Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/ath/if_ath_tdma.c
39535 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer,
12
* without modification.
13
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
14
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
15
* redistribution must be conditioned upon including a substantially
16
* similar Disclaimer requirement for further binary redistribution.
17
*
18
* NO WARRANTY
19
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
22
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
24
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
27
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
29
* THE POSSIBILITY OF SUCH DAMAGES.
30
*/
31
32
#include <sys/cdefs.h>
33
/*
34
* Driver for the Atheros Wireless LAN controller.
35
*
36
* This software is derived from work of Atsushi Onoe; his contribution
37
* is greatly appreciated.
38
*/
39
40
#include "opt_inet.h"
41
#include "opt_ath.h"
42
/*
43
* This is needed for register operations which are performed
44
* by the driver - eg, calls to ath_hal_gettsf32().
45
*
46
* It's also required for any AH_DEBUG checks in here, eg the
47
* module dependencies.
48
*/
49
#include "opt_ah.h"
50
#include "opt_wlan.h"
51
52
#include <sys/param.h>
53
#include <sys/systm.h>
54
#include <sys/sysctl.h>
55
#include <sys/mbuf.h>
56
#include <sys/malloc.h>
57
#include <sys/lock.h>
58
#include <sys/mutex.h>
59
#include <sys/kernel.h>
60
#include <sys/socket.h>
61
#include <sys/sockio.h>
62
#include <sys/errno.h>
63
#include <sys/callout.h>
64
#include <sys/bus.h>
65
#include <sys/endian.h>
66
#include <sys/kthread.h>
67
#include <sys/taskqueue.h>
68
#include <sys/priv.h>
69
#include <sys/module.h>
70
#include <sys/ktr.h>
71
#include <sys/smp.h> /* for mp_ncpus */
72
73
#include <machine/bus.h>
74
75
#include <net/if.h>
76
#include <net/if_var.h>
77
#include <net/if_dl.h>
78
#include <net/if_media.h>
79
#include <net/if_types.h>
80
#include <net/if_arp.h>
81
#include <net/ethernet.h>
82
#include <net/if_llc.h>
83
84
#include <net80211/ieee80211_var.h>
85
#include <net80211/ieee80211_regdomain.h>
86
#ifdef IEEE80211_SUPPORT_SUPERG
87
#include <net80211/ieee80211_superg.h>
88
#endif
89
#ifdef IEEE80211_SUPPORT_TDMA
90
#include <net80211/ieee80211_tdma.h>
91
#endif
92
93
#include <net/bpf.h>
94
95
#ifdef INET
96
#include <netinet/in.h>
97
#include <netinet/if_ether.h>
98
#endif
99
100
#include <dev/ath/if_athvar.h>
101
#include <dev/ath/ath_hal/ah_devid.h> /* XXX for softled */
102
#include <dev/ath/ath_hal/ah_diagcodes.h>
103
104
#include <dev/ath/if_ath_debug.h>
105
#include <dev/ath/if_ath_misc.h>
106
#include <dev/ath/if_ath_tsf.h>
107
#include <dev/ath/if_ath_tx.h>
108
#include <dev/ath/if_ath_sysctl.h>
109
#include <dev/ath/if_ath_led.h>
110
#include <dev/ath/if_ath_keycache.h>
111
#include <dev/ath/if_ath_rx.h>
112
#include <dev/ath/if_ath_beacon.h>
113
#include <dev/ath/if_athdfs.h>
114
115
#ifdef ATH_TX99_DIAG
116
#include <dev/ath/ath_tx99/ath_tx99.h>
117
#endif
118
119
#ifdef ATH_DEBUG_ALQ
120
#include <dev/ath/if_ath_alq.h>
121
#endif
122
123
#ifdef IEEE80211_SUPPORT_TDMA
124
#include <dev/ath/if_ath_tdma.h>
125
126
static void ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
127
u_int32_t bintval);
128
static void ath_tdma_bintvalsetup(struct ath_softc *sc,
129
const struct ieee80211_tdma_state *tdma);
130
#endif /* IEEE80211_SUPPORT_TDMA */
131
132
#ifdef IEEE80211_SUPPORT_TDMA
133
static void
134
ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
135
{
136
struct ath_hal *ah = sc->sc_ah;
137
HAL_BEACON_TIMERS bt;
138
139
bt.bt_intval = bintval | HAL_BEACON_ENA;
140
bt.bt_nexttbtt = nexttbtt;
141
bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
142
bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
143
bt.bt_nextatim = nexttbtt+1;
144
/* Enables TBTT, DBA, SWBA timers by default */
145
bt.bt_flags = 0;
146
#if 0
147
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
148
"%s: intval=%d (0x%08x) nexttbtt=%u (0x%08x), nextdba=%u (0x%08x), nextswba=%u (0x%08x),nextatim=%u (0x%08x)\n",
149
__func__,
150
bt.bt_intval,
151
bt.bt_intval,
152
bt.bt_nexttbtt,
153
bt.bt_nexttbtt,
154
bt.bt_nextdba,
155
bt.bt_nextdba,
156
bt.bt_nextswba,
157
bt.bt_nextswba,
158
bt.bt_nextatim,
159
bt.bt_nextatim);
160
#endif
161
162
#ifdef ATH_DEBUG_ALQ
163
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_SET)) {
164
struct if_ath_alq_tdma_timer_set t;
165
t.bt_intval = htobe32(bt.bt_intval);
166
t.bt_nexttbtt = htobe32(bt.bt_nexttbtt);
167
t.bt_nextdba = htobe32(bt.bt_nextdba);
168
t.bt_nextswba = htobe32(bt.bt_nextswba);
169
t.bt_nextatim = htobe32(bt.bt_nextatim);
170
t.bt_flags = htobe32(bt.bt_flags);
171
t.sc_tdmadbaprep = htobe32(sc->sc_tdmadbaprep);
172
t.sc_tdmaswbaprep = htobe32(sc->sc_tdmaswbaprep);
173
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_SET,
174
sizeof(t), (char *) &t);
175
}
176
#endif
177
178
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
179
"%s: nexttbtt=%u (0x%08x), nexttbtt tsf=%lld (0x%08llx)\n",
180
__func__,
181
bt.bt_nexttbtt,
182
bt.bt_nexttbtt,
183
(long long) ( ((u_int64_t) (bt.bt_nexttbtt)) << 10),
184
(long long) ( ((u_int64_t) (bt.bt_nexttbtt)) << 10));
185
ath_hal_beaconsettimers(ah, &bt);
186
}
187
188
/*
189
* Calculate the beacon interval. This is periodic in the
190
* superframe for the bss. We assume each station is configured
191
* identically wrt transmit rate so the guard time we calculate
192
* above will be the same on all stations. Note we need to
193
* factor in the xmit time because the hardware will schedule
194
* a frame for transmit if the start of the frame is within
195
* the burst time. When we get hardware that properly kills
196
* frames in the PCU we can reduce/eliminate the guard time.
197
*
198
* Roundup to 1024 is so we have 1 TU buffer in the guard time
199
* to deal with the granularity of the nexttbtt timer. 11n MAC's
200
* with 1us timer granularity should allow us to reduce/eliminate
201
* this.
202
*/
203
static void
204
ath_tdma_bintvalsetup(struct ath_softc *sc,
205
const struct ieee80211_tdma_state *tdma)
206
{
207
/* copy from vap state (XXX check all vaps have same value?) */
208
sc->sc_tdmaslotlen = tdma->tdma_slotlen;
209
210
sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
211
tdma->tdma_slotcnt, 1024);
212
sc->sc_tdmabintval >>= 10; /* TSF -> TU */
213
if (sc->sc_tdmabintval & 1)
214
sc->sc_tdmabintval++;
215
216
if (tdma->tdma_slot == 0) {
217
/*
218
* Only slot 0 beacons; other slots respond.
219
*/
220
sc->sc_imask |= HAL_INT_SWBA;
221
sc->sc_tdmaswba = 0; /* beacon immediately */
222
} else {
223
/* XXX all vaps must be slot 0 or slot !0 */
224
sc->sc_imask &= ~HAL_INT_SWBA;
225
}
226
}
227
228
/*
229
* Max 802.11 overhead. This assumes no 4-address frames and
230
* the encapsulation done by ieee80211_encap (llc). We also
231
* include potential crypto overhead.
232
*/
233
#define IEEE80211_MAXOVERHEAD \
234
(sizeof(struct ieee80211_qosframe) \
235
+ sizeof(struct llc) \
236
+ IEEE80211_ADDR_LEN \
237
+ IEEE80211_WEP_IVLEN \
238
+ IEEE80211_WEP_KIDLEN \
239
+ IEEE80211_WEP_CRCLEN \
240
+ IEEE80211_WEP_MICLEN \
241
+ IEEE80211_CRC_LEN)
242
243
/*
244
* Setup initially for tdma operation. Start the beacon
245
* timers and enable SWBA if we are slot 0. Otherwise
246
* we wait for slot 0 to arrive so we can sync up before
247
* starting to transmit.
248
*/
249
void
250
ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
251
{
252
struct ath_hal *ah = sc->sc_ah;
253
struct ieee80211com *ic = &sc->sc_ic;
254
const struct ieee80211_txparam *tp;
255
const struct ieee80211_tdma_state *tdma = NULL;
256
int rix;
257
258
if (vap == NULL) {
259
vap = TAILQ_FIRST(&ic->ic_vaps); /* XXX */
260
if (vap == NULL) {
261
device_printf(sc->sc_dev, "%s: no vaps?\n", __func__);
262
return;
263
}
264
}
265
/* XXX should take a locked ref to iv_bss */
266
tp = vap->iv_bss->ni_txparms;
267
/*
268
* Calculate the guard time for each slot. This is the
269
* time to send a maximal-size frame according to the
270
* fixed/lowest transmit rate. Note that the interface
271
* mtu does not include the 802.11 overhead so we must
272
* tack that on (ath_hal_computetxtime includes the
273
* preamble and plcp in its calculation).
274
*/
275
tdma = vap->iv_tdma;
276
if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
277
rix = ath_tx_findrix(sc, tp->ucastrate);
278
else
279
rix = ath_tx_findrix(sc, tp->mcastrate);
280
281
/*
282
* If the chip supports enforcing TxOP on transmission,
283
* we can just delete the guard window. It isn't at all required.
284
*/
285
if (sc->sc_hasenforcetxop) {
286
sc->sc_tdmaguard = 0;
287
} else {
288
/* XXX short preamble assumed */
289
/* XXX non-11n rate assumed */
290
sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
291
if_getmtu(vap->iv_ifp) + IEEE80211_MAXOVERHEAD, rix, AH_TRUE,
292
AH_TRUE);
293
}
294
295
ath_hal_intrset(ah, 0);
296
297
ath_beaconq_config(sc); /* setup h/w beacon q */
298
if (sc->sc_setcca)
299
ath_hal_setcca(ah, AH_FALSE); /* disable CCA */
300
ath_tdma_bintvalsetup(sc, tdma); /* calculate beacon interval */
301
ath_tdma_settimers(sc, sc->sc_tdmabintval,
302
sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
303
sc->sc_syncbeacon = 0;
304
305
sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
306
sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
307
308
ath_hal_intrset(ah, sc->sc_imask);
309
310
DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
311
"bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
312
tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
313
tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
314
sc->sc_tdmadbaprep);
315
316
#ifdef ATH_DEBUG_ALQ
317
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_CONFIG)) {
318
struct if_ath_alq_tdma_timer_config t;
319
320
t.tdma_slot = htobe32(tdma->tdma_slot);
321
t.tdma_slotlen = htobe32(tdma->tdma_slotlen);
322
t.tdma_slotcnt = htobe32(tdma->tdma_slotcnt);
323
t.tdma_bintval = htobe32(tdma->tdma_bintval);
324
t.tdma_guard = htobe32(sc->sc_tdmaguard);
325
t.tdma_scbintval = htobe32(sc->sc_tdmabintval);
326
t.tdma_dbaprep = htobe32(sc->sc_tdmadbaprep);
327
328
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_TIMER_CONFIG,
329
sizeof(t), (char *) &t);
330
}
331
#endif /* ATH_DEBUG_ALQ */
332
}
333
334
/*
335
* Update tdma operation. Called from the 802.11 layer
336
* when a beacon is received from the TDMA station operating
337
* in the slot immediately preceding us in the bss. Use
338
* the rx timestamp for the beacon frame to update our
339
* beacon timers so we follow their schedule. Note that
340
* by using the rx timestamp we implicitly include the
341
* propagation delay in our schedule.
342
*
343
* XXX TODO: since the changes for the AR5416 and later chips
344
* involved changing the TSF/TU calculations, we need to make
345
* sure that various calculations wrap consistently.
346
*
347
* A lot of the problems stemmed from the calculations wrapping
348
* at 65,535 TU. Since a lot of the math is still being done in
349
* TU, please audit it to ensure that when the TU values programmed
350
* into the timers wrap at (2^31)-1 TSF, all the various terms
351
* wrap consistently.
352
*/
353
void
354
ath_tdma_update(struct ieee80211_node *ni,
355
const struct ieee80211_tdma_param *tdma, int changed)
356
{
357
#define TSF_TO_TU(_h,_l) \
358
((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
359
#define TU_TO_TSF(_tu) (((u_int64_t)(_tu)) << 10)
360
struct ieee80211vap *vap = ni->ni_vap;
361
struct ieee80211com *ic = ni->ni_ic;
362
struct ath_softc *sc = ic->ic_softc;
363
struct ath_hal *ah = sc->sc_ah;
364
const HAL_RATE_TABLE *rt = sc->sc_currates;
365
u_int64_t tsf, rstamp, nextslot, nexttbtt, nexttbtt_full;
366
u_int32_t txtime, nextslottu;
367
int32_t tudelta, tsfdelta;
368
const struct ath_rx_status *rs;
369
int rix;
370
371
sc->sc_stats.ast_tdma_update++;
372
373
/*
374
* Check for and adopt configuration changes.
375
*/
376
if (changed != 0) {
377
const struct ieee80211_tdma_state *ts = vap->iv_tdma;
378
379
ath_tdma_bintvalsetup(sc, ts);
380
if (changed & TDMA_UPDATE_SLOTLEN)
381
ath_wme_update(ic);
382
383
DPRINTF(sc, ATH_DEBUG_TDMA,
384
"%s: adopt slot %u slotcnt %u slotlen %u us "
385
"bintval %u TU\n", __func__,
386
ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
387
sc->sc_tdmabintval);
388
389
/* XXX right? */
390
ath_hal_intrset(ah, sc->sc_imask);
391
/* NB: beacon timers programmed below */
392
}
393
394
/* extend rx timestamp to 64 bits */
395
rs = sc->sc_lastrs;
396
tsf = ath_hal_gettsf64(ah);
397
rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
398
/*
399
* The rx timestamp is set by the hardware on completing
400
* reception (at the point where the rx descriptor is DMA'd
401
* to the host). To find the start of our next slot we
402
* must adjust this time by the time required to send
403
* the packet just received.
404
*/
405
rix = rt->rateCodeToIndex[rs->rs_rate];
406
407
/*
408
* To calculate the packet duration for legacy rates, we
409
* only need the rix and preamble.
410
*
411
* For 11n non-aggregate frames, we also need the channel
412
* width and short/long guard interval.
413
*
414
* For 11n aggregate frames, the required hacks are a little
415
* more subtle. You need to figure out the frame duration
416
* for each frame, including the delimiters. However, when
417
* a frame isn't received successfully, we won't hear it
418
* (unless you enable reception of CRC errored frames), so
419
* your duration calculation is going to be off.
420
*
421
* However, we can assume that the beacon frames won't be
422
* transmitted as aggregate frames, so we should be okay.
423
* Just add a check to ensure that we aren't handed something
424
* bad.
425
*
426
* For ath_hal_pkt_txtime() - for 11n rates, shortPreamble is
427
* actually short guard interval. For legacy rates,
428
* it's short preamble.
429
*/
430
txtime = ath_hal_pkt_txtime(ah, rt, rs->rs_datalen,
431
rix,
432
!! (rs->rs_flags & HAL_RX_2040),
433
(rix & 0x80) ?
434
(! (rs->rs_flags & HAL_RX_GI)) : rt->info[rix].shortPreamble,
435
AH_TRUE);
436
/* NB: << 9 is to cvt to TU and /2 */
437
nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
438
439
/*
440
* For 802.11n chips: nextslottu needs to be the full TSF space,
441
* not just 0..65535 TU.
442
*/
443
nextslottu = TSF_TO_TU(nextslot>>32, nextslot);
444
/*
445
* Retrieve the hardware NextTBTT in usecs
446
* and calculate the difference between what the
447
* other station thinks and what we have programmed. This
448
* lets us figure how to adjust our timers to match. The
449
* adjustments are done by pulling the TSF forward and possibly
450
* rewriting the beacon timers.
451
*/
452
/*
453
* The logic here assumes the nexttbtt counter is in TSF
454
* but the prr-11n NICs are in TU. The HAL shifts them
455
* to TSF but there's two important differences:
456
*
457
* + The TU->TSF values have 0's for the low 9 bits, and
458
* + The counter wraps at TU_TO_TSF(HAL_BEACON_PERIOD + 1) for
459
* the pre-11n NICs, but not for the 11n NICs.
460
*
461
* So for now, just make sure the nexttbtt value we get
462
* matches the second issue or once nexttbtt exceeds this
463
* value, tsfdelta ends up becoming very negative and all
464
* of the adjustments get very messed up.
465
*/
466
467
/*
468
* We need to track the full nexttbtt rather than having it
469
* truncated at HAL_BEACON_PERIOD, as programming the
470
* nexttbtt (and related) registers for the 11n chips is
471
* actually going to take the full 32 bit space, rather than
472
* just 0..65535 TU.
473
*/
474
nexttbtt_full = ath_hal_getnexttbtt(ah);
475
nexttbtt = nexttbtt_full % (TU_TO_TSF(HAL_BEACON_PERIOD + 1));
476
tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
477
478
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
479
"rs->rstamp %llu rstamp %llu tsf %llu txtime %d, nextslot %llu, "
480
"nextslottu %d, nextslottume %d\n",
481
(unsigned long long) rs->rs_tstamp,
482
(unsigned long long) rstamp,
483
(unsigned long long) tsf, txtime,
484
(unsigned long long) nextslot,
485
nextslottu, TSF_TO_TU(nextslot >> 32, nextslot));
486
DPRINTF(sc, ATH_DEBUG_TDMA,
487
" beacon tstamp: %llu (0x%016llx)\n",
488
(unsigned long long) le64toh(ni->ni_tstamp.tsf),
489
(unsigned long long) le64toh(ni->ni_tstamp.tsf));
490
491
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
492
"nexttbtt %llu (0x%08llx) tsfdelta %d avg +%d/-%d\n",
493
(unsigned long long) nexttbtt,
494
(long long) nexttbtt,
495
tsfdelta,
496
TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
497
498
if (tsfdelta < 0) {
499
TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
500
TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
501
tsfdelta = -tsfdelta % 1024;
502
nextslottu++;
503
} else if (tsfdelta > 0) {
504
TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
505
TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
506
tsfdelta = 1024 - (tsfdelta % 1024);
507
nextslottu++;
508
} else {
509
TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
510
TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
511
}
512
tudelta = nextslottu - TSF_TO_TU(nexttbtt_full >> 32, nexttbtt_full);
513
514
#ifdef ATH_DEBUG_ALQ
515
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_BEACON_STATE)) {
516
struct if_ath_alq_tdma_beacon_state t;
517
t.rx_tsf = htobe64(rstamp);
518
t.beacon_tsf = htobe64(le64toh(ni->ni_tstamp.tsf));
519
t.tsf64 = htobe64(tsf);
520
t.nextslot_tsf = htobe64(nextslot);
521
t.nextslot_tu = htobe32(nextslottu);
522
t.txtime = htobe32(txtime);
523
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_BEACON_STATE,
524
sizeof(t), (char *) &t);
525
}
526
527
if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_TDMA_SLOT_CALC)) {
528
struct if_ath_alq_tdma_slot_calc t;
529
530
t.nexttbtt = htobe64(nexttbtt_full);
531
t.next_slot = htobe64(nextslot);
532
t.tsfdelta = htobe32(tsfdelta);
533
t.avg_plus = htobe32(TDMA_AVG(sc->sc_avgtsfdeltap));
534
t.avg_minus = htobe32(TDMA_AVG(sc->sc_avgtsfdeltam));
535
536
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_SLOT_CALC,
537
sizeof(t), (char *) &t);
538
}
539
#endif
540
541
/*
542
* Copy sender's timetstamp into tdma ie so they can
543
* calculate roundtrip time. We submit a beacon frame
544
* below after any timer adjustment. The frame goes out
545
* at the next TBTT so the sender can calculate the
546
* roundtrip by inspecting the tdma ie in our beacon frame.
547
*
548
* NB: This tstamp is subtlely preserved when
549
* IEEE80211_BEACON_TDMA is marked (e.g. when the
550
* slot position changes) because ieee80211_add_tdma
551
* skips over the data.
552
*/
553
memcpy(vap->iv_bcn_off.bo_tdma +
554
__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
555
&ni->ni_tstamp.data, 8);
556
#if 0
557
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
558
"tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
559
(unsigned long long) tsf, (unsigned long long) nextslot,
560
(int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
561
#endif
562
/*
563
* Adjust the beacon timers only when pulling them forward
564
* or when going back by less than the beacon interval.
565
* Negative jumps larger than the beacon interval seem to
566
* cause the timers to stop and generally cause instability.
567
* This basically filters out jumps due to missed beacons.
568
*/
569
if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
570
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
571
"%s: calling ath_tdma_settimers; nextslottu=%d, bintval=%d\n",
572
__func__,
573
nextslottu,
574
sc->sc_tdmabintval);
575
ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
576
sc->sc_stats.ast_tdma_timers++;
577
}
578
if (tsfdelta > 0) {
579
uint64_t tsf;
580
581
/* XXX should just teach ath_hal_adjusttsf() to do this */
582
tsf = ath_hal_gettsf64(ah);
583
ath_hal_settsf64(ah, tsf + tsfdelta);
584
DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
585
"%s: calling ath_hal_adjusttsf: TSF=%llu, tsfdelta=%d\n",
586
__func__,
587
(unsigned long long) tsf,
588
tsfdelta);
589
590
#ifdef ATH_DEBUG_ALQ
591
if (if_ath_alq_checkdebug(&sc->sc_alq,
592
ATH_ALQ_TDMA_TSF_ADJUST)) {
593
struct if_ath_alq_tdma_tsf_adjust t;
594
595
t.tsfdelta = htobe32(tsfdelta);
596
t.tsf64_old = htobe64(tsf);
597
t.tsf64_new = htobe64(tsf + tsfdelta);
598
if_ath_alq_post(&sc->sc_alq, ATH_ALQ_TDMA_TSF_ADJUST,
599
sizeof(t), (char *) &t);
600
}
601
#endif /* ATH_DEBUG_ALQ */
602
sc->sc_stats.ast_tdma_tsf++;
603
}
604
ath_tdma_beacon_send(sc, vap); /* prepare response */
605
#undef TU_TO_TSF
606
#undef TSF_TO_TU
607
}
608
609
/*
610
* Transmit a beacon frame at SWBA. Dynamic updates
611
* to the frame contents are done as needed.
612
*/
613
void
614
ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
615
{
616
struct ath_hal *ah = sc->sc_ah;
617
struct ath_buf *bf;
618
int otherant;
619
620
/*
621
* Check if the previous beacon has gone out. If
622
* not don't try to post another, skip this period
623
* and wait for the next. Missed beacons indicate
624
* a problem and should not occur. If we miss too
625
* many consecutive beacons reset the device.
626
*/
627
if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
628
sc->sc_bmisscount++;
629
DPRINTF(sc, ATH_DEBUG_BEACON,
630
"%s: missed %u consecutive beacons\n",
631
__func__, sc->sc_bmisscount);
632
if (sc->sc_bmisscount >= ath_bstuck_threshold)
633
taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
634
return;
635
}
636
if (sc->sc_bmisscount != 0) {
637
DPRINTF(sc, ATH_DEBUG_BEACON,
638
"%s: resume beacon xmit after %u misses\n",
639
__func__, sc->sc_bmisscount);
640
sc->sc_bmisscount = 0;
641
}
642
643
/*
644
* Check recent per-antenna transmit statistics and flip
645
* the default antenna if noticeably more frames went out
646
* on the non-default antenna.
647
* XXX assumes 2 anntenae
648
*/
649
if (!sc->sc_diversity) {
650
otherant = sc->sc_defant & 1 ? 2 : 1;
651
if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
652
ath_setdefantenna(sc, otherant);
653
sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
654
}
655
656
bf = ath_beacon_generate(sc, vap);
657
/* XXX We don't do cabq traffic, but just for completeness .. */
658
ATH_TXQ_LOCK(sc->sc_cabq);
659
ath_beacon_cabq_start(sc);
660
ATH_TXQ_UNLOCK(sc->sc_cabq);
661
662
if (bf != NULL) {
663
/*
664
* Stop any current dma and put the new frame on the queue.
665
* This should never fail since we check above that no frames
666
* are still pending on the queue.
667
*/
668
if ((! sc->sc_isedma) &&
669
(! ath_hal_stoptxdma(ah, sc->sc_bhalq))) {
670
DPRINTF(sc, ATH_DEBUG_ANY,
671
"%s: beacon queue %u did not stop?\n",
672
__func__, sc->sc_bhalq);
673
/* NB: the HAL still stops DMA, so proceed */
674
}
675
ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
676
ath_hal_txstart(ah, sc->sc_bhalq);
677
678
sc->sc_stats.ast_be_xmit++; /* XXX per-vap? */
679
680
/*
681
* Record local TSF for our last send for use
682
* in arbitrating slot collisions.
683
*/
684
/* XXX should take a locked ref to iv_bss */
685
vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
686
}
687
}
688
#endif /* IEEE80211_SUPPORT_TDMA */
689
690