /* LED on time (ms) */
6485
u_int16_t timeOff; /* LED off time (ms) */
6486
} blinkrates[] = {
6487
{ 108, 40, 10 },
6488
{ 96, 44, 11 },
6489
{ 72, 50, 13 },
6490
{ 48, 57, 14 },
6491
{ 36, 67, 16 },
6492
{ 24, 80, 20 },
6493
{ 22, 100, 25 },
6494
{ 18, 133, 34 },
6495
{ 12, 160, 40 },
6496
{ 10, 200, 50 },
6497
{ 6, 240, 58 },
6498
{ 4, 267, 66 },
6499
{ 2, 400, 100 },
6500
{ 0, 500, 130 },
6501
/* XXX half/quarter rates */
6502
};
6503
const HAL_RATE_TABLE *rt;
6504
int i, j;
6505
6506
memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6507
rt = sc->sc_rates[mode];
6508
KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6509
for (i = 0; i < rt->rateCount; i++) {
6510
uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6511
if (rt->info[i].phy != IEEE80211_T_HT)
6512
sc->sc_rixmap[ieeerate] = i;
6513
else
6514
sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6515
}
6516
memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6517
for (i = 0; i < nitems(sc->sc_hwmap); i++) {
6518
if (i >= rt->rateCount) {
6519
sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6520
sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6521
continue;
6522
}
6523
sc->sc_hwmap[i].ieeerate =
6524
rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6525
if (rt->info[i].phy == IEEE80211_T_HT)
6526
sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6527
sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6528
if (rt->info[i].shortPreamble ||
6529
rt->info[i].phy == IEEE80211_T_OFDM)
6530
sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6531
sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6532
for (j = 0; j < nitems(blinkrates)-1; j++)
6533
if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6534
break;
6535
/* NB: this uses the last entry if the rate isn't found */
6536
/* XXX beware of overlow */
6537
sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6538
sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6539
}
6540
sc->sc_currates = rt;
6541
sc->sc_curmode = mode;
6542
/*
6543
* All protection frames are transmitted at 2Mb/s for
6544
* 11g, otherwise at 1Mb/s.
6545
*/
6546
if (mode == IEEE80211_MODE_11G)
6547
sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6548
else
6549
sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6550
/* NB: caller is responsible for resetting rate control state */
6551
}
6552
6553
static void
6554
ath_watchdog(void *arg)
6555
{
6556
struct ath_softc *sc = arg;
6557
struct ieee80211com *ic = &sc->sc_ic;
6558
int do_reset = 0;
6559
6560
ATH_LOCK_ASSERT(sc);
6561
6562
if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6563
uint32_t hangs;
6564
6565
ath_power_set_power_state(sc, HAL_PM_AWAKE);
6566
6567
if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6568
hangs != 0) {
6569
device_printf(sc->sc_dev, "%s hang detected (0x%x)\n",
6570
hangs & 0xff ? "bb" : "mac", hangs);
6571
} else
6572
device_printf(sc->sc_dev, "device timeout\n");
6573
do_reset = 1;
6574
counter_u64_add(ic->ic_oerrors, 1);
6575
sc->sc_stats.ast_watchdog++;
6576
6577
ath_power_restore_power_state(sc);
6578
}
6579
6580
/*
6581
* We can't hold the lock across the ath_reset() call.
6582
*
6583
* And since this routine can't hold a lock and sleep,
6584
* do the reset deferred.
6585
*/
6586
if (do_reset) {
6587
taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6588
}
6589
6590
callout_schedule(&sc->sc_wd_ch, hz);
6591
}
6592
6593
static void
6594
ath_parent(struct ieee80211com *ic)
6595
{
6596
struct ath_softc *sc = ic->ic_softc;
6597
int error = EDOOFUS;
6598
6599
ATH_LOCK(sc);
6600
if (ic->ic_nrunning > 0) {
6601
/*
6602
* To avoid rescanning another access point,
6603
* do not call ath_init() here. Instead,
6604
* only reflect promisc mode settings.
6605
*/
6606
if (sc->sc_running) {
6607
ath_power_set_power_state(sc, HAL_PM_AWAKE);
6608
ath_mode_init(sc);
6609
ath_power_restore_power_state(sc);
6610
} else if (!sc->sc_invalid) {
6611
/*
6612
* Beware of being called during attach/detach
6613
* to reset promiscuous mode. In that case we
6614
* will still be marked UP but not RUNNING.
6615
* However trying to re-init the interface
6616
* is the wrong thing to do as we've already
6617
* torn down much of our state. There's
6618
* probably a better way to deal with this.
6619
*/
6620
error = ath_init(sc);
6621
}
6622
} else {
6623
ath_stop(sc);
6624
if (!sc->sc_invalid)
6625
ath_power_setpower(sc, HAL_PM_FULL_SLEEP, 1);
6626
}
6627
ATH_UNLOCK(sc);
6628
6629
if (error == 0) {
6630
#ifdef ATH_TX99_DIAG
6631
if (sc->sc_tx99 != NULL)
6632
sc->sc_tx99->start(sc->sc_tx99);
6633
else
6634
#endif
6635
ieee80211_start_all(ic);
6636
}
6637
}
6638
6639
/*
6640
* Announce various information on device/driver attach.
6641
*/
6642
static void
6643
ath_announce(struct ath_softc *sc)
6644
{
6645
struct ath_hal *ah = sc->sc_ah;
6646
6647
device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n",
6648
ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6649
ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6650
device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6651
ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6652
if (bootverbose) {
6653
int i;
6654
for (i = 0; i <= WME_AC_VO; i++) {
6655
struct ath_txq *txq = sc->sc_ac2q[i];
6656
device_printf(sc->sc_dev,
6657
"Use hw queue %u for %s traffic\n",
6658
txq->axq_qnum, ieee80211_wme_acnames[i]);
6659
}
6660
device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n",
6661
sc->sc_cabq->axq_qnum);
6662
device_printf(sc->sc_dev, "Use hw queue %u for beacons\n",
6663
sc->sc_bhalq);
6664
}
6665
if (ath_rxbuf != ATH_RXBUF)
6666
device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf);
6667
if (ath_txbuf != ATH_TXBUF)
6668
device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf);
6669
if (sc->sc_mcastkey && bootverbose)
6670
device_printf(sc->sc_dev, "using multicast key search\n");
6671
}
6672
6673
static void
6674
ath_dfs_tasklet(void *p, int npending)
6675
{
6676
struct ath_softc *sc = (struct ath_softc *) p;
6677
struct ieee80211com *ic = &sc->sc_ic;
6678
6679
/*
6680
* If previous processing has found a radar event,
6681
* signal this to the net80211 layer to begin DFS
6682
* processing.
6683
*/
6684
if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6685
/* DFS event found, initiate channel change */
6686
6687
/*
6688
* XXX TODO: immediately disable ACK processing
6689
* on the current channel. This would be done
6690
* by setting AR_DIAG_ACK_DIS (AR5212; may be
6691
* different for others) until we are out of
6692
* CAC.
6693
*/
6694
6695
/*
6696
* XXX doesn't currently tell us whether the event
6697
* XXX was found in the primary or extension
6698
* XXX channel!
6699
*/
6700
IEEE80211_LOCK(ic);
6701
ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6702
IEEE80211_UNLOCK(ic);
6703
}
6704
}
6705
6706
/*
6707
* Enable/disable power save. This must be called with
6708
* no TX driver locks currently held, so it should only
6709
* be called from the RX path (which doesn't hold any
6710
* TX driver locks.)
6711
*/
6712
static void
6713
ath_node_powersave(struct ieee80211_node *ni, int enable)
6714
{
6715
#ifdef ATH_SW_PSQ
6716
struct ath_node *an = ATH_NODE(ni);
6717
struct ieee80211com *ic = ni->ni_ic;
6718
struct ath_softc *sc = ic->ic_softc;
6719
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6720
6721
/* XXX and no TXQ locks should be held here */
6722
6723
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6724
__func__,
6725
ni->ni_macaddr,
6726
":",
6727
!! enable);
6728
6729
/* Suspend or resume software queue handling */
6730
if (enable)
6731
ath_tx_node_sleep(sc, an);
6732
else
6733
ath_tx_node_wakeup(sc, an);
6734
6735
/* Update net80211 state */
6736
avp->av_node_ps(ni, enable);
6737
#else
6738
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6739
6740
/* Update net80211 state */
6741
avp->av_node_ps(ni, enable);
6742
#endif/* ATH_SW_PSQ */
6743
}
6744
6745
/*
6746
* Notification from net80211 that the powersave queue state has
6747
* changed.
6748
*
6749
* Since the software queue also may have some frames:
6750
*
6751
* + if the node software queue has frames and the TID state
6752
* is 0, we set the TIM;
6753
* + if the node and the stack are both empty, we clear the TIM bit.
6754
* + If the stack tries to set the bit, always set it.
6755
* + If the stack tries to clear the bit, only clear it if the
6756
* software queue in question is also cleared.
6757
*
6758
* TODO: this is called during node teardown; so let's ensure this
6759
* is all correctly handled and that the TIM bit is cleared.
6760
* It may be that the node flush is called _AFTER_ the net80211
6761
* stack clears the TIM.
6762
*
6763
* Here is the racy part. Since it's possible >1 concurrent,
6764
* overlapping TXes will appear complete with a TX completion in
6765
* another thread, it's possible that the concurrent TIM calls will
6766
* clash. We can't hold the node lock here because setting the
6767
* TIM grabs the net80211 comlock and this may cause a LOR.
6768
* The solution is either to totally serialise _everything_ at
6769
* this point (ie, all TX, completion and any reset/flush go into
6770
* one taskqueue) or a new "ath TIM lock" needs to be created that
6771
* just wraps the driver state change and this call to avp->av_set_tim().
6772
*
6773
* The same race exists in the net80211 power save queue handling
6774
* as well. Since multiple transmitting threads may queue frames
6775
* into the driver, as well as ps-poll and the driver transmitting
6776
* frames (and thus clearing the psq), it's quite possible that
6777
* a packet entering the PSQ and a ps-poll being handled will
6778
* race, causing the TIM to be cleared and not re-set.
6779
*/
6780
static int
6781
ath_node_set_tim(struct ieee80211_node *ni, int enable)
6782
{
6783
#ifdef ATH_SW_PSQ
6784
struct ieee80211com *ic = ni->ni_ic;
6785
struct ath_softc *sc = ic->ic_softc;
6786
struct ath_node *an = ATH_NODE(ni);
6787
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6788
int changed = 0;
6789
6790
ATH_TX_LOCK(sc);
6791
an->an_stack_psq = enable;
6792
6793
/*
6794
* This will get called for all operating modes,
6795
* even if avp->av_set_tim is unset.
6796
* It's currently set for hostap/ibss modes; but
6797
* the same infrastructure is used for both STA
6798
* and AP/IBSS node power save.
6799
*/
6800
if (avp->av_set_tim == NULL) {
6801
ATH_TX_UNLOCK(sc);
6802
return (0);
6803
}
6804
6805
/*
6806
* If setting the bit, always set it here.
6807
* If clearing the bit, only clear it if the
6808
* software queue is also empty.
6809
*
6810
* If the node has left power save, just clear the TIM
6811
* bit regardless of the state of the power save queue.
6812
*
6813
* XXX TODO: although atomics are used, it's quite possible
6814
* that a race will occur between this and setting/clearing
6815
* in another thread. TX completion will occur always in
6816
* one thread, however setting/clearing the TIM bit can come
6817
* from a variety of different process contexts!
6818
*/
6819
if (enable && an->an_tim_set == 1) {
6820
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6821
"%s: %6D: enable=%d, tim_set=1, ignoring\n",
6822
__func__,
6823
ni->ni_macaddr,
6824
":",
6825
enable);
6826
ATH_TX_UNLOCK(sc);
6827
} else if (enable) {
6828
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6829
"%s: %6D: enable=%d, enabling TIM\n",
6830
__func__,
6831
ni->ni_macaddr,
6832
":",
6833
enable);
6834
an->an_tim_set = 1;
6835
ATH_TX_UNLOCK(sc);
6836
changed = avp->av_set_tim(ni, enable);
6837
} else if (an->an_swq_depth == 0) {
6838
/* disable */
6839
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6840
"%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6841
__func__,
6842
ni->ni_macaddr,
6843
":",
6844
enable);
6845
an->an_tim_set = 0;
6846
ATH_TX_UNLOCK(sc);
6847
changed = avp->av_set_tim(ni, enable);
6848
} else if (! an->an_is_powersave) {
6849
/*
6850
* disable regardless; the node isn't in powersave now
6851
*/
6852
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6853
"%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6854
__func__,
6855
ni->ni_macaddr,
6856
":",
6857
enable);
6858
an->an_tim_set = 0;
6859
ATH_TX_UNLOCK(sc);
6860
changed = avp->av_set_tim(ni, enable);
6861
} else {
6862
/*
6863
* psq disable, node is currently in powersave, node
6864
* software queue isn't empty, so don't clear the TIM bit
6865
* for now.
6866
*/
6867
ATH_TX_UNLOCK(sc);
6868
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6869
"%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6870
__func__,
6871
ni->ni_macaddr,
6872
":",
6873
enable);
6874
changed = 0;
6875
}
6876
6877
return (changed);
6878
#else
6879
struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6880
6881
/*
6882
* Some operating modes don't set av_set_tim(), so don't
6883
* update it here.
6884
*/
6885
if (avp->av_set_tim == NULL)
6886
return (0);
6887
6888
return (avp->av_set_tim(ni, enable));
6889
#endif /* ATH_SW_PSQ */
6890
}
6891
6892
/*
6893
* Set or update the TIM from the software queue.
6894
*
6895
* Check the software queue depth before attempting to do lock
6896
* anything; that avoids trying to obtain the lock. Then,
6897
* re-check afterwards to ensure nothing has changed in the
6898
* meantime.
6899
*
6900
* set: This is designed to be called from the TX path, after
6901
* a frame has been queued; to see if the swq > 0.
6902
*
6903
* clear: This is designed to be called from the buffer completion point
6904
* (right now it's ath_tx_default_comp()) where the state of
6905
* a software queue has changed.
6906
*
6907
* It makes sense to place it at buffer free / completion rather
6908
* than after each software queue operation, as there's no real
6909
* point in churning the TIM bit as the last frames in the software
6910
* queue are transmitted. If they fail and we retry them, we'd
6911
* just be setting the TIM bit again anyway.
6912
*/
6913
void
6914
ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6915
int enable)
6916
{
6917
#ifdef ATH_SW_PSQ
6918
struct ath_node *an;
6919
struct ath_vap *avp;
6920
6921
/* Don't do this for broadcast/etc frames */
6922
if (ni == NULL)
6923
return;
6924
6925
an = ATH_NODE(ni);
6926
avp = ATH_VAP(ni->ni_vap);
6927
6928
/*
6929
* And for operating modes without the TIM handler set, let's
6930
* just skip those.
6931
*/
6932
if (avp->av_set_tim == NULL)
6933
return;
6934
6935
ATH_TX_LOCK_ASSERT(sc);
6936
6937
if (enable) {
6938
if (an->an_is_powersave &&
6939
an->an_tim_set == 0 &&
6940
an->an_swq_depth != 0) {
6941
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6942
"%s: %6D: swq_depth>0, tim_set=0, set!\n",
6943
__func__,
6944
ni->ni_macaddr,
6945
":");
6946
an->an_tim_set = 1;
6947
(void) avp->av_set_tim(ni, 1);
6948
}
6949
} else {
6950
/*
6951
* Don't bother grabbing the lock unless the queue is empty.
6952
*/
6953
if (an->an_swq_depth != 0)
6954
return;
6955
6956
if (an->an_is_powersave &&
6957
an->an_stack_psq == 0 &&
6958
an->an_tim_set == 1 &&
6959
an->an_swq_depth == 0) {
6960
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6961
"%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
6962
" clear!\n",
6963
__func__,
6964
ni->ni_macaddr,
6965
":");
6966
an->an_tim_set = 0;
6967
(void) avp->av_set_tim(ni, 0);
6968
}
6969
}
6970
#else
6971
return;
6972
#endif /* ATH_SW_PSQ */
6973
}
6974
6975
/*
6976
* Received a ps-poll frame from net80211.
6977
*
6978
* Here we get a chance to serve out a software-queued frame ourselves
6979
* before we punt it to net80211 to transmit us one itself - either
6980
* because there's traffic in the net80211 psq, or a NULL frame to
6981
* indicate there's nothing else.
6982
*/
6983
static void
6984
ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6985
{
6986
#ifdef ATH_SW_PSQ
6987
struct ath_node *an;
6988
struct ath_vap *avp;
6989
struct ieee80211com *ic = ni->ni_ic;
6990
struct ath_softc *sc = ic->ic_softc;
6991
int tid;
6992
6993
/* Just paranoia */
6994
if (ni == NULL)
6995
return;
6996
6997
/*
6998
* Unassociated (temporary node) station.
6999
*/
7000
if (ni->ni_associd == 0)
7001
return;
7002
7003
/*
7004
* We do have an active node, so let's begin looking into it.
7005
*/
7006
an = ATH_NODE(ni);
7007
avp = ATH_VAP(ni->ni_vap);
7008
7009
/*
7010
* For now, we just call the original ps-poll method.
7011
* Once we're ready to flip this on:
7012
*
7013
* + Set leak to 1, as no matter what we're going to have
7014
* to send a frame;
7015
* + Check the software queue and if there's something in it,
7016
* schedule the highest TID thas has traffic from this node.
7017
* Then make sure we schedule the software scheduler to
7018
* run so it picks up said frame.
7019
*
7020
* That way whatever happens, we'll at least send _a_ frame
7021
* to the given node.
7022
*
7023
* Again, yes, it's crappy QoS if the node has multiple
7024
* TIDs worth of traffic - but let's get it working first
7025
* before we optimise it.
7026
*
7027
* Also yes, there's definitely latency here - we're not
7028
* direct dispatching to the hardware in this path (and
7029
* we're likely being called from the packet receive path,
7030
* so going back into TX may be a little hairy!) but again
7031
* I'd like to get this working first before optimising
7032
* turn-around time.
7033
*/
7034
7035
ATH_TX_LOCK(sc);
7036
7037
/*
7038
* Legacy - we're called and the node isn't asleep.
7039
* Immediately punt.
7040
*/
7041
if (! an->an_is_powersave) {
7042
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7043
"%s: %6D: not in powersave?\n",
7044
__func__,
7045
ni->ni_macaddr,
7046
":");
7047
ATH_TX_UNLOCK(sc);
7048
avp->av_recv_pspoll(ni, m);
7049
return;
7050
}
7051
7052
/*
7053
* We're in powersave.
7054
*
7055
* Leak a frame.
7056
*/
7057
an->an_leak_count = 1;
7058
7059
/*
7060
* Now, if there's no frames in the node, just punt to
7061
* recv_pspoll.
7062
*
7063
* Don't bother checking if the TIM bit is set, we really
7064
* only care if there are any frames here!
7065
*/
7066
if (an->an_swq_depth == 0) {
7067
ATH_TX_UNLOCK(sc);
7068
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7069
"%s: %6D: SWQ empty; punting to net80211\n",
7070
__func__,
7071
ni->ni_macaddr,
7072
":");
7073
avp->av_recv_pspoll(ni, m);
7074
return;
7075
}
7076
7077
/*
7078
* Ok, let's schedule the highest TID that has traffic
7079
* and then schedule something.
7080
*/
7081
for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7082
struct ath_tid *atid = &an->an_tid[tid];
7083
/*
7084
* No frames? Skip.
7085
*/
7086
if (atid->axq_depth == 0)
7087
continue;
7088
ath_tx_tid_sched(sc, atid);
7089
/*
7090
* XXX we could do a direct call to the TXQ
7091
* scheduler code here to optimise latency
7092
* at the expense of a REALLY deep callstack.
7093
*/
7094
ATH_TX_UNLOCK(sc);
7095
taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7096
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7097
"%s: %6D: leaking frame to TID %d\n",
7098
__func__,
7099
ni->ni_macaddr,
7100
":",
7101
tid);
7102
return;
7103
}
7104
7105
ATH_TX_UNLOCK(sc);
7106
7107
/*
7108
* XXX nothing in the TIDs at this point? Eek.
7109
*/
7110
DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7111
"%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
7112
__func__,
7113
ni->ni_macaddr,
7114
":");
7115
avp->av_recv_pspoll(ni, m);
7116
#else
7117
avp->av_recv_pspoll(ni, m);
7118
#endif /* ATH_SW_PSQ */
7119
}
7120
7121
MODULE_VERSION(ath_main, 1);
7122
MODULE_DEPEND(ath_main, wlan, 1, 1, 1); /* 802.11 media layer */
7123
MODULE_DEPEND(ath_main, ath_rate, 1, 1, 1);
7124
MODULE_DEPEND(ath_main, ath_dfs, 1, 1, 1);
7125
MODULE_DEPEND(ath_main, ath_hal, 1, 1, 1);
7126
#if defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
7127
MODULE_DEPEND(ath_main, alq, 1, 1, 1);
7128
#endif
7129
7130