Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/axgbe/xgbe-dev.c
39535 views
1
/*
2
* AMD 10Gb Ethernet driver
3
*
4
* Copyright (c) 2014-2016,2020 Advanced Micro Devices, Inc.
5
*
6
* This file is available to you under your choice of the following two
7
* licenses:
8
*
9
* License 1: GPLv2
10
*
11
* This file is free software; you may copy, redistribute and/or modify
12
* it under the terms of the GNU General Public License as published by
13
* the Free Software Foundation, either version 2 of the License, or (at
14
* your option) any later version.
15
*
16
* This file is distributed in the hope that it will be useful, but
17
* WITHOUT ANY WARRANTY; without even the implied warranty of
18
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19
* General Public License for more details.
20
*
21
* You should have received a copy of the GNU General Public License
22
* along with this program. If not, see <http://www.gnu.org/licenses/>.
23
*
24
* This file incorporates work covered by the following copyright and
25
* permission notice:
26
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
27
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
28
* Inc. unless otherwise expressly agreed to in writing between Synopsys
29
* and you.
30
*
31
* The Software IS NOT an item of Licensed Software or Licensed Product
32
* under any End User Software License Agreement or Agreement for Licensed
33
* Product with Synopsys or any supplement thereto. Permission is hereby
34
* granted, free of charge, to any person obtaining a copy of this software
35
* annotated with this license and the Software, to deal in the Software
36
* without restriction, including without limitation the rights to use,
37
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
38
* of the Software, and to permit persons to whom the Software is furnished
39
* to do so, subject to the following conditions:
40
*
41
* The above copyright notice and this permission notice shall be included
42
* in all copies or substantial portions of the Software.
43
*
44
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
45
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
46
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
47
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
48
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
49
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
50
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
51
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
52
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
53
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
54
* THE POSSIBILITY OF SUCH DAMAGE.
55
*
56
*
57
* License 2: Modified BSD
58
*
59
* Redistribution and use in source and binary forms, with or without
60
* modification, are permitted provided that the following conditions are met:
61
* * Redistributions of source code must retain the above copyright
62
* notice, this list of conditions and the following disclaimer.
63
* * Redistributions in binary form must reproduce the above copyright
64
* notice, this list of conditions and the following disclaimer in the
65
* documentation and/or other materials provided with the distribution.
66
* * Neither the name of Advanced Micro Devices, Inc. nor the
67
* names of its contributors may be used to endorse or promote products
68
* derived from this software without specific prior written permission.
69
*
70
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
71
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
72
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
73
* ARE DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
74
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
75
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
76
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
77
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
78
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
79
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
80
*
81
* This file incorporates work covered by the following copyright and
82
* permission notice:
83
* The Synopsys DWC ETHER XGMAC Software Driver and documentation
84
* (hereinafter "Software") is an unsupported proprietary work of Synopsys,
85
* Inc. unless otherwise expressly agreed to in writing between Synopsys
86
* and you.
87
*
88
* The Software IS NOT an item of Licensed Software or Licensed Product
89
* under any End User Software License Agreement or Agreement for Licensed
90
* Product with Synopsys or any supplement thereto. Permission is hereby
91
* granted, free of charge, to any person obtaining a copy of this software
92
* annotated with this license and the Software, to deal in the Software
93
* without restriction, including without limitation the rights to use,
94
* copy, modify, merge, publish, distribute, sublicense, and/or sell copies
95
* of the Software, and to permit persons to whom the Software is furnished
96
* to do so, subject to the following conditions:
97
*
98
* The above copyright notice and this permission notice shall be included
99
* in all copies or substantial portions of the Software.
100
*
101
* THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS"
102
* BASIS AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
103
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
104
* PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS
105
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
106
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
107
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
108
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
109
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
110
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
111
* THE POSSIBILITY OF SUCH DAMAGE.
112
*/
113
114
#include <sys/cdefs.h>
115
#include "xgbe.h"
116
#include "xgbe-common.h"
117
118
#include <net/if_dl.h>
119
120
static inline unsigned int xgbe_get_max_frame(struct xgbe_prv_data *pdata)
121
{
122
return (if_getmtu(pdata->netdev) + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
123
}
124
125
static unsigned int
126
xgbe_usec_to_riwt(struct xgbe_prv_data *pdata, unsigned int usec)
127
{
128
unsigned long rate;
129
unsigned int ret;
130
131
rate = pdata->sysclk_rate;
132
133
/*
134
* Convert the input usec value to the watchdog timer value. Each
135
* watchdog timer value is equivalent to 256 clock cycles.
136
* Calculate the required value as:
137
* ( usec * ( system_clock_mhz / 10^6 ) / 256
138
*/
139
ret = (usec * (rate / 1000000)) / 256;
140
141
return (ret);
142
}
143
144
static unsigned int
145
xgbe_riwt_to_usec(struct xgbe_prv_data *pdata, unsigned int riwt)
146
{
147
unsigned long rate;
148
unsigned int ret;
149
150
rate = pdata->sysclk_rate;
151
152
/*
153
* Convert the input watchdog timer value to the usec value. Each
154
* watchdog timer value is equivalent to 256 clock cycles.
155
* Calculate the required value as:
156
* ( riwt * 256 ) / ( system_clock_mhz / 10^6 )
157
*/
158
ret = (riwt * 256) / (rate / 1000000);
159
160
return (ret);
161
}
162
163
static int
164
xgbe_config_pbl_val(struct xgbe_prv_data *pdata)
165
{
166
unsigned int pblx8, pbl;
167
unsigned int i;
168
169
pblx8 = DMA_PBL_X8_DISABLE;
170
pbl = pdata->pbl;
171
172
if (pdata->pbl > 32) {
173
pblx8 = DMA_PBL_X8_ENABLE;
174
pbl >>= 3;
175
}
176
177
for (i = 0; i < pdata->channel_count; i++) {
178
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, PBLX8,
179
pblx8);
180
181
if (pdata->channel[i]->tx_ring)
182
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR,
183
PBL, pbl);
184
185
if (pdata->channel[i]->rx_ring)
186
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR,
187
PBL, pbl);
188
}
189
190
return (0);
191
}
192
193
static int
194
xgbe_config_osp_mode(struct xgbe_prv_data *pdata)
195
{
196
unsigned int i;
197
198
for (i = 0; i < pdata->channel_count; i++) {
199
if (!pdata->channel[i]->tx_ring)
200
break;
201
202
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, OSP,
203
pdata->tx_osp_mode);
204
}
205
206
return (0);
207
}
208
209
static int
210
xgbe_config_rsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
211
{
212
unsigned int i;
213
214
for (i = 0; i < pdata->rx_q_count; i++)
215
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RSF, val);
216
217
return (0);
218
}
219
220
static int
221
xgbe_config_tsf_mode(struct xgbe_prv_data *pdata, unsigned int val)
222
{
223
unsigned int i;
224
225
for (i = 0; i < pdata->tx_q_count; i++)
226
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TSF, val);
227
228
return (0);
229
}
230
231
static int
232
xgbe_config_rx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
233
{
234
unsigned int i;
235
236
for (i = 0; i < pdata->rx_q_count; i++)
237
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RTC, val);
238
239
return (0);
240
}
241
242
static int
243
xgbe_config_tx_threshold(struct xgbe_prv_data *pdata, unsigned int val)
244
{
245
unsigned int i;
246
247
for (i = 0; i < pdata->tx_q_count; i++)
248
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TTC, val);
249
250
return (0);
251
}
252
253
static int
254
xgbe_config_rx_coalesce(struct xgbe_prv_data *pdata)
255
{
256
unsigned int i;
257
258
for (i = 0; i < pdata->channel_count; i++) {
259
if (!pdata->channel[i]->rx_ring)
260
break;
261
262
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RIWT, RWT,
263
pdata->rx_riwt);
264
}
265
266
return (0);
267
}
268
269
static int
270
xgbe_config_tx_coalesce(struct xgbe_prv_data *pdata)
271
{
272
return (0);
273
}
274
275
static void
276
xgbe_config_rx_buffer_size(struct xgbe_prv_data *pdata)
277
{
278
unsigned int i;
279
280
for (i = 0; i < pdata->channel_count; i++) {
281
if (!pdata->channel[i]->rx_ring)
282
break;
283
284
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, RBSZ,
285
pdata->rx_buf_size);
286
}
287
}
288
289
static void
290
xgbe_config_tso_mode(struct xgbe_prv_data *pdata)
291
{
292
unsigned int i;
293
294
int tso_enabled = (if_getcapenable(pdata->netdev) & IFCAP_TSO);
295
296
for (i = 0; i < pdata->channel_count; i++) {
297
if (!pdata->channel[i]->tx_ring)
298
break;
299
300
axgbe_printf(1, "TSO in channel %d %s\n", i, tso_enabled ? "enabled" : "disabled");
301
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, TSE, tso_enabled ? 1 : 0);
302
}
303
}
304
305
static void
306
xgbe_config_sph_mode(struct xgbe_prv_data *pdata)
307
{
308
unsigned int i;
309
int sph_enable_flag = XGMAC_IOREAD_BITS(pdata, MAC_HWF1R, SPHEN);
310
311
axgbe_printf(1, "sph_enable %d sph feature enabled?: %d\n",
312
pdata->sph_enable, sph_enable_flag);
313
314
if (pdata->sph_enable && sph_enable_flag)
315
axgbe_printf(0, "SPH Enabled\n");
316
317
for (i = 0; i < pdata->channel_count; i++) {
318
if (!pdata->channel[i]->rx_ring)
319
break;
320
if (pdata->sph_enable && sph_enable_flag) {
321
/* Enable split header feature */
322
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 1);
323
} else {
324
/* Disable split header feature */
325
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_CR, SPH, 0);
326
}
327
328
/* per-channel confirmation of SPH being disabled/enabled */
329
int val = XGMAC_DMA_IOREAD_BITS(pdata->channel[i], DMA_CH_CR, SPH);
330
axgbe_printf(0, "%s: SPH %s in channel %d\n", __func__,
331
(val ? "enabled" : "disabled"), i);
332
}
333
334
if (pdata->sph_enable && sph_enable_flag)
335
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, HDSMS, XGBE_SPH_HDSMS_SIZE);
336
}
337
338
static int
339
xgbe_write_rss_reg(struct xgbe_prv_data *pdata, unsigned int type,
340
unsigned int index, unsigned int val)
341
{
342
unsigned int wait;
343
int ret = 0;
344
345
mtx_lock(&pdata->rss_mutex);
346
347
if (XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB)) {
348
ret = -EBUSY;
349
goto unlock;
350
}
351
352
XGMAC_IOWRITE(pdata, MAC_RSSDR, val);
353
354
XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, RSSIA, index);
355
XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, ADDRT, type);
356
XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, CT, 0);
357
XGMAC_IOWRITE_BITS(pdata, MAC_RSSAR, OB, 1);
358
359
wait = 1000;
360
while (wait--) {
361
if (!XGMAC_IOREAD_BITS(pdata, MAC_RSSAR, OB))
362
goto unlock;
363
364
DELAY(1000);
365
}
366
367
ret = -EBUSY;
368
369
unlock:
370
mtx_unlock(&pdata->rss_mutex);
371
372
return (ret);
373
}
374
375
static int
376
xgbe_write_rss_hash_key(struct xgbe_prv_data *pdata)
377
{
378
unsigned int key_regs = sizeof(pdata->rss_key) / sizeof(uint32_t);
379
unsigned int *key = (unsigned int *)&pdata->rss_key;
380
int ret;
381
382
while (key_regs--) {
383
ret = xgbe_write_rss_reg(pdata, XGBE_RSS_HASH_KEY_TYPE,
384
key_regs, *key++);
385
if (ret)
386
return (ret);
387
}
388
389
return (0);
390
}
391
392
static int
393
xgbe_write_rss_lookup_table(struct xgbe_prv_data *pdata)
394
{
395
unsigned int i;
396
int ret;
397
398
for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++) {
399
ret = xgbe_write_rss_reg(pdata, XGBE_RSS_LOOKUP_TABLE_TYPE, i,
400
pdata->rss_table[i]);
401
if (ret)
402
return (ret);
403
}
404
405
return (0);
406
}
407
408
static int
409
xgbe_set_rss_hash_key(struct xgbe_prv_data *pdata, const uint8_t *key)
410
{
411
memcpy(pdata->rss_key, key, sizeof(pdata->rss_key));
412
413
return (xgbe_write_rss_hash_key(pdata));
414
}
415
416
static int
417
xgbe_set_rss_lookup_table(struct xgbe_prv_data *pdata, const uint32_t *table)
418
{
419
unsigned int i;
420
421
for (i = 0; i < ARRAY_SIZE(pdata->rss_table); i++)
422
XGMAC_SET_BITS(pdata->rss_table[i], MAC_RSSDR, DMCH, table[i]);
423
424
return (xgbe_write_rss_lookup_table(pdata));
425
}
426
427
static int
428
xgbe_enable_rss(struct xgbe_prv_data *pdata)
429
{
430
int ret;
431
432
if (!pdata->hw_feat.rss)
433
return (-EOPNOTSUPP);
434
435
/* Program the hash key */
436
ret = xgbe_write_rss_hash_key(pdata);
437
if (ret)
438
return (ret);
439
440
/* Program the lookup table */
441
ret = xgbe_write_rss_lookup_table(pdata);
442
if (ret)
443
return (ret);
444
445
/* Set the RSS options */
446
XGMAC_IOWRITE(pdata, MAC_RSSCR, pdata->rss_options);
447
448
/* Enable RSS */
449
XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 1);
450
451
axgbe_printf(0, "RSS Enabled\n");
452
453
return (0);
454
}
455
456
static int
457
xgbe_disable_rss(struct xgbe_prv_data *pdata)
458
{
459
if (!pdata->hw_feat.rss)
460
return (-EOPNOTSUPP);
461
462
XGMAC_IOWRITE_BITS(pdata, MAC_RSSCR, RSSE, 0);
463
464
axgbe_printf(0, "RSS Disabled\n");
465
466
return (0);
467
}
468
469
static void
470
xgbe_config_rss(struct xgbe_prv_data *pdata)
471
{
472
int ret;
473
474
if (!pdata->hw_feat.rss)
475
return;
476
477
/* Check if the interface has RSS capability */
478
if (pdata->enable_rss)
479
ret = xgbe_enable_rss(pdata);
480
else
481
ret = xgbe_disable_rss(pdata);
482
483
if (ret)
484
axgbe_error("error configuring RSS, RSS disabled\n");
485
}
486
487
static int
488
xgbe_disable_tx_flow_control(struct xgbe_prv_data *pdata)
489
{
490
unsigned int max_q_count, q_count;
491
unsigned int reg, reg_val;
492
unsigned int i;
493
494
/* Clear MTL flow control */
495
for (i = 0; i < pdata->rx_q_count; i++)
496
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, 0);
497
498
/* Clear MAC flow control */
499
max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
500
q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
501
reg = MAC_Q0TFCR;
502
for (i = 0; i < q_count; i++) {
503
reg_val = XGMAC_IOREAD(pdata, reg);
504
XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 0);
505
XGMAC_IOWRITE(pdata, reg, reg_val);
506
507
reg += MAC_QTFCR_INC;
508
}
509
510
return (0);
511
}
512
513
static int
514
xgbe_enable_tx_flow_control(struct xgbe_prv_data *pdata)
515
{
516
unsigned int max_q_count, q_count;
517
unsigned int reg, reg_val;
518
unsigned int i;
519
520
/* Set MTL flow control */
521
for (i = 0; i < pdata->rx_q_count; i++) {
522
unsigned int ehfc = 0;
523
524
if (pdata->rx_rfd[i]) {
525
/* Flow control thresholds are established */
526
/* TODO - enable pfc/ets support */
527
ehfc = 1;
528
}
529
530
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, EHFC, ehfc);
531
532
axgbe_printf(1, "flow control %s for RXq%u\n",
533
ehfc ? "enabled" : "disabled", i);
534
}
535
536
/* Set MAC flow control */
537
max_q_count = XGMAC_MAX_FLOW_CONTROL_QUEUES;
538
q_count = min_t(unsigned int, pdata->tx_q_count, max_q_count);
539
reg = MAC_Q0TFCR;
540
for (i = 0; i < q_count; i++) {
541
reg_val = XGMAC_IOREAD(pdata, reg);
542
543
/* Enable transmit flow control */
544
XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, TFE, 1);
545
546
/* Set pause time */
547
XGMAC_SET_BITS(reg_val, MAC_Q0TFCR, PT, 0xffff);
548
549
XGMAC_IOWRITE(pdata, reg, reg_val);
550
551
reg += MAC_QTFCR_INC;
552
}
553
554
return (0);
555
}
556
557
static int
558
xgbe_disable_rx_flow_control(struct xgbe_prv_data *pdata)
559
{
560
XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 0);
561
562
return (0);
563
}
564
565
static int
566
xgbe_enable_rx_flow_control(struct xgbe_prv_data *pdata)
567
{
568
XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, RFE, 1);
569
570
return (0);
571
}
572
573
static int
574
xgbe_config_tx_flow_control(struct xgbe_prv_data *pdata)
575
{
576
if (pdata->tx_pause)
577
xgbe_enable_tx_flow_control(pdata);
578
else
579
xgbe_disable_tx_flow_control(pdata);
580
581
return (0);
582
}
583
584
static int
585
xgbe_config_rx_flow_control(struct xgbe_prv_data *pdata)
586
{
587
if (pdata->rx_pause)
588
xgbe_enable_rx_flow_control(pdata);
589
else
590
xgbe_disable_rx_flow_control(pdata);
591
592
return (0);
593
}
594
595
static void
596
xgbe_config_flow_control(struct xgbe_prv_data *pdata)
597
{
598
xgbe_config_tx_flow_control(pdata);
599
xgbe_config_rx_flow_control(pdata);
600
601
XGMAC_IOWRITE_BITS(pdata, MAC_RFCR, PFCE, 0);
602
}
603
604
static void
605
xgbe_enable_dma_interrupts(struct xgbe_prv_data *pdata)
606
{
607
struct xgbe_channel *channel;
608
unsigned int i, ver;
609
610
/* Set the interrupt mode if supported */
611
if (pdata->channel_irq_mode)
612
XGMAC_IOWRITE_BITS(pdata, DMA_MR, INTM,
613
pdata->channel_irq_mode);
614
615
ver = XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER);
616
617
for (i = 0; i < pdata->channel_count; i++) {
618
channel = pdata->channel[i];
619
620
/* Clear all the interrupts which are set */
621
XGMAC_DMA_IOWRITE(channel, DMA_CH_SR,
622
XGMAC_DMA_IOREAD(channel, DMA_CH_SR));
623
624
/* Clear all interrupt enable bits */
625
channel->curr_ier = 0;
626
627
/* Enable following interrupts
628
* NIE - Normal Interrupt Summary Enable
629
* AIE - Abnormal Interrupt Summary Enable
630
* FBEE - Fatal Bus Error Enable
631
*/
632
if (ver < 0x21) {
633
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE20, 1);
634
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE20, 1);
635
} else {
636
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, NIE, 1);
637
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, AIE, 1);
638
}
639
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
640
641
if (channel->tx_ring) {
642
/* Enable the following Tx interrupts
643
* TIE - Transmit Interrupt Enable (unless using
644
* per channel interrupts in edge triggered
645
* mode)
646
*/
647
if (!pdata->per_channel_irq || pdata->channel_irq_mode)
648
XGMAC_SET_BITS(channel->curr_ier,
649
DMA_CH_IER, TIE, 1);
650
}
651
if (channel->rx_ring) {
652
/* Enable following Rx interrupts
653
* RBUE - Receive Buffer Unavailable Enable
654
* RIE - Receive Interrupt Enable (unless using
655
* per channel interrupts in edge triggered
656
* mode)
657
*/
658
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
659
if (!pdata->per_channel_irq || pdata->channel_irq_mode)
660
XGMAC_SET_BITS(channel->curr_ier,
661
DMA_CH_IER, RIE, 1);
662
}
663
664
XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
665
}
666
}
667
668
static void
669
xgbe_enable_mtl_interrupts(struct xgbe_prv_data *pdata)
670
{
671
unsigned int mtl_q_isr;
672
unsigned int q_count, i;
673
674
q_count = max(pdata->hw_feat.tx_q_cnt, pdata->hw_feat.rx_q_cnt);
675
for (i = 0; i < q_count; i++) {
676
/* Clear all the interrupts which are set */
677
mtl_q_isr = XGMAC_MTL_IOREAD(pdata, i, MTL_Q_ISR);
678
XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_ISR, mtl_q_isr);
679
680
/* No MTL interrupts to be enabled */
681
XGMAC_MTL_IOWRITE(pdata, i, MTL_Q_IER, 0);
682
}
683
}
684
685
static void
686
xgbe_enable_mac_interrupts(struct xgbe_prv_data *pdata)
687
{
688
unsigned int mac_ier = 0;
689
690
/* Enable Timestamp interrupt */
691
XGMAC_SET_BITS(mac_ier, MAC_IER, TSIE, 1);
692
693
XGMAC_IOWRITE(pdata, MAC_IER, mac_ier);
694
695
/* Enable all counter interrupts */
696
XGMAC_IOWRITE_BITS(pdata, MMC_RIER, ALL_INTERRUPTS, 0xffffffff);
697
XGMAC_IOWRITE_BITS(pdata, MMC_TIER, ALL_INTERRUPTS, 0xffffffff);
698
699
/* Enable MDIO single command completion interrupt */
700
XGMAC_IOWRITE_BITS(pdata, MAC_MDIOIER, SNGLCOMPIE, 1);
701
}
702
703
static int
704
xgbe_set_speed(struct xgbe_prv_data *pdata, int speed)
705
{
706
unsigned int ss;
707
708
switch (speed) {
709
case SPEED_1000:
710
ss = 0x03;
711
break;
712
case SPEED_2500:
713
ss = 0x02;
714
break;
715
case SPEED_10000:
716
ss = 0x00;
717
break;
718
default:
719
return (-EINVAL);
720
}
721
722
if (XGMAC_IOREAD_BITS(pdata, MAC_TCR, SS) != ss)
723
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, SS, ss);
724
725
return (0);
726
}
727
728
static int
729
xgbe_enable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
730
{
731
/* Put the VLAN tag in the Rx descriptor */
732
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLRXS, 1);
733
734
/* Don't check the VLAN type */
735
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, DOVLTC, 1);
736
737
/* Check only C-TAG (0x8100) packets */
738
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ERSVLM, 0);
739
740
/* Don't consider an S-TAG (0x88A8) packet as a VLAN packet */
741
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ESVL, 0);
742
743
/* Enable VLAN tag stripping */
744
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0x3);
745
746
axgbe_printf(0, "VLAN Stripping Enabled\n");
747
748
return (0);
749
}
750
751
static int
752
xgbe_disable_rx_vlan_stripping(struct xgbe_prv_data *pdata)
753
{
754
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, EVLS, 0);
755
756
axgbe_printf(0, "VLAN Stripping Disabled\n");
757
758
return (0);
759
}
760
761
static int
762
xgbe_enable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
763
{
764
/* Enable VLAN filtering */
765
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 1);
766
767
/* Enable VLAN Hash Table filtering */
768
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTHM, 1);
769
770
/* Disable VLAN tag inverse matching */
771
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VTIM, 0);
772
773
/* Only filter on the lower 12-bits of the VLAN tag */
774
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, ETV, 1);
775
776
/* In order for the VLAN Hash Table filtering to be effective,
777
* the VLAN tag identifier in the VLAN Tag Register must not
778
* be zero. Set the VLAN tag identifier to "1" to enable the
779
* VLAN Hash Table filtering. This implies that a VLAN tag of
780
* 1 will always pass filtering.
781
*/
782
XGMAC_IOWRITE_BITS(pdata, MAC_VLANTR, VL, 1);
783
784
axgbe_printf(0, "VLAN filtering Enabled\n");
785
786
return (0);
787
}
788
789
static int
790
xgbe_disable_rx_vlan_filtering(struct xgbe_prv_data *pdata)
791
{
792
/* Disable VLAN filtering */
793
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, VTFE, 0);
794
795
axgbe_printf(0, "VLAN filtering Disabled\n");
796
797
return (0);
798
}
799
800
static uint32_t
801
xgbe_vid_crc32_le(__le16 vid_le)
802
{
803
uint32_t crc = ~0;
804
uint32_t temp = 0;
805
unsigned char *data = (unsigned char *)&vid_le;
806
unsigned char data_byte = 0;
807
int i, bits;
808
809
bits = get_bitmask_order(VLAN_VID_MASK);
810
for (i = 0; i < bits; i++) {
811
if ((i % 8) == 0)
812
data_byte = data[i / 8];
813
814
temp = ((crc & 1) ^ data_byte) & 1;
815
crc >>= 1;
816
data_byte >>= 1;
817
818
if (temp)
819
crc ^= CRC32_POLY_LE;
820
}
821
822
return (crc);
823
}
824
825
static int
826
xgbe_update_vlan_hash_table(struct xgbe_prv_data *pdata)
827
{
828
uint32_t crc;
829
size_t vid;
830
uint16_t vlan_hash_table = 0;
831
__le16 vid_le = 0;
832
833
axgbe_printf(1, "%s: Before updating VLANHTR 0x%x\n", __func__,
834
XGMAC_IOREAD(pdata, MAC_VLANHTR));
835
836
/* Generate the VLAN Hash Table value */
837
bit_foreach(pdata->active_vlans, VLAN_NVID, vid) {
838
/* Get the CRC32 value of the VLAN ID */
839
vid_le = cpu_to_le16(vid);
840
crc = bitrev32(~xgbe_vid_crc32_le(vid_le)) >> 28;
841
842
vlan_hash_table |= (1 << crc);
843
axgbe_printf(1, "%s: vid 0x%lx vid_le 0x%x crc 0x%x "
844
"vlan_hash_table 0x%x\n", __func__, vid, vid_le, crc,
845
vlan_hash_table);
846
}
847
848
/* Set the VLAN Hash Table filtering register */
849
XGMAC_IOWRITE_BITS(pdata, MAC_VLANHTR, VLHT, vlan_hash_table);
850
851
axgbe_printf(1, "%s: After updating VLANHTR 0x%x\n", __func__,
852
XGMAC_IOREAD(pdata, MAC_VLANHTR));
853
854
return (0);
855
}
856
857
static int
858
xgbe_set_promiscuous_mode(struct xgbe_prv_data *pdata, unsigned int enable)
859
{
860
unsigned int val = enable ? 1 : 0;
861
862
if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PR) == val)
863
return (0);
864
865
axgbe_printf(1, "%s promiscous mode\n", enable? "entering" : "leaving");
866
867
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PR, val);
868
869
/* Hardware will still perform VLAN filtering in promiscuous mode */
870
if (enable) {
871
axgbe_printf(1, "Disabling rx vlan filtering\n");
872
xgbe_disable_rx_vlan_filtering(pdata);
873
} else {
874
if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
875
axgbe_printf(1, "Enabling rx vlan filtering\n");
876
xgbe_enable_rx_vlan_filtering(pdata);
877
}
878
}
879
880
return (0);
881
}
882
883
static int
884
xgbe_set_all_multicast_mode(struct xgbe_prv_data *pdata, unsigned int enable)
885
{
886
unsigned int val = enable ? 1 : 0;
887
888
if (XGMAC_IOREAD_BITS(pdata, MAC_PFR, PM) == val)
889
return (0);
890
891
axgbe_printf(1,"%s allmulti mode\n", enable ? "entering" : "leaving");
892
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, PM, val);
893
894
return (0);
895
}
896
897
static void
898
xgbe_set_mac_reg(struct xgbe_prv_data *pdata, char *addr, unsigned int *mac_reg)
899
{
900
unsigned int mac_addr_hi, mac_addr_lo;
901
uint8_t *mac_addr;
902
903
mac_addr_lo = 0;
904
mac_addr_hi = 0;
905
906
if (addr) {
907
mac_addr = (uint8_t *)&mac_addr_lo;
908
mac_addr[0] = addr[0];
909
mac_addr[1] = addr[1];
910
mac_addr[2] = addr[2];
911
mac_addr[3] = addr[3];
912
mac_addr = (uint8_t *)&mac_addr_hi;
913
mac_addr[0] = addr[4];
914
mac_addr[1] = addr[5];
915
916
axgbe_printf(1, "adding mac address %pM at %#x\n", addr, *mac_reg);
917
918
XGMAC_SET_BITS(mac_addr_hi, MAC_MACA1HR, AE, 1);
919
}
920
921
XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_hi);
922
*mac_reg += MAC_MACA_INC;
923
XGMAC_IOWRITE(pdata, *mac_reg, mac_addr_lo);
924
*mac_reg += MAC_MACA_INC;
925
}
926
927
static void
928
xgbe_set_mac_addn_addrs(struct xgbe_prv_data *pdata)
929
{
930
unsigned int mac_reg;
931
unsigned int addn_macs;
932
933
mac_reg = MAC_MACA1HR;
934
addn_macs = pdata->hw_feat.addn_mac;
935
936
xgbe_set_mac_reg(pdata, pdata->mac_addr, &mac_reg);
937
addn_macs--;
938
939
/* Clear remaining additional MAC address entries */
940
while (addn_macs--)
941
xgbe_set_mac_reg(pdata, NULL, &mac_reg);
942
}
943
944
static int
945
xgbe_add_mac_addresses(struct xgbe_prv_data *pdata)
946
{
947
/* TODO - add support to set mac hash table */
948
xgbe_set_mac_addn_addrs(pdata);
949
950
return (0);
951
}
952
953
static int
954
xgbe_set_mac_address(struct xgbe_prv_data *pdata, uint8_t *addr)
955
{
956
unsigned int mac_addr_hi, mac_addr_lo;
957
958
mac_addr_hi = (addr[5] << 8) | (addr[4] << 0);
959
mac_addr_lo = (addr[3] << 24) | (addr[2] << 16) |
960
(addr[1] << 8) | (addr[0] << 0);
961
962
XGMAC_IOWRITE(pdata, MAC_MACA0HR, mac_addr_hi);
963
XGMAC_IOWRITE(pdata, MAC_MACA0LR, mac_addr_lo);
964
965
return (0);
966
}
967
968
static int
969
xgbe_config_rx_mode(struct xgbe_prv_data *pdata)
970
{
971
unsigned int pr_mode, am_mode;
972
973
pr_mode = ((if_getflags(pdata->netdev) & IFF_PROMISC) != 0);
974
am_mode = ((if_getflags(pdata->netdev) & IFF_ALLMULTI) != 0);
975
976
xgbe_set_promiscuous_mode(pdata, pr_mode);
977
xgbe_set_all_multicast_mode(pdata, am_mode);
978
979
xgbe_add_mac_addresses(pdata);
980
981
return (0);
982
}
983
984
static int
985
xgbe_clr_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
986
{
987
unsigned int reg;
988
989
if (gpio > 15)
990
return (-EINVAL);
991
992
reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
993
994
reg &= ~(1 << (gpio + 16));
995
XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
996
997
return (0);
998
}
999
1000
static int
1001
xgbe_set_gpio(struct xgbe_prv_data *pdata, unsigned int gpio)
1002
{
1003
unsigned int reg;
1004
1005
if (gpio > 15)
1006
return (-EINVAL);
1007
1008
reg = XGMAC_IOREAD(pdata, MAC_GPIOSR);
1009
1010
reg |= (1 << (gpio + 16));
1011
XGMAC_IOWRITE(pdata, MAC_GPIOSR, reg);
1012
1013
return (0);
1014
}
1015
1016
static int
1017
xgbe_read_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1018
{
1019
unsigned long flags;
1020
unsigned int mmd_address, index, offset;
1021
int mmd_data;
1022
1023
if (mmd_reg & MII_ADDR_C45)
1024
mmd_address = mmd_reg & ~MII_ADDR_C45;
1025
else
1026
mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1027
1028
/* The PCS registers are accessed using mmio. The underlying
1029
* management interface uses indirect addressing to access the MMD
1030
* register sets. This requires accessing of the PCS register in two
1031
* phases, an address phase and a data phase.
1032
*
1033
* The mmio interface is based on 16-bit offsets and values. All
1034
* register offsets must therefore be adjusted by left shifting the
1035
* offset 1 bit and reading 16 bits of data.
1036
*/
1037
mmd_address <<= 1;
1038
index = mmd_address & ~pdata->xpcs_window_mask;
1039
offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1040
1041
spin_lock_irqsave(&pdata->xpcs_lock, flags);
1042
XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1043
mmd_data = XPCS16_IOREAD(pdata, offset);
1044
spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1045
1046
return (mmd_data);
1047
}
1048
1049
static void
1050
xgbe_write_mmd_regs_v2(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1051
int mmd_data)
1052
{
1053
unsigned long flags;
1054
unsigned int mmd_address, index, offset;
1055
1056
if (mmd_reg & MII_ADDR_C45)
1057
mmd_address = mmd_reg & ~MII_ADDR_C45;
1058
else
1059
mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1060
1061
/* The PCS registers are accessed using mmio. The underlying
1062
* management interface uses indirect addressing to access the MMD
1063
* register sets. This requires accessing of the PCS register in two
1064
* phases, an address phase and a data phase.
1065
*
1066
* The mmio interface is based on 16-bit offsets and values. All
1067
* register offsets must therefore be adjusted by left shifting the
1068
* offset 1 bit and writing 16 bits of data.
1069
*/
1070
mmd_address <<= 1;
1071
index = mmd_address & ~pdata->xpcs_window_mask;
1072
offset = pdata->xpcs_window + (mmd_address & pdata->xpcs_window_mask);
1073
1074
spin_lock_irqsave(&pdata->xpcs_lock, flags);
1075
XPCS32_IOWRITE(pdata, pdata->xpcs_window_sel_reg, index);
1076
XPCS16_IOWRITE(pdata, offset, mmd_data);
1077
spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1078
}
1079
1080
static int
1081
xgbe_read_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1082
{
1083
unsigned long flags;
1084
unsigned int mmd_address;
1085
int mmd_data;
1086
1087
if (mmd_reg & MII_ADDR_C45)
1088
mmd_address = mmd_reg & ~MII_ADDR_C45;
1089
else
1090
mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1091
1092
/* The PCS registers are accessed using mmio. The underlying APB3
1093
* management interface uses indirect addressing to access the MMD
1094
* register sets. This requires accessing of the PCS register in two
1095
* phases, an address phase and a data phase.
1096
*
1097
* The mmio interface is based on 32-bit offsets and values. All
1098
* register offsets must therefore be adjusted by left shifting the
1099
* offset 2 bits and reading 32 bits of data.
1100
*/
1101
spin_lock_irqsave(&pdata->xpcs_lock, flags);
1102
XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1103
mmd_data = XPCS32_IOREAD(pdata, (mmd_address & 0xff) << 2);
1104
spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1105
1106
return (mmd_data);
1107
}
1108
1109
static void
1110
xgbe_write_mmd_regs_v1(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1111
int mmd_data)
1112
{
1113
unsigned int mmd_address;
1114
unsigned long flags;
1115
1116
if (mmd_reg & MII_ADDR_C45)
1117
mmd_address = mmd_reg & ~MII_ADDR_C45;
1118
else
1119
mmd_address = (pdata->mdio_mmd << 16) | (mmd_reg & 0xffff);
1120
1121
/* The PCS registers are accessed using mmio. The underlying APB3
1122
* management interface uses indirect addressing to access the MMD
1123
* register sets. This requires accessing of the PCS register in two
1124
* phases, an address phase and a data phase.
1125
*
1126
* The mmio interface is based on 32-bit offsets and values. All
1127
* register offsets must therefore be adjusted by left shifting the
1128
* offset 2 bits and writing 32 bits of data.
1129
*/
1130
spin_lock_irqsave(&pdata->xpcs_lock, flags);
1131
XPCS32_IOWRITE(pdata, PCS_V1_WINDOW_SELECT, mmd_address >> 8);
1132
XPCS32_IOWRITE(pdata, (mmd_address & 0xff) << 2, mmd_data);
1133
spin_unlock_irqrestore(&pdata->xpcs_lock, flags);
1134
}
1135
1136
static int
1137
xgbe_read_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg)
1138
{
1139
switch (pdata->vdata->xpcs_access) {
1140
case XGBE_XPCS_ACCESS_V1:
1141
return (xgbe_read_mmd_regs_v1(pdata, prtad, mmd_reg));
1142
1143
case XGBE_XPCS_ACCESS_V2:
1144
default:
1145
return (xgbe_read_mmd_regs_v2(pdata, prtad, mmd_reg));
1146
}
1147
}
1148
1149
static void
1150
xgbe_write_mmd_regs(struct xgbe_prv_data *pdata, int prtad, int mmd_reg,
1151
int mmd_data)
1152
{
1153
switch (pdata->vdata->xpcs_access) {
1154
case XGBE_XPCS_ACCESS_V1:
1155
return (xgbe_write_mmd_regs_v1(pdata, prtad, mmd_reg, mmd_data));
1156
1157
case XGBE_XPCS_ACCESS_V2:
1158
default:
1159
return (xgbe_write_mmd_regs_v2(pdata, prtad, mmd_reg, mmd_data));
1160
}
1161
}
1162
1163
static unsigned int
1164
xgbe_create_mdio_sca(int port, int reg)
1165
{
1166
unsigned int mdio_sca, da;
1167
1168
da = (reg & MII_ADDR_C45) ? reg >> 16 : 0;
1169
1170
mdio_sca = 0;
1171
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, RA, reg);
1172
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, PA, port);
1173
XGMAC_SET_BITS(mdio_sca, MAC_MDIOSCAR, DA, da);
1174
1175
return (mdio_sca);
1176
}
1177
1178
static int
1179
xgbe_write_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg,
1180
uint16_t val)
1181
{
1182
unsigned int mdio_sca, mdio_sccd;
1183
1184
mtx_lock_spin(&pdata->mdio_mutex);
1185
1186
mdio_sca = xgbe_create_mdio_sca(addr, reg);
1187
XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1188
1189
mdio_sccd = 0;
1190
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, DATA, val);
1191
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 1);
1192
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1193
XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1194
1195
if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
1196
EWOULDBLOCK) {
1197
axgbe_error("%s: MDIO write error\n", __func__);
1198
mtx_unlock_spin(&pdata->mdio_mutex);
1199
return (-ETIMEDOUT);
1200
}
1201
1202
mtx_unlock_spin(&pdata->mdio_mutex);
1203
return (0);
1204
}
1205
1206
static int
1207
xgbe_read_ext_mii_regs(struct xgbe_prv_data *pdata, int addr, int reg)
1208
{
1209
unsigned int mdio_sca, mdio_sccd;
1210
1211
mtx_lock_spin(&pdata->mdio_mutex);
1212
1213
mdio_sca = xgbe_create_mdio_sca(addr, reg);
1214
XGMAC_IOWRITE(pdata, MAC_MDIOSCAR, mdio_sca);
1215
1216
mdio_sccd = 0;
1217
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, CMD, 3);
1218
XGMAC_SET_BITS(mdio_sccd, MAC_MDIOSCCDR, BUSY, 1);
1219
XGMAC_IOWRITE(pdata, MAC_MDIOSCCDR, mdio_sccd);
1220
1221
if (msleep_spin(pdata, &pdata->mdio_mutex, "mdio_xfer", hz / 8) ==
1222
EWOULDBLOCK) {
1223
axgbe_error("%s: MDIO read error\n", __func__);
1224
mtx_unlock_spin(&pdata->mdio_mutex);
1225
return (-ETIMEDOUT);
1226
}
1227
1228
mtx_unlock_spin(&pdata->mdio_mutex);
1229
1230
return (XGMAC_IOREAD_BITS(pdata, MAC_MDIOSCCDR, DATA));
1231
}
1232
1233
static int
1234
xgbe_set_ext_mii_mode(struct xgbe_prv_data *pdata, unsigned int port,
1235
enum xgbe_mdio_mode mode)
1236
{
1237
unsigned int reg_val = XGMAC_IOREAD(pdata, MAC_MDIOCL22R);
1238
1239
switch (mode) {
1240
case XGBE_MDIO_MODE_CL22:
1241
if (port > XGMAC_MAX_C22_PORT)
1242
return (-EINVAL);
1243
reg_val |= (1 << port);
1244
break;
1245
case XGBE_MDIO_MODE_CL45:
1246
break;
1247
default:
1248
return (-EINVAL);
1249
}
1250
1251
XGMAC_IOWRITE(pdata, MAC_MDIOCL22R, reg_val);
1252
1253
return (0);
1254
}
1255
1256
static int
1257
xgbe_tx_complete(struct xgbe_ring_desc *rdesc)
1258
{
1259
return (!XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, OWN));
1260
}
1261
1262
static int
1263
xgbe_disable_rx_csum(struct xgbe_prv_data *pdata)
1264
{
1265
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 0);
1266
1267
axgbe_printf(0, "Receive checksum offload Disabled\n");
1268
return (0);
1269
}
1270
1271
static int
1272
xgbe_enable_rx_csum(struct xgbe_prv_data *pdata)
1273
{
1274
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, IPC, 1);
1275
1276
axgbe_printf(0, "Receive checksum offload Enabled\n");
1277
return (0);
1278
}
1279
1280
static void
1281
xgbe_tx_desc_reset(struct xgbe_ring_data *rdata)
1282
{
1283
struct xgbe_ring_desc *rdesc = rdata->rdesc;
1284
1285
/* Reset the Tx descriptor
1286
* Set buffer 1 (lo) address to zero
1287
* Set buffer 1 (hi) address to zero
1288
* Reset all other control bits (IC, TTSE, B2L & B1L)
1289
* Reset all other control bits (OWN, CTXT, FD, LD, CPC, CIC, etc)
1290
*/
1291
rdesc->desc0 = 0;
1292
rdesc->desc1 = 0;
1293
rdesc->desc2 = 0;
1294
rdesc->desc3 = 0;
1295
1296
wmb();
1297
}
1298
1299
static void
1300
xgbe_tx_desc_init(struct xgbe_channel *channel)
1301
{
1302
struct xgbe_ring *ring = channel->tx_ring;
1303
struct xgbe_ring_data *rdata;
1304
int i;
1305
int start_index = ring->cur;
1306
1307
/* Initialze all descriptors */
1308
for (i = 0; i < ring->rdesc_count; i++) {
1309
rdata = XGBE_GET_DESC_DATA(ring, i);
1310
1311
/* Initialize Tx descriptor */
1312
xgbe_tx_desc_reset(rdata);
1313
}
1314
1315
/* Update the total number of Tx descriptors */
1316
XGMAC_DMA_IOWRITE(channel, DMA_CH_TDRLR, ring->rdesc_count - 1);
1317
1318
/* Update the starting address of descriptor ring */
1319
rdata = XGBE_GET_DESC_DATA(ring, start_index);
1320
XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_HI,
1321
upper_32_bits(rdata->rdata_paddr));
1322
XGMAC_DMA_IOWRITE(channel, DMA_CH_TDLR_LO,
1323
lower_32_bits(rdata->rdata_paddr));
1324
}
1325
1326
static void
1327
xgbe_rx_desc_init(struct xgbe_channel *channel)
1328
{
1329
struct xgbe_ring *ring = channel->rx_ring;
1330
struct xgbe_ring_data *rdata;
1331
unsigned int start_index = ring->cur;
1332
1333
/*
1334
* Just set desc_count and the starting address of the desc list
1335
* here. Rest will be done as part of the txrx path.
1336
*/
1337
1338
/* Update the total number of Rx descriptors */
1339
XGMAC_DMA_IOWRITE(channel, DMA_CH_RDRLR, ring->rdesc_count - 1);
1340
1341
/* Update the starting address of descriptor ring */
1342
rdata = XGBE_GET_DESC_DATA(ring, start_index);
1343
XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_HI,
1344
upper_32_bits(rdata->rdata_paddr));
1345
XGMAC_DMA_IOWRITE(channel, DMA_CH_RDLR_LO,
1346
lower_32_bits(rdata->rdata_paddr));
1347
}
1348
1349
static int
1350
xgbe_dev_read(struct xgbe_channel *channel)
1351
{
1352
struct xgbe_prv_data *pdata = channel->pdata;
1353
struct xgbe_ring *ring = channel->rx_ring;
1354
struct xgbe_ring_data *rdata;
1355
struct xgbe_ring_desc *rdesc;
1356
struct xgbe_packet_data *packet = &ring->packet_data;
1357
unsigned int err, etlt, l34t = 0;
1358
1359
axgbe_printf(1, "-->xgbe_dev_read: cur = %d\n", ring->cur);
1360
1361
rdata = XGBE_GET_DESC_DATA(ring, ring->cur);
1362
rdesc = rdata->rdesc;
1363
1364
/* Check for data availability */
1365
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, OWN))
1366
return (1);
1367
1368
rmb();
1369
1370
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CTXT)) {
1371
/* TODO - Timestamp Context Descriptor */
1372
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1373
CONTEXT, 1);
1374
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1375
CONTEXT_NEXT, 0);
1376
return (0);
1377
}
1378
1379
/* Normal Descriptor, be sure Context Descriptor bit is off */
1380
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES, CONTEXT, 0);
1381
1382
/* Indicate if a Context Descriptor is next */
1383
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, CDA))
1384
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1385
CONTEXT_NEXT, 1);
1386
1387
/* Get the header length */
1388
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, FD)) {
1389
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1390
FIRST, 1);
1391
rdata->rx.hdr_len = XGMAC_GET_BITS_LE(rdesc->desc2,
1392
RX_NORMAL_DESC2, HL);
1393
if (rdata->rx.hdr_len)
1394
pdata->ext_stats.rx_split_header_packets++;
1395
} else
1396
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1397
FIRST, 0);
1398
1399
/* Get the RSS hash */
1400
if (XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, RSV)) {
1401
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1402
RSS_HASH, 1);
1403
1404
packet->rss_hash = le32_to_cpu(rdesc->desc1);
1405
1406
l34t = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, L34T);
1407
switch (l34t) {
1408
case RX_DESC3_L34T_IPV4_TCP:
1409
packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV4;
1410
break;
1411
case RX_DESC3_L34T_IPV4_UDP:
1412
packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV4;
1413
break;
1414
case RX_DESC3_L34T_IPV6_TCP:
1415
packet->rss_hash_type = M_HASHTYPE_RSS_TCP_IPV6;
1416
break;
1417
case RX_DESC3_L34T_IPV6_UDP:
1418
packet->rss_hash_type = M_HASHTYPE_RSS_UDP_IPV6;
1419
break;
1420
default:
1421
packet->rss_hash_type = M_HASHTYPE_OPAQUE;
1422
break;
1423
}
1424
}
1425
1426
/* Not all the data has been transferred for this packet */
1427
if (!XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, LD)) {
1428
/* This is not the last of the data for this packet */
1429
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1430
LAST, 0);
1431
return (0);
1432
}
1433
1434
/* This is the last of the data for this packet */
1435
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1436
LAST, 1);
1437
1438
/* Get the packet length */
1439
rdata->rx.len = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, PL);
1440
1441
/* Set checksum done indicator as appropriate */
1442
/* TODO - add tunneling support */
1443
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1444
CSUM_DONE, 1);
1445
1446
/* Check for errors (only valid in last descriptor) */
1447
err = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ES);
1448
etlt = XGMAC_GET_BITS_LE(rdesc->desc3, RX_NORMAL_DESC3, ETLT);
1449
axgbe_printf(1, "%s: err=%u, etlt=%#x\n", __func__, err, etlt);
1450
1451
if (!err || !etlt) {
1452
/* No error if err is 0 or etlt is 0 */
1453
if (etlt == 0x09 &&
1454
(if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
1455
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1456
VLAN_CTAG, 1);
1457
packet->vlan_ctag = XGMAC_GET_BITS_LE(rdesc->desc0,
1458
RX_NORMAL_DESC0, OVT);
1459
axgbe_printf(1, "vlan-ctag=%#06x\n", packet->vlan_ctag);
1460
}
1461
} else {
1462
unsigned int tnp = XGMAC_GET_BITS(packet->attributes,
1463
RX_PACKET_ATTRIBUTES, TNP);
1464
1465
if ((etlt == 0x05) || (etlt == 0x06)) {
1466
axgbe_printf(1, "%s: err1 l34t %d err 0x%x etlt 0x%x\n",
1467
__func__, l34t, err, etlt);
1468
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1469
CSUM_DONE, 0);
1470
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1471
TNPCSUM_DONE, 0);
1472
pdata->ext_stats.rx_csum_errors++;
1473
} else if (tnp && ((etlt == 0x09) || (etlt == 0x0a))) {
1474
axgbe_printf(1, "%s: err2 l34t %d err 0x%x etlt 0x%x\n",
1475
__func__, l34t, err, etlt);
1476
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1477
CSUM_DONE, 0);
1478
XGMAC_SET_BITS(packet->attributes, RX_PACKET_ATTRIBUTES,
1479
TNPCSUM_DONE, 0);
1480
pdata->ext_stats.rx_vxlan_csum_errors++;
1481
} else {
1482
axgbe_printf(1, "%s: tnp %d l34t %d err 0x%x etlt 0x%x\n",
1483
__func__, tnp, l34t, err, etlt);
1484
axgbe_printf(1, "%s: Channel: %d SR 0x%x DSR 0x%x \n",
1485
__func__, channel->queue_index,
1486
XGMAC_DMA_IOREAD(channel, DMA_CH_SR),
1487
XGMAC_DMA_IOREAD(channel, DMA_CH_DSR));
1488
axgbe_printf(1, "%s: ring cur %d dirty %d\n",
1489
__func__, ring->cur, ring->dirty);
1490
axgbe_printf(1, "%s: Desc 0x%08x-0x%08x-0x%08x-0x%08x\n",
1491
__func__, rdesc->desc0, rdesc->desc1, rdesc->desc2,
1492
rdesc->desc3);
1493
XGMAC_SET_BITS(packet->errors, RX_PACKET_ERRORS,
1494
FRAME, 1);
1495
}
1496
}
1497
1498
axgbe_printf(1, "<--xgbe_dev_read: %s - descriptor=%u (cur=%d)\n",
1499
channel->name, ring->cur & (ring->rdesc_count - 1), ring->cur);
1500
1501
return (0);
1502
}
1503
1504
static int
1505
xgbe_is_context_desc(struct xgbe_ring_desc *rdesc)
1506
{
1507
/* Rx and Tx share CTXT bit, so check TDES3.CTXT bit */
1508
return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, CTXT));
1509
}
1510
1511
static int
1512
xgbe_is_last_desc(struct xgbe_ring_desc *rdesc)
1513
{
1514
/* Rx and Tx share LD bit, so check TDES3.LD bit */
1515
return (XGMAC_GET_BITS_LE(rdesc->desc3, TX_NORMAL_DESC3, LD));
1516
}
1517
1518
static int
1519
xgbe_enable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
1520
{
1521
struct xgbe_prv_data *pdata = channel->pdata;
1522
1523
axgbe_printf(1, "enable_int: DMA_CH_IER read - 0x%x\n",
1524
channel->curr_ier);
1525
1526
switch (int_id) {
1527
case XGMAC_INT_DMA_CH_SR_TI:
1528
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
1529
break;
1530
case XGMAC_INT_DMA_CH_SR_TPS:
1531
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 1);
1532
break;
1533
case XGMAC_INT_DMA_CH_SR_TBU:
1534
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 1);
1535
break;
1536
case XGMAC_INT_DMA_CH_SR_RI:
1537
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
1538
break;
1539
case XGMAC_INT_DMA_CH_SR_RBU:
1540
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 1);
1541
break;
1542
case XGMAC_INT_DMA_CH_SR_RPS:
1543
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 1);
1544
break;
1545
case XGMAC_INT_DMA_CH_SR_TI_RI:
1546
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 1);
1547
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 1);
1548
break;
1549
case XGMAC_INT_DMA_CH_SR_FBE:
1550
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 1);
1551
break;
1552
case XGMAC_INT_DMA_ALL:
1553
channel->curr_ier |= channel->saved_ier;
1554
break;
1555
default:
1556
return (-1);
1557
}
1558
1559
XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
1560
1561
axgbe_printf(1, "enable_int: DMA_CH_IER write - 0x%x\n",
1562
channel->curr_ier);
1563
1564
return (0);
1565
}
1566
1567
static int
1568
xgbe_disable_int(struct xgbe_channel *channel, enum xgbe_int int_id)
1569
{
1570
struct xgbe_prv_data *pdata = channel->pdata;
1571
1572
axgbe_printf(1, "disable_int: DMA_CH_IER read - 0x%x\n",
1573
channel->curr_ier);
1574
1575
switch (int_id) {
1576
case XGMAC_INT_DMA_CH_SR_TI:
1577
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
1578
break;
1579
case XGMAC_INT_DMA_CH_SR_TPS:
1580
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TXSE, 0);
1581
break;
1582
case XGMAC_INT_DMA_CH_SR_TBU:
1583
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TBUE, 0);
1584
break;
1585
case XGMAC_INT_DMA_CH_SR_RI:
1586
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
1587
break;
1588
case XGMAC_INT_DMA_CH_SR_RBU:
1589
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RBUE, 0);
1590
break;
1591
case XGMAC_INT_DMA_CH_SR_RPS:
1592
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RSE, 0);
1593
break;
1594
case XGMAC_INT_DMA_CH_SR_TI_RI:
1595
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, TIE, 0);
1596
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, RIE, 0);
1597
break;
1598
case XGMAC_INT_DMA_CH_SR_FBE:
1599
XGMAC_SET_BITS(channel->curr_ier, DMA_CH_IER, FBEE, 0);
1600
break;
1601
case XGMAC_INT_DMA_ALL:
1602
channel->saved_ier = channel->curr_ier;
1603
channel->curr_ier = 0;
1604
break;
1605
default:
1606
return (-1);
1607
}
1608
1609
XGMAC_DMA_IOWRITE(channel, DMA_CH_IER, channel->curr_ier);
1610
1611
axgbe_printf(1, "disable_int: DMA_CH_IER write - 0x%x\n",
1612
channel->curr_ier);
1613
1614
return (0);
1615
}
1616
1617
static int
1618
__xgbe_exit(struct xgbe_prv_data *pdata)
1619
{
1620
unsigned int count = 2000;
1621
1622
/* Issue a software reset */
1623
XGMAC_IOWRITE_BITS(pdata, DMA_MR, SWR, 1);
1624
DELAY(10);
1625
1626
/* Poll Until Poll Condition */
1627
while (--count && XGMAC_IOREAD_BITS(pdata, DMA_MR, SWR))
1628
DELAY(500);
1629
1630
if (!count)
1631
return (-EBUSY);
1632
1633
return (0);
1634
}
1635
1636
static int
1637
xgbe_exit(struct xgbe_prv_data *pdata)
1638
{
1639
int ret;
1640
1641
/* To guard against possible incorrectly generated interrupts,
1642
* issue the software reset twice.
1643
*/
1644
ret = __xgbe_exit(pdata);
1645
if (ret) {
1646
axgbe_error("%s: exit error %d\n", __func__, ret);
1647
return (ret);
1648
}
1649
1650
return (__xgbe_exit(pdata));
1651
}
1652
1653
static int
1654
xgbe_flush_tx_queues(struct xgbe_prv_data *pdata)
1655
{
1656
unsigned int i, count;
1657
1658
if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) < 0x21)
1659
return (0);
1660
1661
for (i = 0; i < pdata->tx_q_count; i++)
1662
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, FTQ, 1);
1663
1664
/* Poll Until Poll Condition */
1665
for (i = 0; i < pdata->tx_q_count; i++) {
1666
count = 2000;
1667
while (--count && XGMAC_MTL_IOREAD_BITS(pdata, i,
1668
MTL_Q_TQOMR, FTQ))
1669
DELAY(500);
1670
1671
if (!count)
1672
return (-EBUSY);
1673
}
1674
1675
return (0);
1676
}
1677
1678
static void
1679
xgbe_config_dma_bus(struct xgbe_prv_data *pdata)
1680
{
1681
unsigned int sbmr;
1682
1683
sbmr = XGMAC_IOREAD(pdata, DMA_SBMR);
1684
1685
/* Set enhanced addressing mode */
1686
XGMAC_SET_BITS(sbmr, DMA_SBMR, EAME, 1);
1687
1688
/* Set the System Bus mode */
1689
XGMAC_SET_BITS(sbmr, DMA_SBMR, UNDEF, 1);
1690
XGMAC_SET_BITS(sbmr, DMA_SBMR, BLEN, pdata->blen >> 2);
1691
XGMAC_SET_BITS(sbmr, DMA_SBMR, AAL, pdata->aal);
1692
XGMAC_SET_BITS(sbmr, DMA_SBMR, RD_OSR_LMT, pdata->rd_osr_limit - 1);
1693
XGMAC_SET_BITS(sbmr, DMA_SBMR, WR_OSR_LMT, pdata->wr_osr_limit - 1);
1694
1695
XGMAC_IOWRITE(pdata, DMA_SBMR, sbmr);
1696
1697
/* Set descriptor fetching threshold */
1698
if (pdata->vdata->tx_desc_prefetch)
1699
XGMAC_IOWRITE_BITS(pdata, DMA_TXEDMACR, TDPS,
1700
pdata->vdata->tx_desc_prefetch);
1701
1702
if (pdata->vdata->rx_desc_prefetch)
1703
XGMAC_IOWRITE_BITS(pdata, DMA_RXEDMACR, RDPS,
1704
pdata->vdata->rx_desc_prefetch);
1705
}
1706
1707
static void
1708
xgbe_config_dma_cache(struct xgbe_prv_data *pdata)
1709
{
1710
XGMAC_IOWRITE(pdata, DMA_AXIARCR, pdata->arcr);
1711
XGMAC_IOWRITE(pdata, DMA_AXIAWCR, pdata->awcr);
1712
if (pdata->awarcr)
1713
XGMAC_IOWRITE(pdata, DMA_AXIAWARCR, pdata->awarcr);
1714
}
1715
1716
static void
1717
xgbe_config_mtl_mode(struct xgbe_prv_data *pdata)
1718
{
1719
unsigned int i;
1720
1721
/* Set Tx to weighted round robin scheduling algorithm */
1722
XGMAC_IOWRITE_BITS(pdata, MTL_OMR, ETSALG, MTL_ETSALG_WRR);
1723
1724
/* Set Tx traffic classes to use WRR algorithm with equal weights */
1725
for (i = 0; i < pdata->hw_feat.tc_cnt; i++) {
1726
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_ETSCR, TSA,
1727
MTL_TSA_ETS);
1728
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_TC_QWR, QW, 1);
1729
}
1730
1731
/* Set Rx to strict priority algorithm */
1732
XGMAC_IOWRITE_BITS(pdata, MTL_OMR, RAA, MTL_RAA_SP);
1733
}
1734
1735
static void
1736
xgbe_queue_flow_control_threshold(struct xgbe_prv_data *pdata,
1737
unsigned int queue, unsigned int q_fifo_size)
1738
{
1739
unsigned int frame_fifo_size;
1740
unsigned int rfa, rfd;
1741
1742
frame_fifo_size = XGMAC_FLOW_CONTROL_ALIGN(xgbe_get_max_frame(pdata));
1743
axgbe_printf(1, "%s: queue %d q_fifo_size %d frame_fifo_size 0x%x\n",
1744
__func__, queue, q_fifo_size, frame_fifo_size);
1745
1746
/* TODO - add pfc/ets related support */
1747
1748
/* This path deals with just maximum frame sizes which are
1749
* limited to a jumbo frame of 9,000 (plus headers, etc.)
1750
* so we can never exceed the maximum allowable RFA/RFD
1751
* values.
1752
*/
1753
if (q_fifo_size <= 2048) {
1754
/* rx_rfd to zero to signal no flow control */
1755
pdata->rx_rfa[queue] = 0;
1756
pdata->rx_rfd[queue] = 0;
1757
return;
1758
}
1759
1760
if (q_fifo_size <= 4096) {
1761
/* Between 2048 and 4096 */
1762
pdata->rx_rfa[queue] = 0; /* Full - 1024 bytes */
1763
pdata->rx_rfd[queue] = 1; /* Full - 1536 bytes */
1764
return;
1765
}
1766
1767
if (q_fifo_size <= frame_fifo_size) {
1768
/* Between 4096 and max-frame */
1769
pdata->rx_rfa[queue] = 2; /* Full - 2048 bytes */
1770
pdata->rx_rfd[queue] = 5; /* Full - 3584 bytes */
1771
return;
1772
}
1773
1774
if (q_fifo_size <= (frame_fifo_size * 3)) {
1775
/* Between max-frame and 3 max-frames,
1776
* trigger if we get just over a frame of data and
1777
* resume when we have just under half a frame left.
1778
*/
1779
rfa = q_fifo_size - frame_fifo_size;
1780
rfd = rfa + (frame_fifo_size / 2);
1781
} else {
1782
/* Above 3 max-frames - trigger when just over
1783
* 2 frames of space available
1784
*/
1785
rfa = frame_fifo_size * 2;
1786
rfa += XGMAC_FLOW_CONTROL_UNIT;
1787
rfd = rfa + frame_fifo_size;
1788
}
1789
1790
pdata->rx_rfa[queue] = XGMAC_FLOW_CONTROL_VALUE(rfa);
1791
pdata->rx_rfd[queue] = XGMAC_FLOW_CONTROL_VALUE(rfd);
1792
axgbe_printf(1, "%s: forced queue %d rfa 0x%x rfd 0x%x\n", __func__,
1793
queue, pdata->rx_rfa[queue], pdata->rx_rfd[queue]);
1794
}
1795
1796
static void
1797
xgbe_calculate_flow_control_threshold(struct xgbe_prv_data *pdata,
1798
unsigned int *fifo)
1799
{
1800
unsigned int q_fifo_size;
1801
unsigned int i;
1802
1803
for (i = 0; i < pdata->rx_q_count; i++) {
1804
q_fifo_size = (fifo[i] + 1) * XGMAC_FIFO_UNIT;
1805
1806
axgbe_printf(1, "%s: fifo[%d] - 0x%x q_fifo_size 0x%x\n",
1807
__func__, i, fifo[i], q_fifo_size);
1808
xgbe_queue_flow_control_threshold(pdata, i, q_fifo_size);
1809
}
1810
}
1811
1812
static void
1813
xgbe_config_flow_control_threshold(struct xgbe_prv_data *pdata)
1814
{
1815
unsigned int i;
1816
1817
for (i = 0; i < pdata->rx_q_count; i++) {
1818
axgbe_printf(1, "%s: queue %d rfa %d rfd %d\n", __func__, i,
1819
pdata->rx_rfa[i], pdata->rx_rfd[i]);
1820
1821
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFA,
1822
pdata->rx_rfa[i]);
1823
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQFCR, RFD,
1824
pdata->rx_rfd[i]);
1825
1826
axgbe_printf(1, "%s: MTL_Q_RQFCR 0x%x\n", __func__,
1827
XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQFCR));
1828
}
1829
}
1830
1831
static unsigned int
1832
xgbe_get_tx_fifo_size(struct xgbe_prv_data *pdata)
1833
{
1834
/* The configured value may not be the actual amount of fifo RAM */
1835
return (min_t(unsigned int, pdata->tx_max_fifo_size,
1836
pdata->hw_feat.tx_fifo_size));
1837
}
1838
1839
static unsigned int
1840
xgbe_get_rx_fifo_size(struct xgbe_prv_data *pdata)
1841
{
1842
/* The configured value may not be the actual amount of fifo RAM */
1843
return (min_t(unsigned int, pdata->rx_max_fifo_size,
1844
pdata->hw_feat.rx_fifo_size));
1845
}
1846
1847
static void
1848
xgbe_calculate_equal_fifo(unsigned int fifo_size, unsigned int queue_count,
1849
unsigned int *fifo)
1850
{
1851
unsigned int q_fifo_size;
1852
unsigned int p_fifo;
1853
unsigned int i;
1854
1855
q_fifo_size = fifo_size / queue_count;
1856
1857
/* Calculate the fifo setting by dividing the queue's fifo size
1858
* by the fifo allocation increment (with 0 representing the
1859
* base allocation increment so decrement the result by 1).
1860
*/
1861
p_fifo = q_fifo_size / XGMAC_FIFO_UNIT;
1862
if (p_fifo)
1863
p_fifo--;
1864
1865
/* Distribute the fifo equally amongst the queues */
1866
for (i = 0; i < queue_count; i++)
1867
fifo[i] = p_fifo;
1868
}
1869
1870
static unsigned int
1871
xgbe_set_nonprio_fifos(unsigned int fifo_size, unsigned int queue_count,
1872
unsigned int *fifo)
1873
{
1874
unsigned int i;
1875
1876
MPASS(powerof2(XGMAC_FIFO_MIN_ALLOC));
1877
1878
if (queue_count <= IEEE_8021QAZ_MAX_TCS)
1879
return (fifo_size);
1880
1881
/* Rx queues 9 and up are for specialized packets,
1882
* such as PTP or DCB control packets, etc. and
1883
* don't require a large fifo
1884
*/
1885
for (i = IEEE_8021QAZ_MAX_TCS; i < queue_count; i++) {
1886
fifo[i] = (XGMAC_FIFO_MIN_ALLOC / XGMAC_FIFO_UNIT) - 1;
1887
fifo_size -= XGMAC_FIFO_MIN_ALLOC;
1888
}
1889
1890
return (fifo_size);
1891
}
1892
1893
static void
1894
xgbe_config_tx_fifo_size(struct xgbe_prv_data *pdata)
1895
{
1896
unsigned int fifo_size;
1897
unsigned int fifo[XGBE_MAX_QUEUES];
1898
unsigned int i;
1899
1900
fifo_size = xgbe_get_tx_fifo_size(pdata);
1901
axgbe_printf(1, "%s: fifo_size 0x%x\n", __func__, fifo_size);
1902
1903
xgbe_calculate_equal_fifo(fifo_size, pdata->tx_q_count, fifo);
1904
1905
for (i = 0; i < pdata->tx_q_count; i++) {
1906
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TQS, fifo[i]);
1907
axgbe_printf(1, "Tx q %d FIFO Size 0x%x\n", i,
1908
XGMAC_MTL_IOREAD(pdata, i, MTL_Q_TQOMR));
1909
}
1910
1911
axgbe_printf(1, "%d Tx hardware queues, %d byte fifo per queue\n",
1912
pdata->tx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
1913
}
1914
1915
static void
1916
xgbe_config_rx_fifo_size(struct xgbe_prv_data *pdata)
1917
{
1918
unsigned int fifo_size;
1919
unsigned int fifo[XGBE_MAX_QUEUES];
1920
unsigned int prio_queues;
1921
unsigned int i;
1922
1923
/* TODO - add pfc/ets related support */
1924
1925
/* Clear any DCB related fifo/queue information */
1926
fifo_size = xgbe_get_rx_fifo_size(pdata);
1927
prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
1928
axgbe_printf(1, "%s: fifo_size 0x%x rx_q_cnt %d prio %d\n", __func__,
1929
fifo_size, pdata->rx_q_count, prio_queues);
1930
1931
/* Assign a minimum fifo to the non-VLAN priority queues */
1932
fifo_size = xgbe_set_nonprio_fifos(fifo_size, pdata->rx_q_count, fifo);
1933
1934
xgbe_calculate_equal_fifo(fifo_size, prio_queues, fifo);
1935
1936
for (i = 0; i < pdata->rx_q_count; i++) {
1937
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_RQOMR, RQS, fifo[i]);
1938
axgbe_printf(1, "Rx q %d FIFO Size 0x%x\n", i,
1939
XGMAC_MTL_IOREAD(pdata, i, MTL_Q_RQOMR));
1940
}
1941
1942
xgbe_calculate_flow_control_threshold(pdata, fifo);
1943
xgbe_config_flow_control_threshold(pdata);
1944
1945
axgbe_printf(1, "%u Rx hardware queues, %u byte fifo/queue\n",
1946
pdata->rx_q_count, ((fifo[0] + 1) * XGMAC_FIFO_UNIT));
1947
}
1948
1949
static void
1950
xgbe_config_queue_mapping(struct xgbe_prv_data *pdata)
1951
{
1952
unsigned int qptc, qptc_extra, queue;
1953
unsigned int prio_queues;
1954
unsigned int ppq, ppq_extra, prio;
1955
unsigned int mask;
1956
unsigned int i, j, reg, reg_val;
1957
1958
/* Map the MTL Tx Queues to Traffic Classes
1959
* Note: Tx Queues >= Traffic Classes
1960
*/
1961
qptc = pdata->tx_q_count / pdata->hw_feat.tc_cnt;
1962
qptc_extra = pdata->tx_q_count % pdata->hw_feat.tc_cnt;
1963
1964
for (i = 0, queue = 0; i < pdata->hw_feat.tc_cnt; i++) {
1965
for (j = 0; j < qptc; j++) {
1966
axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
1967
XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
1968
Q2TCMAP, i);
1969
pdata->q2tc_map[queue++] = i;
1970
}
1971
1972
if (i < qptc_extra) {
1973
axgbe_printf(1, "TXq%u mapped to TC%u\n", queue, i);
1974
XGMAC_MTL_IOWRITE_BITS(pdata, queue, MTL_Q_TQOMR,
1975
Q2TCMAP, i);
1976
pdata->q2tc_map[queue++] = i;
1977
}
1978
}
1979
1980
/* Map the 8 VLAN priority values to available MTL Rx queues */
1981
prio_queues = XGMAC_PRIO_QUEUES(pdata->rx_q_count);
1982
ppq = IEEE_8021QAZ_MAX_TCS / prio_queues;
1983
ppq_extra = IEEE_8021QAZ_MAX_TCS % prio_queues;
1984
1985
reg = MAC_RQC2R;
1986
reg_val = 0;
1987
for (i = 0, prio = 0; i < prio_queues;) {
1988
mask = 0;
1989
for (j = 0; j < ppq; j++) {
1990
axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
1991
mask |= (1 << prio);
1992
pdata->prio2q_map[prio++] = i;
1993
}
1994
1995
if (i < ppq_extra) {
1996
axgbe_printf(1, "PRIO%u mapped to RXq%u\n", prio, i);
1997
mask |= (1 << prio);
1998
pdata->prio2q_map[prio++] = i;
1999
}
2000
2001
reg_val |= (mask << ((i++ % MAC_RQC2_Q_PER_REG) << 3));
2002
2003
if ((i % MAC_RQC2_Q_PER_REG) && (i != prio_queues))
2004
continue;
2005
2006
XGMAC_IOWRITE(pdata, reg, reg_val);
2007
reg += MAC_RQC2_INC;
2008
reg_val = 0;
2009
}
2010
2011
/* Select dynamic mapping of MTL Rx queue to DMA Rx channel */
2012
reg = MTL_RQDCM0R;
2013
reg_val = 0;
2014
for (i = 0; i < pdata->rx_q_count;) {
2015
reg_val |= (0x80 << ((i++ % MTL_RQDCM_Q_PER_REG) << 3));
2016
2017
if ((i % MTL_RQDCM_Q_PER_REG) && (i != pdata->rx_q_count))
2018
continue;
2019
2020
XGMAC_IOWRITE(pdata, reg, reg_val);
2021
2022
reg += MTL_RQDCM_INC;
2023
reg_val = 0;
2024
}
2025
}
2026
2027
static void
2028
xgbe_config_mac_address(struct xgbe_prv_data *pdata)
2029
{
2030
xgbe_set_mac_address(pdata, if_getlladdr(pdata->netdev));
2031
2032
/*
2033
* Promisc mode does not work as intended. Multicast traffic
2034
* is triggering the filter, so enable Receive All.
2035
*/
2036
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, RA, 1);
2037
2038
/* Filtering is done using perfect filtering and hash filtering */
2039
if (pdata->hw_feat.hash_table_size) {
2040
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HPF, 1);
2041
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HUC, 1);
2042
XGMAC_IOWRITE_BITS(pdata, MAC_PFR, HMC, 1);
2043
}
2044
}
2045
2046
static void
2047
xgbe_config_jumbo_enable(struct xgbe_prv_data *pdata)
2048
{
2049
unsigned int val;
2050
2051
val = (if_getmtu(pdata->netdev) > XGMAC_STD_PACKET_MTU) ? 1 : 0;
2052
2053
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, JE, val);
2054
}
2055
2056
static void
2057
xgbe_config_mac_speed(struct xgbe_prv_data *pdata)
2058
{
2059
xgbe_set_speed(pdata, pdata->phy_speed);
2060
}
2061
2062
static void
2063
xgbe_config_checksum_offload(struct xgbe_prv_data *pdata)
2064
{
2065
if ((if_getcapenable(pdata->netdev) & IFCAP_RXCSUM))
2066
xgbe_enable_rx_csum(pdata);
2067
else
2068
xgbe_disable_rx_csum(pdata);
2069
}
2070
2071
static void
2072
xgbe_config_vlan_support(struct xgbe_prv_data *pdata)
2073
{
2074
/* Indicate that VLAN Tx CTAGs come from context descriptors */
2075
XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, CSVL, 0);
2076
XGMAC_IOWRITE_BITS(pdata, MAC_VLANIR, VLTI, 1);
2077
2078
/* Set the current VLAN Hash Table register value */
2079
xgbe_update_vlan_hash_table(pdata);
2080
2081
if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWFILTER)) {
2082
axgbe_printf(1, "Enabling rx vlan filtering\n");
2083
xgbe_enable_rx_vlan_filtering(pdata);
2084
} else {
2085
axgbe_printf(1, "Disabling rx vlan filtering\n");
2086
xgbe_disable_rx_vlan_filtering(pdata);
2087
}
2088
2089
if ((if_getcapenable(pdata->netdev) & IFCAP_VLAN_HWTAGGING)) {
2090
axgbe_printf(1, "Enabling rx vlan stripping\n");
2091
xgbe_enable_rx_vlan_stripping(pdata);
2092
} else {
2093
axgbe_printf(1, "Disabling rx vlan stripping\n");
2094
xgbe_disable_rx_vlan_stripping(pdata);
2095
}
2096
}
2097
2098
static uint64_t
2099
xgbe_mmc_read(struct xgbe_prv_data *pdata, unsigned int reg_lo)
2100
{
2101
bool read_hi;
2102
uint64_t val;
2103
2104
if (pdata->vdata->mmc_64bit) {
2105
switch (reg_lo) {
2106
/* These registers are always 32 bit */
2107
case MMC_RXRUNTERROR:
2108
case MMC_RXJABBERERROR:
2109
case MMC_RXUNDERSIZE_G:
2110
case MMC_RXOVERSIZE_G:
2111
case MMC_RXWATCHDOGERROR:
2112
read_hi = false;
2113
break;
2114
2115
default:
2116
read_hi = true;
2117
}
2118
} else {
2119
switch (reg_lo) {
2120
/* These registers are always 64 bit */
2121
case MMC_TXOCTETCOUNT_GB_LO:
2122
case MMC_TXOCTETCOUNT_G_LO:
2123
case MMC_RXOCTETCOUNT_GB_LO:
2124
case MMC_RXOCTETCOUNT_G_LO:
2125
read_hi = true;
2126
break;
2127
2128
default:
2129
read_hi = false;
2130
}
2131
}
2132
2133
val = XGMAC_IOREAD(pdata, reg_lo);
2134
2135
if (read_hi)
2136
val |= ((uint64_t)XGMAC_IOREAD(pdata, reg_lo + 4) << 32);
2137
2138
return (val);
2139
}
2140
2141
static void
2142
xgbe_tx_mmc_int(struct xgbe_prv_data *pdata)
2143
{
2144
struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2145
unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_TISR);
2146
2147
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_GB))
2148
stats->txoctetcount_gb +=
2149
xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2150
2151
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_GB))
2152
stats->txframecount_gb +=
2153
xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2154
2155
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_G))
2156
stats->txbroadcastframes_g +=
2157
xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2158
2159
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_G))
2160
stats->txmulticastframes_g +=
2161
xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2162
2163
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX64OCTETS_GB))
2164
stats->tx64octets_gb +=
2165
xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2166
2167
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX65TO127OCTETS_GB))
2168
stats->tx65to127octets_gb +=
2169
xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2170
2171
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX128TO255OCTETS_GB))
2172
stats->tx128to255octets_gb +=
2173
xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2174
2175
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX256TO511OCTETS_GB))
2176
stats->tx256to511octets_gb +=
2177
xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2178
2179
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX512TO1023OCTETS_GB))
2180
stats->tx512to1023octets_gb +=
2181
xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2182
2183
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TX1024TOMAXOCTETS_GB))
2184
stats->tx1024tomaxoctets_gb +=
2185
xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2186
2187
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNICASTFRAMES_GB))
2188
stats->txunicastframes_gb +=
2189
xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2190
2191
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXMULTICASTFRAMES_GB))
2192
stats->txmulticastframes_gb +=
2193
xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2194
2195
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXBROADCASTFRAMES_GB))
2196
stats->txbroadcastframes_g +=
2197
xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2198
2199
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXUNDERFLOWERROR))
2200
stats->txunderflowerror +=
2201
xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2202
2203
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXOCTETCOUNT_G))
2204
stats->txoctetcount_g +=
2205
xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2206
2207
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXFRAMECOUNT_G))
2208
stats->txframecount_g +=
2209
xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2210
2211
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXPAUSEFRAMES))
2212
stats->txpauseframes +=
2213
xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2214
2215
if (XGMAC_GET_BITS(mmc_isr, MMC_TISR, TXVLANFRAMES_G))
2216
stats->txvlanframes_g +=
2217
xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2218
}
2219
2220
static void
2221
xgbe_rx_mmc_int(struct xgbe_prv_data *pdata)
2222
{
2223
struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2224
unsigned int mmc_isr = XGMAC_IOREAD(pdata, MMC_RISR);
2225
2226
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFRAMECOUNT_GB))
2227
stats->rxframecount_gb +=
2228
xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2229
2230
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_GB))
2231
stats->rxoctetcount_gb +=
2232
xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2233
2234
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOCTETCOUNT_G))
2235
stats->rxoctetcount_g +=
2236
xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2237
2238
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXBROADCASTFRAMES_G))
2239
stats->rxbroadcastframes_g +=
2240
xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2241
2242
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXMULTICASTFRAMES_G))
2243
stats->rxmulticastframes_g +=
2244
xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2245
2246
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXCRCERROR))
2247
stats->rxcrcerror +=
2248
xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2249
2250
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXRUNTERROR))
2251
stats->rxrunterror +=
2252
xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2253
2254
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXJABBERERROR))
2255
stats->rxjabbererror +=
2256
xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2257
2258
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNDERSIZE_G))
2259
stats->rxundersize_g +=
2260
xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2261
2262
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOVERSIZE_G))
2263
stats->rxoversize_g +=
2264
xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2265
2266
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX64OCTETS_GB))
2267
stats->rx64octets_gb +=
2268
xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2269
2270
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX65TO127OCTETS_GB))
2271
stats->rx65to127octets_gb +=
2272
xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2273
2274
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX128TO255OCTETS_GB))
2275
stats->rx128to255octets_gb +=
2276
xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2277
2278
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX256TO511OCTETS_GB))
2279
stats->rx256to511octets_gb +=
2280
xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2281
2282
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX512TO1023OCTETS_GB))
2283
stats->rx512to1023octets_gb +=
2284
xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2285
2286
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RX1024TOMAXOCTETS_GB))
2287
stats->rx1024tomaxoctets_gb +=
2288
xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2289
2290
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXUNICASTFRAMES_G))
2291
stats->rxunicastframes_g +=
2292
xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2293
2294
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXLENGTHERROR))
2295
stats->rxlengtherror +=
2296
xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2297
2298
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXOUTOFRANGETYPE))
2299
stats->rxoutofrangetype +=
2300
xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2301
2302
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXPAUSEFRAMES))
2303
stats->rxpauseframes +=
2304
xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2305
2306
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXFIFOOVERFLOW))
2307
stats->rxfifooverflow +=
2308
xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2309
2310
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXVLANFRAMES_GB))
2311
stats->rxvlanframes_gb +=
2312
xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2313
2314
if (XGMAC_GET_BITS(mmc_isr, MMC_RISR, RXWATCHDOGERROR))
2315
stats->rxwatchdogerror +=
2316
xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2317
}
2318
2319
static void
2320
xgbe_read_mmc_stats(struct xgbe_prv_data *pdata)
2321
{
2322
struct xgbe_mmc_stats *stats = &pdata->mmc_stats;
2323
2324
/* Freeze counters */
2325
XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 1);
2326
2327
stats->txoctetcount_gb +=
2328
xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_GB_LO);
2329
2330
stats->txframecount_gb +=
2331
xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_GB_LO);
2332
2333
stats->txbroadcastframes_g +=
2334
xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_G_LO);
2335
2336
stats->txmulticastframes_g +=
2337
xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_G_LO);
2338
2339
stats->tx64octets_gb +=
2340
xgbe_mmc_read(pdata, MMC_TX64OCTETS_GB_LO);
2341
2342
stats->tx65to127octets_gb +=
2343
xgbe_mmc_read(pdata, MMC_TX65TO127OCTETS_GB_LO);
2344
2345
stats->tx128to255octets_gb +=
2346
xgbe_mmc_read(pdata, MMC_TX128TO255OCTETS_GB_LO);
2347
2348
stats->tx256to511octets_gb +=
2349
xgbe_mmc_read(pdata, MMC_TX256TO511OCTETS_GB_LO);
2350
2351
stats->tx512to1023octets_gb +=
2352
xgbe_mmc_read(pdata, MMC_TX512TO1023OCTETS_GB_LO);
2353
2354
stats->tx1024tomaxoctets_gb +=
2355
xgbe_mmc_read(pdata, MMC_TX1024TOMAXOCTETS_GB_LO);
2356
2357
stats->txunicastframes_gb +=
2358
xgbe_mmc_read(pdata, MMC_TXUNICASTFRAMES_GB_LO);
2359
2360
stats->txmulticastframes_gb +=
2361
xgbe_mmc_read(pdata, MMC_TXMULTICASTFRAMES_GB_LO);
2362
2363
stats->txbroadcastframes_gb +=
2364
xgbe_mmc_read(pdata, MMC_TXBROADCASTFRAMES_GB_LO);
2365
2366
stats->txunderflowerror +=
2367
xgbe_mmc_read(pdata, MMC_TXUNDERFLOWERROR_LO);
2368
2369
stats->txoctetcount_g +=
2370
xgbe_mmc_read(pdata, MMC_TXOCTETCOUNT_G_LO);
2371
2372
stats->txframecount_g +=
2373
xgbe_mmc_read(pdata, MMC_TXFRAMECOUNT_G_LO);
2374
2375
stats->txpauseframes +=
2376
xgbe_mmc_read(pdata, MMC_TXPAUSEFRAMES_LO);
2377
2378
stats->txvlanframes_g +=
2379
xgbe_mmc_read(pdata, MMC_TXVLANFRAMES_G_LO);
2380
2381
stats->rxframecount_gb +=
2382
xgbe_mmc_read(pdata, MMC_RXFRAMECOUNT_GB_LO);
2383
2384
stats->rxoctetcount_gb +=
2385
xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_GB_LO);
2386
2387
stats->rxoctetcount_g +=
2388
xgbe_mmc_read(pdata, MMC_RXOCTETCOUNT_G_LO);
2389
2390
stats->rxbroadcastframes_g +=
2391
xgbe_mmc_read(pdata, MMC_RXBROADCASTFRAMES_G_LO);
2392
2393
stats->rxmulticastframes_g +=
2394
xgbe_mmc_read(pdata, MMC_RXMULTICASTFRAMES_G_LO);
2395
2396
stats->rxcrcerror +=
2397
xgbe_mmc_read(pdata, MMC_RXCRCERROR_LO);
2398
2399
stats->rxrunterror +=
2400
xgbe_mmc_read(pdata, MMC_RXRUNTERROR);
2401
2402
stats->rxjabbererror +=
2403
xgbe_mmc_read(pdata, MMC_RXJABBERERROR);
2404
2405
stats->rxundersize_g +=
2406
xgbe_mmc_read(pdata, MMC_RXUNDERSIZE_G);
2407
2408
stats->rxoversize_g +=
2409
xgbe_mmc_read(pdata, MMC_RXOVERSIZE_G);
2410
2411
stats->rx64octets_gb +=
2412
xgbe_mmc_read(pdata, MMC_RX64OCTETS_GB_LO);
2413
2414
stats->rx65to127octets_gb +=
2415
xgbe_mmc_read(pdata, MMC_RX65TO127OCTETS_GB_LO);
2416
2417
stats->rx128to255octets_gb +=
2418
xgbe_mmc_read(pdata, MMC_RX128TO255OCTETS_GB_LO);
2419
2420
stats->rx256to511octets_gb +=
2421
xgbe_mmc_read(pdata, MMC_RX256TO511OCTETS_GB_LO);
2422
2423
stats->rx512to1023octets_gb +=
2424
xgbe_mmc_read(pdata, MMC_RX512TO1023OCTETS_GB_LO);
2425
2426
stats->rx1024tomaxoctets_gb +=
2427
xgbe_mmc_read(pdata, MMC_RX1024TOMAXOCTETS_GB_LO);
2428
2429
stats->rxunicastframes_g +=
2430
xgbe_mmc_read(pdata, MMC_RXUNICASTFRAMES_G_LO);
2431
2432
stats->rxlengtherror +=
2433
xgbe_mmc_read(pdata, MMC_RXLENGTHERROR_LO);
2434
2435
stats->rxoutofrangetype +=
2436
xgbe_mmc_read(pdata, MMC_RXOUTOFRANGETYPE_LO);
2437
2438
stats->rxpauseframes +=
2439
xgbe_mmc_read(pdata, MMC_RXPAUSEFRAMES_LO);
2440
2441
stats->rxfifooverflow +=
2442
xgbe_mmc_read(pdata, MMC_RXFIFOOVERFLOW_LO);
2443
2444
stats->rxvlanframes_gb +=
2445
xgbe_mmc_read(pdata, MMC_RXVLANFRAMES_GB_LO);
2446
2447
stats->rxwatchdogerror +=
2448
xgbe_mmc_read(pdata, MMC_RXWATCHDOGERROR);
2449
2450
/* Un-freeze counters */
2451
XGMAC_IOWRITE_BITS(pdata, MMC_CR, MCF, 0);
2452
}
2453
2454
static void
2455
xgbe_config_mmc(struct xgbe_prv_data *pdata)
2456
{
2457
/* Set counters to reset on read */
2458
XGMAC_IOWRITE_BITS(pdata, MMC_CR, ROR, 1);
2459
2460
/* Reset the counters */
2461
XGMAC_IOWRITE_BITS(pdata, MMC_CR, CR, 1);
2462
}
2463
2464
static void
2465
xgbe_txq_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2466
{
2467
unsigned int tx_status;
2468
unsigned long tx_timeout;
2469
2470
/* The Tx engine cannot be stopped if it is actively processing
2471
* packets. Wait for the Tx queue to empty the Tx fifo. Don't
2472
* wait forever though...
2473
*/
2474
tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2475
while (ticks < tx_timeout) {
2476
tx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_TQDR);
2477
if ((XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TRCSTS) != 1) &&
2478
(XGMAC_GET_BITS(tx_status, MTL_Q_TQDR, TXQSTS) == 0))
2479
break;
2480
2481
DELAY(500);
2482
}
2483
2484
if (ticks >= tx_timeout)
2485
axgbe_printf(1, "timed out waiting for Tx queue %u to empty\n",
2486
queue);
2487
}
2488
2489
static void
2490
xgbe_prepare_tx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2491
{
2492
unsigned int tx_dsr, tx_pos, tx_qidx;
2493
unsigned int tx_status;
2494
unsigned long tx_timeout;
2495
2496
if (XGMAC_GET_BITS(pdata->hw_feat.version, MAC_VR, SNPSVER) > 0x20)
2497
return (xgbe_txq_prepare_tx_stop(pdata, queue));
2498
2499
/* Calculate the status register to read and the position within */
2500
if (queue < DMA_DSRX_FIRST_QUEUE) {
2501
tx_dsr = DMA_DSR0;
2502
tx_pos = (queue * DMA_DSR_Q_WIDTH) + DMA_DSR0_TPS_START;
2503
} else {
2504
tx_qidx = queue - DMA_DSRX_FIRST_QUEUE;
2505
2506
tx_dsr = DMA_DSR1 + ((tx_qidx / DMA_DSRX_QPR) * DMA_DSRX_INC);
2507
tx_pos = ((tx_qidx % DMA_DSRX_QPR) * DMA_DSR_Q_WIDTH) +
2508
DMA_DSRX_TPS_START;
2509
}
2510
2511
/* The Tx engine cannot be stopped if it is actively processing
2512
* descriptors. Wait for the Tx engine to enter the stopped or
2513
* suspended state. Don't wait forever though...
2514
*/
2515
tx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2516
while (ticks < tx_timeout) {
2517
tx_status = XGMAC_IOREAD(pdata, tx_dsr);
2518
tx_status = GET_BITS(tx_status, tx_pos, DMA_DSR_TPS_WIDTH);
2519
if ((tx_status == DMA_TPS_STOPPED) ||
2520
(tx_status == DMA_TPS_SUSPENDED))
2521
break;
2522
2523
DELAY(500);
2524
}
2525
2526
if (ticks >= tx_timeout)
2527
axgbe_printf(1, "timed out waiting for Tx DMA channel %u to stop\n",
2528
queue);
2529
}
2530
2531
static void
2532
xgbe_enable_tx(struct xgbe_prv_data *pdata)
2533
{
2534
unsigned int i;
2535
2536
/* Enable each Tx DMA channel */
2537
for (i = 0; i < pdata->channel_count; i++) {
2538
if (!pdata->channel[i]->tx_ring)
2539
break;
2540
2541
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
2542
}
2543
2544
/* Enable each Tx queue */
2545
for (i = 0; i < pdata->tx_q_count; i++)
2546
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN,
2547
MTL_Q_ENABLED);
2548
2549
/* Enable MAC Tx */
2550
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2551
}
2552
2553
static void
2554
xgbe_disable_tx(struct xgbe_prv_data *pdata)
2555
{
2556
unsigned int i;
2557
2558
/* Prepare for Tx DMA channel stop */
2559
for (i = 0; i < pdata->tx_q_count; i++)
2560
xgbe_prepare_tx_stop(pdata, i);
2561
2562
/* Disable MAC Tx */
2563
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2564
2565
/* Disable each Tx queue */
2566
for (i = 0; i < pdata->tx_q_count; i++)
2567
XGMAC_MTL_IOWRITE_BITS(pdata, i, MTL_Q_TQOMR, TXQEN, 0);
2568
2569
/* Disable each Tx DMA channel */
2570
for (i = 0; i < pdata->channel_count; i++) {
2571
if (!pdata->channel[i]->tx_ring)
2572
break;
2573
2574
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
2575
}
2576
}
2577
2578
static void
2579
xgbe_prepare_rx_stop(struct xgbe_prv_data *pdata, unsigned int queue)
2580
{
2581
unsigned int rx_status;
2582
unsigned long rx_timeout;
2583
2584
/* The Rx engine cannot be stopped if it is actively processing
2585
* packets. Wait for the Rx queue to empty the Rx fifo. Don't
2586
* wait forever though...
2587
*/
2588
rx_timeout = ticks + (XGBE_DMA_STOP_TIMEOUT * hz);
2589
while (ticks < rx_timeout) {
2590
rx_status = XGMAC_MTL_IOREAD(pdata, queue, MTL_Q_RQDR);
2591
if ((XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, PRXQ) == 0) &&
2592
(XGMAC_GET_BITS(rx_status, MTL_Q_RQDR, RXQSTS) == 0))
2593
break;
2594
2595
DELAY(500);
2596
}
2597
2598
if (ticks >= rx_timeout)
2599
axgbe_printf(1, "timed out waiting for Rx queue %d to empty\n",
2600
queue);
2601
}
2602
2603
static void
2604
xgbe_enable_rx(struct xgbe_prv_data *pdata)
2605
{
2606
unsigned int reg_val, i;
2607
2608
/* Enable each Rx DMA channel */
2609
for (i = 0; i < pdata->channel_count; i++) {
2610
if (!pdata->channel[i]->rx_ring)
2611
break;
2612
2613
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
2614
}
2615
2616
/* Enable each Rx queue */
2617
reg_val = 0;
2618
for (i = 0; i < pdata->rx_q_count; i++)
2619
reg_val |= (0x02 << (i << 1));
2620
XGMAC_IOWRITE(pdata, MAC_RQC0R, reg_val);
2621
2622
/* Enable MAC Rx */
2623
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 1);
2624
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 1);
2625
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 1);
2626
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 1);
2627
}
2628
2629
static void
2630
xgbe_disable_rx(struct xgbe_prv_data *pdata)
2631
{
2632
unsigned int i;
2633
2634
/* Disable MAC Rx */
2635
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, DCRCC, 0);
2636
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, CST, 0);
2637
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, ACS, 0);
2638
XGMAC_IOWRITE_BITS(pdata, MAC_RCR, RE, 0);
2639
2640
/* Prepare for Rx DMA channel stop */
2641
for (i = 0; i < pdata->rx_q_count; i++)
2642
xgbe_prepare_rx_stop(pdata, i);
2643
2644
/* Disable each Rx queue */
2645
XGMAC_IOWRITE(pdata, MAC_RQC0R, 0);
2646
2647
/* Disable each Rx DMA channel */
2648
for (i = 0; i < pdata->channel_count; i++) {
2649
if (!pdata->channel[i]->rx_ring)
2650
break;
2651
2652
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
2653
}
2654
}
2655
2656
static void
2657
xgbe_powerup_tx(struct xgbe_prv_data *pdata)
2658
{
2659
unsigned int i;
2660
2661
/* Enable each Tx DMA channel */
2662
for (i = 0; i < pdata->channel_count; i++) {
2663
if (!pdata->channel[i]->tx_ring)
2664
break;
2665
2666
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 1);
2667
}
2668
2669
/* Enable MAC Tx */
2670
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 1);
2671
}
2672
2673
static void
2674
xgbe_powerdown_tx(struct xgbe_prv_data *pdata)
2675
{
2676
unsigned int i;
2677
2678
/* Prepare for Tx DMA channel stop */
2679
for (i = 0; i < pdata->tx_q_count; i++)
2680
xgbe_prepare_tx_stop(pdata, i);
2681
2682
/* Disable MAC Tx */
2683
XGMAC_IOWRITE_BITS(pdata, MAC_TCR, TE, 0);
2684
2685
/* Disable each Tx DMA channel */
2686
for (i = 0; i < pdata->channel_count; i++) {
2687
if (!pdata->channel[i]->tx_ring)
2688
break;
2689
2690
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_TCR, ST, 0);
2691
}
2692
}
2693
2694
static void
2695
xgbe_powerup_rx(struct xgbe_prv_data *pdata)
2696
{
2697
unsigned int i;
2698
2699
/* Enable each Rx DMA channel */
2700
for (i = 0; i < pdata->channel_count; i++) {
2701
if (!pdata->channel[i]->rx_ring)
2702
break;
2703
2704
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 1);
2705
}
2706
}
2707
2708
static void
2709
xgbe_powerdown_rx(struct xgbe_prv_data *pdata)
2710
{
2711
unsigned int i;
2712
2713
/* Disable each Rx DMA channel */
2714
for (i = 0; i < pdata->channel_count; i++) {
2715
if (!pdata->channel[i]->rx_ring)
2716
break;
2717
2718
XGMAC_DMA_IOWRITE_BITS(pdata->channel[i], DMA_CH_RCR, SR, 0);
2719
}
2720
}
2721
2722
static int
2723
xgbe_init(struct xgbe_prv_data *pdata)
2724
{
2725
struct xgbe_desc_if *desc_if = &pdata->desc_if;
2726
int ret;
2727
2728
/* Flush Tx queues */
2729
ret = xgbe_flush_tx_queues(pdata);
2730
if (ret) {
2731
axgbe_error("error flushing TX queues\n");
2732
return (ret);
2733
}
2734
2735
/*
2736
* Initialize DMA related features
2737
*/
2738
xgbe_config_dma_bus(pdata);
2739
xgbe_config_dma_cache(pdata);
2740
xgbe_config_osp_mode(pdata);
2741
xgbe_config_pbl_val(pdata);
2742
xgbe_config_rx_coalesce(pdata);
2743
xgbe_config_tx_coalesce(pdata);
2744
xgbe_config_rx_buffer_size(pdata);
2745
xgbe_config_tso_mode(pdata);
2746
xgbe_config_sph_mode(pdata);
2747
xgbe_config_rss(pdata);
2748
desc_if->wrapper_tx_desc_init(pdata);
2749
desc_if->wrapper_rx_desc_init(pdata);
2750
xgbe_enable_dma_interrupts(pdata);
2751
2752
/*
2753
* Initialize MTL related features
2754
*/
2755
xgbe_config_mtl_mode(pdata);
2756
xgbe_config_queue_mapping(pdata);
2757
xgbe_config_tsf_mode(pdata, pdata->tx_sf_mode);
2758
xgbe_config_rsf_mode(pdata, pdata->rx_sf_mode);
2759
xgbe_config_tx_threshold(pdata, pdata->tx_threshold);
2760
xgbe_config_rx_threshold(pdata, pdata->rx_threshold);
2761
xgbe_config_tx_fifo_size(pdata);
2762
xgbe_config_rx_fifo_size(pdata);
2763
/*TODO: Error Packet and undersized good Packet forwarding enable
2764
(FEP and FUP)
2765
*/
2766
xgbe_enable_mtl_interrupts(pdata);
2767
2768
/*
2769
* Initialize MAC related features
2770
*/
2771
xgbe_config_mac_address(pdata);
2772
xgbe_config_rx_mode(pdata);
2773
xgbe_config_jumbo_enable(pdata);
2774
xgbe_config_flow_control(pdata);
2775
xgbe_config_mac_speed(pdata);
2776
xgbe_config_checksum_offload(pdata);
2777
xgbe_config_vlan_support(pdata);
2778
xgbe_config_mmc(pdata);
2779
xgbe_enable_mac_interrupts(pdata);
2780
2781
return (0);
2782
}
2783
2784
void
2785
xgbe_init_function_ptrs_dev(struct xgbe_hw_if *hw_if)
2786
{
2787
2788
hw_if->tx_complete = xgbe_tx_complete;
2789
2790
hw_if->set_mac_address = xgbe_set_mac_address;
2791
hw_if->config_rx_mode = xgbe_config_rx_mode;
2792
2793
hw_if->enable_rx_csum = xgbe_enable_rx_csum;
2794
hw_if->disable_rx_csum = xgbe_disable_rx_csum;
2795
2796
hw_if->enable_rx_vlan_stripping = xgbe_enable_rx_vlan_stripping;
2797
hw_if->disable_rx_vlan_stripping = xgbe_disable_rx_vlan_stripping;
2798
hw_if->enable_rx_vlan_filtering = xgbe_enable_rx_vlan_filtering;
2799
hw_if->disable_rx_vlan_filtering = xgbe_disable_rx_vlan_filtering;
2800
hw_if->update_vlan_hash_table = xgbe_update_vlan_hash_table;
2801
2802
hw_if->read_mmd_regs = xgbe_read_mmd_regs;
2803
hw_if->write_mmd_regs = xgbe_write_mmd_regs;
2804
2805
hw_if->set_speed = xgbe_set_speed;
2806
2807
hw_if->set_ext_mii_mode = xgbe_set_ext_mii_mode;
2808
hw_if->read_ext_mii_regs = xgbe_read_ext_mii_regs;
2809
hw_if->write_ext_mii_regs = xgbe_write_ext_mii_regs;
2810
2811
hw_if->set_gpio = xgbe_set_gpio;
2812
hw_if->clr_gpio = xgbe_clr_gpio;
2813
2814
hw_if->enable_tx = xgbe_enable_tx;
2815
hw_if->disable_tx = xgbe_disable_tx;
2816
hw_if->enable_rx = xgbe_enable_rx;
2817
hw_if->disable_rx = xgbe_disable_rx;
2818
2819
hw_if->powerup_tx = xgbe_powerup_tx;
2820
hw_if->powerdown_tx = xgbe_powerdown_tx;
2821
hw_if->powerup_rx = xgbe_powerup_rx;
2822
hw_if->powerdown_rx = xgbe_powerdown_rx;
2823
2824
hw_if->dev_read = xgbe_dev_read;
2825
hw_if->enable_int = xgbe_enable_int;
2826
hw_if->disable_int = xgbe_disable_int;
2827
hw_if->init = xgbe_init;
2828
hw_if->exit = xgbe_exit;
2829
2830
/* Descriptor related Sequences have to be initialized here */
2831
hw_if->tx_desc_init = xgbe_tx_desc_init;
2832
hw_if->rx_desc_init = xgbe_rx_desc_init;
2833
hw_if->tx_desc_reset = xgbe_tx_desc_reset;
2834
hw_if->is_last_desc = xgbe_is_last_desc;
2835
hw_if->is_context_desc = xgbe_is_context_desc;
2836
2837
/* For FLOW ctrl */
2838
hw_if->config_tx_flow_control = xgbe_config_tx_flow_control;
2839
hw_if->config_rx_flow_control = xgbe_config_rx_flow_control;
2840
2841
/* For RX coalescing */
2842
hw_if->config_rx_coalesce = xgbe_config_rx_coalesce;
2843
hw_if->config_tx_coalesce = xgbe_config_tx_coalesce;
2844
hw_if->usec_to_riwt = xgbe_usec_to_riwt;
2845
hw_if->riwt_to_usec = xgbe_riwt_to_usec;
2846
2847
/* For RX and TX threshold config */
2848
hw_if->config_rx_threshold = xgbe_config_rx_threshold;
2849
hw_if->config_tx_threshold = xgbe_config_tx_threshold;
2850
2851
/* For RX and TX Store and Forward Mode config */
2852
hw_if->config_rsf_mode = xgbe_config_rsf_mode;
2853
hw_if->config_tsf_mode = xgbe_config_tsf_mode;
2854
2855
/* For TX DMA Operating on Second Frame config */
2856
hw_if->config_osp_mode = xgbe_config_osp_mode;
2857
2858
/* For MMC statistics support */
2859
hw_if->tx_mmc_int = xgbe_tx_mmc_int;
2860
hw_if->rx_mmc_int = xgbe_rx_mmc_int;
2861
hw_if->read_mmc_stats = xgbe_read_mmc_stats;
2862
2863
/* For Receive Side Scaling */
2864
hw_if->enable_rss = xgbe_enable_rss;
2865
hw_if->disable_rss = xgbe_disable_rss;
2866
hw_if->set_rss_hash_key = xgbe_set_rss_hash_key;
2867
hw_if->set_rss_lookup_table = xgbe_set_rss_lookup_table;
2868
}
2869
2870