Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/if_ath_rx_edma.c
39534 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2012 Adrian Chadd <[email protected]>
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer,
12
* without modification.
13
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
14
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15
* redistribution must be conditioned upon including a substantially
16
* similar Disclaimer requirement for further binary redistribution.
17
*
18
* NO WARRANTY
19
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29
* THE POSSIBILITY OF SUCH DAMAGES.
30
*/
31
32
#include <sys/cdefs.h>
33
/*
34
* Driver for the Atheros Wireless LAN controller.
35
*
36
* This software is derived from work of Atsushi Onoe; his contribution
37
* is greatly appreciated.
38
*/
39
40
#include "opt_inet.h"
41
#include "opt_ath.h"
42
/*
43
* This is needed for register operations which are performed
44
* by the driver - eg, calls to ath_hal_gettsf32().
45
*
46
* It's also required for any AH_DEBUG checks in here, eg the
47
* module dependencies.
48
*/
49
#include "opt_ah.h"
50
#include "opt_wlan.h"
51
52
#include <sys/param.h>
53
#include <sys/systm.h>
54
#include <sys/sysctl.h>
55
#include <sys/mbuf.h>
56
#include <sys/malloc.h>
57
#include <sys/lock.h>
58
#include <sys/mutex.h>
59
#include <sys/kernel.h>
60
#include <sys/socket.h>
61
#include <sys/sockio.h>
62
#include <sys/errno.h>
63
#include <sys/callout.h>
64
#include <sys/bus.h>
65
#include <sys/endian.h>
66
#include <sys/kthread.h>
67
#include <sys/taskqueue.h>
68
#include <sys/priv.h>
69
#include <sys/module.h>
70
#include <sys/ktr.h>
71
#include <sys/smp.h> /* for mp_ncpus */
72
73
#include <machine/bus.h>
74
75
#include <net/if.h>
76
#include <net/if_var.h>
77
#include <net/if_dl.h>
78
#include <net/if_media.h>
79
#include <net/if_types.h>
80
#include <net/if_arp.h>
81
#include <net/ethernet.h>
82
#include <net/if_llc.h>
83
84
#include <net80211/ieee80211_var.h>
85
#include <net80211/ieee80211_regdomain.h>
86
#ifdef IEEE80211_SUPPORT_SUPERG
87
#include <net80211/ieee80211_superg.h>
88
#endif
89
#ifdef IEEE80211_SUPPORT_TDMA
90
#include <net80211/ieee80211_tdma.h>
91
#endif
92
93
#include <net/bpf.h>
94
95
#ifdef INET
96
#include <netinet/in.h>
97
#include <netinet/if_ether.h>
98
#endif
99
100
#include <dev/ath/if_athvar.h>
101
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
102
#include <dev/ath/ath_hal/ah_diagcodes.h>
103
104
#include <dev/ath/if_ath_debug.h>
105
#include <dev/ath/if_ath_misc.h>
106
#include <dev/ath/if_ath_tsf.h>
107
#include <dev/ath/if_ath_tx.h>
108
#include <dev/ath/if_ath_sysctl.h>
109
#include <dev/ath/if_ath_led.h>
110
#include <dev/ath/if_ath_keycache.h>
111
#include <dev/ath/if_ath_rx.h>
112
#include <dev/ath/if_ath_beacon.h>
113
#include <dev/ath/if_athdfs.h>
114
#include <dev/ath/if_ath_descdma.h>
115
116
#ifdef ATH_TX99_DIAG
117
#include <dev/ath/ath_tx99/ath_tx99.h>
118
#endif
119
120
#include <dev/ath/if_ath_rx_edma.h>
121
122
#ifdef ATH_DEBUG_ALQ
123
#include <dev/ath/if_ath_alq.h>
124
#endif
125
126
/*
127
* some general macros
128
*/
129
#define INCR(_l, _sz) (_l) ++; (_l) &= ((_sz) - 1)
130
#define DECR(_l, _sz) (_l) --; (_l) &= ((_sz) - 1)
131
132
MALLOC_DECLARE(M_ATHDEV);
133
134
/*
135
* XXX TODO:
136
*
137
* + Make sure the FIFO is correctly flushed and reinitialised
138
* through a reset;
139
* + Verify multi-descriptor frames work!
140
* + There's a "memory use after free" which needs to be tracked down
141
* and fixed ASAP. I've seen this in the legacy path too, so it
142
* may be a generic RX path issue.
143
*/
144
145
/*
146
* XXX shuffle the function orders so these pre-declarations aren't
147
* required!
148
*/
149
static int ath_edma_rxfifo_alloc(struct ath_softc *sc, HAL_RX_QUEUE qtype,
150
int nbufs);
151
static int ath_edma_rxfifo_flush(struct ath_softc *sc, HAL_RX_QUEUE qtype);
152
static void ath_edma_rxbuf_free(struct ath_softc *sc, struct ath_buf *bf);
153
static void ath_edma_recv_proc_queue(struct ath_softc *sc,
154
HAL_RX_QUEUE qtype, int dosched);
155
static int ath_edma_recv_proc_deferred_queue(struct ath_softc *sc,
156
HAL_RX_QUEUE qtype, int dosched);
157
158
static void
159
ath_edma_stoprecv(struct ath_softc *sc, int dodelay)
160
{
161
struct ath_hal *ah = sc->sc_ah;
162
163
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: called, dodelay=%d\n",
164
__func__, dodelay);
165
166
ATH_RX_LOCK(sc);
167
168
ath_hal_stoppcurecv(ah);
169
ath_hal_setrxfilter(ah, 0);
170
171
/*
172
*
173
*/
174
if (ath_hal_stopdmarecv(ah) == AH_TRUE)
175
sc->sc_rx_stopped = 1;
176
177
/*
178
* Give the various bus FIFOs (not EDMA descriptor FIFO)
179
* time to finish flushing out data.
180
*/
181
DELAY(3000);
182
183
/* Flush RX pending for each queue */
184
/* XXX should generic-ify this */
185
if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending) {
186
m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
187
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
188
}
189
190
if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending) {
191
m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
192
sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
193
}
194
ATH_RX_UNLOCK(sc);
195
196
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: done\n", __func__);
197
}
198
199
/*
200
* Re-initialise the FIFO given the current buffer contents.
201
* Specifically, walk from head -> tail, pushing the FIFO contents
202
* back into the FIFO.
203
*/
204
static void
205
ath_edma_reinit_fifo(struct ath_softc *sc, HAL_RX_QUEUE qtype)
206
{
207
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
208
struct ath_buf *bf;
209
int i, j;
210
211
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: called\n", __func__);
212
213
ATH_RX_LOCK_ASSERT(sc);
214
215
i = re->m_fifo_head;
216
for (j = 0; j < re->m_fifo_depth; j++) {
217
bf = re->m_fifo[i];
218
DPRINTF(sc, ATH_DEBUG_EDMA_RX,
219
"%s: Q%d: pos=%i, addr=0x%jx\n",
220
__func__,
221
qtype,
222
i,
223
(uintmax_t)bf->bf_daddr);
224
ath_hal_putrxbuf(sc->sc_ah, bf->bf_daddr, qtype);
225
INCR(i, re->m_fifolen);
226
}
227
228
/* Ensure this worked out right */
229
if (i != re->m_fifo_tail) {
230
device_printf(sc->sc_dev, "%s: i (%d) != tail! (%d)\n",
231
__func__,
232
i,
233
re->m_fifo_tail);
234
}
235
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: done\n", __func__);
236
}
237
238
/*
239
* Start receive.
240
*/
241
static int
242
ath_edma_startrecv(struct ath_softc *sc)
243
{
244
struct ath_hal *ah = sc->sc_ah;
245
246
DPRINTF(sc, ATH_DEBUG_EDMA_RX,
247
"%s: called; resetted=%d, stopped=%d\n", __func__,
248
sc->sc_rx_resetted, sc->sc_rx_stopped);
249
250
ATH_RX_LOCK(sc);
251
252
/*
253
* Sanity check - are we being called whilst RX
254
* isn't stopped? If so, we may end up pushing
255
* too many entries into the RX FIFO and
256
* badness occurs.
257
*/
258
259
/* Enable RX FIFO */
260
ath_hal_rxena(ah);
261
262
/*
263
* In theory the hardware has been initialised, right?
264
*/
265
if (sc->sc_rx_resetted == 1 || sc->sc_rx_stopped == 1) {
266
DPRINTF(sc, ATH_DEBUG_EDMA_RX,
267
"%s: Re-initing HP FIFO\n", __func__);
268
ath_edma_reinit_fifo(sc, HAL_RX_QUEUE_HP);
269
DPRINTF(sc, ATH_DEBUG_EDMA_RX,
270
"%s: Re-initing LP FIFO\n", __func__);
271
ath_edma_reinit_fifo(sc, HAL_RX_QUEUE_LP);
272
sc->sc_rx_resetted = 0;
273
} else {
274
device_printf(sc->sc_dev,
275
"%s: called without resetting chip? "
276
"resetted=%d, stopped=%d\n",
277
__func__,
278
sc->sc_rx_resetted,
279
sc->sc_rx_stopped);
280
}
281
282
/* Add up to m_fifolen entries in each queue */
283
/*
284
* These must occur after the above write so the FIFO buffers
285
* are pushed/tracked in the same order as the hardware will
286
* process them.
287
*
288
* XXX TODO: is this really necessary? We should've stopped
289
* the hardware already and reinitialised it, so it's a no-op.
290
*/
291
ath_edma_rxfifo_alloc(sc, HAL_RX_QUEUE_HP,
292
sc->sc_rxedma[HAL_RX_QUEUE_HP].m_fifolen);
293
294
ath_edma_rxfifo_alloc(sc, HAL_RX_QUEUE_LP,
295
sc->sc_rxedma[HAL_RX_QUEUE_LP].m_fifolen);
296
297
ath_mode_init(sc);
298
ath_hal_startpcurecv(ah, (!! sc->sc_scanning));
299
300
/*
301
* We're now doing RX DMA!
302
*/
303
sc->sc_rx_stopped = 0;
304
305
ATH_RX_UNLOCK(sc);
306
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: ready\n", __func__);
307
308
return (0);
309
}
310
311
static void
312
ath_edma_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE qtype,
313
int dosched)
314
{
315
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: called; qtype=%d, dosched=%d\n",
316
__func__, qtype, dosched);
317
318
ATH_LOCK(sc);
319
ath_power_set_power_state(sc, HAL_PM_AWAKE);
320
ATH_UNLOCK(sc);
321
322
ath_edma_recv_proc_queue(sc, qtype, dosched);
323
324
ATH_LOCK(sc);
325
ath_power_restore_power_state(sc);
326
ATH_UNLOCK(sc);
327
328
/* XXX TODO: methodize */
329
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
330
331
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: done\n", __func__);
332
}
333
334
static void
335
ath_edma_recv_sched(struct ath_softc *sc, int dosched)
336
{
337
338
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: called; dosched=%d\n",
339
__func__, dosched);
340
341
ATH_LOCK(sc);
342
ath_power_set_power_state(sc, HAL_PM_AWAKE);
343
ATH_UNLOCK(sc);
344
345
ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_HP, dosched);
346
ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_LP, dosched);
347
348
ATH_LOCK(sc);
349
ath_power_restore_power_state(sc);
350
ATH_UNLOCK(sc);
351
352
/* XXX TODO: methodize */
353
taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
354
355
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: done\n", __func__);
356
}
357
358
static void
359
ath_edma_recv_flush(struct ath_softc *sc)
360
{
361
362
DPRINTF(sc, ATH_DEBUG_RECV | ATH_DEBUG_EDMA_RX, "%s: called\n", __func__);
363
364
ATH_PCU_LOCK(sc);
365
sc->sc_rxproc_cnt++;
366
ATH_PCU_UNLOCK(sc);
367
368
// XXX TODO: methodize; make it an RX stop/block
369
while (taskqueue_cancel(sc->sc_tq, &sc->sc_rxtask, NULL) != 0) {
370
taskqueue_drain(sc->sc_tq, &sc->sc_rxtask);
371
}
372
373
ATH_LOCK(sc);
374
ath_power_set_power_state(sc, HAL_PM_AWAKE);
375
ATH_UNLOCK(sc);
376
377
/*
378
* Flush any active frames from FIFO -> deferred list
379
*/
380
ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_HP, 0);
381
ath_edma_recv_proc_queue(sc, HAL_RX_QUEUE_LP, 0);
382
383
/*
384
* Process what's in the deferred queue
385
*/
386
/*
387
* XXX: If we read the tsf/channoise here and then pass it in,
388
* we could restore the power state before processing
389
* the deferred queue.
390
*/
391
ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_HP, 0);
392
ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_LP, 0);
393
394
ATH_LOCK(sc);
395
ath_power_restore_power_state(sc);
396
ATH_UNLOCK(sc);
397
398
ATH_PCU_LOCK(sc);
399
sc->sc_rxproc_cnt--;
400
ATH_PCU_UNLOCK(sc);
401
402
DPRINTF(sc, ATH_DEBUG_RECV | ATH_DEBUG_EDMA_RX, "%s: done\n", __func__);
403
}
404
405
/*
406
* Process frames from the current queue into the deferred queue.
407
*/
408
static void
409
ath_edma_recv_proc_queue(struct ath_softc *sc, HAL_RX_QUEUE qtype,
410
int dosched)
411
{
412
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
413
struct ath_rx_status *rs;
414
struct ath_desc *ds;
415
struct ath_buf *bf;
416
struct mbuf *m;
417
struct ath_hal *ah = sc->sc_ah;
418
uint64_t tsf;
419
uint16_t nf;
420
int npkts = 0;
421
422
tsf = ath_hal_gettsf64(ah);
423
nf = ath_hal_getchannoise(ah, sc->sc_curchan);
424
sc->sc_stats.ast_rx_noise = nf;
425
426
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: called; qtype=%d, dosched=%d\n", __func__, qtype, dosched);
427
428
ATH_RX_LOCK(sc);
429
430
#if 1
431
if (sc->sc_rx_resetted == 1) {
432
/*
433
* XXX We shouldn't ever be scheduled if
434
* receive has been stopped - so complain
435
* loudly!
436
*/
437
device_printf(sc->sc_dev,
438
"%s: sc_rx_resetted=1! Bad!\n",
439
__func__);
440
ATH_RX_UNLOCK(sc);
441
return;
442
}
443
#endif
444
445
do {
446
bf = re->m_fifo[re->m_fifo_head];
447
/* This shouldn't occur! */
448
if (bf == NULL) {
449
device_printf(sc->sc_dev, "%s: Q%d: NULL bf?\n",
450
__func__,
451
qtype);
452
break;
453
}
454
m = bf->bf_m;
455
ds = bf->bf_desc;
456
457
/*
458
* Sync descriptor memory - this also syncs the buffer for us.
459
* EDMA descriptors are in cached memory.
460
*/
461
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
462
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
463
rs = &bf->bf_status.ds_rxstat;
464
bf->bf_rxstatus = ath_hal_rxprocdesc(ah, ds, bf->bf_daddr,
465
NULL, rs);
466
if (bf->bf_rxstatus == HAL_EINPROGRESS)
467
break;
468
#ifdef ATH_DEBUG
469
if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
470
ath_printrxbuf(sc, bf, 0, bf->bf_rxstatus == HAL_OK);
471
#endif /* ATH_DEBUG */
472
#ifdef ATH_DEBUG_ALQ
473
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
474
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
475
sc->sc_rx_statuslen, (char *) ds);
476
#endif /* ATH_DEBUG */
477
478
/*
479
* Completed descriptor.
480
*/
481
DPRINTF(sc, ATH_DEBUG_EDMA_RX,
482
"%s: Q%d: completed!\n", __func__, qtype);
483
npkts++;
484
485
/*
486
* We've been synced already, so unmap.
487
*/
488
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
489
490
/*
491
* Remove the FIFO entry and place it on the completion
492
* queue.
493
*/
494
re->m_fifo[re->m_fifo_head] = NULL;
495
TAILQ_INSERT_TAIL(&sc->sc_rx_rxlist[qtype], bf, bf_list);
496
497
/* Bump the descriptor FIFO stats */
498
INCR(re->m_fifo_head, re->m_fifolen);
499
re->m_fifo_depth--;
500
/* XXX check it doesn't fall below 0 */
501
} while (re->m_fifo_depth > 0);
502
503
/* Append some more fresh frames to the FIFO */
504
if (dosched)
505
ath_edma_rxfifo_alloc(sc, qtype, re->m_fifolen);
506
507
ATH_RX_UNLOCK(sc);
508
509
/* rx signal state monitoring */
510
ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
511
512
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1,
513
"ath edma rx proc: npkts=%d\n",
514
npkts);
515
516
return;
517
}
518
519
/*
520
* Flush the deferred queue.
521
*
522
* This destructively flushes the deferred queue - it doesn't
523
* call the wireless stack on each mbuf.
524
*/
525
static void
526
ath_edma_flush_deferred_queue(struct ath_softc *sc)
527
{
528
struct ath_buf *bf;
529
530
ATH_RX_LOCK_ASSERT(sc);
531
532
/* Free in one set, inside the lock */
533
while (! TAILQ_EMPTY(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP])) {
534
bf = TAILQ_FIRST(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
535
TAILQ_REMOVE(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP], bf, bf_list);
536
/* Free the buffer/mbuf */
537
ath_edma_rxbuf_free(sc, bf);
538
}
539
while (! TAILQ_EMPTY(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP])) {
540
bf = TAILQ_FIRST(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
541
TAILQ_REMOVE(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP], bf, bf_list);
542
/* Free the buffer/mbuf */
543
ath_edma_rxbuf_free(sc, bf);
544
}
545
}
546
547
static int
548
ath_edma_recv_proc_deferred_queue(struct ath_softc *sc, HAL_RX_QUEUE qtype,
549
int dosched)
550
{
551
int ngood = 0;
552
uint64_t tsf;
553
struct ath_buf *bf, *next;
554
struct ath_rx_status *rs;
555
int16_t nf;
556
ath_bufhead rxlist;
557
struct mbuf *m;
558
559
TAILQ_INIT(&rxlist);
560
561
nf = ath_hal_getchannoise(sc->sc_ah, sc->sc_curchan);
562
/*
563
* XXX TODO: the NF/TSF should be stamped on the bufs themselves,
564
* otherwise we may end up adding in the wrong values if this
565
* is delayed too far..
566
*/
567
tsf = ath_hal_gettsf64(sc->sc_ah);
568
569
/* Copy the list over */
570
ATH_RX_LOCK(sc);
571
TAILQ_CONCAT(&rxlist, &sc->sc_rx_rxlist[qtype], bf_list);
572
ATH_RX_UNLOCK(sc);
573
574
/* Handle the completed descriptors */
575
/*
576
* XXX is this SAFE call needed? The ath_buf entries
577
* aren't modified by ath_rx_pkt, right?
578
*/
579
TAILQ_FOREACH_SAFE(bf, &rxlist, bf_list, next) {
580
/*
581
* Skip the RX descriptor status - start at the data offset
582
*/
583
m_adj(bf->bf_m, sc->sc_rx_statuslen);
584
585
/* Handle the frame */
586
587
rs = &bf->bf_status.ds_rxstat;
588
m = bf->bf_m;
589
bf->bf_m = NULL;
590
if (ath_rx_pkt(sc, rs, bf->bf_rxstatus, tsf, nf, qtype, bf, m))
591
ngood++;
592
}
593
594
if (ngood) {
595
sc->sc_lastrx = tsf;
596
}
597
598
ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1,
599
"ath edma rx deferred proc: ngood=%d\n",
600
ngood);
601
602
/* Free in one set, inside the lock */
603
ATH_RX_LOCK(sc);
604
while (! TAILQ_EMPTY(&rxlist)) {
605
bf = TAILQ_FIRST(&rxlist);
606
TAILQ_REMOVE(&rxlist, bf, bf_list);
607
/* Free the buffer/mbuf */
608
ath_edma_rxbuf_free(sc, bf);
609
}
610
ATH_RX_UNLOCK(sc);
611
612
return (ngood);
613
}
614
615
static void
616
ath_edma_recv_tasklet(void *arg, int npending)
617
{
618
struct ath_softc *sc = (struct ath_softc *) arg;
619
#ifdef IEEE80211_SUPPORT_SUPERG
620
struct ieee80211com *ic = &sc->sc_ic;
621
#endif
622
623
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: called; npending=%d\n",
624
__func__,
625
npending);
626
627
ATH_PCU_LOCK(sc);
628
if (sc->sc_inreset_cnt > 0) {
629
device_printf(sc->sc_dev, "%s: sc_inreset_cnt > 0; skipping\n",
630
__func__);
631
ATH_PCU_UNLOCK(sc);
632
return;
633
}
634
sc->sc_rxproc_cnt++;
635
ATH_PCU_UNLOCK(sc);
636
637
ATH_LOCK(sc);
638
ath_power_set_power_state(sc, HAL_PM_AWAKE);
639
ATH_UNLOCK(sc);
640
641
ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_HP, 1);
642
ath_edma_recv_proc_deferred_queue(sc, HAL_RX_QUEUE_LP, 1);
643
644
/*
645
* XXX: If we read the tsf/channoise here and then pass it in,
646
* we could restore the power state before processing
647
* the deferred queue.
648
*/
649
ATH_LOCK(sc);
650
ath_power_restore_power_state(sc);
651
ATH_UNLOCK(sc);
652
653
#ifdef IEEE80211_SUPPORT_SUPERG
654
ieee80211_ff_age_all(ic, 100);
655
#endif
656
if (ath_dfs_tasklet_needed(sc, sc->sc_curchan))
657
taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
658
659
ATH_PCU_LOCK(sc);
660
sc->sc_rxproc_cnt--;
661
ATH_PCU_UNLOCK(sc);
662
663
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: called; done!\n", __func__);
664
}
665
666
/*
667
* Allocate an RX mbuf for the given ath_buf and initialise
668
* it for EDMA.
669
*
670
* + Allocate a 4KB mbuf;
671
* + Setup the DMA map for the given buffer;
672
* + Return that.
673
*/
674
static int
675
ath_edma_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
676
{
677
678
struct mbuf *m;
679
int error;
680
int len;
681
682
ATH_RX_LOCK_ASSERT(sc);
683
684
m = m_getm(NULL, sc->sc_edma_bufsize, M_NOWAIT, MT_DATA);
685
if (! m)
686
return (ENOBUFS); /* XXX ?*/
687
688
/* XXX warn/enforce alignment */
689
690
len = m->m_ext.ext_size;
691
#if 0
692
device_printf(sc->sc_dev, "%s: called: m=%p, size=%d, mtod=%p\n",
693
__func__,
694
m,
695
len,
696
mtod(m, char *));
697
#endif
698
699
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
700
701
/*
702
* Populate ath_buf fields.
703
*/
704
bf->bf_desc = mtod(m, struct ath_desc *);
705
bf->bf_lastds = bf->bf_desc; /* XXX only really for TX? */
706
bf->bf_m = m;
707
708
/*
709
* Zero the descriptor and ensure it makes it out to the
710
* bounce buffer if one is required.
711
*
712
* XXX PREWRITE will copy the whole buffer; we only needed it
713
* to sync the first 32 DWORDS. Oh well.
714
*/
715
memset(bf->bf_desc, '\0', sc->sc_rx_statuslen);
716
717
/*
718
* Create DMA mapping.
719
*/
720
error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
721
bf->bf_dmamap, m, bf->bf_segs, &bf->bf_nseg, BUS_DMA_NOWAIT);
722
723
if (error != 0) {
724
device_printf(sc->sc_dev, "%s: failed; error=%d\n",
725
__func__,
726
error);
727
m_freem(m);
728
return (error);
729
}
730
731
/*
732
* Set daddr to the physical mapping page.
733
*/
734
bf->bf_daddr = bf->bf_segs[0].ds_addr;
735
736
/*
737
* Prepare for the upcoming read.
738
*
739
* We need to both sync some data into the buffer (the zero'ed
740
* descriptor payload) and also prepare for the read that's going
741
* to occur.
742
*/
743
bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
744
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
745
746
/* Finish! */
747
return (0);
748
}
749
750
/*
751
* Allocate a RX buffer.
752
*/
753
static struct ath_buf *
754
ath_edma_rxbuf_alloc(struct ath_softc *sc)
755
{
756
struct ath_buf *bf;
757
int error;
758
759
ATH_RX_LOCK_ASSERT(sc);
760
761
/* Allocate buffer */
762
bf = TAILQ_FIRST(&sc->sc_rxbuf);
763
/* XXX shouldn't happen upon startup? */
764
if (bf == NULL) {
765
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: nothing on rxbuf?!\n",
766
__func__);
767
return (NULL);
768
}
769
770
/* Remove it from the free list */
771
TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
772
773
/* Assign RX mbuf to it */
774
error = ath_edma_rxbuf_init(sc, bf);
775
if (error != 0) {
776
device_printf(sc->sc_dev,
777
"%s: bf=%p, rxbuf alloc failed! error=%d\n",
778
__func__,
779
bf,
780
error);
781
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
782
return (NULL);
783
}
784
785
return (bf);
786
}
787
788
static void
789
ath_edma_rxbuf_free(struct ath_softc *sc, struct ath_buf *bf)
790
{
791
792
ATH_RX_LOCK_ASSERT(sc);
793
794
/*
795
* Only unload the frame if we haven't consumed
796
* the mbuf via ath_rx_pkt().
797
*/
798
if (bf->bf_m) {
799
bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
800
m_freem(bf->bf_m);
801
bf->bf_m = NULL;
802
}
803
804
/* XXX lock? */
805
TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
806
}
807
808
/*
809
* Allocate up to 'n' entries and push them onto the hardware FIFO.
810
*
811
* Return how many entries were successfully pushed onto the
812
* FIFO.
813
*/
814
static int
815
ath_edma_rxfifo_alloc(struct ath_softc *sc, HAL_RX_QUEUE qtype, int nbufs)
816
{
817
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
818
struct ath_buf *bf;
819
int i;
820
821
ATH_RX_LOCK_ASSERT(sc);
822
823
/*
824
* Allocate buffers until the FIFO is full or nbufs is reached.
825
*/
826
for (i = 0; i < nbufs && re->m_fifo_depth < re->m_fifolen; i++) {
827
/* Ensure the FIFO is already blank, complain loudly! */
828
if (re->m_fifo[re->m_fifo_tail] != NULL) {
829
device_printf(sc->sc_dev,
830
"%s: Q%d: fifo[%d] != NULL (%p)\n",
831
__func__,
832
qtype,
833
re->m_fifo_tail,
834
re->m_fifo[re->m_fifo_tail]);
835
836
/* Free the slot */
837
ath_edma_rxbuf_free(sc, re->m_fifo[re->m_fifo_tail]);
838
re->m_fifo_depth--;
839
/* XXX check it's not < 0 */
840
re->m_fifo[re->m_fifo_tail] = NULL;
841
}
842
843
bf = ath_edma_rxbuf_alloc(sc);
844
/* XXX should ensure the FIFO is not NULL? */
845
if (bf == NULL) {
846
DPRINTF(sc, ATH_DEBUG_EDMA_RX,
847
"%s: Q%d: alloc failed: i=%d, nbufs=%d?\n",
848
__func__,
849
qtype,
850
i,
851
nbufs);
852
break;
853
}
854
855
re->m_fifo[re->m_fifo_tail] = bf;
856
857
/* Write to the RX FIFO */
858
DPRINTF(sc, ATH_DEBUG_EDMA_RX,
859
"%s: Q%d: putrxbuf=%p (0x%jx)\n",
860
__func__,
861
qtype,
862
bf->bf_desc,
863
(uintmax_t) bf->bf_daddr);
864
ath_hal_putrxbuf(sc->sc_ah, bf->bf_daddr, qtype);
865
866
re->m_fifo_depth++;
867
INCR(re->m_fifo_tail, re->m_fifolen);
868
}
869
870
/*
871
* Return how many were allocated.
872
*/
873
DPRINTF(sc, ATH_DEBUG_EDMA_RX, "%s: Q%d: nbufs=%d, nalloced=%d\n",
874
__func__,
875
qtype,
876
nbufs,
877
i);
878
return (i);
879
}
880
881
static int
882
ath_edma_rxfifo_flush(struct ath_softc *sc, HAL_RX_QUEUE qtype)
883
{
884
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
885
int i;
886
887
ATH_RX_LOCK_ASSERT(sc);
888
889
for (i = 0; i < re->m_fifolen; i++) {
890
if (re->m_fifo[i] != NULL) {
891
#ifdef ATH_DEBUG
892
struct ath_buf *bf = re->m_fifo[i];
893
894
if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
895
ath_printrxbuf(sc, bf, 0, HAL_OK);
896
#endif
897
ath_edma_rxbuf_free(sc, re->m_fifo[i]);
898
re->m_fifo[i] = NULL;
899
re->m_fifo_depth--;
900
}
901
}
902
903
if (re->m_rxpending != NULL) {
904
m_freem(re->m_rxpending);
905
re->m_rxpending = NULL;
906
}
907
re->m_fifo_head = re->m_fifo_tail = re->m_fifo_depth = 0;
908
909
return (0);
910
}
911
912
/*
913
* Setup the initial RX FIFO structure.
914
*/
915
static int
916
ath_edma_setup_rxfifo(struct ath_softc *sc, HAL_RX_QUEUE qtype)
917
{
918
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
919
920
ATH_RX_LOCK_ASSERT(sc);
921
922
if (! ath_hal_getrxfifodepth(sc->sc_ah, qtype, &re->m_fifolen)) {
923
device_printf(sc->sc_dev, "%s: qtype=%d, failed\n",
924
__func__,
925
qtype);
926
return (-EINVAL);
927
}
928
929
if (bootverbose)
930
device_printf(sc->sc_dev,
931
"%s: type=%d, FIFO depth = %d entries\n",
932
__func__,
933
qtype,
934
re->m_fifolen);
935
936
/* Allocate ath_buf FIFO array, pre-zero'ed */
937
re->m_fifo = malloc(sizeof(struct ath_buf *) * re->m_fifolen,
938
M_ATHDEV,
939
M_NOWAIT | M_ZERO);
940
if (re->m_fifo == NULL) {
941
device_printf(sc->sc_dev, "%s: malloc failed\n",
942
__func__);
943
return (-ENOMEM);
944
}
945
946
/*
947
* Set initial "empty" state.
948
*/
949
re->m_rxpending = NULL;
950
re->m_fifo_head = re->m_fifo_tail = re->m_fifo_depth = 0;
951
952
return (0);
953
}
954
955
static int
956
ath_edma_rxfifo_free(struct ath_softc *sc, HAL_RX_QUEUE qtype)
957
{
958
struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
959
960
device_printf(sc->sc_dev, "%s: called; qtype=%d\n",
961
__func__,
962
qtype);
963
964
free(re->m_fifo, M_ATHDEV);
965
966
return (0);
967
}
968
969
static int
970
ath_edma_dma_rxsetup(struct ath_softc *sc)
971
{
972
int error;
973
974
/*
975
* Create RX DMA tag and buffers.
976
*/
977
error = ath_descdma_setup_rx_edma(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
978
"rx", ath_rxbuf, sc->sc_rx_statuslen);
979
if (error != 0)
980
return error;
981
982
ATH_RX_LOCK(sc);
983
(void) ath_edma_setup_rxfifo(sc, HAL_RX_QUEUE_HP);
984
(void) ath_edma_setup_rxfifo(sc, HAL_RX_QUEUE_LP);
985
ATH_RX_UNLOCK(sc);
986
987
return (0);
988
}
989
990
static int
991
ath_edma_dma_rxteardown(struct ath_softc *sc)
992
{
993
994
ATH_RX_LOCK(sc);
995
ath_edma_flush_deferred_queue(sc);
996
ath_edma_rxfifo_flush(sc, HAL_RX_QUEUE_HP);
997
ath_edma_rxfifo_free(sc, HAL_RX_QUEUE_HP);
998
999
ath_edma_rxfifo_flush(sc, HAL_RX_QUEUE_LP);
1000
ath_edma_rxfifo_free(sc, HAL_RX_QUEUE_LP);
1001
ATH_RX_UNLOCK(sc);
1002
1003
/* Free RX ath_buf */
1004
/* Free RX DMA tag */
1005
if (sc->sc_rxdma.dd_desc_len != 0)
1006
ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
1007
1008
return (0);
1009
}
1010
1011
void
1012
ath_recv_setup_edma(struct ath_softc *sc)
1013
{
1014
1015
/* Set buffer size to 4k */
1016
sc->sc_edma_bufsize = 4096;
1017
1018
/* Fetch EDMA field and buffer sizes */
1019
(void) ath_hal_getrxstatuslen(sc->sc_ah, &sc->sc_rx_statuslen);
1020
1021
/* Configure the hardware with the RX buffer size */
1022
(void) ath_hal_setrxbufsize(sc->sc_ah, sc->sc_edma_bufsize -
1023
sc->sc_rx_statuslen);
1024
1025
if (bootverbose) {
1026
device_printf(sc->sc_dev, "RX status length: %d\n",
1027
sc->sc_rx_statuslen);
1028
device_printf(sc->sc_dev, "RX buffer size: %d\n",
1029
sc->sc_edma_bufsize);
1030
}
1031
1032
sc->sc_rx.recv_stop = ath_edma_stoprecv;
1033
sc->sc_rx.recv_start = ath_edma_startrecv;
1034
sc->sc_rx.recv_flush = ath_edma_recv_flush;
1035
sc->sc_rx.recv_tasklet = ath_edma_recv_tasklet;
1036
sc->sc_rx.recv_rxbuf_init = ath_edma_rxbuf_init;
1037
1038
sc->sc_rx.recv_setup = ath_edma_dma_rxsetup;
1039
sc->sc_rx.recv_teardown = ath_edma_dma_rxteardown;
1040
1041
sc->sc_rx.recv_sched = ath_edma_recv_sched;
1042
sc->sc_rx.recv_sched_queue = ath_edma_recv_sched_queue;
1043
}
1044
1045