Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/bge/if_bge.c
104147 views
1
/*-
2
* SPDX-License-Identifier: BSD-4-Clause
3
*
4
* Copyright (c) 2001 Wind River Systems
5
* Copyright (c) 1997, 1998, 1999, 2001
6
* Bill Paul <[email protected]>. All rights reserved.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
* 3. All advertising materials mentioning features or use of this software
17
* must display the following acknowledgement:
18
* This product includes software developed by Bill Paul.
19
* 4. Neither the name of the author nor the names of any co-contributors
20
* may be used to endorse or promote products derived from this software
21
* without specific prior written permission.
22
*
23
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33
* THE POSSIBILITY OF SUCH DAMAGE.
34
*/
35
36
#include <sys/cdefs.h>
37
/*
38
* Broadcom BCM57xx(x)/BCM590x NetXtreme and NetLink family Ethernet driver
39
*
40
* The Broadcom BCM5700 is based on technology originally developed by
41
* Alteon Networks as part of the Tigon I and Tigon II Gigabit Ethernet
42
* MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
43
* two on-board MIPS R4000 CPUs and can have as much as 16MB of external
44
* SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
45
* frames, highly configurable RX filtering, and 16 RX and TX queues
46
* (which, along with RX filter rules, can be used for QOS applications).
47
* Other features, such as TCP segmentation, may be available as part
48
* of value-added firmware updates. Unlike the Tigon I and Tigon II,
49
* firmware images can be stored in hardware and need not be compiled
50
* into the driver.
51
*
52
* The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
53
* function in a 32-bit/64-bit 33/66Mhz bus, or a 64-bit/133Mhz bus.
54
*
55
* The BCM5701 is a single-chip solution incorporating both the BCM5700
56
* MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
57
* does not support external SSRAM.
58
*
59
* Broadcom also produces a variation of the BCM5700 under the "Altima"
60
* brand name, which is functionally similar but lacks PCI-X support.
61
*
62
* Without external SSRAM, you can only have at most 4 TX rings,
63
* and the use of the mini RX ring is disabled. This seems to imply
64
* that these features are simply not available on the BCM5701. As a
65
* result, this driver does not implement any support for the mini RX
66
* ring.
67
*/
68
69
#ifdef HAVE_KERNEL_OPTION_HEADERS
70
#include "opt_device_polling.h"
71
#endif
72
73
#include <sys/param.h>
74
#include <sys/endian.h>
75
#include <sys/systm.h>
76
#include <sys/sockio.h>
77
#include <sys/mbuf.h>
78
#include <sys/malloc.h>
79
#include <sys/kernel.h>
80
#include <sys/module.h>
81
#include <sys/socket.h>
82
#include <sys/sysctl.h>
83
#include <sys/taskqueue.h>
84
85
#include <net/debugnet.h>
86
#include <net/if.h>
87
#include <net/if_var.h>
88
#include <net/if_arp.h>
89
#include <net/ethernet.h>
90
#include <net/if_dl.h>
91
#include <net/if_media.h>
92
93
#include <net/bpf.h>
94
95
#include <net/if_types.h>
96
#include <net/if_vlan_var.h>
97
98
#include <netinet/in_systm.h>
99
#include <netinet/in.h>
100
#include <netinet/ip.h>
101
#include <netinet/tcp.h>
102
103
#include <machine/bus.h>
104
#include <machine/resource.h>
105
#include <sys/bus.h>
106
#include <sys/rman.h>
107
108
#include <dev/mii/mii.h>
109
#include <dev/mii/miivar.h>
110
#include "miidevs.h"
111
#include <dev/mii/brgphyreg.h>
112
113
#include <dev/pci/pcireg.h>
114
#include <dev/pci/pcivar.h>
115
116
#include <dev/bge/if_bgereg.h>
117
118
#define BGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP)
119
#define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
120
121
MODULE_DEPEND(bge, pci, 1, 1, 1);
122
MODULE_DEPEND(bge, ether, 1, 1, 1);
123
MODULE_DEPEND(bge, miibus, 1, 1, 1);
124
125
/* "device miibus" required. See GENERIC if you get errors here. */
126
#include "miibus_if.h"
127
128
/*
129
* Various supported device vendors/types and their names. Note: the
130
* spec seems to indicate that the hardware still has Alteon's vendor
131
* ID burned into it, though it will always be overridden by the vendor
132
* ID in the EEPROM. Just to be safe, we cover all possibilities.
133
*/
134
static const struct bge_type {
135
uint16_t bge_vid;
136
uint16_t bge_did;
137
} bge_devs[] = {
138
{ ALTEON_VENDORID, ALTEON_DEVICEID_BCM5700 },
139
{ ALTEON_VENDORID, ALTEON_DEVICEID_BCM5701 },
140
141
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1000 },
142
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC1002 },
143
{ ALTIMA_VENDORID, ALTIMA_DEVICE_AC9100 },
144
145
{ APPLE_VENDORID, APPLE_DEVICE_BCM5701 },
146
147
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5700 },
148
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5701 },
149
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702 },
150
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702_ALT },
151
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5702X },
152
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703 },
153
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703_ALT },
154
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5703X },
155
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704C },
156
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704S },
157
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5704S_ALT },
158
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705 },
159
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705F },
160
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705K },
161
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705M },
162
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5705M_ALT },
163
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5714C },
164
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5714S },
165
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5715 },
166
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5715S },
167
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5717 },
168
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5717C },
169
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5718 },
170
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5719 },
171
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5720 },
172
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5721 },
173
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5722 },
174
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5723 },
175
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5725 },
176
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5727 },
177
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5750 },
178
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5750M },
179
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5751 },
180
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5751F },
181
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5751M },
182
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5752 },
183
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5752M },
184
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5753 },
185
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5753F },
186
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5753M },
187
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5754 },
188
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5754M },
189
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5755 },
190
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5755M },
191
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5756 },
192
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5761 },
193
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5761E },
194
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5761S },
195
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5761SE },
196
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5762 },
197
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5764 },
198
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5780 },
199
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5780S },
200
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5781 },
201
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5782 },
202
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5784 },
203
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5785F },
204
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5785G },
205
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5786 },
206
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5787 },
207
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5787F },
208
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5787M },
209
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5788 },
210
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5789 },
211
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5901 },
212
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5901A2 },
213
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5903M },
214
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5906 },
215
{ BCOM_VENDORID, BCOM_DEVICEID_BCM5906M },
216
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57760 },
217
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57761 },
218
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57762 },
219
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57764 },
220
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57765 },
221
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57766 },
222
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57767 },
223
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57780 },
224
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57781 },
225
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57782 },
226
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57785 },
227
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57786 },
228
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57787 },
229
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57788 },
230
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57790 },
231
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57791 },
232
{ BCOM_VENDORID, BCOM_DEVICEID_BCM57795 },
233
234
{ SK_VENDORID, SK_DEVICEID_ALTIMA },
235
236
{ TC_VENDORID, TC_DEVICEID_3C996 },
237
238
{ FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE4 },
239
{ FJTSU_VENDORID, FJTSU_DEVICEID_PW008GE5 },
240
{ 0, 0 }
241
};
242
243
static const struct bge_vendor {
244
uint16_t v_id;
245
const char *v_name;
246
} bge_vendors[] = {
247
{ ALTEON_VENDORID, "Alteon" },
248
{ ALTIMA_VENDORID, "Altima" },
249
{ APPLE_VENDORID, "Apple" },
250
{ BCOM_VENDORID, "Broadcom" },
251
{ SK_VENDORID, "SysKonnect" },
252
{ TC_VENDORID, "3Com" },
253
{ FJTSU_VENDORID, "Fujitsu" },
254
{ 0, NULL }
255
};
256
257
static const struct bge_revision {
258
uint32_t br_chipid;
259
const char *br_name;
260
} bge_revisions[] = {
261
{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
262
{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
263
{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
264
{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
265
{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
266
{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
267
{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
268
{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
269
{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
270
{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
271
{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
272
{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
273
{ BGE_CHIPID_BCM5703_A0, "BCM5703 A0" },
274
{ BGE_CHIPID_BCM5703_A1, "BCM5703 A1" },
275
{ BGE_CHIPID_BCM5703_A2, "BCM5703 A2" },
276
{ BGE_CHIPID_BCM5703_A3, "BCM5703 A3" },
277
{ BGE_CHIPID_BCM5703_B0, "BCM5703 B0" },
278
{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
279
{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
280
{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
281
{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
282
{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
283
{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
284
{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
285
{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
286
{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
287
{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
288
{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
289
{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
290
{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
291
{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
292
{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
293
{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
294
{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
295
{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
296
{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
297
{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
298
{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
299
{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
300
{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
301
{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
302
{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
303
{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
304
{ BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
305
{ BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
306
{ BGE_CHIPID_BCM5717_C0, "BCM5717 C0" },
307
{ BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
308
{ BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
309
{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
310
{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
311
{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
312
{ BGE_CHIPID_BCM5722_A0, "BCM5722 A0" },
313
{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
314
{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
315
{ BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
316
{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
317
{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
318
/* 5754 and 5787 share the same ASIC ID */
319
{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
320
{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
321
{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
322
{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
323
{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
324
{ BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
325
{ BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
326
{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
327
{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
328
{ 0, NULL }
329
};
330
331
/*
332
* Some defaults for major revisions, so that newer steppings
333
* that we don't know about have a shot at working.
334
*/
335
static const struct bge_revision bge_majorrevs[] = {
336
{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
337
{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
338
{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
339
{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
340
{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
341
{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
342
{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
343
{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
344
{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
345
{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
346
{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
347
{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
348
{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
349
{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
350
/* 5754 and 5787 share the same ASIC ID */
351
{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
352
{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
353
{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
354
{ BGE_ASICREV_BCM57766, "unknown BCM57766" },
355
{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
356
{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
357
{ BGE_ASICREV_BCM5719, "unknown BCM5719" },
358
{ BGE_ASICREV_BCM5720, "unknown BCM5720" },
359
{ BGE_ASICREV_BCM5762, "unknown BCM5762" },
360
{ 0, NULL }
361
};
362
363
#define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_FLAG_JUMBO)
364
#define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5700_FAMILY)
365
#define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5705_PLUS)
366
#define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_FLAG_5714_FAMILY)
367
#define BGE_IS_575X_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_575X_PLUS)
368
#define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5755_PLUS)
369
#define BGE_IS_5717_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_5717_PLUS)
370
#define BGE_IS_57765_PLUS(sc) ((sc)->bge_flags & BGE_FLAG_57765_PLUS)
371
372
static uint32_t bge_chipid(device_t);
373
static const struct bge_vendor * bge_lookup_vendor(uint16_t);
374
static const struct bge_revision * bge_lookup_rev(uint32_t);
375
376
typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
377
378
static int bge_probe(device_t);
379
static int bge_attach(device_t);
380
static int bge_detach(device_t);
381
static int bge_suspend(device_t);
382
static int bge_resume(device_t);
383
static void bge_release_resources(struct bge_softc *);
384
static void bge_dma_map_addr(void *, bus_dma_segment_t *, int, int);
385
static int bge_dma_alloc(struct bge_softc *);
386
static void bge_dma_free(struct bge_softc *);
387
static int bge_dma_ring_alloc(struct bge_softc *, bus_size_t, bus_size_t,
388
bus_dma_tag_t *, uint8_t **, bus_dmamap_t *, bus_addr_t *, const char *);
389
390
static void bge_devinfo(struct bge_softc *);
391
static int bge_mbox_reorder(struct bge_softc *);
392
393
static int bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[]);
394
static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
395
static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
396
static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
397
static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
398
399
static void bge_txeof(struct bge_softc *, uint16_t);
400
static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
401
static int bge_rxeof(struct bge_softc *, uint16_t, int);
402
403
static void bge_asf_driver_up (struct bge_softc *);
404
static void bge_tick(void *);
405
static void bge_stats_clear_regs(struct bge_softc *);
406
static void bge_stats_update(struct bge_softc *);
407
static void bge_stats_update_regs(struct bge_softc *);
408
static struct mbuf *bge_check_short_dma(struct mbuf *);
409
static struct mbuf *bge_setup_tso(struct bge_softc *, struct mbuf *,
410
uint16_t *, uint16_t *);
411
static int bge_encap(struct bge_softc *, struct mbuf **, uint32_t *);
412
413
static void bge_intr(void *);
414
static int bge_msi_intr(void *);
415
static void bge_intr_task(void *, int);
416
static void bge_start(if_t);
417
static void bge_start_locked(if_t);
418
static void bge_start_tx(struct bge_softc *, uint32_t);
419
static int bge_ioctl(if_t, u_long, caddr_t);
420
static void bge_init_locked(struct bge_softc *);
421
static void bge_init(void *);
422
static void bge_stop_block(struct bge_softc *, bus_size_t, uint32_t);
423
static void bge_stop(struct bge_softc *);
424
static void bge_watchdog(struct bge_softc *);
425
static int bge_shutdown(device_t);
426
static int bge_ifmedia_upd_locked(if_t);
427
static int bge_ifmedia_upd(if_t);
428
static void bge_ifmedia_sts(if_t, struct ifmediareq *);
429
static uint64_t bge_get_counter(if_t, ift_counter);
430
431
static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
432
static int bge_read_nvram(struct bge_softc *, caddr_t, int, int);
433
434
static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
435
static int bge_read_eeprom(struct bge_softc *, caddr_t, int, int);
436
437
static void bge_setpromisc(struct bge_softc *);
438
static void bge_setmulti(struct bge_softc *);
439
static void bge_setvlan(struct bge_softc *);
440
441
static __inline void bge_rxreuse_std(struct bge_softc *, int);
442
static __inline void bge_rxreuse_jumbo(struct bge_softc *, int);
443
static int bge_newbuf_std(struct bge_softc *, int);
444
static int bge_newbuf_jumbo(struct bge_softc *, int);
445
static int bge_init_rx_ring_std(struct bge_softc *);
446
static void bge_free_rx_ring_std(struct bge_softc *);
447
static int bge_init_rx_ring_jumbo(struct bge_softc *);
448
static void bge_free_rx_ring_jumbo(struct bge_softc *);
449
static void bge_free_tx_ring(struct bge_softc *);
450
static int bge_init_tx_ring(struct bge_softc *);
451
452
static int bge_chipinit(struct bge_softc *);
453
static int bge_blockinit(struct bge_softc *);
454
static uint32_t bge_dma_swap_options(struct bge_softc *);
455
456
static int bge_has_eaddr(struct bge_softc *);
457
static uint32_t bge_readmem_ind(struct bge_softc *, int);
458
static void bge_writemem_ind(struct bge_softc *, int, int);
459
static void bge_writembx(struct bge_softc *, int, int);
460
#ifdef notdef
461
static uint32_t bge_readreg_ind(struct bge_softc *, int);
462
#endif
463
static void bge_writemem_direct(struct bge_softc *, int, int);
464
static void bge_writereg_ind(struct bge_softc *, int, int);
465
466
static int bge_miibus_readreg(device_t, int, int);
467
static int bge_miibus_writereg(device_t, int, int, int);
468
static void bge_miibus_statchg(device_t);
469
#ifdef DEVICE_POLLING
470
static int bge_poll(if_t ifp, enum poll_cmd cmd, int count);
471
#endif
472
473
#define BGE_RESET_SHUTDOWN 0
474
#define BGE_RESET_START 1
475
#define BGE_RESET_SUSPEND 2
476
static void bge_sig_post_reset(struct bge_softc *, int);
477
static void bge_sig_legacy(struct bge_softc *, int);
478
static void bge_sig_pre_reset(struct bge_softc *, int);
479
static void bge_stop_fw(struct bge_softc *);
480
static int bge_reset(struct bge_softc *);
481
static void bge_link_upd(struct bge_softc *);
482
483
static void bge_ape_lock_init(struct bge_softc *);
484
static void bge_ape_read_fw_ver(struct bge_softc *);
485
static int bge_ape_lock(struct bge_softc *, int);
486
static void bge_ape_unlock(struct bge_softc *, int);
487
static void bge_ape_send_event(struct bge_softc *, uint32_t);
488
static void bge_ape_driver_state_change(struct bge_softc *, int);
489
490
/*
491
* The BGE_REGISTER_DEBUG option is only for low-level debugging. It may
492
* leak information to untrusted users. It is also known to cause alignment
493
* traps on certain architectures.
494
*/
495
#ifdef BGE_REGISTER_DEBUG
496
static int bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS);
497
static int bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS);
498
static int bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS);
499
static int bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS);
500
#endif
501
static void bge_add_sysctls(struct bge_softc *);
502
static void bge_add_sysctl_stats_regs(struct bge_softc *,
503
struct sysctl_ctx_list *, struct sysctl_oid_list *);
504
static void bge_add_sysctl_stats(struct bge_softc *, struct sysctl_ctx_list *,
505
struct sysctl_oid_list *);
506
static int bge_sysctl_stats(SYSCTL_HANDLER_ARGS);
507
508
DEBUGNET_DEFINE(bge);
509
510
static device_method_t bge_methods[] = {
511
/* Device interface */
512
DEVMETHOD(device_probe, bge_probe),
513
DEVMETHOD(device_attach, bge_attach),
514
DEVMETHOD(device_detach, bge_detach),
515
DEVMETHOD(device_shutdown, bge_shutdown),
516
DEVMETHOD(device_suspend, bge_suspend),
517
DEVMETHOD(device_resume, bge_resume),
518
519
/* MII interface */
520
DEVMETHOD(miibus_readreg, bge_miibus_readreg),
521
DEVMETHOD(miibus_writereg, bge_miibus_writereg),
522
DEVMETHOD(miibus_statchg, bge_miibus_statchg),
523
524
DEVMETHOD_END
525
};
526
527
static driver_t bge_driver = {
528
"bge",
529
bge_methods,
530
sizeof(struct bge_softc)
531
};
532
533
DRIVER_MODULE(bge, pci, bge_driver, 0, 0);
534
MODULE_PNP_INFO("U16:vendor;U16:device", pci, bge, bge_devs,
535
nitems(bge_devs) - 1);
536
DRIVER_MODULE(miibus, bge, miibus_driver, 0, 0);
537
538
static int bge_allow_asf = 1;
539
540
static SYSCTL_NODE(_hw, OID_AUTO, bge, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
541
"BGE driver parameters");
542
SYSCTL_INT(_hw_bge, OID_AUTO, allow_asf, CTLFLAG_RDTUN, &bge_allow_asf, 0,
543
"Allow ASF mode if available");
544
545
static int
546
bge_has_eaddr(struct bge_softc *sc)
547
{
548
return (1);
549
}
550
551
static uint32_t
552
bge_readmem_ind(struct bge_softc *sc, int off)
553
{
554
device_t dev;
555
uint32_t val;
556
557
if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
558
off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
559
return (0);
560
561
dev = sc->bge_dev;
562
563
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
564
val = pci_read_config(dev, BGE_PCI_MEMWIN_DATA, 4);
565
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
566
return (val);
567
}
568
569
static void
570
bge_writemem_ind(struct bge_softc *sc, int off, int val)
571
{
572
device_t dev;
573
574
if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
575
off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
576
return;
577
578
dev = sc->bge_dev;
579
580
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, off, 4);
581
pci_write_config(dev, BGE_PCI_MEMWIN_DATA, val, 4);
582
pci_write_config(dev, BGE_PCI_MEMWIN_BASEADDR, 0, 4);
583
}
584
585
#ifdef notdef
586
static uint32_t
587
bge_readreg_ind(struct bge_softc *sc, int off)
588
{
589
device_t dev;
590
591
dev = sc->bge_dev;
592
593
pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
594
return (pci_read_config(dev, BGE_PCI_REG_DATA, 4));
595
}
596
#endif
597
598
static void
599
bge_writereg_ind(struct bge_softc *sc, int off, int val)
600
{
601
device_t dev;
602
603
dev = sc->bge_dev;
604
605
pci_write_config(dev, BGE_PCI_REG_BASEADDR, off, 4);
606
pci_write_config(dev, BGE_PCI_REG_DATA, val, 4);
607
}
608
609
static void
610
bge_writemem_direct(struct bge_softc *sc, int off, int val)
611
{
612
CSR_WRITE_4(sc, off, val);
613
}
614
615
static void
616
bge_writembx(struct bge_softc *sc, int off, int val)
617
{
618
if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
619
off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
620
621
CSR_WRITE_4(sc, off, val);
622
if ((sc->bge_flags & BGE_FLAG_MBOX_REORDER) != 0)
623
CSR_READ_4(sc, off);
624
}
625
626
/*
627
* Clear all stale locks and select the lock for this driver instance.
628
*/
629
static void
630
bge_ape_lock_init(struct bge_softc *sc)
631
{
632
uint32_t bit, regbase;
633
int i;
634
635
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
636
regbase = BGE_APE_LOCK_GRANT;
637
else
638
regbase = BGE_APE_PER_LOCK_GRANT;
639
640
/* Clear any stale locks. */
641
for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
642
switch (i) {
643
case BGE_APE_LOCK_PHY0:
644
case BGE_APE_LOCK_PHY1:
645
case BGE_APE_LOCK_PHY2:
646
case BGE_APE_LOCK_PHY3:
647
bit = BGE_APE_LOCK_GRANT_DRIVER0;
648
break;
649
default:
650
if (sc->bge_func_addr == 0)
651
bit = BGE_APE_LOCK_GRANT_DRIVER0;
652
else
653
bit = (1 << sc->bge_func_addr);
654
}
655
APE_WRITE_4(sc, regbase + 4 * i, bit);
656
}
657
658
/* Select the PHY lock based on the device's function number. */
659
switch (sc->bge_func_addr) {
660
case 0:
661
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
662
break;
663
case 1:
664
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
665
break;
666
case 2:
667
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
668
break;
669
case 3:
670
sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
671
break;
672
default:
673
device_printf(sc->bge_dev,
674
"PHY lock not supported on this function\n");
675
}
676
}
677
678
/*
679
* Check for APE firmware, set flags, and print version info.
680
*/
681
static void
682
bge_ape_read_fw_ver(struct bge_softc *sc)
683
{
684
const char *fwtype;
685
uint32_t apedata, features;
686
687
/* Check for a valid APE signature in shared memory. */
688
apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
689
if (apedata != BGE_APE_SEG_SIG_MAGIC) {
690
sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
691
return;
692
}
693
694
/* Check if APE firmware is running. */
695
apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
696
if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
697
device_printf(sc->bge_dev, "APE signature found "
698
"but FW status not ready! 0x%08x\n", apedata);
699
return;
700
}
701
702
sc->bge_mfw_flags |= BGE_MFW_ON_APE;
703
704
/* Fetch the APE firmware type and version. */
705
apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
706
features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
707
if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
708
sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
709
fwtype = "NCSI";
710
} else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
711
sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
712
fwtype = "DASH";
713
} else
714
fwtype = "UNKN";
715
716
/* Print the APE firmware version. */
717
device_printf(sc->bge_dev, "APE FW version: %s v%d.%d.%d.%d\n",
718
fwtype,
719
(apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
720
(apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
721
(apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
722
(apedata & BGE_APE_FW_VERSION_BLDMSK));
723
}
724
725
static int
726
bge_ape_lock(struct bge_softc *sc, int locknum)
727
{
728
uint32_t bit, gnt, req, status;
729
int i, off;
730
731
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
732
return (0);
733
734
/* Lock request/grant registers have different bases. */
735
if (sc->bge_asicrev == BGE_ASICREV_BCM5761) {
736
req = BGE_APE_LOCK_REQ;
737
gnt = BGE_APE_LOCK_GRANT;
738
} else {
739
req = BGE_APE_PER_LOCK_REQ;
740
gnt = BGE_APE_PER_LOCK_GRANT;
741
}
742
743
off = 4 * locknum;
744
745
switch (locknum) {
746
case BGE_APE_LOCK_GPIO:
747
/* Lock required when using GPIO. */
748
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
749
return (0);
750
if (sc->bge_func_addr == 0)
751
bit = BGE_APE_LOCK_REQ_DRIVER0;
752
else
753
bit = (1 << sc->bge_func_addr);
754
break;
755
case BGE_APE_LOCK_GRC:
756
/* Lock required to reset the device. */
757
if (sc->bge_func_addr == 0)
758
bit = BGE_APE_LOCK_REQ_DRIVER0;
759
else
760
bit = (1 << sc->bge_func_addr);
761
break;
762
case BGE_APE_LOCK_MEM:
763
/* Lock required when accessing certain APE memory. */
764
if (sc->bge_func_addr == 0)
765
bit = BGE_APE_LOCK_REQ_DRIVER0;
766
else
767
bit = (1 << sc->bge_func_addr);
768
break;
769
case BGE_APE_LOCK_PHY0:
770
case BGE_APE_LOCK_PHY1:
771
case BGE_APE_LOCK_PHY2:
772
case BGE_APE_LOCK_PHY3:
773
/* Lock required when accessing PHYs. */
774
bit = BGE_APE_LOCK_REQ_DRIVER0;
775
break;
776
default:
777
return (EINVAL);
778
}
779
780
/* Request a lock. */
781
APE_WRITE_4(sc, req + off, bit);
782
783
/* Wait up to 1 second to acquire lock. */
784
for (i = 0; i < 20000; i++) {
785
status = APE_READ_4(sc, gnt + off);
786
if (status == bit)
787
break;
788
DELAY(50);
789
}
790
791
/* Handle any errors. */
792
if (status != bit) {
793
device_printf(sc->bge_dev, "APE lock %d request failed! "
794
"request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
795
locknum, req + off, bit & 0xFFFF, gnt + off,
796
status & 0xFFFF);
797
/* Revoke the lock request. */
798
APE_WRITE_4(sc, gnt + off, bit);
799
return (EBUSY);
800
}
801
802
return (0);
803
}
804
805
static void
806
bge_ape_unlock(struct bge_softc *sc, int locknum)
807
{
808
uint32_t bit, gnt;
809
int off;
810
811
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
812
return;
813
814
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
815
gnt = BGE_APE_LOCK_GRANT;
816
else
817
gnt = BGE_APE_PER_LOCK_GRANT;
818
819
off = 4 * locknum;
820
821
switch (locknum) {
822
case BGE_APE_LOCK_GPIO:
823
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
824
return;
825
if (sc->bge_func_addr == 0)
826
bit = BGE_APE_LOCK_GRANT_DRIVER0;
827
else
828
bit = (1 << sc->bge_func_addr);
829
break;
830
case BGE_APE_LOCK_GRC:
831
if (sc->bge_func_addr == 0)
832
bit = BGE_APE_LOCK_GRANT_DRIVER0;
833
else
834
bit = (1 << sc->bge_func_addr);
835
break;
836
case BGE_APE_LOCK_MEM:
837
if (sc->bge_func_addr == 0)
838
bit = BGE_APE_LOCK_GRANT_DRIVER0;
839
else
840
bit = (1 << sc->bge_func_addr);
841
break;
842
case BGE_APE_LOCK_PHY0:
843
case BGE_APE_LOCK_PHY1:
844
case BGE_APE_LOCK_PHY2:
845
case BGE_APE_LOCK_PHY3:
846
bit = BGE_APE_LOCK_GRANT_DRIVER0;
847
break;
848
default:
849
return;
850
}
851
852
APE_WRITE_4(sc, gnt + off, bit);
853
}
854
855
/*
856
* Send an event to the APE firmware.
857
*/
858
static void
859
bge_ape_send_event(struct bge_softc *sc, uint32_t event)
860
{
861
uint32_t apedata;
862
int i;
863
864
/* NCSI does not support APE events. */
865
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
866
return;
867
868
/* Wait up to 1ms for APE to service previous event. */
869
for (i = 10; i > 0; i--) {
870
if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
871
break;
872
apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
873
if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
874
APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
875
BGE_APE_EVENT_STATUS_EVENT_PENDING);
876
bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
877
APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
878
break;
879
}
880
bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
881
DELAY(100);
882
}
883
if (i == 0)
884
device_printf(sc->bge_dev, "APE event 0x%08x send timed out\n",
885
event);
886
}
887
888
static void
889
bge_ape_driver_state_change(struct bge_softc *sc, int kind)
890
{
891
uint32_t apedata, event;
892
893
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
894
return;
895
896
switch (kind) {
897
case BGE_RESET_START:
898
/* If this is the first load, clear the load counter. */
899
apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
900
if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
901
APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
902
else {
903
apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
904
APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
905
}
906
APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
907
BGE_APE_HOST_SEG_SIG_MAGIC);
908
APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
909
BGE_APE_HOST_SEG_LEN_MAGIC);
910
911
/* Add some version info if bge(4) supports it. */
912
APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
913
BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
914
APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
915
BGE_APE_HOST_BEHAV_NO_PHYLOCK);
916
APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
917
BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
918
APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
919
BGE_APE_HOST_DRVR_STATE_START);
920
event = BGE_APE_EVENT_STATUS_STATE_START;
921
break;
922
case BGE_RESET_SHUTDOWN:
923
APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
924
BGE_APE_HOST_DRVR_STATE_UNLOAD);
925
event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
926
break;
927
case BGE_RESET_SUSPEND:
928
event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
929
break;
930
default:
931
return;
932
}
933
934
bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
935
BGE_APE_EVENT_STATUS_STATE_CHNGE);
936
}
937
938
/*
939
* Map a single buffer address.
940
*/
941
942
static void
943
bge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
944
{
945
struct bge_dmamap_arg *ctx;
946
947
if (error)
948
return;
949
950
KASSERT(nseg == 1, ("%s: %d segments returned!", __func__, nseg));
951
952
ctx = arg;
953
ctx->bge_busaddr = segs->ds_addr;
954
}
955
956
static uint8_t
957
bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
958
{
959
uint32_t access, byte = 0;
960
int i;
961
962
/* Lock. */
963
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
964
for (i = 0; i < 8000; i++) {
965
if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
966
break;
967
DELAY(20);
968
}
969
if (i == 8000)
970
return (1);
971
972
/* Enable access. */
973
access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
974
CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
975
976
CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
977
CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
978
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
979
DELAY(10);
980
if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
981
DELAY(10);
982
break;
983
}
984
}
985
986
if (i == BGE_TIMEOUT * 10) {
987
if_printf(sc->bge_ifp, "nvram read timed out\n");
988
return (1);
989
}
990
991
/* Get result. */
992
byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
993
994
*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
995
996
/* Disable access. */
997
CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
998
999
/* Unlock. */
1000
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
1001
CSR_READ_4(sc, BGE_NVRAM_SWARB);
1002
1003
return (0);
1004
}
1005
1006
/*
1007
* Read a sequence of bytes from NVRAM.
1008
*/
1009
static int
1010
bge_read_nvram(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1011
{
1012
int err = 0, i;
1013
uint8_t byte = 0;
1014
1015
if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1016
return (1);
1017
1018
for (i = 0; i < cnt; i++) {
1019
err = bge_nvram_getbyte(sc, off + i, &byte);
1020
if (err)
1021
break;
1022
*(dest + i) = byte;
1023
}
1024
1025
return (err ? 1 : 0);
1026
}
1027
1028
/*
1029
* Read a byte of data stored in the EEPROM at address 'addr.' The
1030
* BCM570x supports both the traditional bitbang interface and an
1031
* auto access interface for reading the EEPROM. We use the auto
1032
* access method.
1033
*/
1034
static uint8_t
1035
bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
1036
{
1037
int i;
1038
uint32_t byte = 0;
1039
1040
/*
1041
* Enable use of auto EEPROM access so we can avoid
1042
* having to use the bitbang method.
1043
*/
1044
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
1045
1046
/* Reset the EEPROM, load the clock period. */
1047
CSR_WRITE_4(sc, BGE_EE_ADDR,
1048
BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
1049
DELAY(20);
1050
1051
/* Issue the read EEPROM command. */
1052
CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
1053
1054
/* Wait for completion */
1055
for(i = 0; i < BGE_TIMEOUT * 10; i++) {
1056
DELAY(10);
1057
if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
1058
break;
1059
}
1060
1061
if (i == BGE_TIMEOUT * 10) {
1062
device_printf(sc->bge_dev, "EEPROM read timed out\n");
1063
return (1);
1064
}
1065
1066
/* Get result. */
1067
byte = CSR_READ_4(sc, BGE_EE_DATA);
1068
1069
*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
1070
1071
return (0);
1072
}
1073
1074
/*
1075
* Read a sequence of bytes from the EEPROM.
1076
*/
1077
static int
1078
bge_read_eeprom(struct bge_softc *sc, caddr_t dest, int off, int cnt)
1079
{
1080
int i, error = 0;
1081
uint8_t byte = 0;
1082
1083
for (i = 0; i < cnt; i++) {
1084
error = bge_eeprom_getbyte(sc, off + i, &byte);
1085
if (error)
1086
break;
1087
*(dest + i) = byte;
1088
}
1089
1090
return (error ? 1 : 0);
1091
}
1092
1093
static int
1094
bge_miibus_readreg(device_t dev, int phy, int reg)
1095
{
1096
struct bge_softc *sc;
1097
uint32_t val;
1098
int i;
1099
1100
sc = device_get_softc(dev);
1101
1102
if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1103
return (0);
1104
1105
/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1106
if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1107
CSR_WRITE_4(sc, BGE_MI_MODE,
1108
sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1109
DELAY(80);
1110
}
1111
1112
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
1113
BGE_MIPHY(phy) | BGE_MIREG(reg));
1114
1115
/* Poll for the PHY register access to complete. */
1116
for (i = 0; i < BGE_TIMEOUT; i++) {
1117
DELAY(10);
1118
val = CSR_READ_4(sc, BGE_MI_COMM);
1119
if ((val & BGE_MICOMM_BUSY) == 0) {
1120
DELAY(5);
1121
val = CSR_READ_4(sc, BGE_MI_COMM);
1122
break;
1123
}
1124
}
1125
1126
if (i == BGE_TIMEOUT) {
1127
device_printf(sc->bge_dev,
1128
"PHY read timed out (phy %d, reg %d, val 0x%08x)\n",
1129
phy, reg, val);
1130
val = 0;
1131
}
1132
1133
/* Restore the autopoll bit if necessary. */
1134
if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1135
CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1136
DELAY(80);
1137
}
1138
1139
bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1140
1141
if (val & BGE_MICOMM_READFAIL)
1142
return (0);
1143
1144
return (val & 0xFFFF);
1145
}
1146
1147
static int
1148
bge_miibus_writereg(device_t dev, int phy, int reg, int val)
1149
{
1150
struct bge_softc *sc;
1151
int i;
1152
1153
sc = device_get_softc(dev);
1154
1155
if (sc->bge_asicrev == BGE_ASICREV_BCM5906 &&
1156
(reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL))
1157
return (0);
1158
1159
if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
1160
return (0);
1161
1162
/* Clear the autopoll bit if set, otherwise may trigger PCI errors. */
1163
if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1164
CSR_WRITE_4(sc, BGE_MI_MODE,
1165
sc->bge_mi_mode & ~BGE_MIMODE_AUTOPOLL);
1166
DELAY(80);
1167
}
1168
1169
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
1170
BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
1171
1172
for (i = 0; i < BGE_TIMEOUT; i++) {
1173
DELAY(10);
1174
if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
1175
DELAY(5);
1176
CSR_READ_4(sc, BGE_MI_COMM); /* dummy read */
1177
break;
1178
}
1179
}
1180
1181
/* Restore the autopoll bit if necessary. */
1182
if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
1183
CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
1184
DELAY(80);
1185
}
1186
1187
bge_ape_unlock(sc, sc->bge_phy_ape_lock);
1188
1189
if (i == BGE_TIMEOUT)
1190
device_printf(sc->bge_dev,
1191
"PHY write timed out (phy %d, reg %d, val 0x%04x)\n",
1192
phy, reg, val);
1193
1194
return (0);
1195
}
1196
1197
static void
1198
bge_miibus_statchg(device_t dev)
1199
{
1200
struct bge_softc *sc;
1201
struct mii_data *mii;
1202
uint32_t mac_mode, rx_mode, tx_mode;
1203
1204
sc = device_get_softc(dev);
1205
if ((if_getdrvflags(sc->bge_ifp) & IFF_DRV_RUNNING) == 0)
1206
return;
1207
mii = device_get_softc(sc->bge_miibus);
1208
1209
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1210
(IFM_ACTIVE | IFM_AVALID)) {
1211
switch (IFM_SUBTYPE(mii->mii_media_active)) {
1212
case IFM_10_T:
1213
case IFM_100_TX:
1214
sc->bge_link = 1;
1215
break;
1216
case IFM_1000_T:
1217
case IFM_1000_SX:
1218
case IFM_2500_SX:
1219
if (sc->bge_asicrev != BGE_ASICREV_BCM5906)
1220
sc->bge_link = 1;
1221
else
1222
sc->bge_link = 0;
1223
break;
1224
default:
1225
sc->bge_link = 0;
1226
break;
1227
}
1228
} else
1229
sc->bge_link = 0;
1230
if (sc->bge_link == 0)
1231
return;
1232
1233
/*
1234
* APE firmware touches these registers to keep the MAC
1235
* connected to the outside world. Try to keep the
1236
* accesses atomic.
1237
*/
1238
1239
/* Set the port mode (MII/GMII) to match the link speed. */
1240
mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
1241
~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
1242
tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
1243
rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
1244
1245
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
1246
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
1247
mac_mode |= BGE_PORTMODE_GMII;
1248
else
1249
mac_mode |= BGE_PORTMODE_MII;
1250
1251
/* Set MAC flow control behavior to match link flow control settings. */
1252
tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
1253
rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
1254
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1255
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1256
tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
1257
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1258
rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
1259
} else
1260
mac_mode |= BGE_MACMODE_HALF_DUPLEX;
1261
1262
CSR_WRITE_4(sc, BGE_MAC_MODE, mac_mode);
1263
DELAY(40);
1264
CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
1265
CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
1266
}
1267
1268
/*
1269
* Intialize a standard receive ring descriptor.
1270
*/
1271
static int
1272
bge_newbuf_std(struct bge_softc *sc, int i)
1273
{
1274
struct mbuf *m;
1275
struct bge_rx_bd *r;
1276
bus_dma_segment_t segs[1];
1277
bus_dmamap_t map;
1278
int error, nsegs;
1279
1280
if (sc->bge_flags & BGE_FLAG_JUMBO_STD &&
1281
(if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
1282
ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))) {
1283
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1284
if (m == NULL)
1285
return (ENOBUFS);
1286
m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1287
} else {
1288
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1289
if (m == NULL)
1290
return (ENOBUFS);
1291
m->m_len = m->m_pkthdr.len = MCLBYTES;
1292
}
1293
if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1294
m_adj(m, ETHER_ALIGN);
1295
1296
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_rx_mtag,
1297
sc->bge_cdata.bge_rx_std_sparemap, m, segs, &nsegs, 0);
1298
if (error != 0) {
1299
m_freem(m);
1300
return (error);
1301
}
1302
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1303
bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1304
sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_POSTREAD);
1305
bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1306
sc->bge_cdata.bge_rx_std_dmamap[i]);
1307
}
1308
map = sc->bge_cdata.bge_rx_std_dmamap[i];
1309
sc->bge_cdata.bge_rx_std_dmamap[i] = sc->bge_cdata.bge_rx_std_sparemap;
1310
sc->bge_cdata.bge_rx_std_sparemap = map;
1311
sc->bge_cdata.bge_rx_std_chain[i] = m;
1312
sc->bge_cdata.bge_rx_std_seglen[i] = segs[0].ds_len;
1313
r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
1314
r->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1315
r->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1316
r->bge_flags = BGE_RXBDFLAG_END;
1317
r->bge_len = segs[0].ds_len;
1318
r->bge_idx = i;
1319
1320
bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1321
sc->bge_cdata.bge_rx_std_dmamap[i], BUS_DMASYNC_PREREAD);
1322
1323
return (0);
1324
}
1325
1326
/*
1327
* Initialize a jumbo receive ring descriptor. This allocates
1328
* a jumbo buffer from the pool managed internally by the driver.
1329
*/
1330
static int
1331
bge_newbuf_jumbo(struct bge_softc *sc, int i)
1332
{
1333
bus_dma_segment_t segs[BGE_NSEG_JUMBO];
1334
bus_dmamap_t map;
1335
struct bge_extrx_bd *r;
1336
struct mbuf *m;
1337
int error, nsegs;
1338
1339
MGETHDR(m, M_NOWAIT, MT_DATA);
1340
if (m == NULL)
1341
return (ENOBUFS);
1342
1343
if (m_cljget(m, M_NOWAIT, MJUM9BYTES) == NULL) {
1344
m_freem(m);
1345
return (ENOBUFS);
1346
}
1347
m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1348
if ((sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) == 0)
1349
m_adj(m, ETHER_ALIGN);
1350
1351
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_mtag_jumbo,
1352
sc->bge_cdata.bge_rx_jumbo_sparemap, m, segs, &nsegs, 0);
1353
if (error != 0) {
1354
m_freem(m);
1355
return (error);
1356
}
1357
1358
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1359
bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1360
sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_POSTREAD);
1361
bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1362
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1363
}
1364
map = sc->bge_cdata.bge_rx_jumbo_dmamap[i];
1365
sc->bge_cdata.bge_rx_jumbo_dmamap[i] =
1366
sc->bge_cdata.bge_rx_jumbo_sparemap;
1367
sc->bge_cdata.bge_rx_jumbo_sparemap = map;
1368
sc->bge_cdata.bge_rx_jumbo_chain[i] = m;
1369
sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = 0;
1370
sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = 0;
1371
sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = 0;
1372
sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = 0;
1373
1374
/*
1375
* Fill in the extended RX buffer descriptor.
1376
*/
1377
r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
1378
r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
1379
r->bge_idx = i;
1380
r->bge_len3 = r->bge_len2 = r->bge_len1 = 0;
1381
switch (nsegs) {
1382
case 4:
1383
r->bge_addr3.bge_addr_lo = BGE_ADDR_LO(segs[3].ds_addr);
1384
r->bge_addr3.bge_addr_hi = BGE_ADDR_HI(segs[3].ds_addr);
1385
r->bge_len3 = segs[3].ds_len;
1386
sc->bge_cdata.bge_rx_jumbo_seglen[i][3] = segs[3].ds_len;
1387
case 3:
1388
r->bge_addr2.bge_addr_lo = BGE_ADDR_LO(segs[2].ds_addr);
1389
r->bge_addr2.bge_addr_hi = BGE_ADDR_HI(segs[2].ds_addr);
1390
r->bge_len2 = segs[2].ds_len;
1391
sc->bge_cdata.bge_rx_jumbo_seglen[i][2] = segs[2].ds_len;
1392
case 2:
1393
r->bge_addr1.bge_addr_lo = BGE_ADDR_LO(segs[1].ds_addr);
1394
r->bge_addr1.bge_addr_hi = BGE_ADDR_HI(segs[1].ds_addr);
1395
r->bge_len1 = segs[1].ds_len;
1396
sc->bge_cdata.bge_rx_jumbo_seglen[i][1] = segs[1].ds_len;
1397
case 1:
1398
r->bge_addr0.bge_addr_lo = BGE_ADDR_LO(segs[0].ds_addr);
1399
r->bge_addr0.bge_addr_hi = BGE_ADDR_HI(segs[0].ds_addr);
1400
r->bge_len0 = segs[0].ds_len;
1401
sc->bge_cdata.bge_rx_jumbo_seglen[i][0] = segs[0].ds_len;
1402
break;
1403
default:
1404
panic("%s: %d segments\n", __func__, nsegs);
1405
}
1406
1407
bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1408
sc->bge_cdata.bge_rx_jumbo_dmamap[i], BUS_DMASYNC_PREREAD);
1409
1410
return (0);
1411
}
1412
1413
static int
1414
bge_init_rx_ring_std(struct bge_softc *sc)
1415
{
1416
int error, i;
1417
1418
bzero(sc->bge_ldata.bge_rx_std_ring, BGE_STD_RX_RING_SZ);
1419
sc->bge_std = 0;
1420
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1421
if ((error = bge_newbuf_std(sc, i)) != 0)
1422
return (error);
1423
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
1424
}
1425
1426
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
1427
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
1428
1429
sc->bge_std = 0;
1430
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, BGE_STD_RX_RING_CNT - 1);
1431
1432
return (0);
1433
}
1434
1435
static void
1436
bge_free_rx_ring_std(struct bge_softc *sc)
1437
{
1438
int i;
1439
1440
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
1441
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
1442
bus_dmamap_sync(sc->bge_cdata.bge_rx_mtag,
1443
sc->bge_cdata.bge_rx_std_dmamap[i],
1444
BUS_DMASYNC_POSTREAD);
1445
bus_dmamap_unload(sc->bge_cdata.bge_rx_mtag,
1446
sc->bge_cdata.bge_rx_std_dmamap[i]);
1447
m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
1448
sc->bge_cdata.bge_rx_std_chain[i] = NULL;
1449
}
1450
bzero((char *)&sc->bge_ldata.bge_rx_std_ring[i],
1451
sizeof(struct bge_rx_bd));
1452
}
1453
}
1454
1455
static int
1456
bge_init_rx_ring_jumbo(struct bge_softc *sc)
1457
{
1458
struct bge_rcb *rcb;
1459
int error, i;
1460
1461
bzero(sc->bge_ldata.bge_rx_jumbo_ring, BGE_JUMBO_RX_RING_SZ);
1462
sc->bge_jumbo = 0;
1463
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1464
if ((error = bge_newbuf_jumbo(sc, i)) != 0)
1465
return (error);
1466
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
1467
}
1468
1469
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
1470
sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
1471
1472
sc->bge_jumbo = 0;
1473
1474
/* Enable the jumbo receive producer ring. */
1475
rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
1476
rcb->bge_maxlen_flags =
1477
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_USE_EXT_RX_BD);
1478
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
1479
1480
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, BGE_JUMBO_RX_RING_CNT - 1);
1481
1482
return (0);
1483
}
1484
1485
static void
1486
bge_free_rx_ring_jumbo(struct bge_softc *sc)
1487
{
1488
int i;
1489
1490
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
1491
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
1492
bus_dmamap_sync(sc->bge_cdata.bge_mtag_jumbo,
1493
sc->bge_cdata.bge_rx_jumbo_dmamap[i],
1494
BUS_DMASYNC_POSTREAD);
1495
bus_dmamap_unload(sc->bge_cdata.bge_mtag_jumbo,
1496
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
1497
m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
1498
sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
1499
}
1500
bzero((char *)&sc->bge_ldata.bge_rx_jumbo_ring[i],
1501
sizeof(struct bge_extrx_bd));
1502
}
1503
}
1504
1505
static void
1506
bge_free_tx_ring(struct bge_softc *sc)
1507
{
1508
int i;
1509
1510
if (sc->bge_ldata.bge_tx_ring == NULL)
1511
return;
1512
1513
for (i = 0; i < BGE_TX_RING_CNT; i++) {
1514
if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
1515
bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
1516
sc->bge_cdata.bge_tx_dmamap[i],
1517
BUS_DMASYNC_POSTWRITE);
1518
bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
1519
sc->bge_cdata.bge_tx_dmamap[i]);
1520
m_freem(sc->bge_cdata.bge_tx_chain[i]);
1521
sc->bge_cdata.bge_tx_chain[i] = NULL;
1522
}
1523
bzero((char *)&sc->bge_ldata.bge_tx_ring[i],
1524
sizeof(struct bge_tx_bd));
1525
}
1526
}
1527
1528
static int
1529
bge_init_tx_ring(struct bge_softc *sc)
1530
{
1531
sc->bge_txcnt = 0;
1532
sc->bge_tx_saved_considx = 0;
1533
1534
bzero(sc->bge_ldata.bge_tx_ring, BGE_TX_RING_SZ);
1535
bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
1536
sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
1537
1538
/* Initialize transmit producer index for host-memory send ring. */
1539
sc->bge_tx_prodidx = 0;
1540
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1541
1542
/* 5700 b2 errata */
1543
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1544
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
1545
1546
/* NIC-memory send ring not used; initialize to zero. */
1547
bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1548
/* 5700 b2 errata */
1549
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
1550
bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
1551
1552
return (0);
1553
}
1554
1555
static void
1556
bge_setpromisc(struct bge_softc *sc)
1557
{
1558
if_t ifp;
1559
1560
BGE_LOCK_ASSERT(sc);
1561
1562
ifp = sc->bge_ifp;
1563
1564
/* Enable or disable promiscuous mode as needed. */
1565
if (if_getflags(ifp) & IFF_PROMISC)
1566
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1567
else
1568
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
1569
}
1570
1571
static u_int
1572
bge_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
1573
{
1574
uint32_t *hashes = arg;
1575
int h;
1576
1577
h = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN) & 0x7F;
1578
hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
1579
1580
return (1);
1581
}
1582
1583
static void
1584
bge_setmulti(struct bge_softc *sc)
1585
{
1586
if_t ifp;
1587
uint32_t hashes[4] = { 0, 0, 0, 0 };
1588
int i;
1589
1590
BGE_LOCK_ASSERT(sc);
1591
1592
ifp = sc->bge_ifp;
1593
1594
if (if_getflags(ifp) & IFF_ALLMULTI || if_getflags(ifp) & IFF_PROMISC) {
1595
for (i = 0; i < 4; i++)
1596
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0xFFFFFFFF);
1597
return;
1598
}
1599
1600
/* First, zot all the existing filters. */
1601
for (i = 0; i < 4; i++)
1602
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), 0);
1603
1604
if_foreach_llmaddr(ifp, bge_hash_maddr, hashes);
1605
1606
for (i = 0; i < 4; i++)
1607
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
1608
}
1609
1610
static void
1611
bge_setvlan(struct bge_softc *sc)
1612
{
1613
if_t ifp;
1614
1615
BGE_LOCK_ASSERT(sc);
1616
1617
ifp = sc->bge_ifp;
1618
1619
/* Enable or disable VLAN tag stripping as needed. */
1620
if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING)
1621
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1622
else
1623
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_KEEP_VLAN_DIAG);
1624
}
1625
1626
static void
1627
bge_sig_pre_reset(struct bge_softc *sc, int type)
1628
{
1629
1630
/*
1631
* Some chips don't like this so only do this if ASF is enabled
1632
*/
1633
if (sc->bge_asf_mode)
1634
bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
1635
1636
if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1637
switch (type) {
1638
case BGE_RESET_START:
1639
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1640
BGE_FW_DRV_STATE_START);
1641
break;
1642
case BGE_RESET_SHUTDOWN:
1643
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1644
BGE_FW_DRV_STATE_UNLOAD);
1645
break;
1646
case BGE_RESET_SUSPEND:
1647
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1648
BGE_FW_DRV_STATE_SUSPEND);
1649
break;
1650
}
1651
}
1652
1653
if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
1654
bge_ape_driver_state_change(sc, type);
1655
}
1656
1657
static void
1658
bge_sig_post_reset(struct bge_softc *sc, int type)
1659
{
1660
1661
if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
1662
switch (type) {
1663
case BGE_RESET_START:
1664
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1665
BGE_FW_DRV_STATE_START_DONE);
1666
/* START DONE */
1667
break;
1668
case BGE_RESET_SHUTDOWN:
1669
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1670
BGE_FW_DRV_STATE_UNLOAD_DONE);
1671
break;
1672
}
1673
}
1674
if (type == BGE_RESET_SHUTDOWN)
1675
bge_ape_driver_state_change(sc, type);
1676
}
1677
1678
static void
1679
bge_sig_legacy(struct bge_softc *sc, int type)
1680
{
1681
1682
if (sc->bge_asf_mode) {
1683
switch (type) {
1684
case BGE_RESET_START:
1685
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1686
BGE_FW_DRV_STATE_START);
1687
break;
1688
case BGE_RESET_SHUTDOWN:
1689
bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
1690
BGE_FW_DRV_STATE_UNLOAD);
1691
break;
1692
}
1693
}
1694
}
1695
1696
static void
1697
bge_stop_fw(struct bge_softc *sc)
1698
{
1699
int i;
1700
1701
if (sc->bge_asf_mode) {
1702
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
1703
CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
1704
CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);
1705
1706
for (i = 0; i < 100; i++ ) {
1707
if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
1708
BGE_RX_CPU_DRV_EVENT))
1709
break;
1710
DELAY(10);
1711
}
1712
}
1713
}
1714
1715
static uint32_t
1716
bge_dma_swap_options(struct bge_softc *sc)
1717
{
1718
uint32_t dma_options;
1719
1720
dma_options = BGE_MODECTL_WORDSWAP_NONFRAME |
1721
BGE_MODECTL_BYTESWAP_DATA | BGE_MODECTL_WORDSWAP_DATA;
1722
#if BYTE_ORDER == BIG_ENDIAN
1723
dma_options |= BGE_MODECTL_BYTESWAP_NONFRAME;
1724
#endif
1725
return (dma_options);
1726
}
1727
1728
/*
1729
* Do endian, PCI and DMA initialization.
1730
*/
1731
static int
1732
bge_chipinit(struct bge_softc *sc)
1733
{
1734
uint32_t dma_rw_ctl, misc_ctl, mode_ctl;
1735
uint16_t val;
1736
int i;
1737
1738
/* Set endianness before we access any non-PCI registers. */
1739
misc_ctl = BGE_INIT;
1740
if (sc->bge_flags & BGE_FLAG_TAGGED_STATUS)
1741
misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
1742
pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, misc_ctl, 4);
1743
1744
/*
1745
* Clear the MAC statistics block in the NIC's
1746
* internal memory.
1747
*/
1748
for (i = BGE_STATS_BLOCK;
1749
i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
1750
BGE_MEMWIN_WRITE(sc, i, 0);
1751
1752
for (i = BGE_STATUS_BLOCK;
1753
i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
1754
BGE_MEMWIN_WRITE(sc, i, 0);
1755
1756
if (sc->bge_chiprev == BGE_CHIPREV_5704_BX) {
1757
/*
1758
* Fix data corruption caused by non-qword write with WB.
1759
* Fix master abort in PCI mode.
1760
* Fix PCI latency timer.
1761
*/
1762
val = pci_read_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, 2);
1763
val |= (1 << 10) | (1 << 12) | (1 << 13);
1764
pci_write_config(sc->bge_dev, BGE_PCI_MSI_DATA + 2, val, 2);
1765
}
1766
1767
if (sc->bge_asicrev == BGE_ASICREV_BCM57765 ||
1768
sc->bge_asicrev == BGE_ASICREV_BCM57766) {
1769
/*
1770
* For the 57766 and non Ax versions of 57765, bootcode
1771
* needs to setup the PCIE Fast Training Sequence (FTS)
1772
* value to prevent transmit hangs.
1773
*/
1774
if (sc->bge_chiprev != BGE_CHIPREV_57765_AX) {
1775
CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
1776
CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL) |
1777
BGE_CPMU_PADRNG_CTL_RDIV2);
1778
}
1779
}
1780
1781
/*
1782
* Set up the PCI DMA control register.
1783
*/
1784
dma_rw_ctl = BGE_PCIDMARWCTL_RD_CMD_SHIFT(6) |
1785
BGE_PCIDMARWCTL_WR_CMD_SHIFT(7);
1786
if (sc->bge_flags & BGE_FLAG_PCIE) {
1787
if (sc->bge_mps >= 256)
1788
dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1789
else
1790
dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1791
} else if (sc->bge_flags & BGE_FLAG_PCIX) {
1792
if (BGE_IS_5714_FAMILY(sc)) {
1793
/* 256 bytes for read and write. */
1794
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
1795
BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);
1796
dma_rw_ctl |= (sc->bge_asicrev == BGE_ASICREV_BCM5780) ?
1797
BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL :
1798
BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
1799
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
1800
/*
1801
* In the BCM5703, the DMA read watermark should
1802
* be set to less than or equal to the maximum
1803
* memory read byte count of the PCI-X command
1804
* register.
1805
*/
1806
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
1807
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1808
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1809
/* 1536 bytes for read, 384 bytes for write. */
1810
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1811
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
1812
} else {
1813
/* 384 bytes for read and write. */
1814
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
1815
BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
1816
0x0F;
1817
}
1818
if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1819
sc->bge_asicrev == BGE_ASICREV_BCM5704) {
1820
uint32_t tmp;
1821
1822
/* Set ONE_DMA_AT_ONCE for hardware workaround. */
1823
tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
1824
if (tmp == 6 || tmp == 7)
1825
dma_rw_ctl |=
1826
BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
1827
1828
/* Set PCI-X DMA write workaround. */
1829
dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
1830
}
1831
} else {
1832
/* Conventional PCI bus: 256 bytes for read and write. */
1833
dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
1834
BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
1835
1836
if (sc->bge_asicrev != BGE_ASICREV_BCM5705 &&
1837
sc->bge_asicrev != BGE_ASICREV_BCM5750)
1838
dma_rw_ctl |= 0x0F;
1839
}
1840
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
1841
sc->bge_asicrev == BGE_ASICREV_BCM5701)
1842
dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
1843
BGE_PCIDMARWCTL_ASRT_ALL_BE;
1844
if (sc->bge_asicrev == BGE_ASICREV_BCM5703 ||
1845
sc->bge_asicrev == BGE_ASICREV_BCM5704)
1846
dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
1847
if (BGE_IS_5717_PLUS(sc)) {
1848
dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
1849
if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
1850
dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;
1851
/*
1852
* Enable HW workaround for controllers that misinterpret
1853
* a status tag update and leave interrupts permanently
1854
* disabled.
1855
*/
1856
if (!BGE_IS_57765_PLUS(sc) &&
1857
sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
1858
sc->bge_asicrev != BGE_ASICREV_BCM5762)
1859
dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
1860
}
1861
pci_write_config(sc->bge_dev, BGE_PCI_DMA_RW_CTL, dma_rw_ctl, 4);
1862
1863
/*
1864
* Set up general mode register.
1865
*/
1866
mode_ctl = bge_dma_swap_options(sc);
1867
if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
1868
sc->bge_asicrev == BGE_ASICREV_BCM5762) {
1869
/* Retain Host-2-BMC settings written by APE firmware. */
1870
mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
1871
(BGE_MODECTL_BYTESWAP_B2HRX_DATA |
1872
BGE_MODECTL_WORDSWAP_B2HRX_DATA |
1873
BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
1874
}
1875
mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
1876
BGE_MODECTL_TX_NO_PHDR_CSUM;
1877
1878
/*
1879
* BCM5701 B5 have a bug causing data corruption when using
1880
* 64-bit DMA reads, which can be terminated early and then
1881
* completed later as 32-bit accesses, in combination with
1882
* certain bridges.
1883
*/
1884
if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
1885
sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
1886
mode_ctl |= BGE_MODECTL_FORCE_PCI32;
1887
1888
/*
1889
* Tell the firmware the driver is running
1890
*/
1891
if (sc->bge_asf_mode & ASF_STACKUP)
1892
mode_ctl |= BGE_MODECTL_STACKUP;
1893
1894
CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
1895
1896
/*
1897
* Disable memory write invalidate. Apparently it is not supported
1898
* properly by these devices.
1899
*/
1900
PCI_CLRBIT(sc->bge_dev, BGE_PCI_CMD, PCIM_CMD_MWIEN, 4);
1901
1902
/* Set the timer prescaler (always 66 MHz). */
1903
CSR_WRITE_4(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);
1904
1905
/* XXX: The Linux tg3 driver does this at the start of brgphy_reset. */
1906
if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1907
DELAY(40); /* XXX */
1908
1909
/* Put PHY into ready state */
1910
BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
1911
CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
1912
DELAY(40);
1913
}
1914
1915
return (0);
1916
}
1917
1918
static int
1919
bge_blockinit(struct bge_softc *sc)
1920
{
1921
struct bge_rcb *rcb;
1922
bus_size_t vrcb;
1923
caddr_t lladdr;
1924
bge_hostaddr taddr;
1925
uint32_t dmactl, rdmareg, val;
1926
int i, limit;
1927
1928
/*
1929
* Initialize the memory window pointer register so that
1930
* we can access the first 32K of internal NIC RAM. This will
1931
* allow us to set up the TX send ring RCBs and the RX return
1932
* ring RCBs, plus other things which live in NIC memory.
1933
*/
1934
CSR_WRITE_4(sc, BGE_PCI_MEMWIN_BASEADDR, 0);
1935
1936
/* Note: the BCM5704 has a smaller mbuf space than other chips. */
1937
1938
if (!(BGE_IS_5705_PLUS(sc))) {
1939
/* Configure mbuf memory pool */
1940
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);
1941
if (sc->bge_asicrev == BGE_ASICREV_BCM5704)
1942
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
1943
else
1944
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
1945
1946
/* Configure DMA resource pool */
1947
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
1948
BGE_DMA_DESCRIPTORS);
1949
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
1950
}
1951
1952
/* Configure mbuf pool watermarks */
1953
if (BGE_IS_5717_PLUS(sc)) {
1954
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1955
if (if_getmtu(sc->bge_ifp) > ETHERMTU) {
1956
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
1957
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
1958
} else {
1959
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
1960
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
1961
}
1962
} else if (!BGE_IS_5705_PLUS(sc)) {
1963
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
1964
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
1965
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1966
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
1967
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1968
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
1969
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
1970
} else {
1971
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
1972
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
1973
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
1974
}
1975
1976
/* Configure DMA resource watermarks */
1977
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
1978
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
1979
1980
/* Enable buffer manager */
1981
val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN;
1982
/*
1983
* Change the arbitration algorithm of TXMBUF read request to
1984
* round-robin instead of priority based for BCM5719. When
1985
* TXFIFO is almost empty, RDMA will hold its request until
1986
* TXFIFO is not almost empty.
1987
*/
1988
if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
1989
val |= BGE_BMANMODE_NO_TX_UNDERRUN;
1990
CSR_WRITE_4(sc, BGE_BMAN_MODE, val);
1991
1992
/* Poll for buffer manager start indication */
1993
for (i = 0; i < BGE_TIMEOUT; i++) {
1994
DELAY(10);
1995
if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
1996
break;
1997
}
1998
1999
if (i == BGE_TIMEOUT) {
2000
device_printf(sc->bge_dev, "buffer manager failed to start\n");
2001
return (ENXIO);
2002
}
2003
2004
/* Enable flow-through queues */
2005
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
2006
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
2007
2008
/* Wait until queue initialization is complete */
2009
for (i = 0; i < BGE_TIMEOUT; i++) {
2010
DELAY(10);
2011
if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
2012
break;
2013
}
2014
2015
if (i == BGE_TIMEOUT) {
2016
device_printf(sc->bge_dev, "flow-through queue init failed\n");
2017
return (ENXIO);
2018
}
2019
2020
/*
2021
* Summary of rings supported by the controller:
2022
*
2023
* Standard Receive Producer Ring
2024
* - This ring is used to feed receive buffers for "standard"
2025
* sized frames (typically 1536 bytes) to the controller.
2026
*
2027
* Jumbo Receive Producer Ring
2028
* - This ring is used to feed receive buffers for jumbo sized
2029
* frames (i.e. anything bigger than the "standard" frames)
2030
* to the controller.
2031
*
2032
* Mini Receive Producer Ring
2033
* - This ring is used to feed receive buffers for "mini"
2034
* sized frames to the controller.
2035
* - This feature required external memory for the controller
2036
* but was never used in a production system. Should always
2037
* be disabled.
2038
*
2039
* Receive Return Ring
2040
* - After the controller has placed an incoming frame into a
2041
* receive buffer that buffer is moved into a receive return
2042
* ring. The driver is then responsible to passing the
2043
* buffer up to the stack. Many versions of the controller
2044
* support multiple RR rings.
2045
*
2046
* Send Ring
2047
* - This ring is used for outgoing frames. Many versions of
2048
* the controller support multiple send rings.
2049
*/
2050
2051
/* Initialize the standard receive producer ring control block. */
2052
rcb = &sc->bge_ldata.bge_info.bge_std_rx_rcb;
2053
rcb->bge_hostaddr.bge_addr_lo =
2054
BGE_ADDR_LO(sc->bge_ldata.bge_rx_std_ring_paddr);
2055
rcb->bge_hostaddr.bge_addr_hi =
2056
BGE_ADDR_HI(sc->bge_ldata.bge_rx_std_ring_paddr);
2057
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
2058
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREREAD);
2059
if (BGE_IS_5717_PLUS(sc)) {
2060
/*
2061
* Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
2062
* Bits 15-2 : Maximum RX frame size
2063
* Bit 1 : 1 = Ring Disabled, 0 = Ring ENabled
2064
* Bit 0 : Reserved
2065
*/
2066
rcb->bge_maxlen_flags =
2067
BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
2068
} else if (BGE_IS_5705_PLUS(sc)) {
2069
/*
2070
* Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
2071
* Bits 15-2 : Reserved (should be 0)
2072
* Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2073
* Bit 0 : Reserved
2074
*/
2075
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
2076
} else {
2077
/*
2078
* Ring size is always XXX entries
2079
* Bits 31-16: Maximum RX frame size
2080
* Bits 15-2 : Reserved (should be 0)
2081
* Bit 1 : 1 = Ring Disabled, 0 = Ring Enabled
2082
* Bit 0 : Reserved
2083
*/
2084
rcb->bge_maxlen_flags =
2085
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
2086
}
2087
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2088
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2089
sc->bge_asicrev == BGE_ASICREV_BCM5720)
2090
rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
2091
else
2092
rcb->bge_nicaddr = BGE_STD_RX_RINGS;
2093
/* Write the standard receive producer ring control block. */
2094
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
2095
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
2096
CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
2097
CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
2098
2099
/* Reset the standard receive producer ring producer index. */
2100
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
2101
2102
/*
2103
* Initialize the jumbo RX producer ring control
2104
* block. We set the 'ring disabled' bit in the
2105
* flags field until we're actually ready to start
2106
* using this ring (i.e. once we set the MTU
2107
* high enough to require it).
2108
*/
2109
if (BGE_IS_JUMBO_CAPABLE(sc)) {
2110
rcb = &sc->bge_ldata.bge_info.bge_jumbo_rx_rcb;
2111
/* Get the jumbo receive producer ring RCB parameters. */
2112
rcb->bge_hostaddr.bge_addr_lo =
2113
BGE_ADDR_LO(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2114
rcb->bge_hostaddr.bge_addr_hi =
2115
BGE_ADDR_HI(sc->bge_ldata.bge_rx_jumbo_ring_paddr);
2116
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2117
sc->bge_cdata.bge_rx_jumbo_ring_map,
2118
BUS_DMASYNC_PREREAD);
2119
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
2120
BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
2121
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2122
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2123
sc->bge_asicrev == BGE_ASICREV_BCM5720)
2124
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
2125
else
2126
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
2127
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
2128
rcb->bge_hostaddr.bge_addr_hi);
2129
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
2130
rcb->bge_hostaddr.bge_addr_lo);
2131
/* Program the jumbo receive producer ring RCB parameters. */
2132
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
2133
rcb->bge_maxlen_flags);
2134
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
2135
/* Reset the jumbo receive producer ring producer index. */
2136
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
2137
}
2138
2139
/* Disable the mini receive producer ring RCB. */
2140
if (BGE_IS_5700_FAMILY(sc)) {
2141
rcb = &sc->bge_ldata.bge_info.bge_mini_rx_rcb;
2142
rcb->bge_maxlen_flags =
2143
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
2144
CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
2145
rcb->bge_maxlen_flags);
2146
/* Reset the mini receive producer ring producer index. */
2147
bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
2148
}
2149
2150
/* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
2151
if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
2152
if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
2153
sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
2154
sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
2155
CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
2156
(CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
2157
}
2158
/*
2159
* The BD ring replenish thresholds control how often the
2160
* hardware fetches new BD's from the producer rings in host
2161
* memory. Setting the value too low on a busy system can
2162
* starve the hardware and reduce the throughput.
2163
*
2164
* Set the BD ring replentish thresholds. The recommended
2165
* values are 1/8th the number of descriptors allocated to
2166
* each ring.
2167
* XXX The 5754 requires a lower threshold, so it might be a
2168
* requirement of all 575x family chips. The Linux driver sets
2169
* the lower threshold for all 5705 family chips as well, but there
2170
* are reports that it might not need to be so strict.
2171
*
2172
* XXX Linux does some extra fiddling here for the 5906 parts as
2173
* well.
2174
*/
2175
if (BGE_IS_5705_PLUS(sc))
2176
val = 8;
2177
else
2178
val = BGE_STD_RX_RING_CNT / 8;
2179
CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, val);
2180
if (BGE_IS_JUMBO_CAPABLE(sc))
2181
CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH,
2182
BGE_JUMBO_RX_RING_CNT/8);
2183
if (BGE_IS_5717_PLUS(sc)) {
2184
CSR_WRITE_4(sc, BGE_STD_REPLENISH_LWM, 32);
2185
CSR_WRITE_4(sc, BGE_JMB_REPLENISH_LWM, 16);
2186
}
2187
2188
/*
2189
* Disable all send rings by setting the 'ring disabled' bit
2190
* in the flags field of all the TX send ring control blocks,
2191
* located in NIC memory.
2192
*/
2193
if (!BGE_IS_5705_PLUS(sc))
2194
/* 5700 to 5704 had 16 send rings. */
2195
limit = BGE_TX_RINGS_EXTSSRAM_MAX;
2196
else if (BGE_IS_57765_PLUS(sc) ||
2197
sc->bge_asicrev == BGE_ASICREV_BCM5762)
2198
limit = 2;
2199
else if (BGE_IS_5717_PLUS(sc))
2200
limit = 4;
2201
else
2202
limit = 1;
2203
vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2204
for (i = 0; i < limit; i++) {
2205
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2206
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
2207
RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2208
vrcb += sizeof(struct bge_rcb);
2209
}
2210
2211
/* Configure send ring RCB 0 (we use only the first ring) */
2212
vrcb = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
2213
BGE_HOSTADDR(taddr, sc->bge_ldata.bge_tx_ring_paddr);
2214
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2215
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2216
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2217
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2218
sc->bge_asicrev == BGE_ASICREV_BCM5720)
2219
RCB_WRITE_4(sc, vrcb, bge_nicaddr, BGE_SEND_RING_5717);
2220
else
2221
RCB_WRITE_4(sc, vrcb, bge_nicaddr,
2222
BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
2223
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2224
BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
2225
2226
/*
2227
* Disable all receive return rings by setting the
2228
* 'ring diabled' bit in the flags field of all the receive
2229
* return ring control blocks, located in NIC memory.
2230
*/
2231
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
2232
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
2233
sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2234
/* Should be 17, use 16 until we get an SRAM map. */
2235
limit = 16;
2236
} else if (!BGE_IS_5705_PLUS(sc))
2237
limit = BGE_RX_RINGS_MAX;
2238
else if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
2239
sc->bge_asicrev == BGE_ASICREV_BCM5762 ||
2240
BGE_IS_57765_PLUS(sc))
2241
limit = 4;
2242
else
2243
limit = 1;
2244
/* Disable all receive return rings. */
2245
vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2246
for (i = 0; i < limit; i++) {
2247
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, 0);
2248
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, 0);
2249
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2250
BGE_RCB_FLAG_RING_DISABLED);
2251
RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2252
bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
2253
(i * (sizeof(uint64_t))), 0);
2254
vrcb += sizeof(struct bge_rcb);
2255
}
2256
2257
/*
2258
* Set up receive return ring 0. Note that the NIC address
2259
* for RX return rings is 0x0. The return rings live entirely
2260
* within the host, so the nicaddr field in the RCB isn't used.
2261
*/
2262
vrcb = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
2263
BGE_HOSTADDR(taddr, sc->bge_ldata.bge_rx_return_ring_paddr);
2264
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
2265
RCB_WRITE_4(sc, vrcb, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
2266
RCB_WRITE_4(sc, vrcb, bge_nicaddr, 0);
2267
RCB_WRITE_4(sc, vrcb, bge_maxlen_flags,
2268
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
2269
2270
lladdr = if_getlladdr(sc->bge_ifp);
2271
/* Set random backoff seed for TX */
2272
CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
2273
(lladdr[0] + lladdr[1] +
2274
lladdr[2] + lladdr[3] +
2275
lladdr[4] + lladdr[5]) &
2276
BGE_TX_BACKOFF_SEED_MASK);
2277
2278
/* Set inter-packet gap */
2279
val = 0x2620;
2280
if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2281
sc->bge_asicrev == BGE_ASICREV_BCM5762)
2282
val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
2283
(BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
2284
CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);
2285
2286
/*
2287
* Specify which ring to use for packets that don't match
2288
* any RX rules.
2289
*/
2290
CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
2291
2292
/*
2293
* Configure number of RX lists. One interrupt distribution
2294
* list, sixteen active lists, one bad frames class.
2295
*/
2296
CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
2297
2298
/* Initialize RX list placement stats mask. */
2299
CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
2300
CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
2301
2302
/* Disable host coalescing until we get it set up */
2303
CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
2304
2305
/* Poll to make sure it's shut down. */
2306
for (i = 0; i < BGE_TIMEOUT; i++) {
2307
DELAY(10);
2308
if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
2309
break;
2310
}
2311
2312
if (i == BGE_TIMEOUT) {
2313
device_printf(sc->bge_dev,
2314
"host coalescing engine failed to idle\n");
2315
return (ENXIO);
2316
}
2317
2318
/* Set up host coalescing defaults */
2319
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
2320
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
2321
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
2322
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
2323
if (!(BGE_IS_5705_PLUS(sc))) {
2324
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
2325
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
2326
}
2327
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 1);
2328
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 1);
2329
2330
/* Set up address of statistics block */
2331
if (!(BGE_IS_5705_PLUS(sc))) {
2332
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI,
2333
BGE_ADDR_HI(sc->bge_ldata.bge_stats_paddr));
2334
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO,
2335
BGE_ADDR_LO(sc->bge_ldata.bge_stats_paddr));
2336
CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
2337
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
2338
CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
2339
}
2340
2341
/* Set up address of status block */
2342
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI,
2343
BGE_ADDR_HI(sc->bge_ldata.bge_status_block_paddr));
2344
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO,
2345
BGE_ADDR_LO(sc->bge_ldata.bge_status_block_paddr));
2346
2347
/* Set up status block size. */
2348
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2349
sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
2350
val = BGE_STATBLKSZ_FULL;
2351
bzero(sc->bge_ldata.bge_status_block, BGE_STATUS_BLK_SZ);
2352
} else {
2353
val = BGE_STATBLKSZ_32BYTE;
2354
bzero(sc->bge_ldata.bge_status_block, 32);
2355
}
2356
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
2357
sc->bge_cdata.bge_status_map,
2358
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2359
2360
/* Turn on host coalescing state machine */
2361
CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);
2362
2363
/* Turn on RX BD completion state machine and enable attentions */
2364
CSR_WRITE_4(sc, BGE_RBDC_MODE,
2365
BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
2366
2367
/* Turn on RX list placement state machine */
2368
CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
2369
2370
/* Turn on RX list selector state machine. */
2371
if (!(BGE_IS_5705_PLUS(sc)))
2372
CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
2373
2374
/* Turn on DMA, clear stats. */
2375
val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
2376
BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
2377
BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
2378
BGE_MACMODE_FRMHDR_DMA_ENB;
2379
2380
if (sc->bge_flags & BGE_FLAG_TBI)
2381
val |= BGE_PORTMODE_TBI;
2382
else if (sc->bge_flags & BGE_FLAG_MII_SERDES)
2383
val |= BGE_PORTMODE_GMII;
2384
else
2385
val |= BGE_PORTMODE_MII;
2386
2387
/* Allow APE to send/receive frames. */
2388
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
2389
val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
2390
2391
CSR_WRITE_4(sc, BGE_MAC_MODE, val);
2392
DELAY(40);
2393
2394
/* Set misc. local control, enable interrupts on attentions */
2395
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
2396
2397
#ifdef notdef
2398
/* Assert GPIO pins for PHY reset */
2399
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0 |
2400
BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUT2);
2401
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0 |
2402
BGE_MLC_MISCIO_OUTEN1 | BGE_MLC_MISCIO_OUTEN2);
2403
#endif
2404
2405
/* Turn on DMA completion state machine */
2406
if (!(BGE_IS_5705_PLUS(sc)))
2407
CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
2408
2409
val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;
2410
2411
/* Enable host coalescing bug fix. */
2412
if (BGE_IS_5755_PLUS(sc))
2413
val |= BGE_WDMAMODE_STATUS_TAG_FIX;
2414
2415
/* Request larger DMA burst size to get better performance. */
2416
if (sc->bge_asicrev == BGE_ASICREV_BCM5785)
2417
val |= BGE_WDMAMODE_BURST_ALL_DATA;
2418
2419
/* Turn on write DMA state machine */
2420
CSR_WRITE_4(sc, BGE_WDMA_MODE, val);
2421
DELAY(40);
2422
2423
/* Turn on read DMA state machine */
2424
val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
2425
2426
if (sc->bge_asicrev == BGE_ASICREV_BCM5717)
2427
val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;
2428
2429
if (sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2430
sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2431
sc->bge_asicrev == BGE_ASICREV_BCM57780)
2432
val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
2433
BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
2434
BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
2435
if (sc->bge_flags & BGE_FLAG_PCIE)
2436
val |= BGE_RDMAMODE_FIFO_LONG_BURST;
2437
if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
2438
val |= BGE_RDMAMODE_TSO4_ENABLE;
2439
if (sc->bge_flags & BGE_FLAG_TSO3 ||
2440
sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2441
sc->bge_asicrev == BGE_ASICREV_BCM57780)
2442
val |= BGE_RDMAMODE_TSO6_ENABLE;
2443
}
2444
2445
if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
2446
sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2447
val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
2448
BGE_RDMAMODE_H2BNC_VLAN_DET;
2449
/*
2450
* Allow multiple outstanding read requests from
2451
* non-LSO read DMA engine.
2452
*/
2453
val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
2454
}
2455
2456
if (sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
2457
sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
2458
sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
2459
sc->bge_asicrev == BGE_ASICREV_BCM57780 ||
2460
BGE_IS_5717_PLUS(sc) || BGE_IS_57765_PLUS(sc)) {
2461
if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
2462
rdmareg = BGE_RDMA_RSRVCTRL_REG2;
2463
else
2464
rdmareg = BGE_RDMA_RSRVCTRL;
2465
dmactl = CSR_READ_4(sc, rdmareg);
2466
/*
2467
* Adjust tx margin to prevent TX data corruption and
2468
* fix internal FIFO overflow.
2469
*/
2470
if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
2471
sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2472
dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
2473
BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
2474
BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
2475
dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
2476
BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
2477
BGE_RDMA_RSRVCTRL_TXMRGN_320B;
2478
}
2479
/*
2480
* Enable fix for read DMA FIFO overruns.
2481
* The fix is to limit the number of RX BDs
2482
* the hardware would fetch at a fime.
2483
*/
2484
CSR_WRITE_4(sc, rdmareg, dmactl |
2485
BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
2486
}
2487
2488
if (sc->bge_asicrev == BGE_ASICREV_BCM5719) {
2489
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2490
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2491
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2492
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2493
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5720) {
2494
/*
2495
* Allow 4KB burst length reads for non-LSO frames.
2496
* Enable 512B burst length reads for buffer descriptors.
2497
*/
2498
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
2499
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
2500
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
2501
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2502
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5762) {
2503
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
2504
CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
2505
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
2506
BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
2507
}
2508
2509
CSR_WRITE_4(sc, BGE_RDMA_MODE, val);
2510
DELAY(40);
2511
2512
if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
2513
for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
2514
val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
2515
if ((val & 0xFFFF) > BGE_FRAMELEN)
2516
break;
2517
if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
2518
break;
2519
}
2520
if (i != BGE_NUM_RDMA_CHANNELS / 2) {
2521
val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
2522
if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
2523
val |= BGE_RDMA_TX_LENGTH_WA_5719;
2524
else
2525
val |= BGE_RDMA_TX_LENGTH_WA_5720;
2526
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
2527
}
2528
}
2529
2530
/* Turn on RX data completion state machine */
2531
CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
2532
2533
/* Turn on RX BD initiator state machine */
2534
CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
2535
2536
/* Turn on RX data and RX BD initiator state machine */
2537
CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
2538
2539
/* Turn on Mbuf cluster free state machine */
2540
if (!(BGE_IS_5705_PLUS(sc)))
2541
CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
2542
2543
/* Turn on send BD completion state machine */
2544
CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
2545
2546
/* Turn on send data completion state machine */
2547
val = BGE_SDCMODE_ENABLE;
2548
if (sc->bge_asicrev == BGE_ASICREV_BCM5761)
2549
val |= BGE_SDCMODE_CDELAY;
2550
CSR_WRITE_4(sc, BGE_SDC_MODE, val);
2551
2552
/* Turn on send data initiator state machine */
2553
if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3))
2554
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
2555
BGE_SDIMODE_HW_LSO_PRE_DMA);
2556
else
2557
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
2558
2559
/* Turn on send BD initiator state machine */
2560
CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
2561
2562
/* Turn on send BD selector state machine */
2563
CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
2564
2565
CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
2566
CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
2567
BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
2568
2569
/* ack/clear link change events */
2570
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2571
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2572
BGE_MACSTAT_LINK_CHANGED);
2573
CSR_WRITE_4(sc, BGE_MI_STS, 0);
2574
2575
/*
2576
* Enable attention when the link has changed state for
2577
* devices that use auto polling.
2578
*/
2579
if (sc->bge_flags & BGE_FLAG_TBI) {
2580
CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
2581
} else {
2582
if (sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) {
2583
CSR_WRITE_4(sc, BGE_MI_MODE, sc->bge_mi_mode);
2584
DELAY(80);
2585
}
2586
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2587
sc->bge_chipid != BGE_CHIPID_BCM5700_B2)
2588
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
2589
BGE_EVTENB_MI_INTERRUPT);
2590
}
2591
2592
/*
2593
* Clear any pending link state attention.
2594
* Otherwise some link state change events may be lost until attention
2595
* is cleared by bge_intr() -> bge_link_upd() sequence.
2596
* It's not necessary on newer BCM chips - perhaps enabling link
2597
* state change attentions implies clearing pending attention.
2598
*/
2599
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
2600
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
2601
BGE_MACSTAT_LINK_CHANGED);
2602
2603
/* Enable link state change attentions. */
2604
BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
2605
2606
return (0);
2607
}
2608
2609
static const struct bge_revision *
2610
bge_lookup_rev(uint32_t chipid)
2611
{
2612
const struct bge_revision *br;
2613
2614
for (br = bge_revisions; br->br_name != NULL; br++) {
2615
if (br->br_chipid == chipid)
2616
return (br);
2617
}
2618
2619
for (br = bge_majorrevs; br->br_name != NULL; br++) {
2620
if (br->br_chipid == BGE_ASICREV(chipid))
2621
return (br);
2622
}
2623
2624
return (NULL);
2625
}
2626
2627
static const struct bge_vendor *
2628
bge_lookup_vendor(uint16_t vid)
2629
{
2630
const struct bge_vendor *v;
2631
2632
for (v = bge_vendors; v->v_name != NULL; v++)
2633
if (v->v_id == vid)
2634
return (v);
2635
2636
return (NULL);
2637
}
2638
2639
static uint32_t
2640
bge_chipid(device_t dev)
2641
{
2642
uint32_t id;
2643
2644
id = pci_read_config(dev, BGE_PCI_MISC_CTL, 4) >>
2645
BGE_PCIMISCCTL_ASICREV_SHIFT;
2646
if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
2647
/*
2648
* Find the ASCI revision. Different chips use different
2649
* registers.
2650
*/
2651
switch (pci_get_device(dev)) {
2652
case BCOM_DEVICEID_BCM5717C:
2653
/* 5717 C0 seems to belong to 5720 line. */
2654
id = BGE_CHIPID_BCM5720_A0;
2655
break;
2656
case BCOM_DEVICEID_BCM5717:
2657
case BCOM_DEVICEID_BCM5718:
2658
case BCOM_DEVICEID_BCM5719:
2659
case BCOM_DEVICEID_BCM5720:
2660
case BCOM_DEVICEID_BCM5725:
2661
case BCOM_DEVICEID_BCM5727:
2662
case BCOM_DEVICEID_BCM5762:
2663
case BCOM_DEVICEID_BCM57764:
2664
case BCOM_DEVICEID_BCM57767:
2665
case BCOM_DEVICEID_BCM57787:
2666
id = pci_read_config(dev,
2667
BGE_PCI_GEN2_PRODID_ASICREV, 4);
2668
break;
2669
case BCOM_DEVICEID_BCM57761:
2670
case BCOM_DEVICEID_BCM57762:
2671
case BCOM_DEVICEID_BCM57765:
2672
case BCOM_DEVICEID_BCM57766:
2673
case BCOM_DEVICEID_BCM57781:
2674
case BCOM_DEVICEID_BCM57782:
2675
case BCOM_DEVICEID_BCM57785:
2676
case BCOM_DEVICEID_BCM57786:
2677
case BCOM_DEVICEID_BCM57791:
2678
case BCOM_DEVICEID_BCM57795:
2679
id = pci_read_config(dev,
2680
BGE_PCI_GEN15_PRODID_ASICREV, 4);
2681
break;
2682
default:
2683
id = pci_read_config(dev, BGE_PCI_PRODID_ASICREV, 4);
2684
}
2685
}
2686
return (id);
2687
}
2688
2689
/*
2690
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
2691
* against our list and return its name if we find a match.
2692
*
2693
* Note that since the Broadcom controller contains VPD support, we
2694
* try to get the device name string from the controller itself instead
2695
* of the compiled-in string. It guarantees we'll always announce the
2696
* right product name. We fall back to the compiled-in string when
2697
* VPD is unavailable or corrupt.
2698
*/
2699
static int
2700
bge_probe(device_t dev)
2701
{
2702
char model[64];
2703
const struct bge_revision *br;
2704
const char *pname;
2705
struct bge_softc *sc;
2706
const struct bge_type *t = bge_devs;
2707
const struct bge_vendor *v;
2708
uint32_t id;
2709
uint16_t did, vid;
2710
2711
sc = device_get_softc(dev);
2712
sc->bge_dev = dev;
2713
vid = pci_get_vendor(dev);
2714
did = pci_get_device(dev);
2715
while(t->bge_vid != 0) {
2716
if ((vid == t->bge_vid) && (did == t->bge_did)) {
2717
id = bge_chipid(dev);
2718
br = bge_lookup_rev(id);
2719
if (bge_has_eaddr(sc) &&
2720
pci_get_vpd_ident(dev, &pname) == 0)
2721
snprintf(model, sizeof(model), "%s", pname);
2722
else {
2723
v = bge_lookup_vendor(vid);
2724
snprintf(model, sizeof(model), "%s %s",
2725
v != NULL ? v->v_name : "Unknown",
2726
br != NULL ? br->br_name :
2727
"NetXtreme/NetLink Ethernet Controller");
2728
}
2729
device_set_descf(dev, "%s, %sASIC rev. %#08x",
2730
model, br != NULL ? "" : "unknown ", id);
2731
return (BUS_PROBE_DEFAULT);
2732
}
2733
t++;
2734
}
2735
2736
return (ENXIO);
2737
}
2738
2739
static void
2740
bge_dma_free(struct bge_softc *sc)
2741
{
2742
int i;
2743
2744
/* Destroy DMA maps for RX buffers. */
2745
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
2746
if (sc->bge_cdata.bge_rx_std_dmamap[i])
2747
bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2748
sc->bge_cdata.bge_rx_std_dmamap[i]);
2749
}
2750
if (sc->bge_cdata.bge_rx_std_sparemap)
2751
bus_dmamap_destroy(sc->bge_cdata.bge_rx_mtag,
2752
sc->bge_cdata.bge_rx_std_sparemap);
2753
2754
/* Destroy DMA maps for jumbo RX buffers. */
2755
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
2756
if (sc->bge_cdata.bge_rx_jumbo_dmamap[i])
2757
bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2758
sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
2759
}
2760
if (sc->bge_cdata.bge_rx_jumbo_sparemap)
2761
bus_dmamap_destroy(sc->bge_cdata.bge_mtag_jumbo,
2762
sc->bge_cdata.bge_rx_jumbo_sparemap);
2763
2764
/* Destroy DMA maps for TX buffers. */
2765
for (i = 0; i < BGE_TX_RING_CNT; i++) {
2766
if (sc->bge_cdata.bge_tx_dmamap[i])
2767
bus_dmamap_destroy(sc->bge_cdata.bge_tx_mtag,
2768
sc->bge_cdata.bge_tx_dmamap[i]);
2769
}
2770
2771
if (sc->bge_cdata.bge_rx_mtag)
2772
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_mtag);
2773
if (sc->bge_cdata.bge_mtag_jumbo)
2774
bus_dma_tag_destroy(sc->bge_cdata.bge_mtag_jumbo);
2775
if (sc->bge_cdata.bge_tx_mtag)
2776
bus_dma_tag_destroy(sc->bge_cdata.bge_tx_mtag);
2777
2778
/* Destroy standard RX ring. */
2779
if (sc->bge_ldata.bge_rx_std_ring_paddr)
2780
bus_dmamap_unload(sc->bge_cdata.bge_rx_std_ring_tag,
2781
sc->bge_cdata.bge_rx_std_ring_map);
2782
if (sc->bge_ldata.bge_rx_std_ring)
2783
bus_dmamem_free(sc->bge_cdata.bge_rx_std_ring_tag,
2784
sc->bge_ldata.bge_rx_std_ring,
2785
sc->bge_cdata.bge_rx_std_ring_map);
2786
2787
if (sc->bge_cdata.bge_rx_std_ring_tag)
2788
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_std_ring_tag);
2789
2790
/* Destroy jumbo RX ring. */
2791
if (sc->bge_ldata.bge_rx_jumbo_ring_paddr)
2792
bus_dmamap_unload(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2793
sc->bge_cdata.bge_rx_jumbo_ring_map);
2794
2795
if (sc->bge_ldata.bge_rx_jumbo_ring)
2796
bus_dmamem_free(sc->bge_cdata.bge_rx_jumbo_ring_tag,
2797
sc->bge_ldata.bge_rx_jumbo_ring,
2798
sc->bge_cdata.bge_rx_jumbo_ring_map);
2799
2800
if (sc->bge_cdata.bge_rx_jumbo_ring_tag)
2801
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_jumbo_ring_tag);
2802
2803
/* Destroy RX return ring. */
2804
if (sc->bge_ldata.bge_rx_return_ring_paddr)
2805
bus_dmamap_unload(sc->bge_cdata.bge_rx_return_ring_tag,
2806
sc->bge_cdata.bge_rx_return_ring_map);
2807
2808
if (sc->bge_ldata.bge_rx_return_ring)
2809
bus_dmamem_free(sc->bge_cdata.bge_rx_return_ring_tag,
2810
sc->bge_ldata.bge_rx_return_ring,
2811
sc->bge_cdata.bge_rx_return_ring_map);
2812
2813
if (sc->bge_cdata.bge_rx_return_ring_tag)
2814
bus_dma_tag_destroy(sc->bge_cdata.bge_rx_return_ring_tag);
2815
2816
/* Destroy TX ring. */
2817
if (sc->bge_ldata.bge_tx_ring_paddr)
2818
bus_dmamap_unload(sc->bge_cdata.bge_tx_ring_tag,
2819
sc->bge_cdata.bge_tx_ring_map);
2820
2821
if (sc->bge_ldata.bge_tx_ring)
2822
bus_dmamem_free(sc->bge_cdata.bge_tx_ring_tag,
2823
sc->bge_ldata.bge_tx_ring,
2824
sc->bge_cdata.bge_tx_ring_map);
2825
2826
if (sc->bge_cdata.bge_tx_ring_tag)
2827
bus_dma_tag_destroy(sc->bge_cdata.bge_tx_ring_tag);
2828
2829
/* Destroy status block. */
2830
if (sc->bge_ldata.bge_status_block_paddr)
2831
bus_dmamap_unload(sc->bge_cdata.bge_status_tag,
2832
sc->bge_cdata.bge_status_map);
2833
2834
if (sc->bge_ldata.bge_status_block)
2835
bus_dmamem_free(sc->bge_cdata.bge_status_tag,
2836
sc->bge_ldata.bge_status_block,
2837
sc->bge_cdata.bge_status_map);
2838
2839
if (sc->bge_cdata.bge_status_tag)
2840
bus_dma_tag_destroy(sc->bge_cdata.bge_status_tag);
2841
2842
/* Destroy statistics block. */
2843
if (sc->bge_ldata.bge_stats_paddr)
2844
bus_dmamap_unload(sc->bge_cdata.bge_stats_tag,
2845
sc->bge_cdata.bge_stats_map);
2846
2847
if (sc->bge_ldata.bge_stats)
2848
bus_dmamem_free(sc->bge_cdata.bge_stats_tag,
2849
sc->bge_ldata.bge_stats,
2850
sc->bge_cdata.bge_stats_map);
2851
2852
if (sc->bge_cdata.bge_stats_tag)
2853
bus_dma_tag_destroy(sc->bge_cdata.bge_stats_tag);
2854
2855
if (sc->bge_cdata.bge_buffer_tag)
2856
bus_dma_tag_destroy(sc->bge_cdata.bge_buffer_tag);
2857
2858
/* Destroy the parent tag. */
2859
if (sc->bge_cdata.bge_parent_tag)
2860
bus_dma_tag_destroy(sc->bge_cdata.bge_parent_tag);
2861
}
2862
2863
static int
2864
bge_dma_ring_alloc(struct bge_softc *sc, bus_size_t alignment,
2865
bus_size_t maxsize, bus_dma_tag_t *tag, uint8_t **ring, bus_dmamap_t *map,
2866
bus_addr_t *paddr, const char *msg)
2867
{
2868
struct bge_dmamap_arg ctx;
2869
bus_addr_t lowaddr;
2870
bus_size_t ring_end;
2871
int error;
2872
2873
lowaddr = BUS_SPACE_MAXADDR;
2874
again:
2875
error = bus_dma_tag_create(sc->bge_cdata.bge_parent_tag,
2876
alignment, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2877
NULL, maxsize, 1, maxsize, 0, NULL, NULL, tag);
2878
if (error != 0) {
2879
device_printf(sc->bge_dev,
2880
"could not create %s dma tag\n", msg);
2881
return (ENOMEM);
2882
}
2883
/* Allocate DMA'able memory for ring. */
2884
error = bus_dmamem_alloc(*tag, (void **)ring,
2885
BUS_DMA_NOWAIT | BUS_DMA_ZERO | BUS_DMA_COHERENT, map);
2886
if (error != 0) {
2887
device_printf(sc->bge_dev,
2888
"could not allocate DMA'able memory for %s\n", msg);
2889
return (ENOMEM);
2890
}
2891
/* Load the address of the ring. */
2892
ctx.bge_busaddr = 0;
2893
error = bus_dmamap_load(*tag, *map, *ring, maxsize, bge_dma_map_addr,
2894
&ctx, BUS_DMA_NOWAIT);
2895
if (error != 0) {
2896
device_printf(sc->bge_dev,
2897
"could not load DMA'able memory for %s\n", msg);
2898
return (ENOMEM);
2899
}
2900
*paddr = ctx.bge_busaddr;
2901
ring_end = *paddr + maxsize;
2902
if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0 &&
2903
BGE_ADDR_HI(*paddr) != BGE_ADDR_HI(ring_end)) {
2904
/*
2905
* 4GB boundary crossed. Limit maximum allowable DMA
2906
* address space to 32bit and try again.
2907
*/
2908
bus_dmamap_unload(*tag, *map);
2909
bus_dmamem_free(*tag, *ring, *map);
2910
bus_dma_tag_destroy(*tag);
2911
if (bootverbose)
2912
device_printf(sc->bge_dev, "4GB boundary crossed, "
2913
"limit DMA address space to 32bit for %s\n", msg);
2914
*ring = NULL;
2915
*tag = NULL;
2916
*map = NULL;
2917
lowaddr = BUS_SPACE_MAXADDR_32BIT;
2918
goto again;
2919
}
2920
return (0);
2921
}
2922
2923
static int
2924
bge_dma_alloc(struct bge_softc *sc)
2925
{
2926
bus_addr_t lowaddr;
2927
bus_size_t boundary, sbsz, rxmaxsegsz, txsegsz, txmaxsegsz;
2928
int i, error;
2929
2930
lowaddr = BUS_SPACE_MAXADDR;
2931
if ((sc->bge_flags & BGE_FLAG_40BIT_BUG) != 0)
2932
lowaddr = BGE_DMA_MAXADDR;
2933
/*
2934
* Allocate the parent bus DMA tag appropriate for PCI.
2935
*/
2936
error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
2937
1, 0, lowaddr, BUS_SPACE_MAXADDR, NULL,
2938
NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
2939
0, NULL, NULL, &sc->bge_cdata.bge_parent_tag);
2940
if (error != 0) {
2941
device_printf(sc->bge_dev,
2942
"could not allocate parent dma tag\n");
2943
return (ENOMEM);
2944
}
2945
2946
/* Create tag for standard RX ring. */
2947
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STD_RX_RING_SZ,
2948
&sc->bge_cdata.bge_rx_std_ring_tag,
2949
(uint8_t **)&sc->bge_ldata.bge_rx_std_ring,
2950
&sc->bge_cdata.bge_rx_std_ring_map,
2951
&sc->bge_ldata.bge_rx_std_ring_paddr, "RX ring");
2952
if (error)
2953
return (error);
2954
2955
/* Create tag for RX return ring. */
2956
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_RX_RTN_RING_SZ(sc),
2957
&sc->bge_cdata.bge_rx_return_ring_tag,
2958
(uint8_t **)&sc->bge_ldata.bge_rx_return_ring,
2959
&sc->bge_cdata.bge_rx_return_ring_map,
2960
&sc->bge_ldata.bge_rx_return_ring_paddr, "RX return ring");
2961
if (error)
2962
return (error);
2963
2964
/* Create tag for TX ring. */
2965
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_TX_RING_SZ,
2966
&sc->bge_cdata.bge_tx_ring_tag,
2967
(uint8_t **)&sc->bge_ldata.bge_tx_ring,
2968
&sc->bge_cdata.bge_tx_ring_map,
2969
&sc->bge_ldata.bge_tx_ring_paddr, "TX ring");
2970
if (error)
2971
return (error);
2972
2973
/*
2974
* Create tag for status block.
2975
* Because we only use single Tx/Rx/Rx return ring, use
2976
* minimum status block size except BCM5700 AX/BX which
2977
* seems to want to see full status block size regardless
2978
* of configured number of ring.
2979
*/
2980
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
2981
sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
2982
sbsz = BGE_STATUS_BLK_SZ;
2983
else
2984
sbsz = 32;
2985
error = bge_dma_ring_alloc(sc, PAGE_SIZE, sbsz,
2986
&sc->bge_cdata.bge_status_tag,
2987
(uint8_t **)&sc->bge_ldata.bge_status_block,
2988
&sc->bge_cdata.bge_status_map,
2989
&sc->bge_ldata.bge_status_block_paddr, "status block");
2990
if (error)
2991
return (error);
2992
2993
/* Create tag for statistics block. */
2994
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_STATS_SZ,
2995
&sc->bge_cdata.bge_stats_tag,
2996
(uint8_t **)&sc->bge_ldata.bge_stats,
2997
&sc->bge_cdata.bge_stats_map,
2998
&sc->bge_ldata.bge_stats_paddr, "statistics block");
2999
if (error)
3000
return (error);
3001
3002
/* Create tag for jumbo RX ring. */
3003
if (BGE_IS_JUMBO_CAPABLE(sc)) {
3004
error = bge_dma_ring_alloc(sc, PAGE_SIZE, BGE_JUMBO_RX_RING_SZ,
3005
&sc->bge_cdata.bge_rx_jumbo_ring_tag,
3006
(uint8_t **)&sc->bge_ldata.bge_rx_jumbo_ring,
3007
&sc->bge_cdata.bge_rx_jumbo_ring_map,
3008
&sc->bge_ldata.bge_rx_jumbo_ring_paddr, "jumbo RX ring");
3009
if (error)
3010
return (error);
3011
}
3012
3013
/* Create parent tag for buffers. */
3014
boundary = 0;
3015
if ((sc->bge_flags & BGE_FLAG_4G_BNDRY_BUG) != 0) {
3016
boundary = BGE_DMA_BNDRY;
3017
/*
3018
* XXX
3019
* watchdog timeout issue was observed on BCM5704 which
3020
* lives behind PCI-X bridge(e.g AMD 8131 PCI-X bridge).
3021
* Both limiting DMA address space to 32bits and flushing
3022
* mailbox write seem to address the issue.
3023
*/
3024
if (sc->bge_pcixcap != 0)
3025
lowaddr = BUS_SPACE_MAXADDR_32BIT;
3026
}
3027
error = bus_dma_tag_create(bus_get_dma_tag(sc->bge_dev),
3028
1, boundary, lowaddr, BUS_SPACE_MAXADDR, NULL,
3029
NULL, BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT,
3030
0, NULL, NULL, &sc->bge_cdata.bge_buffer_tag);
3031
if (error != 0) {
3032
device_printf(sc->bge_dev,
3033
"could not allocate buffer dma tag\n");
3034
return (ENOMEM);
3035
}
3036
/* Create tag for Tx mbufs. */
3037
if (sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) {
3038
txsegsz = BGE_TSOSEG_SZ;
3039
txmaxsegsz = 65535 + sizeof(struct ether_vlan_header);
3040
} else {
3041
txsegsz = MCLBYTES;
3042
txmaxsegsz = MCLBYTES * BGE_NSEG_NEW;
3043
}
3044
error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1,
3045
0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
3046
txmaxsegsz, BGE_NSEG_NEW, txsegsz, 0, NULL, NULL,
3047
&sc->bge_cdata.bge_tx_mtag);
3048
3049
if (error) {
3050
device_printf(sc->bge_dev, "could not allocate TX dma tag\n");
3051
return (ENOMEM);
3052
}
3053
3054
/* Create tag for Rx mbufs. */
3055
if (sc->bge_flags & BGE_FLAG_JUMBO_STD)
3056
rxmaxsegsz = MJUM9BYTES;
3057
else
3058
rxmaxsegsz = MCLBYTES;
3059
error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag, 1, 0,
3060
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, rxmaxsegsz, 1,
3061
rxmaxsegsz, 0, NULL, NULL, &sc->bge_cdata.bge_rx_mtag);
3062
3063
if (error) {
3064
device_printf(sc->bge_dev, "could not allocate RX dma tag\n");
3065
return (ENOMEM);
3066
}
3067
3068
/* Create DMA maps for RX buffers. */
3069
error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3070
&sc->bge_cdata.bge_rx_std_sparemap);
3071
if (error) {
3072
device_printf(sc->bge_dev,
3073
"can't create spare DMA map for RX\n");
3074
return (ENOMEM);
3075
}
3076
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
3077
error = bus_dmamap_create(sc->bge_cdata.bge_rx_mtag, 0,
3078
&sc->bge_cdata.bge_rx_std_dmamap[i]);
3079
if (error) {
3080
device_printf(sc->bge_dev,
3081
"can't create DMA map for RX\n");
3082
return (ENOMEM);
3083
}
3084
}
3085
3086
/* Create DMA maps for TX buffers. */
3087
for (i = 0; i < BGE_TX_RING_CNT; i++) {
3088
error = bus_dmamap_create(sc->bge_cdata.bge_tx_mtag, 0,
3089
&sc->bge_cdata.bge_tx_dmamap[i]);
3090
if (error) {
3091
device_printf(sc->bge_dev,
3092
"can't create DMA map for TX\n");
3093
return (ENOMEM);
3094
}
3095
}
3096
3097
/* Create tags for jumbo RX buffers. */
3098
if (BGE_IS_JUMBO_CAPABLE(sc)) {
3099
error = bus_dma_tag_create(sc->bge_cdata.bge_buffer_tag,
3100
1, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
3101
NULL, MJUM9BYTES, BGE_NSEG_JUMBO, PAGE_SIZE,
3102
0, NULL, NULL, &sc->bge_cdata.bge_mtag_jumbo);
3103
if (error) {
3104
device_printf(sc->bge_dev,
3105
"could not allocate jumbo dma tag\n");
3106
return (ENOMEM);
3107
}
3108
/* Create DMA maps for jumbo RX buffers. */
3109
error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3110
0, &sc->bge_cdata.bge_rx_jumbo_sparemap);
3111
if (error) {
3112
device_printf(sc->bge_dev,
3113
"can't create spare DMA map for jumbo RX\n");
3114
return (ENOMEM);
3115
}
3116
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
3117
error = bus_dmamap_create(sc->bge_cdata.bge_mtag_jumbo,
3118
0, &sc->bge_cdata.bge_rx_jumbo_dmamap[i]);
3119
if (error) {
3120
device_printf(sc->bge_dev,
3121
"can't create DMA map for jumbo RX\n");
3122
return (ENOMEM);
3123
}
3124
}
3125
}
3126
3127
return (0);
3128
}
3129
3130
/*
3131
* Return true if this device has more than one port.
3132
*/
3133
static int
3134
bge_has_multiple_ports(struct bge_softc *sc)
3135
{
3136
device_t dev = sc->bge_dev;
3137
u_int b, d, f, fscan, s;
3138
3139
d = pci_get_domain(dev);
3140
b = pci_get_bus(dev);
3141
s = pci_get_slot(dev);
3142
f = pci_get_function(dev);
3143
for (fscan = 0; fscan <= PCI_FUNCMAX; fscan++)
3144
if (fscan != f && pci_find_dbsf(d, b, s, fscan) != NULL)
3145
return (1);
3146
return (0);
3147
}
3148
3149
/*
3150
* Return true if MSI can be used with this device.
3151
*/
3152
static int
3153
bge_can_use_msi(struct bge_softc *sc)
3154
{
3155
int can_use_msi = 0;
3156
3157
if (sc->bge_msi == 0)
3158
return (0);
3159
3160
/* Disable MSI for polling(4). */
3161
#ifdef DEVICE_POLLING
3162
return (0);
3163
#endif
3164
switch (sc->bge_asicrev) {
3165
case BGE_ASICREV_BCM5714_A0:
3166
case BGE_ASICREV_BCM5714:
3167
/*
3168
* Apparently, MSI doesn't work when these chips are
3169
* configured in single-port mode.
3170
*/
3171
if (bge_has_multiple_ports(sc))
3172
can_use_msi = 1;
3173
break;
3174
case BGE_ASICREV_BCM5750:
3175
if (sc->bge_chiprev != BGE_CHIPREV_5750_AX &&
3176
sc->bge_chiprev != BGE_CHIPREV_5750_BX)
3177
can_use_msi = 1;
3178
break;
3179
case BGE_ASICREV_BCM5784:
3180
/*
3181
* Prevent infinite "watchdog timeout" errors
3182
* in some MacBook Pro and make it work out-of-the-box.
3183
*/
3184
if (sc->bge_chiprev == BGE_CHIPREV_5784_AX)
3185
break;
3186
/* FALLTHROUGH */
3187
default:
3188
if (BGE_IS_575X_PLUS(sc))
3189
can_use_msi = 1;
3190
}
3191
return (can_use_msi);
3192
}
3193
3194
static int
3195
bge_mbox_reorder(struct bge_softc *sc)
3196
{
3197
/* Lists of PCI bridges that are known to reorder mailbox writes. */
3198
static const struct mbox_reorder {
3199
const uint16_t vendor;
3200
const uint16_t device;
3201
const char *desc;
3202
} mbox_reorder_lists[] = {
3203
{ 0x1022, 0x7450, "AMD-8131 PCI-X Bridge" },
3204
};
3205
devclass_t pci, pcib;
3206
device_t bus, dev;
3207
int i;
3208
3209
pci = devclass_find("pci");
3210
pcib = devclass_find("pcib");
3211
dev = sc->bge_dev;
3212
bus = device_get_parent(dev);
3213
for (;;) {
3214
dev = device_get_parent(bus);
3215
bus = device_get_parent(dev);
3216
if (device_get_devclass(dev) != pcib)
3217
break;
3218
if (device_get_devclass(bus) != pci)
3219
break;
3220
for (i = 0; i < nitems(mbox_reorder_lists); i++) {
3221
if (pci_get_vendor(dev) ==
3222
mbox_reorder_lists[i].vendor &&
3223
pci_get_device(dev) ==
3224
mbox_reorder_lists[i].device) {
3225
device_printf(sc->bge_dev,
3226
"enabling MBOX workaround for %s\n",
3227
mbox_reorder_lists[i].desc);
3228
return (1);
3229
}
3230
}
3231
}
3232
return (0);
3233
}
3234
3235
static void
3236
bge_devinfo(struct bge_softc *sc)
3237
{
3238
uint32_t cfg, clk;
3239
3240
device_printf(sc->bge_dev,
3241
"CHIP ID 0x%08x; ASIC REV 0x%02x; CHIP REV 0x%02x; ",
3242
sc->bge_chipid, sc->bge_asicrev, sc->bge_chiprev);
3243
if (sc->bge_flags & BGE_FLAG_PCIE)
3244
printf("PCI-E\n");
3245
else if (sc->bge_flags & BGE_FLAG_PCIX) {
3246
printf("PCI-X ");
3247
cfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3248
if (cfg == BGE_MISCCFG_BOARD_ID_5704CIOBE)
3249
clk = 133;
3250
else {
3251
clk = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1F;
3252
switch (clk) {
3253
case 0:
3254
clk = 33;
3255
break;
3256
case 2:
3257
clk = 50;
3258
break;
3259
case 4:
3260
clk = 66;
3261
break;
3262
case 6:
3263
clk = 100;
3264
break;
3265
case 7:
3266
clk = 133;
3267
break;
3268
}
3269
}
3270
printf("%u MHz\n", clk);
3271
} else {
3272
if (sc->bge_pcixcap != 0)
3273
printf("PCI on PCI-X ");
3274
else
3275
printf("PCI ");
3276
cfg = pci_read_config(sc->bge_dev, BGE_PCI_PCISTATE, 4);
3277
if (cfg & BGE_PCISTATE_PCI_BUSSPEED)
3278
clk = 66;
3279
else
3280
clk = 33;
3281
if (cfg & BGE_PCISTATE_32BIT_BUS)
3282
printf("%u MHz; 32bit\n", clk);
3283
else
3284
printf("%u MHz; 64bit\n", clk);
3285
}
3286
}
3287
3288
static int
3289
bge_attach(device_t dev)
3290
{
3291
if_t ifp;
3292
struct bge_softc *sc;
3293
uint32_t hwcfg = 0, misccfg, pcistate;
3294
u_char eaddr[ETHER_ADDR_LEN];
3295
int capmask, error, reg, rid, trys;
3296
3297
sc = device_get_softc(dev);
3298
sc->bge_dev = dev;
3299
3300
BGE_LOCK_INIT(sc, device_get_nameunit(dev));
3301
NET_TASK_INIT(&sc->bge_intr_task, 0, bge_intr_task, sc);
3302
callout_init_mtx(&sc->bge_stat_ch, &sc->bge_mtx, 0);
3303
3304
pci_enable_busmaster(dev);
3305
3306
/*
3307
* Allocate control/status registers.
3308
*/
3309
rid = PCIR_BAR(0);
3310
sc->bge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3311
RF_ACTIVE);
3312
3313
if (sc->bge_res == NULL) {
3314
device_printf (sc->bge_dev, "couldn't map BAR0 memory\n");
3315
error = ENXIO;
3316
goto fail;
3317
}
3318
3319
/* Save various chip information. */
3320
sc->bge_func_addr = pci_get_function(dev);
3321
sc->bge_chipid = bge_chipid(dev);
3322
sc->bge_asicrev = BGE_ASICREV(sc->bge_chipid);
3323
sc->bge_chiprev = BGE_CHIPREV(sc->bge_chipid);
3324
3325
/* Set default PHY address. */
3326
sc->bge_phy_addr = 1;
3327
/*
3328
* PHY address mapping for various devices.
3329
*
3330
* | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
3331
* ---------+-------+-------+-------+-------+
3332
* BCM57XX | 1 | X | X | X |
3333
* BCM5704 | 1 | X | 1 | X |
3334
* BCM5717 | 1 | 8 | 2 | 9 |
3335
* BCM5719 | 1 | 8 | 2 | 9 |
3336
* BCM5720 | 1 | 8 | 2 | 9 |
3337
*
3338
* | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
3339
* ---------+-------+-------+-------+-------+
3340
* BCM57XX | X | X | X | X |
3341
* BCM5704 | X | X | X | X |
3342
* BCM5717 | X | X | X | X |
3343
* BCM5719 | 3 | 10 | 4 | 11 |
3344
* BCM5720 | X | X | X | X |
3345
*
3346
* Other addresses may respond but they are not
3347
* IEEE compliant PHYs and should be ignored.
3348
*/
3349
if (sc->bge_asicrev == BGE_ASICREV_BCM5717 ||
3350
sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3351
sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3352
if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
3353
if (CSR_READ_4(sc, BGE_SGDIG_STS) &
3354
BGE_SGDIGSTS_IS_SERDES)
3355
sc->bge_phy_addr = sc->bge_func_addr + 8;
3356
else
3357
sc->bge_phy_addr = sc->bge_func_addr + 1;
3358
} else {
3359
if (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
3360
BGE_CPMU_PHY_STRAP_IS_SERDES)
3361
sc->bge_phy_addr = sc->bge_func_addr + 8;
3362
else
3363
sc->bge_phy_addr = sc->bge_func_addr + 1;
3364
}
3365
}
3366
3367
if (bge_has_eaddr(sc))
3368
sc->bge_flags |= BGE_FLAG_EADDR;
3369
3370
/* Save chipset family. */
3371
switch (sc->bge_asicrev) {
3372
case BGE_ASICREV_BCM5762:
3373
case BGE_ASICREV_BCM57765:
3374
case BGE_ASICREV_BCM57766:
3375
sc->bge_flags |= BGE_FLAG_57765_PLUS;
3376
/* FALLTHROUGH */
3377
case BGE_ASICREV_BCM5717:
3378
case BGE_ASICREV_BCM5719:
3379
case BGE_ASICREV_BCM5720:
3380
sc->bge_flags |= BGE_FLAG_5717_PLUS | BGE_FLAG_5755_PLUS |
3381
BGE_FLAG_575X_PLUS | BGE_FLAG_5705_PLUS | BGE_FLAG_JUMBO |
3382
BGE_FLAG_JUMBO_FRAME;
3383
if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3384
sc->bge_asicrev == BGE_ASICREV_BCM5720) {
3385
/*
3386
* Enable work around for DMA engine miscalculation
3387
* of TXMBUF available space.
3388
*/
3389
sc->bge_flags |= BGE_FLAG_RDMA_BUG;
3390
if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3391
sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3392
/* Jumbo frame on BCM5719 A0 does not work. */
3393
sc->bge_flags &= ~BGE_FLAG_JUMBO;
3394
}
3395
}
3396
break;
3397
case BGE_ASICREV_BCM5755:
3398
case BGE_ASICREV_BCM5761:
3399
case BGE_ASICREV_BCM5784:
3400
case BGE_ASICREV_BCM5785:
3401
case BGE_ASICREV_BCM5787:
3402
case BGE_ASICREV_BCM57780:
3403
sc->bge_flags |= BGE_FLAG_5755_PLUS | BGE_FLAG_575X_PLUS |
3404
BGE_FLAG_5705_PLUS;
3405
break;
3406
case BGE_ASICREV_BCM5700:
3407
case BGE_ASICREV_BCM5701:
3408
case BGE_ASICREV_BCM5703:
3409
case BGE_ASICREV_BCM5704:
3410
sc->bge_flags |= BGE_FLAG_5700_FAMILY | BGE_FLAG_JUMBO;
3411
break;
3412
case BGE_ASICREV_BCM5714_A0:
3413
case BGE_ASICREV_BCM5780:
3414
case BGE_ASICREV_BCM5714:
3415
sc->bge_flags |= BGE_FLAG_5714_FAMILY | BGE_FLAG_JUMBO_STD;
3416
/* FALLTHROUGH */
3417
case BGE_ASICREV_BCM5750:
3418
case BGE_ASICREV_BCM5752:
3419
case BGE_ASICREV_BCM5906:
3420
sc->bge_flags |= BGE_FLAG_575X_PLUS;
3421
/* FALLTHROUGH */
3422
case BGE_ASICREV_BCM5705:
3423
sc->bge_flags |= BGE_FLAG_5705_PLUS;
3424
break;
3425
}
3426
3427
/* Identify chips with APE processor. */
3428
switch (sc->bge_asicrev) {
3429
case BGE_ASICREV_BCM5717:
3430
case BGE_ASICREV_BCM5719:
3431
case BGE_ASICREV_BCM5720:
3432
case BGE_ASICREV_BCM5761:
3433
case BGE_ASICREV_BCM5762:
3434
sc->bge_flags |= BGE_FLAG_APE;
3435
break;
3436
}
3437
3438
/* Chips with APE need BAR2 access for APE registers/memory. */
3439
if ((sc->bge_flags & BGE_FLAG_APE) != 0) {
3440
rid = PCIR_BAR(2);
3441
sc->bge_res2 = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
3442
RF_ACTIVE);
3443
if (sc->bge_res2 == NULL) {
3444
device_printf (sc->bge_dev,
3445
"couldn't map BAR2 memory\n");
3446
error = ENXIO;
3447
goto fail;
3448
}
3449
3450
/* Enable APE register/memory access by host driver. */
3451
pcistate = pci_read_config(dev, BGE_PCI_PCISTATE, 4);
3452
pcistate |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
3453
BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
3454
BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
3455
pci_write_config(dev, BGE_PCI_PCISTATE, pcistate, 4);
3456
3457
bge_ape_lock_init(sc);
3458
bge_ape_read_fw_ver(sc);
3459
}
3460
3461
/* Add SYSCTLs, requires the chipset family to be set. */
3462
bge_add_sysctls(sc);
3463
3464
/* Identify the chips that use an CPMU. */
3465
if (BGE_IS_5717_PLUS(sc) ||
3466
sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3467
sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3468
sc->bge_asicrev == BGE_ASICREV_BCM5785 ||
3469
sc->bge_asicrev == BGE_ASICREV_BCM57780)
3470
sc->bge_flags |= BGE_FLAG_CPMU_PRESENT;
3471
if ((sc->bge_flags & BGE_FLAG_CPMU_PRESENT) != 0)
3472
sc->bge_mi_mode = BGE_MIMODE_500KHZ_CONST;
3473
else
3474
sc->bge_mi_mode = BGE_MIMODE_BASE;
3475
/* Enable auto polling for BCM570[0-5]. */
3476
if (BGE_IS_5700_FAMILY(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5705)
3477
sc->bge_mi_mode |= BGE_MIMODE_AUTOPOLL;
3478
3479
/*
3480
* All Broadcom controllers have 4GB boundary DMA bug.
3481
* Whenever an address crosses a multiple of the 4GB boundary
3482
* (including 4GB, 8Gb, 12Gb, etc.) and makes the transition
3483
* from 0xX_FFFF_FFFF to 0x(X+1)_0000_0000 an internal DMA
3484
* state machine will lockup and cause the device to hang.
3485
*/
3486
sc->bge_flags |= BGE_FLAG_4G_BNDRY_BUG;
3487
3488
/* BCM5755 or higher and BCM5906 have short DMA bug. */
3489
if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
3490
sc->bge_flags |= BGE_FLAG_SHORT_DMA_BUG;
3491
3492
/*
3493
* BCM5719 cannot handle DMA requests for DMA segments that
3494
* have larger than 4KB in size. However the maximum DMA
3495
* segment size created in DMA tag is 4KB for TSO, so we
3496
* wouldn't encounter the issue here.
3497
*/
3498
if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
3499
sc->bge_flags |= BGE_FLAG_4K_RDMA_BUG;
3500
3501
misccfg = CSR_READ_4(sc, BGE_MISC_CFG) & BGE_MISCCFG_BOARD_ID_MASK;
3502
if (sc->bge_asicrev == BGE_ASICREV_BCM5705) {
3503
if (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
3504
misccfg == BGE_MISCCFG_BOARD_ID_5788M)
3505
sc->bge_flags |= BGE_FLAG_5788;
3506
}
3507
3508
capmask = BMSR_DEFCAPMASK;
3509
if ((sc->bge_asicrev == BGE_ASICREV_BCM5703 &&
3510
(misccfg == 0x4000 || misccfg == 0x8000)) ||
3511
(sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3512
pci_get_vendor(dev) == BCOM_VENDORID &&
3513
(pci_get_device(dev) == BCOM_DEVICEID_BCM5901 ||
3514
pci_get_device(dev) == BCOM_DEVICEID_BCM5901A2 ||
3515
pci_get_device(dev) == BCOM_DEVICEID_BCM5705F)) ||
3516
(pci_get_vendor(dev) == BCOM_VENDORID &&
3517
(pci_get_device(dev) == BCOM_DEVICEID_BCM5751F ||
3518
pci_get_device(dev) == BCOM_DEVICEID_BCM5753F ||
3519
pci_get_device(dev) == BCOM_DEVICEID_BCM5787F)) ||
3520
pci_get_device(dev) == BCOM_DEVICEID_BCM57790 ||
3521
pci_get_device(dev) == BCOM_DEVICEID_BCM57791 ||
3522
pci_get_device(dev) == BCOM_DEVICEID_BCM57795 ||
3523
sc->bge_asicrev == BGE_ASICREV_BCM5906) {
3524
/* These chips are 10/100 only. */
3525
capmask &= ~BMSR_EXTSTAT;
3526
sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3527
}
3528
3529
/*
3530
* Some controllers seem to require a special firmware to use
3531
* TSO. But the firmware is not available to FreeBSD and Linux
3532
* claims that the TSO performed by the firmware is slower than
3533
* hardware based TSO. Moreover the firmware based TSO has one
3534
* known bug which can't handle TSO if Ethernet header + IP/TCP
3535
* header is greater than 80 bytes. A workaround for the TSO
3536
* bug exist but it seems it's too expensive than not using
3537
* TSO at all. Some hardware also have the TSO bug so limit
3538
* the TSO to the controllers that are not affected TSO issues
3539
* (e.g. 5755 or higher).
3540
*/
3541
if (BGE_IS_5717_PLUS(sc)) {
3542
/* BCM5717 requires different TSO configuration. */
3543
sc->bge_flags |= BGE_FLAG_TSO3;
3544
if (sc->bge_asicrev == BGE_ASICREV_BCM5719 &&
3545
sc->bge_chipid == BGE_CHIPID_BCM5719_A0) {
3546
/* TSO on BCM5719 A0 does not work. */
3547
sc->bge_flags &= ~BGE_FLAG_TSO3;
3548
}
3549
} else if (BGE_IS_5755_PLUS(sc)) {
3550
/*
3551
* BCM5754 and BCM5787 shares the same ASIC id so
3552
* explicit device id check is required.
3553
* Due to unknown reason TSO does not work on BCM5755M.
3554
*/
3555
if (pci_get_device(dev) != BCOM_DEVICEID_BCM5754 &&
3556
pci_get_device(dev) != BCOM_DEVICEID_BCM5754M &&
3557
pci_get_device(dev) != BCOM_DEVICEID_BCM5755M)
3558
sc->bge_flags |= BGE_FLAG_TSO;
3559
}
3560
3561
/*
3562
* Check if this is a PCI-X or PCI Express device.
3563
*/
3564
if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
3565
/*
3566
* Found a PCI Express capabilities register, this
3567
* must be a PCI Express device.
3568
*/
3569
sc->bge_flags |= BGE_FLAG_PCIE;
3570
sc->bge_expcap = reg;
3571
/* Extract supported maximum payload size. */
3572
sc->bge_mps = pci_read_config(dev, sc->bge_expcap +
3573
PCIER_DEVICE_CAP, 2);
3574
sc->bge_mps = 128 << (sc->bge_mps & PCIEM_CAP_MAX_PAYLOAD);
3575
if (sc->bge_asicrev == BGE_ASICREV_BCM5719 ||
3576
sc->bge_asicrev == BGE_ASICREV_BCM5720)
3577
sc->bge_expmrq = 2048;
3578
else
3579
sc->bge_expmrq = 4096;
3580
pci_set_max_read_req(dev, sc->bge_expmrq);
3581
} else {
3582
/*
3583
* Check if the device is in PCI-X Mode.
3584
* (This bit is not valid on PCI Express controllers.)
3585
*/
3586
if (pci_find_cap(dev, PCIY_PCIX, &reg) == 0)
3587
sc->bge_pcixcap = reg;
3588
if ((pci_read_config(dev, BGE_PCI_PCISTATE, 4) &
3589
BGE_PCISTATE_PCI_BUSMODE) == 0)
3590
sc->bge_flags |= BGE_FLAG_PCIX;
3591
}
3592
3593
/*
3594
* The 40bit DMA bug applies to the 5714/5715 controllers and is
3595
* not actually a MAC controller bug but an issue with the embedded
3596
* PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
3597
*/
3598
if (BGE_IS_5714_FAMILY(sc) && (sc->bge_flags & BGE_FLAG_PCIX))
3599
sc->bge_flags |= BGE_FLAG_40BIT_BUG;
3600
/*
3601
* Some PCI-X bridges are known to trigger write reordering to
3602
* the mailbox registers. Typical phenomena is watchdog timeouts
3603
* caused by out-of-order TX completions. Enable workaround for
3604
* PCI-X devices that live behind these bridges.
3605
* Note, PCI-X controllers can run in PCI mode so we can't use
3606
* BGE_FLAG_PCIX flag to detect PCI-X controllers.
3607
*/
3608
if (sc->bge_pcixcap != 0 && bge_mbox_reorder(sc) != 0)
3609
sc->bge_flags |= BGE_FLAG_MBOX_REORDER;
3610
/*
3611
* Allocate the interrupt, using MSI if possible. These devices
3612
* support 8 MSI messages, but only the first one is used in
3613
* normal operation.
3614
*/
3615
rid = 0;
3616
if (pci_find_cap(sc->bge_dev, PCIY_MSI, &reg) == 0) {
3617
sc->bge_msicap = reg;
3618
reg = 1;
3619
if (bge_can_use_msi(sc) && pci_alloc_msi(dev, &reg) == 0) {
3620
rid = 1;
3621
sc->bge_flags |= BGE_FLAG_MSI;
3622
}
3623
}
3624
3625
/*
3626
* All controllers except BCM5700 supports tagged status but
3627
* we use tagged status only for MSI case on BCM5717. Otherwise
3628
* MSI on BCM5717 does not work.
3629
*/
3630
#ifndef DEVICE_POLLING
3631
if (sc->bge_flags & BGE_FLAG_MSI && BGE_IS_5717_PLUS(sc))
3632
sc->bge_flags |= BGE_FLAG_TAGGED_STATUS;
3633
#endif
3634
3635
sc->bge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
3636
RF_ACTIVE | (rid != 0 ? 0 : RF_SHAREABLE));
3637
3638
if (sc->bge_irq == NULL) {
3639
device_printf(sc->bge_dev, "couldn't map interrupt\n");
3640
error = ENXIO;
3641
goto fail;
3642
}
3643
3644
bge_devinfo(sc);
3645
3646
sc->bge_asf_mode = 0;
3647
/* No ASF if APE present. */
3648
if ((sc->bge_flags & BGE_FLAG_APE) == 0) {
3649
if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
3650
BGE_SRAM_DATA_SIG_MAGIC)) {
3651
if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
3652
BGE_HWCFG_ASF) {
3653
sc->bge_asf_mode |= ASF_ENABLE;
3654
sc->bge_asf_mode |= ASF_STACKUP;
3655
if (BGE_IS_575X_PLUS(sc))
3656
sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
3657
}
3658
}
3659
}
3660
3661
bge_stop_fw(sc);
3662
bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
3663
if (bge_reset(sc)) {
3664
device_printf(sc->bge_dev, "chip reset failed\n");
3665
error = ENXIO;
3666
goto fail;
3667
}
3668
3669
bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
3670
bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
3671
3672
if (bge_chipinit(sc)) {
3673
device_printf(sc->bge_dev, "chip initialization failed\n");
3674
error = ENXIO;
3675
goto fail;
3676
}
3677
3678
error = bge_get_eaddr(sc, eaddr);
3679
if (error) {
3680
device_printf(sc->bge_dev,
3681
"failed to read station address\n");
3682
error = ENXIO;
3683
goto fail;
3684
}
3685
3686
/* 5705 limits RX return ring to 512 entries. */
3687
if (BGE_IS_5717_PLUS(sc))
3688
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3689
else if (BGE_IS_5705_PLUS(sc))
3690
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
3691
else
3692
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
3693
3694
if (bge_dma_alloc(sc)) {
3695
device_printf(sc->bge_dev,
3696
"failed to allocate DMA resources\n");
3697
error = ENXIO;
3698
goto fail;
3699
}
3700
3701
/* Set default tuneable values. */
3702
sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
3703
sc->bge_rx_coal_ticks = 150;
3704
sc->bge_tx_coal_ticks = 150;
3705
sc->bge_rx_max_coal_bds = 10;
3706
sc->bge_tx_max_coal_bds = 10;
3707
3708
/* Initialize checksum features to use. */
3709
sc->bge_csum_features = BGE_CSUM_FEATURES;
3710
if (sc->bge_forced_udpcsum != 0)
3711
sc->bge_csum_features |= CSUM_UDP;
3712
3713
/* Set up ifnet structure */
3714
ifp = sc->bge_ifp = if_alloc(IFT_ETHER);
3715
if_setsoftc(ifp, sc);
3716
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
3717
if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
3718
if_setioctlfn(ifp, bge_ioctl);
3719
if_setstartfn(ifp, bge_start);
3720
if_setinitfn(ifp, bge_init);
3721
if_setgetcounterfn(ifp, bge_get_counter);
3722
if_setsendqlen(ifp, BGE_TX_RING_CNT - 1);
3723
if_setsendqready(ifp);
3724
/* Initially enable checksum offloading either for all of IPv4, TCP/IPv4
3725
* and UDP/IPv4, or for none. This avoids problems when the interface
3726
* is added to a bridge.
3727
*/
3728
if (sc->bge_csum_features & CSUM_UDP)
3729
if_sethwassist(ifp, sc->bge_csum_features);
3730
if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_VLAN_HWTAGGING |
3731
IFCAP_VLAN_MTU);
3732
if ((sc->bge_flags & (BGE_FLAG_TSO | BGE_FLAG_TSO3)) != 0) {
3733
if_sethwassistbits(ifp, CSUM_TSO, 0);
3734
if_setcapabilitiesbit(ifp, IFCAP_TSO4 | IFCAP_VLAN_HWTSO, 0);
3735
}
3736
#ifdef IFCAP_VLAN_HWCSUM
3737
if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0);
3738
#endif
3739
if_setcapenable(ifp, if_getcapabilities(ifp));
3740
/*
3741
* Disable TXCSUM capability initially, if UDP checksum offloading is
3742
* not enabled. This avoids problems when the interface is added to a
3743
* bridge.
3744
*/
3745
if ((sc->bge_csum_features & CSUM_UDP) == 0)
3746
if_setcapenablebit(ifp, 0, IFCAP_TXCSUM);
3747
#ifdef DEVICE_POLLING
3748
if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0);
3749
#endif
3750
3751
/*
3752
* 5700 B0 chips do not support checksumming correctly due
3753
* to hardware bugs.
3754
*/
3755
if (sc->bge_chipid == BGE_CHIPID_BCM5700_B0) {
3756
if_setcapabilitiesbit(ifp, 0, IFCAP_HWCSUM);
3757
if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
3758
if_sethwassist(ifp, 0);
3759
}
3760
3761
/*
3762
* Figure out what sort of media we have by checking the
3763
* hardware config word in the first 32k of NIC internal memory,
3764
* or fall back to examining the EEPROM if necessary.
3765
* Note: on some BCM5700 cards, this value appears to be unset.
3766
* If that's the case, we have to rely on identifying the NIC
3767
* by its PCI subsystem ID, as we do below for the SysKonnect
3768
* SK-9D41.
3769
*/
3770
if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) == BGE_SRAM_DATA_SIG_MAGIC)
3771
hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
3772
else if ((sc->bge_flags & BGE_FLAG_EADDR) &&
3773
(sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
3774
if (bge_read_eeprom(sc, (caddr_t)&hwcfg, BGE_EE_HWCFG_OFFSET,
3775
sizeof(hwcfg))) {
3776
device_printf(sc->bge_dev, "failed to read EEPROM\n");
3777
error = ENXIO;
3778
goto fail;
3779
}
3780
hwcfg = ntohl(hwcfg);
3781
}
3782
3783
/* The SysKonnect SK-9D41 is a 1000baseSX card. */
3784
if ((pci_read_config(dev, BGE_PCI_SUBSYS, 4) >> 16) ==
3785
SK_SUBSYSID_9D41 || (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
3786
if (BGE_IS_5705_PLUS(sc)) {
3787
sc->bge_flags |= BGE_FLAG_MII_SERDES;
3788
sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3789
} else
3790
sc->bge_flags |= BGE_FLAG_TBI;
3791
}
3792
3793
/* Set various PHY bug flags. */
3794
if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
3795
sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
3796
sc->bge_phy_flags |= BGE_PHY_CRC_BUG;
3797
if (sc->bge_chiprev == BGE_CHIPREV_5703_AX ||
3798
sc->bge_chiprev == BGE_CHIPREV_5704_AX)
3799
sc->bge_phy_flags |= BGE_PHY_ADC_BUG;
3800
if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
3801
sc->bge_phy_flags |= BGE_PHY_5704_A0_BUG;
3802
if (pci_get_subvendor(dev) == DELL_VENDORID)
3803
sc->bge_phy_flags |= BGE_PHY_NO_3LED;
3804
if ((BGE_IS_5705_PLUS(sc)) &&
3805
sc->bge_asicrev != BGE_ASICREV_BCM5906 &&
3806
sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
3807
sc->bge_asicrev != BGE_ASICREV_BCM57780 &&
3808
!BGE_IS_5717_PLUS(sc)) {
3809
if (sc->bge_asicrev == BGE_ASICREV_BCM5755 ||
3810
sc->bge_asicrev == BGE_ASICREV_BCM5761 ||
3811
sc->bge_asicrev == BGE_ASICREV_BCM5784 ||
3812
sc->bge_asicrev == BGE_ASICREV_BCM5787) {
3813
if (pci_get_device(dev) != BCOM_DEVICEID_BCM5722 &&
3814
pci_get_device(dev) != BCOM_DEVICEID_BCM5756)
3815
sc->bge_phy_flags |= BGE_PHY_JITTER_BUG;
3816
if (pci_get_device(dev) == BCOM_DEVICEID_BCM5755M)
3817
sc->bge_phy_flags |= BGE_PHY_ADJUST_TRIM;
3818
} else
3819
sc->bge_phy_flags |= BGE_PHY_BER_BUG;
3820
}
3821
3822
/*
3823
* Don't enable Ethernet@WireSpeed for the 5700 or the
3824
* 5705 A0 and A1 chips.
3825
*/
3826
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
3827
(sc->bge_asicrev == BGE_ASICREV_BCM5705 &&
3828
(sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
3829
sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
3830
sc->bge_phy_flags |= BGE_PHY_NO_WIRESPEED;
3831
3832
if (sc->bge_flags & BGE_FLAG_TBI) {
3833
ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
3834
bge_ifmedia_sts);
3835
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX, 0, NULL);
3836
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX | IFM_FDX,
3837
0, NULL);
3838
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
3839
ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
3840
sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
3841
} else {
3842
/*
3843
* Do transceiver setup and tell the firmware the
3844
* driver is down so we can try to get access the
3845
* probe if ASF is running. Retry a couple of times
3846
* if we get a conflict with the ASF firmware accessing
3847
* the PHY.
3848
*/
3849
trys = 0;
3850
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3851
again:
3852
bge_asf_driver_up(sc);
3853
3854
error = mii_attach(dev, &sc->bge_miibus, ifp,
3855
(ifm_change_cb_t)bge_ifmedia_upd,
3856
(ifm_stat_cb_t)bge_ifmedia_sts, capmask, sc->bge_phy_addr,
3857
MII_OFFSET_ANY, MIIF_DOPAUSE);
3858
if (error != 0) {
3859
if (trys++ < 4) {
3860
device_printf(sc->bge_dev, "Try again\n");
3861
bge_miibus_writereg(sc->bge_dev,
3862
sc->bge_phy_addr, MII_BMCR, BMCR_RESET);
3863
goto again;
3864
}
3865
device_printf(sc->bge_dev, "attaching PHYs failed\n");
3866
goto fail;
3867
}
3868
3869
/*
3870
* Now tell the firmware we are going up after probing the PHY
3871
*/
3872
if (sc->bge_asf_mode & ASF_STACKUP)
3873
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
3874
}
3875
3876
/*
3877
* When using the BCM5701 in PCI-X mode, data corruption has
3878
* been observed in the first few bytes of some received packets.
3879
* Aligning the packet buffer in memory eliminates the corruption.
3880
* Unfortunately, this misaligns the packet payloads. On platforms
3881
* which do not support unaligned accesses, we will realign the
3882
* payloads by copying the received packets.
3883
*/
3884
if (sc->bge_asicrev == BGE_ASICREV_BCM5701 &&
3885
sc->bge_flags & BGE_FLAG_PCIX)
3886
sc->bge_flags |= BGE_FLAG_RX_ALIGNBUG;
3887
3888
/*
3889
* Call MI attach routine.
3890
*/
3891
ether_ifattach(ifp, eaddr);
3892
3893
/* Tell upper layer we support long frames. */
3894
if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
3895
3896
/*
3897
* Hookup IRQ last.
3898
*/
3899
if (BGE_IS_5755_PLUS(sc) && sc->bge_flags & BGE_FLAG_MSI) {
3900
/* Take advantage of single-shot MSI. */
3901
CSR_WRITE_4(sc, BGE_MSI_MODE, CSR_READ_4(sc, BGE_MSI_MODE) &
3902
~BGE_MSIMODE_ONE_SHOT_DISABLE);
3903
sc->bge_tq = taskqueue_create_fast("bge_taskq", M_WAITOK,
3904
taskqueue_thread_enqueue, &sc->bge_tq);
3905
error = taskqueue_start_threads(&sc->bge_tq, 1, PI_NET,
3906
"%s taskq", device_get_nameunit(sc->bge_dev));
3907
if (error != 0) {
3908
device_printf(dev, "could not start threads.\n");
3909
ether_ifdetach(ifp);
3910
goto fail;
3911
}
3912
error = bus_setup_intr(dev, sc->bge_irq,
3913
INTR_TYPE_NET | INTR_MPSAFE, bge_msi_intr, NULL, sc,
3914
&sc->bge_intrhand);
3915
} else
3916
error = bus_setup_intr(dev, sc->bge_irq,
3917
INTR_TYPE_NET | INTR_MPSAFE, NULL, bge_intr, sc,
3918
&sc->bge_intrhand);
3919
3920
if (error) {
3921
ether_ifdetach(ifp);
3922
device_printf(sc->bge_dev, "couldn't set up irq\n");
3923
goto fail;
3924
}
3925
3926
/* Attach driver debugnet methods. */
3927
DEBUGNET_SET(ifp, bge);
3928
3929
fail:
3930
if (error)
3931
bge_detach(dev);
3932
return (error);
3933
}
3934
3935
static int
3936
bge_detach(device_t dev)
3937
{
3938
struct bge_softc *sc;
3939
if_t ifp;
3940
3941
sc = device_get_softc(dev);
3942
ifp = sc->bge_ifp;
3943
3944
#ifdef DEVICE_POLLING
3945
if (if_getcapenable(ifp) & IFCAP_POLLING)
3946
ether_poll_deregister(ifp);
3947
#endif
3948
3949
if (device_is_attached(dev)) {
3950
ether_ifdetach(ifp);
3951
BGE_LOCK(sc);
3952
bge_stop(sc);
3953
BGE_UNLOCK(sc);
3954
callout_drain(&sc->bge_stat_ch);
3955
}
3956
3957
if (sc->bge_tq)
3958
taskqueue_drain(sc->bge_tq, &sc->bge_intr_task);
3959
3960
if (sc->bge_flags & BGE_FLAG_TBI)
3961
ifmedia_removeall(&sc->bge_ifmedia);
3962
else if (sc->bge_miibus != NULL) {
3963
bus_generic_detach(dev);
3964
}
3965
3966
bge_release_resources(sc);
3967
3968
return (0);
3969
}
3970
3971
static void
3972
bge_release_resources(struct bge_softc *sc)
3973
{
3974
device_t dev;
3975
3976
dev = sc->bge_dev;
3977
3978
if (sc->bge_tq != NULL)
3979
taskqueue_free(sc->bge_tq);
3980
3981
if (sc->bge_intrhand != NULL)
3982
bus_teardown_intr(dev, sc->bge_irq, sc->bge_intrhand);
3983
3984
if (sc->bge_irq != NULL) {
3985
bus_release_resource(dev, SYS_RES_IRQ,
3986
rman_get_rid(sc->bge_irq), sc->bge_irq);
3987
pci_release_msi(dev);
3988
}
3989
3990
if (sc->bge_res != NULL)
3991
bus_release_resource(dev, SYS_RES_MEMORY,
3992
rman_get_rid(sc->bge_res), sc->bge_res);
3993
3994
if (sc->bge_res2 != NULL)
3995
bus_release_resource(dev, SYS_RES_MEMORY,
3996
rman_get_rid(sc->bge_res2), sc->bge_res2);
3997
3998
if (sc->bge_ifp != NULL)
3999
if_free(sc->bge_ifp);
4000
4001
bge_dma_free(sc);
4002
4003
if (mtx_initialized(&sc->bge_mtx)) /* XXX */
4004
BGE_LOCK_DESTROY(sc);
4005
}
4006
4007
static int
4008
bge_reset(struct bge_softc *sc)
4009
{
4010
device_t dev;
4011
uint32_t cachesize, command, mac_mode, mac_mode_mask, reset, val;
4012
void (*write_op)(struct bge_softc *, int, int);
4013
uint16_t devctl;
4014
int i;
4015
4016
dev = sc->bge_dev;
4017
4018
mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
4019
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4020
mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
4021
mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;
4022
4023
if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
4024
(sc->bge_asicrev != BGE_ASICREV_BCM5906)) {
4025
if (sc->bge_flags & BGE_FLAG_PCIE)
4026
write_op = bge_writemem_direct;
4027
else
4028
write_op = bge_writemem_ind;
4029
} else
4030
write_op = bge_writereg_ind;
4031
4032
if (sc->bge_asicrev != BGE_ASICREV_BCM5700 &&
4033
sc->bge_asicrev != BGE_ASICREV_BCM5701) {
4034
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
4035
for (i = 0; i < 8000; i++) {
4036
if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
4037
BGE_NVRAMSWARB_GNT1)
4038
break;
4039
DELAY(20);
4040
}
4041
if (i == 8000) {
4042
if (bootverbose)
4043
device_printf(dev, "NVRAM lock timedout!\n");
4044
}
4045
}
4046
/* Take APE lock when performing reset. */
4047
bge_ape_lock(sc, BGE_APE_LOCK_GRC);
4048
4049
/* Save some important PCI state. */
4050
cachesize = pci_read_config(dev, BGE_PCI_CACHESZ, 4);
4051
command = pci_read_config(dev, BGE_PCI_CMD, 4);
4052
4053
pci_write_config(dev, BGE_PCI_MISC_CTL,
4054
BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4055
BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4056
4057
/* Disable fastboot on controllers that support it. */
4058
if (sc->bge_asicrev == BGE_ASICREV_BCM5752 ||
4059
BGE_IS_5755_PLUS(sc)) {
4060
if (bootverbose)
4061
device_printf(dev, "Disabling fastboot\n");
4062
CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0x0);
4063
}
4064
4065
/*
4066
* Write the magic number to SRAM at offset 0xB50.
4067
* When firmware finishes its initialization it will
4068
* write ~BGE_SRAM_FW_MB_MAGIC to the same location.
4069
*/
4070
bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);
4071
4072
reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
4073
4074
/* XXX: Broadcom Linux driver. */
4075
if (sc->bge_flags & BGE_FLAG_PCIE) {
4076
if (sc->bge_asicrev != BGE_ASICREV_BCM5785 &&
4077
(sc->bge_flags & BGE_FLAG_5717_PLUS) == 0) {
4078
if (CSR_READ_4(sc, 0x7E2C) == 0x60) /* PCIE 1.0 */
4079
CSR_WRITE_4(sc, 0x7E2C, 0x20);
4080
}
4081
if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
4082
/* Prevent PCIE link training during global reset */
4083
CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
4084
reset |= 1 << 29;
4085
}
4086
}
4087
4088
if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4089
val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4090
CSR_WRITE_4(sc, BGE_VCPU_STATUS,
4091
val | BGE_VCPU_STATUS_DRV_RESET);
4092
val = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
4093
CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
4094
val & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
4095
}
4096
4097
/*
4098
* Set GPHY Power Down Override to leave GPHY
4099
* powered up in D0 uninitialized.
4100
*/
4101
if (BGE_IS_5705_PLUS(sc) &&
4102
(sc->bge_flags & BGE_FLAG_CPMU_PRESENT) == 0)
4103
reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;
4104
4105
/* Issue global reset */
4106
write_op(sc, BGE_MISC_CFG, reset);
4107
4108
if (sc->bge_flags & BGE_FLAG_PCIE)
4109
DELAY(100 * 1000);
4110
else
4111
DELAY(1000);
4112
4113
/* XXX: Broadcom Linux driver. */
4114
if (sc->bge_flags & BGE_FLAG_PCIE) {
4115
if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
4116
DELAY(500000); /* wait for link training to complete */
4117
val = pci_read_config(dev, 0xC4, 4);
4118
pci_write_config(dev, 0xC4, val | (1 << 15), 4);
4119
}
4120
devctl = pci_read_config(dev,
4121
sc->bge_expcap + PCIER_DEVICE_CTL, 2);
4122
/* Clear enable no snoop and disable relaxed ordering. */
4123
devctl &= ~(PCIEM_CTL_RELAXED_ORD_ENABLE |
4124
PCIEM_CTL_NOSNOOP_ENABLE);
4125
pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_CTL,
4126
devctl, 2);
4127
pci_set_max_read_req(dev, sc->bge_expmrq);
4128
/* Clear error status. */
4129
pci_write_config(dev, sc->bge_expcap + PCIER_DEVICE_STA,
4130
PCIEM_STA_CORRECTABLE_ERROR |
4131
PCIEM_STA_NON_FATAL_ERROR | PCIEM_STA_FATAL_ERROR |
4132
PCIEM_STA_UNSUPPORTED_REQ, 2);
4133
}
4134
4135
/* Reset some of the PCI state that got zapped by reset. */
4136
pci_write_config(dev, BGE_PCI_MISC_CTL,
4137
BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
4138
BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW, 4);
4139
val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
4140
if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
4141
(sc->bge_flags & BGE_FLAG_PCIX) != 0)
4142
val |= BGE_PCISTATE_RETRY_SAME_DMA;
4143
if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
4144
val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
4145
BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
4146
BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
4147
pci_write_config(dev, BGE_PCI_PCISTATE, val, 4);
4148
pci_write_config(dev, BGE_PCI_CACHESZ, cachesize, 4);
4149
pci_write_config(dev, BGE_PCI_CMD, command, 4);
4150
/*
4151
* Disable PCI-X relaxed ordering to ensure status block update
4152
* comes first then packet buffer DMA. Otherwise driver may
4153
* read stale status block.
4154
*/
4155
if (sc->bge_flags & BGE_FLAG_PCIX) {
4156
devctl = pci_read_config(dev,
4157
sc->bge_pcixcap + PCIXR_COMMAND, 2);
4158
devctl &= ~PCIXM_COMMAND_ERO;
4159
if (sc->bge_asicrev == BGE_ASICREV_BCM5703) {
4160
devctl &= ~PCIXM_COMMAND_MAX_READ;
4161
devctl |= PCIXM_COMMAND_MAX_READ_2048;
4162
} else if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
4163
devctl &= ~(PCIXM_COMMAND_MAX_SPLITS |
4164
PCIXM_COMMAND_MAX_READ);
4165
devctl |= PCIXM_COMMAND_MAX_READ_2048;
4166
}
4167
pci_write_config(dev, sc->bge_pcixcap + PCIXR_COMMAND,
4168
devctl, 2);
4169
}
4170
/* Re-enable MSI, if necessary, and enable the memory arbiter. */
4171
if (BGE_IS_5714_FAMILY(sc)) {
4172
/* This chip disables MSI on reset. */
4173
if (sc->bge_flags & BGE_FLAG_MSI) {
4174
val = pci_read_config(dev,
4175
sc->bge_msicap + PCIR_MSI_CTRL, 2);
4176
pci_write_config(dev,
4177
sc->bge_msicap + PCIR_MSI_CTRL,
4178
val | PCIM_MSICTRL_MSI_ENABLE, 2);
4179
val = CSR_READ_4(sc, BGE_MSI_MODE);
4180
CSR_WRITE_4(sc, BGE_MSI_MODE,
4181
val | BGE_MSIMODE_ENABLE);
4182
}
4183
val = CSR_READ_4(sc, BGE_MARB_MODE);
4184
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
4185
} else
4186
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
4187
4188
/* Fix up byte swapping. */
4189
CSR_WRITE_4(sc, BGE_MODE_CTL, bge_dma_swap_options(sc));
4190
4191
val = CSR_READ_4(sc, BGE_MAC_MODE);
4192
val = (val & ~mac_mode_mask) | mac_mode;
4193
CSR_WRITE_4(sc, BGE_MAC_MODE, val);
4194
DELAY(40);
4195
4196
bge_ape_unlock(sc, BGE_APE_LOCK_GRC);
4197
4198
if (sc->bge_asicrev == BGE_ASICREV_BCM5906) {
4199
for (i = 0; i < BGE_TIMEOUT; i++) {
4200
val = CSR_READ_4(sc, BGE_VCPU_STATUS);
4201
if (val & BGE_VCPU_STATUS_INIT_DONE)
4202
break;
4203
DELAY(100);
4204
}
4205
if (i == BGE_TIMEOUT) {
4206
device_printf(dev, "reset timed out\n");
4207
return (1);
4208
}
4209
} else {
4210
/*
4211
* Poll until we see the 1's complement of the magic number.
4212
* This indicates that the firmware initialization is complete.
4213
* We expect this to fail if no chip containing the Ethernet
4214
* address is fitted though.
4215
*/
4216
for (i = 0; i < BGE_TIMEOUT; i++) {
4217
DELAY(10);
4218
val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
4219
if (val == ~BGE_SRAM_FW_MB_MAGIC)
4220
break;
4221
}
4222
4223
if ((sc->bge_flags & BGE_FLAG_EADDR) && i == BGE_TIMEOUT)
4224
device_printf(dev,
4225
"firmware handshake timed out, found 0x%08x\n",
4226
val);
4227
/* BCM57765 A0 needs additional time before accessing. */
4228
if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
4229
DELAY(10 * 1000); /* XXX */
4230
}
4231
4232
/*
4233
* The 5704 in TBI mode apparently needs some special
4234
* adjustment to insure the SERDES drive level is set
4235
* to 1.2V.
4236
*/
4237
if (sc->bge_asicrev == BGE_ASICREV_BCM5704 &&
4238
sc->bge_flags & BGE_FLAG_TBI) {
4239
val = CSR_READ_4(sc, BGE_SERDES_CFG);
4240
val = (val & ~0xFFF) | 0x880;
4241
CSR_WRITE_4(sc, BGE_SERDES_CFG, val);
4242
}
4243
4244
/* XXX: Broadcom Linux driver. */
4245
if (sc->bge_flags & BGE_FLAG_PCIE &&
4246
!BGE_IS_5717_PLUS(sc) &&
4247
sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
4248
sc->bge_asicrev != BGE_ASICREV_BCM5785) {
4249
/* Enable Data FIFO protection. */
4250
val = CSR_READ_4(sc, 0x7C00);
4251
CSR_WRITE_4(sc, 0x7C00, val | (1 << 25));
4252
}
4253
4254
if (sc->bge_asicrev == BGE_ASICREV_BCM5720)
4255
BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
4256
CPMU_CLCK_ORIDE_MAC_ORIDE_EN);
4257
4258
return (0);
4259
}
4260
4261
static __inline void
4262
bge_rxreuse_std(struct bge_softc *sc, int i)
4263
{
4264
struct bge_rx_bd *r;
4265
4266
r = &sc->bge_ldata.bge_rx_std_ring[sc->bge_std];
4267
r->bge_flags = BGE_RXBDFLAG_END;
4268
r->bge_len = sc->bge_cdata.bge_rx_std_seglen[i];
4269
r->bge_idx = i;
4270
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4271
}
4272
4273
static __inline void
4274
bge_rxreuse_jumbo(struct bge_softc *sc, int i)
4275
{
4276
struct bge_extrx_bd *r;
4277
4278
r = &sc->bge_ldata.bge_rx_jumbo_ring[sc->bge_jumbo];
4279
r->bge_flags = BGE_RXBDFLAG_JUMBO_RING | BGE_RXBDFLAG_END;
4280
r->bge_len0 = sc->bge_cdata.bge_rx_jumbo_seglen[i][0];
4281
r->bge_len1 = sc->bge_cdata.bge_rx_jumbo_seglen[i][1];
4282
r->bge_len2 = sc->bge_cdata.bge_rx_jumbo_seglen[i][2];
4283
r->bge_len3 = sc->bge_cdata.bge_rx_jumbo_seglen[i][3];
4284
r->bge_idx = i;
4285
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4286
}
4287
4288
/*
4289
* Frame reception handling. This is called if there's a frame
4290
* on the receive return list.
4291
*
4292
* Note: we have to be able to handle two possibilities here:
4293
* 1) the frame is from the jumbo receive ring
4294
* 2) the frame is from the standard receive ring
4295
*/
4296
4297
static int
4298
bge_rxeof(struct bge_softc *sc, uint16_t rx_prod, int holdlck)
4299
{
4300
if_t ifp;
4301
int rx_npkts = 0, stdcnt = 0, jumbocnt = 0;
4302
uint16_t rx_cons;
4303
4304
rx_cons = sc->bge_rx_saved_considx;
4305
4306
/* Nothing to do. */
4307
if (rx_cons == rx_prod)
4308
return (rx_npkts);
4309
4310
ifp = sc->bge_ifp;
4311
4312
bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4313
sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_POSTREAD);
4314
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4315
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_POSTWRITE);
4316
if (BGE_IS_JUMBO_CAPABLE(sc) &&
4317
if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
4318
ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN))
4319
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4320
sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_POSTWRITE);
4321
4322
while (rx_cons != rx_prod) {
4323
struct bge_rx_bd *cur_rx;
4324
uint32_t rxidx;
4325
struct mbuf *m = NULL;
4326
uint16_t vlan_tag = 0;
4327
int have_tag = 0;
4328
4329
#ifdef DEVICE_POLLING
4330
if (if_getcapenable(ifp) & IFCAP_POLLING) {
4331
if (sc->rxcycles <= 0)
4332
break;
4333
sc->rxcycles--;
4334
}
4335
#endif
4336
4337
cur_rx = &sc->bge_ldata.bge_rx_return_ring[rx_cons];
4338
4339
rxidx = cur_rx->bge_idx;
4340
BGE_INC(rx_cons, sc->bge_return_ring_cnt);
4341
4342
if (if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING &&
4343
cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
4344
have_tag = 1;
4345
vlan_tag = cur_rx->bge_vlan_tag;
4346
}
4347
4348
if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
4349
jumbocnt++;
4350
m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
4351
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4352
bge_rxreuse_jumbo(sc, rxidx);
4353
continue;
4354
}
4355
if (bge_newbuf_jumbo(sc, rxidx) != 0) {
4356
bge_rxreuse_jumbo(sc, rxidx);
4357
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4358
continue;
4359
}
4360
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
4361
} else {
4362
stdcnt++;
4363
m = sc->bge_cdata.bge_rx_std_chain[rxidx];
4364
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
4365
bge_rxreuse_std(sc, rxidx);
4366
continue;
4367
}
4368
if (bge_newbuf_std(sc, rxidx) != 0) {
4369
bge_rxreuse_std(sc, rxidx);
4370
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
4371
continue;
4372
}
4373
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
4374
}
4375
4376
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
4377
#ifndef __NO_STRICT_ALIGNMENT
4378
/*
4379
* For architectures with strict alignment we must make sure
4380
* the payload is aligned.
4381
*/
4382
if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG) {
4383
bcopy(m->m_data, m->m_data + ETHER_ALIGN,
4384
cur_rx->bge_len);
4385
m->m_data += ETHER_ALIGN;
4386
}
4387
#endif
4388
m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
4389
m->m_pkthdr.rcvif = ifp;
4390
4391
if (if_getcapenable(ifp) & IFCAP_RXCSUM)
4392
bge_rxcsum(sc, cur_rx, m);
4393
4394
/*
4395
* If we received a packet with a vlan tag,
4396
* attach that information to the packet.
4397
*/
4398
if (have_tag) {
4399
m->m_pkthdr.ether_vtag = vlan_tag;
4400
m->m_flags |= M_VLANTAG;
4401
}
4402
4403
if (holdlck != 0) {
4404
BGE_UNLOCK(sc);
4405
if_input(ifp, m);
4406
BGE_LOCK(sc);
4407
} else
4408
if_input(ifp, m);
4409
rx_npkts++;
4410
4411
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
4412
return (rx_npkts);
4413
}
4414
4415
bus_dmamap_sync(sc->bge_cdata.bge_rx_return_ring_tag,
4416
sc->bge_cdata.bge_rx_return_ring_map, BUS_DMASYNC_PREREAD);
4417
if (stdcnt > 0)
4418
bus_dmamap_sync(sc->bge_cdata.bge_rx_std_ring_tag,
4419
sc->bge_cdata.bge_rx_std_ring_map, BUS_DMASYNC_PREWRITE);
4420
4421
if (jumbocnt > 0)
4422
bus_dmamap_sync(sc->bge_cdata.bge_rx_jumbo_ring_tag,
4423
sc->bge_cdata.bge_rx_jumbo_ring_map, BUS_DMASYNC_PREWRITE);
4424
4425
sc->bge_rx_saved_considx = rx_cons;
4426
bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
4427
if (stdcnt)
4428
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, (sc->bge_std +
4429
BGE_STD_RX_RING_CNT - 1) % BGE_STD_RX_RING_CNT);
4430
if (jumbocnt)
4431
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, (sc->bge_jumbo +
4432
BGE_JUMBO_RX_RING_CNT - 1) % BGE_JUMBO_RX_RING_CNT);
4433
#ifdef notyet
4434
/*
4435
* This register wraps very quickly under heavy packet drops.
4436
* If you need correct statistics, you can enable this check.
4437
*/
4438
if (BGE_IS_5705_PLUS(sc))
4439
if_incierrors(ifp, CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
4440
#endif
4441
return (rx_npkts);
4442
}
4443
4444
static void
4445
bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
4446
{
4447
4448
if (BGE_IS_5717_PLUS(sc)) {
4449
if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
4450
if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4451
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4452
if ((cur_rx->bge_error_flag &
4453
BGE_RXERRFLAG_IP_CSUM_NOK) == 0)
4454
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4455
}
4456
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
4457
m->m_pkthdr.csum_data =
4458
cur_rx->bge_tcp_udp_csum;
4459
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4460
CSUM_PSEUDO_HDR;
4461
}
4462
}
4463
} else {
4464
if (cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) {
4465
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
4466
if ((cur_rx->bge_ip_csum ^ 0xFFFF) == 0)
4467
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
4468
}
4469
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
4470
m->m_pkthdr.len >= ETHER_MIN_NOPAD) {
4471
m->m_pkthdr.csum_data =
4472
cur_rx->bge_tcp_udp_csum;
4473
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
4474
CSUM_PSEUDO_HDR;
4475
}
4476
}
4477
}
4478
4479
static void
4480
bge_txeof(struct bge_softc *sc, uint16_t tx_cons)
4481
{
4482
struct bge_tx_bd *cur_tx;
4483
if_t ifp;
4484
4485
BGE_LOCK_ASSERT(sc);
4486
4487
/* Nothing to do. */
4488
if (sc->bge_tx_saved_considx == tx_cons)
4489
return;
4490
4491
ifp = sc->bge_ifp;
4492
4493
bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
4494
sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_POSTWRITE);
4495
/*
4496
* Go through our tx ring and free mbufs for those
4497
* frames that have been sent.
4498
*/
4499
while (sc->bge_tx_saved_considx != tx_cons) {
4500
uint32_t idx;
4501
4502
idx = sc->bge_tx_saved_considx;
4503
cur_tx = &sc->bge_ldata.bge_tx_ring[idx];
4504
if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
4505
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4506
if (sc->bge_cdata.bge_tx_chain[idx] != NULL) {
4507
bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag,
4508
sc->bge_cdata.bge_tx_dmamap[idx],
4509
BUS_DMASYNC_POSTWRITE);
4510
bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag,
4511
sc->bge_cdata.bge_tx_dmamap[idx]);
4512
m_freem(sc->bge_cdata.bge_tx_chain[idx]);
4513
sc->bge_cdata.bge_tx_chain[idx] = NULL;
4514
}
4515
sc->bge_txcnt--;
4516
BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
4517
}
4518
4519
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
4520
if (sc->bge_txcnt == 0)
4521
sc->bge_timer = 0;
4522
}
4523
4524
#ifdef DEVICE_POLLING
4525
static int
4526
bge_poll(if_t ifp, enum poll_cmd cmd, int count)
4527
{
4528
struct bge_softc *sc = if_getsoftc(ifp);
4529
uint16_t rx_prod, tx_cons;
4530
uint32_t statusword;
4531
int rx_npkts = 0;
4532
4533
BGE_LOCK(sc);
4534
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4535
BGE_UNLOCK(sc);
4536
return (rx_npkts);
4537
}
4538
4539
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4540
sc->bge_cdata.bge_status_map,
4541
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4542
/* Fetch updates from the status block. */
4543
rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4544
tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4545
4546
statusword = sc->bge_ldata.bge_status_block->bge_status;
4547
/* Clear the status so the next pass only sees the changes. */
4548
sc->bge_ldata.bge_status_block->bge_status = 0;
4549
4550
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4551
sc->bge_cdata.bge_status_map,
4552
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4553
4554
/* Note link event. It will be processed by POLL_AND_CHECK_STATUS. */
4555
if (statusword & BGE_STATFLAG_LINKSTATE_CHANGED)
4556
sc->bge_link_evt++;
4557
4558
if (cmd == POLL_AND_CHECK_STATUS)
4559
if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4560
sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4561
sc->bge_link_evt || (sc->bge_flags & BGE_FLAG_TBI))
4562
bge_link_upd(sc);
4563
4564
sc->rxcycles = count;
4565
rx_npkts = bge_rxeof(sc, rx_prod, 1);
4566
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
4567
BGE_UNLOCK(sc);
4568
return (rx_npkts);
4569
}
4570
bge_txeof(sc, tx_cons);
4571
if (!if_sendq_empty(ifp))
4572
bge_start_locked(ifp);
4573
4574
BGE_UNLOCK(sc);
4575
return (rx_npkts);
4576
}
4577
#endif /* DEVICE_POLLING */
4578
4579
static int
4580
bge_msi_intr(void *arg)
4581
{
4582
struct bge_softc *sc;
4583
4584
sc = (struct bge_softc *)arg;
4585
/*
4586
* This interrupt is not shared and controller already
4587
* disabled further interrupt.
4588
*/
4589
taskqueue_enqueue(sc->bge_tq, &sc->bge_intr_task);
4590
return (FILTER_HANDLED);
4591
}
4592
4593
static void
4594
bge_intr_task(void *arg, int pending)
4595
{
4596
struct bge_softc *sc;
4597
if_t ifp;
4598
uint32_t status, status_tag;
4599
uint16_t rx_prod, tx_cons;
4600
4601
sc = (struct bge_softc *)arg;
4602
ifp = sc->bge_ifp;
4603
4604
BGE_LOCK(sc);
4605
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4606
BGE_UNLOCK(sc);
4607
return;
4608
}
4609
4610
/* Get updated status block. */
4611
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4612
sc->bge_cdata.bge_status_map,
4613
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4614
4615
/* Save producer/consumer indices. */
4616
rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4617
tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4618
status = sc->bge_ldata.bge_status_block->bge_status;
4619
status_tag = sc->bge_ldata.bge_status_block->bge_status_tag << 24;
4620
/* Dirty the status flag. */
4621
sc->bge_ldata.bge_status_block->bge_status = 0;
4622
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4623
sc->bge_cdata.bge_status_map,
4624
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4625
if ((sc->bge_flags & BGE_FLAG_TAGGED_STATUS) == 0)
4626
status_tag = 0;
4627
4628
if ((status & BGE_STATFLAG_LINKSTATE_CHANGED) != 0)
4629
bge_link_upd(sc);
4630
4631
/* Let controller work. */
4632
bge_writembx(sc, BGE_MBX_IRQ0_LO, status_tag);
4633
4634
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4635
sc->bge_rx_saved_considx != rx_prod) {
4636
/* Check RX return ring producer/consumer. */
4637
BGE_UNLOCK(sc);
4638
bge_rxeof(sc, rx_prod, 0);
4639
BGE_LOCK(sc);
4640
}
4641
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4642
/* Check TX ring producer/consumer. */
4643
bge_txeof(sc, tx_cons);
4644
if (!if_sendq_empty(ifp))
4645
bge_start_locked(ifp);
4646
}
4647
BGE_UNLOCK(sc);
4648
}
4649
4650
static void
4651
bge_intr(void *xsc)
4652
{
4653
struct bge_softc *sc;
4654
if_t ifp;
4655
uint32_t statusword;
4656
uint16_t rx_prod, tx_cons;
4657
4658
sc = xsc;
4659
4660
BGE_LOCK(sc);
4661
4662
ifp = sc->bge_ifp;
4663
4664
#ifdef DEVICE_POLLING
4665
if (if_getcapenable(ifp) & IFCAP_POLLING) {
4666
BGE_UNLOCK(sc);
4667
return;
4668
}
4669
#endif
4670
4671
/*
4672
* Ack the interrupt by writing something to BGE_MBX_IRQ0_LO. Don't
4673
* disable interrupts by writing nonzero like we used to, since with
4674
* our current organization this just gives complications and
4675
* pessimizations for re-enabling interrupts. We used to have races
4676
* instead of the necessary complications. Disabling interrupts
4677
* would just reduce the chance of a status update while we are
4678
* running (by switching to the interrupt-mode coalescence
4679
* parameters), but this chance is already very low so it is more
4680
* efficient to get another interrupt than prevent it.
4681
*
4682
* We do the ack first to ensure another interrupt if there is a
4683
* status update after the ack. We don't check for the status
4684
* changing later because it is more efficient to get another
4685
* interrupt than prevent it, not quite as above (not checking is
4686
* a smaller optimization than not toggling the interrupt enable,
4687
* since checking doesn't involve PCI accesses and toggling require
4688
* the status check). So toggling would probably be a pessimization
4689
* even with MSI. It would only be needed for using a task queue.
4690
*/
4691
bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
4692
4693
/*
4694
* Do the mandatory PCI flush as well as get the link status.
4695
*/
4696
statusword = CSR_READ_4(sc, BGE_MAC_STS) & BGE_MACSTAT_LINK_CHANGED;
4697
4698
/* Make sure the descriptor ring indexes are coherent. */
4699
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4700
sc->bge_cdata.bge_status_map,
4701
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
4702
rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
4703
tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
4704
sc->bge_ldata.bge_status_block->bge_status = 0;
4705
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
4706
sc->bge_cdata.bge_status_map,
4707
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4708
4709
if ((sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
4710
sc->bge_chipid != BGE_CHIPID_BCM5700_B2) ||
4711
statusword || sc->bge_link_evt)
4712
bge_link_upd(sc);
4713
4714
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4715
/* Check RX return ring producer/consumer. */
4716
bge_rxeof(sc, rx_prod, 1);
4717
}
4718
4719
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4720
/* Check TX ring producer/consumer. */
4721
bge_txeof(sc, tx_cons);
4722
}
4723
4724
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING &&
4725
!if_sendq_empty(ifp))
4726
bge_start_locked(ifp);
4727
4728
BGE_UNLOCK(sc);
4729
}
4730
4731
static void
4732
bge_asf_driver_up(struct bge_softc *sc)
4733
{
4734
if (sc->bge_asf_mode & ASF_STACKUP) {
4735
/* Send ASF heartbeat aprox. every 2s */
4736
if (sc->bge_asf_count)
4737
sc->bge_asf_count --;
4738
else {
4739
sc->bge_asf_count = 2;
4740
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
4741
BGE_FW_CMD_DRV_ALIVE);
4742
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
4743
bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
4744
BGE_FW_HB_TIMEOUT_SEC);
4745
CSR_WRITE_4(sc, BGE_RX_CPU_EVENT,
4746
CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
4747
BGE_RX_CPU_DRV_EVENT);
4748
}
4749
}
4750
}
4751
4752
static void
4753
bge_tick(void *xsc)
4754
{
4755
struct bge_softc *sc = xsc;
4756
struct mii_data *mii = NULL;
4757
4758
BGE_LOCK_ASSERT(sc);
4759
4760
/* Synchronize with possible callout reset/stop. */
4761
if (callout_pending(&sc->bge_stat_ch) ||
4762
!callout_active(&sc->bge_stat_ch))
4763
return;
4764
4765
if (BGE_IS_5705_PLUS(sc))
4766
bge_stats_update_regs(sc);
4767
else
4768
bge_stats_update(sc);
4769
4770
/* XXX Add APE heartbeat check here? */
4771
4772
if ((sc->bge_flags & BGE_FLAG_TBI) == 0) {
4773
mii = device_get_softc(sc->bge_miibus);
4774
/*
4775
* Do not touch PHY if we have link up. This could break
4776
* IPMI/ASF mode or produce extra input errors
4777
* (extra errors was reported for bcm5701 & bcm5704).
4778
*/
4779
if (!sc->bge_link)
4780
mii_tick(mii);
4781
} else {
4782
/*
4783
* Since in TBI mode auto-polling can't be used we should poll
4784
* link status manually. Here we register pending link event
4785
* and trigger interrupt.
4786
*/
4787
#ifdef DEVICE_POLLING
4788
/* In polling mode we poll link state in bge_poll(). */
4789
if (!(if_getcapenable(sc->bge_ifp) & IFCAP_POLLING))
4790
#endif
4791
{
4792
sc->bge_link_evt++;
4793
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
4794
sc->bge_flags & BGE_FLAG_5788)
4795
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
4796
else
4797
BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
4798
}
4799
}
4800
4801
bge_asf_driver_up(sc);
4802
bge_watchdog(sc);
4803
4804
callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
4805
}
4806
4807
static void
4808
bge_stats_update_regs(struct bge_softc *sc)
4809
{
4810
struct bge_mac_stats *stats;
4811
uint32_t val;
4812
4813
stats = &sc->bge_mac_stats;
4814
4815
stats->ifHCOutOctets +=
4816
CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4817
stats->etherStatsCollisions +=
4818
CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4819
stats->outXonSent +=
4820
CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4821
stats->outXoffSent +=
4822
CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4823
stats->dot3StatsInternalMacTransmitErrors +=
4824
CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4825
stats->dot3StatsSingleCollisionFrames +=
4826
CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4827
stats->dot3StatsMultipleCollisionFrames +=
4828
CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4829
stats->dot3StatsDeferredTransmissions +=
4830
CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4831
stats->dot3StatsExcessiveCollisions +=
4832
CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4833
stats->dot3StatsLateCollisions +=
4834
CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4835
stats->ifHCOutUcastPkts +=
4836
CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4837
stats->ifHCOutMulticastPkts +=
4838
CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4839
stats->ifHCOutBroadcastPkts +=
4840
CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4841
4842
stats->ifHCInOctets +=
4843
CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4844
stats->etherStatsFragments +=
4845
CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4846
stats->ifHCInUcastPkts +=
4847
CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4848
stats->ifHCInMulticastPkts +=
4849
CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4850
stats->ifHCInBroadcastPkts +=
4851
CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4852
stats->dot3StatsFCSErrors +=
4853
CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4854
stats->dot3StatsAlignmentErrors +=
4855
CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4856
stats->xonPauseFramesReceived +=
4857
CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4858
stats->xoffPauseFramesReceived +=
4859
CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4860
stats->macControlFramesReceived +=
4861
CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4862
stats->xoffStateEntered +=
4863
CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4864
stats->dot3StatsFramesTooLong +=
4865
CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4866
stats->etherStatsJabbers +=
4867
CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4868
stats->etherStatsUndersizePkts +=
4869
CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4870
4871
stats->FramesDroppedDueToFilters +=
4872
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4873
stats->DmaWriteQueueFull +=
4874
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4875
stats->DmaWriteHighPriQueueFull +=
4876
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4877
stats->NoMoreRxBDs +=
4878
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4879
/*
4880
* XXX
4881
* Unlike other controllers, BGE_RXLP_LOCSTAT_IFIN_DROPS
4882
* counter of BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0
4883
* includes number of unwanted multicast frames. This comes
4884
* from silicon bug and known workaround to get rough(not
4885
* exact) counter is to enable interrupt on MBUF low water
4886
* attention. This can be accomplished by setting
4887
* BGE_HCCMODE_ATTN bit of BGE_HCC_MODE,
4888
* BGE_BMANMODE_LOMBUF_ATTN bit of BGE_BMAN_MODE and
4889
* BGE_MODECTL_FLOWCTL_ATTN_INTR bit of BGE_MODE_CTL.
4890
* However that change would generate more interrupts and
4891
* there are still possibilities of losing multiple frames
4892
* during BGE_MODECTL_FLOWCTL_ATTN_INTR interrupt handling.
4893
* Given that the workaround still would not get correct
4894
* counter I don't think it's worth to implement it. So
4895
* ignore reading the counter on controllers that have the
4896
* silicon bug.
4897
*/
4898
if (sc->bge_asicrev != BGE_ASICREV_BCM5717 &&
4899
sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
4900
sc->bge_chipid != BGE_CHIPID_BCM5720_A0)
4901
stats->InputDiscards +=
4902
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4903
stats->InputErrors +=
4904
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4905
stats->RecvThresholdHit +=
4906
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4907
4908
if (sc->bge_flags & BGE_FLAG_RDMA_BUG) {
4909
/*
4910
* If controller transmitted more than BGE_NUM_RDMA_CHANNELS
4911
* frames, it's safe to disable workaround for DMA engine's
4912
* miscalculation of TXMBUF space.
4913
*/
4914
if (stats->ifHCOutUcastPkts + stats->ifHCOutMulticastPkts +
4915
stats->ifHCOutBroadcastPkts > BGE_NUM_RDMA_CHANNELS) {
4916
val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
4917
if (sc->bge_asicrev == BGE_ASICREV_BCM5719)
4918
val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
4919
else
4920
val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
4921
CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
4922
sc->bge_flags &= ~BGE_FLAG_RDMA_BUG;
4923
}
4924
}
4925
}
4926
4927
static void
4928
bge_stats_clear_regs(struct bge_softc *sc)
4929
{
4930
4931
CSR_READ_4(sc, BGE_TX_MAC_STATS_OCTETS);
4932
CSR_READ_4(sc, BGE_TX_MAC_STATS_COLLS);
4933
CSR_READ_4(sc, BGE_TX_MAC_STATS_XON_SENT);
4934
CSR_READ_4(sc, BGE_TX_MAC_STATS_XOFF_SENT);
4935
CSR_READ_4(sc, BGE_TX_MAC_STATS_ERRORS);
4936
CSR_READ_4(sc, BGE_TX_MAC_STATS_SINGLE_COLL);
4937
CSR_READ_4(sc, BGE_TX_MAC_STATS_MULTI_COLL);
4938
CSR_READ_4(sc, BGE_TX_MAC_STATS_DEFERRED);
4939
CSR_READ_4(sc, BGE_TX_MAC_STATS_EXCESS_COLL);
4940
CSR_READ_4(sc, BGE_TX_MAC_STATS_LATE_COLL);
4941
CSR_READ_4(sc, BGE_TX_MAC_STATS_UCAST);
4942
CSR_READ_4(sc, BGE_TX_MAC_STATS_MCAST);
4943
CSR_READ_4(sc, BGE_TX_MAC_STATS_BCAST);
4944
4945
CSR_READ_4(sc, BGE_RX_MAC_STATS_OCTESTS);
4946
CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAGMENTS);
4947
CSR_READ_4(sc, BGE_RX_MAC_STATS_UCAST);
4948
CSR_READ_4(sc, BGE_RX_MAC_STATS_MCAST);
4949
CSR_READ_4(sc, BGE_RX_MAC_STATS_BCAST);
4950
CSR_READ_4(sc, BGE_RX_MAC_STATS_FCS_ERRORS);
4951
CSR_READ_4(sc, BGE_RX_MAC_STATS_ALGIN_ERRORS);
4952
CSR_READ_4(sc, BGE_RX_MAC_STATS_XON_RCVD);
4953
CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_RCVD);
4954
CSR_READ_4(sc, BGE_RX_MAC_STATS_CTRL_RCVD);
4955
CSR_READ_4(sc, BGE_RX_MAC_STATS_XOFF_ENTERED);
4956
CSR_READ_4(sc, BGE_RX_MAC_STATS_FRAME_TOO_LONG);
4957
CSR_READ_4(sc, BGE_RX_MAC_STATS_JABBERS);
4958
CSR_READ_4(sc, BGE_RX_MAC_STATS_UNDERSIZE);
4959
4960
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_FILTDROP);
4961
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_WRQ_FULL);
4962
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_DMA_HPWRQ_FULL);
4963
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
4964
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
4965
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
4966
CSR_READ_4(sc, BGE_RXLP_LOCSTAT_RXTHRESH_HIT);
4967
}
4968
4969
static void
4970
bge_stats_update(struct bge_softc *sc)
4971
{
4972
if_t ifp;
4973
bus_size_t stats;
4974
uint32_t cnt; /* current register value */
4975
4976
ifp = sc->bge_ifp;
4977
4978
stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
4979
4980
#define READ_STAT(sc, stats, stat) \
4981
CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
4982
4983
cnt = READ_STAT(sc, stats, txstats.etherStatsCollisions.bge_addr_lo);
4984
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, cnt - sc->bge_tx_collisions);
4985
sc->bge_tx_collisions = cnt;
4986
4987
cnt = READ_STAT(sc, stats, nicNoMoreRxBDs.bge_addr_lo);
4988
if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_nobds);
4989
sc->bge_rx_nobds = cnt;
4990
cnt = READ_STAT(sc, stats, ifInErrors.bge_addr_lo);
4991
if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_inerrs);
4992
sc->bge_rx_inerrs = cnt;
4993
cnt = READ_STAT(sc, stats, ifInDiscards.bge_addr_lo);
4994
if_inc_counter(ifp, IFCOUNTER_IERRORS, cnt - sc->bge_rx_discards);
4995
sc->bge_rx_discards = cnt;
4996
4997
cnt = READ_STAT(sc, stats, txstats.ifOutDiscards.bge_addr_lo);
4998
if_inc_counter(ifp, IFCOUNTER_OERRORS, cnt - sc->bge_tx_discards);
4999
sc->bge_tx_discards = cnt;
5000
5001
#undef READ_STAT
5002
}
5003
5004
/*
5005
* Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
5006
* The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
5007
* but when such padded frames employ the bge IP/TCP checksum offload,
5008
* the hardware checksum assist gives incorrect results (possibly
5009
* from incorporating its own padding into the UDP/TCP checksum; who knows).
5010
* If we pad such runts with zeros, the onboard checksum comes out correct.
5011
*/
5012
static __inline int
5013
bge_cksum_pad(struct mbuf *m)
5014
{
5015
int padlen = ETHER_MIN_NOPAD - m->m_pkthdr.len;
5016
struct mbuf *last;
5017
5018
/* If there's only the packet-header and we can pad there, use it. */
5019
if (m->m_pkthdr.len == m->m_len && M_WRITABLE(m) &&
5020
M_TRAILINGSPACE(m) >= padlen) {
5021
last = m;
5022
} else {
5023
/*
5024
* Walk packet chain to find last mbuf. We will either
5025
* pad there, or append a new mbuf and pad it.
5026
*/
5027
for (last = m; last->m_next != NULL; last = last->m_next);
5028
if (!(M_WRITABLE(last) && M_TRAILINGSPACE(last) >= padlen)) {
5029
/* Allocate new empty mbuf, pad it. Compact later. */
5030
struct mbuf *n;
5031
5032
MGET(n, M_NOWAIT, MT_DATA);
5033
if (n == NULL)
5034
return (ENOBUFS);
5035
n->m_len = 0;
5036
last->m_next = n;
5037
last = n;
5038
}
5039
}
5040
5041
/* Now zero the pad area, to avoid the bge cksum-assist bug. */
5042
memset(mtod(last, caddr_t) + last->m_len, 0, padlen);
5043
last->m_len += padlen;
5044
m->m_pkthdr.len += padlen;
5045
5046
return (0);
5047
}
5048
5049
static struct mbuf *
5050
bge_check_short_dma(struct mbuf *m)
5051
{
5052
struct mbuf *n;
5053
int found;
5054
5055
/*
5056
* If device receive two back-to-back send BDs with less than
5057
* or equal to 8 total bytes then the device may hang. The two
5058
* back-to-back send BDs must in the same frame for this failure
5059
* to occur. Scan mbuf chains and see whether two back-to-back
5060
* send BDs are there. If this is the case, allocate new mbuf
5061
* and copy the frame to workaround the silicon bug.
5062
*/
5063
for (n = m, found = 0; n != NULL; n = n->m_next) {
5064
if (n->m_len < 8) {
5065
found++;
5066
if (found > 1)
5067
break;
5068
continue;
5069
}
5070
found = 0;
5071
}
5072
5073
if (found > 1) {
5074
n = m_defrag(m, M_NOWAIT);
5075
if (n == NULL)
5076
m_freem(m);
5077
} else
5078
n = m;
5079
return (n);
5080
}
5081
5082
static struct mbuf *
5083
bge_setup_tso(struct bge_softc *sc, struct mbuf *m, uint16_t *mss,
5084
uint16_t *flags)
5085
{
5086
struct ip *ip;
5087
struct tcphdr *tcp;
5088
struct mbuf *n;
5089
uint16_t hlen;
5090
uint32_t poff;
5091
5092
if (M_WRITABLE(m) == 0) {
5093
/* Get a writable copy. */
5094
n = m_dup(m, M_NOWAIT);
5095
m_freem(m);
5096
if (n == NULL)
5097
return (NULL);
5098
m = n;
5099
}
5100
m = m_pullup(m, sizeof(struct ether_header) + sizeof(struct ip));
5101
if (m == NULL)
5102
return (NULL);
5103
ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5104
poff = sizeof(struct ether_header) + (ip->ip_hl << 2);
5105
m = m_pullup(m, poff + sizeof(struct tcphdr));
5106
if (m == NULL)
5107
return (NULL);
5108
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5109
m = m_pullup(m, poff + (tcp->th_off << 2));
5110
if (m == NULL)
5111
return (NULL);
5112
/*
5113
* It seems controller doesn't modify IP length and TCP pseudo
5114
* checksum. These checksum computed by upper stack should be 0.
5115
*/
5116
*mss = m->m_pkthdr.tso_segsz;
5117
ip = (struct ip *)(mtod(m, char *) + sizeof(struct ether_header));
5118
ip->ip_sum = 0;
5119
ip->ip_len = htons(*mss + (ip->ip_hl << 2) + (tcp->th_off << 2));
5120
/* Clear pseudo checksum computed by TCP stack. */
5121
tcp = (struct tcphdr *)(mtod(m, char *) + poff);
5122
tcp->th_sum = 0;
5123
/*
5124
* Broadcom controllers uses different descriptor format for
5125
* TSO depending on ASIC revision. Due to TSO-capable firmware
5126
* license issue and lower performance of firmware based TSO
5127
* we only support hardware based TSO.
5128
*/
5129
/* Calculate header length, incl. TCP/IP options, in 32 bit units. */
5130
hlen = ((ip->ip_hl << 2) + (tcp->th_off << 2)) >> 2;
5131
if (sc->bge_flags & BGE_FLAG_TSO3) {
5132
/*
5133
* For BCM5717 and newer controllers, hardware based TSO
5134
* uses the 14 lower bits of the bge_mss field to store the
5135
* MSS and the upper 2 bits to store the lowest 2 bits of
5136
* the IP/TCP header length. The upper 6 bits of the header
5137
* length are stored in the bge_flags[14:10,4] field. Jumbo
5138
* frames are supported.
5139
*/
5140
*mss |= ((hlen & 0x3) << 14);
5141
*flags |= ((hlen & 0xF8) << 7) | ((hlen & 0x4) << 2);
5142
} else {
5143
/*
5144
* For BCM5755 and newer controllers, hardware based TSO uses
5145
* the lower 11 bits to store the MSS and the upper 5 bits to
5146
* store the IP/TCP header length. Jumbo frames are not
5147
* supported.
5148
*/
5149
*mss |= (hlen << 11);
5150
}
5151
return (m);
5152
}
5153
5154
/*
5155
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
5156
* pointers to descriptors.
5157
*/
5158
static int
5159
bge_encap(struct bge_softc *sc, struct mbuf **m_head, uint32_t *txidx)
5160
{
5161
bus_dma_segment_t segs[BGE_NSEG_NEW];
5162
bus_dmamap_t map;
5163
struct bge_tx_bd *d;
5164
struct mbuf *m = *m_head;
5165
uint32_t idx = *txidx;
5166
uint16_t csum_flags, mss, vlan_tag;
5167
int nsegs, i, error;
5168
5169
csum_flags = 0;
5170
mss = 0;
5171
vlan_tag = 0;
5172
if ((sc->bge_flags & BGE_FLAG_SHORT_DMA_BUG) != 0 &&
5173
m->m_next != NULL) {
5174
*m_head = bge_check_short_dma(m);
5175
if (*m_head == NULL)
5176
return (ENOBUFS);
5177
m = *m_head;
5178
}
5179
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5180
*m_head = m = bge_setup_tso(sc, m, &mss, &csum_flags);
5181
if (*m_head == NULL)
5182
return (ENOBUFS);
5183
csum_flags |= BGE_TXBDFLAG_CPU_PRE_DMA |
5184
BGE_TXBDFLAG_CPU_POST_DMA;
5185
} else if ((m->m_pkthdr.csum_flags & sc->bge_csum_features) != 0) {
5186
if (m->m_pkthdr.csum_flags & CSUM_IP)
5187
csum_flags |= BGE_TXBDFLAG_IP_CSUM;
5188
if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)) {
5189
csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
5190
if (m->m_pkthdr.len < ETHER_MIN_NOPAD &&
5191
(error = bge_cksum_pad(m)) != 0) {
5192
m_freem(m);
5193
*m_head = NULL;
5194
return (error);
5195
}
5196
}
5197
}
5198
5199
if ((m->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
5200
if (sc->bge_flags & BGE_FLAG_JUMBO_FRAME &&
5201
m->m_pkthdr.len > ETHER_MAX_LEN)
5202
csum_flags |= BGE_TXBDFLAG_JUMBO_FRAME;
5203
if (sc->bge_forced_collapse > 0 &&
5204
(sc->bge_flags & BGE_FLAG_PCIE) != 0 && m->m_next != NULL) {
5205
/*
5206
* Forcedly collapse mbuf chains to overcome hardware
5207
* limitation which only support a single outstanding
5208
* DMA read operation.
5209
*/
5210
if (sc->bge_forced_collapse == 1)
5211
m = m_defrag(m, M_NOWAIT);
5212
else
5213
m = m_collapse(m, M_NOWAIT,
5214
sc->bge_forced_collapse);
5215
if (m == NULL)
5216
m = *m_head;
5217
*m_head = m;
5218
}
5219
}
5220
5221
map = sc->bge_cdata.bge_tx_dmamap[idx];
5222
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map, m, segs,
5223
&nsegs, BUS_DMA_NOWAIT);
5224
if (error == EFBIG) {
5225
m = m_collapse(m, M_NOWAIT, BGE_NSEG_NEW);
5226
if (m == NULL) {
5227
m_freem(*m_head);
5228
*m_head = NULL;
5229
return (ENOBUFS);
5230
}
5231
*m_head = m;
5232
error = bus_dmamap_load_mbuf_sg(sc->bge_cdata.bge_tx_mtag, map,
5233
m, segs, &nsegs, BUS_DMA_NOWAIT);
5234
if (error) {
5235
m_freem(m);
5236
*m_head = NULL;
5237
return (error);
5238
}
5239
} else if (error != 0)
5240
return (error);
5241
5242
/* Check if we have enough free send BDs. */
5243
if (sc->bge_txcnt + nsegs >= BGE_TX_RING_CNT) {
5244
bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5245
return (ENOBUFS);
5246
}
5247
5248
bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map, BUS_DMASYNC_PREWRITE);
5249
5250
if (m->m_flags & M_VLANTAG) {
5251
csum_flags |= BGE_TXBDFLAG_VLAN_TAG;
5252
vlan_tag = m->m_pkthdr.ether_vtag;
5253
}
5254
5255
if (sc->bge_asicrev == BGE_ASICREV_BCM5762 &&
5256
(m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
5257
/*
5258
* 5725 family of devices corrupts TSO packets when TSO DMA
5259
* buffers cross into regions which are within MSS bytes of
5260
* a 4GB boundary. If we encounter the condition, drop the
5261
* packet.
5262
*/
5263
for (i = 0; ; i++) {
5264
d = &sc->bge_ldata.bge_tx_ring[idx];
5265
d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5266
d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5267
d->bge_len = segs[i].ds_len;
5268
if (d->bge_addr.bge_addr_lo + segs[i].ds_len + mss <
5269
d->bge_addr.bge_addr_lo)
5270
break;
5271
d->bge_flags = csum_flags;
5272
d->bge_vlan_tag = vlan_tag;
5273
d->bge_mss = mss;
5274
if (i == nsegs - 1)
5275
break;
5276
BGE_INC(idx, BGE_TX_RING_CNT);
5277
}
5278
if (i != nsegs - 1) {
5279
bus_dmamap_sync(sc->bge_cdata.bge_tx_mtag, map,
5280
BUS_DMASYNC_POSTWRITE);
5281
bus_dmamap_unload(sc->bge_cdata.bge_tx_mtag, map);
5282
m_freem(*m_head);
5283
*m_head = NULL;
5284
return (EIO);
5285
}
5286
} else {
5287
for (i = 0; ; i++) {
5288
d = &sc->bge_ldata.bge_tx_ring[idx];
5289
d->bge_addr.bge_addr_lo = BGE_ADDR_LO(segs[i].ds_addr);
5290
d->bge_addr.bge_addr_hi = BGE_ADDR_HI(segs[i].ds_addr);
5291
d->bge_len = segs[i].ds_len;
5292
d->bge_flags = csum_flags;
5293
d->bge_vlan_tag = vlan_tag;
5294
d->bge_mss = mss;
5295
if (i == nsegs - 1)
5296
break;
5297
BGE_INC(idx, BGE_TX_RING_CNT);
5298
}
5299
}
5300
5301
/* Mark the last segment as end of packet... */
5302
d->bge_flags |= BGE_TXBDFLAG_END;
5303
5304
/*
5305
* Insure that the map for this transmission
5306
* is placed at the array index of the last descriptor
5307
* in this chain.
5308
*/
5309
sc->bge_cdata.bge_tx_dmamap[*txidx] = sc->bge_cdata.bge_tx_dmamap[idx];
5310
sc->bge_cdata.bge_tx_dmamap[idx] = map;
5311
sc->bge_cdata.bge_tx_chain[idx] = m;
5312
sc->bge_txcnt += nsegs;
5313
5314
BGE_INC(idx, BGE_TX_RING_CNT);
5315
*txidx = idx;
5316
5317
return (0);
5318
}
5319
5320
/*
5321
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
5322
* to the mbuf data regions directly in the transmit descriptors.
5323
*/
5324
static void
5325
bge_start_locked(if_t ifp)
5326
{
5327
struct bge_softc *sc;
5328
struct mbuf *m_head;
5329
uint32_t prodidx;
5330
int count;
5331
5332
sc = if_getsoftc(ifp);
5333
BGE_LOCK_ASSERT(sc);
5334
5335
if (!sc->bge_link ||
5336
(if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
5337
IFF_DRV_RUNNING)
5338
return;
5339
5340
prodidx = sc->bge_tx_prodidx;
5341
5342
for (count = 0; !if_sendq_empty(ifp);) {
5343
if (sc->bge_txcnt > BGE_TX_RING_CNT - 16) {
5344
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5345
break;
5346
}
5347
m_head = if_dequeue(ifp);
5348
if (m_head == NULL)
5349
break;
5350
5351
/*
5352
* Pack the data into the transmit ring. If we
5353
* don't have room, set the OACTIVE flag and wait
5354
* for the NIC to drain the ring.
5355
*/
5356
if (bge_encap(sc, &m_head, &prodidx)) {
5357
if (m_head == NULL)
5358
break;
5359
if_sendq_prepend(ifp, m_head);
5360
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5361
break;
5362
}
5363
++count;
5364
5365
/*
5366
* If there's a BPF listener, bounce a copy of this frame
5367
* to him.
5368
*/
5369
bpf_mtap_if(ifp, m_head);
5370
}
5371
5372
if (count > 0)
5373
bge_start_tx(sc, prodidx);
5374
}
5375
5376
static void
5377
bge_start_tx(struct bge_softc *sc, uint32_t prodidx)
5378
{
5379
5380
bus_dmamap_sync(sc->bge_cdata.bge_tx_ring_tag,
5381
sc->bge_cdata.bge_tx_ring_map, BUS_DMASYNC_PREWRITE);
5382
/* Transmit. */
5383
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5384
/* 5700 b2 errata */
5385
if (sc->bge_chiprev == BGE_CHIPREV_5700_BX)
5386
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
5387
5388
sc->bge_tx_prodidx = prodidx;
5389
5390
/* Set a timeout in case the chip goes out to lunch. */
5391
sc->bge_timer = BGE_TX_TIMEOUT;
5392
}
5393
5394
/*
5395
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
5396
* to the mbuf data regions directly in the transmit descriptors.
5397
*/
5398
static void
5399
bge_start(if_t ifp)
5400
{
5401
struct bge_softc *sc;
5402
5403
sc = if_getsoftc(ifp);
5404
BGE_LOCK(sc);
5405
bge_start_locked(ifp);
5406
BGE_UNLOCK(sc);
5407
}
5408
5409
static void
5410
bge_init_locked(struct bge_softc *sc)
5411
{
5412
if_t ifp;
5413
uint16_t *m;
5414
uint32_t mode;
5415
5416
BGE_LOCK_ASSERT(sc);
5417
5418
ifp = sc->bge_ifp;
5419
5420
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
5421
return;
5422
5423
/* Cancel pending I/O and flush buffers. */
5424
bge_stop(sc);
5425
5426
bge_stop_fw(sc);
5427
bge_sig_pre_reset(sc, BGE_RESET_START);
5428
bge_reset(sc);
5429
bge_sig_legacy(sc, BGE_RESET_START);
5430
bge_sig_post_reset(sc, BGE_RESET_START);
5431
5432
bge_chipinit(sc);
5433
5434
/*
5435
* Init the various state machines, ring
5436
* control blocks and firmware.
5437
*/
5438
if (bge_blockinit(sc)) {
5439
device_printf(sc->bge_dev, "initialization failure\n");
5440
return;
5441
}
5442
5443
ifp = sc->bge_ifp;
5444
5445
/* Specify MTU. */
5446
CSR_WRITE_4(sc, BGE_RX_MTU, if_getmtu(ifp) +
5447
ETHER_HDR_LEN + ETHER_CRC_LEN +
5448
(if_getcapenable(ifp) & IFCAP_VLAN_MTU ? ETHER_VLAN_ENCAP_LEN : 0));
5449
5450
/* Load our MAC address. */
5451
m = (uint16_t *)if_getlladdr(sc->bge_ifp);
5452
CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
5453
CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
5454
5455
/* Program promiscuous mode. */
5456
bge_setpromisc(sc);
5457
5458
/* Program multicast filter. */
5459
bge_setmulti(sc);
5460
5461
/* Program VLAN tag stripping. */
5462
bge_setvlan(sc);
5463
5464
/* Override UDP checksum offloading. */
5465
if (sc->bge_forced_udpcsum == 0)
5466
sc->bge_csum_features &= ~CSUM_UDP;
5467
else
5468
sc->bge_csum_features |= CSUM_UDP;
5469
if (if_getcapabilities(ifp) & IFCAP_TXCSUM &&
5470
if_getcapenable(ifp) & IFCAP_TXCSUM) {
5471
if_sethwassistbits(ifp, 0, (BGE_CSUM_FEATURES | CSUM_UDP));
5472
if_sethwassistbits(ifp, sc->bge_csum_features, 0);
5473
}
5474
5475
/* Init RX ring. */
5476
if (bge_init_rx_ring_std(sc) != 0) {
5477
device_printf(sc->bge_dev, "no memory for std Rx buffers.\n");
5478
bge_stop(sc);
5479
return;
5480
}
5481
5482
/*
5483
* Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
5484
* memory to insure that the chip has in fact read the first
5485
* entry of the ring.
5486
*/
5487
if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
5488
uint32_t v, i;
5489
for (i = 0; i < 10; i++) {
5490
DELAY(20);
5491
v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
5492
if (v == (MCLBYTES - ETHER_ALIGN))
5493
break;
5494
}
5495
if (i == 10)
5496
device_printf (sc->bge_dev,
5497
"5705 A0 chip failed to load RX ring\n");
5498
}
5499
5500
/* Init jumbo RX ring. */
5501
if (BGE_IS_JUMBO_CAPABLE(sc) &&
5502
if_getmtu(ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
5503
ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)) {
5504
if (bge_init_rx_ring_jumbo(sc) != 0) {
5505
device_printf(sc->bge_dev,
5506
"no memory for jumbo Rx buffers.\n");
5507
bge_stop(sc);
5508
return;
5509
}
5510
}
5511
5512
/* Init our RX return ring index. */
5513
sc->bge_rx_saved_considx = 0;
5514
5515
/* Init our RX/TX stat counters. */
5516
sc->bge_rx_discards = sc->bge_tx_discards = sc->bge_tx_collisions = 0;
5517
5518
/* Init TX ring. */
5519
bge_init_tx_ring(sc);
5520
5521
/* Enable TX MAC state machine lockup fix. */
5522
mode = CSR_READ_4(sc, BGE_TX_MODE);
5523
if (BGE_IS_5755_PLUS(sc) || sc->bge_asicrev == BGE_ASICREV_BCM5906)
5524
mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
5525
if (sc->bge_asicrev == BGE_ASICREV_BCM5720 ||
5526
sc->bge_asicrev == BGE_ASICREV_BCM5762) {
5527
mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5528
mode |= CSR_READ_4(sc, BGE_TX_MODE) &
5529
(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
5530
}
5531
/* Turn on transmitter. */
5532
CSR_WRITE_4(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
5533
DELAY(100);
5534
5535
/* Turn on receiver. */
5536
mode = CSR_READ_4(sc, BGE_RX_MODE);
5537
if (BGE_IS_5755_PLUS(sc))
5538
mode |= BGE_RXMODE_IPV6_ENABLE;
5539
if (sc->bge_asicrev == BGE_ASICREV_BCM5762)
5540
mode |= BGE_RXMODE_IPV4_FRAG_FIX;
5541
CSR_WRITE_4(sc,BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
5542
DELAY(10);
5543
5544
/*
5545
* Set the number of good frames to receive after RX MBUF
5546
* Low Watermark has been reached. After the RX MAC receives
5547
* this number of frames, it will drop subsequent incoming
5548
* frames until the MBUF High Watermark is reached.
5549
*/
5550
if (BGE_IS_57765_PLUS(sc))
5551
CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 1);
5552
else
5553
CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
5554
5555
/* Clear MAC statistics. */
5556
if (BGE_IS_5705_PLUS(sc))
5557
bge_stats_clear_regs(sc);
5558
5559
/* Tell firmware we're alive. */
5560
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
5561
5562
#ifdef DEVICE_POLLING
5563
/* Disable interrupts if we are polling. */
5564
if (if_getcapenable(ifp) & IFCAP_POLLING) {
5565
BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5566
BGE_PCIMISCCTL_MASK_PCI_INTR);
5567
bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5568
} else
5569
#endif
5570
5571
/* Enable host interrupts. */
5572
{
5573
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
5574
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5575
bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5576
}
5577
5578
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
5579
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
5580
5581
bge_ifmedia_upd_locked(ifp);
5582
5583
callout_reset(&sc->bge_stat_ch, hz, bge_tick, sc);
5584
}
5585
5586
static void
5587
bge_init(void *xsc)
5588
{
5589
struct bge_softc *sc = xsc;
5590
5591
BGE_LOCK(sc);
5592
bge_init_locked(sc);
5593
BGE_UNLOCK(sc);
5594
}
5595
5596
/*
5597
* Set media options.
5598
*/
5599
static int
5600
bge_ifmedia_upd(if_t ifp)
5601
{
5602
struct bge_softc *sc = if_getsoftc(ifp);
5603
int res;
5604
5605
BGE_LOCK(sc);
5606
res = bge_ifmedia_upd_locked(ifp);
5607
BGE_UNLOCK(sc);
5608
5609
return (res);
5610
}
5611
5612
static int
5613
bge_ifmedia_upd_locked(if_t ifp)
5614
{
5615
struct bge_softc *sc = if_getsoftc(ifp);
5616
struct mii_data *mii;
5617
struct mii_softc *miisc;
5618
struct ifmedia *ifm;
5619
5620
BGE_LOCK_ASSERT(sc);
5621
5622
ifm = &sc->bge_ifmedia;
5623
5624
/* If this is a 1000baseX NIC, enable the TBI port. */
5625
if (sc->bge_flags & BGE_FLAG_TBI) {
5626
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
5627
return (EINVAL);
5628
switch(IFM_SUBTYPE(ifm->ifm_media)) {
5629
case IFM_AUTO:
5630
/*
5631
* The BCM5704 ASIC appears to have a special
5632
* mechanism for programming the autoneg
5633
* advertisement registers in TBI mode.
5634
*/
5635
if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
5636
uint32_t sgdig;
5637
sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
5638
if (sgdig & BGE_SGDIGSTS_DONE) {
5639
CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
5640
sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
5641
sgdig |= BGE_SGDIGCFG_AUTO |
5642
BGE_SGDIGCFG_PAUSE_CAP |
5643
BGE_SGDIGCFG_ASYM_PAUSE;
5644
CSR_WRITE_4(sc, BGE_SGDIG_CFG,
5645
sgdig | BGE_SGDIGCFG_SEND);
5646
DELAY(5);
5647
CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
5648
}
5649
}
5650
break;
5651
case IFM_1000_SX:
5652
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
5653
BGE_CLRBIT(sc, BGE_MAC_MODE,
5654
BGE_MACMODE_HALF_DUPLEX);
5655
} else {
5656
BGE_SETBIT(sc, BGE_MAC_MODE,
5657
BGE_MACMODE_HALF_DUPLEX);
5658
}
5659
DELAY(40);
5660
break;
5661
default:
5662
return (EINVAL);
5663
}
5664
return (0);
5665
}
5666
5667
sc->bge_link_evt++;
5668
mii = device_get_softc(sc->bge_miibus);
5669
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
5670
PHY_RESET(miisc);
5671
mii_mediachg(mii);
5672
5673
/*
5674
* Force an interrupt so that we will call bge_link_upd
5675
* if needed and clear any pending link state attention.
5676
* Without this we are not getting any further interrupts
5677
* for link state changes and thus will not UP the link and
5678
* not be able to send in bge_start_locked. The only
5679
* way to get things working was to receive a packet and
5680
* get an RX intr.
5681
* bge_tick should help for fiber cards and we might not
5682
* need to do this here if BGE_FLAG_TBI is set but as
5683
* we poll for fiber anyway it should not harm.
5684
*/
5685
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 ||
5686
sc->bge_flags & BGE_FLAG_5788)
5687
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
5688
else
5689
BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
5690
5691
return (0);
5692
}
5693
5694
/*
5695
* Report current media status.
5696
*/
5697
static void
5698
bge_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr)
5699
{
5700
struct bge_softc *sc = if_getsoftc(ifp);
5701
struct mii_data *mii;
5702
5703
BGE_LOCK(sc);
5704
5705
if ((if_getflags(ifp) & IFF_UP) == 0) {
5706
BGE_UNLOCK(sc);
5707
return;
5708
}
5709
if (sc->bge_flags & BGE_FLAG_TBI) {
5710
ifmr->ifm_status = IFM_AVALID;
5711
ifmr->ifm_active = IFM_ETHER;
5712
if (CSR_READ_4(sc, BGE_MAC_STS) &
5713
BGE_MACSTAT_TBI_PCS_SYNCHED)
5714
ifmr->ifm_status |= IFM_ACTIVE;
5715
else {
5716
ifmr->ifm_active |= IFM_NONE;
5717
BGE_UNLOCK(sc);
5718
return;
5719
}
5720
ifmr->ifm_active |= IFM_1000_SX;
5721
if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
5722
ifmr->ifm_active |= IFM_HDX;
5723
else
5724
ifmr->ifm_active |= IFM_FDX;
5725
BGE_UNLOCK(sc);
5726
return;
5727
}
5728
5729
mii = device_get_softc(sc->bge_miibus);
5730
mii_pollstat(mii);
5731
ifmr->ifm_active = mii->mii_media_active;
5732
ifmr->ifm_status = mii->mii_media_status;
5733
5734
BGE_UNLOCK(sc);
5735
}
5736
5737
static int
5738
bge_ioctl(if_t ifp, u_long command, caddr_t data)
5739
{
5740
struct bge_softc *sc = if_getsoftc(ifp);
5741
struct ifreq *ifr = (struct ifreq *) data;
5742
struct mii_data *mii;
5743
int flags, mask, error = 0;
5744
5745
switch (command) {
5746
case SIOCSIFMTU:
5747
if (BGE_IS_JUMBO_CAPABLE(sc) ||
5748
(sc->bge_flags & BGE_FLAG_JUMBO_STD)) {
5749
if (ifr->ifr_mtu < ETHERMIN ||
5750
ifr->ifr_mtu > BGE_JUMBO_MTU) {
5751
error = EINVAL;
5752
break;
5753
}
5754
} else if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ETHERMTU) {
5755
error = EINVAL;
5756
break;
5757
}
5758
BGE_LOCK(sc);
5759
if (if_getmtu(ifp) != ifr->ifr_mtu) {
5760
if_setmtu(ifp, ifr->ifr_mtu);
5761
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5762
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5763
bge_init_locked(sc);
5764
}
5765
}
5766
BGE_UNLOCK(sc);
5767
break;
5768
case SIOCSIFFLAGS:
5769
BGE_LOCK(sc);
5770
if (if_getflags(ifp) & IFF_UP) {
5771
/*
5772
* If only the state of the PROMISC flag changed,
5773
* then just use the 'set promisc mode' command
5774
* instead of reinitializing the entire NIC. Doing
5775
* a full re-init means reloading the firmware and
5776
* waiting for it to start up, which may take a
5777
* second or two. Similarly for ALLMULTI.
5778
*/
5779
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5780
flags = if_getflags(ifp) ^ sc->bge_if_flags;
5781
if (flags & IFF_PROMISC)
5782
bge_setpromisc(sc);
5783
if (flags & IFF_ALLMULTI)
5784
bge_setmulti(sc);
5785
} else
5786
bge_init_locked(sc);
5787
} else {
5788
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5789
bge_stop(sc);
5790
}
5791
}
5792
sc->bge_if_flags = if_getflags(ifp);
5793
BGE_UNLOCK(sc);
5794
error = 0;
5795
break;
5796
case SIOCADDMULTI:
5797
case SIOCDELMULTI:
5798
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
5799
BGE_LOCK(sc);
5800
bge_setmulti(sc);
5801
BGE_UNLOCK(sc);
5802
error = 0;
5803
}
5804
break;
5805
case SIOCSIFMEDIA:
5806
case SIOCGIFMEDIA:
5807
if (sc->bge_flags & BGE_FLAG_TBI) {
5808
error = ifmedia_ioctl(ifp, ifr,
5809
&sc->bge_ifmedia, command);
5810
} else {
5811
mii = device_get_softc(sc->bge_miibus);
5812
error = ifmedia_ioctl(ifp, ifr,
5813
&mii->mii_media, command);
5814
}
5815
break;
5816
case SIOCSIFCAP:
5817
mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
5818
#ifdef DEVICE_POLLING
5819
if (mask & IFCAP_POLLING) {
5820
if (ifr->ifr_reqcap & IFCAP_POLLING) {
5821
error = ether_poll_register(bge_poll, ifp);
5822
if (error)
5823
return (error);
5824
BGE_LOCK(sc);
5825
BGE_SETBIT(sc, BGE_PCI_MISC_CTL,
5826
BGE_PCIMISCCTL_MASK_PCI_INTR);
5827
bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5828
if_setcapenablebit(ifp, IFCAP_POLLING, 0);
5829
BGE_UNLOCK(sc);
5830
} else {
5831
error = ether_poll_deregister(ifp);
5832
/* Enable interrupt even in error case */
5833
BGE_LOCK(sc);
5834
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL,
5835
BGE_PCIMISCCTL_MASK_PCI_INTR);
5836
bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
5837
if_setcapenablebit(ifp, 0, IFCAP_POLLING);
5838
BGE_UNLOCK(sc);
5839
}
5840
}
5841
#endif
5842
if ((mask & IFCAP_TXCSUM) != 0 &&
5843
(if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) {
5844
if_togglecapenable(ifp, IFCAP_TXCSUM);
5845
if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
5846
if_sethwassistbits(ifp,
5847
sc->bge_csum_features, 0);
5848
else
5849
if_sethwassistbits(ifp, 0,
5850
sc->bge_csum_features);
5851
}
5852
5853
if ((mask & IFCAP_RXCSUM) != 0 &&
5854
(if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0)
5855
if_togglecapenable(ifp, IFCAP_RXCSUM);
5856
5857
if ((mask & IFCAP_TSO4) != 0 &&
5858
(if_getcapabilities(ifp) & IFCAP_TSO4) != 0) {
5859
if_togglecapenable(ifp, IFCAP_TSO4);
5860
if ((if_getcapenable(ifp) & IFCAP_TSO4) != 0)
5861
if_sethwassistbits(ifp, CSUM_TSO, 0);
5862
else
5863
if_sethwassistbits(ifp, 0, CSUM_TSO);
5864
}
5865
5866
if (mask & IFCAP_VLAN_MTU) {
5867
if_togglecapenable(ifp, IFCAP_VLAN_MTU);
5868
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5869
bge_init(sc);
5870
}
5871
5872
if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
5873
(if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0)
5874
if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
5875
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
5876
(if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) {
5877
if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
5878
if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0)
5879
if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO);
5880
BGE_LOCK(sc);
5881
bge_setvlan(sc);
5882
BGE_UNLOCK(sc);
5883
}
5884
#ifdef VLAN_CAPABILITIES
5885
if_vlancap(ifp);
5886
#endif
5887
break;
5888
default:
5889
error = ether_ioctl(ifp, command, data);
5890
break;
5891
}
5892
5893
return (error);
5894
}
5895
5896
static void
5897
bge_watchdog(struct bge_softc *sc)
5898
{
5899
if_t ifp;
5900
uint32_t status;
5901
5902
BGE_LOCK_ASSERT(sc);
5903
5904
if (sc->bge_timer == 0 || --sc->bge_timer)
5905
return;
5906
5907
/* If pause frames are active then don't reset the hardware. */
5908
if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
5909
status = CSR_READ_4(sc, BGE_RX_STS);
5910
if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
5911
/*
5912
* If link partner has us in XOFF state then wait for
5913
* the condition to clear.
5914
*/
5915
CSR_WRITE_4(sc, BGE_RX_STS, status);
5916
sc->bge_timer = BGE_TX_TIMEOUT;
5917
return;
5918
} else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
5919
(status & BGE_RXSTAT_RCVD_XON) != 0) {
5920
/*
5921
* If link partner has us in XOFF state then wait for
5922
* the condition to clear.
5923
*/
5924
CSR_WRITE_4(sc, BGE_RX_STS, status);
5925
sc->bge_timer = BGE_TX_TIMEOUT;
5926
return;
5927
}
5928
/*
5929
* Any other condition is unexpected and the controller
5930
* should be reset.
5931
*/
5932
}
5933
5934
ifp = sc->bge_ifp;
5935
5936
if_printf(ifp, "watchdog timeout -- resetting\n");
5937
5938
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
5939
bge_init_locked(sc);
5940
5941
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
5942
}
5943
5944
static void
5945
bge_stop_block(struct bge_softc *sc, bus_size_t reg, uint32_t bit)
5946
{
5947
int i;
5948
5949
BGE_CLRBIT(sc, reg, bit);
5950
5951
for (i = 0; i < BGE_TIMEOUT; i++) {
5952
if ((CSR_READ_4(sc, reg) & bit) == 0)
5953
return;
5954
DELAY(100);
5955
}
5956
}
5957
5958
/*
5959
* Stop the adapter and free any mbufs allocated to the
5960
* RX and TX lists.
5961
*/
5962
static void
5963
bge_stop(struct bge_softc *sc)
5964
{
5965
if_t ifp;
5966
5967
BGE_LOCK_ASSERT(sc);
5968
5969
ifp = sc->bge_ifp;
5970
5971
callout_stop(&sc->bge_stat_ch);
5972
5973
/* Disable host interrupts. */
5974
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
5975
bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
5976
5977
/*
5978
* Tell firmware we're shutting down.
5979
*/
5980
bge_stop_fw(sc);
5981
bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
5982
5983
/*
5984
* Disable all of the receiver blocks.
5985
*/
5986
bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
5987
bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
5988
bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
5989
if (BGE_IS_5700_FAMILY(sc))
5990
bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
5991
bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
5992
bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
5993
bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
5994
5995
/*
5996
* Disable all of the transmit blocks.
5997
*/
5998
bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
5999
bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
6000
bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
6001
bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
6002
bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
6003
if (BGE_IS_5700_FAMILY(sc))
6004
bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
6005
bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
6006
6007
/*
6008
* Shut down all of the memory managers and related
6009
* state machines.
6010
*/
6011
bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
6012
bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
6013
if (BGE_IS_5700_FAMILY(sc))
6014
bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
6015
6016
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
6017
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
6018
if (!(BGE_IS_5705_PLUS(sc))) {
6019
BGE_CLRBIT(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
6020
BGE_CLRBIT(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
6021
}
6022
/* Update MAC statistics. */
6023
if (BGE_IS_5705_PLUS(sc))
6024
bge_stats_update_regs(sc);
6025
6026
bge_reset(sc);
6027
bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
6028
bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);
6029
6030
/*
6031
* Keep the ASF firmware running if up.
6032
*/
6033
if (sc->bge_asf_mode & ASF_STACKUP)
6034
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6035
else
6036
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
6037
6038
/* Free the RX lists. */
6039
bge_free_rx_ring_std(sc);
6040
6041
/* Free jumbo RX list. */
6042
if (BGE_IS_JUMBO_CAPABLE(sc))
6043
bge_free_rx_ring_jumbo(sc);
6044
6045
/* Free TX buffers. */
6046
bge_free_tx_ring(sc);
6047
6048
sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
6049
6050
/* Clear MAC's link state (PHY may still have link UP). */
6051
if (bootverbose && sc->bge_link)
6052
if_printf(sc->bge_ifp, "link DOWN\n");
6053
sc->bge_link = 0;
6054
6055
if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
6056
}
6057
6058
/*
6059
* Stop all chip I/O so that the kernel's probe routines don't
6060
* get confused by errant DMAs when rebooting.
6061
*/
6062
static int
6063
bge_shutdown(device_t dev)
6064
{
6065
struct bge_softc *sc;
6066
6067
sc = device_get_softc(dev);
6068
BGE_LOCK(sc);
6069
bge_stop(sc);
6070
BGE_UNLOCK(sc);
6071
6072
return (0);
6073
}
6074
6075
static int
6076
bge_suspend(device_t dev)
6077
{
6078
struct bge_softc *sc;
6079
6080
sc = device_get_softc(dev);
6081
BGE_LOCK(sc);
6082
bge_stop(sc);
6083
BGE_UNLOCK(sc);
6084
6085
return (0);
6086
}
6087
6088
static int
6089
bge_resume(device_t dev)
6090
{
6091
struct bge_softc *sc;
6092
if_t ifp;
6093
6094
sc = device_get_softc(dev);
6095
BGE_LOCK(sc);
6096
ifp = sc->bge_ifp;
6097
if (if_getflags(ifp) & IFF_UP) {
6098
bge_init_locked(sc);
6099
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6100
bge_start_locked(ifp);
6101
}
6102
BGE_UNLOCK(sc);
6103
6104
return (0);
6105
}
6106
6107
static void
6108
bge_link_upd(struct bge_softc *sc)
6109
{
6110
struct mii_data *mii;
6111
uint32_t link, status;
6112
6113
BGE_LOCK_ASSERT(sc);
6114
6115
/* Clear 'pending link event' flag. */
6116
sc->bge_link_evt = 0;
6117
6118
/*
6119
* Process link state changes.
6120
* Grrr. The link status word in the status block does
6121
* not work correctly on the BCM5700 rev AX and BX chips,
6122
* according to all available information. Hence, we have
6123
* to enable MII interrupts in order to properly obtain
6124
* async link changes. Unfortunately, this also means that
6125
* we have to read the MAC status register to detect link
6126
* changes, thereby adding an additional register access to
6127
* the interrupt handler.
6128
*
6129
* XXX: perhaps link state detection procedure used for
6130
* BGE_CHIPID_BCM5700_B2 can be used for others BCM5700 revisions.
6131
*/
6132
6133
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6134
sc->bge_chipid != BGE_CHIPID_BCM5700_B2) {
6135
status = CSR_READ_4(sc, BGE_MAC_STS);
6136
if (status & BGE_MACSTAT_MI_INTERRUPT) {
6137
mii = device_get_softc(sc->bge_miibus);
6138
mii_pollstat(mii);
6139
if (!sc->bge_link &&
6140
mii->mii_media_status & IFM_ACTIVE &&
6141
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6142
sc->bge_link++;
6143
if (bootverbose)
6144
if_printf(sc->bge_ifp, "link UP\n");
6145
} else if (sc->bge_link &&
6146
(!(mii->mii_media_status & IFM_ACTIVE) ||
6147
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6148
sc->bge_link = 0;
6149
if (bootverbose)
6150
if_printf(sc->bge_ifp, "link DOWN\n");
6151
}
6152
6153
/* Clear the interrupt. */
6154
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
6155
BGE_EVTENB_MI_INTERRUPT);
6156
bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
6157
BRGPHY_MII_ISR);
6158
bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
6159
BRGPHY_MII_IMR, BRGPHY_INTRS);
6160
}
6161
return;
6162
}
6163
6164
if (sc->bge_flags & BGE_FLAG_TBI) {
6165
status = CSR_READ_4(sc, BGE_MAC_STS);
6166
if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
6167
if (!sc->bge_link) {
6168
sc->bge_link++;
6169
if (sc->bge_asicrev == BGE_ASICREV_BCM5704) {
6170
BGE_CLRBIT(sc, BGE_MAC_MODE,
6171
BGE_MACMODE_TBI_SEND_CFGS);
6172
DELAY(40);
6173
}
6174
CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
6175
if (bootverbose)
6176
if_printf(sc->bge_ifp, "link UP\n");
6177
if_link_state_change(sc->bge_ifp,
6178
LINK_STATE_UP);
6179
}
6180
} else if (sc->bge_link) {
6181
sc->bge_link = 0;
6182
if (bootverbose)
6183
if_printf(sc->bge_ifp, "link DOWN\n");
6184
if_link_state_change(sc->bge_ifp, LINK_STATE_DOWN);
6185
}
6186
} else if ((sc->bge_mi_mode & BGE_MIMODE_AUTOPOLL) != 0) {
6187
/*
6188
* Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED bit
6189
* in status word always set. Workaround this bug by reading
6190
* PHY link status directly.
6191
*/
6192
link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK) ? 1 : 0;
6193
6194
if (link != sc->bge_link ||
6195
sc->bge_asicrev == BGE_ASICREV_BCM5700) {
6196
mii = device_get_softc(sc->bge_miibus);
6197
mii_pollstat(mii);
6198
if (!sc->bge_link &&
6199
mii->mii_media_status & IFM_ACTIVE &&
6200
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
6201
sc->bge_link++;
6202
if (bootverbose)
6203
if_printf(sc->bge_ifp, "link UP\n");
6204
} else if (sc->bge_link &&
6205
(!(mii->mii_media_status & IFM_ACTIVE) ||
6206
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE)) {
6207
sc->bge_link = 0;
6208
if (bootverbose)
6209
if_printf(sc->bge_ifp, "link DOWN\n");
6210
}
6211
}
6212
} else {
6213
/*
6214
* For controllers that call mii_tick, we have to poll
6215
* link status.
6216
*/
6217
mii = device_get_softc(sc->bge_miibus);
6218
mii_pollstat(mii);
6219
bge_miibus_statchg(sc->bge_dev);
6220
}
6221
6222
/* Disable MAC attention when link is up. */
6223
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
6224
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
6225
BGE_MACSTAT_LINK_CHANGED);
6226
}
6227
6228
static void
6229
bge_add_sysctls(struct bge_softc *sc)
6230
{
6231
struct sysctl_ctx_list *ctx;
6232
struct sysctl_oid_list *children;
6233
6234
ctx = device_get_sysctl_ctx(sc->bge_dev);
6235
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->bge_dev));
6236
6237
#ifdef BGE_REGISTER_DEBUG
6238
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "debug_info",
6239
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
6240
bge_sysctl_debug_info, "I", "Debug Information");
6241
6242
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reg_read",
6243
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
6244
bge_sysctl_reg_read, "I", "MAC Register Read");
6245
6246
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ape_read",
6247
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
6248
bge_sysctl_ape_read, "I", "APE Register Read");
6249
6250
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mem_read",
6251
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0,
6252
bge_sysctl_mem_read, "I", "Memory Read");
6253
6254
#endif
6255
6256
/*
6257
* A common design characteristic for many Broadcom client controllers
6258
* is that they only support a single outstanding DMA read operation
6259
* on the PCIe bus. This means that it will take twice as long to fetch
6260
* a TX frame that is split into header and payload buffers as it does
6261
* to fetch a single, contiguous TX frame (2 reads vs. 1 read). For
6262
* these controllers, coalescing buffers to reduce the number of memory
6263
* reads is effective way to get maximum performance(about 940Mbps).
6264
* Without collapsing TX buffers the maximum TCP bulk transfer
6265
* performance is about 850Mbps. However forcing coalescing mbufs
6266
* consumes a lot of CPU cycles, so leave it off by default.
6267
*/
6268
sc->bge_forced_collapse = 0;
6269
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_collapse",
6270
CTLFLAG_RWTUN, &sc->bge_forced_collapse, 0,
6271
"Number of fragmented TX buffers of a frame allowed before "
6272
"forced collapsing");
6273
6274
sc->bge_msi = 1;
6275
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "msi",
6276
CTLFLAG_RDTUN, &sc->bge_msi, 0, "Enable MSI");
6277
6278
/*
6279
* It seems all Broadcom controllers have a bug that can generate UDP
6280
* datagrams with checksum value 0 when TX UDP checksum offloading is
6281
* enabled. Generating UDP checksum value 0 is RFC 768 violation.
6282
* Even though the probability of generating such UDP datagrams is
6283
* low, I don't want to see FreeBSD boxes to inject such datagrams
6284
* into network so disable UDP checksum offloading by default. Users
6285
* still override this behavior by setting a sysctl variable,
6286
* dev.bge.0.forced_udpcsum.
6287
*/
6288
sc->bge_forced_udpcsum = 0;
6289
SYSCTL_ADD_INT(ctx, children, OID_AUTO, "forced_udpcsum",
6290
CTLFLAG_RWTUN, &sc->bge_forced_udpcsum, 0,
6291
"Enable UDP checksum offloading even if controller can "
6292
"generate UDP checksum value 0");
6293
6294
if (BGE_IS_5705_PLUS(sc))
6295
bge_add_sysctl_stats_regs(sc, ctx, children);
6296
else
6297
bge_add_sysctl_stats(sc, ctx, children);
6298
}
6299
6300
#define BGE_SYSCTL_STAT(sc, ctx, desc, parent, node, oid) \
6301
SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, oid, \
6302
CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_NEEDGIANT, sc, \
6303
offsetof(struct bge_stats, node), bge_sysctl_stats, "IU", desc)
6304
6305
static void
6306
bge_add_sysctl_stats(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6307
struct sysctl_oid_list *parent)
6308
{
6309
struct sysctl_oid *tree;
6310
struct sysctl_oid_list *children, *schildren;
6311
6312
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
6313
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE Statistics");
6314
schildren = children = SYSCTL_CHILDREN(tree);
6315
BGE_SYSCTL_STAT(sc, ctx, "Frames Dropped Due To Filters",
6316
children, COSFramesDroppedDueToFilters,
6317
"FramesDroppedDueToFilters");
6318
BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write Queue Full",
6319
children, nicDmaWriteQueueFull, "DmaWriteQueueFull");
6320
BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Write High Priority Queue Full",
6321
children, nicDmaWriteHighPriQueueFull, "DmaWriteHighPriQueueFull");
6322
BGE_SYSCTL_STAT(sc, ctx, "NIC No More RX Buffer Descriptors",
6323
children, nicNoMoreRxBDs, "NoMoreRxBDs");
6324
BGE_SYSCTL_STAT(sc, ctx, "Discarded Input Frames",
6325
children, ifInDiscards, "InputDiscards");
6326
BGE_SYSCTL_STAT(sc, ctx, "Input Errors",
6327
children, ifInErrors, "InputErrors");
6328
BGE_SYSCTL_STAT(sc, ctx, "NIC Recv Threshold Hit",
6329
children, nicRecvThresholdHit, "RecvThresholdHit");
6330
BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read Queue Full",
6331
children, nicDmaReadQueueFull, "DmaReadQueueFull");
6332
BGE_SYSCTL_STAT(sc, ctx, "NIC DMA Read High Priority Queue Full",
6333
children, nicDmaReadHighPriQueueFull, "DmaReadHighPriQueueFull");
6334
BGE_SYSCTL_STAT(sc, ctx, "NIC Send Data Complete Queue Full",
6335
children, nicSendDataCompQueueFull, "SendDataCompQueueFull");
6336
BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Set Send Producer Index",
6337
children, nicRingSetSendProdIndex, "RingSetSendProdIndex");
6338
BGE_SYSCTL_STAT(sc, ctx, "NIC Ring Status Update",
6339
children, nicRingStatusUpdate, "RingStatusUpdate");
6340
BGE_SYSCTL_STAT(sc, ctx, "NIC Interrupts",
6341
children, nicInterrupts, "Interrupts");
6342
BGE_SYSCTL_STAT(sc, ctx, "NIC Avoided Interrupts",
6343
children, nicAvoidedInterrupts, "AvoidedInterrupts");
6344
BGE_SYSCTL_STAT(sc, ctx, "NIC Send Threshold Hit",
6345
children, nicSendThresholdHit, "SendThresholdHit");
6346
6347
tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "rx",
6348
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE RX Statistics");
6349
children = SYSCTL_CHILDREN(tree);
6350
BGE_SYSCTL_STAT(sc, ctx, "Inbound Octets",
6351
children, rxstats.ifHCInOctets, "ifHCInOctets");
6352
BGE_SYSCTL_STAT(sc, ctx, "Fragments",
6353
children, rxstats.etherStatsFragments, "Fragments");
6354
BGE_SYSCTL_STAT(sc, ctx, "Inbound Unicast Packets",
6355
children, rxstats.ifHCInUcastPkts, "UnicastPkts");
6356
BGE_SYSCTL_STAT(sc, ctx, "Inbound Multicast Packets",
6357
children, rxstats.ifHCInMulticastPkts, "MulticastPkts");
6358
BGE_SYSCTL_STAT(sc, ctx, "FCS Errors",
6359
children, rxstats.dot3StatsFCSErrors, "FCSErrors");
6360
BGE_SYSCTL_STAT(sc, ctx, "Alignment Errors",
6361
children, rxstats.dot3StatsAlignmentErrors, "AlignmentErrors");
6362
BGE_SYSCTL_STAT(sc, ctx, "XON Pause Frames Received",
6363
children, rxstats.xonPauseFramesReceived, "xonPauseFramesReceived");
6364
BGE_SYSCTL_STAT(sc, ctx, "XOFF Pause Frames Received",
6365
children, rxstats.xoffPauseFramesReceived,
6366
"xoffPauseFramesReceived");
6367
BGE_SYSCTL_STAT(sc, ctx, "MAC Control Frames Received",
6368
children, rxstats.macControlFramesReceived,
6369
"ControlFramesReceived");
6370
BGE_SYSCTL_STAT(sc, ctx, "XOFF State Entered",
6371
children, rxstats.xoffStateEntered, "xoffStateEntered");
6372
BGE_SYSCTL_STAT(sc, ctx, "Frames Too Long",
6373
children, rxstats.dot3StatsFramesTooLong, "FramesTooLong");
6374
BGE_SYSCTL_STAT(sc, ctx, "Jabbers",
6375
children, rxstats.etherStatsJabbers, "Jabbers");
6376
BGE_SYSCTL_STAT(sc, ctx, "Undersized Packets",
6377
children, rxstats.etherStatsUndersizePkts, "UndersizePkts");
6378
BGE_SYSCTL_STAT(sc, ctx, "Inbound Range Length Errors",
6379
children, rxstats.inRangeLengthError, "inRangeLengthError");
6380
BGE_SYSCTL_STAT(sc, ctx, "Outbound Range Length Errors",
6381
children, rxstats.outRangeLengthError, "outRangeLengthError");
6382
6383
tree = SYSCTL_ADD_NODE(ctx, schildren, OID_AUTO, "tx",
6384
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE TX Statistics");
6385
children = SYSCTL_CHILDREN(tree);
6386
BGE_SYSCTL_STAT(sc, ctx, "Outbound Octets",
6387
children, txstats.ifHCOutOctets, "ifHCOutOctets");
6388
BGE_SYSCTL_STAT(sc, ctx, "TX Collisions",
6389
children, txstats.etherStatsCollisions, "Collisions");
6390
BGE_SYSCTL_STAT(sc, ctx, "XON Sent",
6391
children, txstats.outXonSent, "XonSent");
6392
BGE_SYSCTL_STAT(sc, ctx, "XOFF Sent",
6393
children, txstats.outXoffSent, "XoffSent");
6394
BGE_SYSCTL_STAT(sc, ctx, "Flow Control Done",
6395
children, txstats.flowControlDone, "flowControlDone");
6396
BGE_SYSCTL_STAT(sc, ctx, "Internal MAC TX errors",
6397
children, txstats.dot3StatsInternalMacTransmitErrors,
6398
"InternalMacTransmitErrors");
6399
BGE_SYSCTL_STAT(sc, ctx, "Single Collision Frames",
6400
children, txstats.dot3StatsSingleCollisionFrames,
6401
"SingleCollisionFrames");
6402
BGE_SYSCTL_STAT(sc, ctx, "Multiple Collision Frames",
6403
children, txstats.dot3StatsMultipleCollisionFrames,
6404
"MultipleCollisionFrames");
6405
BGE_SYSCTL_STAT(sc, ctx, "Deferred Transmissions",
6406
children, txstats.dot3StatsDeferredTransmissions,
6407
"DeferredTransmissions");
6408
BGE_SYSCTL_STAT(sc, ctx, "Excessive Collisions",
6409
children, txstats.dot3StatsExcessiveCollisions,
6410
"ExcessiveCollisions");
6411
BGE_SYSCTL_STAT(sc, ctx, "Late Collisions",
6412
children, txstats.dot3StatsLateCollisions,
6413
"LateCollisions");
6414
BGE_SYSCTL_STAT(sc, ctx, "Outbound Unicast Packets",
6415
children, txstats.ifHCOutUcastPkts, "UnicastPkts");
6416
BGE_SYSCTL_STAT(sc, ctx, "Outbound Multicast Packets",
6417
children, txstats.ifHCOutMulticastPkts, "MulticastPkts");
6418
BGE_SYSCTL_STAT(sc, ctx, "Outbound Broadcast Packets",
6419
children, txstats.ifHCOutBroadcastPkts, "BroadcastPkts");
6420
BGE_SYSCTL_STAT(sc, ctx, "Carrier Sense Errors",
6421
children, txstats.dot3StatsCarrierSenseErrors,
6422
"CarrierSenseErrors");
6423
BGE_SYSCTL_STAT(sc, ctx, "Outbound Discards",
6424
children, txstats.ifOutDiscards, "Discards");
6425
BGE_SYSCTL_STAT(sc, ctx, "Outbound Errors",
6426
children, txstats.ifOutErrors, "Errors");
6427
}
6428
6429
#undef BGE_SYSCTL_STAT
6430
6431
#define BGE_SYSCTL_STAT_ADD64(c, h, n, p, d) \
6432
SYSCTL_ADD_UQUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
6433
6434
static void
6435
bge_add_sysctl_stats_regs(struct bge_softc *sc, struct sysctl_ctx_list *ctx,
6436
struct sysctl_oid_list *parent)
6437
{
6438
struct sysctl_oid *tree;
6439
struct sysctl_oid_list *child, *schild;
6440
struct bge_mac_stats *stats;
6441
6442
stats = &sc->bge_mac_stats;
6443
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
6444
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE Statistics");
6445
schild = child = SYSCTL_CHILDREN(tree);
6446
BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesDroppedDueToFilters",
6447
&stats->FramesDroppedDueToFilters, "Frames Dropped Due to Filters");
6448
BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteQueueFull",
6449
&stats->DmaWriteQueueFull, "NIC DMA Write Queue Full");
6450
BGE_SYSCTL_STAT_ADD64(ctx, child, "DmaWriteHighPriQueueFull",
6451
&stats->DmaWriteHighPriQueueFull,
6452
"NIC DMA Write High Priority Queue Full");
6453
BGE_SYSCTL_STAT_ADD64(ctx, child, "NoMoreRxBDs",
6454
&stats->NoMoreRxBDs, "NIC No More RX Buffer Descriptors");
6455
BGE_SYSCTL_STAT_ADD64(ctx, child, "InputDiscards",
6456
&stats->InputDiscards, "Discarded Input Frames");
6457
BGE_SYSCTL_STAT_ADD64(ctx, child, "InputErrors",
6458
&stats->InputErrors, "Input Errors");
6459
BGE_SYSCTL_STAT_ADD64(ctx, child, "RecvThresholdHit",
6460
&stats->RecvThresholdHit, "NIC Recv Threshold Hit");
6461
6462
tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "rx",
6463
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE RX Statistics");
6464
child = SYSCTL_CHILDREN(tree);
6465
BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCInOctets",
6466
&stats->ifHCInOctets, "Inbound Octets");
6467
BGE_SYSCTL_STAT_ADD64(ctx, child, "Fragments",
6468
&stats->etherStatsFragments, "Fragments");
6469
BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6470
&stats->ifHCInUcastPkts, "Inbound Unicast Packets");
6471
BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6472
&stats->ifHCInMulticastPkts, "Inbound Multicast Packets");
6473
BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6474
&stats->ifHCInBroadcastPkts, "Inbound Broadcast Packets");
6475
BGE_SYSCTL_STAT_ADD64(ctx, child, "FCSErrors",
6476
&stats->dot3StatsFCSErrors, "FCS Errors");
6477
BGE_SYSCTL_STAT_ADD64(ctx, child, "AlignmentErrors",
6478
&stats->dot3StatsAlignmentErrors, "Alignment Errors");
6479
BGE_SYSCTL_STAT_ADD64(ctx, child, "xonPauseFramesReceived",
6480
&stats->xonPauseFramesReceived, "XON Pause Frames Received");
6481
BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffPauseFramesReceived",
6482
&stats->xoffPauseFramesReceived, "XOFF Pause Frames Received");
6483
BGE_SYSCTL_STAT_ADD64(ctx, child, "ControlFramesReceived",
6484
&stats->macControlFramesReceived, "MAC Control Frames Received");
6485
BGE_SYSCTL_STAT_ADD64(ctx, child, "xoffStateEntered",
6486
&stats->xoffStateEntered, "XOFF State Entered");
6487
BGE_SYSCTL_STAT_ADD64(ctx, child, "FramesTooLong",
6488
&stats->dot3StatsFramesTooLong, "Frames Too Long");
6489
BGE_SYSCTL_STAT_ADD64(ctx, child, "Jabbers",
6490
&stats->etherStatsJabbers, "Jabbers");
6491
BGE_SYSCTL_STAT_ADD64(ctx, child, "UndersizePkts",
6492
&stats->etherStatsUndersizePkts, "Undersized Packets");
6493
6494
tree = SYSCTL_ADD_NODE(ctx, schild, OID_AUTO, "tx",
6495
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "BGE TX Statistics");
6496
child = SYSCTL_CHILDREN(tree);
6497
BGE_SYSCTL_STAT_ADD64(ctx, child, "ifHCOutOctets",
6498
&stats->ifHCOutOctets, "Outbound Octets");
6499
BGE_SYSCTL_STAT_ADD64(ctx, child, "Collisions",
6500
&stats->etherStatsCollisions, "TX Collisions");
6501
BGE_SYSCTL_STAT_ADD64(ctx, child, "XonSent",
6502
&stats->outXonSent, "XON Sent");
6503
BGE_SYSCTL_STAT_ADD64(ctx, child, "XoffSent",
6504
&stats->outXoffSent, "XOFF Sent");
6505
BGE_SYSCTL_STAT_ADD64(ctx, child, "InternalMacTransmitErrors",
6506
&stats->dot3StatsInternalMacTransmitErrors,
6507
"Internal MAC TX Errors");
6508
BGE_SYSCTL_STAT_ADD64(ctx, child, "SingleCollisionFrames",
6509
&stats->dot3StatsSingleCollisionFrames, "Single Collision Frames");
6510
BGE_SYSCTL_STAT_ADD64(ctx, child, "MultipleCollisionFrames",
6511
&stats->dot3StatsMultipleCollisionFrames,
6512
"Multiple Collision Frames");
6513
BGE_SYSCTL_STAT_ADD64(ctx, child, "DeferredTransmissions",
6514
&stats->dot3StatsDeferredTransmissions, "Deferred Transmissions");
6515
BGE_SYSCTL_STAT_ADD64(ctx, child, "ExcessiveCollisions",
6516
&stats->dot3StatsExcessiveCollisions, "Excessive Collisions");
6517
BGE_SYSCTL_STAT_ADD64(ctx, child, "LateCollisions",
6518
&stats->dot3StatsLateCollisions, "Late Collisions");
6519
BGE_SYSCTL_STAT_ADD64(ctx, child, "UnicastPkts",
6520
&stats->ifHCOutUcastPkts, "Outbound Unicast Packets");
6521
BGE_SYSCTL_STAT_ADD64(ctx, child, "MulticastPkts",
6522
&stats->ifHCOutMulticastPkts, "Outbound Multicast Packets");
6523
BGE_SYSCTL_STAT_ADD64(ctx, child, "BroadcastPkts",
6524
&stats->ifHCOutBroadcastPkts, "Outbound Broadcast Packets");
6525
}
6526
6527
#undef BGE_SYSCTL_STAT_ADD64
6528
6529
static int
6530
bge_sysctl_stats(SYSCTL_HANDLER_ARGS)
6531
{
6532
struct bge_softc *sc;
6533
uint32_t result;
6534
int offset;
6535
6536
sc = (struct bge_softc *)arg1;
6537
offset = arg2;
6538
result = CSR_READ_4(sc, BGE_MEMWIN_START + BGE_STATS_BLOCK + offset +
6539
offsetof(bge_hostaddr, bge_addr_lo));
6540
return (sysctl_handle_int(oidp, &result, 0, req));
6541
}
6542
6543
#ifdef BGE_REGISTER_DEBUG
6544
static int
6545
bge_sysctl_debug_info(SYSCTL_HANDLER_ARGS)
6546
{
6547
struct bge_softc *sc;
6548
uint16_t *sbdata;
6549
int error, result, sbsz;
6550
int i, j;
6551
6552
result = -1;
6553
error = sysctl_handle_int(oidp, &result, 0, req);
6554
if (error || (req->newptr == NULL))
6555
return (error);
6556
6557
if (result == 1) {
6558
sc = (struct bge_softc *)arg1;
6559
6560
if (sc->bge_asicrev == BGE_ASICREV_BCM5700 &&
6561
sc->bge_chipid != BGE_CHIPID_BCM5700_C0)
6562
sbsz = BGE_STATUS_BLK_SZ;
6563
else
6564
sbsz = 32;
6565
sbdata = (uint16_t *)sc->bge_ldata.bge_status_block;
6566
printf("Status Block:\n");
6567
BGE_LOCK(sc);
6568
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6569
sc->bge_cdata.bge_status_map,
6570
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6571
for (i = 0x0; i < sbsz / sizeof(uint16_t); ) {
6572
printf("%06x:", i);
6573
for (j = 0; j < 8; j++)
6574
printf(" %04x", sbdata[i++]);
6575
printf("\n");
6576
}
6577
6578
printf("Registers:\n");
6579
for (i = 0x800; i < 0xA00; ) {
6580
printf("%06x:", i);
6581
for (j = 0; j < 8; j++) {
6582
printf(" %08x", CSR_READ_4(sc, i));
6583
i += 4;
6584
}
6585
printf("\n");
6586
}
6587
BGE_UNLOCK(sc);
6588
6589
printf("Hardware Flags:\n");
6590
if (BGE_IS_5717_PLUS(sc))
6591
printf(" - 5717 Plus\n");
6592
if (BGE_IS_5755_PLUS(sc))
6593
printf(" - 5755 Plus\n");
6594
if (BGE_IS_575X_PLUS(sc))
6595
printf(" - 575X Plus\n");
6596
if (BGE_IS_5705_PLUS(sc))
6597
printf(" - 5705 Plus\n");
6598
if (BGE_IS_5714_FAMILY(sc))
6599
printf(" - 5714 Family\n");
6600
if (BGE_IS_5700_FAMILY(sc))
6601
printf(" - 5700 Family\n");
6602
if (sc->bge_flags & BGE_FLAG_JUMBO)
6603
printf(" - Supports Jumbo Frames\n");
6604
if (sc->bge_flags & BGE_FLAG_PCIX)
6605
printf(" - PCI-X Bus\n");
6606
if (sc->bge_flags & BGE_FLAG_PCIE)
6607
printf(" - PCI Express Bus\n");
6608
if (sc->bge_phy_flags & BGE_PHY_NO_3LED)
6609
printf(" - No 3 LEDs\n");
6610
if (sc->bge_flags & BGE_FLAG_RX_ALIGNBUG)
6611
printf(" - RX Alignment Bug\n");
6612
}
6613
6614
return (error);
6615
}
6616
6617
static int
6618
bge_sysctl_reg_read(SYSCTL_HANDLER_ARGS)
6619
{
6620
struct bge_softc *sc;
6621
int error;
6622
uint16_t result;
6623
uint32_t val;
6624
6625
result = -1;
6626
error = sysctl_handle_int(oidp, &result, 0, req);
6627
if (error || (req->newptr == NULL))
6628
return (error);
6629
6630
if (result < 0x8000) {
6631
sc = (struct bge_softc *)arg1;
6632
val = CSR_READ_4(sc, result);
6633
printf("reg 0x%06X = 0x%08X\n", result, val);
6634
}
6635
6636
return (error);
6637
}
6638
6639
static int
6640
bge_sysctl_ape_read(SYSCTL_HANDLER_ARGS)
6641
{
6642
struct bge_softc *sc;
6643
int error;
6644
uint16_t result;
6645
uint32_t val;
6646
6647
result = -1;
6648
error = sysctl_handle_int(oidp, &result, 0, req);
6649
if (error || (req->newptr == NULL))
6650
return (error);
6651
6652
if (result < 0x8000) {
6653
sc = (struct bge_softc *)arg1;
6654
val = APE_READ_4(sc, result);
6655
printf("reg 0x%06X = 0x%08X\n", result, val);
6656
}
6657
6658
return (error);
6659
}
6660
6661
static int
6662
bge_sysctl_mem_read(SYSCTL_HANDLER_ARGS)
6663
{
6664
struct bge_softc *sc;
6665
int error;
6666
uint16_t result;
6667
uint32_t val;
6668
6669
result = -1;
6670
error = sysctl_handle_int(oidp, &result, 0, req);
6671
if (error || (req->newptr == NULL))
6672
return (error);
6673
6674
if (result < 0x8000) {
6675
sc = (struct bge_softc *)arg1;
6676
val = bge_readmem_ind(sc, result);
6677
printf("mem 0x%06X = 0x%08X\n", result, val);
6678
}
6679
6680
return (error);
6681
}
6682
#endif
6683
6684
static int
6685
bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
6686
{
6687
return (1);
6688
}
6689
6690
static int
6691
bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
6692
{
6693
uint32_t mac_addr;
6694
6695
mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
6696
if ((mac_addr >> 16) == 0x484b) {
6697
ether_addr[0] = (uint8_t)(mac_addr >> 8);
6698
ether_addr[1] = (uint8_t)mac_addr;
6699
mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
6700
ether_addr[2] = (uint8_t)(mac_addr >> 24);
6701
ether_addr[3] = (uint8_t)(mac_addr >> 16);
6702
ether_addr[4] = (uint8_t)(mac_addr >> 8);
6703
ether_addr[5] = (uint8_t)mac_addr;
6704
return (0);
6705
}
6706
return (1);
6707
}
6708
6709
static int
6710
bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
6711
{
6712
int mac_offset = BGE_EE_MAC_OFFSET;
6713
6714
if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6715
mac_offset = BGE_EE_MAC_OFFSET_5906;
6716
6717
return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
6718
ETHER_ADDR_LEN));
6719
}
6720
6721
static int
6722
bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
6723
{
6724
6725
if (sc->bge_asicrev == BGE_ASICREV_BCM5906)
6726
return (1);
6727
6728
return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
6729
ETHER_ADDR_LEN));
6730
}
6731
6732
static int
6733
bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
6734
{
6735
static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
6736
/* NOTE: Order is critical */
6737
bge_get_eaddr_fw,
6738
bge_get_eaddr_mem,
6739
bge_get_eaddr_nvram,
6740
bge_get_eaddr_eeprom,
6741
NULL
6742
};
6743
const bge_eaddr_fcn_t *func;
6744
6745
for (func = bge_eaddr_funcs; *func != NULL; ++func) {
6746
if ((*func)(sc, eaddr) == 0)
6747
break;
6748
}
6749
return (*func == NULL ? ENXIO : 0);
6750
}
6751
6752
static uint64_t
6753
bge_get_counter(if_t ifp, ift_counter cnt)
6754
{
6755
struct bge_softc *sc;
6756
struct bge_mac_stats *stats;
6757
6758
sc = if_getsoftc(ifp);
6759
if (!BGE_IS_5705_PLUS(sc))
6760
return (if_get_counter_default(ifp, cnt));
6761
stats = &sc->bge_mac_stats;
6762
6763
switch (cnt) {
6764
case IFCOUNTER_IERRORS:
6765
return (stats->NoMoreRxBDs + stats->InputDiscards +
6766
stats->InputErrors);
6767
case IFCOUNTER_COLLISIONS:
6768
return (stats->etherStatsCollisions);
6769
default:
6770
return (if_get_counter_default(ifp, cnt));
6771
}
6772
}
6773
6774
#ifdef DEBUGNET
6775
static void
6776
bge_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
6777
{
6778
struct bge_softc *sc;
6779
6780
sc = if_getsoftc(ifp);
6781
BGE_LOCK(sc);
6782
/*
6783
* There is only one logical receive ring, but it is backed
6784
* by two actual rings, for cluster- and jumbo-sized mbufs.
6785
* Debugnet expects only one size, so if jumbo is in use,
6786
* this says we have two rings of jumbo mbufs, but that's
6787
* only a little wasteful.
6788
*/
6789
*nrxr = 2;
6790
*ncl = DEBUGNET_MAX_IN_FLIGHT;
6791
if ((sc->bge_flags & BGE_FLAG_JUMBO_STD) != 0 &&
6792
(if_getmtu(sc->bge_ifp) + ETHER_HDR_LEN + ETHER_CRC_LEN +
6793
ETHER_VLAN_ENCAP_LEN > (MCLBYTES - ETHER_ALIGN)))
6794
*clsize = MJUM9BYTES;
6795
else
6796
*clsize = MCLBYTES;
6797
BGE_UNLOCK(sc);
6798
}
6799
6800
static void
6801
bge_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused)
6802
{
6803
}
6804
6805
static int
6806
bge_debugnet_transmit(if_t ifp, struct mbuf *m)
6807
{
6808
struct bge_softc *sc;
6809
uint32_t prodidx;
6810
int error;
6811
6812
sc = if_getsoftc(ifp);
6813
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6814
IFF_DRV_RUNNING)
6815
return (1);
6816
6817
prodidx = sc->bge_tx_prodidx;
6818
error = bge_encap(sc, &m, &prodidx);
6819
if (error == 0)
6820
bge_start_tx(sc, prodidx);
6821
return (error);
6822
}
6823
6824
static int
6825
bge_debugnet_poll(if_t ifp, int count)
6826
{
6827
struct bge_softc *sc;
6828
uint32_t rx_prod, tx_cons;
6829
6830
sc = if_getsoftc(ifp);
6831
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
6832
IFF_DRV_RUNNING)
6833
return (1);
6834
6835
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6836
sc->bge_cdata.bge_status_map,
6837
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
6838
6839
rx_prod = sc->bge_ldata.bge_status_block->bge_idx[0].bge_rx_prod_idx;
6840
tx_cons = sc->bge_ldata.bge_status_block->bge_idx[0].bge_tx_cons_idx;
6841
6842
bus_dmamap_sync(sc->bge_cdata.bge_status_tag,
6843
sc->bge_cdata.bge_status_map,
6844
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
6845
6846
(void)bge_rxeof(sc, rx_prod, 0);
6847
bge_txeof(sc, tx_cons);
6848
return (0);
6849
}
6850
#endif /* DEBUGNET */
6851
6852