#include <linux/if_ether.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <rdma/ib_user_verbs.h>
#include <rdma/ib_addr.h>
#include <rdma/ib_cache.h>
#include <dev/mlx5/port.h>
#include <dev/mlx5/vport.h>
#include <linux/list.h>
#include <rdma/ib_smi.h>
#include <rdma/ib_umem.h>
#include <linux/in.h>
#include <linux/etherdevice.h>
#include "bnxt_re.h"
#include "ib_verbs.h"
#include "bnxt_re-abi.h"
#include "bnxt.h"
static char drv_version[] =
"Broadcom NetXtreme-C/E RoCE Driver " ROCE_DRV_MODULE_NAME \
" v" ROCE_DRV_MODULE_VERSION " (" ROCE_DRV_MODULE_RELDATE ")\n";
#define BNXT_RE_DESC "Broadcom NetXtreme RoCE"
#define BNXT_ADEV_NAME "if_bnxt"
MODULE_DESCRIPTION("Broadcom NetXtreme-C/E RoCE Driver");
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DEPEND(bnxt_re, linuxkpi, 1, 1, 1);
MODULE_DEPEND(bnxt_re, ibcore, 1, 1, 1);
MODULE_DEPEND(bnxt_re, if_bnxt, 1, 1, 1);
MODULE_VERSION(bnxt_re, 1);
DEFINE_MUTEX(bnxt_re_mutex);
static unsigned int restrict_mrs = 0;
module_param(restrict_mrs, uint, 0);
MODULE_PARM_DESC(restrict_mrs, " Restrict the no. of MRs 0 = 256K , 1 = 64K");
unsigned int restrict_stats = 0;
module_param(restrict_stats, uint, 0);
MODULE_PARM_DESC(restrict_stats, "Restrict stats query frequency to ethtool coalesce value. Disabled by default");
unsigned int enable_fc = 1;
module_param(enable_fc, uint, 0);
MODULE_PARM_DESC(enable_fc, "Enable default PFC, CC,ETS during driver load. 1 - fc enable, 0 - fc disable - Default is 1");
unsigned int min_tx_depth = 1;
module_param(min_tx_depth, uint, 0);
MODULE_PARM_DESC(min_tx_depth, "Minimum TX depth - Default is 1");
static uint8_t max_msix_vec[BNXT_RE_MAX_DEVICES] = {0};
static unsigned int max_msix_vec_argc;
module_param_array(max_msix_vec, byte, &max_msix_vec_argc, 0444);
MODULE_PARM_DESC(max_msix_vec, "Max MSI-x vectors per PF (2 - 64) - Default is 64");
unsigned int cmdq_shadow_qd = RCFW_CMD_NON_BLOCKING_SHADOW_QD;
module_param_named(cmdq_shadow_qd, cmdq_shadow_qd, uint, 0644);
MODULE_PARM_DESC(cmdq_shadow_qd, "Perf Stat Debug: Shadow QD Range (1-64) - Default is 64");
struct list_head bnxt_re_dev_list = LINUX_LIST_HEAD_INIT(bnxt_re_dev_list);
static int bnxt_re_probe_count;
DEFINE_MUTEX(bnxt_re_dev_lock);
static u32 gmod_exit;
static u32 gadd_dev_inprogress;
static void bnxt_re_task(struct work_struct *work_task);
static struct workqueue_struct *bnxt_re_wq;
static int bnxt_re_query_hwrm_intf_version(struct bnxt_re_dev *rdev);
static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len,
u32 *offset);
static int bnxt_re_ib_init(struct bnxt_re_dev *rdev);
static void bnxt_re_ib_init_2(struct bnxt_re_dev *rdev);
void _bnxt_re_remove(struct auxiliary_device *adev);
void writel_fbsd(struct bnxt_softc *bp, u32, u8, u32);
u32 readl_fbsd(struct bnxt_softc *bp, u32, u8);
static int bnxt_re_hwrm_dbr_pacing_qcfg(struct bnxt_re_dev *rdev);
int bnxt_re_register_netdevice_notifier(struct notifier_block *nb)
{
int rc;
rc = register_netdevice_notifier(nb);
return rc;
}
int bnxt_re_unregister_netdevice_notifier(struct notifier_block *nb)
{
int rc;
rc = unregister_netdevice_notifier(nb);
return rc;
}
void bnxt_re_set_dma_device(struct ib_device *ibdev, struct bnxt_re_dev *rdev)
{
ibdev->dma_device = &rdev->en_dev->pdev->dev;
}
void bnxt_re_init_resolve_wq(struct bnxt_re_dev *rdev)
{
rdev->resolve_wq = create_singlethread_workqueue("bnxt_re_resolve_wq");
INIT_LIST_HEAD(&rdev->mac_wq_list);
}
void bnxt_re_uninit_resolve_wq(struct bnxt_re_dev *rdev)
{
struct bnxt_re_resolve_dmac_work *tmp_work = NULL, *tmp_st;
if (!rdev->resolve_wq)
return;
flush_workqueue(rdev->resolve_wq);
list_for_each_entry_safe(tmp_work, tmp_st, &rdev->mac_wq_list, list) {
list_del(&tmp_work->list);
kfree(tmp_work);
}
destroy_workqueue(rdev->resolve_wq);
rdev->resolve_wq = NULL;
}
u32 readl_fbsd(struct bnxt_softc *bp, u32 reg_off, u8 bar_idx)
{
if (bar_idx)
return bus_space_read_8(bp->doorbell_bar.tag, bp->doorbell_bar.handle, reg_off);
else
return bus_space_read_8(bp->hwrm_bar.tag, bp->hwrm_bar.handle, reg_off);
}
void writel_fbsd(struct bnxt_softc *bp, u32 reg_off, u8 bar_idx, u32 val)
{
if (bar_idx)
bus_space_write_8(bp->doorbell_bar.tag, bp->doorbell_bar.handle, reg_off, htole32(val));
else
bus_space_write_8(bp->hwrm_bar.tag, bp->hwrm_bar.handle, reg_off, htole32(val));
}
static void bnxt_re_update_fifo_occup_slabs(struct bnxt_re_dev *rdev,
u32 fifo_occup)
{
if (fifo_occup > rdev->dbg_stats->dbq.fifo_occup_water_mark)
rdev->dbg_stats->dbq.fifo_occup_water_mark = fifo_occup;
if (fifo_occup > 8 * rdev->pacing_algo_th)
rdev->dbg_stats->dbq.fifo_occup_slab_4++;
else if (fifo_occup > 4 * rdev->pacing_algo_th)
rdev->dbg_stats->dbq.fifo_occup_slab_3++;
else if (fifo_occup > 2 * rdev->pacing_algo_th)
rdev->dbg_stats->dbq.fifo_occup_slab_2++;
else if (fifo_occup > rdev->pacing_algo_th)
rdev->dbg_stats->dbq.fifo_occup_slab_1++;
}
static void bnxt_re_update_do_pacing_slabs(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
if (pacing_data->do_pacing > rdev->dbg_stats->dbq.do_pacing_water_mark)
rdev->dbg_stats->dbq.do_pacing_water_mark = pacing_data->do_pacing;
if (pacing_data->do_pacing > 16 * rdev->dbr_def_do_pacing)
rdev->dbg_stats->dbq.do_pacing_slab_5++;
else if (pacing_data->do_pacing > 8 * rdev->dbr_def_do_pacing)
rdev->dbg_stats->dbq.do_pacing_slab_4++;
else if (pacing_data->do_pacing > 4 * rdev->dbr_def_do_pacing)
rdev->dbg_stats->dbq.do_pacing_slab_3++;
else if (pacing_data->do_pacing > 2 * rdev->dbr_def_do_pacing)
rdev->dbg_stats->dbq.do_pacing_slab_2++;
else if (pacing_data->do_pacing > rdev->dbr_def_do_pacing)
rdev->dbg_stats->dbq.do_pacing_slab_1++;
}
static bool bnxt_re_is_qp1_qp(struct bnxt_re_qp *qp)
{
return qp->ib_qp.qp_type == IB_QPT_GSI;
}
static struct bnxt_re_qp *bnxt_re_get_qp1_qp(struct bnxt_re_dev *rdev)
{
struct bnxt_re_qp *qp;
mutex_lock(&rdev->qp_lock);
list_for_each_entry(qp, &rdev->qp_list, list) {
if (bnxt_re_is_qp1_qp(qp)) {
mutex_unlock(&rdev->qp_lock);
return qp;
}
}
mutex_unlock(&rdev->qp_lock);
return NULL;
}
static void bnxt_re_limit_pf_res(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_max_res dev_res = {};
struct bnxt_qplib_chip_ctx *cctx;
struct bnxt_qplib_dev_attr *attr;
struct bnxt_qplib_ctx *hctx;
int i;
attr = rdev->dev_attr;
hctx = rdev->qplib_res.hctx;
cctx = rdev->chip_ctx;
bnxt_qplib_max_res_supported(cctx, &rdev->qplib_res, &dev_res, false);
if (!_is_chip_gen_p5_p7(cctx)) {
hctx->qp_ctx.max = min_t(u32, dev_res.max_qp, attr->max_qp);
hctx->mrw_ctx.max = min_t(u32, dev_res.max_mr, attr->max_mr);
hctx->mrw_ctx.max *= 2;
hctx->srq_ctx.max = min_t(u32, dev_res.max_srq, attr->max_srq);
hctx->cq_ctx.max = min_t(u32, dev_res.max_cq, attr->max_cq);
for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
hctx->tqm_ctx.qcount[i] = attr->tqm_alloc_reqs[i];
} else {
hctx->qp_ctx.max = attr->max_qp ? attr->max_qp : dev_res.max_qp;
hctx->mrw_ctx.max = attr->max_mr ? attr->max_mr : dev_res.max_mr;
hctx->srq_ctx.max = attr->max_srq ? attr->max_srq : dev_res.max_srq;
hctx->cq_ctx.max = attr->max_cq ? attr->max_cq : dev_res.max_cq;
}
}
static void bnxt_re_limit_vf_res(struct bnxt_re_dev *rdev,
struct bnxt_qplib_vf_res *vf_res,
u32 num_vf)
{
struct bnxt_qplib_chip_ctx *cctx = rdev->chip_ctx;
struct bnxt_qplib_max_res dev_res = {};
bnxt_qplib_max_res_supported(cctx, &rdev->qplib_res, &dev_res, true);
vf_res->max_qp = dev_res.max_qp / num_vf;
vf_res->max_srq = dev_res.max_srq / num_vf;
vf_res->max_cq = dev_res.max_cq / num_vf;
vf_res->max_mrw = dev_res.max_mr * 2 / num_vf;
vf_res->max_gid = BNXT_RE_MAX_GID_PER_VF;
}
static void bnxt_re_set_resource_limits(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_ctx *hctx;
hctx = rdev->qplib_res.hctx;
memset(&hctx->vf_res, 0, sizeof(struct bnxt_qplib_vf_res));
bnxt_re_limit_pf_res(rdev);
if (rdev->num_vfs)
bnxt_re_limit_vf_res(rdev, &hctx->vf_res, rdev->num_vfs);
}
static void bnxt_re_dettach_irq(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_rcfw *rcfw = NULL;
struct bnxt_qplib_nq *nq;
int indx;
rcfw = &rdev->rcfw;
for (indx = 0; indx < rdev->nqr.max_init; indx++) {
nq = &rdev->nqr.nq[indx];
mutex_lock(&nq->lock);
bnxt_qplib_nq_stop_irq(nq, false);
mutex_unlock(&nq->lock);
}
bnxt_qplib_rcfw_stop_irq(rcfw, false);
}
static void bnxt_re_detach_err_device(struct bnxt_re_dev *rdev)
{
bnxt_re_dettach_irq(rdev);
set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags);
set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags);
wake_up_all(&rdev->rcfw.cmdq.waitq);
}
#define MAX_DSCP_PRI_TUPLE 64
struct bnxt_re_dcb_work {
struct work_struct work;
struct bnxt_re_dev *rdev;
struct hwrm_async_event_cmpl cmpl;
};
static void bnxt_re_init_dcb_wq(struct bnxt_re_dev *rdev)
{
rdev->dcb_wq = create_singlethread_workqueue("bnxt_re_dcb_wq");
}
static void bnxt_re_uninit_dcb_wq(struct bnxt_re_dev *rdev)
{
if (!rdev->dcb_wq)
return;
flush_workqueue(rdev->dcb_wq);
destroy_workqueue(rdev->dcb_wq);
rdev->dcb_wq = NULL;
}
static void bnxt_re_init_aer_wq(struct bnxt_re_dev *rdev)
{
rdev->aer_wq = create_singlethread_workqueue("bnxt_re_aer_wq");
}
static void bnxt_re_uninit_aer_wq(struct bnxt_re_dev *rdev)
{
if (!rdev->aer_wq)
return;
flush_workqueue(rdev->aer_wq);
destroy_workqueue(rdev->aer_wq);
rdev->aer_wq = NULL;
}
static int bnxt_re_update_qp1_tos_dscp(struct bnxt_re_dev *rdev)
{
struct bnxt_re_qp *qp;
if (!_is_chip_gen_p5_p7(rdev->chip_ctx))
return 0;
qp = bnxt_re_get_qp1_qp(rdev);
if (!qp)
return 0;
qp->qplib_qp.modify_flags = CMDQ_MODIFY_QP_MODIFY_MASK_TOS_DSCP;
qp->qplib_qp.tos_dscp = rdev->cc_param.qp1_tos_dscp;
return bnxt_qplib_modify_qp(&rdev->qplib_res, &qp->qplib_qp);
}
static void bnxt_re_reconfigure_dscp(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_cc_param *cc_param;
struct bnxt_re_tc_rec *tc_rec;
bool update_cc = false;
u8 dscp_user;
int rc;
cc_param = &rdev->cc_param;
tc_rec = &rdev->tc_rec[0];
if (!(cc_param->roce_dscp_user || cc_param->cnp_dscp_user))
return;
if (cc_param->cnp_dscp_user) {
dscp_user = (cc_param->cnp_dscp_user & 0x3f);
if ((tc_rec->cnp_dscp_bv & (1ul << dscp_user)) &&
(cc_param->alt_tos_dscp != dscp_user)) {
cc_param->alt_tos_dscp = dscp_user;
cc_param->mask |= CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ALT_TOS_DSCP;
update_cc = true;
}
}
if (cc_param->roce_dscp_user) {
dscp_user = (cc_param->roce_dscp_user & 0x3f);
if ((tc_rec->roce_dscp_bv & (1ul << dscp_user)) &&
(cc_param->tos_dscp != dscp_user)) {
cc_param->tos_dscp = dscp_user;
cc_param->mask |= CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_DSCP;
update_cc = true;
}
}
if (update_cc) {
rc = bnxt_qplib_modify_cc(&rdev->qplib_res, cc_param);
if (rc)
dev_err(rdev_to_dev(rdev), "Failed to apply cc settings\n");
}
}
static void bnxt_re_dcb_wq_task(struct work_struct *work)
{
struct bnxt_qplib_cc_param *cc_param;
struct bnxt_re_tc_rec *tc_rec;
struct bnxt_re_dev *rdev;
struct bnxt_re_dcb_work *dcb_work =
container_of(work, struct bnxt_re_dcb_work, work);
int rc;
rdev = dcb_work->rdev;
if (!rdev)
goto exit;
mutex_lock(&rdev->cc_lock);
cc_param = &rdev->cc_param;
rc = bnxt_qplib_query_cc_param(&rdev->qplib_res, cc_param);
if (rc) {
dev_err(rdev_to_dev(rdev), "Failed to query ccparam rc:%d", rc);
goto fail;
}
tc_rec = &rdev->tc_rec[0];
bnxt_re_reconfigure_dscp(rdev);
cc_param->roce_pri = tc_rec->roce_prio;
if (cc_param->qp1_tos_dscp != cc_param->tos_dscp) {
cc_param->qp1_tos_dscp = cc_param->tos_dscp;
rc = bnxt_re_update_qp1_tos_dscp(rdev);
if (rc) {
dev_err(rdev_to_dev(rdev), "%s:Failed to modify QP1 rc:%d",
__func__, rc);
goto fail;
}
}
fail:
mutex_unlock(&rdev->cc_lock);
exit:
kfree(dcb_work);
}
static int bnxt_re_hwrm_dbr_pacing_broadcast_event(struct bnxt_re_dev *rdev)
{
struct hwrm_func_dbr_pacing_broadcast_event_output resp = {0};
struct hwrm_func_dbr_pacing_broadcast_event_input req = {0};
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct bnxt_fw_msg fw_msg;
int rc;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_FUNC_DBR_PACING_BROADCAST_EVENT, -1, -1);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), BNXT_RE_HWRM_CMD_TIMEOUT(rdev));
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc) {
dev_dbg(rdev_to_dev(rdev),
"Failed to send dbr pacing broadcast event rc:%d", rc);
return rc;
}
return 0;
}
static int bnxt_re_hwrm_dbr_pacing_nqlist_query(struct bnxt_re_dev *rdev)
{
struct hwrm_func_dbr_pacing_nqlist_query_output resp = {0};
struct hwrm_func_dbr_pacing_nqlist_query_input req = {0};
struct bnxt_dbq_nq_list *nq_list = &rdev->nq_list;
struct bnxt_en_dev *en_dev = rdev->en_dev;
bool primary_found = false;
struct bnxt_fw_msg fw_msg;
struct bnxt_qplib_nq *nq;
int rc, i, j = 1;
u16 *nql_ptr;
nq = &rdev->nqr.nq[0];
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_FUNC_DBR_PACING_NQLIST_QUERY, -1, -1);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), BNXT_RE_HWRM_CMD_TIMEOUT(rdev));
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc) {
dev_err(rdev_to_dev(rdev), "Failed to send dbr pacing nq list query rc:%d", rc);
return rc;
}
nq_list->num_nql_entries = le32_to_cpu(resp.num_nqs);
nql_ptr = &resp.nq_ring_id0;
for (i = 0; i < nq_list->num_nql_entries; i++) {
u16 nq_id = *nql_ptr;
dev_dbg(rdev_to_dev(rdev),
"nq_list->nq_id[%d] = %d\n", i, nq_id);
if (nq_id != nq->ring_id) {
nq_list->nq_id[j] = nq_id;
j++;
} else {
primary_found = true;
nq_list->nq_id[0] = nq->ring_id;
}
nql_ptr++;
}
if (primary_found)
bnxt_qplib_dbr_pacing_set_primary_pf(rdev->chip_ctx, 1);
return 0;
}
static void __wait_for_fifo_occupancy_below_th(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
u32 read_val, fifo_occup;
bool first_read = true;
while (1) {
read_val = readl_fbsd(rdev->en_dev->softc, rdev->dbr_db_fifo_reg_off, 0);
fifo_occup = pacing_data->fifo_max_depth -
((read_val & pacing_data->fifo_room_mask) >>
pacing_data->fifo_room_shift);
if (fifo_occup > pacing_data->fifo_max_depth)
break;
if (first_read) {
bnxt_re_update_fifo_occup_slabs(rdev, fifo_occup);
first_read = false;
}
if (fifo_occup < pacing_data->pacing_th)
break;
}
}
static void bnxt_re_set_default_pacing_data(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
pacing_data->do_pacing = rdev->dbr_def_do_pacing;
pacing_data->pacing_th = rdev->pacing_algo_th;
pacing_data->alarm_th =
pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE(rdev->chip_ctx);
}
#define CAG_RING_MASK 0x7FF
#define CAG_RING_SHIFT 17
#define WATERMARK_MASK 0xFFF
#define WATERMARK_SHIFT 0
static bool bnxt_re_check_if_dbq_intr_triggered(struct bnxt_re_dev *rdev)
{
u32 read_val;
int j;
for (j = 0; j < 10; j++) {
read_val = readl_fbsd(rdev->en_dev->softc, rdev->dbr_aeq_arm_reg_off, 0);
dev_dbg(rdev_to_dev(rdev), "AEQ ARM status = 0x%x\n",
read_val);
if (!read_val)
return true;
}
return false;
}
int bnxt_re_set_dbq_throttling_reg(struct bnxt_re_dev *rdev, u16 nq_id, u32 throttle)
{
u32 cag_ring_water_mark = 0, read_val;
u32 throttle_val;
throttle_val = (rdev->qplib_res.pacing_data->fifo_max_depth * throttle) / 100;
if (bnxt_qplib_dbr_pacing_ext_en(rdev->chip_ctx)) {
cag_ring_water_mark = (nq_id & CAG_RING_MASK) << CAG_RING_SHIFT |
(throttle_val & WATERMARK_MASK);
writel_fbsd(rdev->en_dev->softc, rdev->dbr_throttling_reg_off, 0, cag_ring_water_mark);
read_val = readl_fbsd(rdev->en_dev->softc , rdev->dbr_throttling_reg_off, 0);
dev_dbg(rdev_to_dev(rdev),
"%s: dbr_throttling_reg_off read_val = 0x%x\n",
__func__, read_val);
if (read_val != cag_ring_water_mark) {
dev_dbg(rdev_to_dev(rdev),
"nq_id = %d write_val=0x%x read_val=0x%x\n",
nq_id, cag_ring_water_mark, read_val);
return 1;
}
}
writel_fbsd(rdev->en_dev->softc, rdev->dbr_aeq_arm_reg_off, 0, 1);
return 0;
}
static void bnxt_re_set_dbq_throttling_for_non_primary(struct bnxt_re_dev *rdev)
{
struct bnxt_dbq_nq_list *nq_list;
struct bnxt_qplib_nq *nq;
int i;
nq_list = &rdev->nq_list;
if (bnxt_qplib_dbr_pacing_is_primary_pf(rdev->chip_ctx)) {
dev_dbg(rdev_to_dev(rdev), "%s: nq_list->num_nql_entries= %d\n",
__func__, nq_list->num_nql_entries);
nq = &rdev->nqr.nq[0];
for (i = nq_list->num_nql_entries - 1; i > 0; i--) {
u16 nq_id = nq_list->nq_id[i];
if (nq)
dev_dbg(rdev_to_dev(rdev),
"%s: nq_id = %d cur_fn_ring_id = %d\n",
__func__, nq_id, nq->ring_id);
if (bnxt_re_set_dbq_throttling_reg
(rdev, nq_id, 0))
break;
bnxt_re_check_if_dbq_intr_triggered(rdev);
}
}
}
static void bnxt_re_handle_dbr_nq_pacing_notification(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_nq *nq;
int rc = 0;
nq = &rdev->nqr.nq[0];
rc = bnxt_re_hwrm_dbr_pacing_nqlist_query(rdev);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to Query NQ list rc= %d", rc);
return;
}
writel_fbsd(rdev->en_dev->softc, BNXT_GRCPF_REG_WINDOW_BASE_OUT + 28, 0,
rdev->chip_ctx->dbr_aeq_arm_reg & BNXT_GRC_BASE_MASK);
rdev->dbr_throttling_reg_off =
(rdev->chip_ctx->dbr_throttling_reg &
BNXT_GRC_OFFSET_MASK) + 0x8000;
rdev->dbr_aeq_arm_reg_off =
(rdev->chip_ctx->dbr_aeq_arm_reg &
BNXT_GRC_OFFSET_MASK) + 0x8000;
bnxt_re_set_dbq_throttling_reg(rdev, nq->ring_id, rdev->dbq_watermark);
}
static void bnxt_re_dbq_wq_task(struct work_struct *work)
{
struct bnxt_re_dbq_work *dbq_work =
container_of(work, struct bnxt_re_dbq_work, work);
struct bnxt_re_dev *rdev;
rdev = dbq_work->rdev;
if (!rdev)
goto exit;
switch (dbq_work->event) {
case BNXT_RE_DBQ_EVENT_SCHED:
dev_dbg(rdev_to_dev(rdev), "%s: Handle DBQ Pacing event\n",
__func__);
if (!bnxt_qplib_dbr_pacing_ext_en(rdev->chip_ctx))
bnxt_re_hwrm_dbr_pacing_broadcast_event(rdev);
else
bnxt_re_pacing_alert(rdev);
break;
case BNXT_RE_DBR_PACING_EVENT:
dev_dbg(rdev_to_dev(rdev), "%s: Sched interrupt/pacing worker\n",
__func__);
if (_is_chip_p7(rdev->chip_ctx))
bnxt_re_pacing_alert(rdev);
else if (!rdev->chip_ctx->modes.dbr_pacing_v0)
bnxt_re_hwrm_dbr_pacing_qcfg(rdev);
break;
case BNXT_RE_DBR_NQ_PACING_NOTIFICATION:
bnxt_re_handle_dbr_nq_pacing_notification(rdev);
bnxt_re_hwrm_dbr_pacing_broadcast_event(rdev);
break;
}
exit:
kfree(dbq_work);
}
static void bnxt_re_async_notifier(void *handle, struct hwrm_async_event_cmpl *cmpl)
{
struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle);
struct bnxt_re_dcb_work *dcb_work;
struct bnxt_re_dbq_work *dbq_work;
struct bnxt_re_dev *rdev;
u16 event_id;
u32 data1;
u32 data2 = 0;
if (!cmpl) {
pr_err("Async event, bad completion\n");
return;
}
if (!en_info || !en_info->en_dev) {
pr_err("Async event, bad en_info or en_dev\n");
return;
}
rdev = en_info->rdev;
event_id = le16_to_cpu(cmpl->event_id);
data1 = le32_to_cpu(cmpl->event_data1);
data2 = le32_to_cpu(cmpl->event_data2);
if (!rdev || !rdev_to_dev(rdev)) {
dev_dbg(NULL, "Async event, bad rdev or netdev\n");
return;
}
if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags) ||
!test_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags)) {
dev_dbg(NULL, "Async event, device already detached\n");
return;
}
if (data2 >= 0)
dev_dbg(rdev_to_dev(rdev), "Async event_id = %d data1 = %d data2 = %d",
event_id, data1, data2);
switch (event_id) {
case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_DCB_CONFIG_CHANGE:
if (!is_qport_service_type_supported(rdev))
break;
if (!rdev->dcb_wq)
break;
dcb_work = kzalloc(sizeof(*dcb_work), GFP_ATOMIC);
if (!dcb_work)
break;
dcb_work->rdev = rdev;
memcpy(&dcb_work->cmpl, cmpl, sizeof(*cmpl));
INIT_WORK(&dcb_work->work, bnxt_re_dcb_wq_task);
queue_work(rdev->dcb_wq, &dcb_work->work);
break;
case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY:
if (EVENT_DATA1_RESET_NOTIFY_FATAL(data1)) {
set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags);
set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags);
wake_up_all(&rdev->rcfw.cmdq.waitq);
}
break;
case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_DOORBELL_PACING_THRESHOLD:
if (!rdev->dbr_pacing)
break;
dbq_work = kzalloc(sizeof(*dbq_work), GFP_ATOMIC);
if (!dbq_work)
goto unlock;
dbq_work->rdev = rdev;
dbq_work->event = BNXT_RE_DBR_PACING_EVENT;
INIT_WORK(&dbq_work->work, bnxt_re_dbq_wq_task);
queue_work(rdev->dbq_wq, &dbq_work->work);
rdev->dbr_sw_stats->dbq_int_recv++;
break;
case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_DOORBELL_PACING_NQ_UPDATE:
if (!rdev->dbr_pacing)
break;
dbq_work = kzalloc(sizeof(*dbq_work), GFP_ATOMIC);
if (!dbq_work)
goto unlock;
dbq_work->rdev = rdev;
dbq_work->event = BNXT_RE_DBR_NQ_PACING_NOTIFICATION;
INIT_WORK(&dbq_work->work, bnxt_re_dbq_wq_task);
queue_work(rdev->dbq_wq, &dbq_work->work);
break;
default:
break;
}
unlock:
return;
}
static void bnxt_re_db_fifo_check(struct work_struct *work)
{
struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
dbq_fifo_check_work);
struct bnxt_qplib_db_pacing_data *pacing_data;
u32 pacing_save;
if (!mutex_trylock(&rdev->dbq_lock))
return;
pacing_data = rdev->qplib_res.pacing_data;
pacing_save = rdev->do_pacing_save;
__wait_for_fifo_occupancy_below_th(rdev);
cancel_delayed_work_sync(&rdev->dbq_pacing_work);
if (rdev->dbr_recovery_on)
goto recovery_on;
if (pacing_save > rdev->dbr_def_do_pacing) {
pacing_save = pacing_save << 1;
} else {
pacing_save = pacing_save << 3;
pacing_data->pacing_th = rdev->pacing_algo_th * 4;
}
if (pacing_save > BNXT_RE_MAX_DBR_DO_PACING)
pacing_save = BNXT_RE_MAX_DBR_DO_PACING;
pacing_data->do_pacing = pacing_save;
rdev->do_pacing_save = pacing_data->do_pacing;
pacing_data->alarm_th =
pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE(rdev->chip_ctx);
recovery_on:
schedule_delayed_work(&rdev->dbq_pacing_work,
msecs_to_jiffies(rdev->dbq_pacing_time));
rdev->dbr_sw_stats->dbq_pacing_alerts++;
mutex_unlock(&rdev->dbq_lock);
}
static void bnxt_re_pacing_timer_exp(struct work_struct *work)
{
struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
dbq_pacing_work.work);
struct bnxt_qplib_db_pacing_data *pacing_data;
u32 read_val, fifo_occup;
struct bnxt_qplib_nq *nq;
if (!mutex_trylock(&rdev->dbq_lock))
return;
pacing_data = rdev->qplib_res.pacing_data;
read_val = readl_fbsd(rdev->en_dev->softc , rdev->dbr_db_fifo_reg_off, 0);
fifo_occup = pacing_data->fifo_max_depth -
((read_val & pacing_data->fifo_room_mask) >>
pacing_data->fifo_room_shift);
if (fifo_occup > pacing_data->pacing_th)
goto restart_timer;
pacing_data->do_pacing = pacing_data->do_pacing - (pacing_data->do_pacing >> 3);
pacing_data->do_pacing = max_t(u32, rdev->dbr_def_do_pacing, pacing_data->do_pacing);
if (rdev->dbq_int_disable && fifo_occup < rdev->pacing_en_int_th) {
if (bnxt_qplib_dbr_pacing_is_primary_pf(rdev->chip_ctx)) {
if (!rdev->chip_ctx->modes.dbr_pacing_v0) {
nq = &rdev->nqr.nq[0];
bnxt_re_set_dbq_throttling_reg(rdev, nq->ring_id,
rdev->dbq_watermark);
rdev->dbr_sw_stats->dbq_int_en++;
rdev->dbq_int_disable = false;
}
}
}
if (pacing_data->do_pacing <= rdev->dbr_def_do_pacing) {
bnxt_re_set_default_pacing_data(rdev);
rdev->dbr_sw_stats->dbq_pacing_complete++;
goto dbq_unlock;
}
restart_timer:
schedule_delayed_work(&rdev->dbq_pacing_work,
msecs_to_jiffies(rdev->dbq_pacing_time));
bnxt_re_update_do_pacing_slabs(rdev);
rdev->dbr_sw_stats->dbq_pacing_resched++;
dbq_unlock:
rdev->do_pacing_save = pacing_data->do_pacing;
mutex_unlock(&rdev->dbq_lock);
}
void bnxt_re_pacing_alert(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_db_pacing_data *pacing_data;
if (!rdev->dbr_pacing)
return;
mutex_lock(&rdev->dbq_lock);
pacing_data = rdev->qplib_res.pacing_data;
pacing_data->alarm_th = pacing_data->fifo_max_depth;
pacing_data->do_pacing = BNXT_RE_MAX_DBR_DO_PACING;
cancel_work_sync(&rdev->dbq_fifo_check_work);
schedule_work(&rdev->dbq_fifo_check_work);
mutex_unlock(&rdev->dbq_lock);
}
void bnxt_re_schedule_dbq_event(struct bnxt_qplib_res *res)
{
struct bnxt_re_dbq_work *dbq_work;
struct bnxt_re_dev *rdev;
rdev = container_of(res, struct bnxt_re_dev, qplib_res);
atomic_set(&rdev->dbq_intr_running, 1);
if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
goto exit;
if (bnxt_qplib_dbr_pacing_ext_en(rdev->chip_ctx) &&
!rdev->chip_ctx->modes.dbr_pacing_v0)
bnxt_re_set_dbq_throttling_for_non_primary(rdev);
dbq_work = kzalloc(sizeof(*dbq_work), GFP_ATOMIC);
if (!dbq_work)
goto exit;
dbq_work->rdev = rdev;
dbq_work->event = BNXT_RE_DBQ_EVENT_SCHED;
INIT_WORK(&dbq_work->work, bnxt_re_dbq_wq_task);
queue_work(rdev->dbq_wq, &dbq_work->work);
rdev->dbr_sw_stats->dbq_int_recv++;
rdev->dbq_int_disable = true;
exit:
atomic_set(&rdev->dbq_intr_running, 0);
}
static void bnxt_re_free_msix(struct bnxt_re_dev *rdev)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
int rc;
rc = en_dev->en_ops->bnxt_free_msix(rdev->en_dev, BNXT_ROCE_ULP);
if (rc)
dev_err(rdev_to_dev(rdev), "netdev %p free_msix failed! rc = 0x%x",
rdev->netdev, rc);
}
static int bnxt_re_request_msix(struct bnxt_re_dev *rdev)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
int rc = 0, num_msix_want, num_msix_got;
struct bnxt_msix_entry *entry;
if (rdev->is_virtfn)
num_msix_want = BNXT_RE_MAX_MSIX_VF;
else if (BNXT_EN_NPAR(en_dev))
num_msix_want = BNXT_RE_MAX_MSIX_NPAR_PF;
else if (_is_chip_gen_p5_p7(rdev->chip_ctx))
num_msix_want = rdev->num_msix_requested ?: BNXT_RE_MAX_MSIX_GEN_P5_PF;
else
num_msix_want = BNXT_RE_MAX_MSIX_PF;
num_msix_want = min_t(u32, num_msix_want, num_online_cpus() + 1);
num_msix_want = min_t(u32, num_msix_want, BNXT_RE_MAX_MSIX);
num_msix_want = max_t(u32, num_msix_want, BNXT_RE_MIN_MSIX);
entry = rdev->nqr.msix_entries;
num_msix_got = en_dev->en_ops->bnxt_request_msix(en_dev, BNXT_ROCE_ULP,
entry, num_msix_want);
if (num_msix_got < BNXT_RE_MIN_MSIX) {
rc = -EINVAL;
goto done;
}
if (num_msix_got != num_msix_want)
dev_warn(rdev_to_dev(rdev),
"bnxt_request_msix: wanted %d vectors, got %d\n",
num_msix_want, num_msix_got);
rdev->nqr.num_msix = num_msix_got;
return 0;
done:
if (num_msix_got)
bnxt_re_free_msix(rdev);
return rc;
}
static int __wait_for_ib_unregister(struct bnxt_re_dev *rdev,
struct bnxt_re_en_dev_info *en_info)
{
u64 timeout = 0;
u32 cur_prod = 0, cur_cons = 0;
int retry = 0, rc = 0, ret = 0;
cur_prod = rdev->rcfw.cmdq.hwq.prod;
cur_cons = rdev->rcfw.cmdq.hwq.cons;
timeout = msecs_to_jiffies(BNXT_RE_RECOVERY_IB_UNINIT_WAIT_TIME_MS);
retry = BNXT_RE_RECOVERY_IB_UNINIT_WAIT_RETRY;
if (rdev->mod_exit)
retry *= 10;
do {
mutex_unlock(&bnxt_re_mutex);
rc = wait_event_timeout(en_info->waitq,
en_info->ib_uninit_done,
timeout);
mutex_lock(&bnxt_re_mutex);
if (!bnxt_re_is_rdev_valid(rdev))
break;
if (rc)
break;
if (!RCFW_NO_FW_ACCESS(&rdev->rcfw)) {
if (!rdev->mod_exit)
ret = __check_cmdq_stall(&rdev->rcfw, &cur_prod, &cur_cons);
if (ret || en_info->ib_uninit_done)
break;
}
} while (retry--);
return rc;
}
static int bnxt_re_handle_start(struct auxiliary_device *adev)
{
struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
struct bnxt_re_dev *rdev = NULL;
struct ifnet *real_dev;
struct bnxt_en_dev *en_dev;
struct ifnet *netdev;
int rc = 0;
if (!en_info || !en_info->en_dev) {
pr_err("Start, bad en_info or en_dev\n");
return -EINVAL;
}
netdev = en_info->en_dev->net;
if (en_info->rdev) {
dev_info(rdev_to_dev(en_info->rdev),
"%s: Device is already added adev %p rdev: %p\n",
__func__, adev, en_info->rdev);
return 0;
}
en_dev = en_info->en_dev;
real_dev = rdma_vlan_dev_real_dev(netdev);
if (!real_dev)
real_dev = netdev;
rc = bnxt_re_add_device(&rdev, real_dev,
en_info->gsi_mode,
BNXT_RE_POST_RECOVERY_INIT,
en_info->wqe_mode,
en_info->num_msix_requested, adev);
if (rc) {
rtnl_lock();
en_dev->en_ops->bnxt_unregister_device(en_dev, BNXT_ROCE_ULP);
rtnl_unlock();
mutex_lock(&bnxt_re_dev_lock);
gadd_dev_inprogress--;
mutex_unlock(&bnxt_re_dev_lock);
return rc;
}
rdev->adev = adev;
rtnl_lock();
bnxt_re_get_link_speed(rdev);
rtnl_unlock();
rc = bnxt_re_ib_init(rdev);
if (rc) {
dev_err(rdev_to_dev(rdev), "Failed ib_init\n");
return rc;
}
bnxt_re_ib_init_2(rdev);
return rc;
}
static void bnxt_re_stop(void *handle)
{
struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle);
struct ifnet *netdev;
struct bnxt_re_dev *rdev;
struct bnxt_en_dev *en_dev;
int rc = 0;
rtnl_unlock();
mutex_lock(&bnxt_re_mutex);
if (!en_info || !en_info->en_dev) {
pr_err("Stop, bad en_info or en_dev\n");
goto exit;
}
netdev = en_info->en_dev->net;
rdev = en_info->rdev;
if (!rdev)
goto exit;
if (!bnxt_re_is_rdev_valid(rdev))
goto exit;
en_dev = rdev->en_dev;
if (en_dev->en_state & BNXT_STATE_FW_FATAL_COND ||
en_dev->en_state & BNXT_STATE_FW_RESET_DET) {
set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags);
set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags);
wake_up_all(&rdev->rcfw.cmdq.waitq);
}
if (test_bit(BNXT_RE_FLAG_STOP_IN_PROGRESS, &rdev->flags))
goto exit;
set_bit(BNXT_RE_FLAG_STOP_IN_PROGRESS, &rdev->flags);
en_info->wqe_mode = rdev->chip_ctx->modes.wqe_mode;
en_info->gsi_mode = rdev->gsi_ctx.gsi_qp_mode;
en_info->num_msix_requested = rdev->num_msix_requested;
en_info->ib_uninit_done = false;
if (rdev->dbr_pacing)
bnxt_re_set_pacing_dev_state(rdev);
dev_info(rdev_to_dev(rdev), "%s: L2 driver notified to stop."
"Attempting to stop and Dispatching event "
"to inform the stack\n", __func__);
init_waitqueue_head(&en_info->waitq);
bnxt_re_schedule_work(rdev, NETDEV_UNREGISTER,
NULL, netdev, rdev->adev);
rc = __wait_for_ib_unregister(rdev, en_info);
if (!bnxt_re_is_rdev_valid(rdev))
goto exit;
if (!rc) {
dev_info(rdev_to_dev(rdev), "%s: Attempt to stop failed\n",
__func__);
bnxt_re_detach_err_device(rdev);
goto exit;
}
bnxt_re_remove_device(rdev, BNXT_RE_PRE_RECOVERY_REMOVE, rdev->adev);
exit:
mutex_unlock(&bnxt_re_mutex);
rtnl_lock();
return;
}
static void bnxt_re_start(void *handle)
{
rtnl_unlock();
mutex_lock(&bnxt_re_mutex);
if (bnxt_re_handle_start((struct auxiliary_device *)handle))
pr_err("Failed to start RoCE device");
mutex_unlock(&bnxt_re_mutex);
rtnl_lock();
return;
}
static void bnxt_re_shutdown(void *p)
{
struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(p);
struct bnxt_re_dev *rdev;
if (!en_info) {
pr_err("Shutdown, bad en_info\n");
return;
}
rtnl_unlock();
mutex_lock(&bnxt_re_mutex);
rdev = en_info->rdev;
if (!rdev || !bnxt_re_is_rdev_valid(rdev))
goto exit;
bnxt_re_stopqps_and_ib_uninit(rdev);
bnxt_re_remove_device(rdev, BNXT_RE_COMPLETE_REMOVE, rdev->adev);
exit:
mutex_unlock(&bnxt_re_mutex);
rtnl_lock();
return;
}
static void bnxt_re_stop_irq(void *handle)
{
struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle);
struct bnxt_qplib_rcfw *rcfw = NULL;
struct bnxt_re_dev *rdev;
struct bnxt_qplib_nq *nq;
int indx;
if (!en_info) {
pr_err("Stop irq, bad en_info\n");
return;
}
rdev = en_info->rdev;
if (!rdev)
return;
rcfw = &rdev->rcfw;
for (indx = 0; indx < rdev->nqr.max_init; indx++) {
nq = &rdev->nqr.nq[indx];
mutex_lock(&nq->lock);
bnxt_qplib_nq_stop_irq(nq, false);
mutex_unlock(&nq->lock);
}
if (test_bit(BNXT_RE_FLAG_ALLOC_RCFW, &rdev->flags))
bnxt_qplib_rcfw_stop_irq(rcfw, false);
}
static void bnxt_re_start_irq(void *handle, struct bnxt_msix_entry *ent)
{
struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(handle);
struct bnxt_msix_entry *msix_ent = NULL;
struct bnxt_qplib_rcfw *rcfw = NULL;
struct bnxt_re_dev *rdev;
struct bnxt_qplib_nq *nq;
int indx, rc, vec;
if (!en_info) {
pr_err("Start irq, bad en_info\n");
return;
}
rdev = en_info->rdev;
if (!rdev)
return;
if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
return;
msix_ent = rdev->nqr.msix_entries;
rcfw = &rdev->rcfw;
if (!ent) {
dev_err(rdev_to_dev(rdev), "Failed to re-start IRQs\n");
return;
}
for (indx = 0; indx < rdev->nqr.num_msix; indx++)
rdev->nqr.msix_entries[indx].vector = ent[indx].vector;
if (test_bit(BNXT_RE_FLAG_ALLOC_RCFW, &rdev->flags)) {
rc = bnxt_qplib_rcfw_start_irq(rcfw, msix_ent[BNXT_RE_AEQ_IDX].vector,
false);
if (rc) {
dev_warn(rdev_to_dev(rdev),
"Failed to reinit CREQ\n");
return;
}
}
for (indx = 0 ; indx < rdev->nqr.max_init; indx++) {
nq = &rdev->nqr.nq[indx];
vec = indx + 1;
rc = bnxt_qplib_nq_start_irq(nq, indx, msix_ent[vec].vector,
false);
if (rc) {
dev_warn(rdev_to_dev(rdev),
"Failed to reinit NQ index %d\n", indx);
return;
}
}
}
static struct bnxt_ulp_ops bnxt_re_ulp_ops = {
.ulp_async_notifier = bnxt_re_async_notifier,
.ulp_stop = bnxt_re_stop,
.ulp_start = bnxt_re_start,
.ulp_shutdown = bnxt_re_shutdown,
.ulp_irq_stop = bnxt_re_stop_irq,
.ulp_irq_restart = bnxt_re_start_irq,
};
static inline const char *bnxt_re_netevent(unsigned long event)
{
BNXT_RE_NETDEV_EVENT(event, NETDEV_UP);
BNXT_RE_NETDEV_EVENT(event, NETDEV_DOWN);
BNXT_RE_NETDEV_EVENT(event, NETDEV_CHANGE);
BNXT_RE_NETDEV_EVENT(event, NETDEV_REGISTER);
BNXT_RE_NETDEV_EVENT(event, NETDEV_UNREGISTER);
BNXT_RE_NETDEV_EVENT(event, NETDEV_CHANGEADDR);
return "Unknown";
}
static void bnxt_re_unregister_netdev(struct bnxt_re_dev *rdev)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
int rc;
rtnl_lock();
rc = en_dev->en_ops->bnxt_unregister_device(rdev->en_dev,
BNXT_ROCE_ULP);
rtnl_unlock();
if (rc)
dev_err(rdev_to_dev(rdev), "netdev %p unregister failed! rc = 0x%x",
rdev->en_dev->net, rc);
clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
}
static int bnxt_re_register_netdev(struct bnxt_re_dev *rdev)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
int rc = 0;
rtnl_lock();
rc = en_dev->en_ops->bnxt_register_device(en_dev,
BNXT_ROCE_ULP,
&bnxt_re_ulp_ops,
rdev->adev);
rtnl_unlock();
if (rc) {
dev_err(rdev_to_dev(rdev), "netdev %p register failed! rc = 0x%x",
rdev->netdev, rc);
return rc;
}
return rc;
}
static void bnxt_re_set_db_offset(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_chip_ctx *cctx;
struct bnxt_en_dev *en_dev;
struct bnxt_qplib_res *res;
u32 l2db_len = 0;
u32 offset = 0;
u32 barlen;
int rc;
res = &rdev->qplib_res;
en_dev = rdev->en_dev;
cctx = rdev->chip_ctx;
rc = bnxt_re_hwrm_qcfg(rdev, &l2db_len, &offset);
if (rc)
dev_info(rdev_to_dev(rdev),
"Couldn't get DB bar size, Low latency framework is disabled\n");
if (_is_chip_p7(cctx))
res->dpi_tbl.ucreg.offset = offset;
else
res->dpi_tbl.ucreg.offset = res->is_vf ? BNXT_QPLIB_DBR_VF_DB_OFFSET :
BNXT_QPLIB_DBR_PF_DB_OFFSET;
res->dpi_tbl.wcreg.offset = res->dpi_tbl.ucreg.offset;
barlen = pci_resource_len(res->pdev, RCFW_DBR_PCI_BAR_REGION);
if (cctx->modes.db_push && l2db_len && en_dev->l2_db_size != barlen) {
res->dpi_tbl.wcreg.offset = en_dev->l2_db_size;
dev_info(rdev_to_dev(rdev),
"Low latency framework is enabled\n");
}
return;
}
static void bnxt_re_set_drv_mode(struct bnxt_re_dev *rdev, u8 mode)
{
struct bnxt_qplib_chip_ctx *cctx;
struct bnxt_en_dev *en_dev;
en_dev = rdev->en_dev;
cctx = rdev->chip_ctx;
cctx->modes.wqe_mode = _is_chip_gen_p5_p7(rdev->chip_ctx) ?
mode : BNXT_QPLIB_WQE_MODE_STATIC;
cctx->modes.te_bypass = false;
if (bnxt_re_hwrm_qcaps(rdev))
dev_err(rdev_to_dev(rdev),
"Failed to query hwrm qcaps\n");
if (_is_chip_p7(rdev->chip_ctx) && cctx->modes.db_push) {
if (rdev->is_virtfn || BNXT_EN_NPAR(en_dev))
cctx->modes.db_push = false;
}
rdev->roce_mode = en_dev->flags & BNXT_EN_FLAG_ROCE_CAP;
dev_dbg(rdev_to_dev(rdev),
"RoCE is supported on the device - caps:0x%x",
rdev->roce_mode);
if (!_is_chip_gen_p5_p7(rdev->chip_ctx))
rdev->roce_mode = BNXT_RE_FLAG_ROCEV2_CAP;
cctx->hw_stats_size = en_dev->hw_ring_stats_size;
}
static void bnxt_re_destroy_chip_ctx(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_chip_ctx *chip_ctx;
struct bnxt_qplib_res *res;
if (!rdev->chip_ctx)
return;
res = &rdev->qplib_res;
bnxt_qplib_unmap_db_bar(res);
kfree(res->hctx);
res->rcfw = NULL;
kfree(rdev->dev_attr);
rdev->dev_attr = NULL;
chip_ctx = rdev->chip_ctx;
rdev->chip_ctx = NULL;
res->cctx = NULL;
res->hctx = NULL;
res->pdev = NULL;
res->netdev = NULL;
kfree(chip_ctx);
}
static int bnxt_re_setup_chip_ctx(struct bnxt_re_dev *rdev, u8 wqe_mode)
{
struct bnxt_qplib_chip_ctx *chip_ctx;
struct bnxt_en_dev *en_dev;
int rc;
en_dev = rdev->en_dev;
rdev->qplib_res.pdev = en_dev->pdev;
rdev->qplib_res.netdev = rdev->netdev;
rdev->qplib_res.en_dev = en_dev;
chip_ctx = kzalloc(sizeof(*chip_ctx), GFP_KERNEL);
if (!chip_ctx)
return -ENOMEM;
rdev->chip_ctx = chip_ctx;
rdev->qplib_res.cctx = chip_ctx;
rc = bnxt_re_query_hwrm_intf_version(rdev);
if (rc)
goto fail;
rdev->dev_attr = kzalloc(sizeof(*rdev->dev_attr), GFP_KERNEL);
if (!rdev->dev_attr) {
rc = -ENOMEM;
goto fail;
}
rdev->qplib_res.dattr = rdev->dev_attr;
rdev->qplib_res.rcfw = &rdev->rcfw;
rdev->qplib_res.is_vf = rdev->is_virtfn;
rdev->qplib_res.hctx = kzalloc(sizeof(*rdev->qplib_res.hctx),
GFP_KERNEL);
if (!rdev->qplib_res.hctx) {
rc = -ENOMEM;
goto fail;
}
bnxt_re_set_drv_mode(rdev, wqe_mode);
bnxt_re_set_db_offset(rdev);
rc = bnxt_qplib_map_db_bar(&rdev->qplib_res);
if (rc)
goto fail;
rc = bnxt_qplib_enable_atomic_ops_to_root(en_dev->pdev);
if (rc)
dev_dbg(rdev_to_dev(rdev),
"platform doesn't support global atomics");
return 0;
fail:
kfree(rdev->chip_ctx);
rdev->chip_ctx = NULL;
kfree(rdev->dev_attr);
rdev->dev_attr = NULL;
kfree(rdev->qplib_res.hctx);
rdev->qplib_res.hctx = NULL;
return rc;
}
static u16 bnxt_re_get_rtype(struct bnxt_re_dev *rdev) {
return _is_chip_gen_p5_p7(rdev->chip_ctx) ?
HWRM_RING_ALLOC_INPUT_RING_TYPE_NQ :
HWRM_RING_ALLOC_INPUT_RING_TYPE_ROCE_CMPL;
}
static int bnxt_re_net_ring_free(struct bnxt_re_dev *rdev, u16 fw_ring_id)
{
int rc = -EINVAL;
struct hwrm_ring_free_input req = {0};
struct hwrm_ring_free_output resp;
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct bnxt_fw_msg fw_msg;
if (!en_dev)
return rc;
if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
return 0;
if (fw_ring_id == 0xffff)
return 0;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req, HWRM_RING_FREE, -1, -1);
req.ring_type = bnxt_re_get_rtype(rdev);
req.ring_id = cpu_to_le16(fw_ring_id);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to free HW ring with rc = 0x%x", rc);
return rc;
}
dev_dbg(rdev_to_dev(rdev), "HW ring freed with id = 0x%x\n",
fw_ring_id);
return rc;
}
static int bnxt_re_net_ring_alloc(struct bnxt_re_dev *rdev,
struct bnxt_re_ring_attr *ring_attr,
u16 *fw_ring_id)
{
int rc = -EINVAL;
struct hwrm_ring_alloc_input req = {0};
struct hwrm_ring_alloc_output resp;
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct bnxt_fw_msg fw_msg;
if (!en_dev)
return rc;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req, HWRM_RING_ALLOC, -1, -1);
req.flags = cpu_to_le16(ring_attr->flags);
req.enables = 0;
req.page_tbl_addr = cpu_to_le64(ring_attr->dma_arr[0]);
if (ring_attr->pages > 1) {
req.page_size = BNXT_PAGE_SHIFT;
req.page_tbl_depth = 1;
} else {
req.page_size = 4;
req.page_tbl_depth = 0;
}
req.fbo = 0;
req.logical_id = cpu_to_le16(ring_attr->lrid);
req.length = cpu_to_le32(ring_attr->depth + 1);
req.ring_type = ring_attr->type;
req.int_mode = ring_attr->mode;
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to allocate HW ring with rc = 0x%x", rc);
return rc;
}
*fw_ring_id = le16_to_cpu(resp.ring_id);
dev_dbg(rdev_to_dev(rdev),
"HW ring allocated with id = 0x%x at slot 0x%x",
resp.ring_id, ring_attr->lrid);
return rc;
}
static int bnxt_re_net_stats_ctx_free(struct bnxt_re_dev *rdev,
u32 fw_stats_ctx_id, u16 tid)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_stat_ctx_free_input req = {0};
struct hwrm_stat_ctx_free_output resp;
struct bnxt_fw_msg fw_msg;
int rc = -EINVAL;
if (!en_dev)
return rc;
if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
return 0;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req, HWRM_STAT_CTX_FREE, -1, tid);
req.stat_ctx_id = cpu_to_le32(fw_stats_ctx_id);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to free HW stats ctx with rc = 0x%x", rc);
return rc;
}
dev_dbg(rdev_to_dev(rdev),
"HW stats ctx freed with id = 0x%x", fw_stats_ctx_id);
return rc;
}
static int bnxt_re_net_stats_ctx_alloc(struct bnxt_re_dev *rdev, u16 tid)
{
struct hwrm_stat_ctx_alloc_output resp = {};
struct hwrm_stat_ctx_alloc_input req = {};
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct bnxt_qplib_stats *stat;
struct bnxt_qplib_ctx *hctx;
struct bnxt_fw_msg fw_msg;
int rc = 0;
hctx = rdev->qplib_res.hctx;
stat = (tid == 0xffff) ? &hctx->stats : &hctx->stats2;
stat->fw_id = INVALID_STATS_CTX_ID;
if (!en_dev)
return -EINVAL;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_STAT_CTX_ALLOC, -1, tid);
req.update_period_ms = cpu_to_le32(1000);
req.stats_dma_length = rdev->chip_ctx->hw_stats_size;
req.stats_dma_addr = cpu_to_le64(stat->dma_map);
req.stat_ctx_flags = HWRM_STAT_CTX_ALLOC_INPUT_STAT_CTX_FLAGS_ROCE;
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to allocate HW stats ctx, rc = 0x%x", rc);
return rc;
}
stat->fw_id = le32_to_cpu(resp.stat_ctx_id);
dev_dbg(rdev_to_dev(rdev), "HW stats ctx allocated with id = 0x%x",
stat->fw_id);
return rc;
}
static void bnxt_re_net_unregister_async_event(struct bnxt_re_dev *rdev)
{
const struct bnxt_en_ops *en_ops;
if (rdev->is_virtfn ||
test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
return;
memset(rdev->event_bitmap, 0, sizeof(rdev->event_bitmap));
en_ops = rdev->en_dev->en_ops;
if (en_ops->bnxt_register_fw_async_events
(rdev->en_dev, BNXT_ROCE_ULP,
(unsigned long *)rdev->event_bitmap,
HWRM_ASYNC_EVENT_CMPL_EVENT_ID_DOORBELL_PACING_NQ_UPDATE))
dev_err(rdev_to_dev(rdev),
"Failed to unregister async event");
}
static void bnxt_re_net_register_async_event(struct bnxt_re_dev *rdev)
{
const struct bnxt_en_ops *en_ops;
if (rdev->is_virtfn)
return;
rdev->event_bitmap[0] |=
BIT(HWRM_ASYNC_EVENT_CMPL_EVENT_ID_DCB_CONFIG_CHANGE) |
BIT(HWRM_ASYNC_EVENT_CMPL_EVENT_ID_RESET_NOTIFY);
rdev->event_bitmap[2] |=
BIT(HWRM_ASYNC_EVENT_CMPL_EVENT_ID_ERROR_REPORT - 64);
rdev->event_bitmap[2] |=
BIT(HWRM_ASYNC_EVENT_CMPL_EVENT_ID_DOORBELL_PACING_THRESHOLD - 64) |
BIT(HWRM_ASYNC_EVENT_CMPL_EVENT_ID_DOORBELL_PACING_NQ_UPDATE - 64);
en_ops = rdev->en_dev->en_ops;
if (en_ops->bnxt_register_fw_async_events
(rdev->en_dev, BNXT_ROCE_ULP,
(unsigned long *)rdev->event_bitmap,
HWRM_ASYNC_EVENT_CMPL_EVENT_ID_DOORBELL_PACING_NQ_UPDATE))
dev_err(rdev_to_dev(rdev),
"Failed to reg Async event");
}
static int bnxt_re_query_hwrm_intf_version(struct bnxt_re_dev *rdev)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_ver_get_output resp = {0};
struct hwrm_ver_get_input req = {0};
struct bnxt_qplib_chip_ctx *cctx;
struct bnxt_fw_msg fw_msg;
int rc = 0;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_VER_GET, -1, -1);
req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
req.hwrm_intf_min = HWRM_VERSION_MINOR;
req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to query HW version, rc = 0x%x", rc);
return rc;
}
cctx = rdev->chip_ctx;
cctx->hwrm_intf_ver = (u64) le16_to_cpu(resp.hwrm_intf_major) << 48 |
(u64) le16_to_cpu(resp.hwrm_intf_minor) << 32 |
(u64) le16_to_cpu(resp.hwrm_intf_build) << 16 |
le16_to_cpu(resp.hwrm_intf_patch);
cctx->hwrm_cmd_max_timeout = le16_to_cpu(resp.max_req_timeout);
if (!cctx->hwrm_cmd_max_timeout)
cctx->hwrm_cmd_max_timeout = RCFW_FW_STALL_MAX_TIMEOUT;
cctx->chip_num = le16_to_cpu(resp.chip_num);
cctx->chip_rev = resp.chip_rev;
cctx->chip_metal = resp.chip_metal;
return 0;
}
static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len,
u32 *offset)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_func_qcfg_output resp = {0};
struct hwrm_func_qcfg_input req = {0};
struct bnxt_fw_msg fw_msg;
int rc;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_FUNC_QCFG, -1, -1);
req.fid = cpu_to_le16(0xffff);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to query config, rc = %#x", rc);
return rc;
}
*db_len = PAGE_ALIGN(le16_to_cpu(resp.l2_doorbell_bar_size_kb) * 1024);
*offset = PAGE_ALIGN(le16_to_cpu(resp.legacy_l2_db_size_kb) * 1024);
return 0;
}
int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_func_qcaps_output resp = {0};
struct hwrm_func_qcaps_input req = {0};
struct bnxt_qplib_chip_ctx *cctx;
struct bnxt_fw_msg fw_msg;
u8 push_enable = false;
int rc;
cctx = rdev->chip_ctx;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_FUNC_QCAPS, -1, -1);
req.fid = cpu_to_le16(0xffff);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to query capabilities, rc = %#x", rc);
return rc;
}
if (_is_chip_p7(rdev->chip_ctx))
push_enable =
(resp.flags_ext &
HWRM_FUNC_QCAPS_OUTPUT_FLAGS_EXT_PPP_PUSH_MODE_SUPPORTED) ?
true : false;
else
push_enable =
(resp.flags & HWRM_FUNC_QCAPS_OUTPUT_FLAGS_WCB_PUSH_MODE) ?
true : false;
cctx->modes.db_push = push_enable;
cctx->modes.dbr_pacing =
resp.flags_ext & HWRM_FUNC_QCAPS_OUTPUT_FLAGS_EXT_DBR_PACING_SUPPORTED ?
true : false;
cctx->modes.dbr_pacing_ext =
resp.flags_ext2 &
HWRM_FUNC_QCAPS_OUTPUT_FLAGS_EXT2_DBR_PACING_EXT_SUPPORTED ?
true : false;
cctx->modes.dbr_drop_recov =
(resp.flags_ext2 &
HWRM_FUNC_QCAPS_OUTPUT_FLAGS_EXT2_SW_DBR_DROP_RECOVERY_SUPPORTED) ?
true : false;
cctx->modes.dbr_pacing_v0 =
(resp.flags_ext2 &
HWRM_FUNC_QCAPS_OUTPUT_FLAGS_EXT2_DBR_PACING_V0_SUPPORTED) ?
true : false;
dev_dbg(rdev_to_dev(rdev),
"%s: cctx->modes.dbr_pacing = %d cctx->modes.dbr_pacing_ext = %d, dbr_drop_recov %d\n",
__func__, cctx->modes.dbr_pacing, cctx->modes.dbr_pacing_ext, cctx->modes.dbr_drop_recov);
return 0;
}
static int bnxt_re_hwrm_dbr_pacing_qcfg(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data;
struct hwrm_func_dbr_pacing_qcfg_output resp = {0};
struct hwrm_func_dbr_pacing_qcfg_input req = {0};
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct bnxt_qplib_chip_ctx *cctx;
struct bnxt_fw_msg fw_msg;
u32 primary_nq_id;
int rc;
cctx = rdev->chip_ctx;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_FUNC_DBR_PACING_QCFG, -1, -1);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), BNXT_RE_HWRM_CMD_TIMEOUT(rdev));
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc) {
dev_dbg(rdev_to_dev(rdev),
"Failed to query dbr pacing config, rc = %#x", rc);
return rc;
}
primary_nq_id = le32_to_cpu(resp.primary_nq_id);
if (primary_nq_id == 0xffffffff &&
!bnxt_qplib_dbr_pacing_ext_en(rdev->chip_ctx)) {
dev_err(rdev_to_dev(rdev), "%s:%d Invoke bnxt_qplib_dbr_pacing_set_primary_pf with 1\n",
__func__, __LINE__);
bnxt_qplib_dbr_pacing_set_primary_pf(rdev->chip_ctx, 1);
}
if (bnxt_qplib_dbr_pacing_ext_en(rdev->chip_ctx)) {
struct bnxt_qplib_nq *nq;
nq = &rdev->nqr.nq[0];
if (nq->ring_id != primary_nq_id)
bnxt_qplib_dbr_pacing_set_primary_pf(rdev->chip_ctx, 0);
}
if ((resp.dbr_stat_db_fifo_reg &
HWRM_FUNC_DBR_PACING_QCFG_OUTPUT_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK) ==
HWRM_FUNC_DBR_PACING_QCFG_OUTPUT_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_GRC)
cctx->dbr_stat_db_fifo =
resp.dbr_stat_db_fifo_reg &
~HWRM_FUNC_DBR_PACING_QCFG_OUTPUT_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK;
if ((resp.dbr_throttling_aeq_arm_reg &
HWRM_FUNC_DBR_PACING_QCFG_OUTPUT_DBR_THROTTLING_AEQ_ARM_REG_ADDR_SPACE_MASK)
== HWRM_FUNC_DBR_PACING_QCFG_OUTPUT_DBR_THROTTLING_AEQ_ARM_REG_ADDR_SPACE_GRC) {
cctx->dbr_aeq_arm_reg = resp.dbr_throttling_aeq_arm_reg &
~HWRM_FUNC_DBR_PACING_QCFG_OUTPUT_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK;
cctx->dbr_throttling_reg = cctx->dbr_aeq_arm_reg - 4;
}
pacing_data->fifo_max_depth = le32_to_cpu(resp.dbr_stat_db_max_fifo_depth);
if (!pacing_data->fifo_max_depth)
pacing_data->fifo_max_depth = BNXT_RE_MAX_FIFO_DEPTH(cctx);
pacing_data->fifo_room_mask = le32_to_cpu(resp.dbr_stat_db_fifo_reg_fifo_room_mask);
pacing_data->fifo_room_shift = resp.dbr_stat_db_fifo_reg_fifo_room_shift;
dev_dbg(rdev_to_dev(rdev),
"%s: nq:0x%x primary_pf:%d db_fifo:0x%x aeq_arm:0x%x i"
"fifo_max_depth 0x%x , resp.dbr_stat_db_max_fifo_depth 0x%x);\n",
__func__, resp.primary_nq_id, cctx->modes.dbr_primary_pf,
cctx->dbr_stat_db_fifo, cctx->dbr_aeq_arm_reg,
pacing_data->fifo_max_depth,
le32_to_cpu(resp.dbr_stat_db_max_fifo_depth));
return 0;
}
static int bnxt_re_hwrm_dbr_pacing_cfg(struct bnxt_re_dev *rdev, bool enable)
{
struct hwrm_func_dbr_pacing_cfg_output resp = {0};
struct hwrm_func_dbr_pacing_cfg_input req = {0};
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct bnxt_fw_msg fw_msg;
int rc;
if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
return 0;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_FUNC_DBR_PACING_CFG, -1, -1);
if (enable) {
req.flags = HWRM_FUNC_DBR_PACING_CFG_INPUT_FLAGS_DBR_NQ_EVENT_ENABLE;
req.enables =
cpu_to_le32(HWRM_FUNC_DBR_PACING_CFG_INPUT_ENABLES_PRIMARY_NQ_ID_VALID |
HWRM_FUNC_DBR_PACING_CFG_INPUT_ENABLES_PACING_THRESHOLD_VALID);
} else {
req.flags = HWRM_FUNC_DBR_PACING_CFG_INPUT_FLAGS_DBR_NQ_EVENT_DISABLE;
}
req.primary_nq_id = cpu_to_le32(rdev->dbq_nq_id);
req.pacing_threshold = cpu_to_le32(rdev->dbq_watermark);
dev_dbg(rdev_to_dev(rdev), "%s: nq_id = 0x%x pacing_threshold = 0x%x",
__func__, req.primary_nq_id, req.pacing_threshold);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), BNXT_RE_HWRM_CMD_TIMEOUT(rdev));
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc) {
dev_dbg(rdev_to_dev(rdev),
"Failed to set dbr pacing config, rc = %#x", rc);
return rc;
}
return 0;
}
struct bnxt_re_dev *bnxt_re_from_netdev(struct ifnet *netdev)
{
struct bnxt_re_dev *rdev;
rcu_read_lock();
list_for_each_entry_rcu(rdev, &bnxt_re_dev_list, list) {
if (rdev->netdev == netdev) {
rcu_read_unlock();
dev_dbg(rdev_to_dev(rdev),
"netdev (%p) found, ref_count = 0x%x",
netdev, atomic_read(&rdev->ref_count));
return rdev;
}
}
rcu_read_unlock();
return NULL;
}
static ssize_t show_rev(struct device *device, struct device_attribute *attr,
char *buf)
{
struct bnxt_re_dev *rdev = to_bnxt_re_dev(device, ibdev.dev);
return scnprintf(buf, PAGE_SIZE, "0x%x\n", rdev->en_dev->pdev->vendor);
}
static ssize_t show_hca(struct device *device, struct device_attribute *attr,
char *buf)
{
struct bnxt_re_dev *rdev = to_bnxt_re_dev(device, ibdev.dev);
return scnprintf(buf, PAGE_SIZE, "%s\n", rdev->ibdev.node_desc);
}
static DEVICE_ATTR(hw_rev, 0444, show_rev, NULL);
static DEVICE_ATTR(hca_type, 0444, show_hca, NULL);
static struct device_attribute *bnxt_re_attributes[] = {
&dev_attr_hw_rev,
&dev_attr_hca_type
};
int ib_register_device_compat(struct bnxt_re_dev *rdev)
{
struct ib_device *ibdev = &rdev->ibdev;
char name[IB_DEVICE_NAME_MAX];
memset(name, 0, IB_DEVICE_NAME_MAX);
strlcpy(name, "bnxt_re%d", IB_DEVICE_NAME_MAX);
strlcpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
return ib_register_device(ibdev, NULL);
}
static int bnxt_re_register_ib(struct bnxt_re_dev *rdev)
{
struct ib_device *ibdev = &rdev->ibdev;
int ret = 0;
ibdev->owner = THIS_MODULE;
ibdev->uverbs_abi_ver = BNXT_RE_ABI_VERSION;
ibdev->node_type = RDMA_NODE_IB_CA;
strlcpy(ibdev->node_desc, BNXT_RE_DESC " HCA",
strlen(BNXT_RE_DESC) + 5);
ibdev->phys_port_cnt = 1;
bnxt_qplib_get_guid(rdev->dev_addr, (u8 *)&ibdev->node_guid);
ibdev->num_comp_vectors = rdev->nqr.num_msix - 1;
bnxt_re_set_dma_device(ibdev, rdev);
ibdev->local_dma_lkey = BNXT_QPLIB_RSVD_LKEY;
ibdev->uverbs_cmd_mask =
(1ull << IB_USER_VERBS_CMD_GET_CONTEXT) |
(1ull << IB_USER_VERBS_CMD_QUERY_DEVICE) |
(1ull << IB_USER_VERBS_CMD_QUERY_PORT) |
(1ull << IB_USER_VERBS_CMD_ALLOC_PD) |
(1ull << IB_USER_VERBS_CMD_DEALLOC_PD) |
(1ull << IB_USER_VERBS_CMD_REG_MR) |
(1ull << IB_USER_VERBS_CMD_DEREG_MR) |
(1ull << IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
(1ull << IB_USER_VERBS_CMD_CREATE_CQ) |
(1ull << IB_USER_VERBS_CMD_DESTROY_CQ) |
(1ull << IB_USER_VERBS_CMD_CREATE_QP) |
(1ull << IB_USER_VERBS_CMD_MODIFY_QP) |
(1ull << IB_USER_VERBS_CMD_QUERY_QP) |
(1ull << IB_USER_VERBS_CMD_DESTROY_QP) |
(1ull << IB_USER_VERBS_CMD_REREG_MR) |
(1ull << IB_USER_VERBS_CMD_RESIZE_CQ) |
(1ull << IB_USER_VERBS_CMD_CREATE_SRQ) |
(1ull << IB_USER_VERBS_CMD_MODIFY_SRQ) |
(1ull << IB_USER_VERBS_CMD_QUERY_SRQ) |
(1ull << IB_USER_VERBS_CMD_DESTROY_SRQ) |
(1ull << IB_USER_VERBS_CMD_ALLOC_MW) |
(1ull << IB_USER_VERBS_CMD_DEALLOC_MW) |
(1ull << IB_USER_VERBS_CMD_CREATE_AH) |
(1ull << IB_USER_VERBS_CMD_MODIFY_AH) |
(1ull << IB_USER_VERBS_CMD_QUERY_AH) |
(1ull << IB_USER_VERBS_CMD_DESTROY_AH);
ibdev->uverbs_ex_cmd_mask = (1ull << IB_USER_VERBS_EX_CMD_MODIFY_QP);
ibdev->uverbs_cmd_mask |= (1ull << IB_USER_VERBS_CMD_POLL_CQ);
#define bnxt_re_ib_ah bnxt_re_ah
#define bnxt_re_ib_cq bnxt_re_cq
#define bnxt_re_ib_pd bnxt_re_pd
#define bnxt_re_ib_srq bnxt_re_srq
#define bnxt_re_ib_ucontext bnxt_re_ucontext
INIT_IB_DEVICE_OPS(&ibdev->ops, bnxt_re, BNXT_RE);
ibdev->query_device = bnxt_re_query_device;
ibdev->modify_device = bnxt_re_modify_device;
ibdev->query_port = bnxt_re_query_port;
ibdev->modify_port = bnxt_re_modify_port;
ibdev->get_port_immutable = bnxt_re_get_port_immutable;
ibdev->query_pkey = bnxt_re_query_pkey;
ibdev->query_gid = bnxt_re_query_gid;
ibdev->get_netdev = bnxt_re_get_netdev;
ibdev->add_gid = bnxt_re_add_gid;
ibdev->del_gid = bnxt_re_del_gid;
ibdev->get_link_layer = bnxt_re_get_link_layer;
ibdev->alloc_pd = bnxt_re_alloc_pd;
ibdev->dealloc_pd = bnxt_re_dealloc_pd;
ibdev->create_ah = bnxt_re_create_ah;
ibdev->modify_ah = bnxt_re_modify_ah;
ibdev->query_ah = bnxt_re_query_ah;
ibdev->destroy_ah = bnxt_re_destroy_ah;
ibdev->create_srq = bnxt_re_create_srq;
ibdev->modify_srq = bnxt_re_modify_srq;
ibdev->query_srq = bnxt_re_query_srq;
ibdev->destroy_srq = bnxt_re_destroy_srq;
ibdev->post_srq_recv = bnxt_re_post_srq_recv;
ibdev->create_qp = bnxt_re_create_qp;
ibdev->modify_qp = bnxt_re_modify_qp;
ibdev->query_qp = bnxt_re_query_qp;
ibdev->destroy_qp = bnxt_re_destroy_qp;
ibdev->post_send = bnxt_re_post_send;
ibdev->post_recv = bnxt_re_post_recv;
ibdev->create_cq = bnxt_re_create_cq;
ibdev->modify_cq = bnxt_re_modify_cq;
ibdev->destroy_cq = bnxt_re_destroy_cq;
ibdev->resize_cq = bnxt_re_resize_cq;
ibdev->poll_cq = bnxt_re_poll_cq;
ibdev->req_notify_cq = bnxt_re_req_notify_cq;
ibdev->get_dma_mr = bnxt_re_get_dma_mr;
ibdev->get_hw_stats = bnxt_re_get_hw_stats;
ibdev->alloc_hw_stats = bnxt_re_alloc_hw_port_stats;
ibdev->dereg_mr = bnxt_re_dereg_mr;
ibdev->alloc_mr = bnxt_re_alloc_mr;
ibdev->map_mr_sg = bnxt_re_map_mr_sg;
ibdev->alloc_mw = bnxt_re_alloc_mw;
ibdev->dealloc_mw = bnxt_re_dealloc_mw;
ibdev->reg_user_mr = bnxt_re_reg_user_mr;
ibdev->rereg_user_mr = bnxt_re_rereg_user_mr;
ibdev->disassociate_ucontext = bnxt_re_disassociate_ucntx;
ibdev->alloc_ucontext = bnxt_re_alloc_ucontext;
ibdev->dealloc_ucontext = bnxt_re_dealloc_ucontext;
ibdev->mmap = bnxt_re_mmap;
ibdev->process_mad = bnxt_re_process_mad;
ret = ib_register_device_compat(rdev);
return ret;
}
static void bnxt_re_dev_dealloc(struct bnxt_re_dev *rdev)
{
int i = BNXT_RE_REF_WAIT_COUNT;
dev_dbg(rdev_to_dev(rdev), "%s:Remove the device %p\n", __func__, rdev);
while ((atomic_read(&rdev->ref_count) > 1) && i--)
msleep(100);
if (atomic_read(&rdev->ref_count) > 1)
dev_err(rdev_to_dev(rdev),
"Failed waiting for ref count to deplete %d",
atomic_read(&rdev->ref_count));
atomic_set(&rdev->ref_count, 0);
if_rele(rdev->netdev);
rdev->netdev = NULL;
synchronize_rcu();
kfree(rdev->gid_map);
kfree(rdev->dbg_stats);
ib_dealloc_device(&rdev->ibdev);
}
static struct bnxt_re_dev *bnxt_re_dev_alloc(struct ifnet *netdev,
struct bnxt_en_dev *en_dev)
{
struct bnxt_re_dev *rdev;
u32 count;
rdev = (struct bnxt_re_dev *)compat_ib_alloc_device(sizeof(*rdev));
if (!rdev) {
pr_err("%s: bnxt_re_dev allocation failure!",
ROCE_DRV_MODULE_NAME);
return NULL;
}
atomic_set(&rdev->ref_count, 0);
rdev->netdev = netdev;
dev_hold(rdev->netdev);
rdev->en_dev = en_dev;
rdev->id = rdev->en_dev->pdev->devfn;
INIT_LIST_HEAD(&rdev->qp_list);
mutex_init(&rdev->qp_lock);
mutex_init(&rdev->cc_lock);
mutex_init(&rdev->dbq_lock);
bnxt_re_clear_rsors_stat(&rdev->stats.rsors);
rdev->cosq[0] = rdev->cosq[1] = 0xFFFF;
rdev->min_tx_depth = 1;
rdev->stats.stats_query_sec = 1;
rdev->cc_param.disable_prio_vlan_tx = 1;
INIT_WORK(&rdev->dbq_fifo_check_work, bnxt_re_db_fifo_check);
INIT_DELAYED_WORK(&rdev->dbq_pacing_work, bnxt_re_pacing_timer_exp);
rdev->gid_map = kzalloc(sizeof(*(rdev->gid_map)) *
BNXT_RE_MAX_SGID_ENTRIES,
GFP_KERNEL);
if (!rdev->gid_map) {
ib_dealloc_device(&rdev->ibdev);
return NULL;
}
for(count = 0; count < BNXT_RE_MAX_SGID_ENTRIES; count++)
rdev->gid_map[count] = -1;
rdev->dbg_stats = kzalloc(sizeof(*rdev->dbg_stats), GFP_KERNEL);
if (!rdev->dbg_stats) {
ib_dealloc_device(&rdev->ibdev);
return NULL;
}
return rdev;
}
static int bnxt_re_handle_unaffi_async_event(
struct creq_func_event *unaffi_async)
{
switch (unaffi_async->event) {
case CREQ_FUNC_EVENT_EVENT_TX_WQE_ERROR:
case CREQ_FUNC_EVENT_EVENT_TX_DATA_ERROR:
case CREQ_FUNC_EVENT_EVENT_RX_WQE_ERROR:
case CREQ_FUNC_EVENT_EVENT_RX_DATA_ERROR:
case CREQ_FUNC_EVENT_EVENT_CQ_ERROR:
case CREQ_FUNC_EVENT_EVENT_TQM_ERROR:
case CREQ_FUNC_EVENT_EVENT_CFCQ_ERROR:
case CREQ_FUNC_EVENT_EVENT_CFCS_ERROR:
case CREQ_FUNC_EVENT_EVENT_CFCC_ERROR:
case CREQ_FUNC_EVENT_EVENT_CFCM_ERROR:
case CREQ_FUNC_EVENT_EVENT_TIM_ERROR:
break;
default:
return -EINVAL;
}
return 0;
}
static int bnxt_re_handle_qp_async_event(void *qp_event, struct bnxt_re_qp *qp)
{
struct creq_qp_error_notification *err_event;
struct ib_event event;
unsigned int flags;
if (qp->qplib_qp.state == CMDQ_MODIFY_QP_NEW_STATE_ERR &&
!qp->qplib_qp.is_user) {
flags = bnxt_re_lock_cqs(qp);
bnxt_qplib_add_flush_qp(&qp->qplib_qp);
bnxt_re_unlock_cqs(qp, flags);
}
memset(&event, 0, sizeof(event));
event.device = &qp->rdev->ibdev;
event.element.qp = &qp->ib_qp;
event.event = IB_EVENT_QP_FATAL;
err_event = qp_event;
switch(err_event->res_err_state_reason) {
case CFCQ_RES_ERR_STATE_REASON_RES_EXCEED_MAX:
case CFCQ_RES_ERR_STATE_REASON_RES_PAYLOAD_LENGTH_MISMATCH:
case CFCQ_RES_ERR_STATE_REASON_RES_OPCODE_ERROR:
case CFCQ_RES_ERR_STATE_REASON_RES_PSN_SEQ_ERROR_RETRY_LIMIT:
case CFCQ_RES_ERR_STATE_REASON_RES_RX_INVALID_R_KEY:
case CFCQ_RES_ERR_STATE_REASON_RES_RX_DOMAIN_ERROR:
case CFCQ_RES_ERR_STATE_REASON_RES_RX_NO_PERMISSION:
case CFCQ_RES_ERR_STATE_REASON_RES_RX_RANGE_ERROR:
case CFCQ_RES_ERR_STATE_REASON_RES_TX_INVALID_R_KEY:
case CFCQ_RES_ERR_STATE_REASON_RES_TX_DOMAIN_ERROR:
case CFCQ_RES_ERR_STATE_REASON_RES_TX_NO_PERMISSION:
case CFCQ_RES_ERR_STATE_REASON_RES_TX_RANGE_ERROR:
case CFCQ_RES_ERR_STATE_REASON_RES_IVALID_DUP_RKEY:
case CFCQ_RES_ERR_STATE_REASON_RES_UNALIGN_ATOMIC:
event.event = IB_EVENT_QP_ACCESS_ERR;
break;
case CFCQ_RES_ERR_STATE_REASON_RES_EXCEEDS_WQE:
case CFCQ_RES_ERR_STATE_REASON_RES_WQE_FORMAT_ERROR:
case CFCQ_RES_ERR_STATE_REASON_RES_SRQ_LOAD_ERROR:
case CFCQ_RES_ERR_STATE_REASON_RES_UNSUPPORTED_OPCODE:
case CFCQ_RES_ERR_STATE_REASON_RES_REM_INVALIDATE:
event.event = IB_EVENT_QP_REQ_ERR;
break;
case CFCQ_RES_ERR_STATE_REASON_RES_IRRQ_OFLOW:
case CFCQ_RES_ERR_STATE_REASON_RES_CMP_ERROR:
case CFCQ_RES_ERR_STATE_REASON_RES_CQ_LOAD_ERROR:
case CFCQ_RES_ERR_STATE_REASON_RES_TX_PCI_ERROR:
case CFCQ_RES_ERR_STATE_REASON_RES_RX_PCI_ERROR:
case CFCQ_RES_ERR_STATE_REASON_RES_MEMORY_ERROR:
case CFCQ_RES_ERR_STATE_REASON_RES_SRQ_ERROR:
event.event = IB_EVENT_QP_FATAL;
break;
default:
if (qp->qplib_qp.srq)
event.event = IB_EVENT_QP_LAST_WQE_REACHED;
break;
}
if (err_event->res_err_state_reason)
dev_err(rdev_to_dev(qp->rdev),
"%s %s qp_id: %d cons (%d %d) req (%d %d) res (%d %d)\n",
__func__, qp->qplib_qp.is_user ? "user" : "kernel",
qp->qplib_qp.id,
err_event->sq_cons_idx,
err_event->rq_cons_idx,
err_event->req_slow_path_state,
err_event->req_err_state_reason,
err_event->res_slow_path_state,
err_event->res_err_state_reason);
if (event.device && qp->ib_qp.event_handler)
qp->ib_qp.event_handler(&event, qp->ib_qp.qp_context);
return 0;
}
static int bnxt_re_handle_cq_async_error(void *event, struct bnxt_re_cq *cq)
{
struct creq_cq_error_notification *cqerr;
bool send = false;
cqerr = event;
switch (cqerr->cq_err_reason) {
case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_INVALID_ERROR:
case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_OVERFLOW_ERROR:
case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_REQ_CQ_LOAD_ERROR:
case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_INVALID_ERROR:
case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_OVERFLOW_ERROR:
case CREQ_CQ_ERROR_NOTIFICATION_CQ_ERR_REASON_RES_CQ_LOAD_ERROR:
send = true;
default:
break;
}
if (send && cq->ibcq.event_handler) {
struct ib_event ibevent = {};
ibevent.event = IB_EVENT_CQ_ERR;
ibevent.element.cq = &cq->ibcq;
ibevent.device = &cq->rdev->ibdev;
dev_err(rdev_to_dev(cq->rdev),
"%s err reason %d\n", __func__, cqerr->cq_err_reason);
cq->ibcq.event_handler(&ibevent, cq->ibcq.cq_context);
}
cq->qplib_cq.is_cq_err_event = true;
return 0;
}
static int bnxt_re_handle_affi_async_event(struct creq_qp_event *affi_async,
void *obj)
{
struct bnxt_qplib_qp *qplqp;
struct bnxt_qplib_cq *qplcq;
struct bnxt_re_qp *qp;
struct bnxt_re_cq *cq;
int rc = 0;
u8 event;
if (!obj)
return rc;
event = affi_async->event;
switch (event) {
case CREQ_QP_EVENT_EVENT_QP_ERROR_NOTIFICATION:
qplqp = obj;
qp = container_of(qplqp, struct bnxt_re_qp, qplib_qp);
rc = bnxt_re_handle_qp_async_event(affi_async, qp);
break;
case CREQ_QP_EVENT_EVENT_CQ_ERROR_NOTIFICATION:
qplcq = obj;
cq = container_of(qplcq, struct bnxt_re_cq, qplib_cq);
rc = bnxt_re_handle_cq_async_error(affi_async, cq);
break;
default:
rc = -EINVAL;
}
return rc;
}
static int bnxt_re_aeq_handler(struct bnxt_qplib_rcfw *rcfw,
void *aeqe, void *obj)
{
struct creq_func_event *unaffi_async;
struct creq_qp_event *affi_async;
u8 type;
int rc;
type = ((struct creq_base *)aeqe)->type;
if (type == CREQ_BASE_TYPE_FUNC_EVENT) {
unaffi_async = aeqe;
rc = bnxt_re_handle_unaffi_async_event(unaffi_async);
} else {
affi_async = aeqe;
rc = bnxt_re_handle_affi_async_event(affi_async, obj);
}
return rc;
}
static int bnxt_re_srqn_handler(struct bnxt_qplib_nq *nq,
struct bnxt_qplib_srq *handle, u8 event)
{
struct bnxt_re_srq *srq = to_bnxt_re(handle, struct bnxt_re_srq,
qplib_srq);
struct ib_event ib_event;
if (srq == NULL) {
pr_err("%s: SRQ is NULL, SRQN not handled",
ROCE_DRV_MODULE_NAME);
return -EINVAL;
}
ib_event.device = &srq->rdev->ibdev;
ib_event.element.srq = &srq->ibsrq;
if (event == NQ_SRQ_EVENT_EVENT_SRQ_THRESHOLD_EVENT)
ib_event.event = IB_EVENT_SRQ_LIMIT_REACHED;
else
ib_event.event = IB_EVENT_SRQ_ERR;
if (srq->ibsrq.event_handler) {
(*srq->ibsrq.event_handler)(&ib_event,
srq->ibsrq.srq_context);
}
return 0;
}
static int bnxt_re_cqn_handler(struct bnxt_qplib_nq *nq,
struct bnxt_qplib_cq *handle)
{
struct bnxt_re_cq *cq = to_bnxt_re(handle, struct bnxt_re_cq,
qplib_cq);
u32 *cq_ptr;
if (cq == NULL) {
pr_err("%s: CQ is NULL, CQN not handled",
ROCE_DRV_MODULE_NAME);
return -EINVAL;
}
if (handle->destroyed || !atomic_read(&cq->ibcq.usecnt)) {
if (!handle->destroyed)
dev_dbg(NULL, "%s: CQ being destroyed, CQN not handled",
ROCE_DRV_MODULE_NAME);
return 0;
}
if (cq->ibcq.comp_handler) {
if (cq->uctx_cq_page) {
cq_ptr = (u32 *)cq->uctx_cq_page;
*cq_ptr = cq->qplib_cq.toggle;
}
(*cq->ibcq.comp_handler)(&cq->ibcq, cq->ibcq.cq_context);
}
return 0;
}
struct bnxt_qplib_nq *bnxt_re_get_nq(struct bnxt_re_dev *rdev)
{
int min, indx;
mutex_lock(&rdev->nqr.load_lock);
for (indx = 0, min = 0; indx < (rdev->nqr.num_msix - 1); indx++) {
if (rdev->nqr.nq[min].load > rdev->nqr.nq[indx].load)
min = indx;
}
rdev->nqr.nq[min].load++;
mutex_unlock(&rdev->nqr.load_lock);
return &rdev->nqr.nq[min];
}
void bnxt_re_put_nq(struct bnxt_re_dev *rdev, struct bnxt_qplib_nq *nq)
{
mutex_lock(&rdev->nqr.load_lock);
nq->load--;
mutex_unlock(&rdev->nqr.load_lock);
}
static bool bnxt_re_check_min_attr(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_dev_attr *attr;
bool rc = true;
attr = rdev->dev_attr;
if (!attr->max_cq || !attr->max_qp ||
!attr->max_sgid || !attr->max_mr) {
dev_err(rdev_to_dev(rdev),"Insufficient RoCE resources");
dev_dbg(rdev_to_dev(rdev),
"max_cq = %d, max_qp = %d, max_dpi = %d, max_sgid = %d, max_mr = %d",
attr->max_cq, attr->max_qp, attr->max_dpi,
attr->max_sgid, attr->max_mr);
rc = false;
}
return rc;
}
static void bnxt_re_dispatch_event(struct ib_device *ibdev, struct ib_qp *qp,
u8 port_num, enum ib_event_type event)
{
struct ib_event ib_event;
ib_event.device = ibdev;
if (qp) {
ib_event.element.qp = qp;
ib_event.event = event;
if (qp->event_handler)
qp->event_handler(&ib_event, qp->qp_context);
} else {
ib_event.element.port_num = port_num;
ib_event.event = event;
ib_dispatch_event(&ib_event);
}
dev_dbg(rdev_to_dev(to_bnxt_re_dev(ibdev, ibdev)),
"ibdev %p Event 0x%x port_num 0x%x", ibdev, event, port_num);
}
static bool bnxt_re_is_qp1_or_shadow_qp(struct bnxt_re_dev *rdev,
struct bnxt_re_qp *qp)
{
if (rdev->gsi_ctx.gsi_qp_mode == BNXT_RE_GSI_MODE_ALL)
return (qp->ib_qp.qp_type == IB_QPT_GSI) ||
(qp == rdev->gsi_ctx.gsi_sqp);
else
return (qp->ib_qp.qp_type == IB_QPT_GSI);
}
static void bnxt_re_stop_all_nonqp1_nonshadow_qps(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_qp *qpl_qp;
bool dev_detached = false;
struct ib_qp_attr qp_attr;
int num_qps_stopped = 0;
int mask = IB_QP_STATE;
struct bnxt_re_qp *qp;
unsigned long flags;
if (!rdev)
return;
restart:
if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags))
dev_detached = true;
qp_attr.qp_state = IB_QPS_ERR;
mutex_lock(&rdev->qp_lock);
list_for_each_entry(qp, &rdev->qp_list, list) {
qpl_qp = &qp->qplib_qp;
if (dev_detached || !bnxt_re_is_qp1_or_shadow_qp(rdev, qp)) {
if (qpl_qp->state !=
CMDQ_MODIFY_QP_NEW_STATE_RESET &&
qpl_qp->state !=
CMDQ_MODIFY_QP_NEW_STATE_ERR) {
if (dev_detached) {
qpl_qp->state =
CMDQ_MODIFY_QP_NEW_STATE_ERR;
qpl_qp->cur_qp_state = qpl_qp->state;
if (!qpl_qp->is_user) {
flags = bnxt_re_lock_cqs(qp);
bnxt_qplib_add_flush_qp(qpl_qp);
bnxt_re_unlock_cqs(qp, flags);
}
} else {
num_qps_stopped++;
bnxt_re_modify_qp(&qp->ib_qp,
&qp_attr, mask,
NULL);
}
bnxt_re_dispatch_event(&rdev->ibdev, &qp->ib_qp,
1, IB_EVENT_QP_FATAL);
if (num_qps_stopped % BNXT_RE_STOP_QPS_BUDGET == 0) {
mutex_unlock(&rdev->qp_lock);
goto restart;
}
}
}
}
mutex_unlock(&rdev->qp_lock);
}
static int bnxt_re_update_gid(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_sgid_tbl *sgid_tbl = &rdev->qplib_res.sgid_tbl;
struct bnxt_qplib_gid gid;
u16 gid_idx, index;
int rc = 0;
if (!test_bit(BNXT_RE_FLAG_IBDEV_REGISTERED, &rdev->flags))
return 0;
if (sgid_tbl == NULL) {
dev_err(rdev_to_dev(rdev), "QPLIB: SGID table not allocated");
return -EINVAL;
}
for (index = 0; index < sgid_tbl->active; index++) {
gid_idx = sgid_tbl->hw_id[index];
if (!memcmp(&sgid_tbl->tbl[index], &bnxt_qplib_gid_zero,
sizeof(bnxt_qplib_gid_zero)))
continue;
if (sgid_tbl->vlan[index] == true)
continue;
memcpy(&gid, &sgid_tbl->tbl[index], sizeof(gid));
rc = bnxt_qplib_update_sgid(sgid_tbl, &gid, gid_idx,
rdev->dev_addr);
}
return rc;
}
static void bnxt_re_clear_cc(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_cc_param *cc_param = &rdev->cc_param;
if (_is_chip_p7(rdev->chip_ctx)) {
cc_param->mask = CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_DSCP;
} else {
cc_param->mask = (CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_CC_MODE |
CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ENABLE_CC |
CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_ECN);
if (!is_qport_service_type_supported(rdev))
cc_param->mask |=
(CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ALT_VLAN_PCP |
CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ALT_TOS_DSCP |
CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_DSCP);
}
cc_param->cur_mask = cc_param->mask;
if (bnxt_qplib_modify_cc(&rdev->qplib_res, cc_param))
dev_err(rdev_to_dev(rdev), "Failed to modify cc\n");
}
static int bnxt_re_setup_cc(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_cc_param *cc_param = &rdev->cc_param;
int rc;
if (_is_chip_p7(rdev->chip_ctx)) {
cc_param->enable = 0x0;
cc_param->mask = CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_DSCP;
} else {
cc_param->enable = 0x1;
cc_param->mask = (CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_CC_MODE |
CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ENABLE_CC |
CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_ECN);
if (!is_qport_service_type_supported(rdev))
cc_param->mask |=
(CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ALT_VLAN_PCP |
CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ALT_TOS_DSCP |
CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_DSCP);
}
cc_param->cur_mask = cc_param->mask;
rc = bnxt_qplib_modify_cc(&rdev->qplib_res, cc_param);
if (rc) {
dev_err(rdev_to_dev(rdev), "Failed to modify cc\n");
return rc;
}
cc_param->mask = 0;
if (cc_param->qp1_tos_dscp != cc_param->tos_dscp) {
cc_param->qp1_tos_dscp = cc_param->tos_dscp;
rc = bnxt_re_update_qp1_tos_dscp(rdev);
if (rc) {
dev_err(rdev_to_dev(rdev), "%s:Failed to modify QP1:%d",
__func__, rc);
goto clear;
}
}
return 0;
clear:
bnxt_re_clear_cc(rdev);
return rc;
}
int bnxt_re_query_hwrm_dscp2pri(struct bnxt_re_dev *rdev,
struct bnxt_re_dscp2pri *d2p, u16 *count,
u16 target_id)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_queue_dscp2pri_qcfg_input req;
struct hwrm_queue_dscp2pri_qcfg_output resp;
struct bnxt_re_dscp2pri *dscp2pri;
struct bnxt_fw_msg fw_msg;
u16 in_count = *count;
dma_addr_t dma_handle;
int rc = 0, i;
u16 data_len;
u8 *kmem;
data_len = *count * sizeof(*dscp2pri);
memset(&fw_msg, 0, sizeof(fw_msg));
memset(&req, 0, sizeof(req));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_QUEUE_DSCP2PRI_QCFG, -1, target_id);
req.port_id = (target_id == 0xFFFF) ? en_dev->pf_port_id : 1;
kmem = dma_zalloc_coherent(&en_dev->pdev->dev, data_len, &dma_handle,
GFP_KERNEL);
if (!kmem) {
dev_err(rdev_to_dev(rdev),
"dma_zalloc_coherent failure, length = %u\n",
(unsigned)data_len);
return -ENOMEM;
}
req.dest_data_addr = cpu_to_le64(dma_handle);
req.dest_data_buffer_size = cpu_to_le16(data_len);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc)
goto out;
dscp2pri = (struct bnxt_re_dscp2pri *)kmem;
for (i = 0; i < le16_to_cpu(resp.entry_cnt) && i < in_count; i++) {
d2p[i].dscp = dscp2pri->dscp;
d2p[i].mask = dscp2pri->mask;
d2p[i].pri = dscp2pri->pri;
dscp2pri++;
}
*count = le16_to_cpu(resp.entry_cnt);
out:
dma_free_coherent(&en_dev->pdev->dev, data_len, kmem, dma_handle);
return rc;
}
int bnxt_re_prio_vlan_tx_update(struct bnxt_re_dev *rdev)
{
if (rdev->cc_param.disable_prio_vlan_tx)
rdev->qplib_res.prio = false;
else
rdev->qplib_res.prio = true;
return bnxt_re_update_gid(rdev);
}
int bnxt_re_set_hwrm_dscp2pri(struct bnxt_re_dev *rdev,
struct bnxt_re_dscp2pri *d2p, u16 count,
u16 target_id)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_queue_dscp2pri_cfg_input req;
struct hwrm_queue_dscp2pri_cfg_output resp;
struct bnxt_fw_msg fw_msg;
struct bnxt_re_dscp2pri *dscp2pri;
int i, rc, data_len = 3 * 256;
dma_addr_t dma_handle;
u8 *kmem;
memset(&req, 0, sizeof(req));
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_QUEUE_DSCP2PRI_CFG, -1, target_id);
req.port_id = (target_id == 0xFFFF) ? en_dev->pf_port_id : 1;
kmem = dma_alloc_coherent(&en_dev->pdev->dev, data_len, &dma_handle,
GFP_KERNEL);
if (!kmem) {
dev_err(rdev_to_dev(rdev),
"dma_alloc_coherent failure, length = %u\n",
(unsigned)data_len);
return -ENOMEM;
}
req.src_data_addr = cpu_to_le64(dma_handle);
dscp2pri = (struct bnxt_re_dscp2pri *)kmem;
for (i = 0; i < count; i++) {
dscp2pri->dscp = d2p[i].dscp;
dscp2pri->mask = d2p[i].mask;
dscp2pri->pri = d2p[i].pri;
dscp2pri++;
}
req.entry_cnt = cpu_to_le16(count);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
dma_free_coherent(&en_dev->pdev->dev, data_len, kmem, dma_handle);
return rc;
}
int bnxt_re_query_hwrm_qportcfg(struct bnxt_re_dev *rdev,
struct bnxt_re_tc_rec *tc_rec, u16 tid)
{
u8 max_tc, tc, *qptr, *type_ptr0, *type_ptr1;
struct hwrm_queue_qportcfg_output resp = {0};
struct hwrm_queue_qportcfg_input req = {0};
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct bnxt_fw_msg fw_msg;
bool def_init = false;
u8 *tmp_type;
u8 cos_id;
int rc;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req, HWRM_QUEUE_QPORTCFG,
-1, tid);
req.port_id = (tid == 0xFFFF) ? en_dev->pf_port_id : 1;
if (BNXT_EN_ASYM_Q(en_dev))
req.flags = htole32(HWRM_QUEUE_QPORTCFG_INPUT_FLAGS_PATH_RX);
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc)
return rc;
if (!resp.max_configurable_queues)
return -EINVAL;
max_tc = resp.max_configurable_queues;
tc_rec->max_tc = max_tc;
if (resp.queue_cfg_info & HWRM_QUEUE_QPORTCFG_OUTPUT_QUEUE_CFG_INFO_USE_PROFILE_TYPE)
tc_rec->serv_type_enabled = true;
qptr = &resp.queue_id0;
type_ptr0 = &resp.queue_id0_service_profile_type;
type_ptr1 = &resp.queue_id1_service_profile_type;
for (tc = 0; tc < max_tc; tc++) {
tmp_type = tc ? type_ptr1 + (tc - 1) : type_ptr0;
cos_id = *qptr++;
if (is_bnxt_roce_queue(rdev, *qptr, *tmp_type)) {
tc_rec->cos_id_roce = cos_id;
tc_rec->tc_roce = tc;
} else if (is_bnxt_cnp_queue(rdev, *qptr, *tmp_type)) {
tc_rec->cos_id_cnp = cos_id;
tc_rec->tc_cnp = tc;
} else if (!def_init) {
def_init = true;
tc_rec->tc_def = tc;
tc_rec->cos_id_def = cos_id;
}
qptr++;
}
return rc;
}
int bnxt_re_hwrm_cos2bw_qcfg(struct bnxt_re_dev *rdev, u16 target_id,
struct bnxt_re_cos2bw_cfg *cfg)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_queue_cos2bw_qcfg_output resp;
struct hwrm_queue_cos2bw_qcfg_input req = {0};
struct bnxt_fw_msg fw_msg;
int rc, indx;
void *data;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_QUEUE_COS2BW_QCFG, -1, target_id);
req.port_id = (target_id == 0xFFFF) ? en_dev->pf_port_id : 1;
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
if (rc)
return rc;
data = &resp.queue_id0 + offsetof(struct bnxt_re_cos2bw_cfg,
queue_id);
for (indx = 0; indx < 8; indx++, data += (sizeof(cfg->cfg))) {
memcpy(&cfg->cfg, data, sizeof(cfg->cfg));
if (indx == 0)
cfg->queue_id = resp.queue_id0;
cfg++;
}
return rc;
}
int bnxt_re_hwrm_cos2bw_cfg(struct bnxt_re_dev *rdev, u16 target_id,
struct bnxt_re_cos2bw_cfg *cfg)
{
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct hwrm_queue_cos2bw_cfg_input req = {0};
struct hwrm_queue_cos2bw_cfg_output resp = {0};
struct bnxt_fw_msg fw_msg;
void *data;
int indx;
int rc;
memset(&fw_msg, 0, sizeof(fw_msg));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_QUEUE_COS2BW_CFG, -1, target_id);
req.port_id = (target_id == 0xFFFF) ? en_dev->pf_port_id : 1;
for (indx = 0; indx < 8; indx++) {
if (cfg[indx].queue_id < 40) {
req.enables |= cpu_to_le32(
HWRM_QUEUE_COS2BW_CFG_INPUT_ENABLES_COS_QUEUE_ID0_VALID <<
indx);
}
data = (char *)&req.unused_0 + indx * (sizeof(*cfg) - 4);
memcpy(data, &cfg[indx].queue_id, sizeof(*cfg) - 4);
if (indx == 0) {
req.queue_id0 = cfg[0].queue_id;
req.unused_0 = 0;
}
}
memset(&resp, 0, sizeof(resp));
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
return rc;
}
int bnxt_re_host_pf_id_query(struct bnxt_re_dev *rdev,
struct bnxt_qplib_query_fn_info *fn_info,
u32 *pf_mask, u32 *first_pf)
{
struct hwrm_func_host_pf_ids_query_output resp = {0};
struct hwrm_func_host_pf_ids_query_input req;
struct bnxt_en_dev *en_dev = rdev->en_dev;
struct bnxt_fw_msg fw_msg;
int rc;
memset(&fw_msg, 0, sizeof(fw_msg));
memset(&req, 0, sizeof(req));
bnxt_re_init_hwrm_hdr(rdev, (void *)&req,
HWRM_FUNC_HOST_PF_IDS_QUERY, -1, -1);
switch (fn_info->host) {
case HWRM_FUNC_HOST_PF_IDS_QUERY_INPUT_HOST_SOC:
case HWRM_FUNC_HOST_PF_IDS_QUERY_INPUT_HOST_EP_0:
case HWRM_FUNC_HOST_PF_IDS_QUERY_INPUT_HOST_EP_1:
case HWRM_FUNC_HOST_PF_IDS_QUERY_INPUT_HOST_EP_2:
case HWRM_FUNC_HOST_PF_IDS_QUERY_INPUT_HOST_EP_3:
req.host = fn_info->host;
break;
default:
req.host = HWRM_FUNC_HOST_PF_IDS_QUERY_INPUT_HOST_EP_0;
break;
}
req.filter = fn_info->filter;
if (req.filter > HWRM_FUNC_HOST_PF_IDS_QUERY_INPUT_FILTER_ROCE)
req.filter = HWRM_FUNC_HOST_PF_IDS_QUERY_INPUT_FILTER_ALL;
bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp,
sizeof(resp), DFLT_HWRM_CMD_TIMEOUT);
rc = en_dev->en_ops->bnxt_send_fw_msg(en_dev, BNXT_ROCE_ULP, &fw_msg);
*first_pf = le16_to_cpu(resp.first_pf_id);
*pf_mask = le16_to_cpu(resp.pf_ordinal_mask);
return rc;
}
static void bnxt_re_put_stats_ctx(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_ctx *hctx;
struct bnxt_qplib_res *res;
u16 tid = 0xffff;
res = &rdev->qplib_res;
hctx = res->hctx;
if (test_and_clear_bit(BNXT_RE_FLAG_STATS_CTX_ALLOC, &rdev->flags)) {
bnxt_re_net_stats_ctx_free(rdev, hctx->stats.fw_id, tid);
bnxt_qplib_free_stat_mem(res, &hctx->stats);
}
}
static void bnxt_re_put_stats2_ctx(struct bnxt_re_dev *rdev)
{
test_and_clear_bit(BNXT_RE_FLAG_STATS_CTX2_ALLOC, &rdev->flags);
}
static int bnxt_re_get_stats_ctx(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_ctx *hctx;
struct bnxt_qplib_res *res;
u16 tid = 0xffff;
int rc;
res = &rdev->qplib_res;
hctx = res->hctx;
rc = bnxt_qplib_alloc_stat_mem(res->pdev, rdev->chip_ctx, &hctx->stats);
if (rc)
return -ENOMEM;
rc = bnxt_re_net_stats_ctx_alloc(rdev, tid);
if (rc)
goto free_stat_mem;
set_bit(BNXT_RE_FLAG_STATS_CTX_ALLOC, &rdev->flags);
return 0;
free_stat_mem:
bnxt_qplib_free_stat_mem(res, &hctx->stats);
return rc;
}
static int bnxt_re_update_dev_attr(struct bnxt_re_dev *rdev)
{
int rc;
rc = bnxt_qplib_get_dev_attr(&rdev->rcfw);
if (rc)
return rc;
if (!bnxt_re_check_min_attr(rdev))
return -EINVAL;
return 0;
}
static void bnxt_re_free_tbls(struct bnxt_re_dev *rdev)
{
bnxt_qplib_clear_tbls(&rdev->qplib_res);
bnxt_qplib_free_tbls(&rdev->qplib_res);
}
static int bnxt_re_alloc_init_tbls(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_chip_ctx *chip_ctx = rdev->chip_ctx;
u8 pppp_factor = 0;
int rc;
if (_is_chip_p7(chip_ctx) && chip_ctx->modes.db_push)
pppp_factor = rdev->en_dev->port_count;
rc = bnxt_qplib_alloc_tbls(&rdev->qplib_res, pppp_factor);
if (rc)
return rc;
bnxt_qplib_init_tbls(&rdev->qplib_res);
set_bit(BNXT_RE_FLAG_TBLS_ALLOCINIT, &rdev->flags);
return 0;
}
static void bnxt_re_clean_nqs(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_nq *nq;
int i;
if (!rdev->nqr.max_init)
return;
for (i = (rdev->nqr.max_init - 1) ; i >= 0; i--) {
nq = &rdev->nqr.nq[i];
bnxt_qplib_disable_nq(nq);
bnxt_re_net_ring_free(rdev, nq->ring_id);
bnxt_qplib_free_nq_mem(nq);
}
rdev->nqr.max_init = 0;
}
static int bnxt_re_setup_nqs(struct bnxt_re_dev *rdev)
{
struct bnxt_re_ring_attr rattr = {};
struct bnxt_qplib_nq *nq;
int rc, i;
int depth;
u32 offt;
u16 vec;
mutex_init(&rdev->nqr.load_lock);
depth = BNXT_QPLIB_NQE_MAX_CNT;
for (i = 0; i < rdev->nqr.num_msix - 1; i++) {
nq = &rdev->nqr.nq[i];
vec = rdev->nqr.msix_entries[i + 1].vector;
offt = rdev->nqr.msix_entries[i + 1].db_offset;
nq->hwq.max_elements = depth;
rc = bnxt_qplib_alloc_nq_mem(&rdev->qplib_res, nq);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to get mem for NQ %d, rc = 0x%x",
i, rc);
goto fail_mem;
}
rattr.dma_arr = nq->hwq.pbl[PBL_LVL_0].pg_map_arr;
rattr.pages = nq->hwq.pbl[rdev->nqr.nq[i].hwq.level].pg_count;
rattr.type = bnxt_re_get_rtype(rdev);
rattr.mode = HWRM_RING_ALLOC_INPUT_INT_MODE_MSIX;
rattr.depth = nq->hwq.max_elements - 1;
rattr.lrid = rdev->nqr.msix_entries[i + 1].ring_idx;
if (!i && bnxt_qplib_dbr_pacing_ext_en(rdev->chip_ctx))
rattr.flags = HWRM_RING_ALLOC_INPUT_FLAGS_NQ_DBR_PACING;
else
rattr.flags = 0;
rc = bnxt_re_net_ring_alloc(rdev, &rattr, &nq->ring_id);
if (rc) {
nq->ring_id = 0xffff;
dev_err(rdev_to_dev(rdev),
"Failed to get fw id for NQ %d, rc = 0x%x",
i, rc);
goto fail_ring;
}
rc = bnxt_qplib_enable_nq(nq, i, vec, offt,
&bnxt_re_cqn_handler,
&bnxt_re_srqn_handler);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to enable NQ %d, rc = 0x%x", i, rc);
goto fail_en;
}
}
rdev->nqr.max_init = i;
return 0;
fail_en:
bnxt_re_net_ring_free(rdev, nq->ring_id);
fail_ring:
bnxt_qplib_free_nq_mem(nq);
fail_mem:
rdev->nqr.max_init = i;
return rc;
}
static void bnxt_re_sysfs_destroy_file(struct bnxt_re_dev *rdev)
{
int i;
for (i = 0; i < ARRAY_SIZE(bnxt_re_attributes); i++)
device_remove_file(&rdev->ibdev.dev, bnxt_re_attributes[i]);
}
static int bnxt_re_sysfs_create_file(struct bnxt_re_dev *rdev)
{
int i, j, rc = 0;
for (i = 0; i < ARRAY_SIZE(bnxt_re_attributes); i++) {
rc = device_create_file(&rdev->ibdev.dev,
bnxt_re_attributes[i]);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to create IB sysfs with rc = 0x%x", rc);
for (j = 0; j < i; j++)
device_remove_file(&rdev->ibdev.dev,
bnxt_re_attributes[j]);
clear_bit(BNXT_RE_FLAG_IBDEV_REGISTERED, &rdev->flags);
ib_unregister_device(&rdev->ibdev);
return 1;
}
}
return 0;
}
static void bnxt_re_worker(struct work_struct *work)
{
struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev,
worker.work);
int rc;
if (!rdev->is_virtfn && !rdev->worker_30s--)
rdev->worker_30s = 30;
if (mutex_trylock(&bnxt_re_dev_lock))
mutex_unlock(&bnxt_re_dev_lock);
if (!rdev->stats.stats_query_sec)
goto resched;
if (test_bit(BNXT_RE_FLAG_ISSUE_CFA_FLOW_STATS, &rdev->flags) &&
(rdev->is_virtfn ||
!_is_ext_stats_supported(rdev->dev_attr->dev_cap_flags))) {
if (!(rdev->stats.stats_query_counter++ %
rdev->stats.stats_query_sec)) {
rc = bnxt_re_get_qos_stats(rdev);
if (rc && rc != -ENOMEM)
clear_bit(BNXT_RE_FLAG_ISSUE_CFA_FLOW_STATS,
&rdev->flags);
}
}
resched:
schedule_delayed_work(&rdev->worker, msecs_to_jiffies(1000));
}
static int bnxt_re_alloc_dbr_sw_stats_mem(struct bnxt_re_dev *rdev)
{
if (!(rdev->dbr_drop_recov || rdev->dbr_pacing))
return 0;
rdev->dbr_sw_stats = kzalloc(sizeof(*rdev->dbr_sw_stats), GFP_KERNEL);
if (!rdev->dbr_sw_stats)
return -ENOMEM;
return 0;
}
static void bnxt_re_free_dbr_sw_stats_mem(struct bnxt_re_dev *rdev)
{
kfree(rdev->dbr_sw_stats);
rdev->dbr_sw_stats = NULL;
}
static int bnxt_re_initialize_dbr_drop_recov(struct bnxt_re_dev *rdev)
{
rdev->dbr_drop_recov_wq =
create_singlethread_workqueue("bnxt_re_dbr_drop_recov");
if (!rdev->dbr_drop_recov_wq) {
dev_err(rdev_to_dev(rdev), "DBR Drop Revov wq alloc failed!");
return -EINVAL;
}
rdev->dbr_drop_recov = true;
rdev->user_dbr_drop_recov = true;
rdev->user_dbr_drop_recov_timeout = BNXT_RE_DBR_RECOV_USERLAND_TIMEOUT;
return 0;
}
static void bnxt_re_deinitialize_dbr_drop_recov(struct bnxt_re_dev *rdev)
{
if (rdev->dbr_drop_recov_wq) {
flush_workqueue(rdev->dbr_drop_recov_wq);
destroy_workqueue(rdev->dbr_drop_recov_wq);
rdev->dbr_drop_recov_wq = NULL;
}
rdev->dbr_drop_recov = false;
}
static int bnxt_re_initialize_dbr_pacing(struct bnxt_re_dev *rdev)
{
int rc;
rdev->dbr_page = (void *)__get_free_page(GFP_KERNEL);
if (!rdev->dbr_page) {
dev_err(rdev_to_dev(rdev), "DBR page allocation failed!");
return -ENOMEM;
}
memset((u8 *)rdev->dbr_page, 0, PAGE_SIZE);
rdev->qplib_res.pacing_data = (struct bnxt_qplib_db_pacing_data *)rdev->dbr_page;
rc = bnxt_re_hwrm_dbr_pacing_qcfg(rdev);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to query dbr pacing config %d\n", rc);
goto fail;
}
rdev->dbq_wq = create_singlethread_workqueue("bnxt_re_dbq");
if (!rdev->dbq_wq) {
dev_err(rdev_to_dev(rdev), "DBQ wq alloc failed!");
rc = -ENOMEM;
goto fail;
}
writel_fbsd(rdev->en_dev->softc, BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4, 0,
rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_BASE_MASK);
rdev->dbr_db_fifo_reg_off =
(rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_OFFSET_MASK) +
0x2000;
rdev->qplib_res.pacing_data->grc_reg_offset = rdev->dbr_db_fifo_reg_off;
rdev->dbr_bar_addr =
pci_resource_start(rdev->qplib_res.pdev, 0) +
rdev->dbr_db_fifo_reg_off;
rdev->dbq_watermark = BNXT_RE_PACING_DBQ_THRESHOLD;
rdev->pacing_en_int_th = BNXT_RE_PACING_EN_INT_THRESHOLD;
rdev->pacing_algo_th = BNXT_RE_PACING_ALGO_THRESHOLD;
rdev->dbq_pacing_time = BNXT_RE_DBR_INT_TIME;
rdev->dbr_def_do_pacing = BNXT_RE_DBR_DO_PACING_NO_CONGESTION;
rdev->do_pacing_save = rdev->dbr_def_do_pacing;
bnxt_re_set_default_pacing_data(rdev);
dev_dbg(rdev_to_dev(rdev), "Initialized db pacing\n");
return 0;
fail:
free_page((u64)rdev->dbr_page);
rdev->dbr_page = NULL;
return rc;
}
static void bnxt_re_deinitialize_dbr_pacing(struct bnxt_re_dev *rdev)
{
if (rdev->dbq_wq)
flush_workqueue(rdev->dbq_wq);
cancel_work_sync(&rdev->dbq_fifo_check_work);
cancel_delayed_work_sync(&rdev->dbq_pacing_work);
if (rdev->dbq_wq) {
destroy_workqueue(rdev->dbq_wq);
rdev->dbq_wq = NULL;
}
if (rdev->dbr_page)
free_page((u64)rdev->dbr_page);
rdev->dbr_page = NULL;
rdev->dbr_pacing = false;
}
int bnxt_re_enable_dbr_pacing(struct bnxt_re_dev *rdev)
{
struct bnxt_qplib_nq *nq;
nq = &rdev->nqr.nq[0];
rdev->dbq_nq_id = nq->ring_id;
if (!bnxt_qplib_dbr_pacing_ext_en(rdev->chip_ctx) &&
bnxt_qplib_dbr_pacing_is_primary_pf(rdev->chip_ctx)) {
if (bnxt_re_hwrm_dbr_pacing_cfg(rdev, true)) {
dev_err(rdev_to_dev(rdev),
"Failed to set dbr pacing config\n");
return -EIO;
}
writel_fbsd(rdev->en_dev->softc, BNXT_GRCPF_REG_WINDOW_BASE_OUT + 28 , 0,
rdev->chip_ctx->dbr_aeq_arm_reg & BNXT_GRC_BASE_MASK);
rdev->dbr_aeq_arm_reg_off =
(rdev->chip_ctx->dbr_aeq_arm_reg &
BNXT_GRC_OFFSET_MASK) + 0x8000;
writel_fbsd(rdev->en_dev->softc, rdev->dbr_aeq_arm_reg_off , 0, 1);
}
return 0;
}
int bnxt_re_disable_dbr_pacing(struct bnxt_re_dev *rdev)
{
int rc = 0;
if (!bnxt_qplib_dbr_pacing_ext_en(rdev->chip_ctx) &&
bnxt_qplib_dbr_pacing_is_primary_pf(rdev->chip_ctx))
rc = bnxt_re_hwrm_dbr_pacing_cfg(rdev, false);
return rc;
}
static void bnxt_re_ib_uninit(struct bnxt_re_dev *rdev)
{
if (test_bit(BNXT_RE_FLAG_IBDEV_REGISTERED, &rdev->flags)) {
bnxt_re_sysfs_destroy_file(rdev);
ib_unregister_device(&rdev->ibdev);
clear_bit(BNXT_RE_FLAG_IBDEV_REGISTERED, &rdev->flags);
return;
}
}
static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev, u8 op_type)
{
struct bnxt_qplib_dpi *kdpi;
int rc, wait_count = BNXT_RE_RES_FREE_WAIT_COUNT;
bnxt_re_net_unregister_async_event(rdev);
bnxt_re_put_stats2_ctx(rdev);
if (test_and_clear_bit(BNXT_RE_FLAG_DEV_LIST_INITIALIZED,
&rdev->flags)) {
mutex_lock(&bnxt_re_dev_lock);
list_del_rcu(&rdev->list);
mutex_unlock(&bnxt_re_dev_lock);
}
bnxt_re_uninit_resolve_wq(rdev);
bnxt_re_uninit_dcb_wq(rdev);
bnxt_re_uninit_aer_wq(rdev);
bnxt_re_deinitialize_dbr_drop_recov(rdev);
if (bnxt_qplib_dbr_pacing_en(rdev->chip_ctx))
(void)bnxt_re_disable_dbr_pacing(rdev);
if (test_and_clear_bit(BNXT_RE_FLAG_WORKER_REG, &rdev->flags)) {
cancel_delayed_work_sync(&rdev->worker);
}
while (atomic_read(&rdev->stats.rsors.cq_count) && --wait_count)
usleep_range(500, 1000);
if (!wait_count)
dev_err(rdev_to_dev(rdev),
"CQ resources not freed by stack, count = 0x%x",
atomic_read(&rdev->stats.rsors.cq_count));
kdpi = &rdev->dpi_privileged;
if (kdpi->umdbr) {
(void)bnxt_qplib_dealloc_dpi(&rdev->qplib_res, kdpi);
}
rtnl_lock();
if (test_and_clear_bit(BNXT_RE_FLAG_SETUP_NQ, &rdev->flags))
bnxt_re_clean_nqs(rdev);
rtnl_unlock();
if (test_and_clear_bit(BNXT_RE_FLAG_TBLS_ALLOCINIT, &rdev->flags))
bnxt_re_free_tbls(rdev);
if (test_and_clear_bit(BNXT_RE_FLAG_RCFW_CHANNEL_INIT, &rdev->flags)) {
rc = bnxt_qplib_deinit_rcfw(&rdev->rcfw);
if (rc)
dev_warn(rdev_to_dev(rdev),
"Failed to deinitialize fw, rc = 0x%x", rc);
}
bnxt_re_put_stats_ctx(rdev);
if (test_and_clear_bit(BNXT_RE_FLAG_ALLOC_CTX, &rdev->flags))
bnxt_qplib_free_hwctx(&rdev->qplib_res);
rtnl_lock();
if (test_and_clear_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags))
bnxt_qplib_disable_rcfw_channel(&rdev->rcfw);
if (rdev->dbr_pacing)
bnxt_re_deinitialize_dbr_pacing(rdev);
bnxt_re_free_dbr_sw_stats_mem(rdev);
if (test_and_clear_bit(BNXT_RE_FLAG_NET_RING_ALLOC, &rdev->flags))
bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id);
if (test_and_clear_bit(BNXT_RE_FLAG_ALLOC_RCFW, &rdev->flags))
bnxt_qplib_free_rcfw_channel(&rdev->qplib_res);
if (test_and_clear_bit(BNXT_RE_FLAG_GOT_MSIX, &rdev->flags))
bnxt_re_free_msix(rdev);
rtnl_unlock();
bnxt_re_destroy_chip_ctx(rdev);
if (op_type != BNXT_RE_PRE_RECOVERY_REMOVE) {
if (test_and_clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED,
&rdev->flags))
bnxt_re_unregister_netdev(rdev);
}
}
static int bnxt_re_dev_init(struct bnxt_re_dev *rdev, u8 op_type, u8 wqe_mode)
{
struct bnxt_re_ring_attr rattr = {};
struct bnxt_qplib_creq_ctx *creq;
int vec, offset;
int rc = 0;
if (op_type != BNXT_RE_POST_RECOVERY_INIT) {
rc = bnxt_re_register_netdev(rdev);
if (rc)
return -EINVAL;
}
set_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
rc = bnxt_re_setup_chip_ctx(rdev, wqe_mode);
if (rc) {
dev_err(rdev_to_dev(rdev), "Failed to get chip context rc 0x%x", rc);
bnxt_re_unregister_netdev(rdev);
clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags);
rc = -EINVAL;
return rc;
}
rtnl_lock();
rc = bnxt_re_request_msix(rdev);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Requesting MSI-X vectors failed with rc = 0x%x", rc);
rc = -EINVAL;
goto release_rtnl;
}
set_bit(BNXT_RE_FLAG_GOT_MSIX, &rdev->flags);
rc = bnxt_qplib_alloc_rcfw_channel(&rdev->qplib_res);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to alloc mem for rcfw, rc = %#x\n", rc);
goto release_rtnl;
}
set_bit(BNXT_RE_FLAG_ALLOC_RCFW, &rdev->flags);
creq = &rdev->rcfw.creq;
rattr.dma_arr = creq->hwq.pbl[PBL_LVL_0].pg_map_arr;
rattr.pages = creq->hwq.pbl[creq->hwq.level].pg_count;
rattr.type = bnxt_re_get_rtype(rdev);
rattr.mode = HWRM_RING_ALLOC_INPUT_INT_MODE_MSIX;
rattr.depth = BNXT_QPLIB_CREQE_MAX_CNT - 1;
rattr.lrid = rdev->nqr.msix_entries[BNXT_RE_AEQ_IDX].ring_idx;
rc = bnxt_re_net_ring_alloc(rdev, &rattr, &creq->ring_id);
if (rc) {
creq->ring_id = 0xffff;
dev_err(rdev_to_dev(rdev),
"Failed to allocate CREQ fw id with rc = 0x%x", rc);
goto release_rtnl;
}
if (!rdev->chip_ctx)
goto release_rtnl;
if (rdev->chip_ctx->modes.dbr_pacing_v0 ||
bnxt_qplib_dbr_pacing_en(rdev->chip_ctx) ||
bnxt_qplib_dbr_pacing_ext_en(rdev->chip_ctx)) {
rc = bnxt_re_initialize_dbr_pacing(rdev);
if (!rc)
rdev->dbr_pacing = true;
else
rdev->dbr_pacing = false;
dev_dbg(rdev_to_dev(rdev), "%s: initialize db pacing ret %d\n",
__func__, rc);
}
vec = rdev->nqr.msix_entries[BNXT_RE_AEQ_IDX].vector;
offset = rdev->nqr.msix_entries[BNXT_RE_AEQ_IDX].db_offset;
rc = bnxt_qplib_enable_rcfw_channel(&rdev->rcfw, vec, offset,
&bnxt_re_aeq_handler);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to enable RCFW channel with rc = 0x%x", rc);
goto release_rtnl;
}
set_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags);
rc = bnxt_re_update_dev_attr(rdev);
if (rc)
goto release_rtnl;
bnxt_re_set_resource_limits(rdev);
if (!rdev->is_virtfn && !_is_chip_gen_p5_p7(rdev->chip_ctx)) {
rc = bnxt_qplib_alloc_hwctx(&rdev->qplib_res);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to alloc hw contexts, rc = 0x%x", rc);
goto release_rtnl;
}
set_bit(BNXT_RE_FLAG_ALLOC_CTX, &rdev->flags);
}
rc = bnxt_re_get_stats_ctx(rdev);
if (rc)
goto release_rtnl;
rc = bnxt_qplib_init_rcfw(&rdev->rcfw, rdev->is_virtfn);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to initialize fw with rc = 0x%x", rc);
goto release_rtnl;
}
set_bit(BNXT_RE_FLAG_RCFW_CHANNEL_INIT, &rdev->flags);
rc = bnxt_re_update_dev_attr(rdev);
if (rc)
goto release_rtnl;
rc = bnxt_re_alloc_init_tbls(rdev);
if (rc) {
dev_err(rdev_to_dev(rdev), "tbls alloc-init failed rc = %#x",
rc);
goto release_rtnl;
}
rc = bnxt_re_setup_nqs(rdev);
if (rc) {
dev_err(rdev_to_dev(rdev), "NQs alloc-init failed rc = %#x\n",
rc);
if (rdev->nqr.max_init == 0)
goto release_rtnl;
dev_warn(rdev_to_dev(rdev),
"expected nqs %d available nqs %d\n",
rdev->nqr.num_msix, rdev->nqr.max_init);
}
set_bit(BNXT_RE_FLAG_SETUP_NQ, &rdev->flags);
rtnl_unlock();
rc = bnxt_qplib_alloc_dpi(&rdev->qplib_res, &rdev->dpi_privileged,
rdev, BNXT_QPLIB_DPI_TYPE_KERNEL);
if (rc)
goto fail;
if (rdev->dbr_pacing)
bnxt_re_enable_dbr_pacing(rdev);
if (rdev->chip_ctx->modes.dbr_drop_recov)
bnxt_re_initialize_dbr_drop_recov(rdev);
rc = bnxt_re_alloc_dbr_sw_stats_mem(rdev);
if (rc)
goto fail;
if (!rdev->is_virtfn) {
struct bnxt_re_tc_rec *tc_rec;
tc_rec = &rdev->tc_rec[0];
rc = bnxt_re_query_hwrm_qportcfg(rdev, tc_rec, 0xFFFF);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Failed to query port config rc:%d", rc);
return rc;
}
rc = bnxt_qplib_query_cc_param(&rdev->qplib_res, &rdev->cc_param);
if (rc)
dev_warn(rdev_to_dev(rdev),
"Failed to query CC defaults\n");
if (1) {
rdev->num_vfs = pci_num_vf(rdev->en_dev->pdev);
if (rdev->num_vfs) {
bnxt_re_set_resource_limits(rdev);
bnxt_qplib_set_func_resources(&rdev->qplib_res);
}
}
}
INIT_DELAYED_WORK(&rdev->worker, bnxt_re_worker);
set_bit(BNXT_RE_FLAG_WORKER_REG, &rdev->flags);
schedule_delayed_work(&rdev->worker, msecs_to_jiffies(1000));
bnxt_re_init_dcb_wq(rdev);
bnxt_re_init_aer_wq(rdev);
bnxt_re_init_resolve_wq(rdev);
mutex_lock(&bnxt_re_dev_lock);
list_add_tail_rcu(&rdev->list, &bnxt_re_dev_list);
gadd_dev_inprogress--;
set_bit(BNXT_RE_FLAG_DEV_LIST_INITIALIZED, &rdev->flags);
mutex_unlock(&bnxt_re_dev_lock);
return rc;
release_rtnl:
rtnl_unlock();
fail:
bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE);
return rc;
}
static int bnxt_re_ib_init(struct bnxt_re_dev *rdev)
{
int rc = 0;
rc = bnxt_re_register_ib(rdev);
if (rc) {
dev_err(rdev_to_dev(rdev),
"Register IB failed with rc = 0x%x", rc);
goto fail;
}
if (bnxt_re_sysfs_create_file(rdev)) {
bnxt_re_stopqps_and_ib_uninit(rdev);
goto fail;
}
set_bit(BNXT_RE_FLAG_IBDEV_REGISTERED, &rdev->flags);
set_bit(BNXT_RE_FLAG_ISSUE_ROCE_STATS, &rdev->flags);
set_bit(BNXT_RE_FLAG_ISSUE_CFA_FLOW_STATS, &rdev->flags);
bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, IB_EVENT_PORT_ACTIVE);
bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, IB_EVENT_GID_CHANGE);
return rc;
fail:
bnxt_re_dev_uninit(rdev, BNXT_RE_COMPLETE_REMOVE);
return rc;
}
int _bnxt_re_ib_init(struct bnxt_re_dev *rdev)
{
return bnxt_re_ib_init(rdev);
}
int _bnxt_re_ib_init2(struct bnxt_re_dev *rdev)
{
bnxt_re_ib_init_2(rdev);
return 0;
}
static void bnxt_re_dev_unreg(struct bnxt_re_dev *rdev)
{
bnxt_re_dev_dealloc(rdev);
}
static int bnxt_re_dev_reg(struct bnxt_re_dev **rdev, struct ifnet *netdev,
struct bnxt_en_dev *en_dev)
{
struct ifnet *realdev = NULL;
realdev = netdev;
if (realdev)
dev_dbg(NULL, "%s: realdev = %p netdev = %p\n", __func__,
realdev, netdev);
*rdev = bnxt_re_dev_alloc(netdev, en_dev);
if (!*rdev) {
pr_err("%s: netdev %p not handled",
ROCE_DRV_MODULE_NAME, netdev);
return -ENOMEM;
}
bnxt_re_hold(*rdev);
return 0;
}
void bnxt_re_get_link_speed(struct bnxt_re_dev *rdev)
{
rdev->espeed = rdev->en_dev->espeed;
return;
}
void bnxt_re_stopqps_and_ib_uninit(struct bnxt_re_dev *rdev)
{
dev_dbg(rdev_to_dev(rdev), "%s: Stopping QPs, IB uninit on rdev: %p\n",
__func__, rdev);
bnxt_re_stop_all_nonqp1_nonshadow_qps(rdev);
bnxt_re_ib_uninit(rdev);
}
void bnxt_re_remove_device(struct bnxt_re_dev *rdev, u8 op_type,
struct auxiliary_device *aux_dev)
{
struct bnxt_re_en_dev_info *en_info;
struct bnxt_qplib_cmdq_ctx *cmdq;
struct bnxt_qplib_rcfw *rcfw;
rcfw = &rdev->rcfw;
cmdq = &rcfw->cmdq;
if (test_bit(FIRMWARE_STALL_DETECTED, &cmdq->flags))
set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags);
dev_dbg(rdev_to_dev(rdev), "%s: Removing rdev: %p\n", __func__, rdev);
bnxt_re_dev_uninit(rdev, op_type);
en_info = auxiliary_get_drvdata(aux_dev);
if (en_info) {
rtnl_lock();
en_info->rdev = NULL;
rtnl_unlock();
if (op_type != BNXT_RE_PRE_RECOVERY_REMOVE) {
clear_bit(BNXT_RE_FLAG_EN_DEV_PRIMARY_DEV, &en_info->flags);
clear_bit(BNXT_RE_FLAG_EN_DEV_SECONDARY_DEV, &en_info->flags);
clear_bit(BNXT_RE_FLAG_EN_DEV_NETDEV_REG, &en_info->flags);
}
}
bnxt_re_dev_unreg(rdev);
}
int bnxt_re_add_device(struct bnxt_re_dev **rdev,
struct ifnet *netdev,
u8 qp_mode, u8 op_type, u8 wqe_mode,
u32 num_msix_requested,
struct auxiliary_device *aux_dev)
{
struct bnxt_re_en_dev_info *en_info;
struct bnxt_en_dev *en_dev;
int rc = 0;
en_info = auxiliary_get_drvdata(aux_dev);
en_dev = en_info->en_dev;
mutex_lock(&bnxt_re_dev_lock);
if (gmod_exit || !aux_dev) {
mutex_unlock(&bnxt_re_dev_lock);
return -ENODEV;
}
gadd_dev_inprogress++;
mutex_unlock(&bnxt_re_dev_lock);
rc = bnxt_re_dev_reg(rdev, netdev, en_dev);
if (rc) {
dev_dbg(NULL, "Failed to create add device for netdev %p\n",
netdev);
if (op_type != BNXT_RE_POST_RECOVERY_INIT) {
mutex_lock(&bnxt_re_dev_lock);
gadd_dev_inprogress--;
mutex_unlock(&bnxt_re_dev_lock);
}
return rc;
}
if (rc != 0)
goto ref_error;
if (num_msix_requested == BNXT_RE_MSIX_FROM_MOD_PARAM) {
if (bnxt_re_probe_count < BNXT_RE_MAX_DEVICES)
num_msix_requested = max_msix_vec[bnxt_re_probe_count++];
else
num_msix_requested = 0;
if (max_msix_vec_argc == 1)
num_msix_requested = max_msix_vec[0];
}
(*rdev)->num_msix_requested = num_msix_requested;
(*rdev)->gsi_ctx.gsi_qp_mode = qp_mode;
(*rdev)->adev = aux_dev;
(*rdev)->dev_addr = en_dev->softc->func.mac_addr;
rtnl_lock();
en_info->rdev = *rdev;
rtnl_unlock();
rc = bnxt_re_dev_init(*rdev, op_type, wqe_mode);
if (rc) {
ref_error:
bnxt_re_dev_unreg(*rdev);
*rdev = NULL;
if (op_type != BNXT_RE_POST_RECOVERY_INIT) {
mutex_lock(&bnxt_re_dev_lock);
gadd_dev_inprogress--;
mutex_unlock(&bnxt_re_dev_lock);
}
}
dev_dbg(rdev_to_dev(*rdev), "%s: Adding rdev: %p\n", __func__, *rdev);
if (!rc) {
set_bit(BNXT_RE_FLAG_EN_DEV_NETDEV_REG, &en_info->flags);
}
return rc;
}
struct bnxt_re_dev *bnxt_re_get_peer_pf(struct bnxt_re_dev *rdev)
{
struct pci_dev *pdev_in = rdev->en_dev->pdev;
int tmp_bus_num, bus_num = pdev_in->bus->number;
int tmp_dev_num, dev_num = PCI_SLOT(pdev_in->devfn);
int tmp_func_num, func_num = PCI_FUNC(pdev_in->devfn);
struct bnxt_re_dev *tmp_rdev;
rcu_read_lock();
list_for_each_entry_rcu(tmp_rdev, &bnxt_re_dev_list, list) {
tmp_bus_num = tmp_rdev->en_dev->pdev->bus->number;
tmp_dev_num = PCI_SLOT(tmp_rdev->en_dev->pdev->devfn);
tmp_func_num = PCI_FUNC(tmp_rdev->en_dev->pdev->devfn);
if (bus_num == tmp_bus_num && dev_num == tmp_dev_num &&
func_num != tmp_func_num) {
rcu_read_unlock();
return tmp_rdev;
}
}
rcu_read_unlock();
return NULL;
}
int bnxt_re_schedule_work(struct bnxt_re_dev *rdev, unsigned long event,
struct ifnet *vlan_dev,
struct ifnet *netdev,
struct auxiliary_device *adev)
{
struct bnxt_re_work *re_work;
re_work = kzalloc(sizeof(*re_work), GFP_KERNEL);
if (!re_work)
return -ENOMEM;
re_work->rdev = rdev;
re_work->event = event;
re_work->vlan_dev = vlan_dev;
re_work->adev = adev;
INIT_WORK(&re_work->work, bnxt_re_task);
if (rdev)
atomic_inc(&rdev->sched_count);
re_work->netdev = netdev;
queue_work(bnxt_re_wq, &re_work->work);
return 0;
}
int bnxt_re_get_slot_pf_count(struct bnxt_re_dev *rdev)
{
struct pci_dev *pdev_in = rdev->en_dev->pdev;
int tmp_bus_num, bus_num = pdev_in->bus->number;
int tmp_dev_num, dev_num = PCI_SLOT(pdev_in->devfn);
struct bnxt_re_dev *tmp_rdev;
int pf_cnt = 0;
rcu_read_lock();
list_for_each_entry_rcu(tmp_rdev, &bnxt_re_dev_list, list) {
tmp_bus_num = tmp_rdev->en_dev->pdev->bus->number;
tmp_dev_num = PCI_SLOT(tmp_rdev->en_dev->pdev->devfn);
if (bus_num == tmp_bus_num && dev_num == tmp_dev_num)
pf_cnt++;
}
rcu_read_unlock();
return pf_cnt;
}
static void bnxt_re_task(struct work_struct *work)
{
struct bnxt_re_en_dev_info *en_info;
struct auxiliary_device *aux_dev;
struct bnxt_re_work *re_work;
struct bnxt_re_dev *rdev;
re_work = container_of(work, struct bnxt_re_work, work);
mutex_lock(&bnxt_re_mutex);
rdev = re_work->rdev;
if (!bnxt_re_is_rdev_valid(rdev))
goto exit;
if (rdev && !test_bit(BNXT_RE_FLAG_IBDEV_REGISTERED, &rdev->flags)) {
dev_dbg(rdev_to_dev(rdev), "%s: Ignoring netdev event 0x%lx",
__func__, re_work->event);
goto done;
}
if (!rdev)
goto exit;
dev_dbg(rdev_to_dev(rdev), "Scheduled work for event 0x%lx",
re_work->event);
switch (re_work->event) {
case NETDEV_UP:
bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1,
IB_EVENT_PORT_ACTIVE);
bnxt_re_net_register_async_event(rdev);
break;
case NETDEV_DOWN:
bnxt_qplib_dbr_pacing_set_primary_pf(rdev->chip_ctx, 0);
bnxt_re_stop_all_nonqp1_nonshadow_qps(rdev);
bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1,
IB_EVENT_PORT_ERR);
break;
case NETDEV_CHANGE:
if (bnxt_re_get_link_state(rdev) == IB_PORT_DOWN) {
bnxt_re_stop_all_nonqp1_nonshadow_qps(rdev);
bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1,
IB_EVENT_PORT_ERR);
break;
} else if (bnxt_re_get_link_state(rdev) == IB_PORT_ACTIVE) {
bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1,
IB_EVENT_PORT_ACTIVE);
}
if (!bnxt_qplib_query_cc_param(&rdev->qplib_res,
&rdev->cc_param) &&
!_is_chip_p7(rdev->chip_ctx)) {
if (rdev->sl_espeed == SPEED_10000 &&
!_is_chip_gen_p5_p7(rdev->chip_ctx)) {
if (rdev->cc_param.enable)
bnxt_re_clear_cc(rdev);
} else {
if (!rdev->cc_param.enable &&
rdev->cc_param.admin_enable)
bnxt_re_setup_cc(rdev);
}
}
break;
case NETDEV_UNREGISTER:
bnxt_re_stopqps_and_ib_uninit(rdev);
aux_dev = rdev->adev;
if (re_work->adev)
goto done;
bnxt_re_remove_device(rdev, BNXT_RE_COMPLETE_REMOVE, aux_dev);
break;
default:
break;
}
done:
if (rdev) {
mmiowb();
atomic_dec(&rdev->sched_count);
}
exit:
if (re_work->adev && re_work->event == NETDEV_UNREGISTER) {
en_info = auxiliary_get_drvdata(re_work->adev);
en_info->ib_uninit_done = true;
wake_up(&en_info->waitq);
}
kfree(re_work);
mutex_unlock(&bnxt_re_mutex);
}
static int bnxt_re_netdev_event(struct notifier_block *notifier,
unsigned long event, void *ptr)
{
struct ifnet *real_dev, *netdev;
struct bnxt_re_dev *rdev = NULL;
netdev = netdev_notifier_info_to_ifp(ptr);
real_dev = rdma_vlan_dev_real_dev(netdev);
if (!real_dev)
real_dev = netdev;
rdev = bnxt_re_from_netdev(real_dev);
if (!rdev)
goto exit;
dev_info(rdev_to_dev(rdev), "%s: Event = %s (0x%lx), rdev %s (real_dev %s)\n",
__func__, bnxt_re_netevent(event), event,
rdev ? rdev->netdev ? if_getdname(rdev->netdev) : "->netdev = NULL" : "= NULL",
(real_dev == netdev) ? "= netdev" : if_getdname(real_dev));
if (!test_bit(BNXT_RE_FLAG_IBDEV_REGISTERED, &rdev->flags))
goto exit;
bnxt_re_hold(rdev);
if (real_dev != netdev) {
switch (event) {
case NETDEV_UP:
bnxt_re_schedule_work(rdev, event, netdev,
NULL, NULL);
break;
case NETDEV_DOWN:
break;
default:
break;
}
goto done;
}
switch (event) {
case NETDEV_CHANGEADDR:
if (!_is_chip_gen_p5_p7(rdev->chip_ctx))
bnxt_re_update_shadow_ah(rdev);
bnxt_qplib_get_guid(rdev->dev_addr,
(u8 *)&rdev->ibdev.node_guid);
break;
case NETDEV_CHANGE:
bnxt_re_get_link_speed(rdev);
bnxt_re_schedule_work(rdev, event, NULL, NULL, NULL);
break;
case NETDEV_UNREGISTER:
if (rdev) {
dev_info(rdev_to_dev(rdev),
"bnxt_re:Unreg recvd when module refcnt > 0");
dev_info(rdev_to_dev(rdev),
"bnxt_re:Close all apps using bnxt_re devs");
dev_info(rdev_to_dev(rdev),
"bnxt_re:Remove the configfs entry created for the device");
dev_info(rdev_to_dev(rdev),
"bnxt_re:Refer documentation for details");
goto done;
}
if (atomic_read(&rdev->sched_count) > 0)
goto done;
if (!rdev->unreg_sched) {
bnxt_re_schedule_work(rdev, NETDEV_UNREGISTER,
NULL, NULL, NULL);
rdev->unreg_sched = true;
goto done;
}
break;
default:
break;
}
done:
if (rdev)
bnxt_re_put(rdev);
exit:
return NOTIFY_DONE;
}
static struct notifier_block bnxt_re_netdev_notifier = {
.notifier_call = bnxt_re_netdev_event
};
static void bnxt_re_remove_base_interface(struct bnxt_re_dev *rdev,
struct auxiliary_device *adev)
{
bnxt_re_stopqps_and_ib_uninit(rdev);
bnxt_re_remove_device(rdev, BNXT_RE_COMPLETE_REMOVE, adev);
auxiliary_set_drvdata(adev, NULL);
}
static void bnxt_re_remove(struct auxiliary_device *adev)
{
struct bnxt_re_en_dev_info *en_info = auxiliary_get_drvdata(adev);
struct bnxt_en_dev *en_dev;
struct bnxt_re_dev *rdev;
bool primary_dev = false;
bool secondary_dev = false;
if (!en_info)
return;
mutex_lock(&bnxt_re_mutex);
en_dev = en_info->en_dev;
rdev = en_info->rdev;
if (rdev && bnxt_re_is_rdev_valid(rdev)) {
if (pci_channel_offline(rdev->rcfw.pdev))
set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags);
if (test_bit(BNXT_RE_FLAG_EN_DEV_PRIMARY_DEV, &en_info->flags))
primary_dev = true;
if (test_bit(BNXT_RE_FLAG_EN_DEV_SECONDARY_DEV, &en_info->flags))
secondary_dev = true;
if (!primary_dev && !secondary_dev) {
bnxt_re_remove_base_interface(rdev, adev);
} else {
auxiliary_set_drvdata(adev, NULL);
}
} else {
if (test_bit(BNXT_RE_FLAG_EN_DEV_NETDEV_REG, &en_info->flags)) {
rtnl_lock();
en_dev->en_ops->bnxt_unregister_device(en_dev,
BNXT_ROCE_ULP);
rtnl_unlock();
}
}
mutex_unlock(&bnxt_re_mutex);
return;
}
void _bnxt_re_remove(struct auxiliary_device *adev)
{
bnxt_re_remove(adev);
}
static void bnxt_re_ib_init_2(struct bnxt_re_dev *rdev)
{
int rc;
rc = bnxt_re_get_device_stats(rdev);
if (rc)
dev_err(rdev_to_dev(rdev),
"Failed initial device stat query");
bnxt_re_net_register_async_event(rdev);
}
static int bnxt_re_probe(struct auxiliary_device *adev,
const struct auxiliary_device_id *id)
{
struct bnxt_aux_dev *aux_dev =
container_of(adev, struct bnxt_aux_dev, aux_dev);
struct bnxt_re_en_dev_info *en_info;
struct bnxt_en_dev *en_dev = NULL;
struct bnxt_re_dev *rdev;
int rc = -ENODEV;
if (aux_dev)
en_dev = aux_dev->edev;
if (!en_dev)
return rc;
if (en_dev->ulp_version != BNXT_ULP_VERSION) {
pr_err("%s: probe error: bnxt_en ulp version magic %x is not compatible!\n",
ROCE_DRV_MODULE_NAME, en_dev->ulp_version);
return -EINVAL;
}
en_info = kzalloc(sizeof(*en_info), GFP_KERNEL);
if (!en_info)
return -ENOMEM;
memset(en_info, 0, sizeof(struct bnxt_re_en_dev_info));
en_info->en_dev = en_dev;
auxiliary_set_drvdata(adev, en_info);
mutex_lock(&bnxt_re_mutex);
rc = bnxt_re_add_device(&rdev, en_dev->net,
BNXT_RE_GSI_MODE_ALL,
BNXT_RE_COMPLETE_INIT,
BNXT_QPLIB_WQE_MODE_STATIC,
BNXT_RE_MSIX_FROM_MOD_PARAM, adev);
if (rc) {
mutex_unlock(&bnxt_re_mutex);
return rc;
}
rc = bnxt_re_ib_init(rdev);
if (rc)
goto err;
bnxt_re_ib_init_2(rdev);
dev_dbg(rdev_to_dev(rdev), "%s: adev: %p\n", __func__, adev);
rdev->adev = adev;
mutex_unlock(&bnxt_re_mutex);
return 0;
err:
mutex_unlock(&bnxt_re_mutex);
bnxt_re_remove(adev);
return rc;
}
static const struct auxiliary_device_id bnxt_re_id_table[] = {
{ .name = BNXT_ADEV_NAME ".rdma", },
{},
};
MODULE_DEVICE_TABLE(auxiliary, bnxt_re_id_table);
static struct auxiliary_driver bnxt_re_driver = {
.name = "rdma",
.probe = bnxt_re_probe,
.remove = bnxt_re_remove,
.id_table = bnxt_re_id_table,
};
static int __init bnxt_re_mod_init(void)
{
int rc = 0;
pr_info("%s: %s", ROCE_DRV_MODULE_NAME, drv_version);
bnxt_re_wq = create_singlethread_workqueue("bnxt_re");
if (!bnxt_re_wq)
return -ENOMEM;
rc = bnxt_re_register_netdevice_notifier(&bnxt_re_netdev_notifier);
if (rc) {
pr_err("%s: Cannot register to netdevice_notifier",
ROCE_DRV_MODULE_NAME);
goto err_netdev;
}
INIT_LIST_HEAD(&bnxt_re_dev_list);
rc = auxiliary_driver_register(&bnxt_re_driver);
if (rc) {
pr_err("%s: Failed to register auxiliary driver\n",
ROCE_DRV_MODULE_NAME);
goto err_auxdrv;
}
return 0;
err_auxdrv:
bnxt_re_unregister_netdevice_notifier(&bnxt_re_netdev_notifier);
err_netdev:
destroy_workqueue(bnxt_re_wq);
return rc;
}
static void __exit bnxt_re_mod_exit(void)
{
gmod_exit = 1;
auxiliary_driver_unregister(&bnxt_re_driver);
bnxt_re_unregister_netdevice_notifier(&bnxt_re_netdev_notifier);
if (bnxt_re_wq)
destroy_workqueue(bnxt_re_wq);
}
module_init(bnxt_re_mod_init);
module_exit(bnxt_re_mod_exit);