Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/bxe/bxe.c
39536 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5
*
6
* Redistribution and use in source and binary forms, with or without
7
* modification, are permitted provided that the following conditions
8
* are met:
9
*
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26
* THE POSSIBILITY OF SUCH DAMAGE.
27
*/
28
29
#include <sys/cdefs.h>
30
#define BXE_DRIVER_VERSION "1.78.91"
31
32
#include "bxe.h"
33
#include "ecore_sp.h"
34
#include "ecore_init.h"
35
#include "ecore_init_ops.h"
36
37
#include "57710_int_offsets.h"
38
#include "57711_int_offsets.h"
39
#include "57712_int_offsets.h"
40
41
/*
42
* CTLTYPE_U64 and sysctl_handle_64 were added in r217616. Define these
43
* explicitly here for older kernels that don't include this changeset.
44
*/
45
#ifndef CTLTYPE_U64
46
#define CTLTYPE_U64 CTLTYPE_QUAD
47
#define sysctl_handle_64 sysctl_handle_quad
48
#endif
49
50
/*
51
* CSUM_TCP_IPV6 and CSUM_UDP_IPV6 were added in r236170. Define these
52
* here as zero(0) for older kernels that don't include this changeset
53
* thereby masking the functionality.
54
*/
55
#ifndef CSUM_TCP_IPV6
56
#define CSUM_TCP_IPV6 0
57
#define CSUM_UDP_IPV6 0
58
#endif
59
60
#define BXE_DEF_SB_ATT_IDX 0x0001
61
#define BXE_DEF_SB_IDX 0x0002
62
63
/*
64
* FLR Support - bxe_pf_flr_clnup() is called during nic_load in the per
65
* function HW initialization.
66
*/
67
#define FLR_WAIT_USEC 10000 /* 10 msecs */
68
#define FLR_WAIT_INTERVAL 50 /* usecs */
69
#define FLR_POLL_CNT (FLR_WAIT_USEC / FLR_WAIT_INTERVAL) /* 200 */
70
71
struct pbf_pN_buf_regs {
72
int pN;
73
uint32_t init_crd;
74
uint32_t crd;
75
uint32_t crd_freed;
76
};
77
78
struct pbf_pN_cmd_regs {
79
int pN;
80
uint32_t lines_occup;
81
uint32_t lines_freed;
82
};
83
84
/*
85
* PCI Device ID Table used by bxe_probe().
86
*/
87
#define BXE_DEVDESC_MAX 64
88
static struct bxe_device_type bxe_devs[] = {
89
{
90
BRCM_VENDORID,
91
CHIP_NUM_57710,
92
PCI_ANY_ID, PCI_ANY_ID,
93
"QLogic NetXtreme II BCM57710 10GbE"
94
},
95
{
96
BRCM_VENDORID,
97
CHIP_NUM_57711,
98
PCI_ANY_ID, PCI_ANY_ID,
99
"QLogic NetXtreme II BCM57711 10GbE"
100
},
101
{
102
BRCM_VENDORID,
103
CHIP_NUM_57711E,
104
PCI_ANY_ID, PCI_ANY_ID,
105
"QLogic NetXtreme II BCM57711E 10GbE"
106
},
107
{
108
BRCM_VENDORID,
109
CHIP_NUM_57712,
110
PCI_ANY_ID, PCI_ANY_ID,
111
"QLogic NetXtreme II BCM57712 10GbE"
112
},
113
{
114
BRCM_VENDORID,
115
CHIP_NUM_57712_MF,
116
PCI_ANY_ID, PCI_ANY_ID,
117
"QLogic NetXtreme II BCM57712 MF 10GbE"
118
},
119
{
120
BRCM_VENDORID,
121
CHIP_NUM_57800,
122
PCI_ANY_ID, PCI_ANY_ID,
123
"QLogic NetXtreme II BCM57800 10GbE"
124
},
125
{
126
BRCM_VENDORID,
127
CHIP_NUM_57800_MF,
128
PCI_ANY_ID, PCI_ANY_ID,
129
"QLogic NetXtreme II BCM57800 MF 10GbE"
130
},
131
{
132
BRCM_VENDORID,
133
CHIP_NUM_57810,
134
PCI_ANY_ID, PCI_ANY_ID,
135
"QLogic NetXtreme II BCM57810 10GbE"
136
},
137
{
138
BRCM_VENDORID,
139
CHIP_NUM_57810_MF,
140
PCI_ANY_ID, PCI_ANY_ID,
141
"QLogic NetXtreme II BCM57810 MF 10GbE"
142
},
143
{
144
BRCM_VENDORID,
145
CHIP_NUM_57811,
146
PCI_ANY_ID, PCI_ANY_ID,
147
"QLogic NetXtreme II BCM57811 10GbE"
148
},
149
{
150
BRCM_VENDORID,
151
CHIP_NUM_57811_MF,
152
PCI_ANY_ID, PCI_ANY_ID,
153
"QLogic NetXtreme II BCM57811 MF 10GbE"
154
},
155
{
156
BRCM_VENDORID,
157
CHIP_NUM_57840_4_10,
158
PCI_ANY_ID, PCI_ANY_ID,
159
"QLogic NetXtreme II BCM57840 4x10GbE"
160
},
161
{
162
QLOGIC_VENDORID,
163
CHIP_NUM_57840_4_10,
164
PCI_ANY_ID, PCI_ANY_ID,
165
"QLogic NetXtreme II BCM57840 4x10GbE"
166
},
167
{
168
BRCM_VENDORID,
169
CHIP_NUM_57840_2_20,
170
PCI_ANY_ID, PCI_ANY_ID,
171
"QLogic NetXtreme II BCM57840 2x20GbE"
172
},
173
{
174
BRCM_VENDORID,
175
CHIP_NUM_57840_MF,
176
PCI_ANY_ID, PCI_ANY_ID,
177
"QLogic NetXtreme II BCM57840 MF 10GbE"
178
},
179
{
180
0, 0, 0, 0, NULL
181
}
182
};
183
184
MALLOC_DECLARE(M_BXE_ILT);
185
MALLOC_DEFINE(M_BXE_ILT, "bxe_ilt", "bxe ILT pointer");
186
187
/*
188
* FreeBSD device entry points.
189
*/
190
static int bxe_probe(device_t);
191
static int bxe_attach(device_t);
192
static int bxe_detach(device_t);
193
static int bxe_shutdown(device_t);
194
195
196
/*
197
* FreeBSD KLD module/device interface event handler method.
198
*/
199
static device_method_t bxe_methods[] = {
200
/* Device interface (device_if.h) */
201
DEVMETHOD(device_probe, bxe_probe),
202
DEVMETHOD(device_attach, bxe_attach),
203
DEVMETHOD(device_detach, bxe_detach),
204
DEVMETHOD(device_shutdown, bxe_shutdown),
205
/* Bus interface (bus_if.h) */
206
DEVMETHOD(bus_print_child, bus_generic_print_child),
207
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
208
KOBJMETHOD_END
209
};
210
211
/*
212
* FreeBSD KLD Module data declaration
213
*/
214
static driver_t bxe_driver = {
215
"bxe", /* module name */
216
bxe_methods, /* event handler */
217
sizeof(struct bxe_softc) /* extra data */
218
};
219
220
MODULE_DEPEND(bxe, pci, 1, 1, 1);
221
MODULE_DEPEND(bxe, ether, 1, 1, 1);
222
DRIVER_MODULE(bxe, pci, bxe_driver, 0, 0);
223
224
DEBUGNET_DEFINE(bxe);
225
226
/* resources needed for unloading a previously loaded device */
227
228
#define BXE_PREV_WAIT_NEEDED 1
229
struct mtx bxe_prev_mtx;
230
MTX_SYSINIT(bxe_prev_mtx, &bxe_prev_mtx, "bxe_prev_lock", MTX_DEF);
231
struct bxe_prev_list_node {
232
LIST_ENTRY(bxe_prev_list_node) node;
233
uint8_t bus;
234
uint8_t slot;
235
uint8_t path;
236
uint8_t aer; /* XXX automatic error recovery */
237
uint8_t undi;
238
};
239
static LIST_HEAD(, bxe_prev_list_node) bxe_prev_list = LIST_HEAD_INITIALIZER(bxe_prev_list);
240
241
static int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
242
243
/* Tunable device values... */
244
245
SYSCTL_NODE(_hw, OID_AUTO, bxe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
246
"bxe driver parameters");
247
248
/* Debug */
249
unsigned long bxe_debug = 0;
250
SYSCTL_ULONG(_hw_bxe, OID_AUTO, debug, CTLFLAG_RDTUN,
251
&bxe_debug, 0, "Debug logging mode");
252
253
/* Interrupt Mode: 0 (IRQ), 1 (MSI/IRQ), and 2 (MSI-X/MSI/IRQ) */
254
static int bxe_interrupt_mode = INTR_MODE_MSIX;
255
SYSCTL_INT(_hw_bxe, OID_AUTO, interrupt_mode, CTLFLAG_RDTUN,
256
&bxe_interrupt_mode, 0, "Interrupt (MSI-X/MSI/INTx) mode");
257
258
/* Number of Queues: 0 (Auto) or 1 to 16 (fixed queue number) */
259
static int bxe_queue_count = 4;
260
SYSCTL_INT(_hw_bxe, OID_AUTO, queue_count, CTLFLAG_RDTUN,
261
&bxe_queue_count, 0, "Multi-Queue queue count");
262
263
/* max number of buffers per queue (default RX_BD_USABLE) */
264
static int bxe_max_rx_bufs = 0;
265
SYSCTL_INT(_hw_bxe, OID_AUTO, max_rx_bufs, CTLFLAG_RDTUN,
266
&bxe_max_rx_bufs, 0, "Maximum Number of Rx Buffers Per Queue");
267
268
/* Host interrupt coalescing RX tick timer (usecs) */
269
static int bxe_hc_rx_ticks = 25;
270
SYSCTL_INT(_hw_bxe, OID_AUTO, hc_rx_ticks, CTLFLAG_RDTUN,
271
&bxe_hc_rx_ticks, 0, "Host Coalescing Rx ticks");
272
273
/* Host interrupt coalescing TX tick timer (usecs) */
274
static int bxe_hc_tx_ticks = 50;
275
SYSCTL_INT(_hw_bxe, OID_AUTO, hc_tx_ticks, CTLFLAG_RDTUN,
276
&bxe_hc_tx_ticks, 0, "Host Coalescing Tx ticks");
277
278
/* Maximum number of Rx packets to process at a time */
279
static int bxe_rx_budget = 0xffffffff;
280
SYSCTL_INT(_hw_bxe, OID_AUTO, rx_budget, CTLFLAG_RDTUN,
281
&bxe_rx_budget, 0, "Rx processing budget");
282
283
/* Maximum LRO aggregation size */
284
static int bxe_max_aggregation_size = 0;
285
SYSCTL_INT(_hw_bxe, OID_AUTO, max_aggregation_size, CTLFLAG_RDTUN,
286
&bxe_max_aggregation_size, 0, "max aggregation size");
287
288
/* PCI MRRS: -1 (Auto), 0 (128B), 1 (256B), 2 (512B), 3 (1KB) */
289
static int bxe_mrrs = -1;
290
SYSCTL_INT(_hw_bxe, OID_AUTO, mrrs, CTLFLAG_RDTUN,
291
&bxe_mrrs, 0, "PCIe maximum read request size");
292
293
/* AutoGrEEEn: 0 (hardware default), 1 (force on), 2 (force off) */
294
static int bxe_autogreeen = 0;
295
SYSCTL_INT(_hw_bxe, OID_AUTO, autogreeen, CTLFLAG_RDTUN,
296
&bxe_autogreeen, 0, "AutoGrEEEn support");
297
298
/* 4-tuple RSS support for UDP: 0 (disabled), 1 (enabled) */
299
static int bxe_udp_rss = 0;
300
SYSCTL_INT(_hw_bxe, OID_AUTO, udp_rss, CTLFLAG_RDTUN,
301
&bxe_udp_rss, 0, "UDP RSS support");
302
303
304
#define STAT_NAME_LEN 32 /* no stat names below can be longer than this */
305
306
#define STATS_OFFSET32(stat_name) \
307
(offsetof(struct bxe_eth_stats, stat_name) / 4)
308
309
#define Q_STATS_OFFSET32(stat_name) \
310
(offsetof(struct bxe_eth_q_stats, stat_name) / 4)
311
312
static const struct {
313
uint32_t offset;
314
uint32_t size;
315
uint32_t flags;
316
#define STATS_FLAGS_PORT 1
317
#define STATS_FLAGS_FUNC 2 /* MF only cares about function stats */
318
#define STATS_FLAGS_BOTH (STATS_FLAGS_FUNC | STATS_FLAGS_PORT)
319
char string[STAT_NAME_LEN];
320
} bxe_eth_stats_arr[] = {
321
{ STATS_OFFSET32(total_bytes_received_hi),
322
8, STATS_FLAGS_BOTH, "rx_bytes" },
323
{ STATS_OFFSET32(error_bytes_received_hi),
324
8, STATS_FLAGS_BOTH, "rx_error_bytes" },
325
{ STATS_OFFSET32(total_unicast_packets_received_hi),
326
8, STATS_FLAGS_BOTH, "rx_ucast_packets" },
327
{ STATS_OFFSET32(total_multicast_packets_received_hi),
328
8, STATS_FLAGS_BOTH, "rx_mcast_packets" },
329
{ STATS_OFFSET32(total_broadcast_packets_received_hi),
330
8, STATS_FLAGS_BOTH, "rx_bcast_packets" },
331
{ STATS_OFFSET32(rx_stat_dot3statsfcserrors_hi),
332
8, STATS_FLAGS_PORT, "rx_crc_errors" },
333
{ STATS_OFFSET32(rx_stat_dot3statsalignmenterrors_hi),
334
8, STATS_FLAGS_PORT, "rx_align_errors" },
335
{ STATS_OFFSET32(rx_stat_etherstatsundersizepkts_hi),
336
8, STATS_FLAGS_PORT, "rx_undersize_packets" },
337
{ STATS_OFFSET32(etherstatsoverrsizepkts_hi),
338
8, STATS_FLAGS_PORT, "rx_oversize_packets" },
339
{ STATS_OFFSET32(rx_stat_etherstatsfragments_hi),
340
8, STATS_FLAGS_PORT, "rx_fragments" },
341
{ STATS_OFFSET32(rx_stat_etherstatsjabbers_hi),
342
8, STATS_FLAGS_PORT, "rx_jabbers" },
343
{ STATS_OFFSET32(no_buff_discard_hi),
344
8, STATS_FLAGS_BOTH, "rx_discards" },
345
{ STATS_OFFSET32(mac_filter_discard),
346
4, STATS_FLAGS_PORT, "rx_filtered_packets" },
347
{ STATS_OFFSET32(mf_tag_discard),
348
4, STATS_FLAGS_PORT, "rx_mf_tag_discard" },
349
{ STATS_OFFSET32(pfc_frames_received_hi),
350
8, STATS_FLAGS_PORT, "pfc_frames_received" },
351
{ STATS_OFFSET32(pfc_frames_sent_hi),
352
8, STATS_FLAGS_PORT, "pfc_frames_sent" },
353
{ STATS_OFFSET32(brb_drop_hi),
354
8, STATS_FLAGS_PORT, "rx_brb_discard" },
355
{ STATS_OFFSET32(brb_truncate_hi),
356
8, STATS_FLAGS_PORT, "rx_brb_truncate" },
357
{ STATS_OFFSET32(pause_frames_received_hi),
358
8, STATS_FLAGS_PORT, "rx_pause_frames" },
359
{ STATS_OFFSET32(rx_stat_maccontrolframesreceived_hi),
360
8, STATS_FLAGS_PORT, "rx_mac_ctrl_frames" },
361
{ STATS_OFFSET32(nig_timer_max),
362
4, STATS_FLAGS_PORT, "rx_constant_pause_events" },
363
{ STATS_OFFSET32(total_bytes_transmitted_hi),
364
8, STATS_FLAGS_BOTH, "tx_bytes" },
365
{ STATS_OFFSET32(tx_stat_ifhcoutbadoctets_hi),
366
8, STATS_FLAGS_PORT, "tx_error_bytes" },
367
{ STATS_OFFSET32(total_unicast_packets_transmitted_hi),
368
8, STATS_FLAGS_BOTH, "tx_ucast_packets" },
369
{ STATS_OFFSET32(total_multicast_packets_transmitted_hi),
370
8, STATS_FLAGS_BOTH, "tx_mcast_packets" },
371
{ STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
372
8, STATS_FLAGS_BOTH, "tx_bcast_packets" },
373
{ STATS_OFFSET32(tx_stat_dot3statsinternalmactransmiterrors_hi),
374
8, STATS_FLAGS_PORT, "tx_mac_errors" },
375
{ STATS_OFFSET32(rx_stat_dot3statscarriersenseerrors_hi),
376
8, STATS_FLAGS_PORT, "tx_carrier_errors" },
377
{ STATS_OFFSET32(tx_stat_dot3statssinglecollisionframes_hi),
378
8, STATS_FLAGS_PORT, "tx_single_collisions" },
379
{ STATS_OFFSET32(tx_stat_dot3statsmultiplecollisionframes_hi),
380
8, STATS_FLAGS_PORT, "tx_multi_collisions" },
381
{ STATS_OFFSET32(tx_stat_dot3statsdeferredtransmissions_hi),
382
8, STATS_FLAGS_PORT, "tx_deferred" },
383
{ STATS_OFFSET32(tx_stat_dot3statsexcessivecollisions_hi),
384
8, STATS_FLAGS_PORT, "tx_excess_collisions" },
385
{ STATS_OFFSET32(tx_stat_dot3statslatecollisions_hi),
386
8, STATS_FLAGS_PORT, "tx_late_collisions" },
387
{ STATS_OFFSET32(tx_stat_etherstatscollisions_hi),
388
8, STATS_FLAGS_PORT, "tx_total_collisions" },
389
{ STATS_OFFSET32(tx_stat_etherstatspkts64octets_hi),
390
8, STATS_FLAGS_PORT, "tx_64_byte_packets" },
391
{ STATS_OFFSET32(tx_stat_etherstatspkts65octetsto127octets_hi),
392
8, STATS_FLAGS_PORT, "tx_65_to_127_byte_packets" },
393
{ STATS_OFFSET32(tx_stat_etherstatspkts128octetsto255octets_hi),
394
8, STATS_FLAGS_PORT, "tx_128_to_255_byte_packets" },
395
{ STATS_OFFSET32(tx_stat_etherstatspkts256octetsto511octets_hi),
396
8, STATS_FLAGS_PORT, "tx_256_to_511_byte_packets" },
397
{ STATS_OFFSET32(tx_stat_etherstatspkts512octetsto1023octets_hi),
398
8, STATS_FLAGS_PORT, "tx_512_to_1023_byte_packets" },
399
{ STATS_OFFSET32(etherstatspkts1024octetsto1522octets_hi),
400
8, STATS_FLAGS_PORT, "tx_1024_to_1522_byte_packets" },
401
{ STATS_OFFSET32(etherstatspktsover1522octets_hi),
402
8, STATS_FLAGS_PORT, "tx_1523_to_9022_byte_packets" },
403
{ STATS_OFFSET32(pause_frames_sent_hi),
404
8, STATS_FLAGS_PORT, "tx_pause_frames" },
405
{ STATS_OFFSET32(total_tpa_aggregations_hi),
406
8, STATS_FLAGS_FUNC, "tpa_aggregations" },
407
{ STATS_OFFSET32(total_tpa_aggregated_frames_hi),
408
8, STATS_FLAGS_FUNC, "tpa_aggregated_frames"},
409
{ STATS_OFFSET32(total_tpa_bytes_hi),
410
8, STATS_FLAGS_FUNC, "tpa_bytes"},
411
{ STATS_OFFSET32(eee_tx_lpi),
412
4, STATS_FLAGS_PORT, "eee_tx_lpi"},
413
{ STATS_OFFSET32(rx_calls),
414
4, STATS_FLAGS_FUNC, "rx_calls"},
415
{ STATS_OFFSET32(rx_pkts),
416
4, STATS_FLAGS_FUNC, "rx_pkts"},
417
{ STATS_OFFSET32(rx_tpa_pkts),
418
4, STATS_FLAGS_FUNC, "rx_tpa_pkts"},
419
{ STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
420
4, STATS_FLAGS_FUNC, "rx_erroneous_jumbo_sge_pkts"},
421
{ STATS_OFFSET32(rx_bxe_service_rxsgl),
422
4, STATS_FLAGS_FUNC, "rx_bxe_service_rxsgl"},
423
{ STATS_OFFSET32(rx_jumbo_sge_pkts),
424
4, STATS_FLAGS_FUNC, "rx_jumbo_sge_pkts"},
425
{ STATS_OFFSET32(rx_soft_errors),
426
4, STATS_FLAGS_FUNC, "rx_soft_errors"},
427
{ STATS_OFFSET32(rx_hw_csum_errors),
428
4, STATS_FLAGS_FUNC, "rx_hw_csum_errors"},
429
{ STATS_OFFSET32(rx_ofld_frames_csum_ip),
430
4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_ip"},
431
{ STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
432
4, STATS_FLAGS_FUNC, "rx_ofld_frames_csum_tcp_udp"},
433
{ STATS_OFFSET32(rx_budget_reached),
434
4, STATS_FLAGS_FUNC, "rx_budget_reached"},
435
{ STATS_OFFSET32(tx_pkts),
436
4, STATS_FLAGS_FUNC, "tx_pkts"},
437
{ STATS_OFFSET32(tx_soft_errors),
438
4, STATS_FLAGS_FUNC, "tx_soft_errors"},
439
{ STATS_OFFSET32(tx_ofld_frames_csum_ip),
440
4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_ip"},
441
{ STATS_OFFSET32(tx_ofld_frames_csum_tcp),
442
4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_tcp"},
443
{ STATS_OFFSET32(tx_ofld_frames_csum_udp),
444
4, STATS_FLAGS_FUNC, "tx_ofld_frames_csum_udp"},
445
{ STATS_OFFSET32(tx_ofld_frames_lso),
446
4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso"},
447
{ STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
448
4, STATS_FLAGS_FUNC, "tx_ofld_frames_lso_hdr_splits"},
449
{ STATS_OFFSET32(tx_encap_failures),
450
4, STATS_FLAGS_FUNC, "tx_encap_failures"},
451
{ STATS_OFFSET32(tx_hw_queue_full),
452
4, STATS_FLAGS_FUNC, "tx_hw_queue_full"},
453
{ STATS_OFFSET32(tx_hw_max_queue_depth),
454
4, STATS_FLAGS_FUNC, "tx_hw_max_queue_depth"},
455
{ STATS_OFFSET32(tx_dma_mapping_failure),
456
4, STATS_FLAGS_FUNC, "tx_dma_mapping_failure"},
457
{ STATS_OFFSET32(tx_max_drbr_queue_depth),
458
4, STATS_FLAGS_FUNC, "tx_max_drbr_queue_depth"},
459
{ STATS_OFFSET32(tx_window_violation_std),
460
4, STATS_FLAGS_FUNC, "tx_window_violation_std"},
461
{ STATS_OFFSET32(tx_window_violation_tso),
462
4, STATS_FLAGS_FUNC, "tx_window_violation_tso"},
463
{ STATS_OFFSET32(tx_chain_lost_mbuf),
464
4, STATS_FLAGS_FUNC, "tx_chain_lost_mbuf"},
465
{ STATS_OFFSET32(tx_frames_deferred),
466
4, STATS_FLAGS_FUNC, "tx_frames_deferred"},
467
{ STATS_OFFSET32(tx_queue_xoff),
468
4, STATS_FLAGS_FUNC, "tx_queue_xoff"},
469
{ STATS_OFFSET32(mbuf_defrag_attempts),
470
4, STATS_FLAGS_FUNC, "mbuf_defrag_attempts"},
471
{ STATS_OFFSET32(mbuf_defrag_failures),
472
4, STATS_FLAGS_FUNC, "mbuf_defrag_failures"},
473
{ STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
474
4, STATS_FLAGS_FUNC, "mbuf_rx_bd_alloc_failed"},
475
{ STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
476
4, STATS_FLAGS_FUNC, "mbuf_rx_bd_mapping_failed"},
477
{ STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
478
4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_alloc_failed"},
479
{ STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
480
4, STATS_FLAGS_FUNC, "mbuf_rx_tpa_mapping_failed"},
481
{ STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
482
4, STATS_FLAGS_FUNC, "mbuf_rx_sge_alloc_failed"},
483
{ STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
484
4, STATS_FLAGS_FUNC, "mbuf_rx_sge_mapping_failed"},
485
{ STATS_OFFSET32(mbuf_alloc_tx),
486
4, STATS_FLAGS_FUNC, "mbuf_alloc_tx"},
487
{ STATS_OFFSET32(mbuf_alloc_rx),
488
4, STATS_FLAGS_FUNC, "mbuf_alloc_rx"},
489
{ STATS_OFFSET32(mbuf_alloc_sge),
490
4, STATS_FLAGS_FUNC, "mbuf_alloc_sge"},
491
{ STATS_OFFSET32(mbuf_alloc_tpa),
492
4, STATS_FLAGS_FUNC, "mbuf_alloc_tpa"},
493
{ STATS_OFFSET32(tx_queue_full_return),
494
4, STATS_FLAGS_FUNC, "tx_queue_full_return"},
495
{ STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
496
4, STATS_FLAGS_FUNC, "bxe_tx_mq_sc_state_failures"},
497
{ STATS_OFFSET32(tx_request_link_down_failures),
498
4, STATS_FLAGS_FUNC, "tx_request_link_down_failures"},
499
{ STATS_OFFSET32(bd_avail_too_less_failures),
500
4, STATS_FLAGS_FUNC, "bd_avail_too_less_failures"},
501
{ STATS_OFFSET32(tx_mq_not_empty),
502
4, STATS_FLAGS_FUNC, "tx_mq_not_empty"},
503
{ STATS_OFFSET32(nsegs_path1_errors),
504
4, STATS_FLAGS_FUNC, "nsegs_path1_errors"},
505
{ STATS_OFFSET32(nsegs_path2_errors),
506
4, STATS_FLAGS_FUNC, "nsegs_path2_errors"}
507
508
509
};
510
511
static const struct {
512
uint32_t offset;
513
uint32_t size;
514
char string[STAT_NAME_LEN];
515
} bxe_eth_q_stats_arr[] = {
516
{ Q_STATS_OFFSET32(total_bytes_received_hi),
517
8, "rx_bytes" },
518
{ Q_STATS_OFFSET32(total_unicast_packets_received_hi),
519
8, "rx_ucast_packets" },
520
{ Q_STATS_OFFSET32(total_multicast_packets_received_hi),
521
8, "rx_mcast_packets" },
522
{ Q_STATS_OFFSET32(total_broadcast_packets_received_hi),
523
8, "rx_bcast_packets" },
524
{ Q_STATS_OFFSET32(no_buff_discard_hi),
525
8, "rx_discards" },
526
{ Q_STATS_OFFSET32(total_bytes_transmitted_hi),
527
8, "tx_bytes" },
528
{ Q_STATS_OFFSET32(total_unicast_packets_transmitted_hi),
529
8, "tx_ucast_packets" },
530
{ Q_STATS_OFFSET32(total_multicast_packets_transmitted_hi),
531
8, "tx_mcast_packets" },
532
{ Q_STATS_OFFSET32(total_broadcast_packets_transmitted_hi),
533
8, "tx_bcast_packets" },
534
{ Q_STATS_OFFSET32(total_tpa_aggregations_hi),
535
8, "tpa_aggregations" },
536
{ Q_STATS_OFFSET32(total_tpa_aggregated_frames_hi),
537
8, "tpa_aggregated_frames"},
538
{ Q_STATS_OFFSET32(total_tpa_bytes_hi),
539
8, "tpa_bytes"},
540
{ Q_STATS_OFFSET32(rx_calls),
541
4, "rx_calls"},
542
{ Q_STATS_OFFSET32(rx_pkts),
543
4, "rx_pkts"},
544
{ Q_STATS_OFFSET32(rx_tpa_pkts),
545
4, "rx_tpa_pkts"},
546
{ Q_STATS_OFFSET32(rx_erroneous_jumbo_sge_pkts),
547
4, "rx_erroneous_jumbo_sge_pkts"},
548
{ Q_STATS_OFFSET32(rx_bxe_service_rxsgl),
549
4, "rx_bxe_service_rxsgl"},
550
{ Q_STATS_OFFSET32(rx_jumbo_sge_pkts),
551
4, "rx_jumbo_sge_pkts"},
552
{ Q_STATS_OFFSET32(rx_soft_errors),
553
4, "rx_soft_errors"},
554
{ Q_STATS_OFFSET32(rx_hw_csum_errors),
555
4, "rx_hw_csum_errors"},
556
{ Q_STATS_OFFSET32(rx_ofld_frames_csum_ip),
557
4, "rx_ofld_frames_csum_ip"},
558
{ Q_STATS_OFFSET32(rx_ofld_frames_csum_tcp_udp),
559
4, "rx_ofld_frames_csum_tcp_udp"},
560
{ Q_STATS_OFFSET32(rx_budget_reached),
561
4, "rx_budget_reached"},
562
{ Q_STATS_OFFSET32(tx_pkts),
563
4, "tx_pkts"},
564
{ Q_STATS_OFFSET32(tx_soft_errors),
565
4, "tx_soft_errors"},
566
{ Q_STATS_OFFSET32(tx_ofld_frames_csum_ip),
567
4, "tx_ofld_frames_csum_ip"},
568
{ Q_STATS_OFFSET32(tx_ofld_frames_csum_tcp),
569
4, "tx_ofld_frames_csum_tcp"},
570
{ Q_STATS_OFFSET32(tx_ofld_frames_csum_udp),
571
4, "tx_ofld_frames_csum_udp"},
572
{ Q_STATS_OFFSET32(tx_ofld_frames_lso),
573
4, "tx_ofld_frames_lso"},
574
{ Q_STATS_OFFSET32(tx_ofld_frames_lso_hdr_splits),
575
4, "tx_ofld_frames_lso_hdr_splits"},
576
{ Q_STATS_OFFSET32(tx_encap_failures),
577
4, "tx_encap_failures"},
578
{ Q_STATS_OFFSET32(tx_hw_queue_full),
579
4, "tx_hw_queue_full"},
580
{ Q_STATS_OFFSET32(tx_hw_max_queue_depth),
581
4, "tx_hw_max_queue_depth"},
582
{ Q_STATS_OFFSET32(tx_dma_mapping_failure),
583
4, "tx_dma_mapping_failure"},
584
{ Q_STATS_OFFSET32(tx_max_drbr_queue_depth),
585
4, "tx_max_drbr_queue_depth"},
586
{ Q_STATS_OFFSET32(tx_window_violation_std),
587
4, "tx_window_violation_std"},
588
{ Q_STATS_OFFSET32(tx_window_violation_tso),
589
4, "tx_window_violation_tso"},
590
{ Q_STATS_OFFSET32(tx_chain_lost_mbuf),
591
4, "tx_chain_lost_mbuf"},
592
{ Q_STATS_OFFSET32(tx_frames_deferred),
593
4, "tx_frames_deferred"},
594
{ Q_STATS_OFFSET32(tx_queue_xoff),
595
4, "tx_queue_xoff"},
596
{ Q_STATS_OFFSET32(mbuf_defrag_attempts),
597
4, "mbuf_defrag_attempts"},
598
{ Q_STATS_OFFSET32(mbuf_defrag_failures),
599
4, "mbuf_defrag_failures"},
600
{ Q_STATS_OFFSET32(mbuf_rx_bd_alloc_failed),
601
4, "mbuf_rx_bd_alloc_failed"},
602
{ Q_STATS_OFFSET32(mbuf_rx_bd_mapping_failed),
603
4, "mbuf_rx_bd_mapping_failed"},
604
{ Q_STATS_OFFSET32(mbuf_rx_tpa_alloc_failed),
605
4, "mbuf_rx_tpa_alloc_failed"},
606
{ Q_STATS_OFFSET32(mbuf_rx_tpa_mapping_failed),
607
4, "mbuf_rx_tpa_mapping_failed"},
608
{ Q_STATS_OFFSET32(mbuf_rx_sge_alloc_failed),
609
4, "mbuf_rx_sge_alloc_failed"},
610
{ Q_STATS_OFFSET32(mbuf_rx_sge_mapping_failed),
611
4, "mbuf_rx_sge_mapping_failed"},
612
{ Q_STATS_OFFSET32(mbuf_alloc_tx),
613
4, "mbuf_alloc_tx"},
614
{ Q_STATS_OFFSET32(mbuf_alloc_rx),
615
4, "mbuf_alloc_rx"},
616
{ Q_STATS_OFFSET32(mbuf_alloc_sge),
617
4, "mbuf_alloc_sge"},
618
{ Q_STATS_OFFSET32(mbuf_alloc_tpa),
619
4, "mbuf_alloc_tpa"},
620
{ Q_STATS_OFFSET32(tx_queue_full_return),
621
4, "tx_queue_full_return"},
622
{ Q_STATS_OFFSET32(bxe_tx_mq_sc_state_failures),
623
4, "bxe_tx_mq_sc_state_failures"},
624
{ Q_STATS_OFFSET32(tx_request_link_down_failures),
625
4, "tx_request_link_down_failures"},
626
{ Q_STATS_OFFSET32(bd_avail_too_less_failures),
627
4, "bd_avail_too_less_failures"},
628
{ Q_STATS_OFFSET32(tx_mq_not_empty),
629
4, "tx_mq_not_empty"},
630
{ Q_STATS_OFFSET32(nsegs_path1_errors),
631
4, "nsegs_path1_errors"},
632
{ Q_STATS_OFFSET32(nsegs_path2_errors),
633
4, "nsegs_path2_errors"}
634
635
636
};
637
638
#define BXE_NUM_ETH_STATS ARRAY_SIZE(bxe_eth_stats_arr)
639
#define BXE_NUM_ETH_Q_STATS ARRAY_SIZE(bxe_eth_q_stats_arr)
640
641
642
static void bxe_cmng_fns_init(struct bxe_softc *sc,
643
uint8_t read_cfg,
644
uint8_t cmng_type);
645
static int bxe_get_cmng_fns_mode(struct bxe_softc *sc);
646
static void storm_memset_cmng(struct bxe_softc *sc,
647
struct cmng_init *cmng,
648
uint8_t port);
649
static void bxe_set_reset_global(struct bxe_softc *sc);
650
static void bxe_set_reset_in_progress(struct bxe_softc *sc);
651
static uint8_t bxe_reset_is_done(struct bxe_softc *sc,
652
int engine);
653
static uint8_t bxe_clear_pf_load(struct bxe_softc *sc);
654
static uint8_t bxe_chk_parity_attn(struct bxe_softc *sc,
655
uint8_t *global,
656
uint8_t print);
657
static void bxe_int_disable(struct bxe_softc *sc);
658
static int bxe_release_leader_lock(struct bxe_softc *sc);
659
static void bxe_pf_disable(struct bxe_softc *sc);
660
static void bxe_free_fp_buffers(struct bxe_softc *sc);
661
static inline void bxe_update_rx_prod(struct bxe_softc *sc,
662
struct bxe_fastpath *fp,
663
uint16_t rx_bd_prod,
664
uint16_t rx_cq_prod,
665
uint16_t rx_sge_prod);
666
static void bxe_link_report_locked(struct bxe_softc *sc);
667
static void bxe_link_report(struct bxe_softc *sc);
668
static void bxe_link_status_update(struct bxe_softc *sc);
669
static void bxe_periodic_callout_func(void *xsc);
670
static void bxe_periodic_start(struct bxe_softc *sc);
671
static void bxe_periodic_stop(struct bxe_softc *sc);
672
static int bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
673
uint16_t prev_index,
674
uint16_t index);
675
static int bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
676
int queue);
677
static int bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
678
uint16_t index);
679
static uint8_t bxe_txeof(struct bxe_softc *sc,
680
struct bxe_fastpath *fp);
681
static void bxe_task_fp(struct bxe_fastpath *fp);
682
static __noinline void bxe_dump_mbuf(struct bxe_softc *sc,
683
struct mbuf *m,
684
uint8_t contents);
685
static int bxe_alloc_mem(struct bxe_softc *sc);
686
static void bxe_free_mem(struct bxe_softc *sc);
687
static int bxe_alloc_fw_stats_mem(struct bxe_softc *sc);
688
static void bxe_free_fw_stats_mem(struct bxe_softc *sc);
689
static int bxe_interrupt_attach(struct bxe_softc *sc);
690
static void bxe_interrupt_detach(struct bxe_softc *sc);
691
static void bxe_set_rx_mode(struct bxe_softc *sc);
692
static int bxe_init_locked(struct bxe_softc *sc);
693
static int bxe_stop_locked(struct bxe_softc *sc);
694
static void bxe_sp_err_timeout_task(void *arg, int pending);
695
void bxe_parity_recover(struct bxe_softc *sc);
696
void bxe_handle_error(struct bxe_softc *sc);
697
static __noinline int bxe_nic_load(struct bxe_softc *sc,
698
int load_mode);
699
static __noinline int bxe_nic_unload(struct bxe_softc *sc,
700
uint32_t unload_mode,
701
uint8_t keep_link);
702
703
static void bxe_handle_sp_tq(void *context, int pending);
704
static void bxe_handle_fp_tq(void *context, int pending);
705
706
static int bxe_add_cdev(struct bxe_softc *sc);
707
static void bxe_del_cdev(struct bxe_softc *sc);
708
int bxe_grc_dump(struct bxe_softc *sc);
709
static int bxe_alloc_buf_rings(struct bxe_softc *sc);
710
static void bxe_free_buf_rings(struct bxe_softc *sc);
711
712
/* calculate crc32 on a buffer (NOTE: crc32_length MUST be aligned to 8) */
713
uint32_t
714
calc_crc32(uint8_t *crc32_packet,
715
uint32_t crc32_length,
716
uint32_t crc32_seed,
717
uint8_t complement)
718
{
719
uint32_t byte = 0;
720
uint32_t bit = 0;
721
uint8_t msb = 0;
722
uint32_t temp = 0;
723
uint32_t shft = 0;
724
uint8_t current_byte = 0;
725
uint32_t crc32_result = crc32_seed;
726
const uint32_t CRC32_POLY = 0x1edc6f41;
727
728
if ((crc32_packet == NULL) ||
729
(crc32_length == 0) ||
730
((crc32_length % 8) != 0))
731
{
732
return (crc32_result);
733
}
734
735
for (byte = 0; byte < crc32_length; byte = byte + 1)
736
{
737
current_byte = crc32_packet[byte];
738
for (bit = 0; bit < 8; bit = bit + 1)
739
{
740
/* msb = crc32_result[31]; */
741
msb = (uint8_t)(crc32_result >> 31);
742
743
crc32_result = crc32_result << 1;
744
745
/* it (msb != current_byte[bit]) */
746
if (msb != (0x1 & (current_byte >> bit)))
747
{
748
crc32_result = crc32_result ^ CRC32_POLY;
749
/* crc32_result[0] = 1 */
750
crc32_result |= 1;
751
}
752
}
753
}
754
755
/* Last step is to:
756
* 1. "mirror" every bit
757
* 2. swap the 4 bytes
758
* 3. complement each bit
759
*/
760
761
/* Mirror */
762
temp = crc32_result;
763
shft = sizeof(crc32_result) * 8 - 1;
764
765
for (crc32_result >>= 1; crc32_result; crc32_result >>= 1)
766
{
767
temp <<= 1;
768
temp |= crc32_result & 1;
769
shft-- ;
770
}
771
772
/* temp[31-bit] = crc32_result[bit] */
773
temp <<= shft;
774
775
/* Swap */
776
/* crc32_result = {temp[7:0], temp[15:8], temp[23:16], temp[31:24]} */
777
{
778
uint32_t t0, t1, t2, t3;
779
t0 = (0x000000ff & (temp >> 24));
780
t1 = (0x0000ff00 & (temp >> 8));
781
t2 = (0x00ff0000 & (temp << 8));
782
t3 = (0xff000000 & (temp << 24));
783
crc32_result = t0 | t1 | t2 | t3;
784
}
785
786
/* Complement */
787
if (complement)
788
{
789
crc32_result = ~crc32_result;
790
}
791
792
return (crc32_result);
793
}
794
795
int
796
bxe_test_bit(int nr,
797
volatile unsigned long *addr)
798
{
799
return ((atomic_load_acq_long(addr) & (1 << nr)) != 0);
800
}
801
802
void
803
bxe_set_bit(unsigned int nr,
804
volatile unsigned long *addr)
805
{
806
atomic_set_acq_long(addr, (1 << nr));
807
}
808
809
void
810
bxe_clear_bit(int nr,
811
volatile unsigned long *addr)
812
{
813
atomic_clear_acq_long(addr, (1 << nr));
814
}
815
816
int
817
bxe_test_and_set_bit(int nr,
818
volatile unsigned long *addr)
819
{
820
unsigned long x;
821
nr = (1 << nr);
822
do {
823
x = *addr;
824
} while (atomic_cmpset_acq_long(addr, x, x | nr) == 0);
825
// if (x & nr) bit_was_set; else bit_was_not_set;
826
return (x & nr);
827
}
828
829
int
830
bxe_test_and_clear_bit(int nr,
831
volatile unsigned long *addr)
832
{
833
unsigned long x;
834
nr = (1 << nr);
835
do {
836
x = *addr;
837
} while (atomic_cmpset_acq_long(addr, x, x & ~nr) == 0);
838
// if (x & nr) bit_was_set; else bit_was_not_set;
839
return (x & nr);
840
}
841
842
int
843
bxe_cmpxchg(volatile int *addr,
844
int old,
845
int new)
846
{
847
int x;
848
do {
849
x = *addr;
850
} while (atomic_cmpset_acq_int(addr, old, new) == 0);
851
return (x);
852
}
853
854
/*
855
* Get DMA memory from the OS.
856
*
857
* Validates that the OS has provided DMA buffers in response to a
858
* bus_dmamap_load call and saves the physical address of those buffers.
859
* When the callback is used the OS will return 0 for the mapping function
860
* (bus_dmamap_load) so we use the value of map_arg->maxsegs to pass any
861
* failures back to the caller.
862
*
863
* Returns:
864
* Nothing.
865
*/
866
static void
867
bxe_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
868
{
869
struct bxe_dma *dma = arg;
870
871
if (error) {
872
dma->paddr = 0;
873
dma->nseg = 0;
874
BLOGE(dma->sc, "Failed DMA alloc '%s' (%d)!\n", dma->msg, error);
875
} else {
876
dma->paddr = segs->ds_addr;
877
dma->nseg = nseg;
878
}
879
}
880
881
/*
882
* Allocate a block of memory and map it for DMA. No partial completions
883
* allowed and release any resources acquired if we can't acquire all
884
* resources.
885
*
886
* Returns:
887
* 0 = Success, !0 = Failure
888
*/
889
int
890
bxe_dma_alloc(struct bxe_softc *sc,
891
bus_size_t size,
892
struct bxe_dma *dma,
893
const char *msg)
894
{
895
int rc;
896
897
if (dma->size > 0) {
898
BLOGE(sc, "dma block '%s' already has size %lu\n", msg,
899
(unsigned long)dma->size);
900
return (1);
901
}
902
903
memset(dma, 0, sizeof(*dma)); /* sanity */
904
dma->sc = sc;
905
dma->size = size;
906
snprintf(dma->msg, sizeof(dma->msg), "%s", msg);
907
908
rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
909
BCM_PAGE_SIZE, /* alignment */
910
0, /* boundary limit */
911
BUS_SPACE_MAXADDR, /* restricted low */
912
BUS_SPACE_MAXADDR, /* restricted hi */
913
NULL, /* addr filter() */
914
NULL, /* addr filter() arg */
915
size, /* max map size */
916
1, /* num discontinuous */
917
size, /* max seg size */
918
BUS_DMA_ALLOCNOW, /* flags */
919
NULL, /* lock() */
920
NULL, /* lock() arg */
921
&dma->tag); /* returned dma tag */
922
if (rc != 0) {
923
BLOGE(sc, "Failed to create dma tag for '%s' (%d)\n", msg, rc);
924
memset(dma, 0, sizeof(*dma));
925
return (1);
926
}
927
928
rc = bus_dmamem_alloc(dma->tag,
929
(void **)&dma->vaddr,
930
(BUS_DMA_NOWAIT | BUS_DMA_ZERO),
931
&dma->map);
932
if (rc != 0) {
933
BLOGE(sc, "Failed to alloc dma mem for '%s' (%d)\n", msg, rc);
934
bus_dma_tag_destroy(dma->tag);
935
memset(dma, 0, sizeof(*dma));
936
return (1);
937
}
938
939
rc = bus_dmamap_load(dma->tag,
940
dma->map,
941
dma->vaddr,
942
size,
943
bxe_dma_map_addr, /* BLOGD in here */
944
dma,
945
BUS_DMA_NOWAIT);
946
if (rc != 0) {
947
BLOGE(sc, "Failed to load dma map for '%s' (%d)\n", msg, rc);
948
bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
949
bus_dma_tag_destroy(dma->tag);
950
memset(dma, 0, sizeof(*dma));
951
return (1);
952
}
953
954
return (0);
955
}
956
957
void
958
bxe_dma_free(struct bxe_softc *sc,
959
struct bxe_dma *dma)
960
{
961
if (dma->size > 0) {
962
DBASSERT(sc, (dma->tag != NULL), ("dma tag is NULL"));
963
964
bus_dmamap_sync(dma->tag, dma->map,
965
(BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE));
966
bus_dmamap_unload(dma->tag, dma->map);
967
bus_dmamem_free(dma->tag, dma->vaddr, dma->map);
968
bus_dma_tag_destroy(dma->tag);
969
}
970
971
memset(dma, 0, sizeof(*dma));
972
}
973
974
/*
975
* These indirect read and write routines are only during init.
976
* The locking is handled by the MCP.
977
*/
978
979
void
980
bxe_reg_wr_ind(struct bxe_softc *sc,
981
uint32_t addr,
982
uint32_t val)
983
{
984
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
985
pci_write_config(sc->dev, PCICFG_GRC_DATA, val, 4);
986
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
987
}
988
989
uint32_t
990
bxe_reg_rd_ind(struct bxe_softc *sc,
991
uint32_t addr)
992
{
993
uint32_t val;
994
995
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, addr, 4);
996
val = pci_read_config(sc->dev, PCICFG_GRC_DATA, 4);
997
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
998
999
return (val);
1000
}
1001
1002
static int
1003
bxe_acquire_hw_lock(struct bxe_softc *sc,
1004
uint32_t resource)
1005
{
1006
uint32_t lock_status;
1007
uint32_t resource_bit = (1 << resource);
1008
int func = SC_FUNC(sc);
1009
uint32_t hw_lock_control_reg;
1010
int cnt;
1011
1012
/* validate the resource is within range */
1013
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1014
BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1015
" resource_bit 0x%x\n", resource, resource_bit);
1016
return (-1);
1017
}
1018
1019
if (func <= 5) {
1020
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1021
} else {
1022
hw_lock_control_reg =
1023
(MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1024
}
1025
1026
/* validate the resource is not already taken */
1027
lock_status = REG_RD(sc, hw_lock_control_reg);
1028
if (lock_status & resource_bit) {
1029
BLOGE(sc, "resource (0x%x) in use (status 0x%x bit 0x%x)\n",
1030
resource, lock_status, resource_bit);
1031
return (-1);
1032
}
1033
1034
/* try every 5ms for 5 seconds */
1035
for (cnt = 0; cnt < 1000; cnt++) {
1036
REG_WR(sc, (hw_lock_control_reg + 4), resource_bit);
1037
lock_status = REG_RD(sc, hw_lock_control_reg);
1038
if (lock_status & resource_bit) {
1039
return (0);
1040
}
1041
DELAY(5000);
1042
}
1043
1044
BLOGE(sc, "Resource 0x%x resource_bit 0x%x lock timeout!\n",
1045
resource, resource_bit);
1046
return (-1);
1047
}
1048
1049
static int
1050
bxe_release_hw_lock(struct bxe_softc *sc,
1051
uint32_t resource)
1052
{
1053
uint32_t lock_status;
1054
uint32_t resource_bit = (1 << resource);
1055
int func = SC_FUNC(sc);
1056
uint32_t hw_lock_control_reg;
1057
1058
/* validate the resource is within range */
1059
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1060
BLOGE(sc, "(resource 0x%x > HW_LOCK_MAX_RESOURCE_VALUE)"
1061
" resource_bit 0x%x\n", resource, resource_bit);
1062
return (-1);
1063
}
1064
1065
if (func <= 5) {
1066
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + (func * 8));
1067
} else {
1068
hw_lock_control_reg =
1069
(MISC_REG_DRIVER_CONTROL_7 + ((func - 6) * 8));
1070
}
1071
1072
/* validate the resource is currently taken */
1073
lock_status = REG_RD(sc, hw_lock_control_reg);
1074
if (!(lock_status & resource_bit)) {
1075
BLOGE(sc, "resource (0x%x) not in use (status 0x%x bit 0x%x)\n",
1076
resource, lock_status, resource_bit);
1077
return (-1);
1078
}
1079
1080
REG_WR(sc, hw_lock_control_reg, resource_bit);
1081
return (0);
1082
}
1083
static void bxe_acquire_phy_lock(struct bxe_softc *sc)
1084
{
1085
BXE_PHY_LOCK(sc);
1086
bxe_acquire_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1087
}
1088
1089
static void bxe_release_phy_lock(struct bxe_softc *sc)
1090
{
1091
bxe_release_hw_lock(sc,HW_LOCK_RESOURCE_MDIO);
1092
BXE_PHY_UNLOCK(sc);
1093
}
1094
/*
1095
* Per pf misc lock must be acquired before the per port mcp lock. Otherwise,
1096
* had we done things the other way around, if two pfs from the same port
1097
* would attempt to access nvram at the same time, we could run into a
1098
* scenario such as:
1099
* pf A takes the port lock.
1100
* pf B succeeds in taking the same lock since they are from the same port.
1101
* pf A takes the per pf misc lock. Performs eeprom access.
1102
* pf A finishes. Unlocks the per pf misc lock.
1103
* Pf B takes the lock and proceeds to perform it's own access.
1104
* pf A unlocks the per port lock, while pf B is still working (!).
1105
* mcp takes the per port lock and corrupts pf B's access (and/or has it's own
1106
* access corrupted by pf B).*
1107
*/
1108
static int
1109
bxe_acquire_nvram_lock(struct bxe_softc *sc)
1110
{
1111
int port = SC_PORT(sc);
1112
int count, i;
1113
uint32_t val = 0;
1114
1115
/* acquire HW lock: protect against other PFs in PF Direct Assignment */
1116
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1117
1118
/* adjust timeout for emulation/FPGA */
1119
count = NVRAM_TIMEOUT_COUNT;
1120
if (CHIP_REV_IS_SLOW(sc)) {
1121
count *= 100;
1122
}
1123
1124
/* request access to nvram interface */
1125
REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1126
(MCPR_NVM_SW_ARB_ARB_REQ_SET1 << port));
1127
1128
for (i = 0; i < count*10; i++) {
1129
val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1130
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1131
break;
1132
}
1133
1134
DELAY(5);
1135
}
1136
1137
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1138
BLOGE(sc, "Cannot get access to nvram interface "
1139
"port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1140
port, val);
1141
return (-1);
1142
}
1143
1144
return (0);
1145
}
1146
1147
static int
1148
bxe_release_nvram_lock(struct bxe_softc *sc)
1149
{
1150
int port = SC_PORT(sc);
1151
int count, i;
1152
uint32_t val = 0;
1153
1154
/* adjust timeout for emulation/FPGA */
1155
count = NVRAM_TIMEOUT_COUNT;
1156
if (CHIP_REV_IS_SLOW(sc)) {
1157
count *= 100;
1158
}
1159
1160
/* relinquish nvram interface */
1161
REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
1162
(MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << port));
1163
1164
for (i = 0; i < count*10; i++) {
1165
val = REG_RD(sc, MCP_REG_MCPR_NVM_SW_ARB);
1166
if (!(val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port))) {
1167
break;
1168
}
1169
1170
DELAY(5);
1171
}
1172
1173
if (val & (MCPR_NVM_SW_ARB_ARB_ARB1 << port)) {
1174
BLOGE(sc, "Cannot free access to nvram interface "
1175
"port %d val 0x%x (MCPR_NVM_SW_ARB_ARB_ARB1 << port)\n",
1176
port, val);
1177
return (-1);
1178
}
1179
1180
/* release HW lock: protect against other PFs in PF Direct Assignment */
1181
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_NVRAM);
1182
1183
return (0);
1184
}
1185
1186
static void
1187
bxe_enable_nvram_access(struct bxe_softc *sc)
1188
{
1189
uint32_t val;
1190
1191
val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1192
1193
/* enable both bits, even on read */
1194
REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1195
(val | MCPR_NVM_ACCESS_ENABLE_EN | MCPR_NVM_ACCESS_ENABLE_WR_EN));
1196
}
1197
1198
static void
1199
bxe_disable_nvram_access(struct bxe_softc *sc)
1200
{
1201
uint32_t val;
1202
1203
val = REG_RD(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE);
1204
1205
/* disable both bits, even after read */
1206
REG_WR(sc, MCP_REG_MCPR_NVM_ACCESS_ENABLE,
1207
(val & ~(MCPR_NVM_ACCESS_ENABLE_EN |
1208
MCPR_NVM_ACCESS_ENABLE_WR_EN)));
1209
}
1210
1211
static int
1212
bxe_nvram_read_dword(struct bxe_softc *sc,
1213
uint32_t offset,
1214
uint32_t *ret_val,
1215
uint32_t cmd_flags)
1216
{
1217
int count, i, rc;
1218
uint32_t val;
1219
1220
/* build the command word */
1221
cmd_flags |= MCPR_NVM_COMMAND_DOIT;
1222
1223
/* need to clear DONE bit separately */
1224
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1225
1226
/* address of the NVRAM to read from */
1227
REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1228
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1229
1230
/* issue a read command */
1231
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1232
1233
/* adjust timeout for emulation/FPGA */
1234
count = NVRAM_TIMEOUT_COUNT;
1235
if (CHIP_REV_IS_SLOW(sc)) {
1236
count *= 100;
1237
}
1238
1239
/* wait for completion */
1240
*ret_val = 0;
1241
rc = -1;
1242
for (i = 0; i < count; i++) {
1243
DELAY(5);
1244
val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1245
1246
if (val & MCPR_NVM_COMMAND_DONE) {
1247
val = REG_RD(sc, MCP_REG_MCPR_NVM_READ);
1248
/* we read nvram data in cpu order
1249
* but ethtool sees it as an array of bytes
1250
* converting to big-endian will do the work
1251
*/
1252
*ret_val = htobe32(val);
1253
rc = 0;
1254
break;
1255
}
1256
}
1257
1258
if (rc == -1) {
1259
BLOGE(sc, "nvram read timeout expired "
1260
"(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1261
offset, cmd_flags, val);
1262
}
1263
1264
return (rc);
1265
}
1266
1267
static int
1268
bxe_nvram_read(struct bxe_softc *sc,
1269
uint32_t offset,
1270
uint8_t *ret_buf,
1271
int buf_size)
1272
{
1273
uint32_t cmd_flags;
1274
uint32_t val;
1275
int rc;
1276
1277
if ((offset & 0x03) || (buf_size & 0x03) || (buf_size == 0)) {
1278
BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1279
offset, buf_size);
1280
return (-1);
1281
}
1282
1283
if ((offset + buf_size) > sc->devinfo.flash_size) {
1284
BLOGE(sc, "Invalid parameter, "
1285
"offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1286
offset, buf_size, sc->devinfo.flash_size);
1287
return (-1);
1288
}
1289
1290
/* request access to nvram interface */
1291
rc = bxe_acquire_nvram_lock(sc);
1292
if (rc) {
1293
return (rc);
1294
}
1295
1296
/* enable access to nvram interface */
1297
bxe_enable_nvram_access(sc);
1298
1299
/* read the first word(s) */
1300
cmd_flags = MCPR_NVM_COMMAND_FIRST;
1301
while ((buf_size > sizeof(uint32_t)) && (rc == 0)) {
1302
rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1303
memcpy(ret_buf, &val, 4);
1304
1305
/* advance to the next dword */
1306
offset += sizeof(uint32_t);
1307
ret_buf += sizeof(uint32_t);
1308
buf_size -= sizeof(uint32_t);
1309
cmd_flags = 0;
1310
}
1311
1312
if (rc == 0) {
1313
cmd_flags |= MCPR_NVM_COMMAND_LAST;
1314
rc = bxe_nvram_read_dword(sc, offset, &val, cmd_flags);
1315
memcpy(ret_buf, &val, 4);
1316
}
1317
1318
/* disable access to nvram interface */
1319
bxe_disable_nvram_access(sc);
1320
bxe_release_nvram_lock(sc);
1321
1322
return (rc);
1323
}
1324
1325
static int
1326
bxe_nvram_write_dword(struct bxe_softc *sc,
1327
uint32_t offset,
1328
uint32_t val,
1329
uint32_t cmd_flags)
1330
{
1331
int count, i, rc;
1332
1333
/* build the command word */
1334
cmd_flags |= (MCPR_NVM_COMMAND_DOIT | MCPR_NVM_COMMAND_WR);
1335
1336
/* need to clear DONE bit separately */
1337
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, MCPR_NVM_COMMAND_DONE);
1338
1339
/* write the data */
1340
REG_WR(sc, MCP_REG_MCPR_NVM_WRITE, val);
1341
1342
/* address of the NVRAM to write to */
1343
REG_WR(sc, MCP_REG_MCPR_NVM_ADDR,
1344
(offset & MCPR_NVM_ADDR_NVM_ADDR_VALUE));
1345
1346
/* issue the write command */
1347
REG_WR(sc, MCP_REG_MCPR_NVM_COMMAND, cmd_flags);
1348
1349
/* adjust timeout for emulation/FPGA */
1350
count = NVRAM_TIMEOUT_COUNT;
1351
if (CHIP_REV_IS_SLOW(sc)) {
1352
count *= 100;
1353
}
1354
1355
/* wait for completion */
1356
rc = -1;
1357
for (i = 0; i < count; i++) {
1358
DELAY(5);
1359
val = REG_RD(sc, MCP_REG_MCPR_NVM_COMMAND);
1360
if (val & MCPR_NVM_COMMAND_DONE) {
1361
rc = 0;
1362
break;
1363
}
1364
}
1365
1366
if (rc == -1) {
1367
BLOGE(sc, "nvram write timeout expired "
1368
"(offset 0x%x cmd_flags 0x%x val 0x%x)\n",
1369
offset, cmd_flags, val);
1370
}
1371
1372
return (rc);
1373
}
1374
1375
#define BYTE_OFFSET(offset) (8 * (offset & 0x03))
1376
1377
static int
1378
bxe_nvram_write1(struct bxe_softc *sc,
1379
uint32_t offset,
1380
uint8_t *data_buf,
1381
int buf_size)
1382
{
1383
uint32_t cmd_flags;
1384
uint32_t align_offset;
1385
uint32_t val;
1386
int rc;
1387
1388
if ((offset + buf_size) > sc->devinfo.flash_size) {
1389
BLOGE(sc, "Invalid parameter, "
1390
"offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1391
offset, buf_size, sc->devinfo.flash_size);
1392
return (-1);
1393
}
1394
1395
/* request access to nvram interface */
1396
rc = bxe_acquire_nvram_lock(sc);
1397
if (rc) {
1398
return (rc);
1399
}
1400
1401
/* enable access to nvram interface */
1402
bxe_enable_nvram_access(sc);
1403
1404
cmd_flags = (MCPR_NVM_COMMAND_FIRST | MCPR_NVM_COMMAND_LAST);
1405
align_offset = (offset & ~0x03);
1406
rc = bxe_nvram_read_dword(sc, align_offset, &val, cmd_flags);
1407
1408
if (rc == 0) {
1409
val &= ~(0xff << BYTE_OFFSET(offset));
1410
val |= (*data_buf << BYTE_OFFSET(offset));
1411
1412
/* nvram data is returned as an array of bytes
1413
* convert it back to cpu order
1414
*/
1415
val = be32toh(val);
1416
1417
rc = bxe_nvram_write_dword(sc, align_offset, val, cmd_flags);
1418
}
1419
1420
/* disable access to nvram interface */
1421
bxe_disable_nvram_access(sc);
1422
bxe_release_nvram_lock(sc);
1423
1424
return (rc);
1425
}
1426
1427
static int
1428
bxe_nvram_write(struct bxe_softc *sc,
1429
uint32_t offset,
1430
uint8_t *data_buf,
1431
int buf_size)
1432
{
1433
uint32_t cmd_flags;
1434
uint32_t val;
1435
uint32_t written_so_far;
1436
int rc;
1437
1438
if (buf_size == 1) {
1439
return (bxe_nvram_write1(sc, offset, data_buf, buf_size));
1440
}
1441
1442
if ((offset & 0x03) || (buf_size & 0x03) /* || (buf_size == 0) */) {
1443
BLOGE(sc, "Invalid parameter, offset 0x%x buf_size 0x%x\n",
1444
offset, buf_size);
1445
return (-1);
1446
}
1447
1448
if (buf_size == 0) {
1449
return (0); /* nothing to do */
1450
}
1451
1452
if ((offset + buf_size) > sc->devinfo.flash_size) {
1453
BLOGE(sc, "Invalid parameter, "
1454
"offset 0x%x + buf_size 0x%x > flash_size 0x%x\n",
1455
offset, buf_size, sc->devinfo.flash_size);
1456
return (-1);
1457
}
1458
1459
/* request access to nvram interface */
1460
rc = bxe_acquire_nvram_lock(sc);
1461
if (rc) {
1462
return (rc);
1463
}
1464
1465
/* enable access to nvram interface */
1466
bxe_enable_nvram_access(sc);
1467
1468
written_so_far = 0;
1469
cmd_flags = MCPR_NVM_COMMAND_FIRST;
1470
while ((written_so_far < buf_size) && (rc == 0)) {
1471
if (written_so_far == (buf_size - sizeof(uint32_t))) {
1472
cmd_flags |= MCPR_NVM_COMMAND_LAST;
1473
} else if (((offset + 4) % NVRAM_PAGE_SIZE) == 0) {
1474
cmd_flags |= MCPR_NVM_COMMAND_LAST;
1475
} else if ((offset % NVRAM_PAGE_SIZE) == 0) {
1476
cmd_flags |= MCPR_NVM_COMMAND_FIRST;
1477
}
1478
1479
memcpy(&val, data_buf, 4);
1480
1481
rc = bxe_nvram_write_dword(sc, offset, val, cmd_flags);
1482
1483
/* advance to the next dword */
1484
offset += sizeof(uint32_t);
1485
data_buf += sizeof(uint32_t);
1486
written_so_far += sizeof(uint32_t);
1487
cmd_flags = 0;
1488
}
1489
1490
/* disable access to nvram interface */
1491
bxe_disable_nvram_access(sc);
1492
bxe_release_nvram_lock(sc);
1493
1494
return (rc);
1495
}
1496
1497
/* copy command into DMAE command memory and set DMAE command Go */
1498
void
1499
bxe_post_dmae(struct bxe_softc *sc,
1500
struct dmae_cmd *dmae,
1501
int idx)
1502
{
1503
uint32_t cmd_offset;
1504
int i;
1505
1506
cmd_offset = (DMAE_REG_CMD_MEM + (sizeof(struct dmae_cmd) * idx));
1507
for (i = 0; i < ((sizeof(struct dmae_cmd) / 4)); i++) {
1508
REG_WR(sc, (cmd_offset + (i * 4)), *(((uint32_t *)dmae) + i));
1509
}
1510
1511
REG_WR(sc, dmae_reg_go_c[idx], 1);
1512
}
1513
1514
uint32_t
1515
bxe_dmae_opcode_add_comp(uint32_t opcode,
1516
uint8_t comp_type)
1517
{
1518
return (opcode | ((comp_type << DMAE_CMD_C_DST_SHIFT) |
1519
DMAE_CMD_C_TYPE_ENABLE));
1520
}
1521
1522
uint32_t
1523
bxe_dmae_opcode_clr_src_reset(uint32_t opcode)
1524
{
1525
return (opcode & ~DMAE_CMD_SRC_RESET);
1526
}
1527
1528
uint32_t
1529
bxe_dmae_opcode(struct bxe_softc *sc,
1530
uint8_t src_type,
1531
uint8_t dst_type,
1532
uint8_t with_comp,
1533
uint8_t comp_type)
1534
{
1535
uint32_t opcode = 0;
1536
1537
opcode |= ((src_type << DMAE_CMD_SRC_SHIFT) |
1538
(dst_type << DMAE_CMD_DST_SHIFT));
1539
1540
opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
1541
1542
opcode |= (SC_PORT(sc) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
1543
1544
opcode |= ((SC_VN(sc) << DMAE_CMD_E1HVN_SHIFT) |
1545
(SC_VN(sc) << DMAE_CMD_DST_VN_SHIFT));
1546
1547
opcode |= (DMAE_COM_SET_ERR << DMAE_CMD_ERR_POLICY_SHIFT);
1548
1549
#ifdef __BIG_ENDIAN
1550
opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
1551
#else
1552
opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
1553
#endif
1554
1555
if (with_comp) {
1556
opcode = bxe_dmae_opcode_add_comp(opcode, comp_type);
1557
}
1558
1559
return (opcode);
1560
}
1561
1562
static void
1563
bxe_prep_dmae_with_comp(struct bxe_softc *sc,
1564
struct dmae_cmd *dmae,
1565
uint8_t src_type,
1566
uint8_t dst_type)
1567
{
1568
memset(dmae, 0, sizeof(struct dmae_cmd));
1569
1570
/* set the opcode */
1571
dmae->opcode = bxe_dmae_opcode(sc, src_type, dst_type,
1572
TRUE, DMAE_COMP_PCI);
1573
1574
/* fill in the completion parameters */
1575
dmae->comp_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_comp));
1576
dmae->comp_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_comp));
1577
dmae->comp_val = DMAE_COMP_VAL;
1578
}
1579
1580
/* issue a DMAE command over the init channel and wait for completion */
1581
static int
1582
bxe_issue_dmae_with_comp(struct bxe_softc *sc,
1583
struct dmae_cmd *dmae)
1584
{
1585
uint32_t *wb_comp = BXE_SP(sc, wb_comp);
1586
int timeout = CHIP_REV_IS_SLOW(sc) ? 400000 : 4000;
1587
1588
BXE_DMAE_LOCK(sc);
1589
1590
/* reset completion */
1591
*wb_comp = 0;
1592
1593
/* post the command on the channel used for initializations */
1594
bxe_post_dmae(sc, dmae, INIT_DMAE_C(sc));
1595
1596
/* wait for completion */
1597
DELAY(5);
1598
1599
while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
1600
if (!timeout ||
1601
(sc->recovery_state != BXE_RECOVERY_DONE &&
1602
sc->recovery_state != BXE_RECOVERY_NIC_LOADING)) {
1603
BLOGE(sc, "DMAE timeout! *wb_comp 0x%x recovery_state 0x%x\n",
1604
*wb_comp, sc->recovery_state);
1605
BXE_DMAE_UNLOCK(sc);
1606
return (DMAE_TIMEOUT);
1607
}
1608
1609
timeout--;
1610
DELAY(50);
1611
}
1612
1613
if (*wb_comp & DMAE_PCI_ERR_FLAG) {
1614
BLOGE(sc, "DMAE PCI error! *wb_comp 0x%x recovery_state 0x%x\n",
1615
*wb_comp, sc->recovery_state);
1616
BXE_DMAE_UNLOCK(sc);
1617
return (DMAE_PCI_ERROR);
1618
}
1619
1620
BXE_DMAE_UNLOCK(sc);
1621
return (0);
1622
}
1623
1624
void
1625
bxe_read_dmae(struct bxe_softc *sc,
1626
uint32_t src_addr,
1627
uint32_t len32)
1628
{
1629
struct dmae_cmd dmae;
1630
uint32_t *data;
1631
int i, rc;
1632
1633
DBASSERT(sc, (len32 <= 4), ("DMAE read length is %d", len32));
1634
1635
if (!sc->dmae_ready) {
1636
data = BXE_SP(sc, wb_data[0]);
1637
1638
for (i = 0; i < len32; i++) {
1639
data[i] = (CHIP_IS_E1(sc)) ?
1640
bxe_reg_rd_ind(sc, (src_addr + (i * 4))) :
1641
REG_RD(sc, (src_addr + (i * 4)));
1642
}
1643
1644
return;
1645
}
1646
1647
/* set opcode and fixed command fields */
1648
bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
1649
1650
/* fill in addresses and len */
1651
dmae.src_addr_lo = (src_addr >> 2); /* GRC addr has dword resolution */
1652
dmae.src_addr_hi = 0;
1653
dmae.dst_addr_lo = U64_LO(BXE_SP_MAPPING(sc, wb_data));
1654
dmae.dst_addr_hi = U64_HI(BXE_SP_MAPPING(sc, wb_data));
1655
dmae.len = len32;
1656
1657
/* issue the command and wait for completion */
1658
if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1659
bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1660
}
1661
}
1662
1663
void
1664
bxe_write_dmae(struct bxe_softc *sc,
1665
bus_addr_t dma_addr,
1666
uint32_t dst_addr,
1667
uint32_t len32)
1668
{
1669
struct dmae_cmd dmae;
1670
int rc;
1671
1672
if (!sc->dmae_ready) {
1673
DBASSERT(sc, (len32 <= 4), ("DMAE not ready and length is %d", len32));
1674
1675
if (CHIP_IS_E1(sc)) {
1676
ecore_init_ind_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1677
} else {
1678
ecore_init_str_wr(sc, dst_addr, BXE_SP(sc, wb_data[0]), len32);
1679
}
1680
1681
return;
1682
}
1683
1684
/* set opcode and fixed command fields */
1685
bxe_prep_dmae_with_comp(sc, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
1686
1687
/* fill in addresses and len */
1688
dmae.src_addr_lo = U64_LO(dma_addr);
1689
dmae.src_addr_hi = U64_HI(dma_addr);
1690
dmae.dst_addr_lo = (dst_addr >> 2); /* GRC addr has dword resolution */
1691
dmae.dst_addr_hi = 0;
1692
dmae.len = len32;
1693
1694
/* issue the command and wait for completion */
1695
if ((rc = bxe_issue_dmae_with_comp(sc, &dmae)) != 0) {
1696
bxe_panic(sc, ("DMAE failed (%d)\n", rc));
1697
}
1698
}
1699
1700
void
1701
bxe_write_dmae_phys_len(struct bxe_softc *sc,
1702
bus_addr_t phys_addr,
1703
uint32_t addr,
1704
uint32_t len)
1705
{
1706
int dmae_wr_max = DMAE_LEN32_WR_MAX(sc);
1707
int offset = 0;
1708
1709
while (len > dmae_wr_max) {
1710
bxe_write_dmae(sc,
1711
(phys_addr + offset), /* src DMA address */
1712
(addr + offset), /* dst GRC address */
1713
dmae_wr_max);
1714
offset += (dmae_wr_max * 4);
1715
len -= dmae_wr_max;
1716
}
1717
1718
bxe_write_dmae(sc,
1719
(phys_addr + offset), /* src DMA address */
1720
(addr + offset), /* dst GRC address */
1721
len);
1722
}
1723
1724
void
1725
bxe_set_ctx_validation(struct bxe_softc *sc,
1726
struct eth_context *cxt,
1727
uint32_t cid)
1728
{
1729
/* ustorm cxt validation */
1730
cxt->ustorm_ag_context.cdu_usage =
1731
CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1732
CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
1733
/* xcontext validation */
1734
cxt->xstorm_ag_context.cdu_reserved =
1735
CDU_RSRVD_VALUE_TYPE_A(HW_CID(sc, cid),
1736
CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
1737
}
1738
1739
static void
1740
bxe_storm_memset_hc_timeout(struct bxe_softc *sc,
1741
uint8_t port,
1742
uint8_t fw_sb_id,
1743
uint8_t sb_index,
1744
uint8_t ticks)
1745
{
1746
uint32_t addr =
1747
(BAR_CSTRORM_INTMEM +
1748
CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index));
1749
1750
REG_WR8(sc, addr, ticks);
1751
1752
BLOGD(sc, DBG_LOAD,
1753
"port %d fw_sb_id %d sb_index %d ticks %d\n",
1754
port, fw_sb_id, sb_index, ticks);
1755
}
1756
1757
static void
1758
bxe_storm_memset_hc_disable(struct bxe_softc *sc,
1759
uint8_t port,
1760
uint16_t fw_sb_id,
1761
uint8_t sb_index,
1762
uint8_t disable)
1763
{
1764
uint32_t enable_flag =
1765
(disable) ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
1766
uint32_t addr =
1767
(BAR_CSTRORM_INTMEM +
1768
CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index));
1769
uint8_t flags;
1770
1771
/* clear and set */
1772
flags = REG_RD8(sc, addr);
1773
flags &= ~HC_INDEX_DATA_HC_ENABLED;
1774
flags |= enable_flag;
1775
REG_WR8(sc, addr, flags);
1776
1777
BLOGD(sc, DBG_LOAD,
1778
"port %d fw_sb_id %d sb_index %d disable %d\n",
1779
port, fw_sb_id, sb_index, disable);
1780
}
1781
1782
void
1783
bxe_update_coalesce_sb_index(struct bxe_softc *sc,
1784
uint8_t fw_sb_id,
1785
uint8_t sb_index,
1786
uint8_t disable,
1787
uint16_t usec)
1788
{
1789
int port = SC_PORT(sc);
1790
uint8_t ticks = (usec / 4); /* XXX ??? */
1791
1792
bxe_storm_memset_hc_timeout(sc, port, fw_sb_id, sb_index, ticks);
1793
1794
disable = (disable) ? 1 : ((usec) ? 0 : 1);
1795
bxe_storm_memset_hc_disable(sc, port, fw_sb_id, sb_index, disable);
1796
}
1797
1798
void
1799
elink_cb_udelay(struct bxe_softc *sc,
1800
uint32_t usecs)
1801
{
1802
DELAY(usecs);
1803
}
1804
1805
uint32_t
1806
elink_cb_reg_read(struct bxe_softc *sc,
1807
uint32_t reg_addr)
1808
{
1809
return (REG_RD(sc, reg_addr));
1810
}
1811
1812
void
1813
elink_cb_reg_write(struct bxe_softc *sc,
1814
uint32_t reg_addr,
1815
uint32_t val)
1816
{
1817
REG_WR(sc, reg_addr, val);
1818
}
1819
1820
void
1821
elink_cb_reg_wb_write(struct bxe_softc *sc,
1822
uint32_t offset,
1823
uint32_t *wb_write,
1824
uint16_t len)
1825
{
1826
REG_WR_DMAE(sc, offset, wb_write, len);
1827
}
1828
1829
void
1830
elink_cb_reg_wb_read(struct bxe_softc *sc,
1831
uint32_t offset,
1832
uint32_t *wb_write,
1833
uint16_t len)
1834
{
1835
REG_RD_DMAE(sc, offset, wb_write, len);
1836
}
1837
1838
uint8_t
1839
elink_cb_path_id(struct bxe_softc *sc)
1840
{
1841
return (SC_PATH(sc));
1842
}
1843
1844
void
1845
elink_cb_event_log(struct bxe_softc *sc,
1846
const elink_log_id_t elink_log_id,
1847
...)
1848
{
1849
/* XXX */
1850
BLOGI(sc, "ELINK EVENT LOG (%d)\n", elink_log_id);
1851
}
1852
1853
static int
1854
bxe_set_spio(struct bxe_softc *sc,
1855
int spio,
1856
uint32_t mode)
1857
{
1858
uint32_t spio_reg;
1859
1860
/* Only 2 SPIOs are configurable */
1861
if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
1862
BLOGE(sc, "Invalid SPIO 0x%x mode 0x%x\n", spio, mode);
1863
return (-1);
1864
}
1865
1866
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1867
1868
/* read SPIO and mask except the float bits */
1869
spio_reg = (REG_RD(sc, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
1870
1871
switch (mode) {
1872
case MISC_SPIO_OUTPUT_LOW:
1873
BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output low\n", spio);
1874
/* clear FLOAT and set CLR */
1875
spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1876
spio_reg |= (spio << MISC_SPIO_CLR_POS);
1877
break;
1878
1879
case MISC_SPIO_OUTPUT_HIGH:
1880
BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> output high\n", spio);
1881
/* clear FLOAT and set SET */
1882
spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
1883
spio_reg |= (spio << MISC_SPIO_SET_POS);
1884
break;
1885
1886
case MISC_SPIO_INPUT_HI_Z:
1887
BLOGD(sc, DBG_LOAD, "Set SPIO 0x%x -> input\n", spio);
1888
/* set FLOAT */
1889
spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
1890
break;
1891
1892
default:
1893
break;
1894
}
1895
1896
REG_WR(sc, MISC_REG_SPIO, spio_reg);
1897
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_SPIO);
1898
1899
return (0);
1900
}
1901
1902
static int
1903
bxe_gpio_read(struct bxe_softc *sc,
1904
int gpio_num,
1905
uint8_t port)
1906
{
1907
/* The GPIO should be swapped if swap register is set and active */
1908
int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1909
REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1910
int gpio_shift = (gpio_num +
1911
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1912
uint32_t gpio_mask = (1 << gpio_shift);
1913
uint32_t gpio_reg;
1914
1915
if (gpio_num > MISC_REGISTERS_GPIO_3) {
1916
BLOGE(sc, "Invalid GPIO %d port 0x%x gpio_port %d gpio_shift %d"
1917
" gpio_mask 0x%x\n", gpio_num, port, gpio_port, gpio_shift,
1918
gpio_mask);
1919
return (-1);
1920
}
1921
1922
/* read GPIO value */
1923
gpio_reg = REG_RD(sc, MISC_REG_GPIO);
1924
1925
/* get the requested pin value */
1926
return ((gpio_reg & gpio_mask) == gpio_mask) ? 1 : 0;
1927
}
1928
1929
static int
1930
bxe_gpio_write(struct bxe_softc *sc,
1931
int gpio_num,
1932
uint32_t mode,
1933
uint8_t port)
1934
{
1935
/* The GPIO should be swapped if swap register is set and active */
1936
int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
1937
REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
1938
int gpio_shift = (gpio_num +
1939
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
1940
uint32_t gpio_mask = (1 << gpio_shift);
1941
uint32_t gpio_reg;
1942
1943
if (gpio_num > MISC_REGISTERS_GPIO_3) {
1944
BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
1945
" gpio_shift %d gpio_mask 0x%x\n",
1946
gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
1947
return (-1);
1948
}
1949
1950
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1951
1952
/* read GPIO and mask except the float bits */
1953
gpio_reg = (REG_RD(sc, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1954
1955
switch (mode) {
1956
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1957
BLOGD(sc, DBG_PHY,
1958
"Set GPIO %d (shift %d) -> output low\n",
1959
gpio_num, gpio_shift);
1960
/* clear FLOAT and set CLR */
1961
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1962
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1963
break;
1964
1965
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1966
BLOGD(sc, DBG_PHY,
1967
"Set GPIO %d (shift %d) -> output high\n",
1968
gpio_num, gpio_shift);
1969
/* clear FLOAT and set SET */
1970
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1971
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1972
break;
1973
1974
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1975
BLOGD(sc, DBG_PHY,
1976
"Set GPIO %d (shift %d) -> input\n",
1977
gpio_num, gpio_shift);
1978
/* set FLOAT */
1979
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1980
break;
1981
1982
default:
1983
break;
1984
}
1985
1986
REG_WR(sc, MISC_REG_GPIO, gpio_reg);
1987
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
1988
1989
return (0);
1990
}
1991
1992
static int
1993
bxe_gpio_mult_write(struct bxe_softc *sc,
1994
uint8_t pins,
1995
uint32_t mode)
1996
{
1997
uint32_t gpio_reg;
1998
1999
/* any port swapping should be handled by caller */
2000
2001
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2002
2003
/* read GPIO and mask except the float bits */
2004
gpio_reg = REG_RD(sc, MISC_REG_GPIO);
2005
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2006
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2007
gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2008
2009
switch (mode) {
2010
case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2011
BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output low\n", pins);
2012
/* set CLR */
2013
gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2014
break;
2015
2016
case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2017
BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> output high\n", pins);
2018
/* set SET */
2019
gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2020
break;
2021
2022
case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2023
BLOGD(sc, DBG_PHY, "Set GPIO 0x%x -> input\n", pins);
2024
/* set FLOAT */
2025
gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2026
break;
2027
2028
default:
2029
BLOGE(sc, "Invalid GPIO mode assignment pins 0x%x mode 0x%x"
2030
" gpio_reg 0x%x\n", pins, mode, gpio_reg);
2031
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2032
return (-1);
2033
}
2034
2035
REG_WR(sc, MISC_REG_GPIO, gpio_reg);
2036
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2037
2038
return (0);
2039
}
2040
2041
static int
2042
bxe_gpio_int_write(struct bxe_softc *sc,
2043
int gpio_num,
2044
uint32_t mode,
2045
uint8_t port)
2046
{
2047
/* The GPIO should be swapped if swap register is set and active */
2048
int gpio_port = ((REG_RD(sc, NIG_REG_PORT_SWAP) &&
2049
REG_RD(sc, NIG_REG_STRAP_OVERRIDE)) ^ port);
2050
int gpio_shift = (gpio_num +
2051
(gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0));
2052
uint32_t gpio_mask = (1 << gpio_shift);
2053
uint32_t gpio_reg;
2054
2055
if (gpio_num > MISC_REGISTERS_GPIO_3) {
2056
BLOGE(sc, "Invalid GPIO %d mode 0x%x port 0x%x gpio_port %d"
2057
" gpio_shift %d gpio_mask 0x%x\n",
2058
gpio_num, mode, port, gpio_port, gpio_shift, gpio_mask);
2059
return (-1);
2060
}
2061
2062
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2063
2064
/* read GPIO int */
2065
gpio_reg = REG_RD(sc, MISC_REG_GPIO_INT);
2066
2067
switch (mode) {
2068
case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2069
BLOGD(sc, DBG_PHY,
2070
"Clear GPIO INT %d (shift %d) -> output low\n",
2071
gpio_num, gpio_shift);
2072
/* clear SET and set CLR */
2073
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2074
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2075
break;
2076
2077
case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2078
BLOGD(sc, DBG_PHY,
2079
"Set GPIO INT %d (shift %d) -> output high\n",
2080
gpio_num, gpio_shift);
2081
/* clear CLR and set SET */
2082
gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2083
gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2084
break;
2085
2086
default:
2087
break;
2088
}
2089
2090
REG_WR(sc, MISC_REG_GPIO_INT, gpio_reg);
2091
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_GPIO);
2092
2093
return (0);
2094
}
2095
2096
uint32_t
2097
elink_cb_gpio_read(struct bxe_softc *sc,
2098
uint16_t gpio_num,
2099
uint8_t port)
2100
{
2101
return (bxe_gpio_read(sc, gpio_num, port));
2102
}
2103
2104
uint8_t
2105
elink_cb_gpio_write(struct bxe_softc *sc,
2106
uint16_t gpio_num,
2107
uint8_t mode, /* 0=low 1=high */
2108
uint8_t port)
2109
{
2110
return (bxe_gpio_write(sc, gpio_num, mode, port));
2111
}
2112
2113
uint8_t
2114
elink_cb_gpio_mult_write(struct bxe_softc *sc,
2115
uint8_t pins,
2116
uint8_t mode) /* 0=low 1=high */
2117
{
2118
return (bxe_gpio_mult_write(sc, pins, mode));
2119
}
2120
2121
uint8_t
2122
elink_cb_gpio_int_write(struct bxe_softc *sc,
2123
uint16_t gpio_num,
2124
uint8_t mode, /* 0=low 1=high */
2125
uint8_t port)
2126
{
2127
return (bxe_gpio_int_write(sc, gpio_num, mode, port));
2128
}
2129
2130
void
2131
elink_cb_notify_link_changed(struct bxe_softc *sc)
2132
{
2133
REG_WR(sc, (MISC_REG_AEU_GENERAL_ATTN_12 +
2134
(SC_FUNC(sc) * sizeof(uint32_t))), 1);
2135
}
2136
2137
/* send the MCP a request, block until there is a reply */
2138
uint32_t
2139
elink_cb_fw_command(struct bxe_softc *sc,
2140
uint32_t command,
2141
uint32_t param)
2142
{
2143
int mb_idx = SC_FW_MB_IDX(sc);
2144
uint32_t seq;
2145
uint32_t rc = 0;
2146
uint32_t cnt = 1;
2147
uint8_t delay = CHIP_REV_IS_SLOW(sc) ? 100 : 10;
2148
2149
BXE_FWMB_LOCK(sc);
2150
2151
seq = ++sc->fw_seq;
2152
SHMEM_WR(sc, func_mb[mb_idx].drv_mb_param, param);
2153
SHMEM_WR(sc, func_mb[mb_idx].drv_mb_header, (command | seq));
2154
2155
BLOGD(sc, DBG_PHY,
2156
"wrote command 0x%08x to FW MB param 0x%08x\n",
2157
(command | seq), param);
2158
2159
/* Let the FW do it's magic. GIve it up to 5 seconds... */
2160
do {
2161
DELAY(delay * 1000);
2162
rc = SHMEM_RD(sc, func_mb[mb_idx].fw_mb_header);
2163
} while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2164
2165
BLOGD(sc, DBG_PHY,
2166
"[after %d ms] read 0x%x seq 0x%x from FW MB\n",
2167
cnt*delay, rc, seq);
2168
2169
/* is this a reply to our command? */
2170
if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK)) {
2171
rc &= FW_MSG_CODE_MASK;
2172
} else {
2173
/* Ruh-roh! */
2174
BLOGE(sc, "FW failed to respond!\n");
2175
// XXX bxe_fw_dump(sc);
2176
rc = 0;
2177
}
2178
2179
BXE_FWMB_UNLOCK(sc);
2180
return (rc);
2181
}
2182
2183
static uint32_t
2184
bxe_fw_command(struct bxe_softc *sc,
2185
uint32_t command,
2186
uint32_t param)
2187
{
2188
return (elink_cb_fw_command(sc, command, param));
2189
}
2190
2191
static void
2192
__storm_memset_dma_mapping(struct bxe_softc *sc,
2193
uint32_t addr,
2194
bus_addr_t mapping)
2195
{
2196
REG_WR(sc, addr, U64_LO(mapping));
2197
REG_WR(sc, (addr + 4), U64_HI(mapping));
2198
}
2199
2200
static void
2201
storm_memset_spq_addr(struct bxe_softc *sc,
2202
bus_addr_t mapping,
2203
uint16_t abs_fid)
2204
{
2205
uint32_t addr = (XSEM_REG_FAST_MEMORY +
2206
XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid));
2207
__storm_memset_dma_mapping(sc, addr, mapping);
2208
}
2209
2210
static void
2211
storm_memset_vf_to_pf(struct bxe_softc *sc,
2212
uint16_t abs_fid,
2213
uint16_t pf_id)
2214
{
2215
REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2216
REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2217
REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2218
REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid)), pf_id);
2219
}
2220
2221
static void
2222
storm_memset_func_en(struct bxe_softc *sc,
2223
uint16_t abs_fid,
2224
uint8_t enable)
2225
{
2226
REG_WR8(sc, (BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2227
REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2228
REG_WR8(sc, (BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2229
REG_WR8(sc, (BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid)), enable);
2230
}
2231
2232
static void
2233
storm_memset_eq_data(struct bxe_softc *sc,
2234
struct event_ring_data *eq_data,
2235
uint16_t pfid)
2236
{
2237
uint32_t addr;
2238
size_t size;
2239
2240
addr = (BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid));
2241
size = sizeof(struct event_ring_data);
2242
ecore_storm_memset_struct(sc, addr, size, (uint32_t *)eq_data);
2243
}
2244
2245
static void
2246
storm_memset_eq_prod(struct bxe_softc *sc,
2247
uint16_t eq_prod,
2248
uint16_t pfid)
2249
{
2250
uint32_t addr = (BAR_CSTRORM_INTMEM +
2251
CSTORM_EVENT_RING_PROD_OFFSET(pfid));
2252
REG_WR16(sc, addr, eq_prod);
2253
}
2254
2255
/*
2256
* Post a slowpath command.
2257
*
2258
* A slowpath command is used to propagate a configuration change through
2259
* the controller in a controlled manner, allowing each STORM processor and
2260
* other H/W blocks to phase in the change. The commands sent on the
2261
* slowpath are referred to as ramrods. Depending on the ramrod used the
2262
* completion of the ramrod will occur in different ways. Here's a
2263
* breakdown of ramrods and how they complete:
2264
*
2265
* RAMROD_CMD_ID_ETH_PORT_SETUP
2266
* Used to setup the leading connection on a port. Completes on the
2267
* Receive Completion Queue (RCQ) of that port (typically fp[0]).
2268
*
2269
* RAMROD_CMD_ID_ETH_CLIENT_SETUP
2270
* Used to setup an additional connection on a port. Completes on the
2271
* RCQ of the multi-queue/RSS connection being initialized.
2272
*
2273
* RAMROD_CMD_ID_ETH_STAT_QUERY
2274
* Used to force the storm processors to update the statistics database
2275
* in host memory. This ramrod is send on the leading connection CID and
2276
* completes as an index increment of the CSTORM on the default status
2277
* block.
2278
*
2279
* RAMROD_CMD_ID_ETH_UPDATE
2280
* Used to update the state of the leading connection, usually to udpate
2281
* the RSS indirection table. Completes on the RCQ of the leading
2282
* connection. (Not currently used under FreeBSD until OS support becomes
2283
* available.)
2284
*
2285
* RAMROD_CMD_ID_ETH_HALT
2286
* Used when tearing down a connection prior to driver unload. Completes
2287
* on the RCQ of the multi-queue/RSS connection being torn down. Don't
2288
* use this on the leading connection.
2289
*
2290
* RAMROD_CMD_ID_ETH_SET_MAC
2291
* Sets the Unicast/Broadcast/Multicast used by the port. Completes on
2292
* the RCQ of the leading connection.
2293
*
2294
* RAMROD_CMD_ID_ETH_CFC_DEL
2295
* Used when tearing down a conneciton prior to driver unload. Completes
2296
* on the RCQ of the leading connection (since the current connection
2297
* has been completely removed from controller memory).
2298
*
2299
* RAMROD_CMD_ID_ETH_PORT_DEL
2300
* Used to tear down the leading connection prior to driver unload,
2301
* typically fp[0]. Completes as an index increment of the CSTORM on the
2302
* default status block.
2303
*
2304
* RAMROD_CMD_ID_ETH_FORWARD_SETUP
2305
* Used for connection offload. Completes on the RCQ of the multi-queue
2306
* RSS connection that is being offloaded. (Not currently used under
2307
* FreeBSD.)
2308
*
2309
* There can only be one command pending per function.
2310
*
2311
* Returns:
2312
* 0 = Success, !0 = Failure.
2313
*/
2314
2315
/* must be called under the spq lock */
2316
static inline
2317
struct eth_spe *bxe_sp_get_next(struct bxe_softc *sc)
2318
{
2319
struct eth_spe *next_spe = sc->spq_prod_bd;
2320
2321
if (sc->spq_prod_bd == sc->spq_last_bd) {
2322
/* wrap back to the first eth_spq */
2323
sc->spq_prod_bd = sc->spq;
2324
sc->spq_prod_idx = 0;
2325
} else {
2326
sc->spq_prod_bd++;
2327
sc->spq_prod_idx++;
2328
}
2329
2330
return (next_spe);
2331
}
2332
2333
/* must be called under the spq lock */
2334
static inline
2335
void bxe_sp_prod_update(struct bxe_softc *sc)
2336
{
2337
int func = SC_FUNC(sc);
2338
2339
/*
2340
* Make sure that BD data is updated before writing the producer.
2341
* BD data is written to the memory, the producer is read from the
2342
* memory, thus we need a full memory barrier to ensure the ordering.
2343
*/
2344
mb();
2345
2346
REG_WR16(sc, (BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func)),
2347
sc->spq_prod_idx);
2348
2349
bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
2350
BUS_SPACE_BARRIER_WRITE);
2351
}
2352
2353
/**
2354
* bxe_is_contextless_ramrod - check if the current command ends on EQ
2355
*
2356
* @cmd: command to check
2357
* @cmd_type: command type
2358
*/
2359
static inline
2360
int bxe_is_contextless_ramrod(int cmd,
2361
int cmd_type)
2362
{
2363
if ((cmd_type == NONE_CONNECTION_TYPE) ||
2364
(cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
2365
(cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
2366
(cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
2367
(cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
2368
(cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
2369
(cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE)) {
2370
return (TRUE);
2371
} else {
2372
return (FALSE);
2373
}
2374
}
2375
2376
/**
2377
* bxe_sp_post - place a single command on an SP ring
2378
*
2379
* @sc: driver handle
2380
* @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
2381
* @cid: SW CID the command is related to
2382
* @data_hi: command private data address (high 32 bits)
2383
* @data_lo: command private data address (low 32 bits)
2384
* @cmd_type: command type (e.g. NONE, ETH)
2385
*
2386
* SP data is handled as if it's always an address pair, thus data fields are
2387
* not swapped to little endian in upper functions. Instead this function swaps
2388
* data as if it's two uint32 fields.
2389
*/
2390
int
2391
bxe_sp_post(struct bxe_softc *sc,
2392
int command,
2393
int cid,
2394
uint32_t data_hi,
2395
uint32_t data_lo,
2396
int cmd_type)
2397
{
2398
struct eth_spe *spe;
2399
uint16_t type;
2400
int common;
2401
2402
common = bxe_is_contextless_ramrod(command, cmd_type);
2403
2404
BXE_SP_LOCK(sc);
2405
2406
if (common) {
2407
if (!atomic_load_acq_long(&sc->eq_spq_left)) {
2408
BLOGE(sc, "EQ ring is full!\n");
2409
BXE_SP_UNLOCK(sc);
2410
return (-1);
2411
}
2412
} else {
2413
if (!atomic_load_acq_long(&sc->cq_spq_left)) {
2414
BLOGE(sc, "SPQ ring is full!\n");
2415
BXE_SP_UNLOCK(sc);
2416
return (-1);
2417
}
2418
}
2419
2420
spe = bxe_sp_get_next(sc);
2421
2422
/* CID needs port number to be encoded int it */
2423
spe->hdr.conn_and_cmd_data =
2424
htole32((command << SPE_HDR_T_CMD_ID_SHIFT) | HW_CID(sc, cid));
2425
2426
type = (cmd_type << SPE_HDR_T_CONN_TYPE_SHIFT) & SPE_HDR_T_CONN_TYPE;
2427
2428
/* TBD: Check if it works for VFs */
2429
type |= ((SC_FUNC(sc) << SPE_HDR_T_FUNCTION_ID_SHIFT) &
2430
SPE_HDR_T_FUNCTION_ID);
2431
2432
spe->hdr.type = htole16(type);
2433
2434
spe->data.update_data_addr.hi = htole32(data_hi);
2435
spe->data.update_data_addr.lo = htole32(data_lo);
2436
2437
/*
2438
* It's ok if the actual decrement is issued towards the memory
2439
* somewhere between the lock and unlock. Thus no more explict
2440
* memory barrier is needed.
2441
*/
2442
if (common) {
2443
atomic_subtract_acq_long(&sc->eq_spq_left, 1);
2444
} else {
2445
atomic_subtract_acq_long(&sc->cq_spq_left, 1);
2446
}
2447
2448
BLOGD(sc, DBG_SP, "SPQE -> %#jx\n", (uintmax_t)sc->spq_dma.paddr);
2449
BLOGD(sc, DBG_SP, "FUNC_RDATA -> %p / %#jx\n",
2450
BXE_SP(sc, func_rdata), (uintmax_t)BXE_SP_MAPPING(sc, func_rdata));
2451
BLOGD(sc, DBG_SP,
2452
"SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) type(0x%x) left (CQ, EQ) (%lx,%lx)\n",
2453
sc->spq_prod_idx,
2454
(uint32_t)U64_HI(sc->spq_dma.paddr),
2455
(uint32_t)(U64_LO(sc->spq_dma.paddr) + (uint8_t *)sc->spq_prod_bd - (uint8_t *)sc->spq),
2456
command,
2457
common,
2458
HW_CID(sc, cid),
2459
data_hi,
2460
data_lo,
2461
type,
2462
atomic_load_acq_long(&sc->cq_spq_left),
2463
atomic_load_acq_long(&sc->eq_spq_left));
2464
2465
bxe_sp_prod_update(sc);
2466
2467
BXE_SP_UNLOCK(sc);
2468
return (0);
2469
}
2470
2471
/**
2472
* bxe_debug_print_ind_table - prints the indirection table configuration.
2473
*
2474
* @sc: driver hanlde
2475
* @p: pointer to rss configuration
2476
*/
2477
2478
/*
2479
* FreeBSD Device probe function.
2480
*
2481
* Compares the device found to the driver's list of supported devices and
2482
* reports back to the bsd loader whether this is the right driver for the device.
2483
* This is the driver entry function called from the "kldload" command.
2484
*
2485
* Returns:
2486
* BUS_PROBE_DEFAULT on success, positive value on failure.
2487
*/
2488
static int
2489
bxe_probe(device_t dev)
2490
{
2491
struct bxe_device_type *t;
2492
uint16_t did, sdid, svid, vid;
2493
2494
/* Find our device structure */
2495
t = bxe_devs;
2496
2497
/* Get the data for the device to be probed. */
2498
vid = pci_get_vendor(dev);
2499
did = pci_get_device(dev);
2500
svid = pci_get_subvendor(dev);
2501
sdid = pci_get_subdevice(dev);
2502
2503
/* Look through the list of known devices for a match. */
2504
while (t->bxe_name != NULL) {
2505
if ((vid == t->bxe_vid) && (did == t->bxe_did) &&
2506
((svid == t->bxe_svid) || (t->bxe_svid == PCI_ANY_ID)) &&
2507
((sdid == t->bxe_sdid) || (t->bxe_sdid == PCI_ANY_ID))) {
2508
device_set_descf(dev,
2509
"%s (%c%d) BXE v:%s", t->bxe_name,
2510
(((pci_read_config(dev, PCIR_REVID, 4) &
2511
0xf0) >> 4) + 'A'),
2512
(pci_read_config(dev, PCIR_REVID, 4) & 0xf),
2513
BXE_DRIVER_VERSION);
2514
return (BUS_PROBE_DEFAULT);
2515
}
2516
t++;
2517
}
2518
2519
return (ENXIO);
2520
}
2521
2522
static void
2523
bxe_init_mutexes(struct bxe_softc *sc)
2524
{
2525
#ifdef BXE_CORE_LOCK_SX
2526
snprintf(sc->core_sx_name, sizeof(sc->core_sx_name),
2527
"bxe%d_core_lock", sc->unit);
2528
sx_init(&sc->core_sx, sc->core_sx_name);
2529
#else
2530
snprintf(sc->core_mtx_name, sizeof(sc->core_mtx_name),
2531
"bxe%d_core_lock", sc->unit);
2532
mtx_init(&sc->core_mtx, sc->core_mtx_name, NULL, MTX_DEF);
2533
#endif
2534
2535
snprintf(sc->sp_mtx_name, sizeof(sc->sp_mtx_name),
2536
"bxe%d_sp_lock", sc->unit);
2537
mtx_init(&sc->sp_mtx, sc->sp_mtx_name, NULL, MTX_DEF);
2538
2539
snprintf(sc->dmae_mtx_name, sizeof(sc->dmae_mtx_name),
2540
"bxe%d_dmae_lock", sc->unit);
2541
mtx_init(&sc->dmae_mtx, sc->dmae_mtx_name, NULL, MTX_DEF);
2542
2543
snprintf(sc->port.phy_mtx_name, sizeof(sc->port.phy_mtx_name),
2544
"bxe%d_phy_lock", sc->unit);
2545
mtx_init(&sc->port.phy_mtx, sc->port.phy_mtx_name, NULL, MTX_DEF);
2546
2547
snprintf(sc->fwmb_mtx_name, sizeof(sc->fwmb_mtx_name),
2548
"bxe%d_fwmb_lock", sc->unit);
2549
mtx_init(&sc->fwmb_mtx, sc->fwmb_mtx_name, NULL, MTX_DEF);
2550
2551
snprintf(sc->print_mtx_name, sizeof(sc->print_mtx_name),
2552
"bxe%d_print_lock", sc->unit);
2553
mtx_init(&(sc->print_mtx), sc->print_mtx_name, NULL, MTX_DEF);
2554
2555
snprintf(sc->stats_mtx_name, sizeof(sc->stats_mtx_name),
2556
"bxe%d_stats_lock", sc->unit);
2557
mtx_init(&(sc->stats_mtx), sc->stats_mtx_name, NULL, MTX_DEF);
2558
2559
snprintf(sc->mcast_mtx_name, sizeof(sc->mcast_mtx_name),
2560
"bxe%d_mcast_lock", sc->unit);
2561
mtx_init(&(sc->mcast_mtx), sc->mcast_mtx_name, NULL, MTX_DEF);
2562
}
2563
2564
static void
2565
bxe_release_mutexes(struct bxe_softc *sc)
2566
{
2567
#ifdef BXE_CORE_LOCK_SX
2568
sx_destroy(&sc->core_sx);
2569
#else
2570
if (mtx_initialized(&sc->core_mtx)) {
2571
mtx_destroy(&sc->core_mtx);
2572
}
2573
#endif
2574
2575
if (mtx_initialized(&sc->sp_mtx)) {
2576
mtx_destroy(&sc->sp_mtx);
2577
}
2578
2579
if (mtx_initialized(&sc->dmae_mtx)) {
2580
mtx_destroy(&sc->dmae_mtx);
2581
}
2582
2583
if (mtx_initialized(&sc->port.phy_mtx)) {
2584
mtx_destroy(&sc->port.phy_mtx);
2585
}
2586
2587
if (mtx_initialized(&sc->fwmb_mtx)) {
2588
mtx_destroy(&sc->fwmb_mtx);
2589
}
2590
2591
if (mtx_initialized(&sc->print_mtx)) {
2592
mtx_destroy(&sc->print_mtx);
2593
}
2594
2595
if (mtx_initialized(&sc->stats_mtx)) {
2596
mtx_destroy(&sc->stats_mtx);
2597
}
2598
2599
if (mtx_initialized(&sc->mcast_mtx)) {
2600
mtx_destroy(&sc->mcast_mtx);
2601
}
2602
}
2603
2604
static void
2605
bxe_tx_disable(struct bxe_softc* sc)
2606
{
2607
if_t ifp = sc->ifp;
2608
2609
/* tell the stack the driver is stopped and TX queue is full */
2610
if (ifp != NULL) {
2611
if_setdrvflags(ifp, 0);
2612
}
2613
}
2614
2615
static void
2616
bxe_drv_pulse(struct bxe_softc *sc)
2617
{
2618
SHMEM_WR(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb,
2619
sc->fw_drv_pulse_wr_seq);
2620
}
2621
2622
static inline uint16_t
2623
bxe_tx_avail(struct bxe_softc *sc,
2624
struct bxe_fastpath *fp)
2625
{
2626
int16_t used;
2627
uint16_t prod;
2628
uint16_t cons;
2629
2630
prod = fp->tx_bd_prod;
2631
cons = fp->tx_bd_cons;
2632
2633
used = SUB_S16(prod, cons);
2634
2635
return (int16_t)(sc->tx_ring_size) - used;
2636
}
2637
2638
static inline int
2639
bxe_tx_queue_has_work(struct bxe_fastpath *fp)
2640
{
2641
uint16_t hw_cons;
2642
2643
mb(); /* status block fields can change */
2644
hw_cons = le16toh(*fp->tx_cons_sb);
2645
return (hw_cons != fp->tx_pkt_cons);
2646
}
2647
2648
static inline uint8_t
2649
bxe_has_tx_work(struct bxe_fastpath *fp)
2650
{
2651
/* expand this for multi-cos if ever supported */
2652
return (bxe_tx_queue_has_work(fp)) ? TRUE : FALSE;
2653
}
2654
2655
static inline int
2656
bxe_has_rx_work(struct bxe_fastpath *fp)
2657
{
2658
uint16_t rx_cq_cons_sb;
2659
2660
mb(); /* status block fields can change */
2661
rx_cq_cons_sb = le16toh(*fp->rx_cq_cons_sb);
2662
if ((rx_cq_cons_sb & RCQ_MAX) == RCQ_MAX)
2663
rx_cq_cons_sb++;
2664
return (fp->rx_cq_cons != rx_cq_cons_sb);
2665
}
2666
2667
static void
2668
bxe_sp_event(struct bxe_softc *sc,
2669
struct bxe_fastpath *fp,
2670
union eth_rx_cqe *rr_cqe)
2671
{
2672
int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2673
int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
2674
enum ecore_queue_cmd drv_cmd = ECORE_Q_CMD_MAX;
2675
struct ecore_queue_sp_obj *q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
2676
2677
BLOGD(sc, DBG_SP, "fp=%d cid=%d got ramrod #%d state is %x type is %d\n",
2678
fp->index, cid, command, sc->state, rr_cqe->ramrod_cqe.ramrod_type);
2679
2680
switch (command) {
2681
case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
2682
BLOGD(sc, DBG_SP, "got UPDATE ramrod. CID %d\n", cid);
2683
drv_cmd = ECORE_Q_CMD_UPDATE;
2684
break;
2685
2686
case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
2687
BLOGD(sc, DBG_SP, "got MULTI[%d] setup ramrod\n", cid);
2688
drv_cmd = ECORE_Q_CMD_SETUP;
2689
break;
2690
2691
case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
2692
BLOGD(sc, DBG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
2693
drv_cmd = ECORE_Q_CMD_SETUP_TX_ONLY;
2694
break;
2695
2696
case (RAMROD_CMD_ID_ETH_HALT):
2697
BLOGD(sc, DBG_SP, "got MULTI[%d] halt ramrod\n", cid);
2698
drv_cmd = ECORE_Q_CMD_HALT;
2699
break;
2700
2701
case (RAMROD_CMD_ID_ETH_TERMINATE):
2702
BLOGD(sc, DBG_SP, "got MULTI[%d] teminate ramrod\n", cid);
2703
drv_cmd = ECORE_Q_CMD_TERMINATE;
2704
break;
2705
2706
case (RAMROD_CMD_ID_ETH_EMPTY):
2707
BLOGD(sc, DBG_SP, "got MULTI[%d] empty ramrod\n", cid);
2708
drv_cmd = ECORE_Q_CMD_EMPTY;
2709
break;
2710
2711
default:
2712
BLOGD(sc, DBG_SP, "ERROR: unexpected MC reply (%d) on fp[%d]\n",
2713
command, fp->index);
2714
return;
2715
}
2716
2717
if ((drv_cmd != ECORE_Q_CMD_MAX) &&
2718
q_obj->complete_cmd(sc, q_obj, drv_cmd)) {
2719
/*
2720
* q_obj->complete_cmd() failure means that this was
2721
* an unexpected completion.
2722
*
2723
* In this case we don't want to increase the sc->spq_left
2724
* because apparently we haven't sent this command the first
2725
* place.
2726
*/
2727
// bxe_panic(sc, ("Unexpected SP completion\n"));
2728
return;
2729
}
2730
2731
atomic_add_acq_long(&sc->cq_spq_left, 1);
2732
2733
BLOGD(sc, DBG_SP, "sc->cq_spq_left 0x%lx\n",
2734
atomic_load_acq_long(&sc->cq_spq_left));
2735
}
2736
2737
/*
2738
* The current mbuf is part of an aggregation. Move the mbuf into the TPA
2739
* aggregation queue, put an empty mbuf back onto the receive chain, and mark
2740
* the current aggregation queue as in-progress.
2741
*/
2742
static void
2743
bxe_tpa_start(struct bxe_softc *sc,
2744
struct bxe_fastpath *fp,
2745
uint16_t queue,
2746
uint16_t cons,
2747
uint16_t prod,
2748
struct eth_fast_path_rx_cqe *cqe)
2749
{
2750
struct bxe_sw_rx_bd tmp_bd;
2751
struct bxe_sw_rx_bd *rx_buf;
2752
struct eth_rx_bd *rx_bd;
2753
int max_agg_queues __diagused;
2754
struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
2755
uint16_t index;
2756
2757
BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA START "
2758
"cons=%d prod=%d\n",
2759
fp->index, queue, cons, prod);
2760
2761
max_agg_queues = MAX_AGG_QS(sc);
2762
2763
KASSERT((queue < max_agg_queues),
2764
("fp[%02d] invalid aggr queue (%d >= %d)!",
2765
fp->index, queue, max_agg_queues));
2766
2767
KASSERT((tpa_info->state == BXE_TPA_STATE_STOP),
2768
("fp[%02d].tpa[%02d] starting aggr on queue not stopped!",
2769
fp->index, queue));
2770
2771
/* copy the existing mbuf and mapping from the TPA pool */
2772
tmp_bd = tpa_info->bd;
2773
2774
if (tmp_bd.m == NULL) {
2775
uint32_t *tmp;
2776
2777
tmp = (uint32_t *)cqe;
2778
2779
BLOGE(sc, "fp[%02d].tpa[%02d] cons[%d] prod[%d]mbuf not allocated!\n",
2780
fp->index, queue, cons, prod);
2781
BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2782
*tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2783
2784
/* XXX Error handling? */
2785
return;
2786
}
2787
2788
/* change the TPA queue to the start state */
2789
tpa_info->state = BXE_TPA_STATE_START;
2790
tpa_info->placement_offset = cqe->placement_offset;
2791
tpa_info->parsing_flags = le16toh(cqe->pars_flags.flags);
2792
tpa_info->vlan_tag = le16toh(cqe->vlan_tag);
2793
tpa_info->len_on_bd = le16toh(cqe->len_on_bd);
2794
2795
fp->rx_tpa_queue_used |= (1 << queue);
2796
2797
/*
2798
* If all the buffer descriptors are filled with mbufs then fill in
2799
* the current consumer index with a new BD. Else if a maximum Rx
2800
* buffer limit is imposed then fill in the next producer index.
2801
*/
2802
index = (sc->max_rx_bufs != RX_BD_USABLE) ?
2803
prod : cons;
2804
2805
/* move the received mbuf and mapping to TPA pool */
2806
tpa_info->bd = fp->rx_mbuf_chain[cons];
2807
2808
/* release any existing RX BD mbuf mappings */
2809
if (cons != index) {
2810
rx_buf = &fp->rx_mbuf_chain[cons];
2811
2812
if (rx_buf->m_map != NULL) {
2813
bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
2814
BUS_DMASYNC_POSTREAD);
2815
bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
2816
}
2817
2818
/*
2819
* We get here when the maximum number of rx buffers is less than
2820
* RX_BD_USABLE. The mbuf is already saved above so it's OK to NULL
2821
* it out here without concern of a memory leak.
2822
*/
2823
fp->rx_mbuf_chain[cons].m = NULL;
2824
}
2825
2826
/* update the Rx SW BD with the mbuf info from the TPA pool */
2827
fp->rx_mbuf_chain[index] = tmp_bd;
2828
2829
/* update the Rx BD with the empty mbuf phys address from the TPA pool */
2830
rx_bd = &fp->rx_chain[index];
2831
rx_bd->addr_hi = htole32(U64_HI(tpa_info->seg.ds_addr));
2832
rx_bd->addr_lo = htole32(U64_LO(tpa_info->seg.ds_addr));
2833
}
2834
2835
/*
2836
* When a TPA aggregation is completed, loop through the individual mbufs
2837
* of the aggregation, combining them into a single mbuf which will be sent
2838
* up the stack. Refill all freed SGEs with mbufs as we go along.
2839
*/
2840
static int
2841
bxe_fill_frag_mbuf(struct bxe_softc *sc,
2842
struct bxe_fastpath *fp,
2843
struct bxe_sw_tpa_info *tpa_info,
2844
uint16_t queue,
2845
uint16_t pages,
2846
struct mbuf *m,
2847
struct eth_end_agg_rx_cqe *cqe,
2848
uint16_t cqe_idx)
2849
{
2850
struct mbuf *m_frag;
2851
uint32_t frag_len, frag_size, i;
2852
uint16_t sge_idx;
2853
int rc = 0;
2854
int j;
2855
2856
frag_size = le16toh(cqe->pkt_len) - tpa_info->len_on_bd;
2857
2858
BLOGD(sc, DBG_LRO,
2859
"fp[%02d].tpa[%02d] TPA fill len_on_bd=%d frag_size=%d pages=%d\n",
2860
fp->index, queue, tpa_info->len_on_bd, frag_size, pages);
2861
2862
/* make sure the aggregated frame is not too big to handle */
2863
if (pages > 8 * PAGES_PER_SGE) {
2864
2865
uint32_t *tmp = (uint32_t *)cqe;
2866
2867
BLOGE(sc, "fp[%02d].sge[0x%04x] has too many pages (%d)! "
2868
"pkt_len=%d len_on_bd=%d frag_size=%d\n",
2869
fp->index, cqe_idx, pages, le16toh(cqe->pkt_len),
2870
tpa_info->len_on_bd, frag_size);
2871
2872
BLOGE(sc, "cqe [0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x]\n",
2873
*tmp, *(tmp+1), *(tmp+2), *(tmp+3), *(tmp+4), *(tmp+5), *(tmp+6), *(tmp+7));
2874
2875
bxe_panic(sc, ("sge page count error\n"));
2876
return (EINVAL);
2877
}
2878
2879
/*
2880
* Scan through the scatter gather list pulling individual mbufs into a
2881
* single mbuf for the host stack.
2882
*/
2883
for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
2884
sge_idx = RX_SGE(le16toh(cqe->sgl_or_raw_data.sgl[j]));
2885
2886
/*
2887
* Firmware gives the indices of the SGE as if the ring is an array
2888
* (meaning that the "next" element will consume 2 indices).
2889
*/
2890
frag_len = min(frag_size, (uint32_t)(SGE_PAGES));
2891
2892
BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA fill i=%d j=%d "
2893
"sge_idx=%d frag_size=%d frag_len=%d\n",
2894
fp->index, queue, i, j, sge_idx, frag_size, frag_len);
2895
2896
m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
2897
2898
/* allocate a new mbuf for the SGE */
2899
rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
2900
if (rc) {
2901
/* Leave all remaining SGEs in the ring! */
2902
return (rc);
2903
}
2904
2905
/* update the fragment length */
2906
m_frag->m_len = frag_len;
2907
2908
/* concatenate the fragment to the head mbuf */
2909
m_cat(m, m_frag);
2910
fp->eth_q_stats.mbuf_alloc_sge--;
2911
2912
/* update the TPA mbuf size and remaining fragment size */
2913
m->m_pkthdr.len += frag_len;
2914
frag_size -= frag_len;
2915
}
2916
2917
BLOGD(sc, DBG_LRO,
2918
"fp[%02d].tpa[%02d] TPA fill done frag_size=%d\n",
2919
fp->index, queue, frag_size);
2920
2921
return (rc);
2922
}
2923
2924
static inline void
2925
bxe_clear_sge_mask_next_elems(struct bxe_fastpath *fp)
2926
{
2927
int i, j;
2928
2929
for (i = 1; i <= RX_SGE_NUM_PAGES; i++) {
2930
int idx = RX_SGE_TOTAL_PER_PAGE * i - 1;
2931
2932
for (j = 0; j < 2; j++) {
2933
BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
2934
idx--;
2935
}
2936
}
2937
}
2938
2939
static inline void
2940
bxe_init_sge_ring_bit_mask(struct bxe_fastpath *fp)
2941
{
2942
/* set the mask to all 1's, it's faster to compare to 0 than to 0xf's */
2943
memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
2944
2945
/*
2946
* Clear the two last indices in the page to 1. These are the indices that
2947
* correspond to the "next" element, hence will never be indicated and
2948
* should be removed from the calculations.
2949
*/
2950
bxe_clear_sge_mask_next_elems(fp);
2951
}
2952
2953
static inline void
2954
bxe_update_last_max_sge(struct bxe_fastpath *fp,
2955
uint16_t idx)
2956
{
2957
uint16_t last_max = fp->last_max_sge;
2958
2959
if (SUB_S16(idx, last_max) > 0) {
2960
fp->last_max_sge = idx;
2961
}
2962
}
2963
2964
static inline void
2965
bxe_update_sge_prod(struct bxe_softc *sc,
2966
struct bxe_fastpath *fp,
2967
uint16_t sge_len,
2968
union eth_sgl_or_raw_data *cqe)
2969
{
2970
uint16_t last_max, last_elem, first_elem;
2971
uint16_t delta = 0;
2972
uint16_t i;
2973
2974
if (!sge_len) {
2975
return;
2976
}
2977
2978
/* first mark all used pages */
2979
for (i = 0; i < sge_len; i++) {
2980
BIT_VEC64_CLEAR_BIT(fp->sge_mask,
2981
RX_SGE(le16toh(cqe->sgl[i])));
2982
}
2983
2984
BLOGD(sc, DBG_LRO,
2985
"fp[%02d] fp_cqe->sgl[%d] = %d\n",
2986
fp->index, sge_len - 1,
2987
le16toh(cqe->sgl[sge_len - 1]));
2988
2989
/* assume that the last SGE index is the biggest */
2990
bxe_update_last_max_sge(fp,
2991
le16toh(cqe->sgl[sge_len - 1]));
2992
2993
last_max = RX_SGE(fp->last_max_sge);
2994
last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
2995
first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
2996
2997
/* if ring is not full */
2998
if (last_elem + 1 != first_elem) {
2999
last_elem++;
3000
}
3001
3002
/* now update the prod */
3003
for (i = first_elem; i != last_elem; i = RX_SGE_NEXT_MASK_ELEM(i)) {
3004
if (__predict_true(fp->sge_mask[i])) {
3005
break;
3006
}
3007
3008
fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
3009
delta += BIT_VEC64_ELEM_SZ;
3010
}
3011
3012
if (delta > 0) {
3013
fp->rx_sge_prod += delta;
3014
/* clear page-end entries */
3015
bxe_clear_sge_mask_next_elems(fp);
3016
}
3017
3018
BLOGD(sc, DBG_LRO,
3019
"fp[%02d] fp->last_max_sge=%d fp->rx_sge_prod=%d\n",
3020
fp->index, fp->last_max_sge, fp->rx_sge_prod);
3021
}
3022
3023
/*
3024
* The aggregation on the current TPA queue has completed. Pull the individual
3025
* mbuf fragments together into a single mbuf, perform all necessary checksum
3026
* calculations, and send the resuting mbuf to the stack.
3027
*/
3028
static void
3029
bxe_tpa_stop(struct bxe_softc *sc,
3030
struct bxe_fastpath *fp,
3031
struct bxe_sw_tpa_info *tpa_info,
3032
uint16_t queue,
3033
uint16_t pages,
3034
struct eth_end_agg_rx_cqe *cqe,
3035
uint16_t cqe_idx)
3036
{
3037
if_t ifp = sc->ifp;
3038
struct mbuf *m;
3039
int rc = 0;
3040
3041
BLOGD(sc, DBG_LRO,
3042
"fp[%02d].tpa[%02d] pad=%d pkt_len=%d pages=%d vlan=%d\n",
3043
fp->index, queue, tpa_info->placement_offset,
3044
le16toh(cqe->pkt_len), pages, tpa_info->vlan_tag);
3045
3046
m = tpa_info->bd.m;
3047
3048
/* allocate a replacement before modifying existing mbuf */
3049
rc = bxe_alloc_rx_tpa_mbuf(fp, queue);
3050
if (rc) {
3051
/* drop the frame and log an error */
3052
fp->eth_q_stats.rx_soft_errors++;
3053
goto bxe_tpa_stop_exit;
3054
}
3055
3056
/* we have a replacement, fixup the current mbuf */
3057
m_adj(m, tpa_info->placement_offset);
3058
m->m_pkthdr.len = m->m_len = tpa_info->len_on_bd;
3059
3060
/* mark the checksums valid (taken care of by the firmware) */
3061
fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3062
fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3063
m->m_pkthdr.csum_data = 0xffff;
3064
m->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
3065
CSUM_IP_VALID |
3066
CSUM_DATA_VALID |
3067
CSUM_PSEUDO_HDR);
3068
3069
/* aggregate all of the SGEs into a single mbuf */
3070
rc = bxe_fill_frag_mbuf(sc, fp, tpa_info, queue, pages, m, cqe, cqe_idx);
3071
if (rc) {
3072
/* drop the packet and log an error */
3073
fp->eth_q_stats.rx_soft_errors++;
3074
m_freem(m);
3075
} else {
3076
if (tpa_info->parsing_flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3077
m->m_pkthdr.ether_vtag = tpa_info->vlan_tag;
3078
m->m_flags |= M_VLANTAG;
3079
}
3080
3081
/* assign packet to this interface interface */
3082
if_setrcvif(m, ifp);
3083
3084
/* specify what RSS queue was used for this flow */
3085
m->m_pkthdr.flowid = fp->index;
3086
BXE_SET_FLOWID(m);
3087
3088
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3089
fp->eth_q_stats.rx_tpa_pkts++;
3090
3091
/* pass the frame to the stack */
3092
if_input(ifp, m);
3093
}
3094
3095
/* we passed an mbuf up the stack or dropped the frame */
3096
fp->eth_q_stats.mbuf_alloc_tpa--;
3097
3098
bxe_tpa_stop_exit:
3099
3100
fp->rx_tpa_info[queue].state = BXE_TPA_STATE_STOP;
3101
fp->rx_tpa_queue_used &= ~(1 << queue);
3102
}
3103
3104
static uint8_t
3105
bxe_service_rxsgl(
3106
struct bxe_fastpath *fp,
3107
uint16_t len,
3108
uint16_t lenonbd,
3109
struct mbuf *m,
3110
struct eth_fast_path_rx_cqe *cqe_fp)
3111
{
3112
struct mbuf *m_frag;
3113
uint16_t frags, frag_len;
3114
uint16_t sge_idx = 0;
3115
uint16_t j;
3116
uint8_t i, rc = 0;
3117
uint32_t frag_size;
3118
3119
/* adjust the mbuf */
3120
m->m_len = lenonbd;
3121
3122
frag_size = len - lenonbd;
3123
frags = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3124
3125
for (i = 0, j = 0; i < frags; i += PAGES_PER_SGE, j++) {
3126
sge_idx = RX_SGE(le16toh(cqe_fp->sgl_or_raw_data.sgl[j]));
3127
3128
m_frag = fp->rx_sge_mbuf_chain[sge_idx].m;
3129
frag_len = min(frag_size, (uint32_t)(SGE_PAGE_SIZE));
3130
m_frag->m_len = frag_len;
3131
3132
/* allocate a new mbuf for the SGE */
3133
rc = bxe_alloc_rx_sge_mbuf(fp, sge_idx);
3134
if (rc) {
3135
/* Leave all remaining SGEs in the ring! */
3136
return (rc);
3137
}
3138
fp->eth_q_stats.mbuf_alloc_sge--;
3139
3140
/* concatenate the fragment to the head mbuf */
3141
m_cat(m, m_frag);
3142
3143
frag_size -= frag_len;
3144
}
3145
3146
bxe_update_sge_prod(fp->sc, fp, frags, &cqe_fp->sgl_or_raw_data);
3147
3148
return rc;
3149
}
3150
3151
static uint8_t
3152
bxe_rxeof(struct bxe_softc *sc,
3153
struct bxe_fastpath *fp)
3154
{
3155
if_t ifp = sc->ifp;
3156
uint16_t bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
3157
uint16_t hw_cq_cons, sw_cq_cons, sw_cq_prod;
3158
int rx_pkts = 0;
3159
int rc = 0;
3160
3161
BXE_FP_RX_LOCK(fp);
3162
3163
/* CQ "next element" is of the size of the regular element */
3164
hw_cq_cons = le16toh(*fp->rx_cq_cons_sb);
3165
if ((hw_cq_cons & RCQ_USABLE_PER_PAGE) == RCQ_USABLE_PER_PAGE) {
3166
hw_cq_cons++;
3167
}
3168
3169
bd_cons = fp->rx_bd_cons;
3170
bd_prod = fp->rx_bd_prod;
3171
bd_prod_fw = bd_prod;
3172
sw_cq_cons = fp->rx_cq_cons;
3173
sw_cq_prod = fp->rx_cq_prod;
3174
3175
/*
3176
* Memory barrier necessary as speculative reads of the rx
3177
* buffer can be ahead of the index in the status block
3178
*/
3179
rmb();
3180
3181
BLOGD(sc, DBG_RX,
3182
"fp[%02d] Rx START hw_cq_cons=%u sw_cq_cons=%u\n",
3183
fp->index, hw_cq_cons, sw_cq_cons);
3184
3185
while (sw_cq_cons != hw_cq_cons) {
3186
struct bxe_sw_rx_bd *rx_buf = NULL;
3187
union eth_rx_cqe *cqe;
3188
struct eth_fast_path_rx_cqe *cqe_fp;
3189
uint8_t cqe_fp_flags;
3190
enum eth_rx_cqe_type cqe_fp_type;
3191
uint16_t len, lenonbd, pad;
3192
struct mbuf *m = NULL;
3193
3194
comp_ring_cons = RCQ(sw_cq_cons);
3195
bd_prod = RX_BD(bd_prod);
3196
bd_cons = RX_BD(bd_cons);
3197
3198
cqe = &fp->rcq_chain[comp_ring_cons];
3199
cqe_fp = &cqe->fast_path_cqe;
3200
cqe_fp_flags = cqe_fp->type_error_flags;
3201
cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
3202
3203
BLOGD(sc, DBG_RX,
3204
"fp[%02d] Rx hw_cq_cons=%d hw_sw_cons=%d "
3205
"BD prod=%d cons=%d CQE type=0x%x err=0x%x "
3206
"status=0x%x rss_hash=0x%x vlan=0x%x len=%u lenonbd=%u\n",
3207
fp->index,
3208
hw_cq_cons,
3209
sw_cq_cons,
3210
bd_prod,
3211
bd_cons,
3212
CQE_TYPE(cqe_fp_flags),
3213
cqe_fp_flags,
3214
cqe_fp->status_flags,
3215
le32toh(cqe_fp->rss_hash_result),
3216
le16toh(cqe_fp->vlan_tag),
3217
le16toh(cqe_fp->pkt_len_or_gro_seg_len),
3218
le16toh(cqe_fp->len_on_bd));
3219
3220
/* is this a slowpath msg? */
3221
if (__predict_false(CQE_TYPE_SLOW(cqe_fp_type))) {
3222
bxe_sp_event(sc, fp, cqe);
3223
goto next_cqe;
3224
}
3225
3226
rx_buf = &fp->rx_mbuf_chain[bd_cons];
3227
3228
if (!CQE_TYPE_FAST(cqe_fp_type)) {
3229
struct bxe_sw_tpa_info *tpa_info;
3230
uint16_t frag_size, pages;
3231
uint8_t queue;
3232
3233
if (CQE_TYPE_START(cqe_fp_type)) {
3234
bxe_tpa_start(sc, fp, cqe_fp->queue_index,
3235
bd_cons, bd_prod, cqe_fp);
3236
m = NULL; /* packet not ready yet */
3237
goto next_rx;
3238
}
3239
3240
KASSERT(CQE_TYPE_STOP(cqe_fp_type),
3241
("CQE type is not STOP! (0x%x)\n", cqe_fp_type));
3242
3243
queue = cqe->end_agg_cqe.queue_index;
3244
tpa_info = &fp->rx_tpa_info[queue];
3245
3246
BLOGD(sc, DBG_LRO, "fp[%02d].tpa[%02d] TPA STOP\n",
3247
fp->index, queue);
3248
3249
frag_size = (le16toh(cqe->end_agg_cqe.pkt_len) -
3250
tpa_info->len_on_bd);
3251
pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT;
3252
3253
bxe_tpa_stop(sc, fp, tpa_info, queue, pages,
3254
&cqe->end_agg_cqe, comp_ring_cons);
3255
3256
bxe_update_sge_prod(sc, fp, pages, &cqe->end_agg_cqe.sgl_or_raw_data);
3257
3258
goto next_cqe;
3259
}
3260
3261
/* non TPA */
3262
3263
/* is this an error packet? */
3264
if (__predict_false(cqe_fp_flags &
3265
ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG)) {
3266
BLOGE(sc, "flags 0x%x rx packet %u\n", cqe_fp_flags, sw_cq_cons);
3267
fp->eth_q_stats.rx_soft_errors++;
3268
goto next_rx;
3269
}
3270
3271
len = le16toh(cqe_fp->pkt_len_or_gro_seg_len);
3272
lenonbd = le16toh(cqe_fp->len_on_bd);
3273
pad = cqe_fp->placement_offset;
3274
3275
m = rx_buf->m;
3276
3277
if (__predict_false(m == NULL)) {
3278
BLOGE(sc, "No mbuf in rx chain descriptor %d for fp[%02d]\n",
3279
bd_cons, fp->index);
3280
goto next_rx;
3281
}
3282
3283
/* XXX double copy if packet length under a threshold */
3284
3285
/*
3286
* If all the buffer descriptors are filled with mbufs then fill in
3287
* the current consumer index with a new BD. Else if a maximum Rx
3288
* buffer limit is imposed then fill in the next producer index.
3289
*/
3290
rc = bxe_alloc_rx_bd_mbuf(fp, bd_cons,
3291
(sc->max_rx_bufs != RX_BD_USABLE) ?
3292
bd_prod : bd_cons);
3293
if (rc != 0) {
3294
3295
/* we simply reuse the received mbuf and don't post it to the stack */
3296
m = NULL;
3297
3298
BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
3299
fp->index, rc);
3300
fp->eth_q_stats.rx_soft_errors++;
3301
3302
if (sc->max_rx_bufs != RX_BD_USABLE) {
3303
/* copy this consumer index to the producer index */
3304
memcpy(&fp->rx_mbuf_chain[bd_prod], rx_buf,
3305
sizeof(struct bxe_sw_rx_bd));
3306
memset(rx_buf, 0, sizeof(struct bxe_sw_rx_bd));
3307
}
3308
3309
goto next_rx;
3310
}
3311
3312
/* current mbuf was detached from the bd */
3313
fp->eth_q_stats.mbuf_alloc_rx--;
3314
3315
/* we allocated a replacement mbuf, fixup the current one */
3316
m_adj(m, pad);
3317
m->m_pkthdr.len = m->m_len = len;
3318
3319
if ((len > 60) && (len > lenonbd)) {
3320
fp->eth_q_stats.rx_bxe_service_rxsgl++;
3321
rc = bxe_service_rxsgl(fp, len, lenonbd, m, cqe_fp);
3322
if (rc)
3323
break;
3324
fp->eth_q_stats.rx_jumbo_sge_pkts++;
3325
} else if (lenonbd < len) {
3326
fp->eth_q_stats.rx_erroneous_jumbo_sge_pkts++;
3327
}
3328
3329
/* assign packet to this interface interface */
3330
if_setrcvif(m, ifp);
3331
3332
/* assume no hardware checksum has complated */
3333
m->m_pkthdr.csum_flags = 0;
3334
3335
/* validate checksum if offload enabled */
3336
if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
3337
/* check for a valid IP frame */
3338
if (!(cqe->fast_path_cqe.status_flags &
3339
ETH_FAST_PATH_RX_CQE_IP_XSUM_NO_VALIDATION_FLG)) {
3340
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
3341
if (__predict_false(cqe_fp_flags &
3342
ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG)) {
3343
fp->eth_q_stats.rx_hw_csum_errors++;
3344
} else {
3345
fp->eth_q_stats.rx_ofld_frames_csum_ip++;
3346
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
3347
}
3348
}
3349
3350
/* check for a valid TCP/UDP frame */
3351
if (!(cqe->fast_path_cqe.status_flags &
3352
ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)) {
3353
if (__predict_false(cqe_fp_flags &
3354
ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG)) {
3355
fp->eth_q_stats.rx_hw_csum_errors++;
3356
} else {
3357
fp->eth_q_stats.rx_ofld_frames_csum_tcp_udp++;
3358
m->m_pkthdr.csum_data = 0xFFFF;
3359
m->m_pkthdr.csum_flags |= (CSUM_DATA_VALID |
3360
CSUM_PSEUDO_HDR);
3361
}
3362
}
3363
}
3364
3365
/* if there is a VLAN tag then flag that info */
3366
if (cqe->fast_path_cqe.pars_flags.flags & PARSING_FLAGS_INNER_VLAN_EXIST) {
3367
m->m_pkthdr.ether_vtag = cqe->fast_path_cqe.vlan_tag;
3368
m->m_flags |= M_VLANTAG;
3369
}
3370
3371
/* specify what RSS queue was used for this flow */
3372
m->m_pkthdr.flowid = fp->index;
3373
BXE_SET_FLOWID(m);
3374
3375
next_rx:
3376
3377
bd_cons = RX_BD_NEXT(bd_cons);
3378
bd_prod = RX_BD_NEXT(bd_prod);
3379
bd_prod_fw = RX_BD_NEXT(bd_prod_fw);
3380
3381
/* pass the frame to the stack */
3382
if (__predict_true(m != NULL)) {
3383
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
3384
rx_pkts++;
3385
if_input(ifp, m);
3386
}
3387
3388
next_cqe:
3389
3390
sw_cq_prod = RCQ_NEXT(sw_cq_prod);
3391
sw_cq_cons = RCQ_NEXT(sw_cq_cons);
3392
3393
/* limit spinning on the queue */
3394
if (rc != 0)
3395
break;
3396
3397
if (rx_pkts == sc->rx_budget) {
3398
fp->eth_q_stats.rx_budget_reached++;
3399
break;
3400
}
3401
} /* while work to do */
3402
3403
fp->rx_bd_cons = bd_cons;
3404
fp->rx_bd_prod = bd_prod_fw;
3405
fp->rx_cq_cons = sw_cq_cons;
3406
fp->rx_cq_prod = sw_cq_prod;
3407
3408
/* Update producers */
3409
bxe_update_rx_prod(sc, fp, bd_prod_fw, sw_cq_prod, fp->rx_sge_prod);
3410
3411
fp->eth_q_stats.rx_pkts += rx_pkts;
3412
fp->eth_q_stats.rx_calls++;
3413
3414
BXE_FP_RX_UNLOCK(fp);
3415
3416
return (sw_cq_cons != hw_cq_cons);
3417
}
3418
3419
static uint16_t
3420
bxe_free_tx_pkt(struct bxe_softc *sc,
3421
struct bxe_fastpath *fp,
3422
uint16_t idx)
3423
{
3424
struct bxe_sw_tx_bd *tx_buf = &fp->tx_mbuf_chain[idx];
3425
struct eth_tx_start_bd *tx_start_bd;
3426
uint16_t bd_idx = TX_BD(tx_buf->first_bd);
3427
uint16_t new_cons;
3428
int nbd;
3429
3430
/* unmap the mbuf from non-paged memory */
3431
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
3432
3433
tx_start_bd = &fp->tx_chain[bd_idx].start_bd;
3434
nbd = le16toh(tx_start_bd->nbd) - 1;
3435
3436
new_cons = (tx_buf->first_bd + nbd);
3437
3438
/* free the mbuf */
3439
if (__predict_true(tx_buf->m != NULL)) {
3440
m_freem(tx_buf->m);
3441
fp->eth_q_stats.mbuf_alloc_tx--;
3442
} else {
3443
fp->eth_q_stats.tx_chain_lost_mbuf++;
3444
}
3445
3446
tx_buf->m = NULL;
3447
tx_buf->first_bd = 0;
3448
3449
return (new_cons);
3450
}
3451
3452
/* transmit timeout watchdog */
3453
static int
3454
bxe_watchdog(struct bxe_softc *sc,
3455
struct bxe_fastpath *fp)
3456
{
3457
BXE_FP_TX_LOCK(fp);
3458
3459
if ((fp->watchdog_timer == 0) || (--fp->watchdog_timer)) {
3460
BXE_FP_TX_UNLOCK(fp);
3461
return (0);
3462
}
3463
3464
BLOGE(sc, "TX watchdog timeout on fp[%02d], resetting!\n", fp->index);
3465
3466
BXE_FP_TX_UNLOCK(fp);
3467
BXE_SET_ERROR_BIT(sc, BXE_ERR_TXQ_STUCK);
3468
taskqueue_enqueue_timeout(taskqueue_thread,
3469
&sc->sp_err_timeout_task, hz/10);
3470
3471
return (-1);
3472
}
3473
3474
/* processes transmit completions */
3475
static uint8_t
3476
bxe_txeof(struct bxe_softc *sc,
3477
struct bxe_fastpath *fp)
3478
{
3479
if_t ifp = sc->ifp;
3480
uint16_t bd_cons, hw_cons, sw_cons, pkt_cons;
3481
uint16_t tx_bd_avail;
3482
3483
BXE_FP_TX_LOCK_ASSERT(fp);
3484
3485
bd_cons = fp->tx_bd_cons;
3486
hw_cons = le16toh(*fp->tx_cons_sb);
3487
sw_cons = fp->tx_pkt_cons;
3488
3489
while (sw_cons != hw_cons) {
3490
pkt_cons = TX_BD(sw_cons);
3491
3492
BLOGD(sc, DBG_TX,
3493
"TX: fp[%d]: hw_cons=%u sw_cons=%u pkt_cons=%u\n",
3494
fp->index, hw_cons, sw_cons, pkt_cons);
3495
3496
bd_cons = bxe_free_tx_pkt(sc, fp, pkt_cons);
3497
3498
sw_cons++;
3499
}
3500
3501
fp->tx_pkt_cons = sw_cons;
3502
fp->tx_bd_cons = bd_cons;
3503
3504
BLOGD(sc, DBG_TX,
3505
"TX done: fp[%d]: hw_cons=%u sw_cons=%u sw_prod=%u\n",
3506
fp->index, hw_cons, fp->tx_pkt_cons, fp->tx_pkt_prod);
3507
3508
mb();
3509
3510
tx_bd_avail = bxe_tx_avail(sc, fp);
3511
3512
if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
3513
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
3514
} else {
3515
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
3516
}
3517
3518
if (fp->tx_pkt_prod != fp->tx_pkt_cons) {
3519
/* reset the watchdog timer if there are pending transmits */
3520
fp->watchdog_timer = BXE_TX_TIMEOUT;
3521
return (TRUE);
3522
} else {
3523
/* clear watchdog when there are no pending transmits */
3524
fp->watchdog_timer = 0;
3525
return (FALSE);
3526
}
3527
}
3528
3529
static void
3530
bxe_drain_tx_queues(struct bxe_softc *sc)
3531
{
3532
struct bxe_fastpath *fp;
3533
int i, count;
3534
3535
/* wait until all TX fastpath tasks have completed */
3536
for (i = 0; i < sc->num_queues; i++) {
3537
fp = &sc->fp[i];
3538
3539
count = 1000;
3540
3541
while (bxe_has_tx_work(fp)) {
3542
3543
BXE_FP_TX_LOCK(fp);
3544
bxe_txeof(sc, fp);
3545
BXE_FP_TX_UNLOCK(fp);
3546
3547
if (count == 0) {
3548
BLOGE(sc, "Timeout waiting for fp[%d] "
3549
"transmits to complete!\n", i);
3550
bxe_panic(sc, ("tx drain failure\n"));
3551
return;
3552
}
3553
3554
count--;
3555
DELAY(1000);
3556
rmb();
3557
}
3558
}
3559
3560
return;
3561
}
3562
3563
static int
3564
bxe_del_all_macs(struct bxe_softc *sc,
3565
struct ecore_vlan_mac_obj *mac_obj,
3566
int mac_type,
3567
uint8_t wait_for_comp)
3568
{
3569
unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
3570
int rc;
3571
3572
/* wait for completion of requested */
3573
if (wait_for_comp) {
3574
bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
3575
}
3576
3577
/* Set the mac type of addresses we want to clear */
3578
bxe_set_bit(mac_type, &vlan_mac_flags);
3579
3580
rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags, &ramrod_flags);
3581
if (rc < 0) {
3582
BLOGE(sc, "Failed to delete MACs (%d) mac_type %d wait_for_comp 0x%x\n",
3583
rc, mac_type, wait_for_comp);
3584
}
3585
3586
return (rc);
3587
}
3588
3589
static int
3590
bxe_fill_accept_flags(struct bxe_softc *sc,
3591
uint32_t rx_mode,
3592
unsigned long *rx_accept_flags,
3593
unsigned long *tx_accept_flags)
3594
{
3595
/* Clear the flags first */
3596
*rx_accept_flags = 0;
3597
*tx_accept_flags = 0;
3598
3599
switch (rx_mode) {
3600
case BXE_RX_MODE_NONE:
3601
/*
3602
* 'drop all' supersedes any accept flags that may have been
3603
* passed to the function.
3604
*/
3605
break;
3606
3607
case BXE_RX_MODE_NORMAL:
3608
bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3609
bxe_set_bit(ECORE_ACCEPT_MULTICAST, rx_accept_flags);
3610
bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3611
3612
/* internal switching mode */
3613
bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3614
bxe_set_bit(ECORE_ACCEPT_MULTICAST, tx_accept_flags);
3615
bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3616
3617
break;
3618
3619
case BXE_RX_MODE_ALLMULTI:
3620
bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3621
bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3622
bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3623
3624
/* internal switching mode */
3625
bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3626
bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3627
bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3628
3629
break;
3630
3631
case BXE_RX_MODE_PROMISC:
3632
/*
3633
* According to deffinition of SI mode, iface in promisc mode
3634
* should receive matched and unmatched (in resolution of port)
3635
* unicast packets.
3636
*/
3637
bxe_set_bit(ECORE_ACCEPT_UNMATCHED, rx_accept_flags);
3638
bxe_set_bit(ECORE_ACCEPT_UNICAST, rx_accept_flags);
3639
bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, rx_accept_flags);
3640
bxe_set_bit(ECORE_ACCEPT_BROADCAST, rx_accept_flags);
3641
3642
/* internal switching mode */
3643
bxe_set_bit(ECORE_ACCEPT_ALL_MULTICAST, tx_accept_flags);
3644
bxe_set_bit(ECORE_ACCEPT_BROADCAST, tx_accept_flags);
3645
3646
if (IS_MF_SI(sc)) {
3647
bxe_set_bit(ECORE_ACCEPT_ALL_UNICAST, tx_accept_flags);
3648
} else {
3649
bxe_set_bit(ECORE_ACCEPT_UNICAST, tx_accept_flags);
3650
}
3651
3652
break;
3653
3654
default:
3655
BLOGE(sc, "Unknown rx_mode (0x%x)\n", rx_mode);
3656
return (-1);
3657
}
3658
3659
/* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
3660
if (rx_mode != BXE_RX_MODE_NONE) {
3661
bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, rx_accept_flags);
3662
bxe_set_bit(ECORE_ACCEPT_ANY_VLAN, tx_accept_flags);
3663
}
3664
3665
return (0);
3666
}
3667
3668
static int
3669
bxe_set_q_rx_mode(struct bxe_softc *sc,
3670
uint8_t cl_id,
3671
unsigned long rx_mode_flags,
3672
unsigned long rx_accept_flags,
3673
unsigned long tx_accept_flags,
3674
unsigned long ramrod_flags)
3675
{
3676
struct ecore_rx_mode_ramrod_params ramrod_param;
3677
int rc;
3678
3679
memset(&ramrod_param, 0, sizeof(ramrod_param));
3680
3681
/* Prepare ramrod parameters */
3682
ramrod_param.cid = 0;
3683
ramrod_param.cl_id = cl_id;
3684
ramrod_param.rx_mode_obj = &sc->rx_mode_obj;
3685
ramrod_param.func_id = SC_FUNC(sc);
3686
3687
ramrod_param.pstate = &sc->sp_state;
3688
ramrod_param.state = ECORE_FILTER_RX_MODE_PENDING;
3689
3690
ramrod_param.rdata = BXE_SP(sc, rx_mode_rdata);
3691
ramrod_param.rdata_mapping = BXE_SP_MAPPING(sc, rx_mode_rdata);
3692
3693
bxe_set_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
3694
3695
ramrod_param.ramrod_flags = ramrod_flags;
3696
ramrod_param.rx_mode_flags = rx_mode_flags;
3697
3698
ramrod_param.rx_accept_flags = rx_accept_flags;
3699
ramrod_param.tx_accept_flags = tx_accept_flags;
3700
3701
rc = ecore_config_rx_mode(sc, &ramrod_param);
3702
if (rc < 0) {
3703
BLOGE(sc, "Set rx_mode %d cli_id 0x%x rx_mode_flags 0x%x "
3704
"rx_accept_flags 0x%x tx_accept_flags 0x%x "
3705
"ramrod_flags 0x%x rc %d failed\n", sc->rx_mode, cl_id,
3706
(uint32_t)rx_mode_flags, (uint32_t)rx_accept_flags,
3707
(uint32_t)tx_accept_flags, (uint32_t)ramrod_flags, rc);
3708
return (rc);
3709
}
3710
3711
return (0);
3712
}
3713
3714
static int
3715
bxe_set_storm_rx_mode(struct bxe_softc *sc)
3716
{
3717
unsigned long rx_mode_flags = 0, ramrod_flags = 0;
3718
unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
3719
int rc;
3720
3721
rc = bxe_fill_accept_flags(sc, sc->rx_mode, &rx_accept_flags,
3722
&tx_accept_flags);
3723
if (rc) {
3724
return (rc);
3725
}
3726
3727
bxe_set_bit(RAMROD_RX, &ramrod_flags);
3728
bxe_set_bit(RAMROD_TX, &ramrod_flags);
3729
3730
/* XXX ensure all fastpath have same cl_id and/or move it to bxe_softc */
3731
return (bxe_set_q_rx_mode(sc, sc->fp[0].cl_id, rx_mode_flags,
3732
rx_accept_flags, tx_accept_flags,
3733
ramrod_flags));
3734
}
3735
3736
/* returns the "mcp load_code" according to global load_count array */
3737
static int
3738
bxe_nic_load_no_mcp(struct bxe_softc *sc)
3739
{
3740
int path = SC_PATH(sc);
3741
int port = SC_PORT(sc);
3742
3743
BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
3744
path, load_count[path][0], load_count[path][1],
3745
load_count[path][2]);
3746
load_count[path][0]++;
3747
load_count[path][1 + port]++;
3748
BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
3749
path, load_count[path][0], load_count[path][1],
3750
load_count[path][2]);
3751
if (load_count[path][0] == 1) {
3752
return (FW_MSG_CODE_DRV_LOAD_COMMON);
3753
} else if (load_count[path][1 + port] == 1) {
3754
return (FW_MSG_CODE_DRV_LOAD_PORT);
3755
} else {
3756
return (FW_MSG_CODE_DRV_LOAD_FUNCTION);
3757
}
3758
}
3759
3760
/* returns the "mcp load_code" according to global load_count array */
3761
static int
3762
bxe_nic_unload_no_mcp(struct bxe_softc *sc)
3763
{
3764
int port = SC_PORT(sc);
3765
int path = SC_PATH(sc);
3766
3767
BLOGI(sc, "NO MCP - load counts[%d] %d, %d, %d\n",
3768
path, load_count[path][0], load_count[path][1],
3769
load_count[path][2]);
3770
load_count[path][0]--;
3771
load_count[path][1 + port]--;
3772
BLOGI(sc, "NO MCP - new load counts[%d] %d, %d, %d\n",
3773
path, load_count[path][0], load_count[path][1],
3774
load_count[path][2]);
3775
if (load_count[path][0] == 0) {
3776
return (FW_MSG_CODE_DRV_UNLOAD_COMMON);
3777
} else if (load_count[path][1 + port] == 0) {
3778
return (FW_MSG_CODE_DRV_UNLOAD_PORT);
3779
} else {
3780
return (FW_MSG_CODE_DRV_UNLOAD_FUNCTION);
3781
}
3782
}
3783
3784
/* request unload mode from the MCP: COMMON, PORT or FUNCTION */
3785
static uint32_t
3786
bxe_send_unload_req(struct bxe_softc *sc,
3787
int unload_mode)
3788
{
3789
uint32_t reset_code = 0;
3790
3791
/* Select the UNLOAD request mode */
3792
if (unload_mode == UNLOAD_NORMAL) {
3793
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3794
} else {
3795
reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
3796
}
3797
3798
/* Send the request to the MCP */
3799
if (!BXE_NOMCP(sc)) {
3800
reset_code = bxe_fw_command(sc, reset_code, 0);
3801
} else {
3802
reset_code = bxe_nic_unload_no_mcp(sc);
3803
}
3804
3805
return (reset_code);
3806
}
3807
3808
/* send UNLOAD_DONE command to the MCP */
3809
static void
3810
bxe_send_unload_done(struct bxe_softc *sc,
3811
uint8_t keep_link)
3812
{
3813
uint32_t reset_param =
3814
keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
3815
3816
/* Report UNLOAD_DONE to MCP */
3817
if (!BXE_NOMCP(sc)) {
3818
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
3819
}
3820
}
3821
3822
static int
3823
bxe_func_wait_started(struct bxe_softc *sc)
3824
{
3825
int tout = 50;
3826
3827
if (!sc->port.pmf) {
3828
return (0);
3829
}
3830
3831
/*
3832
* (assumption: No Attention from MCP at this stage)
3833
* PMF probably in the middle of TX disable/enable transaction
3834
* 1. Sync IRS for default SB
3835
* 2. Sync SP queue - this guarantees us that attention handling started
3836
* 3. Wait, that TX disable/enable transaction completes
3837
*
3838
* 1+2 guarantee that if DCBX attention was scheduled it already changed
3839
* pending bit of transaction from STARTED-->TX_STOPPED, if we already
3840
* received completion for the transaction the state is TX_STOPPED.
3841
* State will return to STARTED after completion of TX_STOPPED-->STARTED
3842
* transaction.
3843
*/
3844
3845
/* XXX make sure default SB ISR is done */
3846
/* need a way to synchronize an irq (intr_mtx?) */
3847
3848
/* XXX flush any work queues */
3849
3850
while (ecore_func_get_state(sc, &sc->func_obj) !=
3851
ECORE_F_STATE_STARTED && tout--) {
3852
DELAY(20000);
3853
}
3854
3855
if (ecore_func_get_state(sc, &sc->func_obj) != ECORE_F_STATE_STARTED) {
3856
/*
3857
* Failed to complete the transaction in a "good way"
3858
* Force both transactions with CLR bit.
3859
*/
3860
struct ecore_func_state_params func_params = { NULL };
3861
3862
BLOGE(sc, "Unexpected function state! "
3863
"Forcing STARTED-->TX_STOPPED-->STARTED\n");
3864
3865
func_params.f_obj = &sc->func_obj;
3866
bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3867
3868
/* STARTED-->TX_STOPPED */
3869
func_params.cmd = ECORE_F_CMD_TX_STOP;
3870
ecore_func_state_change(sc, &func_params);
3871
3872
/* TX_STOPPED-->STARTED */
3873
func_params.cmd = ECORE_F_CMD_TX_START;
3874
return (ecore_func_state_change(sc, &func_params));
3875
}
3876
3877
return (0);
3878
}
3879
3880
static int
3881
bxe_stop_queue(struct bxe_softc *sc,
3882
int index)
3883
{
3884
struct bxe_fastpath *fp = &sc->fp[index];
3885
struct ecore_queue_state_params q_params = { NULL };
3886
int rc;
3887
3888
BLOGD(sc, DBG_LOAD, "stopping queue %d cid %d\n", index, fp->index);
3889
3890
q_params.q_obj = &sc->sp_objs[fp->index].q_obj;
3891
/* We want to wait for completion in this context */
3892
bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
3893
3894
/* Stop the primary connection: */
3895
3896
/* ...halt the connection */
3897
q_params.cmd = ECORE_Q_CMD_HALT;
3898
rc = ecore_queue_state_change(sc, &q_params);
3899
if (rc) {
3900
return (rc);
3901
}
3902
3903
/* ...terminate the connection */
3904
q_params.cmd = ECORE_Q_CMD_TERMINATE;
3905
memset(&q_params.params.terminate, 0, sizeof(q_params.params.terminate));
3906
q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
3907
rc = ecore_queue_state_change(sc, &q_params);
3908
if (rc) {
3909
return (rc);
3910
}
3911
3912
/* ...delete cfc entry */
3913
q_params.cmd = ECORE_Q_CMD_CFC_DEL;
3914
memset(&q_params.params.cfc_del, 0, sizeof(q_params.params.cfc_del));
3915
q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
3916
return (ecore_queue_state_change(sc, &q_params));
3917
}
3918
3919
/* wait for the outstanding SP commands */
3920
static inline uint8_t
3921
bxe_wait_sp_comp(struct bxe_softc *sc,
3922
unsigned long mask)
3923
{
3924
unsigned long tmp;
3925
int tout = 5000; /* wait for 5 secs tops */
3926
3927
while (tout--) {
3928
mb();
3929
if (!(atomic_load_acq_long(&sc->sp_state) & mask)) {
3930
return (TRUE);
3931
}
3932
3933
DELAY(1000);
3934
}
3935
3936
mb();
3937
3938
tmp = atomic_load_acq_long(&sc->sp_state);
3939
if (tmp & mask) {
3940
BLOGE(sc, "Filtering completion timed out: "
3941
"sp_state 0x%lx, mask 0x%lx\n",
3942
tmp, mask);
3943
return (FALSE);
3944
}
3945
3946
return (FALSE);
3947
}
3948
3949
static int
3950
bxe_func_stop(struct bxe_softc *sc)
3951
{
3952
struct ecore_func_state_params func_params = { NULL };
3953
int rc;
3954
3955
/* prepare parameters for function state transitions */
3956
bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3957
func_params.f_obj = &sc->func_obj;
3958
func_params.cmd = ECORE_F_CMD_STOP;
3959
3960
/*
3961
* Try to stop the function the 'good way'. If it fails (in case
3962
* of a parity error during bxe_chip_cleanup()) and we are
3963
* not in a debug mode, perform a state transaction in order to
3964
* enable further HW_RESET transaction.
3965
*/
3966
rc = ecore_func_state_change(sc, &func_params);
3967
if (rc) {
3968
BLOGE(sc, "FUNC_STOP ramrod failed. "
3969
"Running a dry transaction (%d)\n", rc);
3970
bxe_set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
3971
return (ecore_func_state_change(sc, &func_params));
3972
}
3973
3974
return (0);
3975
}
3976
3977
static int
3978
bxe_reset_hw(struct bxe_softc *sc,
3979
uint32_t load_code)
3980
{
3981
struct ecore_func_state_params func_params = { NULL };
3982
3983
/* Prepare parameters for function state transitions */
3984
bxe_set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
3985
3986
func_params.f_obj = &sc->func_obj;
3987
func_params.cmd = ECORE_F_CMD_HW_RESET;
3988
3989
func_params.params.hw_init.load_phase = load_code;
3990
3991
return (ecore_func_state_change(sc, &func_params));
3992
}
3993
3994
static void
3995
bxe_int_disable_sync(struct bxe_softc *sc,
3996
int disable_hw)
3997
{
3998
if (disable_hw) {
3999
/* prevent the HW from sending interrupts */
4000
bxe_int_disable(sc);
4001
}
4002
4003
/* XXX need a way to synchronize ALL irqs (intr_mtx?) */
4004
/* make sure all ISRs are done */
4005
4006
/* XXX make sure sp_task is not running */
4007
/* cancel and flush work queues */
4008
}
4009
4010
static void
4011
bxe_chip_cleanup(struct bxe_softc *sc,
4012
uint32_t unload_mode,
4013
uint8_t keep_link)
4014
{
4015
int port = SC_PORT(sc);
4016
struct ecore_mcast_ramrod_params rparam = { NULL };
4017
uint32_t reset_code;
4018
int i, rc = 0;
4019
4020
bxe_drain_tx_queues(sc);
4021
4022
/* give HW time to discard old tx messages */
4023
DELAY(1000);
4024
4025
/* Clean all ETH MACs */
4026
rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_ETH_MAC, FALSE);
4027
if (rc < 0) {
4028
BLOGE(sc, "Failed to delete all ETH MACs (%d)\n", rc);
4029
}
4030
4031
/* Clean up UC list */
4032
rc = bxe_del_all_macs(sc, &sc->sp_objs[0].mac_obj, ECORE_UC_LIST_MAC, TRUE);
4033
if (rc < 0) {
4034
BLOGE(sc, "Failed to delete UC MACs list (%d)\n", rc);
4035
}
4036
4037
/* Disable LLH */
4038
if (!CHIP_IS_E1(sc)) {
4039
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
4040
}
4041
4042
/* Set "drop all" to stop Rx */
4043
4044
/*
4045
* We need to take the BXE_MCAST_LOCK() here in order to prevent
4046
* a race between the completion code and this code.
4047
*/
4048
BXE_MCAST_LOCK(sc);
4049
4050
if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
4051
bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
4052
} else {
4053
bxe_set_storm_rx_mode(sc);
4054
}
4055
4056
/* Clean up multicast configuration */
4057
rparam.mcast_obj = &sc->mcast_obj;
4058
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4059
if (rc < 0) {
4060
BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4061
}
4062
4063
BXE_MCAST_UNLOCK(sc);
4064
4065
// XXX bxe_iov_chip_cleanup(sc);
4066
4067
/*
4068
* Send the UNLOAD_REQUEST to the MCP. This will return if
4069
* this function should perform FUNCTION, PORT, or COMMON HW
4070
* reset.
4071
*/
4072
reset_code = bxe_send_unload_req(sc, unload_mode);
4073
4074
/*
4075
* (assumption: No Attention from MCP at this stage)
4076
* PMF probably in the middle of TX disable/enable transaction
4077
*/
4078
rc = bxe_func_wait_started(sc);
4079
if (rc) {
4080
BLOGE(sc, "bxe_func_wait_started failed (%d)\n", rc);
4081
}
4082
4083
/*
4084
* Close multi and leading connections
4085
* Completions for ramrods are collected in a synchronous way
4086
*/
4087
for (i = 0; i < sc->num_queues; i++) {
4088
if (bxe_stop_queue(sc, i)) {
4089
goto unload_error;
4090
}
4091
}
4092
4093
/*
4094
* If SP settings didn't get completed so far - something
4095
* very wrong has happen.
4096
*/
4097
if (!bxe_wait_sp_comp(sc, ~0x0UL)) {
4098
BLOGE(sc, "Common slow path ramrods got stuck!(%d)\n", rc);
4099
}
4100
4101
unload_error:
4102
4103
rc = bxe_func_stop(sc);
4104
if (rc) {
4105
BLOGE(sc, "Function stop failed!(%d)\n", rc);
4106
}
4107
4108
/* disable HW interrupts */
4109
bxe_int_disable_sync(sc, TRUE);
4110
4111
/* detach interrupts */
4112
bxe_interrupt_detach(sc);
4113
4114
/* Reset the chip */
4115
rc = bxe_reset_hw(sc, reset_code);
4116
if (rc) {
4117
BLOGE(sc, "Hardware reset failed(%d)\n", rc);
4118
}
4119
4120
/* Report UNLOAD_DONE to MCP */
4121
bxe_send_unload_done(sc, keep_link);
4122
}
4123
4124
static void
4125
bxe_disable_close_the_gate(struct bxe_softc *sc)
4126
{
4127
uint32_t val;
4128
int port = SC_PORT(sc);
4129
4130
BLOGD(sc, DBG_LOAD,
4131
"Disabling 'close the gates'\n");
4132
4133
if (CHIP_IS_E1(sc)) {
4134
uint32_t addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4135
MISC_REG_AEU_MASK_ATTN_FUNC_0;
4136
val = REG_RD(sc, addr);
4137
val &= ~(0x300);
4138
REG_WR(sc, addr, val);
4139
} else {
4140
val = REG_RD(sc, MISC_REG_AEU_GENERAL_MASK);
4141
val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
4142
MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
4143
REG_WR(sc, MISC_REG_AEU_GENERAL_MASK, val);
4144
}
4145
}
4146
4147
/*
4148
* Cleans the object that have internal lists without sending
4149
* ramrods. Should be run when interrupts are disabled.
4150
*/
4151
static void
4152
bxe_squeeze_objects(struct bxe_softc *sc)
4153
{
4154
unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
4155
struct ecore_mcast_ramrod_params rparam = { NULL };
4156
struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
4157
int rc;
4158
4159
/* Cleanup MACs' object first... */
4160
4161
/* Wait for completion of requested */
4162
bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
4163
/* Perform a dry cleanup */
4164
bxe_set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
4165
4166
/* Clean ETH primary MAC */
4167
bxe_set_bit(ECORE_ETH_MAC, &vlan_mac_flags);
4168
rc = mac_obj->delete_all(sc, &sc->sp_objs->mac_obj, &vlan_mac_flags,
4169
&ramrod_flags);
4170
if (rc != 0) {
4171
BLOGE(sc, "Failed to clean ETH MACs (%d)\n", rc);
4172
}
4173
4174
/* Cleanup UC list */
4175
vlan_mac_flags = 0;
4176
bxe_set_bit(ECORE_UC_LIST_MAC, &vlan_mac_flags);
4177
rc = mac_obj->delete_all(sc, mac_obj, &vlan_mac_flags,
4178
&ramrod_flags);
4179
if (rc != 0) {
4180
BLOGE(sc, "Failed to clean UC list MACs (%d)\n", rc);
4181
}
4182
4183
/* Now clean mcast object... */
4184
4185
rparam.mcast_obj = &sc->mcast_obj;
4186
bxe_set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
4187
4188
/* Add a DEL command... */
4189
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
4190
if (rc < 0) {
4191
BLOGE(sc, "Failed to send DEL MCAST command (%d)\n", rc);
4192
}
4193
4194
/* now wait until all pending commands are cleared */
4195
4196
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4197
while (rc != 0) {
4198
if (rc < 0) {
4199
BLOGE(sc, "Failed to clean MCAST object (%d)\n", rc);
4200
return;
4201
}
4202
4203
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
4204
}
4205
}
4206
4207
/* stop the controller */
4208
static __noinline int
4209
bxe_nic_unload(struct bxe_softc *sc,
4210
uint32_t unload_mode,
4211
uint8_t keep_link)
4212
{
4213
uint8_t global = FALSE;
4214
uint32_t val;
4215
int i;
4216
4217
BXE_CORE_LOCK_ASSERT(sc);
4218
4219
if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
4220
4221
for (i = 0; i < sc->num_queues; i++) {
4222
struct bxe_fastpath *fp;
4223
4224
fp = &sc->fp[i];
4225
fp->watchdog_timer = 0;
4226
BXE_FP_TX_LOCK(fp);
4227
BXE_FP_TX_UNLOCK(fp);
4228
}
4229
4230
BLOGD(sc, DBG_LOAD, "Starting NIC unload...\n");
4231
4232
/* mark driver as unloaded in shmem2 */
4233
if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
4234
val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
4235
SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
4236
val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
4237
}
4238
4239
if (IS_PF(sc) && sc->recovery_state != BXE_RECOVERY_DONE &&
4240
(sc->state == BXE_STATE_CLOSED || sc->state == BXE_STATE_ERROR)) {
4241
4242
if(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
4243
/*
4244
* We can get here if the driver has been unloaded
4245
* during parity error recovery and is either waiting for a
4246
* leader to complete or for other functions to unload and
4247
* then ifconfig down has been issued. In this case we want to
4248
* unload and let other functions to complete a recovery
4249
* process.
4250
*/
4251
sc->recovery_state = BXE_RECOVERY_DONE;
4252
sc->is_leader = 0;
4253
bxe_release_leader_lock(sc);
4254
mb();
4255
BLOGD(sc, DBG_LOAD, "Releasing a leadership...\n");
4256
}
4257
BLOGE(sc, "Can't unload in closed or error state recover_state 0x%x"
4258
" state = 0x%x\n", sc->recovery_state, sc->state);
4259
return (-1);
4260
}
4261
4262
/*
4263
* Nothing to do during unload if previous bxe_nic_load()
4264
* did not completed successfully - all resourses are released.
4265
*/
4266
if ((sc->state == BXE_STATE_CLOSED) ||
4267
(sc->state == BXE_STATE_ERROR)) {
4268
return (0);
4269
}
4270
4271
sc->state = BXE_STATE_CLOSING_WAITING_HALT;
4272
mb();
4273
4274
/* stop tx */
4275
bxe_tx_disable(sc);
4276
4277
sc->rx_mode = BXE_RX_MODE_NONE;
4278
/* XXX set rx mode ??? */
4279
4280
if (IS_PF(sc) && !sc->grcdump_done) {
4281
/* set ALWAYS_ALIVE bit in shmem */
4282
sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
4283
4284
bxe_drv_pulse(sc);
4285
4286
bxe_stats_handle(sc, STATS_EVENT_STOP);
4287
bxe_save_statistics(sc);
4288
}
4289
4290
/* wait till consumers catch up with producers in all queues */
4291
bxe_drain_tx_queues(sc);
4292
4293
/* if VF indicate to PF this function is going down (PF will delete sp
4294
* elements and clear initializations
4295
*/
4296
if (IS_VF(sc)) {
4297
; /* bxe_vfpf_close_vf(sc); */
4298
} else if (unload_mode != UNLOAD_RECOVERY) {
4299
/* if this is a normal/close unload need to clean up chip */
4300
if (!sc->grcdump_done)
4301
bxe_chip_cleanup(sc, unload_mode, keep_link);
4302
} else {
4303
/* Send the UNLOAD_REQUEST to the MCP */
4304
bxe_send_unload_req(sc, unload_mode);
4305
4306
/*
4307
* Prevent transactions to host from the functions on the
4308
* engine that doesn't reset global blocks in case of global
4309
* attention once gloabl blocks are reset and gates are opened
4310
* (the engine which leader will perform the recovery
4311
* last).
4312
*/
4313
if (!CHIP_IS_E1x(sc)) {
4314
bxe_pf_disable(sc);
4315
}
4316
4317
/* disable HW interrupts */
4318
bxe_int_disable_sync(sc, TRUE);
4319
4320
/* detach interrupts */
4321
bxe_interrupt_detach(sc);
4322
4323
/* Report UNLOAD_DONE to MCP */
4324
bxe_send_unload_done(sc, FALSE);
4325
}
4326
4327
/*
4328
* At this stage no more interrupts will arrive so we may safely clean
4329
* the queue'able objects here in case they failed to get cleaned so far.
4330
*/
4331
if (IS_PF(sc)) {
4332
bxe_squeeze_objects(sc);
4333
}
4334
4335
/* There should be no more pending SP commands at this stage */
4336
sc->sp_state = 0;
4337
4338
sc->port.pmf = 0;
4339
4340
bxe_free_fp_buffers(sc);
4341
4342
if (IS_PF(sc)) {
4343
bxe_free_mem(sc);
4344
}
4345
4346
bxe_free_fw_stats_mem(sc);
4347
4348
sc->state = BXE_STATE_CLOSED;
4349
4350
/*
4351
* Check if there are pending parity attentions. If there are - set
4352
* RECOVERY_IN_PROGRESS.
4353
*/
4354
if (IS_PF(sc) && bxe_chk_parity_attn(sc, &global, FALSE)) {
4355
bxe_set_reset_in_progress(sc);
4356
4357
/* Set RESET_IS_GLOBAL if needed */
4358
if (global) {
4359
bxe_set_reset_global(sc);
4360
}
4361
}
4362
4363
/*
4364
* The last driver must disable a "close the gate" if there is no
4365
* parity attention or "process kill" pending.
4366
*/
4367
if (IS_PF(sc) && !bxe_clear_pf_load(sc) &&
4368
bxe_reset_is_done(sc, SC_PATH(sc))) {
4369
bxe_disable_close_the_gate(sc);
4370
}
4371
4372
BLOGD(sc, DBG_LOAD, "Ended NIC unload\n");
4373
4374
bxe_link_report(sc);
4375
4376
return (0);
4377
}
4378
4379
/*
4380
* Called by the OS to set various media options (i.e. link, speed, etc.) when
4381
* the user runs "ifconfig bxe media ..." or "ifconfig bxe mediaopt ...".
4382
*/
4383
static int
4384
bxe_ifmedia_update(if_t ifp)
4385
{
4386
struct bxe_softc *sc = (struct bxe_softc *)if_getsoftc(ifp);
4387
struct ifmedia *ifm;
4388
4389
ifm = &sc->ifmedia;
4390
4391
/* We only support Ethernet media type. */
4392
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER) {
4393
return (EINVAL);
4394
}
4395
4396
switch (IFM_SUBTYPE(ifm->ifm_media)) {
4397
case IFM_AUTO:
4398
break;
4399
case IFM_10G_CX4:
4400
case IFM_10G_SR:
4401
case IFM_10G_T:
4402
case IFM_10G_TWINAX:
4403
default:
4404
/* We don't support changing the media type. */
4405
BLOGD(sc, DBG_LOAD, "Invalid media type (%d)\n",
4406
IFM_SUBTYPE(ifm->ifm_media));
4407
return (EINVAL);
4408
}
4409
4410
return (0);
4411
}
4412
4413
/*
4414
* Called by the OS to get the current media status (i.e. link, speed, etc.).
4415
*/
4416
static void
4417
bxe_ifmedia_status(if_t ifp, struct ifmediareq *ifmr)
4418
{
4419
struct bxe_softc *sc = if_getsoftc(ifp);
4420
4421
/* Bug 165447: the 'ifconfig' tool skips printing of the "status: ..."
4422
line if the IFM_AVALID flag is *NOT* set. So we need to set this
4423
flag unconditionally (irrespective of the admininistrative
4424
'up/down' state of the interface) to ensure that the line is always
4425
displayed.
4426
*/
4427
ifmr->ifm_status = IFM_AVALID;
4428
4429
/* Setup the default interface info. */
4430
ifmr->ifm_active = IFM_ETHER;
4431
4432
/* Report link down if the driver isn't running. */
4433
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
4434
ifmr->ifm_active |= IFM_NONE;
4435
BLOGD(sc, DBG_PHY, "in %s : nic still not loaded fully\n", __func__);
4436
BLOGD(sc, DBG_PHY, "in %s : link_up (1) : %d\n",
4437
__func__, sc->link_vars.link_up);
4438
return;
4439
}
4440
4441
4442
if (sc->link_vars.link_up) {
4443
ifmr->ifm_status |= IFM_ACTIVE;
4444
ifmr->ifm_active |= IFM_FDX;
4445
} else {
4446
ifmr->ifm_active |= IFM_NONE;
4447
BLOGD(sc, DBG_PHY, "in %s : setting IFM_NONE\n",
4448
__func__);
4449
return;
4450
}
4451
4452
ifmr->ifm_active |= sc->media;
4453
return;
4454
}
4455
4456
static void
4457
bxe_handle_chip_tq(void *context,
4458
int pending)
4459
{
4460
struct bxe_softc *sc = (struct bxe_softc *)context;
4461
long work = atomic_load_acq_long(&sc->chip_tq_flags);
4462
4463
switch (work)
4464
{
4465
4466
case CHIP_TQ_REINIT:
4467
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
4468
/* restart the interface */
4469
BLOGD(sc, DBG_LOAD, "Restarting the interface...\n");
4470
bxe_periodic_stop(sc);
4471
BXE_CORE_LOCK(sc);
4472
bxe_stop_locked(sc);
4473
bxe_init_locked(sc);
4474
BXE_CORE_UNLOCK(sc);
4475
}
4476
break;
4477
4478
default:
4479
break;
4480
}
4481
}
4482
4483
/*
4484
* Handles any IOCTL calls from the operating system.
4485
*
4486
* Returns:
4487
* 0 = Success, >0 Failure
4488
*/
4489
static int
4490
bxe_ioctl(if_t ifp,
4491
u_long command,
4492
caddr_t data)
4493
{
4494
struct bxe_softc *sc = if_getsoftc(ifp);
4495
struct ifreq *ifr = (struct ifreq *)data;
4496
int mask = 0;
4497
int reinit = 0;
4498
int error = 0;
4499
4500
int mtu_min = (ETH_MIN_PACKET_SIZE - ETH_HLEN);
4501
int mtu_max = (MJUM9BYTES - ETH_OVERHEAD - IP_HEADER_ALIGNMENT_PADDING);
4502
4503
switch (command)
4504
{
4505
case SIOCSIFMTU:
4506
BLOGD(sc, DBG_IOCTL, "Received SIOCSIFMTU ioctl (mtu=%d)\n",
4507
ifr->ifr_mtu);
4508
4509
if (sc->mtu == ifr->ifr_mtu) {
4510
/* nothing to change */
4511
break;
4512
}
4513
4514
if ((ifr->ifr_mtu < mtu_min) || (ifr->ifr_mtu > mtu_max)) {
4515
BLOGE(sc, "Unsupported MTU size %d (range is %d-%d)\n",
4516
ifr->ifr_mtu, mtu_min, mtu_max);
4517
error = EINVAL;
4518
break;
4519
}
4520
4521
atomic_store_rel_int((volatile unsigned int *)&sc->mtu,
4522
(unsigned long)ifr->ifr_mtu);
4523
/*
4524
atomic_store_rel_long((volatile unsigned long *)&if_getmtu(ifp),
4525
(unsigned long)ifr->ifr_mtu);
4526
XXX - Not sure why it needs to be atomic
4527
*/
4528
if_setmtu(ifp, ifr->ifr_mtu);
4529
reinit = 1;
4530
break;
4531
4532
case SIOCSIFFLAGS:
4533
/* toggle the interface state up or down */
4534
BLOGD(sc, DBG_IOCTL, "Received SIOCSIFFLAGS ioctl\n");
4535
4536
BXE_CORE_LOCK(sc);
4537
/* check if the interface is up */
4538
if (if_getflags(ifp) & IFF_UP) {
4539
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4540
/* set the receive mode flags */
4541
bxe_set_rx_mode(sc);
4542
} else if(sc->state != BXE_STATE_DISABLED) {
4543
bxe_init_locked(sc);
4544
}
4545
} else {
4546
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4547
bxe_periodic_stop(sc);
4548
bxe_stop_locked(sc);
4549
}
4550
}
4551
BXE_CORE_UNLOCK(sc);
4552
4553
break;
4554
4555
case SIOCADDMULTI:
4556
case SIOCDELMULTI:
4557
/* add/delete multicast addresses */
4558
BLOGD(sc, DBG_IOCTL, "Received SIOCADDMULTI/SIOCDELMULTI ioctl\n");
4559
4560
/* check if the interface is up */
4561
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
4562
/* set the receive mode flags */
4563
BXE_CORE_LOCK(sc);
4564
bxe_set_rx_mode(sc);
4565
BXE_CORE_UNLOCK(sc);
4566
}
4567
4568
break;
4569
4570
case SIOCSIFCAP:
4571
/* find out which capabilities have changed */
4572
mask = (ifr->ifr_reqcap ^ if_getcapenable(ifp));
4573
4574
BLOGD(sc, DBG_IOCTL, "Received SIOCSIFCAP ioctl (mask=0x%08x)\n",
4575
mask);
4576
4577
/* toggle the LRO capabilites enable flag */
4578
if (mask & IFCAP_LRO) {
4579
if_togglecapenable(ifp, IFCAP_LRO);
4580
BLOGD(sc, DBG_IOCTL, "Turning LRO %s\n",
4581
(if_getcapenable(ifp) & IFCAP_LRO) ? "ON" : "OFF");
4582
reinit = 1;
4583
}
4584
4585
/* toggle the TXCSUM checksum capabilites enable flag */
4586
if (mask & IFCAP_TXCSUM) {
4587
if_togglecapenable(ifp, IFCAP_TXCSUM);
4588
BLOGD(sc, DBG_IOCTL, "Turning TXCSUM %s\n",
4589
(if_getcapenable(ifp) & IFCAP_TXCSUM) ? "ON" : "OFF");
4590
if (if_getcapenable(ifp) & IFCAP_TXCSUM) {
4591
if_sethwassistbits(ifp, (CSUM_IP |
4592
CSUM_TCP |
4593
CSUM_UDP |
4594
CSUM_TSO |
4595
CSUM_TCP_IPV6 |
4596
CSUM_UDP_IPV6), 0);
4597
} else {
4598
if_clearhwassist(ifp); /* XXX */
4599
}
4600
}
4601
4602
/* toggle the RXCSUM checksum capabilities enable flag */
4603
if (mask & IFCAP_RXCSUM) {
4604
if_togglecapenable(ifp, IFCAP_RXCSUM);
4605
BLOGD(sc, DBG_IOCTL, "Turning RXCSUM %s\n",
4606
(if_getcapenable(ifp) & IFCAP_RXCSUM) ? "ON" : "OFF");
4607
if (if_getcapenable(ifp) & IFCAP_RXCSUM) {
4608
if_sethwassistbits(ifp, (CSUM_IP |
4609
CSUM_TCP |
4610
CSUM_UDP |
4611
CSUM_TSO |
4612
CSUM_TCP_IPV6 |
4613
CSUM_UDP_IPV6), 0);
4614
} else {
4615
if_clearhwassist(ifp); /* XXX */
4616
}
4617
}
4618
4619
/* toggle TSO4 capabilities enabled flag */
4620
if (mask & IFCAP_TSO4) {
4621
if_togglecapenable(ifp, IFCAP_TSO4);
4622
BLOGD(sc, DBG_IOCTL, "Turning TSO4 %s\n",
4623
(if_getcapenable(ifp) & IFCAP_TSO4) ? "ON" : "OFF");
4624
}
4625
4626
/* toggle TSO6 capabilities enabled flag */
4627
if (mask & IFCAP_TSO6) {
4628
if_togglecapenable(ifp, IFCAP_TSO6);
4629
BLOGD(sc, DBG_IOCTL, "Turning TSO6 %s\n",
4630
(if_getcapenable(ifp) & IFCAP_TSO6) ? "ON" : "OFF");
4631
}
4632
4633
/* toggle VLAN_HWTSO capabilities enabled flag */
4634
if (mask & IFCAP_VLAN_HWTSO) {
4635
4636
if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
4637
BLOGD(sc, DBG_IOCTL, "Turning VLAN_HWTSO %s\n",
4638
(if_getcapenable(ifp) & IFCAP_VLAN_HWTSO) ? "ON" : "OFF");
4639
}
4640
4641
/* toggle VLAN_HWCSUM capabilities enabled flag */
4642
if (mask & IFCAP_VLAN_HWCSUM) {
4643
/* XXX investigate this... */
4644
BLOGE(sc, "Changing VLAN_HWCSUM is not supported!\n");
4645
error = EINVAL;
4646
}
4647
4648
/* toggle VLAN_MTU capabilities enable flag */
4649
if (mask & IFCAP_VLAN_MTU) {
4650
/* XXX investigate this... */
4651
BLOGE(sc, "Changing VLAN_MTU is not supported!\n");
4652
error = EINVAL;
4653
}
4654
4655
/* toggle VLAN_HWTAGGING capabilities enabled flag */
4656
if (mask & IFCAP_VLAN_HWTAGGING) {
4657
/* XXX investigate this... */
4658
BLOGE(sc, "Changing VLAN_HWTAGGING is not supported!\n");
4659
error = EINVAL;
4660
}
4661
4662
/* toggle VLAN_HWFILTER capabilities enabled flag */
4663
if (mask & IFCAP_VLAN_HWFILTER) {
4664
/* XXX investigate this... */
4665
BLOGE(sc, "Changing VLAN_HWFILTER is not supported!\n");
4666
error = EINVAL;
4667
}
4668
4669
/* XXX not yet...
4670
* IFCAP_WOL_MAGIC
4671
*/
4672
4673
break;
4674
4675
case SIOCSIFMEDIA:
4676
case SIOCGIFMEDIA:
4677
/* set/get interface media */
4678
BLOGD(sc, DBG_IOCTL,
4679
"Received SIOCSIFMEDIA/SIOCGIFMEDIA ioctl (cmd=%lu)\n",
4680
(command & 0xff));
4681
error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
4682
break;
4683
4684
default:
4685
BLOGD(sc, DBG_IOCTL, "Received Unknown Ioctl (cmd=%lu)\n",
4686
(command & 0xff));
4687
error = ether_ioctl(ifp, command, data);
4688
break;
4689
}
4690
4691
if (reinit && (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
4692
BLOGD(sc, DBG_LOAD | DBG_IOCTL,
4693
"Re-initializing hardware from IOCTL change\n");
4694
bxe_periodic_stop(sc);
4695
BXE_CORE_LOCK(sc);
4696
bxe_stop_locked(sc);
4697
bxe_init_locked(sc);
4698
BXE_CORE_UNLOCK(sc);
4699
}
4700
4701
return (error);
4702
}
4703
4704
static __noinline void
4705
bxe_dump_mbuf(struct bxe_softc *sc,
4706
struct mbuf *m,
4707
uint8_t contents)
4708
{
4709
char * type;
4710
int i = 0;
4711
4712
if (!(sc->debug & DBG_MBUF)) {
4713
return;
4714
}
4715
4716
if (m == NULL) {
4717
BLOGD(sc, DBG_MBUF, "mbuf: null pointer\n");
4718
return;
4719
}
4720
4721
while (m) {
4722
4723
BLOGD(sc, DBG_MBUF,
4724
"%02d: mbuf=%p m_len=%d m_flags=0x%b m_data=%p\n",
4725
i, m, m->m_len, m->m_flags, M_FLAG_BITS, m->m_data);
4726
4727
if (m->m_flags & M_PKTHDR) {
4728
BLOGD(sc, DBG_MBUF,
4729
"%02d: - m_pkthdr: tot_len=%d flags=0x%b csum_flags=%b\n",
4730
i, m->m_pkthdr.len, m->m_flags, M_FLAG_BITS,
4731
(int)m->m_pkthdr.csum_flags, CSUM_BITS);
4732
}
4733
4734
if (m->m_flags & M_EXT) {
4735
switch (m->m_ext.ext_type) {
4736
case EXT_CLUSTER: type = "EXT_CLUSTER"; break;
4737
case EXT_SFBUF: type = "EXT_SFBUF"; break;
4738
case EXT_JUMBOP: type = "EXT_JUMBOP"; break;
4739
case EXT_JUMBO9: type = "EXT_JUMBO9"; break;
4740
case EXT_JUMBO16: type = "EXT_JUMBO16"; break;
4741
case EXT_PACKET: type = "EXT_PACKET"; break;
4742
case EXT_MBUF: type = "EXT_MBUF"; break;
4743
case EXT_NET_DRV: type = "EXT_NET_DRV"; break;
4744
case EXT_MOD_TYPE: type = "EXT_MOD_TYPE"; break;
4745
case EXT_DISPOSABLE: type = "EXT_DISPOSABLE"; break;
4746
case EXT_EXTREF: type = "EXT_EXTREF"; break;
4747
default: type = "UNKNOWN"; break;
4748
}
4749
4750
BLOGD(sc, DBG_MBUF,
4751
"%02d: - m_ext: %p ext_size=%d type=%s\n",
4752
i, m->m_ext.ext_buf, m->m_ext.ext_size, type);
4753
}
4754
4755
if (contents) {
4756
bxe_dump_mbuf_data(sc, "mbuf data", m, TRUE);
4757
}
4758
4759
m = m->m_next;
4760
i++;
4761
}
4762
}
4763
4764
/*
4765
* Checks to ensure the 13 bd sliding window is >= MSS for TSO.
4766
* Check that (13 total bds - 3 bds) = 10 bd window >= MSS.
4767
* The window: 3 bds are = 1 for headers BD + 2 for parse BD and last BD
4768
* The headers comes in a separate bd in FreeBSD so 13-3=10.
4769
* Returns: 0 if OK to send, 1 if packet needs further defragmentation
4770
*/
4771
static int
4772
bxe_chktso_window(struct bxe_softc *sc,
4773
int nsegs,
4774
bus_dma_segment_t *segs,
4775
struct mbuf *m)
4776
{
4777
uint32_t num_wnds, wnd_size, wnd_sum;
4778
int32_t frag_idx, wnd_idx;
4779
unsigned short lso_mss;
4780
4781
wnd_sum = 0;
4782
wnd_size = 10;
4783
num_wnds = nsegs - wnd_size;
4784
lso_mss = htole16(m->m_pkthdr.tso_segsz);
4785
4786
/*
4787
* Total header lengths Eth+IP+TCP in first FreeBSD mbuf so calculate the
4788
* first window sum of data while skipping the first assuming it is the
4789
* header in FreeBSD.
4790
*/
4791
for (frag_idx = 1; (frag_idx <= wnd_size); frag_idx++) {
4792
wnd_sum += htole16(segs[frag_idx].ds_len);
4793
}
4794
4795
/* check the first 10 bd window size */
4796
if (wnd_sum < lso_mss) {
4797
return (1);
4798
}
4799
4800
/* run through the windows */
4801
for (wnd_idx = 0; wnd_idx < num_wnds; wnd_idx++, frag_idx++) {
4802
/* subtract the first mbuf->m_len of the last wndw(-header) */
4803
wnd_sum -= htole16(segs[wnd_idx+1].ds_len);
4804
/* add the next mbuf len to the len of our new window */
4805
wnd_sum += htole16(segs[frag_idx].ds_len);
4806
if (wnd_sum < lso_mss) {
4807
return (1);
4808
}
4809
}
4810
4811
return (0);
4812
}
4813
4814
static uint8_t
4815
bxe_set_pbd_csum_e2(struct bxe_fastpath *fp,
4816
struct mbuf *m,
4817
uint32_t *parsing_data)
4818
{
4819
struct ether_vlan_header *eh = NULL;
4820
struct ip *ip4 = NULL;
4821
struct ip6_hdr *ip6 = NULL;
4822
caddr_t ip = NULL;
4823
struct tcphdr *th = NULL;
4824
int e_hlen, ip_hlen, l4_off;
4825
uint16_t proto;
4826
4827
if (m->m_pkthdr.csum_flags == CSUM_IP) {
4828
/* no L4 checksum offload needed */
4829
return (0);
4830
}
4831
4832
/* get the Ethernet header */
4833
eh = mtod(m, struct ether_vlan_header *);
4834
4835
/* handle VLAN encapsulation if present */
4836
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4837
e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4838
proto = ntohs(eh->evl_proto);
4839
} else {
4840
e_hlen = ETHER_HDR_LEN;
4841
proto = ntohs(eh->evl_encap_proto);
4842
}
4843
4844
switch (proto) {
4845
case ETHERTYPE_IP:
4846
/* get the IP header, if mbuf len < 20 then header in next mbuf */
4847
ip4 = (m->m_len < sizeof(struct ip)) ?
4848
(struct ip *)m->m_next->m_data :
4849
(struct ip *)(m->m_data + e_hlen);
4850
/* ip_hl is number of 32-bit words */
4851
ip_hlen = (ip4->ip_hl << 2);
4852
ip = (caddr_t)ip4;
4853
break;
4854
case ETHERTYPE_IPV6:
4855
/* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4856
ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4857
(struct ip6_hdr *)m->m_next->m_data :
4858
(struct ip6_hdr *)(m->m_data + e_hlen);
4859
/* XXX cannot support offload with IPv6 extensions */
4860
ip_hlen = sizeof(struct ip6_hdr);
4861
ip = (caddr_t)ip6;
4862
break;
4863
default:
4864
/* We can't offload in this case... */
4865
/* XXX error stat ??? */
4866
return (0);
4867
}
4868
4869
/* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4870
l4_off = (e_hlen + ip_hlen);
4871
4872
*parsing_data |=
4873
(((l4_off >> 1) << ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
4874
ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W);
4875
4876
if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4877
CSUM_TSO |
4878
CSUM_TCP_IPV6)) {
4879
fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4880
th = (struct tcphdr *)(ip + ip_hlen);
4881
/* th_off is number of 32-bit words */
4882
*parsing_data |= ((th->th_off <<
4883
ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
4884
ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW);
4885
return (l4_off + (th->th_off << 2)); /* entire header length */
4886
} else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4887
CSUM_UDP_IPV6)) {
4888
fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4889
return (l4_off + sizeof(struct udphdr)); /* entire header length */
4890
} else {
4891
/* XXX error stat ??? */
4892
return (0);
4893
}
4894
}
4895
4896
static uint8_t
4897
bxe_set_pbd_csum(struct bxe_fastpath *fp,
4898
struct mbuf *m,
4899
struct eth_tx_parse_bd_e1x *pbd)
4900
{
4901
struct ether_vlan_header *eh = NULL;
4902
struct ip *ip4 = NULL;
4903
struct ip6_hdr *ip6 = NULL;
4904
caddr_t ip = NULL;
4905
struct tcphdr *th = NULL;
4906
struct udphdr *uh = NULL;
4907
int e_hlen, ip_hlen;
4908
uint16_t proto;
4909
uint8_t hlen;
4910
uint16_t tmp_csum;
4911
uint32_t *tmp_uh;
4912
4913
/* get the Ethernet header */
4914
eh = mtod(m, struct ether_vlan_header *);
4915
4916
/* handle VLAN encapsulation if present */
4917
if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
4918
e_hlen = (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN);
4919
proto = ntohs(eh->evl_proto);
4920
} else {
4921
e_hlen = ETHER_HDR_LEN;
4922
proto = ntohs(eh->evl_encap_proto);
4923
}
4924
4925
switch (proto) {
4926
case ETHERTYPE_IP:
4927
/* get the IP header, if mbuf len < 20 then header in next mbuf */
4928
ip4 = (m->m_len < sizeof(struct ip)) ?
4929
(struct ip *)m->m_next->m_data :
4930
(struct ip *)(m->m_data + e_hlen);
4931
/* ip_hl is number of 32-bit words */
4932
ip_hlen = (ip4->ip_hl << 1);
4933
ip = (caddr_t)ip4;
4934
break;
4935
case ETHERTYPE_IPV6:
4936
/* get the IPv6 header, if mbuf len < 40 then header in next mbuf */
4937
ip6 = (m->m_len < sizeof(struct ip6_hdr)) ?
4938
(struct ip6_hdr *)m->m_next->m_data :
4939
(struct ip6_hdr *)(m->m_data + e_hlen);
4940
/* XXX cannot support offload with IPv6 extensions */
4941
ip_hlen = (sizeof(struct ip6_hdr) >> 1);
4942
ip = (caddr_t)ip6;
4943
break;
4944
default:
4945
/* We can't offload in this case... */
4946
/* XXX error stat ??? */
4947
return (0);
4948
}
4949
4950
hlen = (e_hlen >> 1);
4951
4952
/* note that rest of global_data is indirectly zeroed here */
4953
if (m->m_flags & M_VLANTAG) {
4954
pbd->global_data =
4955
htole16(hlen | (1 << ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
4956
} else {
4957
pbd->global_data = htole16(hlen);
4958
}
4959
4960
pbd->ip_hlen_w = ip_hlen;
4961
4962
hlen += pbd->ip_hlen_w;
4963
4964
/* XXX assuming L4 header is contiguous to IPv4/IPv6 in the same mbuf */
4965
4966
if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4967
CSUM_TSO |
4968
CSUM_TCP_IPV6)) {
4969
th = (struct tcphdr *)(ip + (ip_hlen << 1));
4970
/* th_off is number of 32-bit words */
4971
hlen += (uint16_t)(th->th_off << 1);
4972
} else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4973
CSUM_UDP_IPV6)) {
4974
uh = (struct udphdr *)(ip + (ip_hlen << 1));
4975
hlen += (sizeof(struct udphdr) / 2);
4976
} else {
4977
/* valid case as only CSUM_IP was set */
4978
return (0);
4979
}
4980
4981
pbd->total_hlen_w = htole16(hlen);
4982
4983
if (m->m_pkthdr.csum_flags & (CSUM_TCP |
4984
CSUM_TSO |
4985
CSUM_TCP_IPV6)) {
4986
fp->eth_q_stats.tx_ofld_frames_csum_tcp++;
4987
pbd->tcp_pseudo_csum = ntohs(th->th_sum);
4988
} else if (m->m_pkthdr.csum_flags & (CSUM_UDP |
4989
CSUM_UDP_IPV6)) {
4990
fp->eth_q_stats.tx_ofld_frames_csum_udp++;
4991
4992
/*
4993
* Everest1 (i.e. 57710, 57711, 57711E) does not natively support UDP
4994
* checksums and does not know anything about the UDP header and where
4995
* the checksum field is located. It only knows about TCP. Therefore
4996
* we "lie" to the hardware for outgoing UDP packets w/ checksum
4997
* offload. Since the checksum field offset for TCP is 16 bytes and
4998
* for UDP it is 6 bytes we pass a pointer to the hardware that is 10
4999
* bytes less than the start of the UDP header. This allows the
5000
* hardware to write the checksum in the correct spot. But the
5001
* hardware will compute a checksum which includes the last 10 bytes
5002
* of the IP header. To correct this we tweak the stack computed
5003
* pseudo checksum by folding in the calculation of the inverse
5004
* checksum for those final 10 bytes of the IP header. This allows
5005
* the correct checksum to be computed by the hardware.
5006
*/
5007
5008
/* set pointer 10 bytes before UDP header */
5009
tmp_uh = (uint32_t *)((uint8_t *)uh - 10);
5010
5011
/* calculate a pseudo header checksum over the first 10 bytes */
5012
tmp_csum = in_pseudo(*tmp_uh,
5013
*(tmp_uh + 1),
5014
*(uint16_t *)(tmp_uh + 2));
5015
5016
pbd->tcp_pseudo_csum = ntohs(in_addword(uh->uh_sum, ~tmp_csum));
5017
}
5018
5019
return (hlen * 2); /* entire header length, number of bytes */
5020
}
5021
5022
static void
5023
bxe_set_pbd_lso_e2(struct mbuf *m,
5024
uint32_t *parsing_data)
5025
{
5026
*parsing_data |= ((m->m_pkthdr.tso_segsz <<
5027
ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
5028
ETH_TX_PARSE_BD_E2_LSO_MSS);
5029
5030
/* XXX test for IPv6 with extension header... */
5031
}
5032
5033
static void
5034
bxe_set_pbd_lso(struct mbuf *m,
5035
struct eth_tx_parse_bd_e1x *pbd)
5036
{
5037
struct ether_vlan_header *eh = NULL;
5038
struct ip *ip = NULL;
5039
struct tcphdr *th = NULL;
5040
int e_hlen;
5041
5042
/* get the Ethernet header */
5043
eh = mtod(m, struct ether_vlan_header *);
5044
5045
/* handle VLAN encapsulation if present */
5046
e_hlen = (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) ?
5047
(ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN) : ETHER_HDR_LEN;
5048
5049
/* get the IP and TCP header, with LSO entire header in first mbuf */
5050
/* XXX assuming IPv4 */
5051
ip = (struct ip *)(m->m_data + e_hlen);
5052
th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
5053
5054
pbd->lso_mss = htole16(m->m_pkthdr.tso_segsz);
5055
pbd->tcp_send_seq = ntohl(th->th_seq);
5056
pbd->tcp_flags = ((ntohl(((uint32_t *)th)[3]) >> 16) & 0xff);
5057
5058
#if 1
5059
/* XXX IPv4 */
5060
pbd->ip_id = ntohs(ip->ip_id);
5061
pbd->tcp_pseudo_csum =
5062
ntohs(in_pseudo(ip->ip_src.s_addr,
5063
ip->ip_dst.s_addr,
5064
htons(IPPROTO_TCP)));
5065
#else
5066
/* XXX IPv6 */
5067
pbd->tcp_pseudo_csum =
5068
ntohs(in_pseudo(&ip6->ip6_src,
5069
&ip6->ip6_dst,
5070
htons(IPPROTO_TCP)));
5071
#endif
5072
5073
pbd->global_data |=
5074
htole16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
5075
}
5076
5077
/*
5078
* Encapsulte an mbuf cluster into the tx bd chain and makes the memory
5079
* visible to the controller.
5080
*
5081
* If an mbuf is submitted to this routine and cannot be given to the
5082
* controller (e.g. it has too many fragments) then the function may free
5083
* the mbuf and return to the caller.
5084
*
5085
* Returns:
5086
* 0 = Success, !0 = Failure
5087
* Note the side effect that an mbuf may be freed if it causes a problem.
5088
*/
5089
static int
5090
bxe_tx_encap(struct bxe_fastpath *fp, struct mbuf **m_head)
5091
{
5092
bus_dma_segment_t segs[32];
5093
struct mbuf *m0;
5094
struct bxe_sw_tx_bd *tx_buf;
5095
struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
5096
struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
5097
/* struct eth_tx_parse_2nd_bd *pbd2 = NULL; */
5098
struct eth_tx_bd *tx_data_bd;
5099
struct eth_tx_bd *tx_total_pkt_size_bd;
5100
struct eth_tx_start_bd *tx_start_bd;
5101
uint16_t bd_prod, pkt_prod, total_pkt_size;
5102
uint8_t mac_type;
5103
int defragged, error, nsegs, rc, nbds, vlan_off, ovlan;
5104
struct bxe_softc *sc;
5105
uint16_t tx_bd_avail;
5106
struct ether_vlan_header *eh;
5107
uint32_t pbd_e2_parsing_data = 0;
5108
uint8_t hlen = 0;
5109
int tmp_bd;
5110
int i;
5111
5112
sc = fp->sc;
5113
5114
M_ASSERTPKTHDR(*m_head);
5115
5116
m0 = *m_head;
5117
rc = defragged = nbds = ovlan = vlan_off = total_pkt_size = 0;
5118
tx_start_bd = NULL;
5119
tx_data_bd = NULL;
5120
tx_total_pkt_size_bd = NULL;
5121
5122
/* get the H/W pointer for packets and BDs */
5123
pkt_prod = fp->tx_pkt_prod;
5124
bd_prod = fp->tx_bd_prod;
5125
5126
mac_type = UNICAST_ADDRESS;
5127
5128
/* map the mbuf into the next open DMAable memory */
5129
tx_buf = &fp->tx_mbuf_chain[TX_BD(pkt_prod)];
5130
error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5131
tx_buf->m_map, m0,
5132
segs, &nsegs, BUS_DMA_NOWAIT);
5133
5134
/* mapping errors */
5135
if(__predict_false(error != 0)) {
5136
fp->eth_q_stats.tx_dma_mapping_failure++;
5137
if (error == ENOMEM) {
5138
/* resource issue, try again later */
5139
rc = ENOMEM;
5140
} else if (error == EFBIG) {
5141
/* possibly recoverable with defragmentation */
5142
fp->eth_q_stats.mbuf_defrag_attempts++;
5143
m0 = m_defrag(*m_head, M_NOWAIT);
5144
if (m0 == NULL) {
5145
fp->eth_q_stats.mbuf_defrag_failures++;
5146
rc = ENOBUFS;
5147
} else {
5148
/* defrag successful, try mapping again */
5149
*m_head = m0;
5150
error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5151
tx_buf->m_map, m0,
5152
segs, &nsegs, BUS_DMA_NOWAIT);
5153
if (error) {
5154
fp->eth_q_stats.tx_dma_mapping_failure++;
5155
rc = error;
5156
}
5157
}
5158
} else {
5159
/* unknown, unrecoverable mapping error */
5160
BLOGE(sc, "Unknown TX mapping error rc=%d\n", error);
5161
bxe_dump_mbuf(sc, m0, FALSE);
5162
rc = error;
5163
}
5164
5165
goto bxe_tx_encap_continue;
5166
}
5167
5168
tx_bd_avail = bxe_tx_avail(sc, fp);
5169
5170
/* make sure there is enough room in the send queue */
5171
if (__predict_false(tx_bd_avail < (nsegs + 2))) {
5172
/* Recoverable, try again later. */
5173
fp->eth_q_stats.tx_hw_queue_full++;
5174
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5175
rc = ENOMEM;
5176
goto bxe_tx_encap_continue;
5177
}
5178
5179
/* capture the current H/W TX chain high watermark */
5180
if (__predict_false(fp->eth_q_stats.tx_hw_max_queue_depth <
5181
(TX_BD_USABLE - tx_bd_avail))) {
5182
fp->eth_q_stats.tx_hw_max_queue_depth = (TX_BD_USABLE - tx_bd_avail);
5183
}
5184
5185
/* make sure it fits in the packet window */
5186
if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5187
/*
5188
* The mbuf may be to big for the controller to handle. If the frame
5189
* is a TSO frame we'll need to do an additional check.
5190
*/
5191
if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5192
if (bxe_chktso_window(sc, nsegs, segs, m0) == 0) {
5193
goto bxe_tx_encap_continue; /* OK to send */
5194
} else {
5195
fp->eth_q_stats.tx_window_violation_tso++;
5196
}
5197
} else {
5198
fp->eth_q_stats.tx_window_violation_std++;
5199
}
5200
5201
/* lets try to defragment this mbuf and remap it */
5202
fp->eth_q_stats.mbuf_defrag_attempts++;
5203
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5204
5205
m0 = m_defrag(*m_head, M_NOWAIT);
5206
if (m0 == NULL) {
5207
fp->eth_q_stats.mbuf_defrag_failures++;
5208
/* Ugh, just drop the frame... :( */
5209
rc = ENOBUFS;
5210
} else {
5211
/* defrag successful, try mapping again */
5212
*m_head = m0;
5213
error = bus_dmamap_load_mbuf_sg(fp->tx_mbuf_tag,
5214
tx_buf->m_map, m0,
5215
segs, &nsegs, BUS_DMA_NOWAIT);
5216
if (error) {
5217
fp->eth_q_stats.tx_dma_mapping_failure++;
5218
/* No sense in trying to defrag/copy chain, drop it. :( */
5219
rc = error;
5220
} else {
5221
/* if the chain is still too long then drop it */
5222
if(m0->m_pkthdr.csum_flags & CSUM_TSO) {
5223
/*
5224
* in case TSO is enabled nsegs should be checked against
5225
* BXE_TSO_MAX_SEGMENTS
5226
*/
5227
if (__predict_false(nsegs > BXE_TSO_MAX_SEGMENTS)) {
5228
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5229
fp->eth_q_stats.nsegs_path1_errors++;
5230
rc = ENODEV;
5231
}
5232
} else {
5233
if (__predict_false(nsegs > BXE_MAX_SEGMENTS)) {
5234
bus_dmamap_unload(fp->tx_mbuf_tag, tx_buf->m_map);
5235
fp->eth_q_stats.nsegs_path2_errors++;
5236
rc = ENODEV;
5237
}
5238
}
5239
}
5240
}
5241
}
5242
5243
bxe_tx_encap_continue:
5244
5245
/* Check for errors */
5246
if (rc) {
5247
if (rc == ENOMEM) {
5248
/* recoverable try again later */
5249
} else {
5250
fp->eth_q_stats.tx_soft_errors++;
5251
fp->eth_q_stats.mbuf_alloc_tx--;
5252
m_freem(*m_head);
5253
*m_head = NULL;
5254
}
5255
5256
return (rc);
5257
}
5258
5259
/* set flag according to packet type (UNICAST_ADDRESS is default) */
5260
if (m0->m_flags & M_BCAST) {
5261
mac_type = BROADCAST_ADDRESS;
5262
} else if (m0->m_flags & M_MCAST) {
5263
mac_type = MULTICAST_ADDRESS;
5264
}
5265
5266
/* store the mbuf into the mbuf ring */
5267
tx_buf->m = m0;
5268
tx_buf->first_bd = fp->tx_bd_prod;
5269
tx_buf->flags = 0;
5270
5271
/* prepare the first transmit (start) BD for the mbuf */
5272
tx_start_bd = &fp->tx_chain[TX_BD(bd_prod)].start_bd;
5273
5274
BLOGD(sc, DBG_TX,
5275
"sending pkt_prod=%u tx_buf=%p next_idx=%u bd=%u tx_start_bd=%p\n",
5276
pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd);
5277
5278
tx_start_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
5279
tx_start_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
5280
tx_start_bd->nbytes = htole16(segs[0].ds_len);
5281
total_pkt_size += tx_start_bd->nbytes;
5282
tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
5283
5284
tx_start_bd->general_data = (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT);
5285
5286
/* all frames have at least Start BD + Parsing BD */
5287
nbds = nsegs + 1;
5288
tx_start_bd->nbd = htole16(nbds);
5289
5290
if (m0->m_flags & M_VLANTAG) {
5291
tx_start_bd->vlan_or_ethertype = htole16(m0->m_pkthdr.ether_vtag);
5292
tx_start_bd->bd_flags.as_bitfield |=
5293
(X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
5294
} else {
5295
/* vf tx, start bd must hold the ethertype for fw to enforce it */
5296
if (IS_VF(sc)) {
5297
/* map ethernet header to find type and header length */
5298
eh = mtod(m0, struct ether_vlan_header *);
5299
tx_start_bd->vlan_or_ethertype = eh->evl_encap_proto;
5300
} else {
5301
/* used by FW for packet accounting */
5302
tx_start_bd->vlan_or_ethertype = htole16(fp->tx_pkt_prod);
5303
}
5304
}
5305
5306
/*
5307
* add a parsing BD from the chain. The parsing BD is always added
5308
* though it is only used for TSO and chksum
5309
*/
5310
bd_prod = TX_BD_NEXT(bd_prod);
5311
5312
if (m0->m_pkthdr.csum_flags) {
5313
if (m0->m_pkthdr.csum_flags & CSUM_IP) {
5314
fp->eth_q_stats.tx_ofld_frames_csum_ip++;
5315
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IP_CSUM;
5316
}
5317
5318
if (m0->m_pkthdr.csum_flags & CSUM_TCP_IPV6) {
5319
tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5320
ETH_TX_BD_FLAGS_L4_CSUM);
5321
} else if (m0->m_pkthdr.csum_flags & CSUM_UDP_IPV6) {
5322
tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_IPV6 |
5323
ETH_TX_BD_FLAGS_IS_UDP |
5324
ETH_TX_BD_FLAGS_L4_CSUM);
5325
} else if ((m0->m_pkthdr.csum_flags & CSUM_TCP) ||
5326
(m0->m_pkthdr.csum_flags & CSUM_TSO)) {
5327
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
5328
} else if (m0->m_pkthdr.csum_flags & CSUM_UDP) {
5329
tx_start_bd->bd_flags.as_bitfield |= (ETH_TX_BD_FLAGS_L4_CSUM |
5330
ETH_TX_BD_FLAGS_IS_UDP);
5331
}
5332
}
5333
5334
if (!CHIP_IS_E1x(sc)) {
5335
pbd_e2 = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e2;
5336
memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
5337
5338
if (m0->m_pkthdr.csum_flags) {
5339
hlen = bxe_set_pbd_csum_e2(fp, m0, &pbd_e2_parsing_data);
5340
}
5341
5342
SET_FLAG(pbd_e2_parsing_data, ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE,
5343
mac_type);
5344
} else {
5345
uint16_t global_data = 0;
5346
5347
pbd_e1x = &fp->tx_chain[TX_BD(bd_prod)].parse_bd_e1x;
5348
memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
5349
5350
if (m0->m_pkthdr.csum_flags) {
5351
hlen = bxe_set_pbd_csum(fp, m0, pbd_e1x);
5352
}
5353
5354
SET_FLAG(global_data,
5355
ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
5356
pbd_e1x->global_data |= htole16(global_data);
5357
}
5358
5359
/* setup the parsing BD with TSO specific info */
5360
if (m0->m_pkthdr.csum_flags & CSUM_TSO) {
5361
fp->eth_q_stats.tx_ofld_frames_lso++;
5362
tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
5363
5364
if (__predict_false(tx_start_bd->nbytes > hlen)) {
5365
fp->eth_q_stats.tx_ofld_frames_lso_hdr_splits++;
5366
5367
/* split the first BD into header/data making the fw job easy */
5368
nbds++;
5369
tx_start_bd->nbd = htole16(nbds);
5370
tx_start_bd->nbytes = htole16(hlen);
5371
5372
bd_prod = TX_BD_NEXT(bd_prod);
5373
5374
/* new transmit BD after the tx_parse_bd */
5375
tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5376
tx_data_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr + hlen));
5377
tx_data_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr + hlen));
5378
tx_data_bd->nbytes = htole16(segs[0].ds_len - hlen);
5379
if (tx_total_pkt_size_bd == NULL) {
5380
tx_total_pkt_size_bd = tx_data_bd;
5381
}
5382
5383
BLOGD(sc, DBG_TX,
5384
"TSO split header size is %d (%x:%x) nbds %d\n",
5385
le16toh(tx_start_bd->nbytes),
5386
le32toh(tx_start_bd->addr_hi),
5387
le32toh(tx_start_bd->addr_lo),
5388
nbds);
5389
}
5390
5391
if (!CHIP_IS_E1x(sc)) {
5392
bxe_set_pbd_lso_e2(m0, &pbd_e2_parsing_data);
5393
} else {
5394
bxe_set_pbd_lso(m0, pbd_e1x);
5395
}
5396
}
5397
5398
if (pbd_e2_parsing_data) {
5399
pbd_e2->parsing_data = htole32(pbd_e2_parsing_data);
5400
}
5401
5402
/* prepare remaining BDs, start tx bd contains first seg/frag */
5403
for (i = 1; i < nsegs ; i++) {
5404
bd_prod = TX_BD_NEXT(bd_prod);
5405
tx_data_bd = &fp->tx_chain[TX_BD(bd_prod)].reg_bd;
5406
tx_data_bd->addr_lo = htole32(U64_LO(segs[i].ds_addr));
5407
tx_data_bd->addr_hi = htole32(U64_HI(segs[i].ds_addr));
5408
tx_data_bd->nbytes = htole16(segs[i].ds_len);
5409
if (tx_total_pkt_size_bd == NULL) {
5410
tx_total_pkt_size_bd = tx_data_bd;
5411
}
5412
total_pkt_size += tx_data_bd->nbytes;
5413
}
5414
5415
BLOGD(sc, DBG_TX, "last bd %p\n", tx_data_bd);
5416
5417
if (tx_total_pkt_size_bd != NULL) {
5418
tx_total_pkt_size_bd->total_pkt_bytes = total_pkt_size;
5419
}
5420
5421
if (__predict_false(sc->debug & DBG_TX)) {
5422
tmp_bd = tx_buf->first_bd;
5423
for (i = 0; i < nbds; i++)
5424
{
5425
if (i == 0) {
5426
BLOGD(sc, DBG_TX,
5427
"TX Strt: %p bd=%d nbd=%d vlan=0x%x "
5428
"bd_flags=0x%x hdr_nbds=%d\n",
5429
tx_start_bd,
5430
tmp_bd,
5431
le16toh(tx_start_bd->nbd),
5432
le16toh(tx_start_bd->vlan_or_ethertype),
5433
tx_start_bd->bd_flags.as_bitfield,
5434
(tx_start_bd->general_data & ETH_TX_START_BD_HDR_NBDS));
5435
} else if (i == 1) {
5436
if (pbd_e1x) {
5437
BLOGD(sc, DBG_TX,
5438
"-> Prse: %p bd=%d global=0x%x ip_hlen_w=%u "
5439
"ip_id=%u lso_mss=%u tcp_flags=0x%x csum=0x%x "
5440
"tcp_seq=%u total_hlen_w=%u\n",
5441
pbd_e1x,
5442
tmp_bd,
5443
pbd_e1x->global_data,
5444
pbd_e1x->ip_hlen_w,
5445
pbd_e1x->ip_id,
5446
pbd_e1x->lso_mss,
5447
pbd_e1x->tcp_flags,
5448
pbd_e1x->tcp_pseudo_csum,
5449
pbd_e1x->tcp_send_seq,
5450
le16toh(pbd_e1x->total_hlen_w));
5451
} else { /* if (pbd_e2) */
5452
BLOGD(sc, DBG_TX,
5453
"-> Parse: %p bd=%d dst=%02x:%02x:%02x "
5454
"src=%02x:%02x:%02x parsing_data=0x%x\n",
5455
pbd_e2,
5456
tmp_bd,
5457
pbd_e2->data.mac_addr.dst_hi,
5458
pbd_e2->data.mac_addr.dst_mid,
5459
pbd_e2->data.mac_addr.dst_lo,
5460
pbd_e2->data.mac_addr.src_hi,
5461
pbd_e2->data.mac_addr.src_mid,
5462
pbd_e2->data.mac_addr.src_lo,
5463
pbd_e2->parsing_data);
5464
}
5465
}
5466
5467
if (i != 1) { /* skip parse db as it doesn't hold data */
5468
tx_data_bd = &fp->tx_chain[TX_BD(tmp_bd)].reg_bd;
5469
BLOGD(sc, DBG_TX,
5470
"-> Frag: %p bd=%d nbytes=%d hi=0x%x lo: 0x%x\n",
5471
tx_data_bd,
5472
tmp_bd,
5473
le16toh(tx_data_bd->nbytes),
5474
le32toh(tx_data_bd->addr_hi),
5475
le32toh(tx_data_bd->addr_lo));
5476
}
5477
5478
tmp_bd = TX_BD_NEXT(tmp_bd);
5479
}
5480
}
5481
5482
BLOGD(sc, DBG_TX, "doorbell: nbds=%d bd=%u\n", nbds, bd_prod);
5483
5484
/* update TX BD producer index value for next TX */
5485
bd_prod = TX_BD_NEXT(bd_prod);
5486
5487
/*
5488
* If the chain of tx_bd's describing this frame is adjacent to or spans
5489
* an eth_tx_next_bd element then we need to increment the nbds value.
5490
*/
5491
if (TX_BD_IDX(bd_prod) < nbds) {
5492
nbds++;
5493
}
5494
5495
/* don't allow reordering of writes for nbd and packets */
5496
mb();
5497
5498
fp->tx_db.data.prod += nbds;
5499
5500
/* producer points to the next free tx_bd at this point */
5501
fp->tx_pkt_prod++;
5502
fp->tx_bd_prod = bd_prod;
5503
5504
DOORBELL(sc, fp->index, fp->tx_db.raw);
5505
5506
fp->eth_q_stats.tx_pkts++;
5507
5508
/* Prevent speculative reads from getting ahead of the status block. */
5509
bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle,
5510
0, 0, BUS_SPACE_BARRIER_READ);
5511
5512
/* Prevent speculative reads from getting ahead of the doorbell. */
5513
bus_space_barrier(sc->bar[BAR2].tag, sc->bar[BAR2].handle,
5514
0, 0, BUS_SPACE_BARRIER_READ);
5515
5516
return (0);
5517
}
5518
5519
static void
5520
bxe_tx_start_locked(struct bxe_softc *sc,
5521
if_t ifp,
5522
struct bxe_fastpath *fp)
5523
{
5524
struct mbuf *m = NULL;
5525
int tx_count = 0;
5526
uint16_t tx_bd_avail;
5527
5528
BXE_FP_TX_LOCK_ASSERT(fp);
5529
5530
/* keep adding entries while there are frames to send */
5531
while (!if_sendq_empty(ifp)) {
5532
5533
/*
5534
* check for any frames to send
5535
* dequeue can still be NULL even if queue is not empty
5536
*/
5537
m = if_dequeue(ifp);
5538
if (__predict_false(m == NULL)) {
5539
break;
5540
}
5541
5542
/* the mbuf now belongs to us */
5543
fp->eth_q_stats.mbuf_alloc_tx++;
5544
5545
/*
5546
* Put the frame into the transmit ring. If we don't have room,
5547
* place the mbuf back at the head of the TX queue, set the
5548
* OACTIVE flag, and wait for the NIC to drain the chain.
5549
*/
5550
if (__predict_false(bxe_tx_encap(fp, &m))) {
5551
fp->eth_q_stats.tx_encap_failures++;
5552
if (m != NULL) {
5553
/* mark the TX queue as full and return the frame */
5554
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5555
if_sendq_prepend(ifp, m);
5556
fp->eth_q_stats.mbuf_alloc_tx--;
5557
fp->eth_q_stats.tx_queue_xoff++;
5558
}
5559
5560
/* stop looking for more work */
5561
break;
5562
}
5563
5564
/* the frame was enqueued successfully */
5565
tx_count++;
5566
5567
/* send a copy of the frame to any BPF listeners. */
5568
ether_bpf_mtap_if(ifp, m);
5569
5570
tx_bd_avail = bxe_tx_avail(sc, fp);
5571
5572
/* handle any completions if we're running low */
5573
if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5574
/* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5575
bxe_txeof(sc, fp);
5576
if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5577
break;
5578
}
5579
}
5580
}
5581
5582
/* all TX packets were dequeued and/or the tx ring is full */
5583
if (tx_count > 0) {
5584
/* reset the TX watchdog timeout timer */
5585
fp->watchdog_timer = BXE_TX_TIMEOUT;
5586
}
5587
}
5588
5589
/* Legacy (non-RSS) dispatch routine */
5590
static void
5591
bxe_tx_start(if_t ifp)
5592
{
5593
struct bxe_softc *sc;
5594
struct bxe_fastpath *fp;
5595
5596
sc = if_getsoftc(ifp);
5597
5598
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5599
BLOGW(sc, "Interface not running, ignoring transmit request\n");
5600
return;
5601
}
5602
5603
if (!sc->link_vars.link_up) {
5604
BLOGW(sc, "Interface link is down, ignoring transmit request\n");
5605
return;
5606
}
5607
5608
fp = &sc->fp[0];
5609
5610
if (if_getdrvflags(ifp) & IFF_DRV_OACTIVE) {
5611
fp->eth_q_stats.tx_queue_full_return++;
5612
return;
5613
}
5614
5615
BXE_FP_TX_LOCK(fp);
5616
bxe_tx_start_locked(sc, ifp, fp);
5617
BXE_FP_TX_UNLOCK(fp);
5618
}
5619
5620
static int
5621
bxe_tx_mq_start_locked(struct bxe_softc *sc,
5622
if_t ifp,
5623
struct bxe_fastpath *fp,
5624
struct mbuf *m)
5625
{
5626
struct buf_ring *tx_br = fp->tx_br;
5627
struct mbuf *next;
5628
int depth, rc, tx_count;
5629
uint16_t tx_bd_avail;
5630
5631
rc = tx_count = 0;
5632
5633
BXE_FP_TX_LOCK_ASSERT(fp);
5634
5635
if (sc->state != BXE_STATE_OPEN) {
5636
fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5637
return ENETDOWN;
5638
}
5639
5640
if (!tx_br) {
5641
BLOGE(sc, "Multiqueue TX and no buf_ring!\n");
5642
return (EINVAL);
5643
}
5644
5645
if (m != NULL) {
5646
rc = drbr_enqueue(ifp, tx_br, m);
5647
if (rc != 0) {
5648
fp->eth_q_stats.tx_soft_errors++;
5649
goto bxe_tx_mq_start_locked_exit;
5650
}
5651
}
5652
5653
if (!sc->link_vars.link_up || !(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
5654
fp->eth_q_stats.tx_request_link_down_failures++;
5655
goto bxe_tx_mq_start_locked_exit;
5656
}
5657
5658
/* fetch the depth of the driver queue */
5659
depth = drbr_inuse(ifp, tx_br);
5660
if (depth > fp->eth_q_stats.tx_max_drbr_queue_depth) {
5661
fp->eth_q_stats.tx_max_drbr_queue_depth = depth;
5662
}
5663
5664
/* keep adding entries while there are frames to send */
5665
while ((next = drbr_peek(ifp, tx_br)) != NULL) {
5666
/* handle any completions if we're running low */
5667
tx_bd_avail = bxe_tx_avail(sc, fp);
5668
if (tx_bd_avail < BXE_TX_CLEANUP_THRESHOLD) {
5669
/* bxe_txeof will set IFF_DRV_OACTIVE appropriately */
5670
bxe_txeof(sc, fp);
5671
tx_bd_avail = bxe_tx_avail(sc, fp);
5672
if (tx_bd_avail < (BXE_TSO_MAX_SEGMENTS + 1)) {
5673
fp->eth_q_stats.bd_avail_too_less_failures++;
5674
m_freem(next);
5675
drbr_advance(ifp, tx_br);
5676
rc = ENOBUFS;
5677
break;
5678
}
5679
}
5680
5681
/* the mbuf now belongs to us */
5682
fp->eth_q_stats.mbuf_alloc_tx++;
5683
5684
/*
5685
* Put the frame into the transmit ring. If we don't have room,
5686
* place the mbuf back at the head of the TX queue, set the
5687
* OACTIVE flag, and wait for the NIC to drain the chain.
5688
*/
5689
rc = bxe_tx_encap(fp, &next);
5690
if (__predict_false(rc != 0)) {
5691
fp->eth_q_stats.tx_encap_failures++;
5692
if (next != NULL) {
5693
/* mark the TX queue as full and save the frame */
5694
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
5695
drbr_putback(ifp, tx_br, next);
5696
fp->eth_q_stats.mbuf_alloc_tx--;
5697
fp->eth_q_stats.tx_frames_deferred++;
5698
} else
5699
drbr_advance(ifp, tx_br);
5700
5701
/* stop looking for more work */
5702
break;
5703
}
5704
5705
/* the transmit frame was enqueued successfully */
5706
tx_count++;
5707
5708
/* send a copy of the frame to any BPF listeners */
5709
ether_bpf_mtap_if(ifp, next);
5710
5711
drbr_advance(ifp, tx_br);
5712
}
5713
5714
/* all TX packets were dequeued and/or the tx ring is full */
5715
if (tx_count > 0) {
5716
/* reset the TX watchdog timeout timer */
5717
fp->watchdog_timer = BXE_TX_TIMEOUT;
5718
}
5719
5720
bxe_tx_mq_start_locked_exit:
5721
/* If we didn't drain the drbr, enqueue a task in the future to do it. */
5722
if (!drbr_empty(ifp, tx_br)) {
5723
fp->eth_q_stats.tx_mq_not_empty++;
5724
taskqueue_enqueue_timeout(fp->tq, &fp->tx_timeout_task, 1);
5725
}
5726
5727
return (rc);
5728
}
5729
5730
static void
5731
bxe_tx_mq_start_deferred(void *arg,
5732
int pending)
5733
{
5734
struct bxe_fastpath *fp = (struct bxe_fastpath *)arg;
5735
struct bxe_softc *sc = fp->sc;
5736
if_t ifp = sc->ifp;
5737
5738
BXE_FP_TX_LOCK(fp);
5739
bxe_tx_mq_start_locked(sc, ifp, fp, NULL);
5740
BXE_FP_TX_UNLOCK(fp);
5741
}
5742
5743
/* Multiqueue (TSS) dispatch routine. */
5744
static int
5745
bxe_tx_mq_start(if_t ifp,
5746
struct mbuf *m)
5747
{
5748
struct bxe_softc *sc = if_getsoftc(ifp);
5749
struct bxe_fastpath *fp;
5750
int fp_index, rc;
5751
5752
fp_index = 0; /* default is the first queue */
5753
5754
/* check if flowid is set */
5755
5756
if (BXE_VALID_FLOWID(m))
5757
fp_index = (m->m_pkthdr.flowid % sc->num_queues);
5758
5759
fp = &sc->fp[fp_index];
5760
5761
if (sc->state != BXE_STATE_OPEN) {
5762
fp->eth_q_stats.bxe_tx_mq_sc_state_failures++;
5763
return ENETDOWN;
5764
}
5765
5766
if (BXE_FP_TX_TRYLOCK(fp)) {
5767
rc = bxe_tx_mq_start_locked(sc, ifp, fp, m);
5768
BXE_FP_TX_UNLOCK(fp);
5769
} else {
5770
rc = drbr_enqueue(ifp, fp->tx_br, m);
5771
taskqueue_enqueue(fp->tq, &fp->tx_task);
5772
}
5773
5774
return (rc);
5775
}
5776
5777
static void
5778
bxe_mq_flush(if_t ifp)
5779
{
5780
struct bxe_softc *sc = if_getsoftc(ifp);
5781
struct bxe_fastpath *fp;
5782
struct mbuf *m;
5783
int i;
5784
5785
for (i = 0; i < sc->num_queues; i++) {
5786
fp = &sc->fp[i];
5787
5788
if (fp->state != BXE_FP_STATE_IRQ) {
5789
BLOGD(sc, DBG_LOAD, "Not clearing fp[%02d] buf_ring (state=%d)\n",
5790
fp->index, fp->state);
5791
continue;
5792
}
5793
5794
if (fp->tx_br != NULL) {
5795
BLOGD(sc, DBG_LOAD, "Clearing fp[%02d] buf_ring\n", fp->index);
5796
BXE_FP_TX_LOCK(fp);
5797
while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL) {
5798
m_freem(m);
5799
}
5800
BXE_FP_TX_UNLOCK(fp);
5801
}
5802
}
5803
5804
if_qflush(ifp);
5805
}
5806
5807
static uint16_t
5808
bxe_cid_ilt_lines(struct bxe_softc *sc)
5809
{
5810
if (IS_SRIOV(sc)) {
5811
return ((BXE_FIRST_VF_CID + BXE_VF_CIDS) / ILT_PAGE_CIDS);
5812
}
5813
return (L2_ILT_LINES(sc));
5814
}
5815
5816
static void
5817
bxe_ilt_set_info(struct bxe_softc *sc)
5818
{
5819
struct ilt_client_info *ilt_client;
5820
struct ecore_ilt *ilt = sc->ilt;
5821
uint16_t line = 0;
5822
5823
ilt->start_line = FUNC_ILT_BASE(SC_FUNC(sc));
5824
BLOGD(sc, DBG_LOAD, "ilt starts at line %d\n", ilt->start_line);
5825
5826
/* CDU */
5827
ilt_client = &ilt->clients[ILT_CLIENT_CDU];
5828
ilt_client->client_num = ILT_CLIENT_CDU;
5829
ilt_client->page_size = CDU_ILT_PAGE_SZ;
5830
ilt_client->flags = ILT_CLIENT_SKIP_MEM;
5831
ilt_client->start = line;
5832
line += bxe_cid_ilt_lines(sc);
5833
5834
if (CNIC_SUPPORT(sc)) {
5835
line += CNIC_ILT_LINES;
5836
}
5837
5838
ilt_client->end = (line - 1);
5839
5840
BLOGD(sc, DBG_LOAD,
5841
"ilt client[CDU]: start %d, end %d, "
5842
"psz 0x%x, flags 0x%x, hw psz %d\n",
5843
ilt_client->start, ilt_client->end,
5844
ilt_client->page_size,
5845
ilt_client->flags,
5846
ilog2(ilt_client->page_size >> 12));
5847
5848
/* QM */
5849
if (QM_INIT(sc->qm_cid_count)) {
5850
ilt_client = &ilt->clients[ILT_CLIENT_QM];
5851
ilt_client->client_num = ILT_CLIENT_QM;
5852
ilt_client->page_size = QM_ILT_PAGE_SZ;
5853
ilt_client->flags = 0;
5854
ilt_client->start = line;
5855
5856
/* 4 bytes for each cid */
5857
line += DIV_ROUND_UP(sc->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
5858
QM_ILT_PAGE_SZ);
5859
5860
ilt_client->end = (line - 1);
5861
5862
BLOGD(sc, DBG_LOAD,
5863
"ilt client[QM]: start %d, end %d, "
5864
"psz 0x%x, flags 0x%x, hw psz %d\n",
5865
ilt_client->start, ilt_client->end,
5866
ilt_client->page_size, ilt_client->flags,
5867
ilog2(ilt_client->page_size >> 12));
5868
}
5869
5870
if (CNIC_SUPPORT(sc)) {
5871
/* SRC */
5872
ilt_client = &ilt->clients[ILT_CLIENT_SRC];
5873
ilt_client->client_num = ILT_CLIENT_SRC;
5874
ilt_client->page_size = SRC_ILT_PAGE_SZ;
5875
ilt_client->flags = 0;
5876
ilt_client->start = line;
5877
line += SRC_ILT_LINES;
5878
ilt_client->end = (line - 1);
5879
5880
BLOGD(sc, DBG_LOAD,
5881
"ilt client[SRC]: start %d, end %d, "
5882
"psz 0x%x, flags 0x%x, hw psz %d\n",
5883
ilt_client->start, ilt_client->end,
5884
ilt_client->page_size, ilt_client->flags,
5885
ilog2(ilt_client->page_size >> 12));
5886
5887
/* TM */
5888
ilt_client = &ilt->clients[ILT_CLIENT_TM];
5889
ilt_client->client_num = ILT_CLIENT_TM;
5890
ilt_client->page_size = TM_ILT_PAGE_SZ;
5891
ilt_client->flags = 0;
5892
ilt_client->start = line;
5893
line += TM_ILT_LINES;
5894
ilt_client->end = (line - 1);
5895
5896
BLOGD(sc, DBG_LOAD,
5897
"ilt client[TM]: start %d, end %d, "
5898
"psz 0x%x, flags 0x%x, hw psz %d\n",
5899
ilt_client->start, ilt_client->end,
5900
ilt_client->page_size, ilt_client->flags,
5901
ilog2(ilt_client->page_size >> 12));
5902
}
5903
5904
KASSERT((line <= ILT_MAX_LINES), ("Invalid number of ILT lines!"));
5905
}
5906
5907
static void
5908
bxe_set_fp_rx_buf_size(struct bxe_softc *sc)
5909
{
5910
int i;
5911
uint32_t rx_buf_size;
5912
5913
rx_buf_size = (IP_HEADER_ALIGNMENT_PADDING + ETH_OVERHEAD + sc->mtu);
5914
5915
for (i = 0; i < sc->num_queues; i++) {
5916
if(rx_buf_size <= MCLBYTES){
5917
sc->fp[i].rx_buf_size = rx_buf_size;
5918
sc->fp[i].mbuf_alloc_size = MCLBYTES;
5919
}else if (rx_buf_size <= MJUMPAGESIZE){
5920
sc->fp[i].rx_buf_size = rx_buf_size;
5921
sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5922
}else if (rx_buf_size <= (MJUMPAGESIZE + MCLBYTES)){
5923
sc->fp[i].rx_buf_size = MCLBYTES;
5924
sc->fp[i].mbuf_alloc_size = MCLBYTES;
5925
}else if (rx_buf_size <= (2 * MJUMPAGESIZE)){
5926
sc->fp[i].rx_buf_size = MJUMPAGESIZE;
5927
sc->fp[i].mbuf_alloc_size = MJUMPAGESIZE;
5928
}else {
5929
sc->fp[i].rx_buf_size = MCLBYTES;
5930
sc->fp[i].mbuf_alloc_size = MCLBYTES;
5931
}
5932
}
5933
}
5934
5935
static int
5936
bxe_alloc_ilt_mem(struct bxe_softc *sc)
5937
{
5938
int rc = 0;
5939
5940
if ((sc->ilt =
5941
(struct ecore_ilt *)malloc(sizeof(struct ecore_ilt),
5942
M_BXE_ILT,
5943
(M_NOWAIT | M_ZERO))) == NULL) {
5944
rc = 1;
5945
}
5946
5947
return (rc);
5948
}
5949
5950
static int
5951
bxe_alloc_ilt_lines_mem(struct bxe_softc *sc)
5952
{
5953
int rc = 0;
5954
5955
if ((sc->ilt->lines =
5956
(struct ilt_line *)malloc((sizeof(struct ilt_line) * ILT_MAX_LINES),
5957
M_BXE_ILT,
5958
(M_NOWAIT | M_ZERO))) == NULL) {
5959
rc = 1;
5960
}
5961
5962
return (rc);
5963
}
5964
5965
static void
5966
bxe_free_ilt_mem(struct bxe_softc *sc)
5967
{
5968
if (sc->ilt != NULL) {
5969
free(sc->ilt, M_BXE_ILT);
5970
sc->ilt = NULL;
5971
}
5972
}
5973
5974
static void
5975
bxe_free_ilt_lines_mem(struct bxe_softc *sc)
5976
{
5977
if (sc->ilt->lines != NULL) {
5978
free(sc->ilt->lines, M_BXE_ILT);
5979
sc->ilt->lines = NULL;
5980
}
5981
}
5982
5983
static void
5984
bxe_free_mem(struct bxe_softc *sc)
5985
{
5986
int i;
5987
5988
for (i = 0; i < L2_ILT_LINES(sc); i++) {
5989
bxe_dma_free(sc, &sc->context[i].vcxt_dma);
5990
sc->context[i].vcxt = NULL;
5991
sc->context[i].size = 0;
5992
}
5993
5994
ecore_ilt_mem_op(sc, ILT_MEMOP_FREE);
5995
5996
bxe_free_ilt_lines_mem(sc);
5997
5998
}
5999
6000
static int
6001
bxe_alloc_mem(struct bxe_softc *sc)
6002
{
6003
6004
int context_size;
6005
int allocated;
6006
int i;
6007
6008
/*
6009
* Allocate memory for CDU context:
6010
* This memory is allocated separately and not in the generic ILT
6011
* functions because CDU differs in few aspects:
6012
* 1. There can be multiple entities allocating memory for context -
6013
* regular L2, CNIC, and SRIOV drivers. Each separately controls
6014
* its own ILT lines.
6015
* 2. Since CDU page-size is not a single 4KB page (which is the case
6016
* for the other ILT clients), to be efficient we want to support
6017
* allocation of sub-page-size in the last entry.
6018
* 3. Context pointers are used by the driver to pass to FW / update
6019
* the context (for the other ILT clients the pointers are used just to
6020
* free the memory during unload).
6021
*/
6022
context_size = (sizeof(union cdu_context) * BXE_L2_CID_COUNT(sc));
6023
for (i = 0, allocated = 0; allocated < context_size; i++) {
6024
sc->context[i].size = min(CDU_ILT_PAGE_SZ,
6025
(context_size - allocated));
6026
6027
if (bxe_dma_alloc(sc, sc->context[i].size,
6028
&sc->context[i].vcxt_dma,
6029
"cdu context") != 0) {
6030
bxe_free_mem(sc);
6031
return (-1);
6032
}
6033
6034
sc->context[i].vcxt =
6035
(union cdu_context *)sc->context[i].vcxt_dma.vaddr;
6036
6037
allocated += sc->context[i].size;
6038
}
6039
6040
bxe_alloc_ilt_lines_mem(sc);
6041
6042
BLOGD(sc, DBG_LOAD, "ilt=%p start_line=%u lines=%p\n",
6043
sc->ilt, sc->ilt->start_line, sc->ilt->lines);
6044
{
6045
for (i = 0; i < 4; i++) {
6046
BLOGD(sc, DBG_LOAD,
6047
"c%d page_size=%u start=%u end=%u num=%u flags=0x%x\n",
6048
i,
6049
sc->ilt->clients[i].page_size,
6050
sc->ilt->clients[i].start,
6051
sc->ilt->clients[i].end,
6052
sc->ilt->clients[i].client_num,
6053
sc->ilt->clients[i].flags);
6054
}
6055
}
6056
if (ecore_ilt_mem_op(sc, ILT_MEMOP_ALLOC)) {
6057
BLOGE(sc, "ecore_ilt_mem_op ILT_MEMOP_ALLOC failed\n");
6058
bxe_free_mem(sc);
6059
return (-1);
6060
}
6061
6062
return (0);
6063
}
6064
6065
static void
6066
bxe_free_rx_bd_chain(struct bxe_fastpath *fp)
6067
{
6068
int i;
6069
6070
if (fp->rx_mbuf_tag == NULL) {
6071
return;
6072
}
6073
6074
/* free all mbufs and unload all maps */
6075
for (i = 0; i < RX_BD_TOTAL; i++) {
6076
if (fp->rx_mbuf_chain[i].m_map != NULL) {
6077
bus_dmamap_sync(fp->rx_mbuf_tag,
6078
fp->rx_mbuf_chain[i].m_map,
6079
BUS_DMASYNC_POSTREAD);
6080
bus_dmamap_unload(fp->rx_mbuf_tag,
6081
fp->rx_mbuf_chain[i].m_map);
6082
}
6083
6084
if (fp->rx_mbuf_chain[i].m != NULL) {
6085
m_freem(fp->rx_mbuf_chain[i].m);
6086
fp->rx_mbuf_chain[i].m = NULL;
6087
fp->eth_q_stats.mbuf_alloc_rx--;
6088
}
6089
}
6090
}
6091
6092
static void
6093
bxe_free_tpa_pool(struct bxe_fastpath *fp)
6094
{
6095
struct bxe_softc *sc;
6096
int i, max_agg_queues;
6097
6098
sc = fp->sc;
6099
6100
if (fp->rx_mbuf_tag == NULL) {
6101
return;
6102
}
6103
6104
max_agg_queues = MAX_AGG_QS(sc);
6105
6106
/* release all mbufs and unload all DMA maps in the TPA pool */
6107
for (i = 0; i < max_agg_queues; i++) {
6108
if (fp->rx_tpa_info[i].bd.m_map != NULL) {
6109
bus_dmamap_sync(fp->rx_mbuf_tag,
6110
fp->rx_tpa_info[i].bd.m_map,
6111
BUS_DMASYNC_POSTREAD);
6112
bus_dmamap_unload(fp->rx_mbuf_tag,
6113
fp->rx_tpa_info[i].bd.m_map);
6114
}
6115
6116
if (fp->rx_tpa_info[i].bd.m != NULL) {
6117
m_freem(fp->rx_tpa_info[i].bd.m);
6118
fp->rx_tpa_info[i].bd.m = NULL;
6119
fp->eth_q_stats.mbuf_alloc_tpa--;
6120
}
6121
}
6122
}
6123
6124
static void
6125
bxe_free_sge_chain(struct bxe_fastpath *fp)
6126
{
6127
int i;
6128
6129
if (fp->rx_sge_mbuf_tag == NULL) {
6130
return;
6131
}
6132
6133
/* rree all mbufs and unload all maps */
6134
for (i = 0; i < RX_SGE_TOTAL; i++) {
6135
if (fp->rx_sge_mbuf_chain[i].m_map != NULL) {
6136
bus_dmamap_sync(fp->rx_sge_mbuf_tag,
6137
fp->rx_sge_mbuf_chain[i].m_map,
6138
BUS_DMASYNC_POSTREAD);
6139
bus_dmamap_unload(fp->rx_sge_mbuf_tag,
6140
fp->rx_sge_mbuf_chain[i].m_map);
6141
}
6142
6143
if (fp->rx_sge_mbuf_chain[i].m != NULL) {
6144
m_freem(fp->rx_sge_mbuf_chain[i].m);
6145
fp->rx_sge_mbuf_chain[i].m = NULL;
6146
fp->eth_q_stats.mbuf_alloc_sge--;
6147
}
6148
}
6149
}
6150
6151
static void
6152
bxe_free_fp_buffers(struct bxe_softc *sc)
6153
{
6154
struct bxe_fastpath *fp;
6155
int i;
6156
6157
for (i = 0; i < sc->num_queues; i++) {
6158
fp = &sc->fp[i];
6159
6160
if (fp->tx_br != NULL) {
6161
/* just in case bxe_mq_flush() wasn't called */
6162
if (mtx_initialized(&fp->tx_mtx)) {
6163
struct mbuf *m;
6164
6165
BXE_FP_TX_LOCK(fp);
6166
while ((m = buf_ring_dequeue_sc(fp->tx_br)) != NULL)
6167
m_freem(m);
6168
BXE_FP_TX_UNLOCK(fp);
6169
}
6170
}
6171
6172
/* free all RX buffers */
6173
bxe_free_rx_bd_chain(fp);
6174
bxe_free_tpa_pool(fp);
6175
bxe_free_sge_chain(fp);
6176
6177
if (fp->eth_q_stats.mbuf_alloc_rx != 0) {
6178
BLOGE(sc, "failed to claim all rx mbufs (%d left)\n",
6179
fp->eth_q_stats.mbuf_alloc_rx);
6180
}
6181
6182
if (fp->eth_q_stats.mbuf_alloc_sge != 0) {
6183
BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6184
fp->eth_q_stats.mbuf_alloc_sge);
6185
}
6186
6187
if (fp->eth_q_stats.mbuf_alloc_tpa != 0) {
6188
BLOGE(sc, "failed to claim all sge mbufs (%d left)\n",
6189
fp->eth_q_stats.mbuf_alloc_tpa);
6190
}
6191
6192
if (fp->eth_q_stats.mbuf_alloc_tx != 0) {
6193
BLOGE(sc, "failed to release tx mbufs (%d left)\n",
6194
fp->eth_q_stats.mbuf_alloc_tx);
6195
}
6196
6197
/* XXX verify all mbufs were reclaimed */
6198
}
6199
}
6200
6201
static int
6202
bxe_alloc_rx_bd_mbuf(struct bxe_fastpath *fp,
6203
uint16_t prev_index,
6204
uint16_t index)
6205
{
6206
struct bxe_sw_rx_bd *rx_buf;
6207
struct eth_rx_bd *rx_bd;
6208
bus_dma_segment_t segs[1];
6209
bus_dmamap_t map;
6210
struct mbuf *m;
6211
int nsegs, rc;
6212
6213
rc = 0;
6214
6215
/* allocate the new RX BD mbuf */
6216
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6217
if (__predict_false(m == NULL)) {
6218
fp->eth_q_stats.mbuf_rx_bd_alloc_failed++;
6219
return (ENOBUFS);
6220
}
6221
6222
fp->eth_q_stats.mbuf_alloc_rx++;
6223
6224
/* initialize the mbuf buffer length */
6225
m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6226
6227
/* map the mbuf into non-paged pool */
6228
rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6229
fp->rx_mbuf_spare_map,
6230
m, segs, &nsegs, BUS_DMA_NOWAIT);
6231
if (__predict_false(rc != 0)) {
6232
fp->eth_q_stats.mbuf_rx_bd_mapping_failed++;
6233
m_freem(m);
6234
fp->eth_q_stats.mbuf_alloc_rx--;
6235
return (rc);
6236
}
6237
6238
/* all mbufs must map to a single segment */
6239
KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6240
6241
/* release any existing RX BD mbuf mappings */
6242
6243
if (prev_index != index) {
6244
rx_buf = &fp->rx_mbuf_chain[prev_index];
6245
6246
if (rx_buf->m_map != NULL) {
6247
bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6248
BUS_DMASYNC_POSTREAD);
6249
bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6250
}
6251
6252
/*
6253
* We only get here from bxe_rxeof() when the maximum number
6254
* of rx buffers is less than RX_BD_USABLE. bxe_rxeof() already
6255
* holds the mbuf in the prev_index so it's OK to NULL it out
6256
* here without concern of a memory leak.
6257
*/
6258
fp->rx_mbuf_chain[prev_index].m = NULL;
6259
}
6260
6261
rx_buf = &fp->rx_mbuf_chain[index];
6262
6263
if (rx_buf->m_map != NULL) {
6264
bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6265
BUS_DMASYNC_POSTREAD);
6266
bus_dmamap_unload(fp->rx_mbuf_tag, rx_buf->m_map);
6267
}
6268
6269
/* save the mbuf and mapping info for a future packet */
6270
map = (prev_index != index) ?
6271
fp->rx_mbuf_chain[prev_index].m_map : rx_buf->m_map;
6272
rx_buf->m_map = fp->rx_mbuf_spare_map;
6273
fp->rx_mbuf_spare_map = map;
6274
bus_dmamap_sync(fp->rx_mbuf_tag, rx_buf->m_map,
6275
BUS_DMASYNC_PREREAD);
6276
rx_buf->m = m;
6277
6278
rx_bd = &fp->rx_chain[index];
6279
rx_bd->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6280
rx_bd->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6281
6282
return (rc);
6283
}
6284
6285
static int
6286
bxe_alloc_rx_tpa_mbuf(struct bxe_fastpath *fp,
6287
int queue)
6288
{
6289
struct bxe_sw_tpa_info *tpa_info = &fp->rx_tpa_info[queue];
6290
bus_dma_segment_t segs[1];
6291
bus_dmamap_t map;
6292
struct mbuf *m;
6293
int nsegs;
6294
int rc = 0;
6295
6296
/* allocate the new TPA mbuf */
6297
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, fp->mbuf_alloc_size);
6298
if (__predict_false(m == NULL)) {
6299
fp->eth_q_stats.mbuf_rx_tpa_alloc_failed++;
6300
return (ENOBUFS);
6301
}
6302
6303
fp->eth_q_stats.mbuf_alloc_tpa++;
6304
6305
/* initialize the mbuf buffer length */
6306
m->m_pkthdr.len = m->m_len = fp->rx_buf_size;
6307
6308
/* map the mbuf into non-paged pool */
6309
rc = bus_dmamap_load_mbuf_sg(fp->rx_mbuf_tag,
6310
fp->rx_tpa_info_mbuf_spare_map,
6311
m, segs, &nsegs, BUS_DMA_NOWAIT);
6312
if (__predict_false(rc != 0)) {
6313
fp->eth_q_stats.mbuf_rx_tpa_mapping_failed++;
6314
m_free(m);
6315
fp->eth_q_stats.mbuf_alloc_tpa--;
6316
return (rc);
6317
}
6318
6319
/* all mbufs must map to a single segment */
6320
KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6321
6322
/* release any existing TPA mbuf mapping */
6323
if (tpa_info->bd.m_map != NULL) {
6324
bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6325
BUS_DMASYNC_POSTREAD);
6326
bus_dmamap_unload(fp->rx_mbuf_tag, tpa_info->bd.m_map);
6327
}
6328
6329
/* save the mbuf and mapping info for the TPA mbuf */
6330
map = tpa_info->bd.m_map;
6331
tpa_info->bd.m_map = fp->rx_tpa_info_mbuf_spare_map;
6332
fp->rx_tpa_info_mbuf_spare_map = map;
6333
bus_dmamap_sync(fp->rx_mbuf_tag, tpa_info->bd.m_map,
6334
BUS_DMASYNC_PREREAD);
6335
tpa_info->bd.m = m;
6336
tpa_info->seg = segs[0];
6337
6338
return (rc);
6339
}
6340
6341
/*
6342
* Allocate an mbuf and assign it to the receive scatter gather chain. The
6343
* caller must take care to save a copy of the existing mbuf in the SG mbuf
6344
* chain.
6345
*/
6346
static int
6347
bxe_alloc_rx_sge_mbuf(struct bxe_fastpath *fp,
6348
uint16_t index)
6349
{
6350
struct bxe_sw_rx_bd *sge_buf;
6351
struct eth_rx_sge *sge;
6352
bus_dma_segment_t segs[1];
6353
bus_dmamap_t map;
6354
struct mbuf *m;
6355
int nsegs;
6356
int rc = 0;
6357
6358
/* allocate a new SGE mbuf */
6359
m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, SGE_PAGE_SIZE);
6360
if (__predict_false(m == NULL)) {
6361
fp->eth_q_stats.mbuf_rx_sge_alloc_failed++;
6362
return (ENOMEM);
6363
}
6364
6365
fp->eth_q_stats.mbuf_alloc_sge++;
6366
6367
/* initialize the mbuf buffer length */
6368
m->m_pkthdr.len = m->m_len = SGE_PAGE_SIZE;
6369
6370
/* map the SGE mbuf into non-paged pool */
6371
rc = bus_dmamap_load_mbuf_sg(fp->rx_sge_mbuf_tag,
6372
fp->rx_sge_mbuf_spare_map,
6373
m, segs, &nsegs, BUS_DMA_NOWAIT);
6374
if (__predict_false(rc != 0)) {
6375
fp->eth_q_stats.mbuf_rx_sge_mapping_failed++;
6376
m_freem(m);
6377
fp->eth_q_stats.mbuf_alloc_sge--;
6378
return (rc);
6379
}
6380
6381
/* all mbufs must map to a single segment */
6382
KASSERT((nsegs == 1), ("Too many segments, %d returned!", nsegs));
6383
6384
sge_buf = &fp->rx_sge_mbuf_chain[index];
6385
6386
/* release any existing SGE mbuf mapping */
6387
if (sge_buf->m_map != NULL) {
6388
bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6389
BUS_DMASYNC_POSTREAD);
6390
bus_dmamap_unload(fp->rx_sge_mbuf_tag, sge_buf->m_map);
6391
}
6392
6393
/* save the mbuf and mapping info for a future packet */
6394
map = sge_buf->m_map;
6395
sge_buf->m_map = fp->rx_sge_mbuf_spare_map;
6396
fp->rx_sge_mbuf_spare_map = map;
6397
bus_dmamap_sync(fp->rx_sge_mbuf_tag, sge_buf->m_map,
6398
BUS_DMASYNC_PREREAD);
6399
sge_buf->m = m;
6400
6401
sge = &fp->rx_sge_chain[index];
6402
sge->addr_hi = htole32(U64_HI(segs[0].ds_addr));
6403
sge->addr_lo = htole32(U64_LO(segs[0].ds_addr));
6404
6405
return (rc);
6406
}
6407
6408
static __noinline int
6409
bxe_alloc_fp_buffers(struct bxe_softc *sc)
6410
{
6411
struct bxe_fastpath *fp;
6412
int i, j, rc = 0;
6413
int ring_prod, cqe_ring_prod;
6414
int max_agg_queues;
6415
6416
for (i = 0; i < sc->num_queues; i++) {
6417
fp = &sc->fp[i];
6418
6419
ring_prod = cqe_ring_prod = 0;
6420
fp->rx_bd_cons = 0;
6421
fp->rx_cq_cons = 0;
6422
6423
/* allocate buffers for the RX BDs in RX BD chain */
6424
for (j = 0; j < sc->max_rx_bufs; j++) {
6425
rc = bxe_alloc_rx_bd_mbuf(fp, ring_prod, ring_prod);
6426
if (rc != 0) {
6427
BLOGE(sc, "mbuf alloc fail for fp[%02d] rx chain (%d)\n",
6428
i, rc);
6429
goto bxe_alloc_fp_buffers_error;
6430
}
6431
6432
ring_prod = RX_BD_NEXT(ring_prod);
6433
cqe_ring_prod = RCQ_NEXT(cqe_ring_prod);
6434
}
6435
6436
fp->rx_bd_prod = ring_prod;
6437
fp->rx_cq_prod = cqe_ring_prod;
6438
fp->eth_q_stats.rx_calls = fp->eth_q_stats.rx_pkts = 0;
6439
6440
max_agg_queues = MAX_AGG_QS(sc);
6441
6442
fp->tpa_enable = TRUE;
6443
6444
/* fill the TPA pool */
6445
for (j = 0; j < max_agg_queues; j++) {
6446
rc = bxe_alloc_rx_tpa_mbuf(fp, j);
6447
if (rc != 0) {
6448
BLOGE(sc, "mbuf alloc fail for fp[%02d] TPA queue %d\n",
6449
i, j);
6450
fp->tpa_enable = FALSE;
6451
goto bxe_alloc_fp_buffers_error;
6452
}
6453
6454
fp->rx_tpa_info[j].state = BXE_TPA_STATE_STOP;
6455
}
6456
6457
if (fp->tpa_enable) {
6458
/* fill the RX SGE chain */
6459
ring_prod = 0;
6460
for (j = 0; j < RX_SGE_USABLE; j++) {
6461
rc = bxe_alloc_rx_sge_mbuf(fp, ring_prod);
6462
if (rc != 0) {
6463
BLOGE(sc, "mbuf alloc fail for fp[%02d] SGE %d\n",
6464
i, ring_prod);
6465
fp->tpa_enable = FALSE;
6466
ring_prod = 0;
6467
goto bxe_alloc_fp_buffers_error;
6468
}
6469
6470
ring_prod = RX_SGE_NEXT(ring_prod);
6471
}
6472
6473
fp->rx_sge_prod = ring_prod;
6474
}
6475
}
6476
6477
return (0);
6478
6479
bxe_alloc_fp_buffers_error:
6480
6481
/* unwind what was already allocated */
6482
bxe_free_rx_bd_chain(fp);
6483
bxe_free_tpa_pool(fp);
6484
bxe_free_sge_chain(fp);
6485
6486
return (ENOBUFS);
6487
}
6488
6489
static void
6490
bxe_free_fw_stats_mem(struct bxe_softc *sc)
6491
{
6492
bxe_dma_free(sc, &sc->fw_stats_dma);
6493
6494
sc->fw_stats_num = 0;
6495
6496
sc->fw_stats_req_size = 0;
6497
sc->fw_stats_req = NULL;
6498
sc->fw_stats_req_mapping = 0;
6499
6500
sc->fw_stats_data_size = 0;
6501
sc->fw_stats_data = NULL;
6502
sc->fw_stats_data_mapping = 0;
6503
}
6504
6505
static int
6506
bxe_alloc_fw_stats_mem(struct bxe_softc *sc)
6507
{
6508
uint8_t num_queue_stats;
6509
int num_groups;
6510
6511
/* number of queues for statistics is number of eth queues */
6512
num_queue_stats = BXE_NUM_ETH_QUEUES(sc);
6513
6514
/*
6515
* Total number of FW statistics requests =
6516
* 1 for port stats + 1 for PF stats + num of queues
6517
*/
6518
sc->fw_stats_num = (2 + num_queue_stats);
6519
6520
/*
6521
* Request is built from stats_query_header and an array of
6522
* stats_query_cmd_group each of which contains STATS_QUERY_CMD_COUNT
6523
* rules. The real number or requests is configured in the
6524
* stats_query_header.
6525
*/
6526
num_groups =
6527
((sc->fw_stats_num / STATS_QUERY_CMD_COUNT) +
6528
((sc->fw_stats_num % STATS_QUERY_CMD_COUNT) ? 1 : 0));
6529
6530
BLOGD(sc, DBG_LOAD, "stats fw_stats_num %d num_groups %d\n",
6531
sc->fw_stats_num, num_groups);
6532
6533
sc->fw_stats_req_size =
6534
(sizeof(struct stats_query_header) +
6535
(num_groups * sizeof(struct stats_query_cmd_group)));
6536
6537
/*
6538
* Data for statistics requests + stats_counter.
6539
* stats_counter holds per-STORM counters that are incremented when
6540
* STORM has finished with the current request. Memory for FCoE
6541
* offloaded statistics are counted anyway, even if they will not be sent.
6542
* VF stats are not accounted for here as the data of VF stats is stored
6543
* in memory allocated by the VF, not here.
6544
*/
6545
sc->fw_stats_data_size =
6546
(sizeof(struct stats_counter) +
6547
sizeof(struct per_port_stats) +
6548
sizeof(struct per_pf_stats) +
6549
/* sizeof(struct fcoe_statistics_params) + */
6550
(sizeof(struct per_queue_stats) * num_queue_stats));
6551
6552
if (bxe_dma_alloc(sc, (sc->fw_stats_req_size + sc->fw_stats_data_size),
6553
&sc->fw_stats_dma, "fw stats") != 0) {
6554
bxe_free_fw_stats_mem(sc);
6555
return (-1);
6556
}
6557
6558
/* set up the shortcuts */
6559
6560
sc->fw_stats_req =
6561
(struct bxe_fw_stats_req *)sc->fw_stats_dma.vaddr;
6562
sc->fw_stats_req_mapping = sc->fw_stats_dma.paddr;
6563
6564
sc->fw_stats_data =
6565
(struct bxe_fw_stats_data *)((uint8_t *)sc->fw_stats_dma.vaddr +
6566
sc->fw_stats_req_size);
6567
sc->fw_stats_data_mapping = (sc->fw_stats_dma.paddr +
6568
sc->fw_stats_req_size);
6569
6570
BLOGD(sc, DBG_LOAD, "statistics request base address set to %#jx\n",
6571
(uintmax_t)sc->fw_stats_req_mapping);
6572
6573
BLOGD(sc, DBG_LOAD, "statistics data base address set to %#jx\n",
6574
(uintmax_t)sc->fw_stats_data_mapping);
6575
6576
return (0);
6577
}
6578
6579
/*
6580
* Bits map:
6581
* 0-7 - Engine0 load counter.
6582
* 8-15 - Engine1 load counter.
6583
* 16 - Engine0 RESET_IN_PROGRESS bit.
6584
* 17 - Engine1 RESET_IN_PROGRESS bit.
6585
* 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active
6586
* function on the engine
6587
* 19 - Engine1 ONE_IS_LOADED.
6588
* 20 - Chip reset flow bit. When set none-leader must wait for both engines
6589
* leader to complete (check for both RESET_IN_PROGRESS bits and not
6590
* for just the one belonging to its engine).
6591
*/
6592
#define BXE_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
6593
#define BXE_PATH0_LOAD_CNT_MASK 0x000000ff
6594
#define BXE_PATH0_LOAD_CNT_SHIFT 0
6595
#define BXE_PATH1_LOAD_CNT_MASK 0x0000ff00
6596
#define BXE_PATH1_LOAD_CNT_SHIFT 8
6597
#define BXE_PATH0_RST_IN_PROG_BIT 0x00010000
6598
#define BXE_PATH1_RST_IN_PROG_BIT 0x00020000
6599
#define BXE_GLOBAL_RESET_BIT 0x00040000
6600
6601
/* set the GLOBAL_RESET bit, should be run under rtnl lock */
6602
static void
6603
bxe_set_reset_global(struct bxe_softc *sc)
6604
{
6605
uint32_t val;
6606
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6607
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6608
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val | BXE_GLOBAL_RESET_BIT);
6609
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6610
}
6611
6612
/* clear the GLOBAL_RESET bit, should be run under rtnl lock */
6613
static void
6614
bxe_clear_reset_global(struct bxe_softc *sc)
6615
{
6616
uint32_t val;
6617
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6618
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6619
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val & (~BXE_GLOBAL_RESET_BIT));
6620
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6621
}
6622
6623
/* checks the GLOBAL_RESET bit, should be run under rtnl lock */
6624
static uint8_t
6625
bxe_reset_is_global(struct bxe_softc *sc)
6626
{
6627
uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6628
BLOGD(sc, DBG_LOAD, "GLOB_REG=0x%08x\n", val);
6629
return (val & BXE_GLOBAL_RESET_BIT) ? TRUE : FALSE;
6630
}
6631
6632
/* clear RESET_IN_PROGRESS bit for the engine, should be run under rtnl lock */
6633
static void
6634
bxe_set_reset_done(struct bxe_softc *sc)
6635
{
6636
uint32_t val;
6637
uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6638
BXE_PATH0_RST_IN_PROG_BIT;
6639
6640
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6641
6642
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6643
/* Clear the bit */
6644
val &= ~bit;
6645
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6646
6647
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6648
}
6649
6650
/* set RESET_IN_PROGRESS for the engine, should be run under rtnl lock */
6651
static void
6652
bxe_set_reset_in_progress(struct bxe_softc *sc)
6653
{
6654
uint32_t val;
6655
uint32_t bit = SC_PATH(sc) ? BXE_PATH1_RST_IN_PROG_BIT :
6656
BXE_PATH0_RST_IN_PROG_BIT;
6657
6658
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6659
6660
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6661
/* Set the bit */
6662
val |= bit;
6663
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6664
6665
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6666
}
6667
6668
/* check RESET_IN_PROGRESS bit for an engine, should be run under rtnl lock */
6669
static uint8_t
6670
bxe_reset_is_done(struct bxe_softc *sc,
6671
int engine)
6672
{
6673
uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6674
uint32_t bit = engine ? BXE_PATH1_RST_IN_PROG_BIT :
6675
BXE_PATH0_RST_IN_PROG_BIT;
6676
6677
/* return false if bit is set */
6678
return (val & bit) ? FALSE : TRUE;
6679
}
6680
6681
/* get the load status for an engine, should be run under rtnl lock */
6682
static uint8_t
6683
bxe_get_load_status(struct bxe_softc *sc,
6684
int engine)
6685
{
6686
uint32_t mask = engine ? BXE_PATH1_LOAD_CNT_MASK :
6687
BXE_PATH0_LOAD_CNT_MASK;
6688
uint32_t shift = engine ? BXE_PATH1_LOAD_CNT_SHIFT :
6689
BXE_PATH0_LOAD_CNT_SHIFT;
6690
uint32_t val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6691
6692
BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6693
6694
val = ((val & mask) >> shift);
6695
6696
BLOGD(sc, DBG_LOAD, "Load mask engine %d = 0x%08x\n", engine, val);
6697
6698
return (val != 0);
6699
}
6700
6701
/* set pf load mark */
6702
/* XXX needs to be under rtnl lock */
6703
static void
6704
bxe_set_pf_load(struct bxe_softc *sc)
6705
{
6706
uint32_t val;
6707
uint32_t val1;
6708
uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6709
BXE_PATH0_LOAD_CNT_MASK;
6710
uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6711
BXE_PATH0_LOAD_CNT_SHIFT;
6712
6713
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6714
6715
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6716
BLOGD(sc, DBG_LOAD, "Old value for GLOB_REG=0x%08x\n", val);
6717
6718
/* get the current counter value */
6719
val1 = ((val & mask) >> shift);
6720
6721
/* set bit of this PF */
6722
val1 |= (1 << SC_ABS_FUNC(sc));
6723
6724
/* clear the old value */
6725
val &= ~mask;
6726
6727
/* set the new one */
6728
val |= ((val1 << shift) & mask);
6729
6730
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6731
6732
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6733
}
6734
6735
/* clear pf load mark */
6736
/* XXX needs to be under rtnl lock */
6737
static uint8_t
6738
bxe_clear_pf_load(struct bxe_softc *sc)
6739
{
6740
uint32_t val1, val;
6741
uint32_t mask = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_MASK :
6742
BXE_PATH0_LOAD_CNT_MASK;
6743
uint32_t shift = SC_PATH(sc) ? BXE_PATH1_LOAD_CNT_SHIFT :
6744
BXE_PATH0_LOAD_CNT_SHIFT;
6745
6746
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6747
val = REG_RD(sc, BXE_RECOVERY_GLOB_REG);
6748
BLOGD(sc, DBG_LOAD, "Old GEN_REG_VAL=0x%08x\n", val);
6749
6750
/* get the current counter value */
6751
val1 = (val & mask) >> shift;
6752
6753
/* clear bit of that PF */
6754
val1 &= ~(1 << SC_ABS_FUNC(sc));
6755
6756
/* clear the old value */
6757
val &= ~mask;
6758
6759
/* set the new one */
6760
val |= ((val1 << shift) & mask);
6761
6762
REG_WR(sc, BXE_RECOVERY_GLOB_REG, val);
6763
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RECOVERY_REG);
6764
return (val1 != 0);
6765
}
6766
6767
/* send load requrest to mcp and analyze response */
6768
static int
6769
bxe_nic_load_request(struct bxe_softc *sc,
6770
uint32_t *load_code)
6771
{
6772
/* init fw_seq */
6773
sc->fw_seq =
6774
(SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
6775
DRV_MSG_SEQ_NUMBER_MASK);
6776
6777
BLOGD(sc, DBG_LOAD, "initial fw_seq 0x%04x\n", sc->fw_seq);
6778
6779
/* get the current FW pulse sequence */
6780
sc->fw_drv_pulse_wr_seq =
6781
(SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_pulse_mb) &
6782
DRV_PULSE_SEQ_MASK);
6783
6784
BLOGD(sc, DBG_LOAD, "initial drv_pulse 0x%04x\n",
6785
sc->fw_drv_pulse_wr_seq);
6786
6787
/* load request */
6788
(*load_code) = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
6789
DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
6790
6791
/* if the MCP fails to respond we must abort */
6792
if (!(*load_code)) {
6793
BLOGE(sc, "MCP response failure!\n");
6794
return (-1);
6795
}
6796
6797
/* if MCP refused then must abort */
6798
if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
6799
BLOGE(sc, "MCP refused load request\n");
6800
return (-1);
6801
}
6802
6803
return (0);
6804
}
6805
6806
/*
6807
* Check whether another PF has already loaded FW to chip. In virtualized
6808
* environments a pf from anoth VM may have already initialized the device
6809
* including loading FW.
6810
*/
6811
static int
6812
bxe_nic_load_analyze_req(struct bxe_softc *sc,
6813
uint32_t load_code)
6814
{
6815
uint32_t my_fw, loaded_fw;
6816
6817
/* is another pf loaded on this engine? */
6818
if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
6819
(load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
6820
/* build my FW version dword */
6821
my_fw = (BCM_5710_FW_MAJOR_VERSION +
6822
(BCM_5710_FW_MINOR_VERSION << 8 ) +
6823
(BCM_5710_FW_REVISION_VERSION << 16) +
6824
(BCM_5710_FW_ENGINEERING_VERSION << 24));
6825
6826
/* read loaded FW from chip */
6827
loaded_fw = REG_RD(sc, XSEM_REG_PRAM);
6828
BLOGD(sc, DBG_LOAD, "loaded FW 0x%08x / my FW 0x%08x\n",
6829
loaded_fw, my_fw);
6830
6831
/* abort nic load if version mismatch */
6832
if (my_fw != loaded_fw) {
6833
BLOGE(sc, "FW 0x%08x already loaded (mine is 0x%08x)",
6834
loaded_fw, my_fw);
6835
return (-1);
6836
}
6837
}
6838
6839
return (0);
6840
}
6841
6842
/* mark PMF if applicable */
6843
static void
6844
bxe_nic_load_pmf(struct bxe_softc *sc,
6845
uint32_t load_code)
6846
{
6847
uint32_t ncsi_oem_data_addr;
6848
6849
if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
6850
(load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
6851
(load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
6852
/*
6853
* Barrier here for ordering between the writing to sc->port.pmf here
6854
* and reading it from the periodic task.
6855
*/
6856
sc->port.pmf = 1;
6857
mb();
6858
} else {
6859
sc->port.pmf = 0;
6860
}
6861
6862
BLOGD(sc, DBG_LOAD, "pmf %d\n", sc->port.pmf);
6863
6864
/* XXX needed? */
6865
if (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) {
6866
if (SHMEM2_HAS(sc, ncsi_oem_data_addr)) {
6867
ncsi_oem_data_addr = SHMEM2_RD(sc, ncsi_oem_data_addr);
6868
if (ncsi_oem_data_addr) {
6869
REG_WR(sc,
6870
(ncsi_oem_data_addr +
6871
offsetof(struct glob_ncsi_oem_data, driver_version)),
6872
0);
6873
}
6874
}
6875
}
6876
}
6877
6878
static void
6879
bxe_read_mf_cfg(struct bxe_softc *sc)
6880
{
6881
int n = (CHIP_IS_MODE_4_PORT(sc) ? 2 : 1);
6882
int abs_func;
6883
int vn;
6884
6885
if (BXE_NOMCP(sc)) {
6886
return; /* what should be the default bvalue in this case */
6887
}
6888
6889
/*
6890
* The formula for computing the absolute function number is...
6891
* For 2 port configuration (4 functions per port):
6892
* abs_func = 2 * vn + SC_PORT + SC_PATH
6893
* For 4 port configuration (2 functions per port):
6894
* abs_func = 4 * vn + 2 * SC_PORT + SC_PATH
6895
*/
6896
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
6897
abs_func = (n * (2 * vn + SC_PORT(sc)) + SC_PATH(sc));
6898
if (abs_func >= E1H_FUNC_MAX) {
6899
break;
6900
}
6901
sc->devinfo.mf_info.mf_config[vn] =
6902
MFCFG_RD(sc, func_mf_config[abs_func].config);
6903
}
6904
6905
if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] &
6906
FUNC_MF_CFG_FUNC_DISABLED) {
6907
BLOGD(sc, DBG_LOAD, "mf_cfg function disabled\n");
6908
sc->flags |= BXE_MF_FUNC_DIS;
6909
} else {
6910
BLOGD(sc, DBG_LOAD, "mf_cfg function enabled\n");
6911
sc->flags &= ~BXE_MF_FUNC_DIS;
6912
}
6913
}
6914
6915
/* acquire split MCP access lock register */
6916
static int bxe_acquire_alr(struct bxe_softc *sc)
6917
{
6918
uint32_t j, val;
6919
6920
for (j = 0; j < 1000; j++) {
6921
val = (1UL << 31);
6922
REG_WR(sc, GRCBASE_MCP + 0x9c, val);
6923
val = REG_RD(sc, GRCBASE_MCP + 0x9c);
6924
if (val & (1L << 31))
6925
break;
6926
6927
DELAY(5000);
6928
}
6929
6930
if (!(val & (1L << 31))) {
6931
BLOGE(sc, "Cannot acquire MCP access lock register\n");
6932
return (-1);
6933
}
6934
6935
return (0);
6936
}
6937
6938
/* release split MCP access lock register */
6939
static void bxe_release_alr(struct bxe_softc *sc)
6940
{
6941
REG_WR(sc, GRCBASE_MCP + 0x9c, 0);
6942
}
6943
6944
static void
6945
bxe_fan_failure(struct bxe_softc *sc)
6946
{
6947
int port = SC_PORT(sc);
6948
uint32_t ext_phy_config;
6949
6950
/* mark the failure */
6951
ext_phy_config =
6952
SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
6953
6954
ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
6955
ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
6956
SHMEM_WR(sc, dev_info.port_hw_config[port].external_phy_config,
6957
ext_phy_config);
6958
6959
/* log the failure */
6960
BLOGW(sc, "Fan Failure has caused the driver to shutdown "
6961
"the card to prevent permanent damage. "
6962
"Please contact OEM Support for assistance\n");
6963
6964
/* XXX */
6965
#if 1
6966
bxe_panic(sc, ("Schedule task to handle fan failure\n"));
6967
#else
6968
/*
6969
* Schedule device reset (unload)
6970
* This is due to some boards consuming sufficient power when driver is
6971
* up to overheat if fan fails.
6972
*/
6973
bxe_set_bit(BXE_SP_RTNL_FAN_FAILURE, &sc->sp_rtnl_state);
6974
schedule_delayed_work(&sc->sp_rtnl_task, 0);
6975
#endif
6976
}
6977
6978
/* this function is called upon a link interrupt */
6979
static void
6980
bxe_link_attn(struct bxe_softc *sc)
6981
{
6982
uint32_t pause_enabled = 0;
6983
struct host_port_stats *pstats;
6984
int cmng_fns;
6985
struct bxe_fastpath *fp;
6986
int i;
6987
6988
/* Make sure that we are synced with the current statistics */
6989
bxe_stats_handle(sc, STATS_EVENT_STOP);
6990
BLOGD(sc, DBG_LOAD, "link_vars phy_flags : %x\n", sc->link_vars.phy_flags);
6991
elink_link_update(&sc->link_params, &sc->link_vars);
6992
6993
if (sc->link_vars.link_up) {
6994
6995
/* dropless flow control */
6996
if (!CHIP_IS_E1(sc) && sc->dropless_fc) {
6997
pause_enabled = 0;
6998
6999
if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
7000
pause_enabled = 1;
7001
}
7002
7003
REG_WR(sc,
7004
(BAR_USTRORM_INTMEM +
7005
USTORM_ETH_PAUSE_ENABLED_OFFSET(SC_PORT(sc))),
7006
pause_enabled);
7007
}
7008
7009
if (sc->link_vars.mac_type != ELINK_MAC_TYPE_EMAC) {
7010
pstats = BXE_SP(sc, port_stats);
7011
/* reset old mac stats */
7012
memset(&(pstats->mac_stx[0]), 0, sizeof(struct mac_stx));
7013
}
7014
7015
if (sc->state == BXE_STATE_OPEN) {
7016
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
7017
/* Restart tx when the link comes back. */
7018
FOR_EACH_ETH_QUEUE(sc, i) {
7019
fp = &sc->fp[i];
7020
taskqueue_enqueue(fp->tq, &fp->tx_task);
7021
}
7022
}
7023
7024
}
7025
7026
if (sc->link_vars.link_up && sc->link_vars.line_speed) {
7027
cmng_fns = bxe_get_cmng_fns_mode(sc);
7028
7029
if (cmng_fns != CMNG_FNS_NONE) {
7030
bxe_cmng_fns_init(sc, FALSE, cmng_fns);
7031
storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7032
} else {
7033
/* rate shaping and fairness are disabled */
7034
BLOGD(sc, DBG_LOAD, "single function mode without fairness\n");
7035
}
7036
}
7037
7038
bxe_link_report_locked(sc);
7039
7040
if (IS_MF(sc)) {
7041
; // XXX bxe_link_sync_notify(sc);
7042
}
7043
}
7044
7045
static void
7046
bxe_attn_int_asserted(struct bxe_softc *sc,
7047
uint32_t asserted)
7048
{
7049
int port = SC_PORT(sc);
7050
uint32_t aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
7051
MISC_REG_AEU_MASK_ATTN_FUNC_0;
7052
uint32_t nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
7053
NIG_REG_MASK_INTERRUPT_PORT0;
7054
uint32_t aeu_mask;
7055
uint32_t nig_mask = 0;
7056
uint32_t reg_addr;
7057
uint32_t igu_acked;
7058
uint32_t cnt;
7059
7060
if (sc->attn_state & asserted) {
7061
BLOGE(sc, "IGU ERROR attn=0x%08x\n", asserted);
7062
}
7063
7064
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7065
7066
aeu_mask = REG_RD(sc, aeu_addr);
7067
7068
BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly asserted 0x%08x\n",
7069
aeu_mask, asserted);
7070
7071
aeu_mask &= ~(asserted & 0x3ff);
7072
7073
BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
7074
7075
REG_WR(sc, aeu_addr, aeu_mask);
7076
7077
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
7078
7079
BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
7080
sc->attn_state |= asserted;
7081
BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
7082
7083
if (asserted & ATTN_HARD_WIRED_MASK) {
7084
if (asserted & ATTN_NIG_FOR_FUNC) {
7085
7086
bxe_acquire_phy_lock(sc);
7087
/* save nig interrupt mask */
7088
nig_mask = REG_RD(sc, nig_int_mask_addr);
7089
7090
/* If nig_mask is not set, no need to call the update function */
7091
if (nig_mask) {
7092
REG_WR(sc, nig_int_mask_addr, 0);
7093
7094
bxe_link_attn(sc);
7095
}
7096
7097
/* handle unicore attn? */
7098
}
7099
7100
if (asserted & ATTN_SW_TIMER_4_FUNC) {
7101
BLOGD(sc, DBG_INTR, "ATTN_SW_TIMER_4_FUNC!\n");
7102
}
7103
7104
if (asserted & GPIO_2_FUNC) {
7105
BLOGD(sc, DBG_INTR, "GPIO_2_FUNC!\n");
7106
}
7107
7108
if (asserted & GPIO_3_FUNC) {
7109
BLOGD(sc, DBG_INTR, "GPIO_3_FUNC!\n");
7110
}
7111
7112
if (asserted & GPIO_4_FUNC) {
7113
BLOGD(sc, DBG_INTR, "GPIO_4_FUNC!\n");
7114
}
7115
7116
if (port == 0) {
7117
if (asserted & ATTN_GENERAL_ATTN_1) {
7118
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_1!\n");
7119
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
7120
}
7121
if (asserted & ATTN_GENERAL_ATTN_2) {
7122
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_2!\n");
7123
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
7124
}
7125
if (asserted & ATTN_GENERAL_ATTN_3) {
7126
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_3!\n");
7127
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
7128
}
7129
} else {
7130
if (asserted & ATTN_GENERAL_ATTN_4) {
7131
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_4!\n");
7132
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
7133
}
7134
if (asserted & ATTN_GENERAL_ATTN_5) {
7135
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_5!\n");
7136
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
7137
}
7138
if (asserted & ATTN_GENERAL_ATTN_6) {
7139
BLOGD(sc, DBG_INTR, "ATTN_GENERAL_ATTN_6!\n");
7140
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
7141
}
7142
}
7143
} /* hardwired */
7144
7145
if (sc->devinfo.int_block == INT_BLOCK_HC) {
7146
reg_addr = (HC_REG_COMMAND_REG + port*32 + COMMAND_REG_ATTN_BITS_SET);
7147
} else {
7148
reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
7149
}
7150
7151
BLOGD(sc, DBG_INTR, "about to mask 0x%08x at %s addr 0x%08x\n",
7152
asserted,
7153
(sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
7154
REG_WR(sc, reg_addr, asserted);
7155
7156
/* now set back the mask */
7157
if (asserted & ATTN_NIG_FOR_FUNC) {
7158
/*
7159
* Verify that IGU ack through BAR was written before restoring
7160
* NIG mask. This loop should exit after 2-3 iterations max.
7161
*/
7162
if (sc->devinfo.int_block != INT_BLOCK_HC) {
7163
cnt = 0;
7164
7165
do {
7166
igu_acked = REG_RD(sc, IGU_REG_ATTENTION_ACK_BITS);
7167
} while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
7168
(++cnt < MAX_IGU_ATTN_ACK_TO));
7169
7170
if (!igu_acked) {
7171
BLOGE(sc, "Failed to verify IGU ack on time\n");
7172
}
7173
7174
mb();
7175
}
7176
7177
REG_WR(sc, nig_int_mask_addr, nig_mask);
7178
7179
bxe_release_phy_lock(sc);
7180
}
7181
}
7182
7183
static void
7184
bxe_print_next_block(struct bxe_softc *sc,
7185
int idx,
7186
const char *blk)
7187
{
7188
BLOGI(sc, "%s%s", idx ? ", " : "", blk);
7189
}
7190
7191
static int
7192
bxe_check_blocks_with_parity0(struct bxe_softc *sc,
7193
uint32_t sig,
7194
int par_num,
7195
uint8_t print)
7196
{
7197
uint32_t cur_bit = 0;
7198
int i = 0;
7199
7200
for (i = 0; sig; i++) {
7201
cur_bit = ((uint32_t)0x1 << i);
7202
if (sig & cur_bit) {
7203
switch (cur_bit) {
7204
case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
7205
if (print)
7206
bxe_print_next_block(sc, par_num++, "BRB");
7207
break;
7208
case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
7209
if (print)
7210
bxe_print_next_block(sc, par_num++, "PARSER");
7211
break;
7212
case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
7213
if (print)
7214
bxe_print_next_block(sc, par_num++, "TSDM");
7215
break;
7216
case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
7217
if (print)
7218
bxe_print_next_block(sc, par_num++, "SEARCHER");
7219
break;
7220
case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
7221
if (print)
7222
bxe_print_next_block(sc, par_num++, "TCM");
7223
break;
7224
case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
7225
if (print)
7226
bxe_print_next_block(sc, par_num++, "TSEMI");
7227
break;
7228
case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
7229
if (print)
7230
bxe_print_next_block(sc, par_num++, "XPB");
7231
break;
7232
}
7233
7234
/* Clear the bit */
7235
sig &= ~cur_bit;
7236
}
7237
}
7238
7239
return (par_num);
7240
}
7241
7242
static int
7243
bxe_check_blocks_with_parity1(struct bxe_softc *sc,
7244
uint32_t sig,
7245
int par_num,
7246
uint8_t *global,
7247
uint8_t print)
7248
{
7249
int i = 0;
7250
uint32_t cur_bit = 0;
7251
for (i = 0; sig; i++) {
7252
cur_bit = ((uint32_t)0x1 << i);
7253
if (sig & cur_bit) {
7254
switch (cur_bit) {
7255
case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
7256
if (print)
7257
bxe_print_next_block(sc, par_num++, "PBF");
7258
break;
7259
case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
7260
if (print)
7261
bxe_print_next_block(sc, par_num++, "QM");
7262
break;
7263
case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
7264
if (print)
7265
bxe_print_next_block(sc, par_num++, "TM");
7266
break;
7267
case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
7268
if (print)
7269
bxe_print_next_block(sc, par_num++, "XSDM");
7270
break;
7271
case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
7272
if (print)
7273
bxe_print_next_block(sc, par_num++, "XCM");
7274
break;
7275
case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
7276
if (print)
7277
bxe_print_next_block(sc, par_num++, "XSEMI");
7278
break;
7279
case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
7280
if (print)
7281
bxe_print_next_block(sc, par_num++, "DOORBELLQ");
7282
break;
7283
case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
7284
if (print)
7285
bxe_print_next_block(sc, par_num++, "NIG");
7286
break;
7287
case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
7288
if (print)
7289
bxe_print_next_block(sc, par_num++, "VAUX PCI CORE");
7290
*global = TRUE;
7291
break;
7292
case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
7293
if (print)
7294
bxe_print_next_block(sc, par_num++, "DEBUG");
7295
break;
7296
case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
7297
if (print)
7298
bxe_print_next_block(sc, par_num++, "USDM");
7299
break;
7300
case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
7301
if (print)
7302
bxe_print_next_block(sc, par_num++, "UCM");
7303
break;
7304
case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
7305
if (print)
7306
bxe_print_next_block(sc, par_num++, "USEMI");
7307
break;
7308
case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
7309
if (print)
7310
bxe_print_next_block(sc, par_num++, "UPB");
7311
break;
7312
case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
7313
if (print)
7314
bxe_print_next_block(sc, par_num++, "CSDM");
7315
break;
7316
case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
7317
if (print)
7318
bxe_print_next_block(sc, par_num++, "CCM");
7319
break;
7320
}
7321
7322
/* Clear the bit */
7323
sig &= ~cur_bit;
7324
}
7325
}
7326
7327
return (par_num);
7328
}
7329
7330
static int
7331
bxe_check_blocks_with_parity2(struct bxe_softc *sc,
7332
uint32_t sig,
7333
int par_num,
7334
uint8_t print)
7335
{
7336
uint32_t cur_bit = 0;
7337
int i = 0;
7338
7339
for (i = 0; sig; i++) {
7340
cur_bit = ((uint32_t)0x1 << i);
7341
if (sig & cur_bit) {
7342
switch (cur_bit) {
7343
case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
7344
if (print)
7345
bxe_print_next_block(sc, par_num++, "CSEMI");
7346
break;
7347
case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
7348
if (print)
7349
bxe_print_next_block(sc, par_num++, "PXP");
7350
break;
7351
case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
7352
if (print)
7353
bxe_print_next_block(sc, par_num++, "PXPPCICLOCKCLIENT");
7354
break;
7355
case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
7356
if (print)
7357
bxe_print_next_block(sc, par_num++, "CFC");
7358
break;
7359
case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
7360
if (print)
7361
bxe_print_next_block(sc, par_num++, "CDU");
7362
break;
7363
case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
7364
if (print)
7365
bxe_print_next_block(sc, par_num++, "DMAE");
7366
break;
7367
case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
7368
if (print)
7369
bxe_print_next_block(sc, par_num++, "IGU");
7370
break;
7371
case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
7372
if (print)
7373
bxe_print_next_block(sc, par_num++, "MISC");
7374
break;
7375
}
7376
7377
/* Clear the bit */
7378
sig &= ~cur_bit;
7379
}
7380
}
7381
7382
return (par_num);
7383
}
7384
7385
static int
7386
bxe_check_blocks_with_parity3(struct bxe_softc *sc,
7387
uint32_t sig,
7388
int par_num,
7389
uint8_t *global,
7390
uint8_t print)
7391
{
7392
uint32_t cur_bit = 0;
7393
int i = 0;
7394
7395
for (i = 0; sig; i++) {
7396
cur_bit = ((uint32_t)0x1 << i);
7397
if (sig & cur_bit) {
7398
switch (cur_bit) {
7399
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
7400
if (print)
7401
bxe_print_next_block(sc, par_num++, "MCP ROM");
7402
*global = TRUE;
7403
break;
7404
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
7405
if (print)
7406
bxe_print_next_block(sc, par_num++,
7407
"MCP UMP RX");
7408
*global = TRUE;
7409
break;
7410
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
7411
if (print)
7412
bxe_print_next_block(sc, par_num++,
7413
"MCP UMP TX");
7414
*global = TRUE;
7415
break;
7416
case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
7417
if (print)
7418
bxe_print_next_block(sc, par_num++,
7419
"MCP SCPAD");
7420
*global = TRUE;
7421
break;
7422
}
7423
7424
/* Clear the bit */
7425
sig &= ~cur_bit;
7426
}
7427
}
7428
7429
return (par_num);
7430
}
7431
7432
static int
7433
bxe_check_blocks_with_parity4(struct bxe_softc *sc,
7434
uint32_t sig,
7435
int par_num,
7436
uint8_t print)
7437
{
7438
uint32_t cur_bit = 0;
7439
int i = 0;
7440
7441
for (i = 0; sig; i++) {
7442
cur_bit = ((uint32_t)0x1 << i);
7443
if (sig & cur_bit) {
7444
switch (cur_bit) {
7445
case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
7446
if (print)
7447
bxe_print_next_block(sc, par_num++, "PGLUE_B");
7448
break;
7449
case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
7450
if (print)
7451
bxe_print_next_block(sc, par_num++, "ATC");
7452
break;
7453
}
7454
7455
/* Clear the bit */
7456
sig &= ~cur_bit;
7457
}
7458
}
7459
7460
return (par_num);
7461
}
7462
7463
static uint8_t
7464
bxe_parity_attn(struct bxe_softc *sc,
7465
uint8_t *global,
7466
uint8_t print,
7467
uint32_t *sig)
7468
{
7469
int par_num = 0;
7470
7471
if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
7472
(sig[1] & HW_PRTY_ASSERT_SET_1) ||
7473
(sig[2] & HW_PRTY_ASSERT_SET_2) ||
7474
(sig[3] & HW_PRTY_ASSERT_SET_3) ||
7475
(sig[4] & HW_PRTY_ASSERT_SET_4)) {
7476
BLOGE(sc, "Parity error: HW block parity attention:\n"
7477
"[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
7478
(uint32_t)(sig[0] & HW_PRTY_ASSERT_SET_0),
7479
(uint32_t)(sig[1] & HW_PRTY_ASSERT_SET_1),
7480
(uint32_t)(sig[2] & HW_PRTY_ASSERT_SET_2),
7481
(uint32_t)(sig[3] & HW_PRTY_ASSERT_SET_3),
7482
(uint32_t)(sig[4] & HW_PRTY_ASSERT_SET_4));
7483
7484
if (print)
7485
BLOGI(sc, "Parity errors detected in blocks: ");
7486
7487
par_num =
7488
bxe_check_blocks_with_parity0(sc, sig[0] &
7489
HW_PRTY_ASSERT_SET_0,
7490
par_num, print);
7491
par_num =
7492
bxe_check_blocks_with_parity1(sc, sig[1] &
7493
HW_PRTY_ASSERT_SET_1,
7494
par_num, global, print);
7495
par_num =
7496
bxe_check_blocks_with_parity2(sc, sig[2] &
7497
HW_PRTY_ASSERT_SET_2,
7498
par_num, print);
7499
par_num =
7500
bxe_check_blocks_with_parity3(sc, sig[3] &
7501
HW_PRTY_ASSERT_SET_3,
7502
par_num, global, print);
7503
par_num =
7504
bxe_check_blocks_with_parity4(sc, sig[4] &
7505
HW_PRTY_ASSERT_SET_4,
7506
par_num, print);
7507
7508
if (print)
7509
BLOGI(sc, "\n");
7510
7511
if( *global == TRUE ) {
7512
BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
7513
}
7514
7515
return (TRUE);
7516
}
7517
7518
return (FALSE);
7519
}
7520
7521
static uint8_t
7522
bxe_chk_parity_attn(struct bxe_softc *sc,
7523
uint8_t *global,
7524
uint8_t print)
7525
{
7526
struct attn_route attn = { {0} };
7527
int port = SC_PORT(sc);
7528
7529
if(sc->state != BXE_STATE_OPEN)
7530
return FALSE;
7531
7532
attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
7533
attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
7534
attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
7535
attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
7536
7537
/*
7538
* Since MCP attentions can't be disabled inside the block, we need to
7539
* read AEU registers to see whether they're currently disabled
7540
*/
7541
attn.sig[3] &= ((REG_RD(sc, (!port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
7542
: MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0)) &
7543
MISC_AEU_ENABLE_MCP_PRTY_BITS) |
7544
~MISC_AEU_ENABLE_MCP_PRTY_BITS);
7545
7546
7547
if (!CHIP_IS_E1x(sc))
7548
attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
7549
7550
return (bxe_parity_attn(sc, global, print, attn.sig));
7551
}
7552
7553
static void
7554
bxe_attn_int_deasserted4(struct bxe_softc *sc,
7555
uint32_t attn)
7556
{
7557
uint32_t val;
7558
bool err_flg = false;
7559
7560
if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
7561
val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
7562
BLOGE(sc, "PGLUE hw attention 0x%08x\n", val);
7563
err_flg = true;
7564
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
7565
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
7566
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
7567
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
7568
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
7569
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
7570
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
7571
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
7572
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
7573
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
7574
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
7575
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
7576
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
7577
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
7578
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
7579
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
7580
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
7581
BLOGE(sc, "PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
7582
}
7583
7584
if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
7585
val = REG_RD(sc, ATC_REG_ATC_INT_STS_CLR);
7586
BLOGE(sc, "ATC hw attention 0x%08x\n", val);
7587
err_flg = true;
7588
if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
7589
BLOGE(sc, "ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
7590
if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
7591
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
7592
if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
7593
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
7594
if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
7595
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
7596
if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
7597
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
7598
if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
7599
BLOGE(sc, "ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
7600
}
7601
7602
if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7603
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
7604
BLOGE(sc, "FATAL parity attention set4 0x%08x\n",
7605
(uint32_t)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
7606
AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
7607
err_flg = true;
7608
}
7609
if (err_flg) {
7610
BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
7611
taskqueue_enqueue_timeout(taskqueue_thread,
7612
&sc->sp_err_timeout_task, hz/10);
7613
}
7614
7615
}
7616
7617
static void
7618
bxe_e1h_disable(struct bxe_softc *sc)
7619
{
7620
int port = SC_PORT(sc);
7621
7622
bxe_tx_disable(sc);
7623
7624
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7625
}
7626
7627
static void
7628
bxe_e1h_enable(struct bxe_softc *sc)
7629
{
7630
int port = SC_PORT(sc);
7631
7632
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7633
7634
// XXX bxe_tx_enable(sc);
7635
}
7636
7637
/*
7638
* called due to MCP event (on pmf):
7639
* reread new bandwidth configuration
7640
* configure FW
7641
* notify others function about the change
7642
*/
7643
static void
7644
bxe_config_mf_bw(struct bxe_softc *sc)
7645
{
7646
if (sc->link_vars.link_up) {
7647
bxe_cmng_fns_init(sc, TRUE, CMNG_FNS_MINMAX);
7648
// XXX bxe_link_sync_notify(sc);
7649
}
7650
7651
storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
7652
}
7653
7654
static void
7655
bxe_set_mf_bw(struct bxe_softc *sc)
7656
{
7657
bxe_config_mf_bw(sc);
7658
bxe_fw_command(sc, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
7659
}
7660
7661
static void
7662
bxe_handle_eee_event(struct bxe_softc *sc)
7663
{
7664
BLOGD(sc, DBG_INTR, "EEE - LLDP event\n");
7665
bxe_fw_command(sc, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
7666
}
7667
7668
#define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
7669
7670
static void
7671
bxe_drv_info_ether_stat(struct bxe_softc *sc)
7672
{
7673
struct eth_stats_info *ether_stat =
7674
&sc->sp->drv_info_to_mcp.ether_stat;
7675
7676
strlcpy(ether_stat->version, BXE_DRIVER_VERSION,
7677
ETH_STAT_INFO_VERSION_LEN);
7678
7679
/* XXX (+ MAC_PAD) taken from other driver... verify this is right */
7680
sc->sp_objs[0].mac_obj.get_n_elements(sc, &sc->sp_objs[0].mac_obj,
7681
DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
7682
ether_stat->mac_local + MAC_PAD,
7683
MAC_PAD, ETH_ALEN);
7684
7685
ether_stat->mtu_size = sc->mtu;
7686
7687
ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
7688
if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
7689
ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
7690
}
7691
7692
// XXX ether_stat->feature_flags |= ???;
7693
7694
ether_stat->promiscuous_mode = 0; // (flags & PROMISC) ? 1 : 0;
7695
7696
ether_stat->txq_size = sc->tx_ring_size;
7697
ether_stat->rxq_size = sc->rx_ring_size;
7698
}
7699
7700
static void
7701
bxe_handle_drv_info_req(struct bxe_softc *sc)
7702
{
7703
enum drv_info_opcode op_code;
7704
uint32_t drv_info_ctl = SHMEM2_RD(sc, drv_info_control);
7705
7706
/* if drv_info version supported by MFW doesn't match - send NACK */
7707
if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
7708
bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7709
return;
7710
}
7711
7712
op_code = ((drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
7713
DRV_INFO_CONTROL_OP_CODE_SHIFT);
7714
7715
memset(&sc->sp->drv_info_to_mcp, 0, sizeof(union drv_info_to_mcp));
7716
7717
switch (op_code) {
7718
case ETH_STATS_OPCODE:
7719
bxe_drv_info_ether_stat(sc);
7720
break;
7721
case FCOE_STATS_OPCODE:
7722
case ISCSI_STATS_OPCODE:
7723
default:
7724
/* if op code isn't supported - send NACK */
7725
bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_NACK, 0);
7726
return;
7727
}
7728
7729
/*
7730
* If we got drv_info attn from MFW then these fields are defined in
7731
* shmem2 for sure
7732
*/
7733
SHMEM2_WR(sc, drv_info_host_addr_lo,
7734
U64_LO(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7735
SHMEM2_WR(sc, drv_info_host_addr_hi,
7736
U64_HI(BXE_SP_MAPPING(sc, drv_info_to_mcp)));
7737
7738
bxe_fw_command(sc, DRV_MSG_CODE_DRV_INFO_ACK, 0);
7739
}
7740
7741
static void
7742
bxe_dcc_event(struct bxe_softc *sc,
7743
uint32_t dcc_event)
7744
{
7745
BLOGD(sc, DBG_INTR, "dcc_event 0x%08x\n", dcc_event);
7746
7747
if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
7748
/*
7749
* This is the only place besides the function initialization
7750
* where the sc->flags can change so it is done without any
7751
* locks
7752
*/
7753
if (sc->devinfo.mf_info.mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_DISABLED) {
7754
BLOGD(sc, DBG_INTR, "mf_cfg function disabled\n");
7755
sc->flags |= BXE_MF_FUNC_DIS;
7756
bxe_e1h_disable(sc);
7757
} else {
7758
BLOGD(sc, DBG_INTR, "mf_cfg function enabled\n");
7759
sc->flags &= ~BXE_MF_FUNC_DIS;
7760
bxe_e1h_enable(sc);
7761
}
7762
dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
7763
}
7764
7765
if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
7766
bxe_config_mf_bw(sc);
7767
dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
7768
}
7769
7770
/* Report results to MCP */
7771
if (dcc_event)
7772
bxe_fw_command(sc, DRV_MSG_CODE_DCC_FAILURE, 0);
7773
else
7774
bxe_fw_command(sc, DRV_MSG_CODE_DCC_OK, 0);
7775
}
7776
7777
static void
7778
bxe_pmf_update(struct bxe_softc *sc)
7779
{
7780
int port = SC_PORT(sc);
7781
uint32_t val;
7782
7783
sc->port.pmf = 1;
7784
BLOGD(sc, DBG_INTR, "pmf %d\n", sc->port.pmf);
7785
7786
/*
7787
* We need the mb() to ensure the ordering between the writing to
7788
* sc->port.pmf here and reading it from the bxe_periodic_task().
7789
*/
7790
mb();
7791
7792
/* queue a periodic task */
7793
// XXX schedule task...
7794
7795
// XXX bxe_dcbx_pmf_update(sc);
7796
7797
/* enable nig attention */
7798
val = (0xff0f | (1 << (SC_VN(sc) + 4)));
7799
if (sc->devinfo.int_block == INT_BLOCK_HC) {
7800
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, val);
7801
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, val);
7802
} else if (!CHIP_IS_E1x(sc)) {
7803
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
7804
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
7805
}
7806
7807
bxe_stats_handle(sc, STATS_EVENT_PMF);
7808
}
7809
7810
static int
7811
bxe_mc_assert(struct bxe_softc *sc)
7812
{
7813
char last_idx;
7814
int i, rc = 0;
7815
uint32_t row0, row1, row2, row3;
7816
7817
/* XSTORM */
7818
last_idx = REG_RD8(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_INDEX_OFFSET);
7819
if (last_idx)
7820
BLOGE(sc, "XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7821
7822
/* print the asserts */
7823
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7824
7825
row0 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i));
7826
row1 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 4);
7827
row2 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 8);
7828
row3 = REG_RD(sc, BAR_XSTRORM_INTMEM + XSTORM_ASSERT_LIST_OFFSET(i) + 12);
7829
7830
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7831
BLOGE(sc, "XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7832
i, row3, row2, row1, row0);
7833
rc++;
7834
} else {
7835
break;
7836
}
7837
}
7838
7839
/* TSTORM */
7840
last_idx = REG_RD8(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_INDEX_OFFSET);
7841
if (last_idx) {
7842
BLOGE(sc, "TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7843
}
7844
7845
/* print the asserts */
7846
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7847
7848
row0 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i));
7849
row1 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 4);
7850
row2 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 8);
7851
row3 = REG_RD(sc, BAR_TSTRORM_INTMEM + TSTORM_ASSERT_LIST_OFFSET(i) + 12);
7852
7853
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7854
BLOGE(sc, "TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7855
i, row3, row2, row1, row0);
7856
rc++;
7857
} else {
7858
break;
7859
}
7860
}
7861
7862
/* CSTORM */
7863
last_idx = REG_RD8(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_INDEX_OFFSET);
7864
if (last_idx) {
7865
BLOGE(sc, "CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7866
}
7867
7868
/* print the asserts */
7869
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7870
7871
row0 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i));
7872
row1 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 4);
7873
row2 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 8);
7874
row3 = REG_RD(sc, BAR_CSTRORM_INTMEM + CSTORM_ASSERT_LIST_OFFSET(i) + 12);
7875
7876
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7877
BLOGE(sc, "CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7878
i, row3, row2, row1, row0);
7879
rc++;
7880
} else {
7881
break;
7882
}
7883
}
7884
7885
/* USTORM */
7886
last_idx = REG_RD8(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_INDEX_OFFSET);
7887
if (last_idx) {
7888
BLOGE(sc, "USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
7889
}
7890
7891
/* print the asserts */
7892
for (i = 0; i < STORM_ASSERT_ARRAY_SIZE; i++) {
7893
7894
row0 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i));
7895
row1 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 4);
7896
row2 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 8);
7897
row3 = REG_RD(sc, BAR_USTRORM_INTMEM + USTORM_ASSERT_LIST_OFFSET(i) + 12);
7898
7899
if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
7900
BLOGE(sc, "USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
7901
i, row3, row2, row1, row0);
7902
rc++;
7903
} else {
7904
break;
7905
}
7906
}
7907
7908
return (rc);
7909
}
7910
7911
static void
7912
bxe_attn_int_deasserted3(struct bxe_softc *sc,
7913
uint32_t attn)
7914
{
7915
int func = SC_FUNC(sc);
7916
uint32_t val;
7917
7918
if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
7919
7920
if (attn & BXE_PMF_LINK_ASSERT(sc)) {
7921
7922
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7923
bxe_read_mf_cfg(sc);
7924
sc->devinfo.mf_info.mf_config[SC_VN(sc)] =
7925
MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
7926
val = SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_status);
7927
7928
if (val & DRV_STATUS_DCC_EVENT_MASK)
7929
bxe_dcc_event(sc, (val & DRV_STATUS_DCC_EVENT_MASK));
7930
7931
if (val & DRV_STATUS_SET_MF_BW)
7932
bxe_set_mf_bw(sc);
7933
7934
if (val & DRV_STATUS_DRV_INFO_REQ)
7935
bxe_handle_drv_info_req(sc);
7936
7937
if ((sc->port.pmf == 0) && (val & DRV_STATUS_PMF))
7938
bxe_pmf_update(sc);
7939
7940
if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
7941
bxe_handle_eee_event(sc);
7942
7943
if (sc->link_vars.periodic_flags &
7944
ELINK_PERIODIC_FLAGS_LINK_EVENT) {
7945
/* sync with link */
7946
bxe_acquire_phy_lock(sc);
7947
sc->link_vars.periodic_flags &=
7948
~ELINK_PERIODIC_FLAGS_LINK_EVENT;
7949
bxe_release_phy_lock(sc);
7950
if (IS_MF(sc))
7951
; // XXX bxe_link_sync_notify(sc);
7952
bxe_link_report(sc);
7953
}
7954
7955
/*
7956
* Always call it here: bxe_link_report() will
7957
* prevent the link indication duplication.
7958
*/
7959
bxe_link_status_update(sc);
7960
7961
} else if (attn & BXE_MC_ASSERT_BITS) {
7962
7963
BLOGE(sc, "MC assert!\n");
7964
bxe_mc_assert(sc);
7965
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_10, 0);
7966
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_9, 0);
7967
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_8, 0);
7968
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_7, 0);
7969
bxe_int_disable(sc);
7970
BXE_SET_ERROR_BIT(sc, BXE_ERR_MC_ASSERT);
7971
taskqueue_enqueue_timeout(taskqueue_thread,
7972
&sc->sp_err_timeout_task, hz/10);
7973
7974
} else if (attn & BXE_MCP_ASSERT) {
7975
7976
BLOGE(sc, "MCP assert!\n");
7977
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_11, 0);
7978
BXE_SET_ERROR_BIT(sc, BXE_ERR_MCP_ASSERT);
7979
taskqueue_enqueue_timeout(taskqueue_thread,
7980
&sc->sp_err_timeout_task, hz/10);
7981
bxe_int_disable(sc); /*avoid repetive assert alert */
7982
7983
7984
} else {
7985
BLOGE(sc, "Unknown HW assert! (attn 0x%08x)\n", attn);
7986
}
7987
}
7988
7989
if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
7990
BLOGE(sc, "LATCHED attention 0x%08x (masked)\n", attn);
7991
if (attn & BXE_GRC_TIMEOUT) {
7992
val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_TIMEOUT_ATTN);
7993
BLOGE(sc, "GRC time-out 0x%08x\n", val);
7994
}
7995
if (attn & BXE_GRC_RSV) {
7996
val = CHIP_IS_E1(sc) ? 0 : REG_RD(sc, MISC_REG_GRC_RSV_ATTN);
7997
BLOGE(sc, "GRC reserved 0x%08x\n", val);
7998
}
7999
REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
8000
}
8001
}
8002
8003
static void
8004
bxe_attn_int_deasserted2(struct bxe_softc *sc,
8005
uint32_t attn)
8006
{
8007
int port = SC_PORT(sc);
8008
int reg_offset;
8009
uint32_t val0, mask0, val1, mask1;
8010
uint32_t val;
8011
bool err_flg = false;
8012
8013
if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
8014
val = REG_RD(sc, CFC_REG_CFC_INT_STS_CLR);
8015
BLOGE(sc, "CFC hw attention 0x%08x\n", val);
8016
/* CFC error attention */
8017
if (val & 0x2) {
8018
BLOGE(sc, "FATAL error from CFC\n");
8019
err_flg = true;
8020
}
8021
}
8022
8023
if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
8024
val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_0);
8025
BLOGE(sc, "PXP hw attention-0 0x%08x\n", val);
8026
/* RQ_USDMDP_FIFO_OVERFLOW */
8027
if (val & 0x18000) {
8028
BLOGE(sc, "FATAL error from PXP\n");
8029
err_flg = true;
8030
}
8031
8032
if (!CHIP_IS_E1x(sc)) {
8033
val = REG_RD(sc, PXP_REG_PXP_INT_STS_CLR_1);
8034
BLOGE(sc, "PXP hw attention-1 0x%08x\n", val);
8035
err_flg = true;
8036
}
8037
}
8038
8039
#define PXP2_EOP_ERROR_BIT PXP2_PXP2_INT_STS_CLR_0_REG_WR_PGLUE_EOP_ERROR
8040
#define AEU_PXP2_HW_INT_BIT AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT
8041
8042
if (attn & AEU_PXP2_HW_INT_BIT) {
8043
/* CQ47854 workaround do not panic on
8044
* PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8045
*/
8046
if (!CHIP_IS_E1x(sc)) {
8047
mask0 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_0);
8048
val1 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_1);
8049
mask1 = REG_RD(sc, PXP2_REG_PXP2_INT_MASK_1);
8050
val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_0);
8051
/*
8052
* If the only PXP2_EOP_ERROR_BIT is set in
8053
* STS0 and STS1 - clear it
8054
*
8055
* probably we lose additional attentions between
8056
* STS0 and STS_CLR0, in this case user will not
8057
* be notified about them
8058
*/
8059
if (val0 & mask0 & PXP2_EOP_ERROR_BIT &&
8060
!(val1 & mask1))
8061
val0 = REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
8062
8063
/* print the register, since no one can restore it */
8064
BLOGE(sc, "PXP2_REG_PXP2_INT_STS_CLR_0 0x%08x\n", val0);
8065
8066
/*
8067
* if PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR
8068
* then notify
8069
*/
8070
if (val0 & PXP2_EOP_ERROR_BIT) {
8071
BLOGE(sc, "PXP2_WR_PGLUE_EOP_ERROR\n");
8072
err_flg = true;
8073
8074
/*
8075
* if only PXP2_PXP2_INT_STS_0_REG_WR_PGLUE_EOP_ERROR is
8076
* set then clear attention from PXP2 block without panic
8077
*/
8078
if (((val0 & mask0) == PXP2_EOP_ERROR_BIT) &&
8079
((val1 & mask1) == 0))
8080
attn &= ~AEU_PXP2_HW_INT_BIT;
8081
}
8082
}
8083
}
8084
8085
if (attn & HW_INTERRUT_ASSERT_SET_2) {
8086
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
8087
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
8088
8089
val = REG_RD(sc, reg_offset);
8090
val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
8091
REG_WR(sc, reg_offset, val);
8092
8093
BLOGE(sc, "FATAL HW block attention set2 0x%x\n",
8094
(uint32_t)(attn & HW_INTERRUT_ASSERT_SET_2));
8095
err_flg = true;
8096
bxe_panic(sc, ("HW block attention set2\n"));
8097
}
8098
if(err_flg) {
8099
BXE_SET_ERROR_BIT(sc, BXE_ERR_GLOBAL);
8100
taskqueue_enqueue_timeout(taskqueue_thread,
8101
&sc->sp_err_timeout_task, hz/10);
8102
}
8103
8104
}
8105
8106
static void
8107
bxe_attn_int_deasserted1(struct bxe_softc *sc,
8108
uint32_t attn)
8109
{
8110
int port = SC_PORT(sc);
8111
int reg_offset;
8112
uint32_t val;
8113
bool err_flg = false;
8114
8115
if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
8116
val = REG_RD(sc, DORQ_REG_DORQ_INT_STS_CLR);
8117
BLOGE(sc, "DB hw attention 0x%08x\n", val);
8118
/* DORQ discard attention */
8119
if (val & 0x2) {
8120
BLOGE(sc, "FATAL error from DORQ\n");
8121
err_flg = true;
8122
}
8123
}
8124
8125
if (attn & HW_INTERRUT_ASSERT_SET_1) {
8126
reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
8127
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
8128
8129
val = REG_RD(sc, reg_offset);
8130
val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
8131
REG_WR(sc, reg_offset, val);
8132
8133
BLOGE(sc, "FATAL HW block attention set1 0x%08x\n",
8134
(uint32_t)(attn & HW_INTERRUT_ASSERT_SET_1));
8135
err_flg = true;
8136
bxe_panic(sc, ("HW block attention set1\n"));
8137
}
8138
if(err_flg) {
8139
BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
8140
taskqueue_enqueue_timeout(taskqueue_thread,
8141
&sc->sp_err_timeout_task, hz/10);
8142
}
8143
8144
}
8145
8146
static void
8147
bxe_attn_int_deasserted0(struct bxe_softc *sc,
8148
uint32_t attn)
8149
{
8150
int port = SC_PORT(sc);
8151
int reg_offset;
8152
uint32_t val;
8153
8154
reg_offset = (port) ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
8155
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
8156
8157
if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
8158
val = REG_RD(sc, reg_offset);
8159
val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
8160
REG_WR(sc, reg_offset, val);
8161
8162
BLOGW(sc, "SPIO5 hw attention\n");
8163
8164
/* Fan failure attention */
8165
elink_hw_reset_phy(&sc->link_params);
8166
bxe_fan_failure(sc);
8167
}
8168
8169
if ((attn & sc->link_vars.aeu_int_mask) && sc->port.pmf) {
8170
bxe_acquire_phy_lock(sc);
8171
elink_handle_module_detect_int(&sc->link_params);
8172
bxe_release_phy_lock(sc);
8173
}
8174
8175
if (attn & HW_INTERRUT_ASSERT_SET_0) {
8176
val = REG_RD(sc, reg_offset);
8177
val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
8178
REG_WR(sc, reg_offset, val);
8179
8180
8181
BXE_SET_ERROR_BIT(sc, BXE_ERR_MISC);
8182
taskqueue_enqueue_timeout(taskqueue_thread,
8183
&sc->sp_err_timeout_task, hz/10);
8184
8185
bxe_panic(sc, ("FATAL HW block attention set0 0x%lx\n",
8186
(attn & HW_INTERRUT_ASSERT_SET_0)));
8187
}
8188
}
8189
8190
static void
8191
bxe_attn_int_deasserted(struct bxe_softc *sc,
8192
uint32_t deasserted)
8193
{
8194
struct attn_route attn;
8195
struct attn_route *group_mask;
8196
int port = SC_PORT(sc);
8197
int index;
8198
uint32_t reg_addr;
8199
uint32_t val;
8200
uint32_t aeu_mask;
8201
uint8_t global = FALSE;
8202
8203
/*
8204
* Need to take HW lock because MCP or other port might also
8205
* try to handle this event.
8206
*/
8207
bxe_acquire_alr(sc);
8208
8209
if (bxe_chk_parity_attn(sc, &global, TRUE)) {
8210
/* XXX
8211
* In case of parity errors don't handle attentions so that
8212
* other function would "see" parity errors.
8213
*/
8214
// XXX schedule a recovery task...
8215
/* disable HW interrupts */
8216
bxe_int_disable(sc);
8217
BXE_SET_ERROR_BIT(sc, BXE_ERR_PARITY);
8218
taskqueue_enqueue_timeout(taskqueue_thread,
8219
&sc->sp_err_timeout_task, hz/10);
8220
bxe_release_alr(sc);
8221
return;
8222
}
8223
8224
attn.sig[0] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
8225
attn.sig[1] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
8226
attn.sig[2] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
8227
attn.sig[3] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
8228
if (!CHIP_IS_E1x(sc)) {
8229
attn.sig[4] = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
8230
} else {
8231
attn.sig[4] = 0;
8232
}
8233
8234
BLOGD(sc, DBG_INTR, "attn: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
8235
attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
8236
8237
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
8238
if (deasserted & (1 << index)) {
8239
group_mask = &sc->attn_group[index];
8240
8241
BLOGD(sc, DBG_INTR,
8242
"group[%d]: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n", index,
8243
group_mask->sig[0], group_mask->sig[1],
8244
group_mask->sig[2], group_mask->sig[3],
8245
group_mask->sig[4]);
8246
8247
bxe_attn_int_deasserted4(sc, attn.sig[4] & group_mask->sig[4]);
8248
bxe_attn_int_deasserted3(sc, attn.sig[3] & group_mask->sig[3]);
8249
bxe_attn_int_deasserted1(sc, attn.sig[1] & group_mask->sig[1]);
8250
bxe_attn_int_deasserted2(sc, attn.sig[2] & group_mask->sig[2]);
8251
bxe_attn_int_deasserted0(sc, attn.sig[0] & group_mask->sig[0]);
8252
}
8253
}
8254
8255
bxe_release_alr(sc);
8256
8257
if (sc->devinfo.int_block == INT_BLOCK_HC) {
8258
reg_addr = (HC_REG_COMMAND_REG + port*32 +
8259
COMMAND_REG_ATTN_BITS_CLR);
8260
} else {
8261
reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
8262
}
8263
8264
val = ~deasserted;
8265
BLOGD(sc, DBG_INTR,
8266
"about to mask 0x%08x at %s addr 0x%08x\n", val,
8267
(sc->devinfo.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
8268
REG_WR(sc, reg_addr, val);
8269
8270
if (~sc->attn_state & deasserted) {
8271
BLOGE(sc, "IGU error\n");
8272
}
8273
8274
reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8275
MISC_REG_AEU_MASK_ATTN_FUNC_0;
8276
8277
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8278
8279
aeu_mask = REG_RD(sc, reg_addr);
8280
8281
BLOGD(sc, DBG_INTR, "aeu_mask 0x%08x newly deasserted 0x%08x\n",
8282
aeu_mask, deasserted);
8283
aeu_mask |= (deasserted & 0x3ff);
8284
BLOGD(sc, DBG_INTR, "new mask 0x%08x\n", aeu_mask);
8285
8286
REG_WR(sc, reg_addr, aeu_mask);
8287
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
8288
8289
BLOGD(sc, DBG_INTR, "attn_state 0x%08x\n", sc->attn_state);
8290
sc->attn_state &= ~deasserted;
8291
BLOGD(sc, DBG_INTR, "new state 0x%08x\n", sc->attn_state);
8292
}
8293
8294
static void
8295
bxe_attn_int(struct bxe_softc *sc)
8296
{
8297
/* read local copy of bits */
8298
uint32_t attn_bits = le32toh(sc->def_sb->atten_status_block.attn_bits);
8299
uint32_t attn_ack = le32toh(sc->def_sb->atten_status_block.attn_bits_ack);
8300
uint32_t attn_state = sc->attn_state;
8301
8302
/* look for changed bits */
8303
uint32_t asserted = attn_bits & ~attn_ack & ~attn_state;
8304
uint32_t deasserted = ~attn_bits & attn_ack & attn_state;
8305
8306
BLOGD(sc, DBG_INTR,
8307
"attn_bits 0x%08x attn_ack 0x%08x asserted 0x%08x deasserted 0x%08x\n",
8308
attn_bits, attn_ack, asserted, deasserted);
8309
8310
if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state)) {
8311
BLOGE(sc, "BAD attention state\n");
8312
}
8313
8314
/* handle bits that were raised */
8315
if (asserted) {
8316
bxe_attn_int_asserted(sc, asserted);
8317
}
8318
8319
if (deasserted) {
8320
bxe_attn_int_deasserted(sc, deasserted);
8321
}
8322
}
8323
8324
static uint16_t
8325
bxe_update_dsb_idx(struct bxe_softc *sc)
8326
{
8327
struct host_sp_status_block *def_sb = sc->def_sb;
8328
uint16_t rc = 0;
8329
8330
mb(); /* status block is written to by the chip */
8331
8332
if (sc->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
8333
sc->def_att_idx = def_sb->atten_status_block.attn_bits_index;
8334
rc |= BXE_DEF_SB_ATT_IDX;
8335
}
8336
8337
if (sc->def_idx != def_sb->sp_sb.running_index) {
8338
sc->def_idx = def_sb->sp_sb.running_index;
8339
rc |= BXE_DEF_SB_IDX;
8340
}
8341
8342
mb();
8343
8344
return (rc);
8345
}
8346
8347
static inline struct ecore_queue_sp_obj *
8348
bxe_cid_to_q_obj(struct bxe_softc *sc,
8349
uint32_t cid)
8350
{
8351
BLOGD(sc, DBG_SP, "retrieving fp from cid %d\n", cid);
8352
return (&sc->sp_objs[CID_TO_FP(cid, sc)].q_obj);
8353
}
8354
8355
static void
8356
bxe_handle_mcast_eqe(struct bxe_softc *sc)
8357
{
8358
struct ecore_mcast_ramrod_params rparam;
8359
int rc;
8360
8361
memset(&rparam, 0, sizeof(rparam));
8362
8363
rparam.mcast_obj = &sc->mcast_obj;
8364
8365
BXE_MCAST_LOCK(sc);
8366
8367
/* clear pending state for the last command */
8368
sc->mcast_obj.raw.clear_pending(&sc->mcast_obj.raw);
8369
8370
/* if there are pending mcast commands - send them */
8371
if (sc->mcast_obj.check_pending(&sc->mcast_obj)) {
8372
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_CONT);
8373
if (rc < 0) {
8374
BLOGD(sc, DBG_SP,
8375
"ERROR: Failed to send pending mcast commands (%d)\n", rc);
8376
}
8377
}
8378
8379
BXE_MCAST_UNLOCK(sc);
8380
}
8381
8382
static void
8383
bxe_handle_classification_eqe(struct bxe_softc *sc,
8384
union event_ring_elem *elem)
8385
{
8386
unsigned long ramrod_flags = 0;
8387
int rc = 0;
8388
uint32_t cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8389
struct ecore_vlan_mac_obj *vlan_mac_obj;
8390
8391
/* always push next commands out, don't wait here */
8392
bit_set(&ramrod_flags, RAMROD_CONT);
8393
8394
switch (le32toh(elem->message.data.eth_event.echo) >> BXE_SWCID_SHIFT) {
8395
case ECORE_FILTER_MAC_PENDING:
8396
BLOGD(sc, DBG_SP, "Got SETUP_MAC completions\n");
8397
vlan_mac_obj = &sc->sp_objs[cid].mac_obj;
8398
break;
8399
8400
case ECORE_FILTER_MCAST_PENDING:
8401
BLOGD(sc, DBG_SP, "Got SETUP_MCAST completions\n");
8402
/*
8403
* This is only relevant for 57710 where multicast MACs are
8404
* configured as unicast MACs using the same ramrod.
8405
*/
8406
bxe_handle_mcast_eqe(sc);
8407
return;
8408
8409
default:
8410
BLOGE(sc, "Unsupported classification command: %d\n",
8411
elem->message.data.eth_event.echo);
8412
return;
8413
}
8414
8415
rc = vlan_mac_obj->complete(sc, vlan_mac_obj, elem, &ramrod_flags);
8416
8417
if (rc < 0) {
8418
BLOGE(sc, "Failed to schedule new commands (%d)\n", rc);
8419
} else if (rc > 0) {
8420
BLOGD(sc, DBG_SP, "Scheduled next pending commands...\n");
8421
}
8422
}
8423
8424
static void
8425
bxe_handle_rx_mode_eqe(struct bxe_softc *sc,
8426
union event_ring_elem *elem)
8427
{
8428
bxe_clear_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state);
8429
8430
/* send rx_mode command again if was requested */
8431
if (bxe_test_and_clear_bit(ECORE_FILTER_RX_MODE_SCHED,
8432
&sc->sp_state)) {
8433
bxe_set_storm_rx_mode(sc);
8434
}
8435
}
8436
8437
static void
8438
bxe_update_eq_prod(struct bxe_softc *sc,
8439
uint16_t prod)
8440
{
8441
storm_memset_eq_prod(sc, prod, SC_FUNC(sc));
8442
wmb(); /* keep prod updates ordered */
8443
}
8444
8445
static void
8446
bxe_eq_int(struct bxe_softc *sc)
8447
{
8448
uint16_t hw_cons, sw_cons, sw_prod;
8449
union event_ring_elem *elem;
8450
uint8_t echo;
8451
uint32_t cid;
8452
uint8_t opcode;
8453
int spqe_cnt = 0;
8454
struct ecore_queue_sp_obj *q_obj;
8455
struct ecore_func_sp_obj *f_obj = &sc->func_obj;
8456
struct ecore_raw_obj *rss_raw = &sc->rss_conf_obj.raw;
8457
8458
hw_cons = le16toh(*sc->eq_cons_sb);
8459
8460
/*
8461
* The hw_cons range is 1-255, 257 - the sw_cons range is 0-254, 256.
8462
* when we get to the next-page we need to adjust so the loop
8463
* condition below will be met. The next element is the size of a
8464
* regular element and hence incrementing by 1
8465
*/
8466
if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE) {
8467
hw_cons++;
8468
}
8469
8470
/*
8471
* This function may never run in parallel with itself for a
8472
* specific sc and no need for a read memory barrier here.
8473
*/
8474
sw_cons = sc->eq_cons;
8475
sw_prod = sc->eq_prod;
8476
8477
BLOGD(sc, DBG_SP,"EQ: hw_cons=%u sw_cons=%u eq_spq_left=0x%lx\n",
8478
hw_cons, sw_cons, atomic_load_acq_long(&sc->eq_spq_left));
8479
8480
for (;
8481
sw_cons != hw_cons;
8482
sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
8483
8484
elem = &sc->eq[EQ_DESC(sw_cons)];
8485
8486
/* elem CID originates from FW, actually LE */
8487
cid = SW_CID(elem->message.data.cfc_del_event.cid);
8488
opcode = elem->message.opcode;
8489
8490
/* handle eq element */
8491
switch (opcode) {
8492
8493
case EVENT_RING_OPCODE_STAT_QUERY:
8494
BLOGD(sc, DBG_SP, "got statistics completion event %d\n",
8495
sc->stats_comp++);
8496
/* nothing to do with stats comp */
8497
goto next_spqe;
8498
8499
case EVENT_RING_OPCODE_CFC_DEL:
8500
/* handle according to cid range */
8501
/* we may want to verify here that the sc state is HALTING */
8502
BLOGD(sc, DBG_SP, "got delete ramrod for MULTI[%d]\n", cid);
8503
q_obj = bxe_cid_to_q_obj(sc, cid);
8504
if (q_obj->complete_cmd(sc, q_obj, ECORE_Q_CMD_CFC_DEL)) {
8505
break;
8506
}
8507
goto next_spqe;
8508
8509
case EVENT_RING_OPCODE_STOP_TRAFFIC:
8510
BLOGD(sc, DBG_SP, "got STOP TRAFFIC\n");
8511
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_STOP)) {
8512
break;
8513
}
8514
// XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_PAUSED);
8515
goto next_spqe;
8516
8517
case EVENT_RING_OPCODE_START_TRAFFIC:
8518
BLOGD(sc, DBG_SP, "got START TRAFFIC\n");
8519
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_TX_START)) {
8520
break;
8521
}
8522
// XXX bxe_dcbx_set_params(sc, BXE_DCBX_STATE_TX_RELEASED);
8523
goto next_spqe;
8524
8525
case EVENT_RING_OPCODE_FUNCTION_UPDATE:
8526
echo = elem->message.data.function_update_event.echo;
8527
if (echo == SWITCH_UPDATE) {
8528
BLOGD(sc, DBG_SP, "got FUNC_SWITCH_UPDATE ramrod\n");
8529
if (f_obj->complete_cmd(sc, f_obj,
8530
ECORE_F_CMD_SWITCH_UPDATE)) {
8531
break;
8532
}
8533
}
8534
else {
8535
BLOGD(sc, DBG_SP,
8536
"AFEX: ramrod completed FUNCTION_UPDATE\n");
8537
}
8538
goto next_spqe;
8539
8540
case EVENT_RING_OPCODE_FORWARD_SETUP:
8541
q_obj = &bxe_fwd_sp_obj(sc, q_obj);
8542
if (q_obj->complete_cmd(sc, q_obj,
8543
ECORE_Q_CMD_SETUP_TX_ONLY)) {
8544
break;
8545
}
8546
goto next_spqe;
8547
8548
case EVENT_RING_OPCODE_FUNCTION_START:
8549
BLOGD(sc, DBG_SP, "got FUNC_START ramrod\n");
8550
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_START)) {
8551
break;
8552
}
8553
goto next_spqe;
8554
8555
case EVENT_RING_OPCODE_FUNCTION_STOP:
8556
BLOGD(sc, DBG_SP, "got FUNC_STOP ramrod\n");
8557
if (f_obj->complete_cmd(sc, f_obj, ECORE_F_CMD_STOP)) {
8558
break;
8559
}
8560
goto next_spqe;
8561
}
8562
8563
switch (opcode | sc->state) {
8564
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPEN):
8565
case (EVENT_RING_OPCODE_RSS_UPDATE_RULES | BXE_STATE_OPENING_WAITING_PORT):
8566
cid = elem->message.data.eth_event.echo & BXE_SWCID_MASK;
8567
BLOGD(sc, DBG_SP, "got RSS_UPDATE ramrod. CID %d\n", cid);
8568
rss_raw->clear_pending(rss_raw);
8569
break;
8570
8571
case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_OPEN):
8572
case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_DIAG):
8573
case (EVENT_RING_OPCODE_SET_MAC | BXE_STATE_CLOSING_WAITING_HALT):
8574
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_OPEN):
8575
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_DIAG):
8576
case (EVENT_RING_OPCODE_CLASSIFICATION_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8577
BLOGD(sc, DBG_SP, "got (un)set mac ramrod\n");
8578
bxe_handle_classification_eqe(sc, elem);
8579
break;
8580
8581
case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_OPEN):
8582
case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_DIAG):
8583
case (EVENT_RING_OPCODE_MULTICAST_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8584
BLOGD(sc, DBG_SP, "got mcast ramrod\n");
8585
bxe_handle_mcast_eqe(sc);
8586
break;
8587
8588
case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_OPEN):
8589
case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_DIAG):
8590
case (EVENT_RING_OPCODE_FILTERS_RULES | BXE_STATE_CLOSING_WAITING_HALT):
8591
BLOGD(sc, DBG_SP, "got rx_mode ramrod\n");
8592
bxe_handle_rx_mode_eqe(sc, elem);
8593
break;
8594
8595
default:
8596
/* unknown event log error and continue */
8597
BLOGE(sc, "Unknown EQ event %d, sc->state 0x%x\n",
8598
elem->message.opcode, sc->state);
8599
}
8600
8601
next_spqe:
8602
spqe_cnt++;
8603
} /* for */
8604
8605
mb();
8606
atomic_add_acq_long(&sc->eq_spq_left, spqe_cnt);
8607
8608
sc->eq_cons = sw_cons;
8609
sc->eq_prod = sw_prod;
8610
8611
/* make sure that above mem writes were issued towards the memory */
8612
wmb();
8613
8614
/* update producer */
8615
bxe_update_eq_prod(sc, sc->eq_prod);
8616
}
8617
8618
static void
8619
bxe_handle_sp_tq(void *context,
8620
int pending)
8621
{
8622
struct bxe_softc *sc = (struct bxe_softc *)context;
8623
uint16_t status;
8624
8625
BLOGD(sc, DBG_SP, "---> SP TASK <---\n");
8626
8627
/* what work needs to be performed? */
8628
status = bxe_update_dsb_idx(sc);
8629
8630
BLOGD(sc, DBG_SP, "dsb status 0x%04x\n", status);
8631
8632
/* HW attentions */
8633
if (status & BXE_DEF_SB_ATT_IDX) {
8634
BLOGD(sc, DBG_SP, "---> ATTN INTR <---\n");
8635
bxe_attn_int(sc);
8636
status &= ~BXE_DEF_SB_ATT_IDX;
8637
}
8638
8639
/* SP events: STAT_QUERY and others */
8640
if (status & BXE_DEF_SB_IDX) {
8641
/* handle EQ completions */
8642
BLOGD(sc, DBG_SP, "---> EQ INTR <---\n");
8643
bxe_eq_int(sc);
8644
bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID,
8645
le16toh(sc->def_idx), IGU_INT_NOP, 1);
8646
status &= ~BXE_DEF_SB_IDX;
8647
}
8648
8649
/* if status is non zero then something went wrong */
8650
if (__predict_false(status)) {
8651
BLOGE(sc, "Got an unknown SP interrupt! (0x%04x)\n", status);
8652
}
8653
8654
/* ack status block only if something was actually handled */
8655
bxe_ack_sb(sc, sc->igu_dsb_id, ATTENTION_ID,
8656
le16toh(sc->def_att_idx), IGU_INT_ENABLE, 1);
8657
8658
/*
8659
* Must be called after the EQ processing (since eq leads to sriov
8660
* ramrod completion flows).
8661
* This flow may have been scheduled by the arrival of a ramrod
8662
* completion, or by the sriov code rescheduling itself.
8663
*/
8664
// XXX bxe_iov_sp_task(sc);
8665
8666
}
8667
8668
static void
8669
bxe_handle_fp_tq(void *context,
8670
int pending)
8671
{
8672
struct bxe_fastpath *fp = (struct bxe_fastpath *)context;
8673
struct bxe_softc *sc = fp->sc;
8674
/* uint8_t more_tx = FALSE; */
8675
uint8_t more_rx = FALSE;
8676
8677
BLOGD(sc, DBG_INTR, "---> FP TASK QUEUE (%d) <---\n", fp->index);
8678
8679
/* XXX
8680
* IFF_DRV_RUNNING state can't be checked here since we process
8681
* slowpath events on a client queue during setup. Instead
8682
* we need to add a "process/continue" flag here that the driver
8683
* can use to tell the task here not to do anything.
8684
*/
8685
#if 0
8686
if (!(if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING)) {
8687
return;
8688
}
8689
#endif
8690
8691
/* update the fastpath index */
8692
bxe_update_fp_sb_idx(fp);
8693
8694
/* XXX add loop here if ever support multiple tx CoS */
8695
/* fp->txdata[cos] */
8696
if (bxe_has_tx_work(fp)) {
8697
BXE_FP_TX_LOCK(fp);
8698
/* more_tx = */ bxe_txeof(sc, fp);
8699
BXE_FP_TX_UNLOCK(fp);
8700
}
8701
8702
if (bxe_has_rx_work(fp)) {
8703
more_rx = bxe_rxeof(sc, fp);
8704
}
8705
8706
if (more_rx /*|| more_tx*/) {
8707
/* still more work to do */
8708
taskqueue_enqueue(fp->tq, &fp->tq_task);
8709
return;
8710
}
8711
8712
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8713
le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8714
}
8715
8716
static void
8717
bxe_task_fp(struct bxe_fastpath *fp)
8718
{
8719
struct bxe_softc *sc = fp->sc;
8720
/* uint8_t more_tx = FALSE; */
8721
uint8_t more_rx = FALSE;
8722
8723
BLOGD(sc, DBG_INTR, "---> FP TASK ISR (%d) <---\n", fp->index);
8724
8725
/* update the fastpath index */
8726
bxe_update_fp_sb_idx(fp);
8727
8728
/* XXX add loop here if ever support multiple tx CoS */
8729
/* fp->txdata[cos] */
8730
if (bxe_has_tx_work(fp)) {
8731
BXE_FP_TX_LOCK(fp);
8732
/* more_tx = */ bxe_txeof(sc, fp);
8733
BXE_FP_TX_UNLOCK(fp);
8734
}
8735
8736
if (bxe_has_rx_work(fp)) {
8737
more_rx = bxe_rxeof(sc, fp);
8738
}
8739
8740
if (more_rx /*|| more_tx*/) {
8741
/* still more work to do, bail out if this ISR and process later */
8742
taskqueue_enqueue(fp->tq, &fp->tq_task);
8743
return;
8744
}
8745
8746
/*
8747
* Here we write the fastpath index taken before doing any tx or rx work.
8748
* It is very well possible other hw events occurred up to this point and
8749
* they were actually processed accordingly above. Since we're going to
8750
* write an older fastpath index, an interrupt is coming which we might
8751
* not do any work in.
8752
*/
8753
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID,
8754
le16toh(fp->fp_hc_idx), IGU_INT_ENABLE, 1);
8755
}
8756
8757
/*
8758
* Legacy interrupt entry point.
8759
*
8760
* Verifies that the controller generated the interrupt and
8761
* then calls a separate routine to handle the various
8762
* interrupt causes: link, RX, and TX.
8763
*/
8764
static void
8765
bxe_intr_legacy(void *xsc)
8766
{
8767
struct bxe_softc *sc = (struct bxe_softc *)xsc;
8768
struct bxe_fastpath *fp;
8769
uint16_t status, mask;
8770
int i;
8771
8772
BLOGD(sc, DBG_INTR, "---> BXE INTx <---\n");
8773
8774
/*
8775
* 0 for ustorm, 1 for cstorm
8776
* the bits returned from ack_int() are 0-15
8777
* bit 0 = attention status block
8778
* bit 1 = fast path status block
8779
* a mask of 0x2 or more = tx/rx event
8780
* a mask of 1 = slow path event
8781
*/
8782
8783
status = bxe_ack_int(sc);
8784
8785
/* the interrupt is not for us */
8786
if (__predict_false(status == 0)) {
8787
BLOGD(sc, DBG_INTR, "Not our interrupt!\n");
8788
return;
8789
}
8790
8791
BLOGD(sc, DBG_INTR, "Interrupt status 0x%04x\n", status);
8792
8793
FOR_EACH_ETH_QUEUE(sc, i) {
8794
fp = &sc->fp[i];
8795
mask = (0x2 << (fp->index + CNIC_SUPPORT(sc)));
8796
if (status & mask) {
8797
/* acknowledge and disable further fastpath interrupts */
8798
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8799
bxe_task_fp(fp);
8800
status &= ~mask;
8801
}
8802
}
8803
8804
if (__predict_false(status & 0x1)) {
8805
/* acknowledge and disable further slowpath interrupts */
8806
bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8807
8808
/* schedule slowpath handler */
8809
taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8810
8811
status &= ~0x1;
8812
}
8813
8814
if (__predict_false(status)) {
8815
BLOGW(sc, "Unexpected fastpath status (0x%08x)!\n", status);
8816
}
8817
}
8818
8819
/* slowpath interrupt entry point */
8820
static void
8821
bxe_intr_sp(void *xsc)
8822
{
8823
struct bxe_softc *sc = (struct bxe_softc *)xsc;
8824
8825
BLOGD(sc, (DBG_INTR | DBG_SP), "---> SP INTR <---\n");
8826
8827
/* acknowledge and disable further slowpath interrupts */
8828
bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8829
8830
/* schedule slowpath handler */
8831
taskqueue_enqueue(sc->sp_tq, &sc->sp_tq_task);
8832
}
8833
8834
/* fastpath interrupt entry point */
8835
static void
8836
bxe_intr_fp(void *xfp)
8837
{
8838
struct bxe_fastpath *fp = (struct bxe_fastpath *)xfp;
8839
struct bxe_softc *sc = fp->sc;
8840
8841
BLOGD(sc, DBG_INTR, "---> FP INTR %d <---\n", fp->index);
8842
8843
BLOGD(sc, DBG_INTR,
8844
"(cpu=%d) MSI-X fp=%d fw_sb=%d igu_sb=%d\n",
8845
curcpu, fp->index, fp->fw_sb_id, fp->igu_sb_id);
8846
8847
/* acknowledge and disable further fastpath interrupts */
8848
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
8849
8850
bxe_task_fp(fp);
8851
}
8852
8853
/* Release all interrupts allocated by the driver. */
8854
static void
8855
bxe_interrupt_free(struct bxe_softc *sc)
8856
{
8857
int i;
8858
8859
switch (sc->interrupt_mode) {
8860
case INTR_MODE_INTX:
8861
BLOGD(sc, DBG_LOAD, "Releasing legacy INTx vector\n");
8862
if (sc->intr[0].resource != NULL) {
8863
bus_release_resource(sc->dev,
8864
SYS_RES_IRQ,
8865
sc->intr[0].rid,
8866
sc->intr[0].resource);
8867
}
8868
break;
8869
case INTR_MODE_MSI:
8870
for (i = 0; i < sc->intr_count; i++) {
8871
BLOGD(sc, DBG_LOAD, "Releasing MSI vector %d\n", i);
8872
if (sc->intr[i].resource && sc->intr[i].rid) {
8873
bus_release_resource(sc->dev,
8874
SYS_RES_IRQ,
8875
sc->intr[i].rid,
8876
sc->intr[i].resource);
8877
}
8878
}
8879
pci_release_msi(sc->dev);
8880
break;
8881
case INTR_MODE_MSIX:
8882
for (i = 0; i < sc->intr_count; i++) {
8883
BLOGD(sc, DBG_LOAD, "Releasing MSI-X vector %d\n", i);
8884
if (sc->intr[i].resource && sc->intr[i].rid) {
8885
bus_release_resource(sc->dev,
8886
SYS_RES_IRQ,
8887
sc->intr[i].rid,
8888
sc->intr[i].resource);
8889
}
8890
}
8891
pci_release_msi(sc->dev);
8892
break;
8893
default:
8894
/* nothing to do as initial allocation failed */
8895
break;
8896
}
8897
}
8898
8899
/*
8900
* This function determines and allocates the appropriate
8901
* interrupt based on system capabilites and user request.
8902
*
8903
* The user may force a particular interrupt mode, specify
8904
* the number of receive queues, specify the method for
8905
* distribuitng received frames to receive queues, or use
8906
* the default settings which will automatically select the
8907
* best supported combination. In addition, the OS may or
8908
* may not support certain combinations of these settings.
8909
* This routine attempts to reconcile the settings requested
8910
* by the user with the capabilites available from the system
8911
* to select the optimal combination of features.
8912
*
8913
* Returns:
8914
* 0 = Success, !0 = Failure.
8915
*/
8916
static int
8917
bxe_interrupt_alloc(struct bxe_softc *sc)
8918
{
8919
int msix_count = 0;
8920
int msi_count = 0;
8921
int num_requested = 0;
8922
int num_allocated = 0;
8923
int rid, i, j;
8924
int rc;
8925
8926
/* get the number of available MSI/MSI-X interrupts from the OS */
8927
if (sc->interrupt_mode > 0) {
8928
if (sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) {
8929
msix_count = pci_msix_count(sc->dev);
8930
}
8931
8932
if (sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) {
8933
msi_count = pci_msi_count(sc->dev);
8934
}
8935
8936
BLOGD(sc, DBG_LOAD, "%d MSI and %d MSI-X vectors available\n",
8937
msi_count, msix_count);
8938
}
8939
8940
do { /* try allocating MSI-X interrupt resources (at least 2) */
8941
if (sc->interrupt_mode != INTR_MODE_MSIX) {
8942
break;
8943
}
8944
8945
if (((sc->devinfo.pcie_cap_flags & BXE_MSIX_CAPABLE_FLAG) == 0) ||
8946
(msix_count < 2)) {
8947
sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8948
break;
8949
}
8950
8951
/* ask for the necessary number of MSI-X vectors */
8952
num_requested = min((sc->num_queues + 1), msix_count);
8953
8954
BLOGD(sc, DBG_LOAD, "Requesting %d MSI-X vectors\n", num_requested);
8955
8956
num_allocated = num_requested;
8957
if ((rc = pci_alloc_msix(sc->dev, &num_allocated)) != 0) {
8958
BLOGE(sc, "MSI-X alloc failed! (%d)\n", rc);
8959
sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8960
break;
8961
}
8962
8963
if (num_allocated < 2) { /* possible? */
8964
BLOGE(sc, "MSI-X allocation less than 2!\n");
8965
sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
8966
pci_release_msi(sc->dev);
8967
break;
8968
}
8969
8970
BLOGI(sc, "MSI-X vectors Requested %d and Allocated %d\n",
8971
num_requested, num_allocated);
8972
8973
/* best effort so use the number of vectors allocated to us */
8974
sc->intr_count = num_allocated;
8975
sc->num_queues = num_allocated - 1;
8976
8977
rid = 1; /* initial resource identifier */
8978
8979
/* allocate the MSI-X vectors */
8980
for (i = 0; i < num_allocated; i++) {
8981
sc->intr[i].rid = (rid + i);
8982
8983
if ((sc->intr[i].resource =
8984
bus_alloc_resource_any(sc->dev,
8985
SYS_RES_IRQ,
8986
&sc->intr[i].rid,
8987
RF_ACTIVE)) == NULL) {
8988
BLOGE(sc, "Failed to map MSI-X[%d] (rid=%d)!\n",
8989
i, (rid + i));
8990
8991
for (j = (i - 1); j >= 0; j--) {
8992
bus_release_resource(sc->dev,
8993
SYS_RES_IRQ,
8994
sc->intr[j].rid,
8995
sc->intr[j].resource);
8996
}
8997
8998
sc->intr_count = 0;
8999
sc->num_queues = 0;
9000
sc->interrupt_mode = INTR_MODE_MSI; /* try MSI next */
9001
pci_release_msi(sc->dev);
9002
break;
9003
}
9004
9005
BLOGD(sc, DBG_LOAD, "Mapped MSI-X[%d] (rid=%d)\n", i, (rid + i));
9006
}
9007
} while (0);
9008
9009
do { /* try allocating MSI vector resources (at least 2) */
9010
if (sc->interrupt_mode != INTR_MODE_MSI) {
9011
break;
9012
}
9013
9014
if (((sc->devinfo.pcie_cap_flags & BXE_MSI_CAPABLE_FLAG) == 0) ||
9015
(msi_count < 1)) {
9016
sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9017
break;
9018
}
9019
9020
/* ask for a single MSI vector */
9021
num_requested = 1;
9022
9023
BLOGD(sc, DBG_LOAD, "Requesting %d MSI vectors\n", num_requested);
9024
9025
num_allocated = num_requested;
9026
if ((rc = pci_alloc_msi(sc->dev, &num_allocated)) != 0) {
9027
BLOGE(sc, "MSI alloc failed (%d)!\n", rc);
9028
sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9029
break;
9030
}
9031
9032
if (num_allocated != 1) { /* possible? */
9033
BLOGE(sc, "MSI allocation is not 1!\n");
9034
sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9035
pci_release_msi(sc->dev);
9036
break;
9037
}
9038
9039
BLOGI(sc, "MSI vectors Requested %d and Allocated %d\n",
9040
num_requested, num_allocated);
9041
9042
/* best effort so use the number of vectors allocated to us */
9043
sc->intr_count = num_allocated;
9044
sc->num_queues = num_allocated;
9045
9046
rid = 1; /* initial resource identifier */
9047
9048
sc->intr[0].rid = rid;
9049
9050
if ((sc->intr[0].resource =
9051
bus_alloc_resource_any(sc->dev,
9052
SYS_RES_IRQ,
9053
&sc->intr[0].rid,
9054
RF_ACTIVE)) == NULL) {
9055
BLOGE(sc, "Failed to map MSI[0] (rid=%d)!\n", rid);
9056
sc->intr_count = 0;
9057
sc->num_queues = 0;
9058
sc->interrupt_mode = INTR_MODE_INTX; /* try INTx next */
9059
pci_release_msi(sc->dev);
9060
break;
9061
}
9062
9063
BLOGD(sc, DBG_LOAD, "Mapped MSI[0] (rid=%d)\n", rid);
9064
} while (0);
9065
9066
do { /* try allocating INTx vector resources */
9067
if (sc->interrupt_mode != INTR_MODE_INTX) {
9068
break;
9069
}
9070
9071
BLOGD(sc, DBG_LOAD, "Requesting legacy INTx interrupt\n");
9072
9073
/* only one vector for INTx */
9074
sc->intr_count = 1;
9075
sc->num_queues = 1;
9076
9077
rid = 0; /* initial resource identifier */
9078
9079
sc->intr[0].rid = rid;
9080
9081
if ((sc->intr[0].resource =
9082
bus_alloc_resource_any(sc->dev,
9083
SYS_RES_IRQ,
9084
&sc->intr[0].rid,
9085
(RF_ACTIVE | RF_SHAREABLE))) == NULL) {
9086
BLOGE(sc, "Failed to map INTx (rid=%d)!\n", rid);
9087
sc->intr_count = 0;
9088
sc->num_queues = 0;
9089
sc->interrupt_mode = -1; /* Failed! */
9090
break;
9091
}
9092
9093
BLOGD(sc, DBG_LOAD, "Mapped INTx (rid=%d)\n", rid);
9094
} while (0);
9095
9096
if (sc->interrupt_mode == -1) {
9097
BLOGE(sc, "Interrupt Allocation: FAILED!!!\n");
9098
rc = 1;
9099
} else {
9100
BLOGD(sc, DBG_LOAD,
9101
"Interrupt Allocation: interrupt_mode=%d, num_queues=%d\n",
9102
sc->interrupt_mode, sc->num_queues);
9103
rc = 0;
9104
}
9105
9106
return (rc);
9107
}
9108
9109
static void
9110
bxe_interrupt_detach(struct bxe_softc *sc)
9111
{
9112
struct bxe_fastpath *fp;
9113
int i;
9114
9115
/* release interrupt resources */
9116
for (i = 0; i < sc->intr_count; i++) {
9117
if (sc->intr[i].resource && sc->intr[i].tag) {
9118
BLOGD(sc, DBG_LOAD, "Disabling interrupt vector %d\n", i);
9119
bus_teardown_intr(sc->dev, sc->intr[i].resource, sc->intr[i].tag);
9120
}
9121
}
9122
9123
for (i = 0; i < sc->num_queues; i++) {
9124
fp = &sc->fp[i];
9125
if (fp->tq) {
9126
taskqueue_drain(fp->tq, &fp->tq_task);
9127
taskqueue_drain(fp->tq, &fp->tx_task);
9128
while (taskqueue_cancel_timeout(fp->tq, &fp->tx_timeout_task,
9129
NULL))
9130
taskqueue_drain_timeout(fp->tq, &fp->tx_timeout_task);
9131
}
9132
9133
for (i = 0; i < sc->num_queues; i++) {
9134
fp = &sc->fp[i];
9135
if (fp->tq != NULL) {
9136
taskqueue_free(fp->tq);
9137
fp->tq = NULL;
9138
}
9139
}
9140
}
9141
9142
if (sc->sp_tq) {
9143
taskqueue_drain(sc->sp_tq, &sc->sp_tq_task);
9144
taskqueue_free(sc->sp_tq);
9145
sc->sp_tq = NULL;
9146
}
9147
}
9148
9149
/*
9150
* Enables interrupts and attach to the ISR.
9151
*
9152
* When using multiple MSI/MSI-X vectors the first vector
9153
* is used for slowpath operations while all remaining
9154
* vectors are used for fastpath operations. If only a
9155
* single MSI/MSI-X vector is used (SINGLE_ISR) then the
9156
* ISR must look for both slowpath and fastpath completions.
9157
*/
9158
static int
9159
bxe_interrupt_attach(struct bxe_softc *sc)
9160
{
9161
struct bxe_fastpath *fp;
9162
int rc = 0;
9163
int i;
9164
9165
snprintf(sc->sp_tq_name, sizeof(sc->sp_tq_name),
9166
"bxe%d_sp_tq", sc->unit);
9167
TASK_INIT(&sc->sp_tq_task, 0, bxe_handle_sp_tq, sc);
9168
sc->sp_tq = taskqueue_create(sc->sp_tq_name, M_NOWAIT,
9169
taskqueue_thread_enqueue,
9170
&sc->sp_tq);
9171
taskqueue_start_threads(&sc->sp_tq, 1, PWAIT, /* lower priority */
9172
"%s", sc->sp_tq_name);
9173
9174
9175
for (i = 0; i < sc->num_queues; i++) {
9176
fp = &sc->fp[i];
9177
snprintf(fp->tq_name, sizeof(fp->tq_name),
9178
"bxe%d_fp%d_tq", sc->unit, i);
9179
NET_TASK_INIT(&fp->tq_task, 0, bxe_handle_fp_tq, fp);
9180
TASK_INIT(&fp->tx_task, 0, bxe_tx_mq_start_deferred, fp);
9181
fp->tq = taskqueue_create(fp->tq_name, M_NOWAIT,
9182
taskqueue_thread_enqueue,
9183
&fp->tq);
9184
TIMEOUT_TASK_INIT(fp->tq, &fp->tx_timeout_task, 0,
9185
bxe_tx_mq_start_deferred, fp);
9186
taskqueue_start_threads(&fp->tq, 1, PI_NET, /* higher priority */
9187
"%s", fp->tq_name);
9188
}
9189
9190
/* setup interrupt handlers */
9191
if (sc->interrupt_mode == INTR_MODE_MSIX) {
9192
BLOGD(sc, DBG_LOAD, "Enabling slowpath MSI-X[0] vector\n");
9193
9194
/*
9195
* Setup the interrupt handler. Note that we pass the driver instance
9196
* to the interrupt handler for the slowpath.
9197
*/
9198
if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9199
(INTR_TYPE_NET | INTR_MPSAFE),
9200
NULL, bxe_intr_sp, sc,
9201
&sc->intr[0].tag)) != 0) {
9202
BLOGE(sc, "Failed to allocate MSI-X[0] vector (%d)\n", rc);
9203
goto bxe_interrupt_attach_exit;
9204
}
9205
9206
bus_describe_intr(sc->dev, sc->intr[0].resource,
9207
sc->intr[0].tag, "sp");
9208
9209
/* bus_bind_intr(sc->dev, sc->intr[0].resource, 0); */
9210
9211
/* initialize the fastpath vectors (note the first was used for sp) */
9212
for (i = 0; i < sc->num_queues; i++) {
9213
fp = &sc->fp[i];
9214
BLOGD(sc, DBG_LOAD, "Enabling MSI-X[%d] vector\n", (i + 1));
9215
9216
/*
9217
* Setup the interrupt handler. Note that we pass the
9218
* fastpath context to the interrupt handler in this
9219
* case.
9220
*/
9221
if ((rc = bus_setup_intr(sc->dev, sc->intr[i + 1].resource,
9222
(INTR_TYPE_NET | INTR_MPSAFE),
9223
NULL, bxe_intr_fp, fp,
9224
&sc->intr[i + 1].tag)) != 0) {
9225
BLOGE(sc, "Failed to allocate MSI-X[%d] vector (%d)\n",
9226
(i + 1), rc);
9227
goto bxe_interrupt_attach_exit;
9228
}
9229
9230
bus_describe_intr(sc->dev, sc->intr[i + 1].resource,
9231
sc->intr[i + 1].tag, "fp%02d", i);
9232
9233
/* bind the fastpath instance to a cpu */
9234
if (sc->num_queues > 1) {
9235
bus_bind_intr(sc->dev, sc->intr[i + 1].resource, i);
9236
}
9237
9238
fp->state = BXE_FP_STATE_IRQ;
9239
}
9240
} else if (sc->interrupt_mode == INTR_MODE_MSI) {
9241
BLOGD(sc, DBG_LOAD, "Enabling MSI[0] vector\n");
9242
9243
/*
9244
* Setup the interrupt handler. Note that we pass the
9245
* driver instance to the interrupt handler which
9246
* will handle both the slowpath and fastpath.
9247
*/
9248
if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9249
(INTR_TYPE_NET | INTR_MPSAFE),
9250
NULL, bxe_intr_legacy, sc,
9251
&sc->intr[0].tag)) != 0) {
9252
BLOGE(sc, "Failed to allocate MSI[0] vector (%d)\n", rc);
9253
goto bxe_interrupt_attach_exit;
9254
}
9255
9256
} else { /* (sc->interrupt_mode == INTR_MODE_INTX) */
9257
BLOGD(sc, DBG_LOAD, "Enabling INTx interrupts\n");
9258
9259
/*
9260
* Setup the interrupt handler. Note that we pass the
9261
* driver instance to the interrupt handler which
9262
* will handle both the slowpath and fastpath.
9263
*/
9264
if ((rc = bus_setup_intr(sc->dev, sc->intr[0].resource,
9265
(INTR_TYPE_NET | INTR_MPSAFE),
9266
NULL, bxe_intr_legacy, sc,
9267
&sc->intr[0].tag)) != 0) {
9268
BLOGE(sc, "Failed to allocate INTx interrupt (%d)\n", rc);
9269
goto bxe_interrupt_attach_exit;
9270
}
9271
}
9272
9273
bxe_interrupt_attach_exit:
9274
9275
return (rc);
9276
}
9277
9278
static int bxe_init_hw_common_chip(struct bxe_softc *sc);
9279
static int bxe_init_hw_common(struct bxe_softc *sc);
9280
static int bxe_init_hw_port(struct bxe_softc *sc);
9281
static int bxe_init_hw_func(struct bxe_softc *sc);
9282
static void bxe_reset_common(struct bxe_softc *sc);
9283
static void bxe_reset_port(struct bxe_softc *sc);
9284
static void bxe_reset_func(struct bxe_softc *sc);
9285
static int bxe_gunzip_init(struct bxe_softc *sc);
9286
static void bxe_gunzip_end(struct bxe_softc *sc);
9287
static int bxe_init_firmware(struct bxe_softc *sc);
9288
static void bxe_release_firmware(struct bxe_softc *sc);
9289
9290
static struct
9291
ecore_func_sp_drv_ops bxe_func_sp_drv = {
9292
.init_hw_cmn_chip = bxe_init_hw_common_chip,
9293
.init_hw_cmn = bxe_init_hw_common,
9294
.init_hw_port = bxe_init_hw_port,
9295
.init_hw_func = bxe_init_hw_func,
9296
9297
.reset_hw_cmn = bxe_reset_common,
9298
.reset_hw_port = bxe_reset_port,
9299
.reset_hw_func = bxe_reset_func,
9300
9301
.gunzip_init = bxe_gunzip_init,
9302
.gunzip_end = bxe_gunzip_end,
9303
9304
.init_fw = bxe_init_firmware,
9305
.release_fw = bxe_release_firmware,
9306
};
9307
9308
static void
9309
bxe_init_func_obj(struct bxe_softc *sc)
9310
{
9311
sc->dmae_ready = 0;
9312
9313
ecore_init_func_obj(sc,
9314
&sc->func_obj,
9315
BXE_SP(sc, func_rdata),
9316
BXE_SP_MAPPING(sc, func_rdata),
9317
BXE_SP(sc, func_afex_rdata),
9318
BXE_SP_MAPPING(sc, func_afex_rdata),
9319
&bxe_func_sp_drv);
9320
}
9321
9322
static int
9323
bxe_init_hw(struct bxe_softc *sc,
9324
uint32_t load_code)
9325
{
9326
struct ecore_func_state_params func_params = { NULL };
9327
int rc;
9328
9329
/* prepare the parameters for function state transitions */
9330
bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
9331
9332
func_params.f_obj = &sc->func_obj;
9333
func_params.cmd = ECORE_F_CMD_HW_INIT;
9334
9335
func_params.params.hw_init.load_phase = load_code;
9336
9337
/*
9338
* Via a plethora of function pointers, we will eventually reach
9339
* bxe_init_hw_common(), bxe_init_hw_port(), or bxe_init_hw_func().
9340
*/
9341
rc = ecore_func_state_change(sc, &func_params);
9342
9343
return (rc);
9344
}
9345
9346
static void
9347
bxe_fill(struct bxe_softc *sc,
9348
uint32_t addr,
9349
int fill,
9350
uint32_t len)
9351
{
9352
uint32_t i;
9353
9354
if (!(len % 4) && !(addr % 4)) {
9355
for (i = 0; i < len; i += 4) {
9356
REG_WR(sc, (addr + i), fill);
9357
}
9358
} else {
9359
for (i = 0; i < len; i++) {
9360
REG_WR8(sc, (addr + i), fill);
9361
}
9362
}
9363
}
9364
9365
/* writes FP SP data to FW - data_size in dwords */
9366
static void
9367
bxe_wr_fp_sb_data(struct bxe_softc *sc,
9368
int fw_sb_id,
9369
uint32_t *sb_data_p,
9370
uint32_t data_size)
9371
{
9372
int index;
9373
9374
for (index = 0; index < data_size; index++) {
9375
REG_WR(sc,
9376
(BAR_CSTRORM_INTMEM +
9377
CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
9378
(sizeof(uint32_t) * index)),
9379
*(sb_data_p + index));
9380
}
9381
}
9382
9383
static void
9384
bxe_zero_fp_sb(struct bxe_softc *sc,
9385
int fw_sb_id)
9386
{
9387
struct hc_status_block_data_e2 sb_data_e2;
9388
struct hc_status_block_data_e1x sb_data_e1x;
9389
uint32_t *sb_data_p;
9390
uint32_t data_size = 0;
9391
9392
if (!CHIP_IS_E1x(sc)) {
9393
memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9394
sb_data_e2.common.state = SB_DISABLED;
9395
sb_data_e2.common.p_func.vf_valid = FALSE;
9396
sb_data_p = (uint32_t *)&sb_data_e2;
9397
data_size = (sizeof(struct hc_status_block_data_e2) /
9398
sizeof(uint32_t));
9399
} else {
9400
memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9401
sb_data_e1x.common.state = SB_DISABLED;
9402
sb_data_e1x.common.p_func.vf_valid = FALSE;
9403
sb_data_p = (uint32_t *)&sb_data_e1x;
9404
data_size = (sizeof(struct hc_status_block_data_e1x) /
9405
sizeof(uint32_t));
9406
}
9407
9408
bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9409
9410
bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id)),
9411
0, CSTORM_STATUS_BLOCK_SIZE);
9412
bxe_fill(sc, (BAR_CSTRORM_INTMEM + CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id)),
9413
0, CSTORM_SYNC_BLOCK_SIZE);
9414
}
9415
9416
static void
9417
bxe_wr_sp_sb_data(struct bxe_softc *sc,
9418
struct hc_sp_status_block_data *sp_sb_data)
9419
{
9420
int i;
9421
9422
for (i = 0;
9423
i < (sizeof(struct hc_sp_status_block_data) / sizeof(uint32_t));
9424
i++) {
9425
REG_WR(sc,
9426
(BAR_CSTRORM_INTMEM +
9427
CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(SC_FUNC(sc)) +
9428
(i * sizeof(uint32_t))),
9429
*((uint32_t *)sp_sb_data + i));
9430
}
9431
}
9432
9433
static void
9434
bxe_zero_sp_sb(struct bxe_softc *sc)
9435
{
9436
struct hc_sp_status_block_data sp_sb_data;
9437
9438
memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9439
9440
sp_sb_data.state = SB_DISABLED;
9441
sp_sb_data.p_func.vf_valid = FALSE;
9442
9443
bxe_wr_sp_sb_data(sc, &sp_sb_data);
9444
9445
bxe_fill(sc,
9446
(BAR_CSTRORM_INTMEM +
9447
CSTORM_SP_STATUS_BLOCK_OFFSET(SC_FUNC(sc))),
9448
0, CSTORM_SP_STATUS_BLOCK_SIZE);
9449
bxe_fill(sc,
9450
(BAR_CSTRORM_INTMEM +
9451
CSTORM_SP_SYNC_BLOCK_OFFSET(SC_FUNC(sc))),
9452
0, CSTORM_SP_SYNC_BLOCK_SIZE);
9453
}
9454
9455
static void
9456
bxe_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
9457
int igu_sb_id,
9458
int igu_seg_id)
9459
{
9460
hc_sm->igu_sb_id = igu_sb_id;
9461
hc_sm->igu_seg_id = igu_seg_id;
9462
hc_sm->timer_value = 0xFF;
9463
hc_sm->time_to_expire = 0xFFFFFFFF;
9464
}
9465
9466
static void
9467
bxe_map_sb_state_machines(struct hc_index_data *index_data)
9468
{
9469
/* zero out state machine indices */
9470
9471
/* rx indices */
9472
index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9473
9474
/* tx indices */
9475
index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
9476
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
9477
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
9478
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
9479
9480
/* map indices */
9481
9482
/* rx indices */
9483
index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
9484
(SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9485
9486
/* tx indices */
9487
index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
9488
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9489
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
9490
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9491
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
9492
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9493
index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
9494
(SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT);
9495
}
9496
9497
static void
9498
bxe_init_sb(struct bxe_softc *sc,
9499
bus_addr_t busaddr,
9500
int vfid,
9501
uint8_t vf_valid,
9502
int fw_sb_id,
9503
int igu_sb_id)
9504
{
9505
struct hc_status_block_data_e2 sb_data_e2;
9506
struct hc_status_block_data_e1x sb_data_e1x;
9507
struct hc_status_block_sm *hc_sm_p;
9508
uint32_t *sb_data_p;
9509
int igu_seg_id;
9510
int data_size;
9511
9512
if (CHIP_INT_MODE_IS_BC(sc)) {
9513
igu_seg_id = HC_SEG_ACCESS_NORM;
9514
} else {
9515
igu_seg_id = IGU_SEG_ACCESS_NORM;
9516
}
9517
9518
bxe_zero_fp_sb(sc, fw_sb_id);
9519
9520
if (!CHIP_IS_E1x(sc)) {
9521
memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
9522
sb_data_e2.common.state = SB_ENABLED;
9523
sb_data_e2.common.p_func.pf_id = SC_FUNC(sc);
9524
sb_data_e2.common.p_func.vf_id = vfid;
9525
sb_data_e2.common.p_func.vf_valid = vf_valid;
9526
sb_data_e2.common.p_func.vnic_id = SC_VN(sc);
9527
sb_data_e2.common.same_igu_sb_1b = TRUE;
9528
sb_data_e2.common.host_sb_addr.hi = U64_HI(busaddr);
9529
sb_data_e2.common.host_sb_addr.lo = U64_LO(busaddr);
9530
hc_sm_p = sb_data_e2.common.state_machine;
9531
sb_data_p = (uint32_t *)&sb_data_e2;
9532
data_size = (sizeof(struct hc_status_block_data_e2) /
9533
sizeof(uint32_t));
9534
bxe_map_sb_state_machines(sb_data_e2.index_data);
9535
} else {
9536
memset(&sb_data_e1x, 0, sizeof(struct hc_status_block_data_e1x));
9537
sb_data_e1x.common.state = SB_ENABLED;
9538
sb_data_e1x.common.p_func.pf_id = SC_FUNC(sc);
9539
sb_data_e1x.common.p_func.vf_id = 0xff;
9540
sb_data_e1x.common.p_func.vf_valid = FALSE;
9541
sb_data_e1x.common.p_func.vnic_id = SC_VN(sc);
9542
sb_data_e1x.common.same_igu_sb_1b = TRUE;
9543
sb_data_e1x.common.host_sb_addr.hi = U64_HI(busaddr);
9544
sb_data_e1x.common.host_sb_addr.lo = U64_LO(busaddr);
9545
hc_sm_p = sb_data_e1x.common.state_machine;
9546
sb_data_p = (uint32_t *)&sb_data_e1x;
9547
data_size = (sizeof(struct hc_status_block_data_e1x) /
9548
sizeof(uint32_t));
9549
bxe_map_sb_state_machines(sb_data_e1x.index_data);
9550
}
9551
9552
bxe_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID], igu_sb_id, igu_seg_id);
9553
bxe_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID], igu_sb_id, igu_seg_id);
9554
9555
BLOGD(sc, DBG_LOAD, "Init FW SB %d\n", fw_sb_id);
9556
9557
/* write indices to HW - PCI guarantees endianity of regpairs */
9558
bxe_wr_fp_sb_data(sc, fw_sb_id, sb_data_p, data_size);
9559
}
9560
9561
static inline uint8_t
9562
bxe_fp_qzone_id(struct bxe_fastpath *fp)
9563
{
9564
if (CHIP_IS_E1x(fp->sc)) {
9565
return (fp->cl_id + SC_PORT(fp->sc) * ETH_MAX_RX_CLIENTS_E1H);
9566
} else {
9567
return (fp->cl_id);
9568
}
9569
}
9570
9571
static inline uint32_t
9572
bxe_rx_ustorm_prods_offset(struct bxe_softc *sc,
9573
struct bxe_fastpath *fp)
9574
{
9575
uint32_t offset = BAR_USTRORM_INTMEM;
9576
9577
if (!CHIP_IS_E1x(sc)) {
9578
offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
9579
} else {
9580
offset += USTORM_RX_PRODS_E1X_OFFSET(SC_PORT(sc), fp->cl_id);
9581
}
9582
9583
return (offset);
9584
}
9585
9586
static void
9587
bxe_init_eth_fp(struct bxe_softc *sc,
9588
int idx)
9589
{
9590
struct bxe_fastpath *fp = &sc->fp[idx];
9591
uint32_t cids[ECORE_MULTI_TX_COS] = { 0 };
9592
unsigned long q_type = 0;
9593
int cos;
9594
9595
fp->sc = sc;
9596
fp->index = idx;
9597
9598
fp->igu_sb_id = (sc->igu_base_sb + idx + CNIC_SUPPORT(sc));
9599
fp->fw_sb_id = (sc->base_fw_ndsb + idx + CNIC_SUPPORT(sc));
9600
9601
fp->cl_id = (CHIP_IS_E1x(sc)) ?
9602
(SC_L_ID(sc) + idx) :
9603
/* want client ID same as IGU SB ID for non-E1 */
9604
fp->igu_sb_id;
9605
fp->cl_qzone_id = bxe_fp_qzone_id(fp);
9606
9607
/* setup sb indices */
9608
if (!CHIP_IS_E1x(sc)) {
9609
fp->sb_index_values = fp->status_block.e2_sb->sb.index_values;
9610
fp->sb_running_index = fp->status_block.e2_sb->sb.running_index;
9611
} else {
9612
fp->sb_index_values = fp->status_block.e1x_sb->sb.index_values;
9613
fp->sb_running_index = fp->status_block.e1x_sb->sb.running_index;
9614
}
9615
9616
/* init shortcut */
9617
fp->ustorm_rx_prods_offset = bxe_rx_ustorm_prods_offset(sc, fp);
9618
9619
fp->rx_cq_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS];
9620
9621
/*
9622
* XXX If multiple CoS is ever supported then each fastpath structure
9623
* will need to maintain tx producer/consumer/dma/etc values *per* CoS.
9624
*/
9625
for (cos = 0; cos < sc->max_cos; cos++) {
9626
cids[cos] = idx;
9627
}
9628
fp->tx_cons_sb = &fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0];
9629
9630
/* nothing more for a VF to do */
9631
if (IS_VF(sc)) {
9632
return;
9633
}
9634
9635
bxe_init_sb(sc, fp->sb_dma.paddr, BXE_VF_ID_INVALID, FALSE,
9636
fp->fw_sb_id, fp->igu_sb_id);
9637
9638
bxe_update_fp_sb_idx(fp);
9639
9640
/* Configure Queue State object */
9641
bit_set(&q_type, ECORE_Q_TYPE_HAS_RX);
9642
bit_set(&q_type, ECORE_Q_TYPE_HAS_TX);
9643
9644
ecore_init_queue_obj(sc,
9645
&sc->sp_objs[idx].q_obj,
9646
fp->cl_id,
9647
cids,
9648
sc->max_cos,
9649
SC_FUNC(sc),
9650
BXE_SP(sc, q_rdata),
9651
BXE_SP_MAPPING(sc, q_rdata),
9652
q_type);
9653
9654
/* configure classification DBs */
9655
ecore_init_mac_obj(sc,
9656
&sc->sp_objs[idx].mac_obj,
9657
fp->cl_id,
9658
idx,
9659
SC_FUNC(sc),
9660
BXE_SP(sc, mac_rdata),
9661
BXE_SP_MAPPING(sc, mac_rdata),
9662
ECORE_FILTER_MAC_PENDING,
9663
&sc->sp_state,
9664
ECORE_OBJ_TYPE_RX_TX,
9665
&sc->macs_pool);
9666
9667
BLOGD(sc, DBG_LOAD, "fp[%d]: sb=%p cl_id=%d fw_sb=%d igu_sb=%d\n",
9668
idx, fp->status_block.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id);
9669
}
9670
9671
static inline void
9672
bxe_update_rx_prod(struct bxe_softc *sc,
9673
struct bxe_fastpath *fp,
9674
uint16_t rx_bd_prod,
9675
uint16_t rx_cq_prod,
9676
uint16_t rx_sge_prod)
9677
{
9678
struct ustorm_eth_rx_producers rx_prods = { 0 };
9679
uint32_t i;
9680
9681
/* update producers */
9682
rx_prods.bd_prod = rx_bd_prod;
9683
rx_prods.cqe_prod = rx_cq_prod;
9684
rx_prods.sge_prod = rx_sge_prod;
9685
9686
/*
9687
* Make sure that the BD and SGE data is updated before updating the
9688
* producers since FW might read the BD/SGE right after the producer
9689
* is updated.
9690
* This is only applicable for weak-ordered memory model archs such
9691
* as IA-64. The following barrier is also mandatory since FW will
9692
* assumes BDs must have buffers.
9693
*/
9694
wmb();
9695
9696
for (i = 0; i < (sizeof(rx_prods) / 4); i++) {
9697
REG_WR(sc,
9698
(fp->ustorm_rx_prods_offset + (i * 4)),
9699
((uint32_t *)&rx_prods)[i]);
9700
}
9701
9702
wmb(); /* keep prod updates ordered */
9703
9704
BLOGD(sc, DBG_RX,
9705
"RX fp[%d]: wrote prods bd_prod=%u cqe_prod=%u sge_prod=%u\n",
9706
fp->index, rx_bd_prod, rx_cq_prod, rx_sge_prod);
9707
}
9708
9709
static void
9710
bxe_init_rx_rings(struct bxe_softc *sc)
9711
{
9712
struct bxe_fastpath *fp;
9713
int i;
9714
9715
for (i = 0; i < sc->num_queues; i++) {
9716
fp = &sc->fp[i];
9717
9718
fp->rx_bd_cons = 0;
9719
9720
/*
9721
* Activate the BD ring...
9722
* Warning, this will generate an interrupt (to the TSTORM)
9723
* so this can only be done after the chip is initialized
9724
*/
9725
bxe_update_rx_prod(sc, fp,
9726
fp->rx_bd_prod,
9727
fp->rx_cq_prod,
9728
fp->rx_sge_prod);
9729
9730
if (i != 0) {
9731
continue;
9732
}
9733
9734
if (CHIP_IS_E1(sc)) {
9735
REG_WR(sc,
9736
(BAR_USTRORM_INTMEM +
9737
USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc))),
9738
U64_LO(fp->rcq_dma.paddr));
9739
REG_WR(sc,
9740
(BAR_USTRORM_INTMEM +
9741
USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(SC_FUNC(sc)) + 4),
9742
U64_HI(fp->rcq_dma.paddr));
9743
}
9744
}
9745
}
9746
9747
static void
9748
bxe_init_tx_ring_one(struct bxe_fastpath *fp)
9749
{
9750
SET_FLAG(fp->tx_db.data.header.data, DOORBELL_HDR_T_DB_TYPE, 1);
9751
fp->tx_db.data.zero_fill1 = 0;
9752
fp->tx_db.data.prod = 0;
9753
9754
fp->tx_pkt_prod = 0;
9755
fp->tx_pkt_cons = 0;
9756
fp->tx_bd_prod = 0;
9757
fp->tx_bd_cons = 0;
9758
fp->eth_q_stats.tx_pkts = 0;
9759
}
9760
9761
static inline void
9762
bxe_init_tx_rings(struct bxe_softc *sc)
9763
{
9764
int i;
9765
9766
for (i = 0; i < sc->num_queues; i++) {
9767
bxe_init_tx_ring_one(&sc->fp[i]);
9768
}
9769
}
9770
9771
static void
9772
bxe_init_def_sb(struct bxe_softc *sc)
9773
{
9774
struct host_sp_status_block *def_sb = sc->def_sb;
9775
bus_addr_t mapping = sc->def_sb_dma.paddr;
9776
int igu_sp_sb_index;
9777
int igu_seg_id;
9778
int port = SC_PORT(sc);
9779
int func = SC_FUNC(sc);
9780
int reg_offset, reg_offset_en5;
9781
uint64_t section;
9782
int index, sindex;
9783
struct hc_sp_status_block_data sp_sb_data;
9784
9785
memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
9786
9787
if (CHIP_INT_MODE_IS_BC(sc)) {
9788
igu_sp_sb_index = DEF_SB_IGU_ID;
9789
igu_seg_id = HC_SEG_ACCESS_DEF;
9790
} else {
9791
igu_sp_sb_index = sc->igu_dsb_id;
9792
igu_seg_id = IGU_SEG_ACCESS_DEF;
9793
}
9794
9795
/* attentions */
9796
section = ((uint64_t)mapping +
9797
offsetof(struct host_sp_status_block, atten_status_block));
9798
def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
9799
sc->attn_state = 0;
9800
9801
reg_offset = (port) ?
9802
MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
9803
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0;
9804
reg_offset_en5 = (port) ?
9805
MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
9806
MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0;
9807
9808
for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
9809
/* take care of sig[0]..sig[4] */
9810
for (sindex = 0; sindex < 4; sindex++) {
9811
sc->attn_group[index].sig[sindex] =
9812
REG_RD(sc, (reg_offset + (sindex * 0x4) + (0x10 * index)));
9813
}
9814
9815
if (!CHIP_IS_E1x(sc)) {
9816
/*
9817
* enable5 is separate from the rest of the registers,
9818
* and the address skip is 4 and not 16 between the
9819
* different groups
9820
*/
9821
sc->attn_group[index].sig[4] =
9822
REG_RD(sc, (reg_offset_en5 + (0x4 * index)));
9823
} else {
9824
sc->attn_group[index].sig[4] = 0;
9825
}
9826
}
9827
9828
if (sc->devinfo.int_block == INT_BLOCK_HC) {
9829
reg_offset = (port) ?
9830
HC_REG_ATTN_MSG1_ADDR_L :
9831
HC_REG_ATTN_MSG0_ADDR_L;
9832
REG_WR(sc, reg_offset, U64_LO(section));
9833
REG_WR(sc, (reg_offset + 4), U64_HI(section));
9834
} else if (!CHIP_IS_E1x(sc)) {
9835
REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
9836
REG_WR(sc, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
9837
}
9838
9839
section = ((uint64_t)mapping +
9840
offsetof(struct host_sp_status_block, sp_sb));
9841
9842
bxe_zero_sp_sb(sc);
9843
9844
/* PCI guarantees endianity of regpair */
9845
sp_sb_data.state = SB_ENABLED;
9846
sp_sb_data.host_sb_addr.lo = U64_LO(section);
9847
sp_sb_data.host_sb_addr.hi = U64_HI(section);
9848
sp_sb_data.igu_sb_id = igu_sp_sb_index;
9849
sp_sb_data.igu_seg_id = igu_seg_id;
9850
sp_sb_data.p_func.pf_id = func;
9851
sp_sb_data.p_func.vnic_id = SC_VN(sc);
9852
sp_sb_data.p_func.vf_id = 0xff;
9853
9854
bxe_wr_sp_sb_data(sc, &sp_sb_data);
9855
9856
bxe_ack_sb(sc, sc->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
9857
}
9858
9859
static void
9860
bxe_init_sp_ring(struct bxe_softc *sc)
9861
{
9862
atomic_store_rel_long(&sc->cq_spq_left, MAX_SPQ_PENDING);
9863
sc->spq_prod_idx = 0;
9864
sc->dsb_sp_prod = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_ETH_DEF_CONS];
9865
sc->spq_prod_bd = sc->spq;
9866
sc->spq_last_bd = (sc->spq_prod_bd + MAX_SP_DESC_CNT);
9867
}
9868
9869
static void
9870
bxe_init_eq_ring(struct bxe_softc *sc)
9871
{
9872
union event_ring_elem *elem;
9873
int i;
9874
9875
for (i = 1; i <= NUM_EQ_PAGES; i++) {
9876
elem = &sc->eq[EQ_DESC_CNT_PAGE * i - 1];
9877
9878
elem->next_page.addr.hi = htole32(U64_HI(sc->eq_dma.paddr +
9879
BCM_PAGE_SIZE *
9880
(i % NUM_EQ_PAGES)));
9881
elem->next_page.addr.lo = htole32(U64_LO(sc->eq_dma.paddr +
9882
BCM_PAGE_SIZE *
9883
(i % NUM_EQ_PAGES)));
9884
}
9885
9886
sc->eq_cons = 0;
9887
sc->eq_prod = NUM_EQ_DESC;
9888
sc->eq_cons_sb = &sc->def_sb->sp_sb.index_values[HC_SP_INDEX_EQ_CONS];
9889
9890
atomic_store_rel_long(&sc->eq_spq_left,
9891
(min((MAX_SP_DESC_CNT - MAX_SPQ_PENDING),
9892
NUM_EQ_DESC) - 1));
9893
}
9894
9895
static void
9896
bxe_init_internal_common(struct bxe_softc *sc)
9897
{
9898
int i;
9899
9900
/*
9901
* Zero this manually as its initialization is currently missing
9902
* in the initTool.
9903
*/
9904
for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++) {
9905
REG_WR(sc,
9906
(BAR_USTRORM_INTMEM + USTORM_AGG_DATA_OFFSET + (i * 4)),
9907
0);
9908
}
9909
9910
if (!CHIP_IS_E1x(sc)) {
9911
REG_WR8(sc, (BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET),
9912
CHIP_INT_MODE_IS_BC(sc) ? HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
9913
}
9914
}
9915
9916
static void
9917
bxe_init_internal(struct bxe_softc *sc,
9918
uint32_t load_code)
9919
{
9920
switch (load_code) {
9921
case FW_MSG_CODE_DRV_LOAD_COMMON:
9922
case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
9923
bxe_init_internal_common(sc);
9924
/* no break */
9925
9926
case FW_MSG_CODE_DRV_LOAD_PORT:
9927
/* nothing to do */
9928
/* no break */
9929
9930
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
9931
/* internal memory per function is initialized inside bxe_pf_init */
9932
break;
9933
9934
default:
9935
BLOGE(sc, "Unknown load_code (0x%x) from MCP\n", load_code);
9936
break;
9937
}
9938
}
9939
9940
static void
9941
storm_memset_func_cfg(struct bxe_softc *sc,
9942
struct tstorm_eth_function_common_config *tcfg,
9943
uint16_t abs_fid)
9944
{
9945
uint32_t addr;
9946
size_t size;
9947
9948
addr = (BAR_TSTRORM_INTMEM +
9949
TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid));
9950
size = sizeof(struct tstorm_eth_function_common_config);
9951
ecore_storm_memset_struct(sc, addr, size, (uint32_t *)tcfg);
9952
}
9953
9954
static void
9955
bxe_func_init(struct bxe_softc *sc,
9956
struct bxe_func_init_params *p)
9957
{
9958
struct tstorm_eth_function_common_config tcfg = { 0 };
9959
9960
if (CHIP_IS_E1x(sc)) {
9961
storm_memset_func_cfg(sc, &tcfg, p->func_id);
9962
}
9963
9964
/* Enable the function in the FW */
9965
storm_memset_vf_to_pf(sc, p->func_id, p->pf_id);
9966
storm_memset_func_en(sc, p->func_id, 1);
9967
9968
/* spq */
9969
if (p->func_flgs & FUNC_FLG_SPQ) {
9970
storm_memset_spq_addr(sc, p->spq_map, p->func_id);
9971
REG_WR(sc,
9972
(XSEM_REG_FAST_MEMORY + XSTORM_SPQ_PROD_OFFSET(p->func_id)),
9973
p->spq_prod);
9974
}
9975
}
9976
9977
/*
9978
* Calculates the sum of vn_min_rates.
9979
* It's needed for further normalizing of the min_rates.
9980
* Returns:
9981
* sum of vn_min_rates.
9982
* or
9983
* 0 - if all the min_rates are 0.
9984
* In the later case fainess algorithm should be deactivated.
9985
* If all min rates are not zero then those that are zeroes will be set to 1.
9986
*/
9987
static void
9988
bxe_calc_vn_min(struct bxe_softc *sc,
9989
struct cmng_init_input *input)
9990
{
9991
uint32_t vn_cfg;
9992
uint32_t vn_min_rate;
9993
int all_zero = 1;
9994
int vn;
9995
9996
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
9997
vn_cfg = sc->devinfo.mf_info.mf_config[vn];
9998
vn_min_rate = (((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
9999
FUNC_MF_CFG_MIN_BW_SHIFT) * 100);
10000
10001
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10002
/* skip hidden VNs */
10003
vn_min_rate = 0;
10004
} else if (!vn_min_rate) {
10005
/* If min rate is zero - set it to 100 */
10006
vn_min_rate = DEF_MIN_RATE;
10007
} else {
10008
all_zero = 0;
10009
}
10010
10011
input->vnic_min_rate[vn] = vn_min_rate;
10012
}
10013
10014
/* if ETS or all min rates are zeros - disable fairness */
10015
if (BXE_IS_ETS_ENABLED(sc)) {
10016
input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10017
BLOGD(sc, DBG_LOAD, "Fairness disabled (ETS)\n");
10018
} else if (all_zero) {
10019
input->flags.cmng_enables &= ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10020
BLOGD(sc, DBG_LOAD,
10021
"Fariness disabled (all MIN values are zeroes)\n");
10022
} else {
10023
input->flags.cmng_enables |= CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
10024
}
10025
}
10026
10027
static inline uint16_t
10028
bxe_extract_max_cfg(struct bxe_softc *sc,
10029
uint32_t mf_cfg)
10030
{
10031
uint16_t max_cfg = ((mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
10032
FUNC_MF_CFG_MAX_BW_SHIFT);
10033
10034
if (!max_cfg) {
10035
BLOGD(sc, DBG_LOAD, "Max BW configured to 0 - using 100 instead\n");
10036
max_cfg = 100;
10037
}
10038
10039
return (max_cfg);
10040
}
10041
10042
static void
10043
bxe_calc_vn_max(struct bxe_softc *sc,
10044
int vn,
10045
struct cmng_init_input *input)
10046
{
10047
uint16_t vn_max_rate;
10048
uint32_t vn_cfg = sc->devinfo.mf_info.mf_config[vn];
10049
uint32_t max_cfg;
10050
10051
if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
10052
vn_max_rate = 0;
10053
} else {
10054
max_cfg = bxe_extract_max_cfg(sc, vn_cfg);
10055
10056
if (IS_MF_SI(sc)) {
10057
/* max_cfg in percents of linkspeed */
10058
vn_max_rate = ((sc->link_vars.line_speed * max_cfg) / 100);
10059
} else { /* SD modes */
10060
/* max_cfg is absolute in 100Mb units */
10061
vn_max_rate = (max_cfg * 100);
10062
}
10063
}
10064
10065
BLOGD(sc, DBG_LOAD, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
10066
10067
input->vnic_max_rate[vn] = vn_max_rate;
10068
}
10069
10070
static void
10071
bxe_cmng_fns_init(struct bxe_softc *sc,
10072
uint8_t read_cfg,
10073
uint8_t cmng_type)
10074
{
10075
struct cmng_init_input input;
10076
int vn;
10077
10078
memset(&input, 0, sizeof(struct cmng_init_input));
10079
10080
input.port_rate = sc->link_vars.line_speed;
10081
10082
if (cmng_type == CMNG_FNS_MINMAX) {
10083
/* read mf conf from shmem */
10084
if (read_cfg) {
10085
bxe_read_mf_cfg(sc);
10086
}
10087
10088
/* get VN min rate and enable fairness if not 0 */
10089
bxe_calc_vn_min(sc, &input);
10090
10091
/* get VN max rate */
10092
if (sc->port.pmf) {
10093
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10094
bxe_calc_vn_max(sc, vn, &input);
10095
}
10096
}
10097
10098
/* always enable rate shaping and fairness */
10099
input.flags.cmng_enables |= CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
10100
10101
ecore_init_cmng(&input, &sc->cmng);
10102
return;
10103
}
10104
10105
/* rate shaping and fairness are disabled */
10106
BLOGD(sc, DBG_LOAD, "rate shaping and fairness have been disabled\n");
10107
}
10108
10109
static int
10110
bxe_get_cmng_fns_mode(struct bxe_softc *sc)
10111
{
10112
if (CHIP_REV_IS_SLOW(sc)) {
10113
return (CMNG_FNS_NONE);
10114
}
10115
10116
if (IS_MF(sc)) {
10117
return (CMNG_FNS_MINMAX);
10118
}
10119
10120
return (CMNG_FNS_NONE);
10121
}
10122
10123
static void
10124
storm_memset_cmng(struct bxe_softc *sc,
10125
struct cmng_init *cmng,
10126
uint8_t port)
10127
{
10128
int vn;
10129
int func;
10130
uint32_t addr;
10131
size_t size;
10132
10133
addr = (BAR_XSTRORM_INTMEM +
10134
XSTORM_CMNG_PER_PORT_VARS_OFFSET(port));
10135
size = sizeof(struct cmng_struct_per_port);
10136
ecore_storm_memset_struct(sc, addr, size, (uint32_t *)&cmng->port);
10137
10138
for (vn = VN_0; vn < SC_MAX_VN_NUM(sc); vn++) {
10139
func = func_by_vn(sc, vn);
10140
10141
addr = (BAR_XSTRORM_INTMEM +
10142
XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func));
10143
size = sizeof(struct rate_shaping_vars_per_vn);
10144
ecore_storm_memset_struct(sc, addr, size,
10145
(uint32_t *)&cmng->vnic.vnic_max_rate[vn]);
10146
10147
addr = (BAR_XSTRORM_INTMEM +
10148
XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func));
10149
size = sizeof(struct fairness_vars_per_vn);
10150
ecore_storm_memset_struct(sc, addr, size,
10151
(uint32_t *)&cmng->vnic.vnic_min_rate[vn]);
10152
}
10153
}
10154
10155
static void
10156
bxe_pf_init(struct bxe_softc *sc)
10157
{
10158
struct bxe_func_init_params func_init = { 0 };
10159
struct event_ring_data eq_data = { { 0 } };
10160
uint16_t flags;
10161
10162
if (!CHIP_IS_E1x(sc)) {
10163
/* reset IGU PF statistics: MSIX + ATTN */
10164
/* PF */
10165
REG_WR(sc,
10166
(IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10167
(BXE_IGU_STAS_MSG_VF_CNT * 4) +
10168
((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10169
0);
10170
/* ATTN */
10171
REG_WR(sc,
10172
(IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
10173
(BXE_IGU_STAS_MSG_VF_CNT * 4) +
10174
(BXE_IGU_STAS_MSG_PF_CNT * 4) +
10175
((CHIP_IS_MODE_4_PORT(sc) ? SC_FUNC(sc) : SC_VN(sc)) * 4)),
10176
0);
10177
}
10178
10179
/* function setup flags */
10180
flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
10181
10182
/*
10183
* This flag is relevant for E1x only.
10184
* E2 doesn't have a TPA configuration in a function level.
10185
*/
10186
flags |= (if_getcapenable(sc->ifp) & IFCAP_LRO) ? FUNC_FLG_TPA : 0;
10187
10188
func_init.func_flgs = flags;
10189
func_init.pf_id = SC_FUNC(sc);
10190
func_init.func_id = SC_FUNC(sc);
10191
func_init.spq_map = sc->spq_dma.paddr;
10192
func_init.spq_prod = sc->spq_prod_idx;
10193
10194
bxe_func_init(sc, &func_init);
10195
10196
memset(&sc->cmng, 0, sizeof(struct cmng_struct_per_port));
10197
10198
/*
10199
* Congestion management values depend on the link rate.
10200
* There is no active link so initial link rate is set to 10Gbps.
10201
* When the link comes up the congestion management values are
10202
* re-calculated according to the actual link rate.
10203
*/
10204
sc->link_vars.line_speed = SPEED_10000;
10205
bxe_cmng_fns_init(sc, TRUE, bxe_get_cmng_fns_mode(sc));
10206
10207
/* Only the PMF sets the HW */
10208
if (sc->port.pmf) {
10209
storm_memset_cmng(sc, &sc->cmng, SC_PORT(sc));
10210
}
10211
10212
/* init Event Queue - PCI bus guarantees correct endainity */
10213
eq_data.base_addr.hi = U64_HI(sc->eq_dma.paddr);
10214
eq_data.base_addr.lo = U64_LO(sc->eq_dma.paddr);
10215
eq_data.producer = sc->eq_prod;
10216
eq_data.index_id = HC_SP_INDEX_EQ_CONS;
10217
eq_data.sb_id = DEF_SB_ID;
10218
storm_memset_eq_data(sc, &eq_data, SC_FUNC(sc));
10219
}
10220
10221
static void
10222
bxe_hc_int_enable(struct bxe_softc *sc)
10223
{
10224
int port = SC_PORT(sc);
10225
uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10226
uint32_t val = REG_RD(sc, addr);
10227
uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10228
uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10229
(sc->intr_count == 1)) ? TRUE : FALSE;
10230
uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10231
10232
if (msix) {
10233
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10234
HC_CONFIG_0_REG_INT_LINE_EN_0);
10235
val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10236
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10237
if (single_msix) {
10238
val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
10239
}
10240
} else if (msi) {
10241
val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
10242
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10243
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10244
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10245
} else {
10246
val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10247
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10248
HC_CONFIG_0_REG_INT_LINE_EN_0 |
10249
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10250
10251
if (!CHIP_IS_E1(sc)) {
10252
BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n",
10253
val, port, addr);
10254
10255
REG_WR(sc, addr, val);
10256
10257
val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
10258
}
10259
}
10260
10261
if (CHIP_IS_E1(sc)) {
10262
REG_WR(sc, (HC_REG_INT_MASK + port*4), 0x1FFFF);
10263
}
10264
10265
BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
10266
val, port, addr, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10267
10268
REG_WR(sc, addr, val);
10269
10270
/* ensure that HC_CONFIG is written before leading/trailing edge config */
10271
mb();
10272
10273
if (!CHIP_IS_E1(sc)) {
10274
/* init leading/trailing edge */
10275
if (IS_MF(sc)) {
10276
val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10277
if (sc->port.pmf) {
10278
/* enable nig and gpio3 attention */
10279
val |= 0x1100;
10280
}
10281
} else {
10282
val = 0xffff;
10283
}
10284
10285
REG_WR(sc, (HC_REG_TRAILING_EDGE_0 + port*8), val);
10286
REG_WR(sc, (HC_REG_LEADING_EDGE_0 + port*8), val);
10287
}
10288
10289
/* make sure that interrupts are indeed enabled from here on */
10290
mb();
10291
}
10292
10293
static void
10294
bxe_igu_int_enable(struct bxe_softc *sc)
10295
{
10296
uint32_t val;
10297
uint8_t msix = (sc->interrupt_mode == INTR_MODE_MSIX) ? TRUE : FALSE;
10298
uint8_t single_msix = ((sc->interrupt_mode == INTR_MODE_MSIX) &&
10299
(sc->intr_count == 1)) ? TRUE : FALSE;
10300
uint8_t msi = (sc->interrupt_mode == INTR_MODE_MSI) ? TRUE : FALSE;
10301
10302
val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10303
10304
if (msix) {
10305
val &= ~(IGU_PF_CONF_INT_LINE_EN |
10306
IGU_PF_CONF_SINGLE_ISR_EN);
10307
val |= (IGU_PF_CONF_MSI_MSIX_EN |
10308
IGU_PF_CONF_ATTN_BIT_EN);
10309
if (single_msix) {
10310
val |= IGU_PF_CONF_SINGLE_ISR_EN;
10311
}
10312
} else if (msi) {
10313
val &= ~IGU_PF_CONF_INT_LINE_EN;
10314
val |= (IGU_PF_CONF_MSI_MSIX_EN |
10315
IGU_PF_CONF_ATTN_BIT_EN |
10316
IGU_PF_CONF_SINGLE_ISR_EN);
10317
} else {
10318
val &= ~IGU_PF_CONF_MSI_MSIX_EN;
10319
val |= (IGU_PF_CONF_INT_LINE_EN |
10320
IGU_PF_CONF_ATTN_BIT_EN |
10321
IGU_PF_CONF_SINGLE_ISR_EN);
10322
}
10323
10324
/* clean previous status - need to configure igu prior to ack*/
10325
if ((!msix) || single_msix) {
10326
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10327
bxe_ack_int(sc);
10328
}
10329
10330
val |= IGU_PF_CONF_FUNC_EN;
10331
10332
BLOGD(sc, DBG_INTR, "write 0x%x to IGU mode %s\n",
10333
val, ((msix) ? "MSI-X" : ((msi) ? "MSI" : "INTx")));
10334
10335
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10336
10337
mb();
10338
10339
/* init leading/trailing edge */
10340
if (IS_MF(sc)) {
10341
val = (0xee0f | (1 << (SC_VN(sc) + 4)));
10342
if (sc->port.pmf) {
10343
/* enable nig and gpio3 attention */
10344
val |= 0x1100;
10345
}
10346
} else {
10347
val = 0xffff;
10348
}
10349
10350
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, val);
10351
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, val);
10352
10353
/* make sure that interrupts are indeed enabled from here on */
10354
mb();
10355
}
10356
10357
static void
10358
bxe_int_enable(struct bxe_softc *sc)
10359
{
10360
if (sc->devinfo.int_block == INT_BLOCK_HC) {
10361
bxe_hc_int_enable(sc);
10362
} else {
10363
bxe_igu_int_enable(sc);
10364
}
10365
}
10366
10367
static void
10368
bxe_hc_int_disable(struct bxe_softc *sc)
10369
{
10370
int port = SC_PORT(sc);
10371
uint32_t addr = (port) ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
10372
uint32_t val = REG_RD(sc, addr);
10373
10374
/*
10375
* In E1 we must use only PCI configuration space to disable MSI/MSIX
10376
* capablility. It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC
10377
* block
10378
*/
10379
if (CHIP_IS_E1(sc)) {
10380
/*
10381
* Since IGU_PF_CONF_MSI_MSIX_EN still always on use mask register
10382
* to prevent from HC sending interrupts after we exit the function
10383
*/
10384
REG_WR(sc, (HC_REG_INT_MASK + port*4), 0);
10385
10386
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10387
HC_CONFIG_0_REG_INT_LINE_EN_0 |
10388
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10389
} else {
10390
val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
10391
HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
10392
HC_CONFIG_0_REG_INT_LINE_EN_0 |
10393
HC_CONFIG_0_REG_ATTN_BIT_EN_0);
10394
}
10395
10396
BLOGD(sc, DBG_INTR, "write %x to HC %d (addr 0x%x)\n", val, port, addr);
10397
10398
/* flush all outstanding writes */
10399
mb();
10400
10401
REG_WR(sc, addr, val);
10402
if (REG_RD(sc, addr) != val) {
10403
BLOGE(sc, "proper val not read from HC IGU!\n");
10404
}
10405
}
10406
10407
static void
10408
bxe_igu_int_disable(struct bxe_softc *sc)
10409
{
10410
uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
10411
10412
val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
10413
IGU_PF_CONF_INT_LINE_EN |
10414
IGU_PF_CONF_ATTN_BIT_EN);
10415
10416
BLOGD(sc, DBG_INTR, "write %x to IGU\n", val);
10417
10418
/* flush all outstanding writes */
10419
mb();
10420
10421
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
10422
if (REG_RD(sc, IGU_REG_PF_CONFIGURATION) != val) {
10423
BLOGE(sc, "proper val not read from IGU!\n");
10424
}
10425
}
10426
10427
static void
10428
bxe_int_disable(struct bxe_softc *sc)
10429
{
10430
if (sc->devinfo.int_block == INT_BLOCK_HC) {
10431
bxe_hc_int_disable(sc);
10432
} else {
10433
bxe_igu_int_disable(sc);
10434
}
10435
}
10436
10437
static void
10438
bxe_nic_init(struct bxe_softc *sc,
10439
int load_code)
10440
{
10441
int i;
10442
10443
for (i = 0; i < sc->num_queues; i++) {
10444
bxe_init_eth_fp(sc, i);
10445
}
10446
10447
rmb(); /* ensure status block indices were read */
10448
10449
bxe_init_rx_rings(sc);
10450
bxe_init_tx_rings(sc);
10451
10452
if (IS_VF(sc)) {
10453
return;
10454
}
10455
10456
/* initialize MOD_ABS interrupts */
10457
elink_init_mod_abs_int(sc, &sc->link_vars,
10458
sc->devinfo.chip_id,
10459
sc->devinfo.shmem_base,
10460
sc->devinfo.shmem2_base,
10461
SC_PORT(sc));
10462
10463
bxe_init_def_sb(sc);
10464
bxe_update_dsb_idx(sc);
10465
bxe_init_sp_ring(sc);
10466
bxe_init_eq_ring(sc);
10467
bxe_init_internal(sc, load_code);
10468
bxe_pf_init(sc);
10469
bxe_stats_init(sc);
10470
10471
/* flush all before enabling interrupts */
10472
mb();
10473
10474
bxe_int_enable(sc);
10475
10476
/* check for SPIO5 */
10477
bxe_attn_int_deasserted0(sc,
10478
REG_RD(sc,
10479
(MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
10480
SC_PORT(sc)*4)) &
10481
AEU_INPUTS_ATTN_BITS_SPIO5);
10482
}
10483
10484
static inline void
10485
bxe_init_objs(struct bxe_softc *sc)
10486
{
10487
/* mcast rules must be added to tx if tx switching is enabled */
10488
ecore_obj_type o_type =
10489
(sc->flags & BXE_TX_SWITCHING) ? ECORE_OBJ_TYPE_RX_TX :
10490
ECORE_OBJ_TYPE_RX;
10491
10492
/* RX_MODE controlling object */
10493
ecore_init_rx_mode_obj(sc, &sc->rx_mode_obj);
10494
10495
/* multicast configuration controlling object */
10496
ecore_init_mcast_obj(sc,
10497
&sc->mcast_obj,
10498
sc->fp[0].cl_id,
10499
sc->fp[0].index,
10500
SC_FUNC(sc),
10501
SC_FUNC(sc),
10502
BXE_SP(sc, mcast_rdata),
10503
BXE_SP_MAPPING(sc, mcast_rdata),
10504
ECORE_FILTER_MCAST_PENDING,
10505
&sc->sp_state,
10506
o_type);
10507
10508
/* Setup CAM credit pools */
10509
ecore_init_mac_credit_pool(sc,
10510
&sc->macs_pool,
10511
SC_FUNC(sc),
10512
CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10513
VNICS_PER_PATH(sc));
10514
10515
ecore_init_vlan_credit_pool(sc,
10516
&sc->vlans_pool,
10517
SC_ABS_FUNC(sc) >> 1,
10518
CHIP_IS_E1x(sc) ? VNICS_PER_PORT(sc) :
10519
VNICS_PER_PATH(sc));
10520
10521
/* RSS configuration object */
10522
ecore_init_rss_config_obj(sc,
10523
&sc->rss_conf_obj,
10524
sc->fp[0].cl_id,
10525
sc->fp[0].index,
10526
SC_FUNC(sc),
10527
SC_FUNC(sc),
10528
BXE_SP(sc, rss_rdata),
10529
BXE_SP_MAPPING(sc, rss_rdata),
10530
ECORE_FILTER_RSS_CONF_PENDING,
10531
&sc->sp_state, ECORE_OBJ_TYPE_RX);
10532
}
10533
10534
/*
10535
* Initialize the function. This must be called before sending CLIENT_SETUP
10536
* for the first client.
10537
*/
10538
static inline int
10539
bxe_func_start(struct bxe_softc *sc)
10540
{
10541
struct ecore_func_state_params func_params = { NULL };
10542
struct ecore_func_start_params *start_params = &func_params.params.start;
10543
10544
/* Prepare parameters for function state transitions */
10545
bit_set(&func_params.ramrod_flags, RAMROD_COMP_WAIT);
10546
10547
func_params.f_obj = &sc->func_obj;
10548
func_params.cmd = ECORE_F_CMD_START;
10549
10550
/* Function parameters */
10551
start_params->mf_mode = sc->devinfo.mf_info.mf_mode;
10552
start_params->sd_vlan_tag = OVLAN(sc);
10553
10554
if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
10555
start_params->network_cos_mode = STATIC_COS;
10556
} else { /* CHIP_IS_E1X */
10557
start_params->network_cos_mode = FW_WRR;
10558
}
10559
10560
//start_params->gre_tunnel_mode = 0;
10561
//start_params->gre_tunnel_rss = 0;
10562
10563
return (ecore_func_state_change(sc, &func_params));
10564
}
10565
10566
static int
10567
bxe_set_power_state(struct bxe_softc *sc,
10568
uint8_t state)
10569
{
10570
uint16_t pmcsr;
10571
10572
/* If there is no power capability, silently succeed */
10573
if (!(sc->devinfo.pcie_cap_flags & BXE_PM_CAPABLE_FLAG)) {
10574
BLOGW(sc, "No power capability\n");
10575
return (0);
10576
}
10577
10578
pmcsr = pci_read_config(sc->dev,
10579
(sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10580
2);
10581
10582
switch (state) {
10583
case PCI_PM_D0:
10584
pci_write_config(sc->dev,
10585
(sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10586
((pmcsr & ~PCIM_PSTAT_DMASK) | PCIM_PSTAT_PME), 2);
10587
10588
if (pmcsr & PCIM_PSTAT_DMASK) {
10589
/* delay required during transition out of D3hot */
10590
DELAY(20000);
10591
}
10592
10593
break;
10594
10595
case PCI_PM_D3hot:
10596
/* XXX if there are other clients above don't shut down the power */
10597
10598
/* don't shut down the power for emulation and FPGA */
10599
if (CHIP_REV_IS_SLOW(sc)) {
10600
return (0);
10601
}
10602
10603
pmcsr &= ~PCIM_PSTAT_DMASK;
10604
pmcsr |= PCIM_PSTAT_D3;
10605
10606
if (sc->wol) {
10607
pmcsr |= PCIM_PSTAT_PMEENABLE;
10608
}
10609
10610
pci_write_config(sc->dev,
10611
(sc->devinfo.pcie_pm_cap_reg + PCIR_POWER_STATUS),
10612
pmcsr, 4);
10613
10614
/*
10615
* No more memory access after this point until device is brought back
10616
* to D0 state.
10617
*/
10618
break;
10619
10620
default:
10621
BLOGE(sc, "Can't support PCI power state = 0x%x pmcsr 0x%x\n",
10622
state, pmcsr);
10623
return (-1);
10624
}
10625
10626
return (0);
10627
}
10628
10629
10630
/* return true if succeeded to acquire the lock */
10631
static uint8_t
10632
bxe_trylock_hw_lock(struct bxe_softc *sc,
10633
uint32_t resource)
10634
{
10635
uint32_t lock_status;
10636
uint32_t resource_bit = (1 << resource);
10637
int func = SC_FUNC(sc);
10638
uint32_t hw_lock_control_reg;
10639
10640
BLOGD(sc, DBG_LOAD, "Trying to take a resource lock 0x%x\n", resource);
10641
10642
/* Validating that the resource is within range */
10643
if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
10644
BLOGD(sc, DBG_LOAD,
10645
"resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
10646
resource, HW_LOCK_MAX_RESOURCE_VALUE);
10647
return (FALSE);
10648
}
10649
10650
if (func <= 5) {
10651
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
10652
} else {
10653
hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
10654
}
10655
10656
/* try to acquire the lock */
10657
REG_WR(sc, hw_lock_control_reg + 4, resource_bit);
10658
lock_status = REG_RD(sc, hw_lock_control_reg);
10659
if (lock_status & resource_bit) {
10660
return (TRUE);
10661
}
10662
10663
BLOGE(sc, "Failed to get a resource lock 0x%x func %d "
10664
"lock_status 0x%x resource_bit 0x%x\n", resource, func,
10665
lock_status, resource_bit);
10666
10667
return (FALSE);
10668
}
10669
10670
/*
10671
* Get the recovery leader resource id according to the engine this function
10672
* belongs to. Currently only only 2 engines is supported.
10673
*/
10674
static int
10675
bxe_get_leader_lock_resource(struct bxe_softc *sc)
10676
{
10677
if (SC_PATH(sc)) {
10678
return (HW_LOCK_RESOURCE_RECOVERY_LEADER_1);
10679
} else {
10680
return (HW_LOCK_RESOURCE_RECOVERY_LEADER_0);
10681
}
10682
}
10683
10684
/* try to acquire a leader lock for current engine */
10685
static uint8_t
10686
bxe_trylock_leader_lock(struct bxe_softc *sc)
10687
{
10688
return (bxe_trylock_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10689
}
10690
10691
static int
10692
bxe_release_leader_lock(struct bxe_softc *sc)
10693
{
10694
return (bxe_release_hw_lock(sc, bxe_get_leader_lock_resource(sc)));
10695
}
10696
10697
/* close gates #2, #3 and #4 */
10698
static void
10699
bxe_set_234_gates(struct bxe_softc *sc,
10700
uint8_t close)
10701
{
10702
uint32_t val;
10703
10704
/* gates #2 and #4a are closed/opened for "not E1" only */
10705
if (!CHIP_IS_E1(sc)) {
10706
/* #4 */
10707
REG_WR(sc, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
10708
/* #2 */
10709
REG_WR(sc, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
10710
}
10711
10712
/* #3 */
10713
if (CHIP_IS_E1x(sc)) {
10714
/* prevent interrupts from HC on both ports */
10715
val = REG_RD(sc, HC_REG_CONFIG_1);
10716
REG_WR(sc, HC_REG_CONFIG_1,
10717
(!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
10718
(val & ~(uint32_t)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
10719
10720
val = REG_RD(sc, HC_REG_CONFIG_0);
10721
REG_WR(sc, HC_REG_CONFIG_0,
10722
(!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
10723
(val & ~(uint32_t)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
10724
} else {
10725
/* Prevent incoming interrupts in IGU */
10726
val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
10727
10728
REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION,
10729
(!close) ?
10730
(val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
10731
(val & ~(uint32_t)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
10732
}
10733
10734
BLOGD(sc, DBG_LOAD, "%s gates #2, #3 and #4\n",
10735
close ? "closing" : "opening");
10736
10737
wmb();
10738
}
10739
10740
/* poll for pending writes bit, it should get cleared in no more than 1s */
10741
static int
10742
bxe_er_poll_igu_vq(struct bxe_softc *sc)
10743
{
10744
uint32_t cnt = 1000;
10745
uint32_t pend_bits = 0;
10746
10747
do {
10748
pend_bits = REG_RD(sc, IGU_REG_PENDING_BITS_STATUS);
10749
10750
if (pend_bits == 0) {
10751
break;
10752
}
10753
10754
DELAY(1000);
10755
} while (--cnt > 0);
10756
10757
if (cnt == 0) {
10758
BLOGE(sc, "Still pending IGU requests bits=0x%08x!\n", pend_bits);
10759
return (-1);
10760
}
10761
10762
return (0);
10763
}
10764
10765
#define SHARED_MF_CLP_MAGIC 0x80000000 /* 'magic' bit */
10766
10767
static void
10768
bxe_clp_reset_prep(struct bxe_softc *sc,
10769
uint32_t *magic_val)
10770
{
10771
/* Do some magic... */
10772
uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10773
*magic_val = val & SHARED_MF_CLP_MAGIC;
10774
MFCFG_WR(sc, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
10775
}
10776
10777
/* restore the value of the 'magic' bit */
10778
static void
10779
bxe_clp_reset_done(struct bxe_softc *sc,
10780
uint32_t magic_val)
10781
{
10782
/* Restore the 'magic' bit value... */
10783
uint32_t val = MFCFG_RD(sc, shared_mf_config.clp_mb);
10784
MFCFG_WR(sc, shared_mf_config.clp_mb,
10785
(val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
10786
}
10787
10788
/* prepare for MCP reset, takes care of CLP configurations */
10789
static void
10790
bxe_reset_mcp_prep(struct bxe_softc *sc,
10791
uint32_t *magic_val)
10792
{
10793
uint32_t shmem;
10794
uint32_t validity_offset;
10795
10796
/* set `magic' bit in order to save MF config */
10797
if (!CHIP_IS_E1(sc)) {
10798
bxe_clp_reset_prep(sc, magic_val);
10799
}
10800
10801
/* get shmem offset */
10802
shmem = REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10803
validity_offset =
10804
offsetof(struct shmem_region, validity_map[SC_PORT(sc)]);
10805
10806
/* Clear validity map flags */
10807
if (shmem > 0) {
10808
REG_WR(sc, shmem + validity_offset, 0);
10809
}
10810
}
10811
10812
#define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
10813
#define MCP_ONE_TIMEOUT 100 /* 100 ms */
10814
10815
static void
10816
bxe_mcp_wait_one(struct bxe_softc *sc)
10817
{
10818
/* special handling for emulation and FPGA (10 times longer) */
10819
if (CHIP_REV_IS_SLOW(sc)) {
10820
DELAY((MCP_ONE_TIMEOUT*10) * 1000);
10821
} else {
10822
DELAY((MCP_ONE_TIMEOUT) * 1000);
10823
}
10824
}
10825
10826
/* initialize shmem_base and waits for validity signature to appear */
10827
static int
10828
bxe_init_shmem(struct bxe_softc *sc)
10829
{
10830
int cnt = 0;
10831
uint32_t val = 0;
10832
10833
do {
10834
sc->devinfo.shmem_base =
10835
sc->link_params.shmem_base =
10836
REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
10837
10838
if (sc->devinfo.shmem_base) {
10839
val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
10840
if (val & SHR_MEM_VALIDITY_MB)
10841
return (0);
10842
}
10843
10844
bxe_mcp_wait_one(sc);
10845
10846
} while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
10847
10848
BLOGE(sc, "BAD MCP validity signature\n");
10849
10850
return (-1);
10851
}
10852
10853
static int
10854
bxe_reset_mcp_comp(struct bxe_softc *sc,
10855
uint32_t magic_val)
10856
{
10857
int rc = bxe_init_shmem(sc);
10858
10859
/* Restore the `magic' bit value */
10860
if (!CHIP_IS_E1(sc)) {
10861
bxe_clp_reset_done(sc, magic_val);
10862
}
10863
10864
return (rc);
10865
}
10866
10867
static void
10868
bxe_pxp_prep(struct bxe_softc *sc)
10869
{
10870
if (!CHIP_IS_E1(sc)) {
10871
REG_WR(sc, PXP2_REG_RD_START_INIT, 0);
10872
REG_WR(sc, PXP2_REG_RQ_RBC_DONE, 0);
10873
wmb();
10874
}
10875
}
10876
10877
/*
10878
* Reset the whole chip except for:
10879
* - PCIE core
10880
* - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by one reset bit)
10881
* - IGU
10882
* - MISC (including AEU)
10883
* - GRC
10884
* - RBCN, RBCP
10885
*/
10886
static void
10887
bxe_process_kill_chip_reset(struct bxe_softc *sc,
10888
uint8_t global)
10889
{
10890
uint32_t not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
10891
uint32_t global_bits2, stay_reset2;
10892
10893
/*
10894
* Bits that have to be set in reset_mask2 if we want to reset 'global'
10895
* (per chip) blocks.
10896
*/
10897
global_bits2 =
10898
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
10899
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
10900
10901
/*
10902
* Don't reset the following blocks.
10903
* Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
10904
* reset, as in 4 port device they might still be owned
10905
* by the MCP (there is only one leader per path).
10906
*/
10907
not_reset_mask1 =
10908
MISC_REGISTERS_RESET_REG_1_RST_HC |
10909
MISC_REGISTERS_RESET_REG_1_RST_PXPV |
10910
MISC_REGISTERS_RESET_REG_1_RST_PXP;
10911
10912
not_reset_mask2 =
10913
MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
10914
MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
10915
MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
10916
MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
10917
MISC_REGISTERS_RESET_REG_2_RST_RBCN |
10918
MISC_REGISTERS_RESET_REG_2_RST_GRC |
10919
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
10920
MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
10921
MISC_REGISTERS_RESET_REG_2_RST_ATC |
10922
MISC_REGISTERS_RESET_REG_2_PGLC |
10923
MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
10924
MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
10925
MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
10926
MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
10927
MISC_REGISTERS_RESET_REG_2_UMAC0 |
10928
MISC_REGISTERS_RESET_REG_2_UMAC1;
10929
10930
/*
10931
* Keep the following blocks in reset:
10932
* - all xxMACs are handled by the elink code.
10933
*/
10934
stay_reset2 =
10935
MISC_REGISTERS_RESET_REG_2_XMAC |
10936
MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
10937
10938
/* Full reset masks according to the chip */
10939
reset_mask1 = 0xffffffff;
10940
10941
if (CHIP_IS_E1(sc))
10942
reset_mask2 = 0xffff;
10943
else if (CHIP_IS_E1H(sc))
10944
reset_mask2 = 0x1ffff;
10945
else if (CHIP_IS_E2(sc))
10946
reset_mask2 = 0xfffff;
10947
else /* CHIP_IS_E3 */
10948
reset_mask2 = 0x3ffffff;
10949
10950
/* Don't reset global blocks unless we need to */
10951
if (!global)
10952
reset_mask2 &= ~global_bits2;
10953
10954
/*
10955
* In case of attention in the QM, we need to reset PXP
10956
* (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
10957
* because otherwise QM reset would release 'close the gates' shortly
10958
* before resetting the PXP, then the PSWRQ would send a write
10959
* request to PGLUE. Then when PXP is reset, PGLUE would try to
10960
* read the payload data from PSWWR, but PSWWR would not
10961
* respond. The write queue in PGLUE would stuck, dmae commands
10962
* would not return. Therefore it's important to reset the second
10963
* reset register (containing the
10964
* MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
10965
* first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
10966
* bit).
10967
*/
10968
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
10969
reset_mask2 & (~not_reset_mask2));
10970
10971
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
10972
reset_mask1 & (~not_reset_mask1));
10973
10974
mb();
10975
wmb();
10976
10977
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
10978
reset_mask2 & (~stay_reset2));
10979
10980
mb();
10981
wmb();
10982
10983
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
10984
wmb();
10985
}
10986
10987
static int
10988
bxe_process_kill(struct bxe_softc *sc,
10989
uint8_t global)
10990
{
10991
int cnt = 1000;
10992
uint32_t val = 0;
10993
uint32_t sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
10994
uint32_t tags_63_32 = 0;
10995
10996
/* Empty the Tetris buffer, wait for 1s */
10997
do {
10998
sr_cnt = REG_RD(sc, PXP2_REG_RD_SR_CNT);
10999
blk_cnt = REG_RD(sc, PXP2_REG_RD_BLK_CNT);
11000
port_is_idle_0 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_0);
11001
port_is_idle_1 = REG_RD(sc, PXP2_REG_RD_PORT_IS_IDLE_1);
11002
pgl_exp_rom2 = REG_RD(sc, PXP2_REG_PGL_EXP_ROM2);
11003
if (CHIP_IS_E3(sc)) {
11004
tags_63_32 = REG_RD(sc, PGLUE_B_REG_TAGS_63_32);
11005
}
11006
11007
if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
11008
((port_is_idle_0 & 0x1) == 0x1) &&
11009
((port_is_idle_1 & 0x1) == 0x1) &&
11010
(pgl_exp_rom2 == 0xffffffff) &&
11011
(!CHIP_IS_E3(sc) || (tags_63_32 == 0xffffffff)))
11012
break;
11013
DELAY(1000);
11014
} while (cnt-- > 0);
11015
11016
if (cnt <= 0) {
11017
BLOGE(sc, "ERROR: Tetris buffer didn't get empty or there "
11018
"are still outstanding read requests after 1s! "
11019
"sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, "
11020
"port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
11021
sr_cnt, blk_cnt, port_is_idle_0,
11022
port_is_idle_1, pgl_exp_rom2);
11023
return (-1);
11024
}
11025
11026
mb();
11027
11028
/* Close gates #2, #3 and #4 */
11029
bxe_set_234_gates(sc, TRUE);
11030
11031
/* Poll for IGU VQs for 57712 and newer chips */
11032
if (!CHIP_IS_E1x(sc) && bxe_er_poll_igu_vq(sc)) {
11033
return (-1);
11034
}
11035
11036
/* XXX indicate that "process kill" is in progress to MCP */
11037
11038
/* clear "unprepared" bit */
11039
REG_WR(sc, MISC_REG_UNPREPARED, 0);
11040
mb();
11041
11042
/* Make sure all is written to the chip before the reset */
11043
wmb();
11044
11045
/*
11046
* Wait for 1ms to empty GLUE and PCI-E core queues,
11047
* PSWHST, GRC and PSWRD Tetris buffer.
11048
*/
11049
DELAY(1000);
11050
11051
/* Prepare to chip reset: */
11052
/* MCP */
11053
if (global) {
11054
bxe_reset_mcp_prep(sc, &val);
11055
}
11056
11057
/* PXP */
11058
bxe_pxp_prep(sc);
11059
mb();
11060
11061
/* reset the chip */
11062
bxe_process_kill_chip_reset(sc, global);
11063
mb();
11064
11065
/* clear errors in PGB */
11066
if (!CHIP_IS_E1(sc))
11067
REG_WR(sc, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
11068
11069
/* Recover after reset: */
11070
/* MCP */
11071
if (global && bxe_reset_mcp_comp(sc, val)) {
11072
return (-1);
11073
}
11074
11075
/* XXX add resetting the NO_MCP mode DB here */
11076
11077
/* Open the gates #2, #3 and #4 */
11078
bxe_set_234_gates(sc, FALSE);
11079
11080
/* XXX
11081
* IGU/AEU preparation bring back the AEU/IGU to a reset state
11082
* re-enable attentions
11083
*/
11084
11085
return (0);
11086
}
11087
11088
static int
11089
bxe_leader_reset(struct bxe_softc *sc)
11090
{
11091
int rc = 0;
11092
uint8_t global = bxe_reset_is_global(sc);
11093
uint32_t load_code;
11094
11095
/*
11096
* If not going to reset MCP, load "fake" driver to reset HW while
11097
* driver is owner of the HW.
11098
*/
11099
if (!global && !BXE_NOMCP(sc)) {
11100
load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_REQ,
11101
DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
11102
if (!load_code) {
11103
BLOGE(sc, "MCP response failure, aborting\n");
11104
rc = -1;
11105
goto exit_leader_reset;
11106
}
11107
11108
if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
11109
(load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
11110
BLOGE(sc, "MCP unexpected response, aborting\n");
11111
rc = -1;
11112
goto exit_leader_reset2;
11113
}
11114
11115
load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
11116
if (!load_code) {
11117
BLOGE(sc, "MCP response failure, aborting\n");
11118
rc = -1;
11119
goto exit_leader_reset2;
11120
}
11121
}
11122
11123
/* try to recover after the failure */
11124
if (bxe_process_kill(sc, global)) {
11125
BLOGE(sc, "Something bad occurred on engine %d!\n", SC_PATH(sc));
11126
rc = -1;
11127
goto exit_leader_reset2;
11128
}
11129
11130
/*
11131
* Clear the RESET_IN_PROGRESS and RESET_GLOBAL bits and update the driver
11132
* state.
11133
*/
11134
bxe_set_reset_done(sc);
11135
if (global) {
11136
bxe_clear_reset_global(sc);
11137
}
11138
11139
exit_leader_reset2:
11140
11141
/* unload "fake driver" if it was loaded */
11142
if (!global && !BXE_NOMCP(sc)) {
11143
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
11144
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
11145
}
11146
11147
exit_leader_reset:
11148
11149
sc->is_leader = 0;
11150
bxe_release_leader_lock(sc);
11151
11152
mb();
11153
return (rc);
11154
}
11155
11156
/*
11157
* prepare INIT transition, parameters configured:
11158
* - HC configuration
11159
* - Queue's CDU context
11160
*/
11161
static void
11162
bxe_pf_q_prep_init(struct bxe_softc *sc,
11163
struct bxe_fastpath *fp,
11164
struct ecore_queue_init_params *init_params)
11165
{
11166
uint8_t cos;
11167
int cxt_index, cxt_offset;
11168
11169
bxe_set_bit(ECORE_Q_FLG_HC, &init_params->rx.flags);
11170
bxe_set_bit(ECORE_Q_FLG_HC, &init_params->tx.flags);
11171
11172
bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->rx.flags);
11173
bxe_set_bit(ECORE_Q_FLG_HC_EN, &init_params->tx.flags);
11174
11175
/* HC rate */
11176
init_params->rx.hc_rate =
11177
sc->hc_rx_ticks ? (1000000 / sc->hc_rx_ticks) : 0;
11178
init_params->tx.hc_rate =
11179
sc->hc_tx_ticks ? (1000000 / sc->hc_tx_ticks) : 0;
11180
11181
/* FW SB ID */
11182
init_params->rx.fw_sb_id = init_params->tx.fw_sb_id = fp->fw_sb_id;
11183
11184
/* CQ index among the SB indices */
11185
init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11186
init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
11187
11188
/* set maximum number of COSs supported by this queue */
11189
init_params->max_cos = sc->max_cos;
11190
11191
BLOGD(sc, DBG_LOAD, "fp %d setting queue params max cos to %d\n",
11192
fp->index, init_params->max_cos);
11193
11194
/* set the context pointers queue object */
11195
for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
11196
/* XXX change index/cid here if ever support multiple tx CoS */
11197
/* fp->txdata[cos]->cid */
11198
cxt_index = fp->index / ILT_PAGE_CIDS;
11199
cxt_offset = fp->index - (cxt_index * ILT_PAGE_CIDS);
11200
init_params->cxts[cos] = &sc->context[cxt_index].vcxt[cxt_offset].eth;
11201
}
11202
}
11203
11204
/* set flags that are common for the Tx-only and not normal connections */
11205
static unsigned long
11206
bxe_get_common_flags(struct bxe_softc *sc,
11207
struct bxe_fastpath *fp,
11208
uint8_t zero_stats)
11209
{
11210
unsigned long flags = 0;
11211
11212
/* PF driver will always initialize the Queue to an ACTIVE state */
11213
bxe_set_bit(ECORE_Q_FLG_ACTIVE, &flags);
11214
11215
/*
11216
* tx only connections collect statistics (on the same index as the
11217
* parent connection). The statistics are zeroed when the parent
11218
* connection is initialized.
11219
*/
11220
11221
bxe_set_bit(ECORE_Q_FLG_STATS, &flags);
11222
if (zero_stats) {
11223
bxe_set_bit(ECORE_Q_FLG_ZERO_STATS, &flags);
11224
}
11225
11226
/*
11227
* tx only connections can support tx-switching, though their
11228
* CoS-ness doesn't survive the loopback
11229
*/
11230
if (sc->flags & BXE_TX_SWITCHING) {
11231
bxe_set_bit(ECORE_Q_FLG_TX_SWITCH, &flags);
11232
}
11233
11234
bxe_set_bit(ECORE_Q_FLG_PCSUM_ON_PKT, &flags);
11235
11236
return (flags);
11237
}
11238
11239
static unsigned long
11240
bxe_get_q_flags(struct bxe_softc *sc,
11241
struct bxe_fastpath *fp,
11242
uint8_t leading)
11243
{
11244
unsigned long flags = 0;
11245
11246
if (IS_MF_SD(sc)) {
11247
bxe_set_bit(ECORE_Q_FLG_OV, &flags);
11248
}
11249
11250
if (if_getcapenable(sc->ifp) & IFCAP_LRO) {
11251
bxe_set_bit(ECORE_Q_FLG_TPA, &flags);
11252
bxe_set_bit(ECORE_Q_FLG_TPA_IPV6, &flags);
11253
}
11254
11255
if (leading) {
11256
bxe_set_bit(ECORE_Q_FLG_LEADING_RSS, &flags);
11257
bxe_set_bit(ECORE_Q_FLG_MCAST, &flags);
11258
}
11259
11260
bxe_set_bit(ECORE_Q_FLG_VLAN, &flags);
11261
11262
/* merge with common flags */
11263
return (flags | bxe_get_common_flags(sc, fp, TRUE));
11264
}
11265
11266
static void
11267
bxe_pf_q_prep_general(struct bxe_softc *sc,
11268
struct bxe_fastpath *fp,
11269
struct ecore_general_setup_params *gen_init,
11270
uint8_t cos)
11271
{
11272
gen_init->stat_id = bxe_stats_id(fp);
11273
gen_init->spcl_id = fp->cl_id;
11274
gen_init->mtu = sc->mtu;
11275
gen_init->cos = cos;
11276
}
11277
11278
static void
11279
bxe_pf_rx_q_prep(struct bxe_softc *sc,
11280
struct bxe_fastpath *fp,
11281
struct rxq_pause_params *pause,
11282
struct ecore_rxq_setup_params *rxq_init)
11283
{
11284
uint8_t max_sge = 0;
11285
uint16_t sge_sz = 0;
11286
uint16_t tpa_agg_size = 0;
11287
11288
pause->sge_th_lo = SGE_TH_LO(sc);
11289
pause->sge_th_hi = SGE_TH_HI(sc);
11290
11291
/* validate SGE ring has enough to cross high threshold */
11292
if (sc->dropless_fc &&
11293
(pause->sge_th_hi + FW_PREFETCH_CNT) >
11294
(RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)) {
11295
BLOGW(sc, "sge ring threshold limit\n");
11296
}
11297
11298
/* minimum max_aggregation_size is 2*MTU (two full buffers) */
11299
tpa_agg_size = (2 * sc->mtu);
11300
if (tpa_agg_size < sc->max_aggregation_size) {
11301
tpa_agg_size = sc->max_aggregation_size;
11302
}
11303
11304
max_sge = SGE_PAGE_ALIGN(sc->mtu) >> SGE_PAGE_SHIFT;
11305
max_sge = ((max_sge + PAGES_PER_SGE - 1) &
11306
(~(PAGES_PER_SGE - 1))) >> PAGES_PER_SGE_SHIFT;
11307
sge_sz = (uint16_t)min(SGE_PAGES, 0xffff);
11308
11309
/* pause - not for e1 */
11310
if (!CHIP_IS_E1(sc)) {
11311
pause->bd_th_lo = BD_TH_LO(sc);
11312
pause->bd_th_hi = BD_TH_HI(sc);
11313
11314
pause->rcq_th_lo = RCQ_TH_LO(sc);
11315
pause->rcq_th_hi = RCQ_TH_HI(sc);
11316
11317
/* validate rings have enough entries to cross high thresholds */
11318
if (sc->dropless_fc &&
11319
pause->bd_th_hi + FW_PREFETCH_CNT >
11320
sc->rx_ring_size) {
11321
BLOGW(sc, "rx bd ring threshold limit\n");
11322
}
11323
11324
if (sc->dropless_fc &&
11325
pause->rcq_th_hi + FW_PREFETCH_CNT >
11326
RCQ_NUM_PAGES * RCQ_USABLE_PER_PAGE) {
11327
BLOGW(sc, "rcq ring threshold limit\n");
11328
}
11329
11330
pause->pri_map = 1;
11331
}
11332
11333
/* rxq setup */
11334
rxq_init->dscr_map = fp->rx_dma.paddr;
11335
rxq_init->sge_map = fp->rx_sge_dma.paddr;
11336
rxq_init->rcq_map = fp->rcq_dma.paddr;
11337
rxq_init->rcq_np_map = (fp->rcq_dma.paddr + BCM_PAGE_SIZE);
11338
11339
/*
11340
* This should be a maximum number of data bytes that may be
11341
* placed on the BD (not including paddings).
11342
*/
11343
rxq_init->buf_sz = (fp->rx_buf_size -
11344
IP_HEADER_ALIGNMENT_PADDING);
11345
11346
rxq_init->cl_qzone_id = fp->cl_qzone_id;
11347
rxq_init->tpa_agg_sz = tpa_agg_size;
11348
rxq_init->sge_buf_sz = sge_sz;
11349
rxq_init->max_sges_pkt = max_sge;
11350
rxq_init->rss_engine_id = SC_FUNC(sc);
11351
rxq_init->mcast_engine_id = SC_FUNC(sc);
11352
11353
/*
11354
* Maximum number or simultaneous TPA aggregation for this Queue.
11355
* For PF Clients it should be the maximum available number.
11356
* VF driver(s) may want to define it to a smaller value.
11357
*/
11358
rxq_init->max_tpa_queues = MAX_AGG_QS(sc);
11359
11360
rxq_init->cache_line_log = BXE_RX_ALIGN_SHIFT;
11361
rxq_init->fw_sb_id = fp->fw_sb_id;
11362
11363
rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
11364
11365
/*
11366
* configure silent vlan removal
11367
* if multi function mode is afex, then mask default vlan
11368
*/
11369
if (IS_MF_AFEX(sc)) {
11370
rxq_init->silent_removal_value =
11371
sc->devinfo.mf_info.afex_def_vlan_tag;
11372
rxq_init->silent_removal_mask = EVL_VLID_MASK;
11373
}
11374
}
11375
11376
static void
11377
bxe_pf_tx_q_prep(struct bxe_softc *sc,
11378
struct bxe_fastpath *fp,
11379
struct ecore_txq_setup_params *txq_init,
11380
uint8_t cos)
11381
{
11382
/*
11383
* XXX If multiple CoS is ever supported then each fastpath structure
11384
* will need to maintain tx producer/consumer/dma/etc values *per* CoS.
11385
* fp->txdata[cos]->tx_dma.paddr;
11386
*/
11387
txq_init->dscr_map = fp->tx_dma.paddr;
11388
txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
11389
txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
11390
txq_init->fw_sb_id = fp->fw_sb_id;
11391
11392
/*
11393
* set the TSS leading client id for TX classfication to the
11394
* leading RSS client id
11395
*/
11396
txq_init->tss_leading_cl_id = BXE_FP(sc, 0, cl_id);
11397
}
11398
11399
/*
11400
* This function performs 2 steps in a queue state machine:
11401
* 1) RESET->INIT
11402
* 2) INIT->SETUP
11403
*/
11404
static int
11405
bxe_setup_queue(struct bxe_softc *sc,
11406
struct bxe_fastpath *fp,
11407
uint8_t leading)
11408
{
11409
struct ecore_queue_state_params q_params = { NULL };
11410
struct ecore_queue_setup_params *setup_params =
11411
&q_params.params.setup;
11412
int rc;
11413
11414
BLOGD(sc, DBG_LOAD, "setting up queue %d\n", fp->index);
11415
11416
bxe_ack_sb(sc, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
11417
11418
q_params.q_obj = &BXE_SP_OBJ(sc, fp).q_obj;
11419
11420
/* we want to wait for completion in this context */
11421
bxe_set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
11422
11423
/* prepare the INIT parameters */
11424
bxe_pf_q_prep_init(sc, fp, &q_params.params.init);
11425
11426
/* Set the command */
11427
q_params.cmd = ECORE_Q_CMD_INIT;
11428
11429
/* Change the state to INIT */
11430
rc = ecore_queue_state_change(sc, &q_params);
11431
if (rc) {
11432
BLOGE(sc, "Queue(%d) INIT failed rc = %d\n", fp->index, rc);
11433
return (rc);
11434
}
11435
11436
BLOGD(sc, DBG_LOAD, "init complete\n");
11437
11438
/* now move the Queue to the SETUP state */
11439
memset(setup_params, 0, sizeof(*setup_params));
11440
11441
/* set Queue flags */
11442
setup_params->flags = bxe_get_q_flags(sc, fp, leading);
11443
11444
/* set general SETUP parameters */
11445
bxe_pf_q_prep_general(sc, fp, &setup_params->gen_params,
11446
FIRST_TX_COS_INDEX);
11447
11448
bxe_pf_rx_q_prep(sc, fp,
11449
&setup_params->pause_params,
11450
&setup_params->rxq_params);
11451
11452
bxe_pf_tx_q_prep(sc, fp,
11453
&setup_params->txq_params,
11454
FIRST_TX_COS_INDEX);
11455
11456
/* Set the command */
11457
q_params.cmd = ECORE_Q_CMD_SETUP;
11458
11459
/* change the state to SETUP */
11460
rc = ecore_queue_state_change(sc, &q_params);
11461
if (rc) {
11462
BLOGE(sc, "Queue(%d) SETUP failed (rc = %d)\n", fp->index, rc);
11463
return (rc);
11464
}
11465
11466
return (rc);
11467
}
11468
11469
static int
11470
bxe_setup_leading(struct bxe_softc *sc)
11471
{
11472
return (bxe_setup_queue(sc, &sc->fp[0], TRUE));
11473
}
11474
11475
static int
11476
bxe_config_rss_pf(struct bxe_softc *sc,
11477
struct ecore_rss_config_obj *rss_obj,
11478
uint8_t config_hash)
11479
{
11480
struct ecore_config_rss_params params = { NULL };
11481
int i;
11482
11483
/*
11484
* Although RSS is meaningless when there is a single HW queue we
11485
* still need it enabled in order to have HW Rx hash generated.
11486
*/
11487
11488
params.rss_obj = rss_obj;
11489
11490
bxe_set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
11491
11492
bxe_set_bit(ECORE_RSS_MODE_REGULAR, &params.rss_flags);
11493
11494
/* RSS configuration */
11495
bxe_set_bit(ECORE_RSS_IPV4, &params.rss_flags);
11496
bxe_set_bit(ECORE_RSS_IPV4_TCP, &params.rss_flags);
11497
bxe_set_bit(ECORE_RSS_IPV6, &params.rss_flags);
11498
bxe_set_bit(ECORE_RSS_IPV6_TCP, &params.rss_flags);
11499
if (rss_obj->udp_rss_v4) {
11500
bxe_set_bit(ECORE_RSS_IPV4_UDP, &params.rss_flags);
11501
}
11502
if (rss_obj->udp_rss_v6) {
11503
bxe_set_bit(ECORE_RSS_IPV6_UDP, &params.rss_flags);
11504
}
11505
11506
/* Hash bits */
11507
params.rss_result_mask = MULTI_MASK;
11508
11509
memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
11510
11511
if (config_hash) {
11512
/* RSS keys */
11513
for (i = 0; i < sizeof(params.rss_key) / 4; i++) {
11514
params.rss_key[i] = arc4random();
11515
}
11516
11517
bxe_set_bit(ECORE_RSS_SET_SRCH, &params.rss_flags);
11518
}
11519
11520
return (ecore_config_rss(sc, &params));
11521
}
11522
11523
static int
11524
bxe_config_rss_eth(struct bxe_softc *sc,
11525
uint8_t config_hash)
11526
{
11527
return (bxe_config_rss_pf(sc, &sc->rss_conf_obj, config_hash));
11528
}
11529
11530
static int
11531
bxe_init_rss_pf(struct bxe_softc *sc)
11532
{
11533
uint8_t num_eth_queues = BXE_NUM_ETH_QUEUES(sc);
11534
int i;
11535
11536
/*
11537
* Prepare the initial contents of the indirection table if
11538
* RSS is enabled
11539
*/
11540
for (i = 0; i < sizeof(sc->rss_conf_obj.ind_table); i++) {
11541
sc->rss_conf_obj.ind_table[i] =
11542
(sc->fp->cl_id + (i % num_eth_queues));
11543
}
11544
11545
if (sc->udp_rss) {
11546
sc->rss_conf_obj.udp_rss_v4 = sc->rss_conf_obj.udp_rss_v6 = 1;
11547
}
11548
11549
/*
11550
* For 57710 and 57711 SEARCHER configuration (rss_keys) is
11551
* per-port, so if explicit configuration is needed, do it only
11552
* for a PMF.
11553
*
11554
* For 57712 and newer it's a per-function configuration.
11555
*/
11556
return (bxe_config_rss_eth(sc, sc->port.pmf || !CHIP_IS_E1x(sc)));
11557
}
11558
11559
static int
11560
bxe_set_mac_one(struct bxe_softc *sc,
11561
uint8_t *mac,
11562
struct ecore_vlan_mac_obj *obj,
11563
uint8_t set,
11564
int mac_type,
11565
unsigned long *ramrod_flags)
11566
{
11567
struct ecore_vlan_mac_ramrod_params ramrod_param;
11568
int rc;
11569
11570
memset(&ramrod_param, 0, sizeof(ramrod_param));
11571
11572
/* fill in general parameters */
11573
ramrod_param.vlan_mac_obj = obj;
11574
ramrod_param.ramrod_flags = *ramrod_flags;
11575
11576
/* fill a user request section if needed */
11577
if (!bxe_test_bit(RAMROD_CONT, ramrod_flags)) {
11578
memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
11579
11580
bxe_set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
11581
11582
/* Set the command: ADD or DEL */
11583
ramrod_param.user_req.cmd = (set) ? ECORE_VLAN_MAC_ADD :
11584
ECORE_VLAN_MAC_DEL;
11585
}
11586
11587
rc = ecore_config_vlan_mac(sc, &ramrod_param);
11588
11589
if (rc == ECORE_EXISTS) {
11590
BLOGD(sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
11591
/* do not treat adding same MAC as error */
11592
rc = 0;
11593
} else if (rc < 0) {
11594
BLOGE(sc, "%s MAC failed (%d)\n", (set ? "Set" : "Delete"), rc);
11595
}
11596
11597
return (rc);
11598
}
11599
11600
static int
11601
bxe_set_eth_mac(struct bxe_softc *sc,
11602
uint8_t set)
11603
{
11604
unsigned long ramrod_flags = 0;
11605
11606
BLOGD(sc, DBG_LOAD, "Adding Ethernet MAC\n");
11607
11608
bxe_set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11609
11610
/* Eth MAC is set on RSS leading client (fp[0]) */
11611
return (bxe_set_mac_one(sc, sc->link_params.mac_addr,
11612
&sc->sp_objs->mac_obj,
11613
set, ECORE_ETH_MAC, &ramrod_flags));
11614
}
11615
11616
static int
11617
bxe_get_cur_phy_idx(struct bxe_softc *sc)
11618
{
11619
uint32_t sel_phy_idx = 0;
11620
11621
if (sc->link_params.num_phys <= 1) {
11622
return (ELINK_INT_PHY);
11623
}
11624
11625
if (sc->link_vars.link_up) {
11626
sel_phy_idx = ELINK_EXT_PHY1;
11627
/* In case link is SERDES, check if the ELINK_EXT_PHY2 is the one */
11628
if ((sc->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
11629
(sc->link_params.phy[ELINK_EXT_PHY2].supported &
11630
ELINK_SUPPORTED_FIBRE))
11631
sel_phy_idx = ELINK_EXT_PHY2;
11632
} else {
11633
switch (elink_phy_selection(&sc->link_params)) {
11634
case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
11635
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
11636
case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
11637
sel_phy_idx = ELINK_EXT_PHY1;
11638
break;
11639
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
11640
case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
11641
sel_phy_idx = ELINK_EXT_PHY2;
11642
break;
11643
}
11644
}
11645
11646
return (sel_phy_idx);
11647
}
11648
11649
static int
11650
bxe_get_link_cfg_idx(struct bxe_softc *sc)
11651
{
11652
uint32_t sel_phy_idx = bxe_get_cur_phy_idx(sc);
11653
11654
/*
11655
* The selected activated PHY is always after swapping (in case PHY
11656
* swapping is enabled). So when swapping is enabled, we need to reverse
11657
* the configuration
11658
*/
11659
11660
if (sc->link_params.multi_phy_config & PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
11661
if (sel_phy_idx == ELINK_EXT_PHY1)
11662
sel_phy_idx = ELINK_EXT_PHY2;
11663
else if (sel_phy_idx == ELINK_EXT_PHY2)
11664
sel_phy_idx = ELINK_EXT_PHY1;
11665
}
11666
11667
return (ELINK_LINK_CONFIG_IDX(sel_phy_idx));
11668
}
11669
11670
static void
11671
bxe_set_requested_fc(struct bxe_softc *sc)
11672
{
11673
/*
11674
* Initialize link parameters structure variables
11675
* It is recommended to turn off RX FC for jumbo frames
11676
* for better performance
11677
*/
11678
if (CHIP_IS_E1x(sc) && (sc->mtu > 5000)) {
11679
sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_TX;
11680
} else {
11681
sc->link_params.req_fc_auto_adv = ELINK_FLOW_CTRL_BOTH;
11682
}
11683
}
11684
11685
static void
11686
bxe_calc_fc_adv(struct bxe_softc *sc)
11687
{
11688
uint8_t cfg_idx = bxe_get_link_cfg_idx(sc);
11689
11690
11691
sc->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
11692
ADVERTISED_Pause);
11693
11694
switch (sc->link_vars.ieee_fc &
11695
MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
11696
11697
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
11698
sc->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
11699
ADVERTISED_Pause);
11700
break;
11701
11702
case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
11703
sc->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
11704
break;
11705
11706
default:
11707
break;
11708
11709
}
11710
}
11711
11712
static uint16_t
11713
bxe_get_mf_speed(struct bxe_softc *sc)
11714
{
11715
uint16_t line_speed = sc->link_vars.line_speed;
11716
if (IS_MF(sc)) {
11717
uint16_t maxCfg =
11718
bxe_extract_max_cfg(sc, sc->devinfo.mf_info.mf_config[SC_VN(sc)]);
11719
11720
/* calculate the current MAX line speed limit for the MF devices */
11721
if (IS_MF_SI(sc)) {
11722
line_speed = (line_speed * maxCfg) / 100;
11723
} else { /* SD mode */
11724
uint16_t vn_max_rate = maxCfg * 100;
11725
11726
if (vn_max_rate < line_speed) {
11727
line_speed = vn_max_rate;
11728
}
11729
}
11730
}
11731
11732
return (line_speed);
11733
}
11734
11735
static void
11736
bxe_fill_report_data(struct bxe_softc *sc,
11737
struct bxe_link_report_data *data)
11738
{
11739
uint16_t line_speed = bxe_get_mf_speed(sc);
11740
11741
memset(data, 0, sizeof(*data));
11742
11743
/* fill the report data with the effective line speed */
11744
data->line_speed = line_speed;
11745
11746
/* Link is down */
11747
if (!sc->link_vars.link_up || (sc->flags & BXE_MF_FUNC_DIS)) {
11748
bxe_set_bit(BXE_LINK_REPORT_LINK_DOWN, &data->link_report_flags);
11749
}
11750
11751
/* Full DUPLEX */
11752
if (sc->link_vars.duplex == DUPLEX_FULL) {
11753
bxe_set_bit(BXE_LINK_REPORT_FULL_DUPLEX, &data->link_report_flags);
11754
}
11755
11756
/* Rx Flow Control is ON */
11757
if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_RX) {
11758
bxe_set_bit(BXE_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
11759
}
11760
11761
/* Tx Flow Control is ON */
11762
if (sc->link_vars.flow_ctrl & ELINK_FLOW_CTRL_TX) {
11763
bxe_set_bit(BXE_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
11764
}
11765
}
11766
11767
/* report link status to OS, should be called under phy_lock */
11768
static void
11769
bxe_link_report_locked(struct bxe_softc *sc)
11770
{
11771
struct bxe_link_report_data cur_data;
11772
11773
/* reread mf_cfg */
11774
if (IS_PF(sc) && !CHIP_IS_E1(sc)) {
11775
bxe_read_mf_cfg(sc);
11776
}
11777
11778
/* Read the current link report info */
11779
bxe_fill_report_data(sc, &cur_data);
11780
11781
/* Don't report link down or exactly the same link status twice */
11782
if (!memcmp(&cur_data, &sc->last_reported_link, sizeof(cur_data)) ||
11783
(bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11784
&sc->last_reported_link.link_report_flags) &&
11785
bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11786
&cur_data.link_report_flags))) {
11787
return;
11788
}
11789
11790
ELINK_DEBUG_P2(sc, "Change in link status : cur_data = %x, last_reported_link = %x\n",
11791
cur_data.link_report_flags, sc->last_reported_link.link_report_flags);
11792
sc->link_cnt++;
11793
11794
ELINK_DEBUG_P1(sc, "link status change count = %x\n", sc->link_cnt);
11795
/* report new link params and remember the state for the next time */
11796
memcpy(&sc->last_reported_link, &cur_data, sizeof(cur_data));
11797
11798
if (bxe_test_bit(BXE_LINK_REPORT_LINK_DOWN,
11799
&cur_data.link_report_flags)) {
11800
if_link_state_change(sc->ifp, LINK_STATE_DOWN);
11801
} else {
11802
const char *duplex;
11803
const char *flow;
11804
11805
if (bxe_test_and_clear_bit(BXE_LINK_REPORT_FULL_DUPLEX,
11806
&cur_data.link_report_flags)) {
11807
duplex = "full";
11808
ELINK_DEBUG_P0(sc, "link set to full duplex\n");
11809
} else {
11810
duplex = "half";
11811
ELINK_DEBUG_P0(sc, "link set to half duplex\n");
11812
}
11813
11814
/*
11815
* Handle the FC at the end so that only these flags would be
11816
* possibly set. This way we may easily check if there is no FC
11817
* enabled.
11818
*/
11819
if (cur_data.link_report_flags) {
11820
if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11821
&cur_data.link_report_flags) &&
11822
bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11823
&cur_data.link_report_flags)) {
11824
flow = "ON - receive & transmit";
11825
} else if (bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11826
&cur_data.link_report_flags) &&
11827
!bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11828
&cur_data.link_report_flags)) {
11829
flow = "ON - receive";
11830
} else if (!bxe_test_bit(BXE_LINK_REPORT_RX_FC_ON,
11831
&cur_data.link_report_flags) &&
11832
bxe_test_bit(BXE_LINK_REPORT_TX_FC_ON,
11833
&cur_data.link_report_flags)) {
11834
flow = "ON - transmit";
11835
} else {
11836
flow = "none"; /* possible? */
11837
}
11838
} else {
11839
flow = "none";
11840
}
11841
11842
if_link_state_change(sc->ifp, LINK_STATE_UP);
11843
BLOGI(sc, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
11844
cur_data.line_speed, duplex, flow);
11845
}
11846
}
11847
11848
static void
11849
bxe_link_report(struct bxe_softc *sc)
11850
{
11851
bxe_acquire_phy_lock(sc);
11852
bxe_link_report_locked(sc);
11853
bxe_release_phy_lock(sc);
11854
}
11855
11856
static void
11857
bxe_link_status_update(struct bxe_softc *sc)
11858
{
11859
if (sc->state != BXE_STATE_OPEN) {
11860
return;
11861
}
11862
11863
if (IS_PF(sc) && !CHIP_REV_IS_SLOW(sc)) {
11864
elink_link_status_update(&sc->link_params, &sc->link_vars);
11865
} else {
11866
sc->port.supported[0] |= (ELINK_SUPPORTED_10baseT_Half |
11867
ELINK_SUPPORTED_10baseT_Full |
11868
ELINK_SUPPORTED_100baseT_Half |
11869
ELINK_SUPPORTED_100baseT_Full |
11870
ELINK_SUPPORTED_1000baseT_Full |
11871
ELINK_SUPPORTED_2500baseX_Full |
11872
ELINK_SUPPORTED_10000baseT_Full |
11873
ELINK_SUPPORTED_TP |
11874
ELINK_SUPPORTED_FIBRE |
11875
ELINK_SUPPORTED_Autoneg |
11876
ELINK_SUPPORTED_Pause |
11877
ELINK_SUPPORTED_Asym_Pause);
11878
sc->port.advertising[0] = sc->port.supported[0];
11879
11880
sc->link_params.sc = sc;
11881
sc->link_params.port = SC_PORT(sc);
11882
sc->link_params.req_duplex[0] = DUPLEX_FULL;
11883
sc->link_params.req_flow_ctrl[0] = ELINK_FLOW_CTRL_NONE;
11884
sc->link_params.req_line_speed[0] = SPEED_10000;
11885
sc->link_params.speed_cap_mask[0] = 0x7f0000;
11886
sc->link_params.switch_cfg = ELINK_SWITCH_CFG_10G;
11887
11888
if (CHIP_REV_IS_FPGA(sc)) {
11889
sc->link_vars.mac_type = ELINK_MAC_TYPE_EMAC;
11890
sc->link_vars.line_speed = ELINK_SPEED_1000;
11891
sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11892
LINK_STATUS_SPEED_AND_DUPLEX_1000TFD);
11893
} else {
11894
sc->link_vars.mac_type = ELINK_MAC_TYPE_BMAC;
11895
sc->link_vars.line_speed = ELINK_SPEED_10000;
11896
sc->link_vars.link_status = (LINK_STATUS_LINK_UP |
11897
LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
11898
}
11899
11900
sc->link_vars.link_up = 1;
11901
11902
sc->link_vars.duplex = DUPLEX_FULL;
11903
sc->link_vars.flow_ctrl = ELINK_FLOW_CTRL_NONE;
11904
11905
if (IS_PF(sc)) {
11906
REG_WR(sc, NIG_REG_EGRESS_DRAIN0_MODE + sc->link_params.port*4, 0);
11907
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11908
bxe_link_report(sc);
11909
}
11910
}
11911
11912
if (IS_PF(sc)) {
11913
if (sc->link_vars.link_up) {
11914
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11915
} else {
11916
bxe_stats_handle(sc, STATS_EVENT_STOP);
11917
}
11918
bxe_link_report(sc);
11919
} else {
11920
bxe_link_report(sc);
11921
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11922
}
11923
}
11924
11925
static int
11926
bxe_initial_phy_init(struct bxe_softc *sc,
11927
int load_mode)
11928
{
11929
int rc, cfg_idx = bxe_get_link_cfg_idx(sc);
11930
uint16_t req_line_speed = sc->link_params.req_line_speed[cfg_idx];
11931
struct elink_params *lp = &sc->link_params;
11932
11933
bxe_set_requested_fc(sc);
11934
11935
if (CHIP_REV_IS_SLOW(sc)) {
11936
uint32_t bond = CHIP_BOND_ID(sc);
11937
uint32_t feat = 0;
11938
11939
if (CHIP_IS_E2(sc) && CHIP_IS_MODE_4_PORT(sc)) {
11940
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11941
} else if (bond & 0x4) {
11942
if (CHIP_IS_E3(sc)) {
11943
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_XMAC;
11944
} else {
11945
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_BMAC;
11946
}
11947
} else if (bond & 0x8) {
11948
if (CHIP_IS_E3(sc)) {
11949
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_UMAC;
11950
} else {
11951
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11952
}
11953
}
11954
11955
/* disable EMAC for E3 and above */
11956
if (bond & 0x2) {
11957
feat |= ELINK_FEATURE_CONFIG_EMUL_DISABLE_EMAC;
11958
}
11959
11960
sc->link_params.feature_config_flags |= feat;
11961
}
11962
11963
bxe_acquire_phy_lock(sc);
11964
11965
if (load_mode == LOAD_DIAG) {
11966
lp->loopback_mode = ELINK_LOOPBACK_XGXS;
11967
/* Prefer doing PHY loopback at 10G speed, if possible */
11968
if (lp->req_line_speed[cfg_idx] < ELINK_SPEED_10000) {
11969
if (lp->speed_cap_mask[cfg_idx] &
11970
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
11971
lp->req_line_speed[cfg_idx] = ELINK_SPEED_10000;
11972
} else {
11973
lp->req_line_speed[cfg_idx] = ELINK_SPEED_1000;
11974
}
11975
}
11976
}
11977
11978
if (load_mode == LOAD_LOOPBACK_EXT) {
11979
lp->loopback_mode = ELINK_LOOPBACK_EXT;
11980
}
11981
11982
rc = elink_phy_init(&sc->link_params, &sc->link_vars);
11983
11984
bxe_release_phy_lock(sc);
11985
11986
bxe_calc_fc_adv(sc);
11987
11988
if (sc->link_vars.link_up) {
11989
bxe_stats_handle(sc, STATS_EVENT_LINK_UP);
11990
bxe_link_report(sc);
11991
}
11992
11993
if (!CHIP_REV_IS_SLOW(sc)) {
11994
bxe_periodic_start(sc);
11995
}
11996
11997
sc->link_params.req_line_speed[cfg_idx] = req_line_speed;
11998
return (rc);
11999
}
12000
12001
static u_int
12002
bxe_push_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12003
{
12004
struct ecore_mcast_list_elem *mc_mac = arg;
12005
12006
mc_mac += cnt;
12007
mc_mac->mac = (uint8_t *)LLADDR(sdl);
12008
12009
return (1);
12010
}
12011
12012
static int
12013
bxe_init_mcast_macs_list(struct bxe_softc *sc,
12014
struct ecore_mcast_ramrod_params *p)
12015
{
12016
if_t ifp = sc->ifp;
12017
int mc_count;
12018
struct ecore_mcast_list_elem *mc_mac;
12019
12020
ECORE_LIST_INIT(&p->mcast_list);
12021
p->mcast_list_len = 0;
12022
12023
/* XXXGL: multicast count may change later */
12024
mc_count = if_llmaddr_count(ifp);
12025
12026
if (!mc_count) {
12027
return (0);
12028
}
12029
12030
mc_mac = malloc(sizeof(*mc_mac) * mc_count, M_DEVBUF,
12031
(M_NOWAIT | M_ZERO));
12032
if (!mc_mac) {
12033
BLOGE(sc, "Failed to allocate temp mcast list\n");
12034
return (-1);
12035
}
12036
bzero(mc_mac, (sizeof(*mc_mac) * mc_count));
12037
if_foreach_llmaddr(ifp, bxe_push_maddr, mc_mac);
12038
12039
for (int i = 0; i < mc_count; i ++) {
12040
ECORE_LIST_PUSH_TAIL(&mc_mac[i].link, &p->mcast_list);
12041
BLOGD(sc, DBG_LOAD,
12042
"Setting MCAST %02X:%02X:%02X:%02X:%02X:%02X and mc_count %d\n",
12043
mc_mac[i].mac[0], mc_mac[i].mac[1], mc_mac[i].mac[2],
12044
mc_mac[i].mac[3], mc_mac[i].mac[4], mc_mac[i].mac[5],
12045
mc_count);
12046
}
12047
12048
p->mcast_list_len = mc_count;
12049
12050
return (0);
12051
}
12052
12053
static void
12054
bxe_free_mcast_macs_list(struct ecore_mcast_ramrod_params *p)
12055
{
12056
struct ecore_mcast_list_elem *mc_mac =
12057
ECORE_LIST_FIRST_ENTRY(&p->mcast_list,
12058
struct ecore_mcast_list_elem,
12059
link);
12060
12061
if (mc_mac) {
12062
/* only a single free as all mc_macs are in the same heap array */
12063
free(mc_mac, M_DEVBUF);
12064
}
12065
}
12066
static int
12067
bxe_set_mc_list(struct bxe_softc *sc)
12068
{
12069
struct ecore_mcast_ramrod_params rparam = { NULL };
12070
int rc = 0;
12071
12072
rparam.mcast_obj = &sc->mcast_obj;
12073
12074
BXE_MCAST_LOCK(sc);
12075
12076
/* first, clear all configured multicast MACs */
12077
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_DEL);
12078
if (rc < 0) {
12079
BLOGE(sc, "Failed to clear multicast configuration: %d\n", rc);
12080
/* Manual backport parts of FreeBSD upstream r284470. */
12081
BXE_MCAST_UNLOCK(sc);
12082
return (rc);
12083
}
12084
12085
/* configure a new MACs list */
12086
rc = bxe_init_mcast_macs_list(sc, &rparam);
12087
if (rc) {
12088
BLOGE(sc, "Failed to create mcast MACs list (%d)\n", rc);
12089
BXE_MCAST_UNLOCK(sc);
12090
return (rc);
12091
}
12092
12093
/* Now add the new MACs */
12094
rc = ecore_config_mcast(sc, &rparam, ECORE_MCAST_CMD_ADD);
12095
if (rc < 0) {
12096
BLOGE(sc, "Failed to set new mcast config (%d)\n", rc);
12097
}
12098
12099
bxe_free_mcast_macs_list(&rparam);
12100
12101
BXE_MCAST_UNLOCK(sc);
12102
12103
return (rc);
12104
}
12105
12106
struct bxe_set_addr_ctx {
12107
struct bxe_softc *sc;
12108
unsigned long ramrod_flags;
12109
int rc;
12110
};
12111
12112
static u_int
12113
bxe_set_addr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
12114
{
12115
struct bxe_set_addr_ctx *ctx = arg;
12116
struct ecore_vlan_mac_obj *mac_obj = &ctx->sc->sp_objs->mac_obj;
12117
int rc;
12118
12119
if (ctx->rc < 0)
12120
return (0);
12121
12122
rc = bxe_set_mac_one(ctx->sc, (uint8_t *)LLADDR(sdl), mac_obj, TRUE,
12123
ECORE_UC_LIST_MAC, &ctx->ramrod_flags);
12124
12125
/* do not treat adding same MAC as an error */
12126
if (rc == -EEXIST)
12127
BLOGD(ctx->sc, DBG_SP, "Failed to schedule ADD operations (EEXIST)\n");
12128
else if (rc < 0) {
12129
BLOGE(ctx->sc, "Failed to schedule ADD operations (%d)\n", rc);
12130
ctx->rc = rc;
12131
}
12132
12133
return (1);
12134
}
12135
12136
static int
12137
bxe_set_uc_list(struct bxe_softc *sc)
12138
{
12139
if_t ifp = sc->ifp;
12140
struct ecore_vlan_mac_obj *mac_obj = &sc->sp_objs->mac_obj;
12141
struct bxe_set_addr_ctx ctx = { sc, 0, 0 };
12142
int rc;
12143
12144
/* first schedule a cleanup up of old configuration */
12145
rc = bxe_del_all_macs(sc, mac_obj, ECORE_UC_LIST_MAC, FALSE);
12146
if (rc < 0) {
12147
BLOGE(sc, "Failed to schedule delete of all ETH MACs (%d)\n", rc);
12148
return (rc);
12149
}
12150
12151
if_foreach_lladdr(ifp, bxe_set_addr, &ctx);
12152
if (ctx.rc < 0)
12153
return (ctx.rc);
12154
12155
/* Execute the pending commands */
12156
bit_set(&ctx.ramrod_flags, RAMROD_CONT);
12157
return (bxe_set_mac_one(sc, NULL, mac_obj, FALSE /* don't care */,
12158
ECORE_UC_LIST_MAC, &ctx.ramrod_flags));
12159
}
12160
12161
static void
12162
bxe_set_rx_mode(struct bxe_softc *sc)
12163
{
12164
if_t ifp = sc->ifp;
12165
uint32_t rx_mode = BXE_RX_MODE_NORMAL;
12166
12167
if (sc->state != BXE_STATE_OPEN) {
12168
BLOGD(sc, DBG_SP, "state is %x, returning\n", sc->state);
12169
return;
12170
}
12171
12172
BLOGD(sc, DBG_SP, "if_flags(ifp)=0x%x\n", if_getflags(sc->ifp));
12173
12174
if (if_getflags(ifp) & IFF_PROMISC) {
12175
rx_mode = BXE_RX_MODE_PROMISC;
12176
} else if ((if_getflags(ifp) & IFF_ALLMULTI) ||
12177
(if_llmaddr_count(ifp) > BXE_MAX_MULTICAST &&
12178
CHIP_IS_E1(sc))) {
12179
rx_mode = BXE_RX_MODE_ALLMULTI;
12180
} else {
12181
if (IS_PF(sc)) {
12182
/* some multicasts */
12183
if (bxe_set_mc_list(sc) < 0) {
12184
rx_mode = BXE_RX_MODE_ALLMULTI;
12185
}
12186
if (bxe_set_uc_list(sc) < 0) {
12187
rx_mode = BXE_RX_MODE_PROMISC;
12188
}
12189
}
12190
}
12191
12192
sc->rx_mode = rx_mode;
12193
12194
/* schedule the rx_mode command */
12195
if (bxe_test_bit(ECORE_FILTER_RX_MODE_PENDING, &sc->sp_state)) {
12196
BLOGD(sc, DBG_LOAD, "Scheduled setting rx_mode with ECORE...\n");
12197
bxe_set_bit(ECORE_FILTER_RX_MODE_SCHED, &sc->sp_state);
12198
return;
12199
}
12200
12201
if (IS_PF(sc)) {
12202
bxe_set_storm_rx_mode(sc);
12203
}
12204
}
12205
12206
12207
/* update flags in shmem */
12208
static void
12209
bxe_update_drv_flags(struct bxe_softc *sc,
12210
uint32_t flags,
12211
uint32_t set)
12212
{
12213
uint32_t drv_flags;
12214
12215
if (SHMEM2_HAS(sc, drv_flags)) {
12216
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12217
drv_flags = SHMEM2_RD(sc, drv_flags);
12218
12219
if (set) {
12220
SET_FLAGS(drv_flags, flags);
12221
} else {
12222
RESET_FLAGS(drv_flags, flags);
12223
}
12224
12225
SHMEM2_WR(sc, drv_flags, drv_flags);
12226
BLOGD(sc, DBG_LOAD, "drv_flags 0x%08x\n", drv_flags);
12227
12228
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_DRV_FLAGS);
12229
}
12230
}
12231
12232
/* periodic timer callout routine, only runs when the interface is up */
12233
12234
static void
12235
bxe_periodic_callout_func(void *xsc)
12236
{
12237
struct bxe_softc *sc = (struct bxe_softc *)xsc;
12238
int i;
12239
12240
if (!BXE_CORE_TRYLOCK(sc)) {
12241
/* just bail and try again next time */
12242
12243
if ((sc->state == BXE_STATE_OPEN) &&
12244
(atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12245
/* schedule the next periodic callout */
12246
callout_reset(&sc->periodic_callout, hz,
12247
bxe_periodic_callout_func, sc);
12248
}
12249
12250
return;
12251
}
12252
12253
if ((sc->state != BXE_STATE_OPEN) ||
12254
(atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_STOP)) {
12255
BLOGW(sc, "periodic callout exit (state=0x%x)\n", sc->state);
12256
BXE_CORE_UNLOCK(sc);
12257
return;
12258
}
12259
12260
12261
/* Check for TX timeouts on any fastpath. */
12262
FOR_EACH_QUEUE(sc, i) {
12263
if (bxe_watchdog(sc, &sc->fp[i]) != 0) {
12264
/* Ruh-Roh, chip was reset! */
12265
break;
12266
}
12267
}
12268
12269
if (!CHIP_REV_IS_SLOW(sc)) {
12270
/*
12271
* This barrier is needed to ensure the ordering between the writing
12272
* to the sc->port.pmf in the bxe_nic_load() or bxe_pmf_update() and
12273
* the reading here.
12274
*/
12275
mb();
12276
if (sc->port.pmf) {
12277
bxe_acquire_phy_lock(sc);
12278
elink_period_func(&sc->link_params, &sc->link_vars);
12279
bxe_release_phy_lock(sc);
12280
}
12281
}
12282
12283
if (IS_PF(sc) && !(sc->flags & BXE_NO_PULSE)) {
12284
int mb_idx = SC_FW_MB_IDX(sc);
12285
uint32_t drv_pulse;
12286
uint32_t mcp_pulse;
12287
12288
++sc->fw_drv_pulse_wr_seq;
12289
sc->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
12290
12291
drv_pulse = sc->fw_drv_pulse_wr_seq;
12292
bxe_drv_pulse(sc);
12293
12294
mcp_pulse = (SHMEM_RD(sc, func_mb[mb_idx].mcp_pulse_mb) &
12295
MCP_PULSE_SEQ_MASK);
12296
12297
/*
12298
* The delta between driver pulse and mcp response should
12299
* be 1 (before mcp response) or 0 (after mcp response).
12300
*/
12301
if ((drv_pulse != mcp_pulse) &&
12302
(drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
12303
/* someone lost a heartbeat... */
12304
BLOGE(sc, "drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
12305
drv_pulse, mcp_pulse);
12306
}
12307
}
12308
12309
/* state is BXE_STATE_OPEN */
12310
bxe_stats_handle(sc, STATS_EVENT_UPDATE);
12311
12312
BXE_CORE_UNLOCK(sc);
12313
12314
if ((sc->state == BXE_STATE_OPEN) &&
12315
(atomic_load_acq_long(&sc->periodic_flags) == PERIODIC_GO)) {
12316
/* schedule the next periodic callout */
12317
callout_reset(&sc->periodic_callout, hz,
12318
bxe_periodic_callout_func, sc);
12319
}
12320
}
12321
12322
static void
12323
bxe_periodic_start(struct bxe_softc *sc)
12324
{
12325
atomic_store_rel_long(&sc->periodic_flags, PERIODIC_GO);
12326
callout_reset(&sc->periodic_callout, hz, bxe_periodic_callout_func, sc);
12327
}
12328
12329
static void
12330
bxe_periodic_stop(struct bxe_softc *sc)
12331
{
12332
atomic_store_rel_long(&sc->periodic_flags, PERIODIC_STOP);
12333
callout_drain(&sc->periodic_callout);
12334
}
12335
12336
void
12337
bxe_parity_recover(struct bxe_softc *sc)
12338
{
12339
uint8_t global = FALSE;
12340
uint32_t error_recovered, error_unrecovered;
12341
12342
12343
if ((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12344
(sc->state == BXE_STATE_ERROR)) {
12345
BLOGE(sc, "RECOVERY failed, "
12346
"stack notified driver is NOT running! "
12347
"Please reboot/power cycle the system.\n");
12348
return;
12349
}
12350
12351
while (1) {
12352
BLOGD(sc, DBG_SP,
12353
"%s sc=%p state=0x%x rec_state=0x%x error_status=%x\n",
12354
__func__, sc, sc->state, sc->recovery_state, sc->error_status);
12355
12356
switch(sc->recovery_state) {
12357
12358
case BXE_RECOVERY_INIT:
12359
bxe_chk_parity_attn(sc, &global, FALSE);
12360
12361
if ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ||
12362
(sc->error_status & BXE_ERR_MCP_ASSERT) ||
12363
(sc->error_status & BXE_ERR_GLOBAL)) {
12364
12365
BXE_CORE_LOCK(sc);
12366
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12367
bxe_periodic_stop(sc);
12368
}
12369
bxe_nic_unload(sc, UNLOAD_RECOVERY, false);
12370
sc->state = BXE_STATE_ERROR;
12371
sc->recovery_state = BXE_RECOVERY_FAILED;
12372
BLOGE(sc, " No Recovery tried for error 0x%x"
12373
" stack notified driver is NOT running!"
12374
" Please reboot/power cycle the system.\n",
12375
sc->error_status);
12376
BXE_CORE_UNLOCK(sc);
12377
return;
12378
}
12379
12380
12381
/* Try to get a LEADER_LOCK HW lock */
12382
if (bxe_trylock_leader_lock(sc)) {
12383
12384
bxe_set_reset_in_progress(sc);
12385
/*
12386
* Check if there is a global attention and if
12387
* there was a global attention, set the global
12388
* reset bit.
12389
*/
12390
if (global) {
12391
bxe_set_reset_global(sc);
12392
}
12393
sc->is_leader = 1;
12394
}
12395
12396
/* If interface has been removed - break */
12397
12398
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12399
bxe_periodic_stop(sc);
12400
}
12401
12402
BXE_CORE_LOCK(sc);
12403
bxe_nic_unload(sc,UNLOAD_RECOVERY, false);
12404
sc->recovery_state = BXE_RECOVERY_WAIT;
12405
BXE_CORE_UNLOCK(sc);
12406
12407
/*
12408
* Ensure "is_leader", MCP command sequence and
12409
* "recovery_state" update values are seen on other
12410
* CPUs.
12411
*/
12412
mb();
12413
break;
12414
case BXE_RECOVERY_WAIT:
12415
12416
if (sc->is_leader) {
12417
int other_engine = SC_PATH(sc) ? 0 : 1;
12418
bool other_load_status =
12419
bxe_get_load_status(sc, other_engine);
12420
bool load_status =
12421
bxe_get_load_status(sc, SC_PATH(sc));
12422
global = bxe_reset_is_global(sc);
12423
12424
/*
12425
* In case of a parity in a global block, let
12426
* the first leader that performs a
12427
* leader_reset() reset the global blocks in
12428
* order to clear global attentions. Otherwise
12429
* the gates will remain closed for that
12430
* engine.
12431
*/
12432
if (load_status ||
12433
(global && other_load_status)) {
12434
/*
12435
* Wait until all other functions get
12436
* down.
12437
*/
12438
taskqueue_enqueue_timeout(taskqueue_thread,
12439
&sc->sp_err_timeout_task, hz/10);
12440
return;
12441
} else {
12442
/*
12443
* If all other functions got down
12444
* try to bring the chip back to
12445
* normal. In any case it's an exit
12446
* point for a leader.
12447
*/
12448
if (bxe_leader_reset(sc)) {
12449
BLOGE(sc, "RECOVERY failed, "
12450
"stack notified driver is NOT running!\n");
12451
sc->recovery_state = BXE_RECOVERY_FAILED;
12452
sc->state = BXE_STATE_ERROR;
12453
mb();
12454
return;
12455
}
12456
12457
/*
12458
* If we are here, means that the
12459
* leader has succeeded and doesn't
12460
* want to be a leader any more. Try
12461
* to continue as a none-leader.
12462
*/
12463
break;
12464
}
12465
12466
} else { /* non-leader */
12467
if (!bxe_reset_is_done(sc, SC_PATH(sc))) {
12468
/*
12469
* Try to get a LEADER_LOCK HW lock as
12470
* long as a former leader may have
12471
* been unloaded by the user or
12472
* released a leadership by another
12473
* reason.
12474
*/
12475
if (bxe_trylock_leader_lock(sc)) {
12476
/*
12477
* I'm a leader now! Restart a
12478
* switch case.
12479
*/
12480
sc->is_leader = 1;
12481
break;
12482
}
12483
12484
taskqueue_enqueue_timeout(taskqueue_thread,
12485
&sc->sp_err_timeout_task, hz/10);
12486
return;
12487
12488
} else {
12489
/*
12490
* If there was a global attention, wait
12491
* for it to be cleared.
12492
*/
12493
if (bxe_reset_is_global(sc)) {
12494
taskqueue_enqueue_timeout(taskqueue_thread,
12495
&sc->sp_err_timeout_task, hz/10);
12496
return;
12497
}
12498
12499
error_recovered =
12500
sc->eth_stats.recoverable_error;
12501
error_unrecovered =
12502
sc->eth_stats.unrecoverable_error;
12503
BXE_CORE_LOCK(sc);
12504
sc->recovery_state =
12505
BXE_RECOVERY_NIC_LOADING;
12506
if (bxe_nic_load(sc, LOAD_NORMAL)) {
12507
error_unrecovered++;
12508
sc->recovery_state = BXE_RECOVERY_FAILED;
12509
sc->state = BXE_STATE_ERROR;
12510
BLOGE(sc, "Recovery is NOT successful, "
12511
" state=0x%x recovery_state=0x%x error=%x\n",
12512
sc->state, sc->recovery_state, sc->error_status);
12513
sc->error_status = 0;
12514
} else {
12515
sc->recovery_state =
12516
BXE_RECOVERY_DONE;
12517
error_recovered++;
12518
BLOGI(sc, "Recovery is successful from errors %x,"
12519
" state=0x%x"
12520
" recovery_state=0x%x \n", sc->error_status,
12521
sc->state, sc->recovery_state);
12522
mb();
12523
}
12524
sc->error_status = 0;
12525
BXE_CORE_UNLOCK(sc);
12526
sc->eth_stats.recoverable_error =
12527
error_recovered;
12528
sc->eth_stats.unrecoverable_error =
12529
error_unrecovered;
12530
12531
return;
12532
}
12533
}
12534
default:
12535
return;
12536
}
12537
}
12538
}
12539
void
12540
bxe_handle_error(struct bxe_softc * sc)
12541
{
12542
12543
if(sc->recovery_state == BXE_RECOVERY_WAIT) {
12544
return;
12545
}
12546
if(sc->error_status) {
12547
if (sc->state == BXE_STATE_OPEN) {
12548
bxe_int_disable(sc);
12549
}
12550
if (sc->link_vars.link_up) {
12551
if_link_state_change(sc->ifp, LINK_STATE_DOWN);
12552
}
12553
sc->recovery_state = BXE_RECOVERY_INIT;
12554
BLOGI(sc, "bxe%d: Recovery started errors 0x%x recovery state 0x%x\n",
12555
sc->unit, sc->error_status, sc->recovery_state);
12556
bxe_parity_recover(sc);
12557
}
12558
}
12559
12560
static void
12561
bxe_sp_err_timeout_task(void *arg, int pending)
12562
{
12563
12564
struct bxe_softc *sc = (struct bxe_softc *)arg;
12565
12566
BLOGD(sc, DBG_SP,
12567
"%s state = 0x%x rec state=0x%x error_status=%x\n",
12568
__func__, sc->state, sc->recovery_state, sc->error_status);
12569
12570
if((sc->recovery_state == BXE_RECOVERY_FAILED) &&
12571
(sc->state == BXE_STATE_ERROR)) {
12572
return;
12573
}
12574
/* if can be taken */
12575
if ((sc->error_status) && (sc->trigger_grcdump)) {
12576
bxe_grc_dump(sc);
12577
}
12578
if (sc->recovery_state != BXE_RECOVERY_DONE) {
12579
bxe_handle_error(sc);
12580
bxe_parity_recover(sc);
12581
} else if (sc->error_status) {
12582
bxe_handle_error(sc);
12583
}
12584
12585
return;
12586
}
12587
12588
/* start the controller */
12589
static __noinline int
12590
bxe_nic_load(struct bxe_softc *sc,
12591
int load_mode)
12592
{
12593
uint32_t val;
12594
int load_code = 0;
12595
int i, rc = 0;
12596
12597
BXE_CORE_LOCK_ASSERT(sc);
12598
12599
BLOGD(sc, DBG_LOAD, "Starting NIC load...\n");
12600
12601
sc->state = BXE_STATE_OPENING_WAITING_LOAD;
12602
12603
if (IS_PF(sc)) {
12604
/* must be called before memory allocation and HW init */
12605
bxe_ilt_set_info(sc);
12606
}
12607
12608
sc->last_reported_link_state = LINK_STATE_UNKNOWN;
12609
12610
bxe_set_fp_rx_buf_size(sc);
12611
12612
if (bxe_alloc_fp_buffers(sc) != 0) {
12613
BLOGE(sc, "Failed to allocate fastpath memory\n");
12614
sc->state = BXE_STATE_CLOSED;
12615
rc = ENOMEM;
12616
goto bxe_nic_load_error0;
12617
}
12618
12619
if (bxe_alloc_mem(sc) != 0) {
12620
sc->state = BXE_STATE_CLOSED;
12621
rc = ENOMEM;
12622
goto bxe_nic_load_error0;
12623
}
12624
12625
if (bxe_alloc_fw_stats_mem(sc) != 0) {
12626
sc->state = BXE_STATE_CLOSED;
12627
rc = ENOMEM;
12628
goto bxe_nic_load_error0;
12629
}
12630
12631
if (IS_PF(sc)) {
12632
/* set pf load just before approaching the MCP */
12633
bxe_set_pf_load(sc);
12634
12635
/* if MCP exists send load request and analyze response */
12636
if (!BXE_NOMCP(sc)) {
12637
/* attempt to load pf */
12638
if (bxe_nic_load_request(sc, &load_code) != 0) {
12639
sc->state = BXE_STATE_CLOSED;
12640
rc = ENXIO;
12641
goto bxe_nic_load_error1;
12642
}
12643
12644
/* what did the MCP say? */
12645
if (bxe_nic_load_analyze_req(sc, load_code) != 0) {
12646
bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12647
sc->state = BXE_STATE_CLOSED;
12648
rc = ENXIO;
12649
goto bxe_nic_load_error2;
12650
}
12651
} else {
12652
BLOGI(sc, "Device has no MCP!\n");
12653
load_code = bxe_nic_load_no_mcp(sc);
12654
}
12655
12656
/* mark PMF if applicable */
12657
bxe_nic_load_pmf(sc, load_code);
12658
12659
/* Init Function state controlling object */
12660
bxe_init_func_obj(sc);
12661
12662
/* Initialize HW */
12663
if (bxe_init_hw(sc, load_code) != 0) {
12664
BLOGE(sc, "HW init failed\n");
12665
bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12666
sc->state = BXE_STATE_CLOSED;
12667
rc = ENXIO;
12668
goto bxe_nic_load_error2;
12669
}
12670
}
12671
12672
/* set ALWAYS_ALIVE bit in shmem */
12673
sc->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
12674
bxe_drv_pulse(sc);
12675
sc->flags |= BXE_NO_PULSE;
12676
12677
/* attach interrupts */
12678
if (bxe_interrupt_attach(sc) != 0) {
12679
sc->state = BXE_STATE_CLOSED;
12680
rc = ENXIO;
12681
goto bxe_nic_load_error2;
12682
}
12683
12684
bxe_nic_init(sc, load_code);
12685
12686
/* Init per-function objects */
12687
if (IS_PF(sc)) {
12688
bxe_init_objs(sc);
12689
// XXX bxe_iov_nic_init(sc);
12690
12691
/* set AFEX default VLAN tag to an invalid value */
12692
sc->devinfo.mf_info.afex_def_vlan_tag = -1;
12693
// XXX bxe_nic_load_afex_dcc(sc, load_code);
12694
12695
sc->state = BXE_STATE_OPENING_WAITING_PORT;
12696
rc = bxe_func_start(sc);
12697
if (rc) {
12698
BLOGE(sc, "Function start failed! rc = %d\n", rc);
12699
bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12700
sc->state = BXE_STATE_ERROR;
12701
goto bxe_nic_load_error3;
12702
}
12703
12704
/* send LOAD_DONE command to MCP */
12705
if (!BXE_NOMCP(sc)) {
12706
load_code = bxe_fw_command(sc, DRV_MSG_CODE_LOAD_DONE, 0);
12707
if (!load_code) {
12708
BLOGE(sc, "MCP response failure, aborting\n");
12709
sc->state = BXE_STATE_ERROR;
12710
rc = ENXIO;
12711
goto bxe_nic_load_error3;
12712
}
12713
}
12714
12715
rc = bxe_setup_leading(sc);
12716
if (rc) {
12717
BLOGE(sc, "Setup leading failed! rc = %d\n", rc);
12718
sc->state = BXE_STATE_ERROR;
12719
goto bxe_nic_load_error3;
12720
}
12721
12722
FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, i) {
12723
rc = bxe_setup_queue(sc, &sc->fp[i], FALSE);
12724
if (rc) {
12725
BLOGE(sc, "Queue(%d) setup failed rc = %d\n", i, rc);
12726
sc->state = BXE_STATE_ERROR;
12727
goto bxe_nic_load_error3;
12728
}
12729
}
12730
12731
rc = bxe_init_rss_pf(sc);
12732
if (rc) {
12733
BLOGE(sc, "PF RSS init failed\n");
12734
sc->state = BXE_STATE_ERROR;
12735
goto bxe_nic_load_error3;
12736
}
12737
}
12738
/* XXX VF */
12739
12740
/* now when Clients are configured we are ready to work */
12741
sc->state = BXE_STATE_OPEN;
12742
12743
/* Configure a ucast MAC */
12744
if (IS_PF(sc)) {
12745
rc = bxe_set_eth_mac(sc, TRUE);
12746
}
12747
if (rc) {
12748
BLOGE(sc, "Setting Ethernet MAC failed rc = %d\n", rc);
12749
sc->state = BXE_STATE_ERROR;
12750
goto bxe_nic_load_error3;
12751
}
12752
12753
if (sc->port.pmf) {
12754
rc = bxe_initial_phy_init(sc, /* XXX load_mode */LOAD_OPEN);
12755
if (rc) {
12756
sc->state = BXE_STATE_ERROR;
12757
goto bxe_nic_load_error3;
12758
}
12759
}
12760
12761
sc->link_params.feature_config_flags &=
12762
~ELINK_FEATURE_CONFIG_BOOT_FROM_SAN;
12763
12764
/* start fast path */
12765
12766
/* Initialize Rx filter */
12767
bxe_set_rx_mode(sc);
12768
12769
/* start the Tx */
12770
switch (/* XXX load_mode */LOAD_OPEN) {
12771
case LOAD_NORMAL:
12772
case LOAD_OPEN:
12773
break;
12774
12775
case LOAD_DIAG:
12776
case LOAD_LOOPBACK_EXT:
12777
sc->state = BXE_STATE_DIAG;
12778
break;
12779
12780
default:
12781
break;
12782
}
12783
12784
if (sc->port.pmf) {
12785
bxe_update_drv_flags(sc, 1 << DRV_FLAGS_PORT_MASK, 0);
12786
} else {
12787
bxe_link_status_update(sc);
12788
}
12789
12790
/* start the periodic timer callout */
12791
bxe_periodic_start(sc);
12792
12793
if (IS_PF(sc) && SHMEM2_HAS(sc, drv_capabilities_flag)) {
12794
/* mark driver is loaded in shmem2 */
12795
val = SHMEM2_RD(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)]);
12796
SHMEM2_WR(sc, drv_capabilities_flag[SC_FW_MB_IDX(sc)],
12797
(val |
12798
DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
12799
DRV_FLAGS_CAPABILITIES_LOADED_L2));
12800
}
12801
12802
/* wait for all pending SP commands to complete */
12803
if (IS_PF(sc) && !bxe_wait_sp_comp(sc, ~0x0UL)) {
12804
BLOGE(sc, "Timeout waiting for all SPs to complete!\n");
12805
bxe_periodic_stop(sc);
12806
bxe_nic_unload(sc, UNLOAD_CLOSE, FALSE);
12807
return (ENXIO);
12808
}
12809
12810
/* Tell the stack the driver is running! */
12811
if_setdrvflags(sc->ifp, IFF_DRV_RUNNING);
12812
12813
BLOGD(sc, DBG_LOAD, "NIC successfully loaded\n");
12814
12815
return (0);
12816
12817
bxe_nic_load_error3:
12818
12819
if (IS_PF(sc)) {
12820
bxe_int_disable_sync(sc, 1);
12821
12822
/* clean out queued objects */
12823
bxe_squeeze_objects(sc);
12824
}
12825
12826
bxe_interrupt_detach(sc);
12827
12828
bxe_nic_load_error2:
12829
12830
if (IS_PF(sc) && !BXE_NOMCP(sc)) {
12831
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
12832
bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE, 0);
12833
}
12834
12835
sc->port.pmf = 0;
12836
12837
bxe_nic_load_error1:
12838
12839
/* clear pf_load status, as it was already set */
12840
if (IS_PF(sc)) {
12841
bxe_clear_pf_load(sc);
12842
}
12843
12844
bxe_nic_load_error0:
12845
12846
bxe_free_fw_stats_mem(sc);
12847
bxe_free_fp_buffers(sc);
12848
bxe_free_mem(sc);
12849
12850
return (rc);
12851
}
12852
12853
static int
12854
bxe_init_locked(struct bxe_softc *sc)
12855
{
12856
int other_engine = SC_PATH(sc) ? 0 : 1;
12857
uint8_t other_load_status, load_status;
12858
uint8_t global = FALSE;
12859
int rc;
12860
12861
BXE_CORE_LOCK_ASSERT(sc);
12862
12863
/* check if the driver is already running */
12864
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
12865
BLOGD(sc, DBG_LOAD, "Init called while driver is running!\n");
12866
return (0);
12867
}
12868
12869
if((sc->state == BXE_STATE_ERROR) &&
12870
(sc->recovery_state == BXE_RECOVERY_FAILED)) {
12871
BLOGE(sc, "Initialization not done, "
12872
"as previous recovery failed."
12873
"Reboot/Power-cycle the system\n" );
12874
return (ENXIO);
12875
}
12876
12877
12878
bxe_set_power_state(sc, PCI_PM_D0);
12879
12880
/*
12881
* If parity occurred during the unload, then attentions and/or
12882
* RECOVERY_IN_PROGRES may still be set. If so we want the first function
12883
* loaded on the current engine to complete the recovery. Parity recovery
12884
* is only relevant for PF driver.
12885
*/
12886
if (IS_PF(sc)) {
12887
other_load_status = bxe_get_load_status(sc, other_engine);
12888
load_status = bxe_get_load_status(sc, SC_PATH(sc));
12889
12890
if (!bxe_reset_is_done(sc, SC_PATH(sc)) ||
12891
bxe_chk_parity_attn(sc, &global, TRUE)) {
12892
do {
12893
/*
12894
* If there are attentions and they are in global blocks, set
12895
* the GLOBAL_RESET bit regardless whether it will be this
12896
* function that will complete the recovery or not.
12897
*/
12898
if (global) {
12899
bxe_set_reset_global(sc);
12900
}
12901
12902
/*
12903
* Only the first function on the current engine should try
12904
* to recover in open. In case of attentions in global blocks
12905
* only the first in the chip should try to recover.
12906
*/
12907
if ((!load_status && (!global || !other_load_status)) &&
12908
bxe_trylock_leader_lock(sc) && !bxe_leader_reset(sc)) {
12909
BLOGI(sc, "Recovered during init\n");
12910
break;
12911
}
12912
12913
/* recovery has failed... */
12914
bxe_set_power_state(sc, PCI_PM_D3hot);
12915
sc->recovery_state = BXE_RECOVERY_FAILED;
12916
12917
BLOGE(sc, "Recovery flow hasn't properly "
12918
"completed yet, try again later. "
12919
"If you still see this message after a "
12920
"few retries then power cycle is required.\n");
12921
12922
rc = ENXIO;
12923
goto bxe_init_locked_done;
12924
} while (0);
12925
}
12926
}
12927
12928
sc->recovery_state = BXE_RECOVERY_DONE;
12929
12930
rc = bxe_nic_load(sc, LOAD_OPEN);
12931
12932
bxe_init_locked_done:
12933
12934
if (rc) {
12935
/* Tell the stack the driver is NOT running! */
12936
BLOGE(sc, "Initialization failed, "
12937
"stack notified driver is NOT running!\n");
12938
if_setdrvflagbits(sc->ifp, 0, IFF_DRV_RUNNING);
12939
}
12940
12941
return (rc);
12942
}
12943
12944
static int
12945
bxe_stop_locked(struct bxe_softc *sc)
12946
{
12947
BXE_CORE_LOCK_ASSERT(sc);
12948
return (bxe_nic_unload(sc, UNLOAD_NORMAL, TRUE));
12949
}
12950
12951
/*
12952
* Handles controller initialization when called from an unlocked routine.
12953
* ifconfig calls this function.
12954
*
12955
* Returns:
12956
* void
12957
*/
12958
static void
12959
bxe_init(void *xsc)
12960
{
12961
struct bxe_softc *sc = (struct bxe_softc *)xsc;
12962
12963
BXE_CORE_LOCK(sc);
12964
bxe_init_locked(sc);
12965
BXE_CORE_UNLOCK(sc);
12966
}
12967
12968
static void
12969
bxe_init_ifnet(struct bxe_softc *sc)
12970
{
12971
if_t ifp;
12972
int capabilities;
12973
12974
/* ifconfig entrypoint for media type/status reporting */
12975
ifmedia_init(&sc->ifmedia, IFM_IMASK,
12976
bxe_ifmedia_update,
12977
bxe_ifmedia_status);
12978
12979
/* set the default interface values */
12980
ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_FDX | sc->media), 0, NULL);
12981
ifmedia_add(&sc->ifmedia, (IFM_ETHER | IFM_AUTO), 0, NULL);
12982
ifmedia_set(&sc->ifmedia, (IFM_ETHER | IFM_AUTO));
12983
12984
sc->ifmedia.ifm_media = sc->ifmedia.ifm_cur->ifm_media; /* XXX ? */
12985
BLOGI(sc, "IFMEDIA flags : %x\n", sc->ifmedia.ifm_media);
12986
12987
/* allocate the ifnet structure */
12988
ifp = if_gethandle(IFT_ETHER);
12989
12990
if_setsoftc(ifp, sc);
12991
if_initname(ifp, device_get_name(sc->dev), device_get_unit(sc->dev));
12992
if_setflags(ifp, (IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST));
12993
if_setioctlfn(ifp, bxe_ioctl);
12994
if_setstartfn(ifp, bxe_tx_start);
12995
if_setgetcounterfn(ifp, bxe_get_counter);
12996
if_settransmitfn(ifp, bxe_tx_mq_start);
12997
if_setqflushfn(ifp, bxe_mq_flush);
12998
if_setinitfn(ifp, bxe_init);
12999
if_setmtu(ifp, sc->mtu);
13000
if_sethwassist(ifp, (CSUM_IP |
13001
CSUM_TCP |
13002
CSUM_UDP |
13003
CSUM_TSO |
13004
CSUM_TCP_IPV6 |
13005
CSUM_UDP_IPV6));
13006
13007
capabilities =
13008
(IFCAP_VLAN_MTU |
13009
IFCAP_VLAN_HWTAGGING |
13010
IFCAP_VLAN_HWTSO |
13011
IFCAP_VLAN_HWFILTER |
13012
IFCAP_VLAN_HWCSUM |
13013
IFCAP_HWCSUM |
13014
IFCAP_JUMBO_MTU |
13015
IFCAP_LRO |
13016
IFCAP_TSO4 |
13017
IFCAP_TSO6 |
13018
IFCAP_WOL_MAGIC);
13019
if_setcapabilitiesbit(ifp, capabilities, 0); /* XXX */
13020
if_setcapenable(ifp, if_getcapabilities(ifp));
13021
if_setbaudrate(ifp, IF_Gbps(10));
13022
/* XXX */
13023
if_setsendqlen(ifp, sc->tx_ring_size);
13024
if_setsendqready(ifp);
13025
/* XXX */
13026
13027
sc->ifp = ifp;
13028
13029
/* attach to the Ethernet interface list */
13030
ether_ifattach(ifp, sc->link_params.mac_addr);
13031
13032
/* Attach driver debugnet methods. */
13033
DEBUGNET_SET(ifp, bxe);
13034
}
13035
13036
static void
13037
bxe_deallocate_bars(struct bxe_softc *sc)
13038
{
13039
int i;
13040
13041
for (i = 0; i < MAX_BARS; i++) {
13042
if (sc->bar[i].resource != NULL) {
13043
bus_release_resource(sc->dev,
13044
SYS_RES_MEMORY,
13045
sc->bar[i].rid,
13046
sc->bar[i].resource);
13047
BLOGD(sc, DBG_LOAD, "Released PCI BAR%d [%02x] memory\n",
13048
i, PCIR_BAR(i));
13049
}
13050
}
13051
}
13052
13053
static int
13054
bxe_allocate_bars(struct bxe_softc *sc)
13055
{
13056
u_int flags;
13057
int i;
13058
13059
memset(sc->bar, 0, sizeof(sc->bar));
13060
13061
for (i = 0; i < MAX_BARS; i++) {
13062
13063
/* memory resources reside at BARs 0, 2, 4 */
13064
/* Run `pciconf -lb` to see mappings */
13065
if ((i != 0) && (i != 2) && (i != 4)) {
13066
continue;
13067
}
13068
13069
sc->bar[i].rid = PCIR_BAR(i);
13070
13071
flags = RF_ACTIVE;
13072
if (i == 0) {
13073
flags |= RF_SHAREABLE;
13074
}
13075
13076
if ((sc->bar[i].resource =
13077
bus_alloc_resource_any(sc->dev,
13078
SYS_RES_MEMORY,
13079
&sc->bar[i].rid,
13080
flags)) == NULL) {
13081
return (0);
13082
}
13083
13084
sc->bar[i].tag = rman_get_bustag(sc->bar[i].resource);
13085
sc->bar[i].handle = rman_get_bushandle(sc->bar[i].resource);
13086
sc->bar[i].kva = (vm_offset_t)rman_get_virtual(sc->bar[i].resource);
13087
13088
BLOGI(sc, "PCI BAR%d [%02x] memory allocated: %#jx-%#jx (%jd) -> %#jx\n",
13089
i, PCIR_BAR(i),
13090
rman_get_start(sc->bar[i].resource),
13091
rman_get_end(sc->bar[i].resource),
13092
rman_get_size(sc->bar[i].resource),
13093
(uintmax_t)sc->bar[i].kva);
13094
}
13095
13096
return (0);
13097
}
13098
13099
static void
13100
bxe_get_function_num(struct bxe_softc *sc)
13101
{
13102
uint32_t val = 0;
13103
13104
/*
13105
* Read the ME register to get the function number. The ME register
13106
* holds the relative-function number and absolute-function number. The
13107
* absolute-function number appears only in E2 and above. Before that
13108
* these bits always contained zero, therefore we cannot blindly use them.
13109
*/
13110
13111
val = REG_RD(sc, BAR_ME_REGISTER);
13112
13113
sc->pfunc_rel =
13114
(uint8_t)((val & ME_REG_PF_NUM) >> ME_REG_PF_NUM_SHIFT);
13115
sc->path_id =
13116
(uint8_t)((val & ME_REG_ABS_PF_NUM) >> ME_REG_ABS_PF_NUM_SHIFT) & 1;
13117
13118
if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13119
sc->pfunc_abs = ((sc->pfunc_rel << 1) | sc->path_id);
13120
} else {
13121
sc->pfunc_abs = (sc->pfunc_rel | sc->path_id);
13122
}
13123
13124
BLOGD(sc, DBG_LOAD,
13125
"Relative function %d, Absolute function %d, Path %d\n",
13126
sc->pfunc_rel, sc->pfunc_abs, sc->path_id);
13127
}
13128
13129
static uint32_t
13130
bxe_get_shmem_mf_cfg_base(struct bxe_softc *sc)
13131
{
13132
uint32_t shmem2_size;
13133
uint32_t offset;
13134
uint32_t mf_cfg_offset_value;
13135
13136
/* Non 57712 */
13137
offset = (SHMEM_RD(sc, func_mb) +
13138
(MAX_FUNC_NUM * sizeof(struct drv_func_mb)));
13139
13140
/* 57712 plus */
13141
if (sc->devinfo.shmem2_base != 0) {
13142
shmem2_size = SHMEM2_RD(sc, size);
13143
if (shmem2_size > offsetof(struct shmem2_region, mf_cfg_addr)) {
13144
mf_cfg_offset_value = SHMEM2_RD(sc, mf_cfg_addr);
13145
if (SHMEM_MF_CFG_ADDR_NONE != mf_cfg_offset_value) {
13146
offset = mf_cfg_offset_value;
13147
}
13148
}
13149
}
13150
13151
return (offset);
13152
}
13153
13154
static uint32_t
13155
bxe_pcie_capability_read(struct bxe_softc *sc,
13156
int reg,
13157
int width)
13158
{
13159
int pcie_reg;
13160
13161
/* ensure PCIe capability is enabled */
13162
if (pci_find_cap(sc->dev, PCIY_EXPRESS, &pcie_reg) == 0) {
13163
if (pcie_reg != 0) {
13164
BLOGD(sc, DBG_LOAD, "PCIe capability at 0x%04x\n", pcie_reg);
13165
return (pci_read_config(sc->dev, (pcie_reg + reg), width));
13166
}
13167
}
13168
13169
BLOGE(sc, "PCIe capability NOT FOUND!!!\n");
13170
13171
return (0);
13172
}
13173
13174
static uint8_t
13175
bxe_is_pcie_pending(struct bxe_softc *sc)
13176
{
13177
return (bxe_pcie_capability_read(sc, PCIER_DEVICE_STA, 2) &
13178
PCIEM_STA_TRANSACTION_PND);
13179
}
13180
13181
/*
13182
* Walk the PCI capabiites list for the device to find what features are
13183
* supported. These capabilites may be enabled/disabled by firmware so it's
13184
* best to walk the list rather than make assumptions.
13185
*/
13186
static void
13187
bxe_probe_pci_caps(struct bxe_softc *sc)
13188
{
13189
uint16_t link_status;
13190
int reg;
13191
13192
/* check if PCI Power Management is enabled */
13193
if (pci_find_cap(sc->dev, PCIY_PMG, &reg) == 0) {
13194
if (reg != 0) {
13195
BLOGD(sc, DBG_LOAD, "Found PM capability at 0x%04x\n", reg);
13196
13197
sc->devinfo.pcie_cap_flags |= BXE_PM_CAPABLE_FLAG;
13198
sc->devinfo.pcie_pm_cap_reg = (uint16_t)reg;
13199
}
13200
}
13201
13202
link_status = bxe_pcie_capability_read(sc, PCIER_LINK_STA, 2);
13203
13204
/* handle PCIe 2.0 workarounds for 57710 */
13205
if (CHIP_IS_E1(sc)) {
13206
/* workaround for 57710 errata E4_57710_27462 */
13207
sc->devinfo.pcie_link_speed =
13208
(REG_RD(sc, 0x3d04) & (1 << 24)) ? 2 : 1;
13209
13210
/* workaround for 57710 errata E4_57710_27488 */
13211
sc->devinfo.pcie_link_width =
13212
((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13213
if (sc->devinfo.pcie_link_speed > 1) {
13214
sc->devinfo.pcie_link_width =
13215
((link_status & PCIEM_LINK_STA_WIDTH) >> 4) >> 1;
13216
}
13217
} else {
13218
sc->devinfo.pcie_link_speed =
13219
(link_status & PCIEM_LINK_STA_SPEED);
13220
sc->devinfo.pcie_link_width =
13221
((link_status & PCIEM_LINK_STA_WIDTH) >> 4);
13222
}
13223
13224
BLOGD(sc, DBG_LOAD, "PCIe link speed=%d width=%d\n",
13225
sc->devinfo.pcie_link_speed, sc->devinfo.pcie_link_width);
13226
13227
sc->devinfo.pcie_cap_flags |= BXE_PCIE_CAPABLE_FLAG;
13228
sc->devinfo.pcie_pcie_cap_reg = (uint16_t)reg;
13229
13230
/* check if MSI capability is enabled */
13231
if (pci_find_cap(sc->dev, PCIY_MSI, &reg) == 0) {
13232
if (reg != 0) {
13233
BLOGD(sc, DBG_LOAD, "Found MSI capability at 0x%04x\n", reg);
13234
13235
sc->devinfo.pcie_cap_flags |= BXE_MSI_CAPABLE_FLAG;
13236
sc->devinfo.pcie_msi_cap_reg = (uint16_t)reg;
13237
}
13238
}
13239
13240
/* check if MSI-X capability is enabled */
13241
if (pci_find_cap(sc->dev, PCIY_MSIX, &reg) == 0) {
13242
if (reg != 0) {
13243
BLOGD(sc, DBG_LOAD, "Found MSI-X capability at 0x%04x\n", reg);
13244
13245
sc->devinfo.pcie_cap_flags |= BXE_MSIX_CAPABLE_FLAG;
13246
sc->devinfo.pcie_msix_cap_reg = (uint16_t)reg;
13247
}
13248
}
13249
}
13250
13251
static int
13252
bxe_get_shmem_mf_cfg_info_sd(struct bxe_softc *sc)
13253
{
13254
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13255
uint32_t val;
13256
13257
/* get the outer vlan if we're in switch-dependent mode */
13258
13259
val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13260
mf_info->ext_id = (uint16_t)val;
13261
13262
mf_info->multi_vnics_mode = 1;
13263
13264
if (!VALID_OVLAN(mf_info->ext_id)) {
13265
BLOGE(sc, "Invalid VLAN (%d)\n", mf_info->ext_id);
13266
return (1);
13267
}
13268
13269
/* get the capabilities */
13270
if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13271
FUNC_MF_CFG_PROTOCOL_ISCSI) {
13272
mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ISCSI;
13273
} else if ((mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_PROTOCOL_MASK) ==
13274
FUNC_MF_CFG_PROTOCOL_FCOE) {
13275
mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_FCOE;
13276
} else {
13277
mf_info->mf_protos_supported |= MF_PROTO_SUPPORT_ETHERNET;
13278
}
13279
13280
mf_info->vnics_per_port =
13281
(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13282
13283
return (0);
13284
}
13285
13286
static uint32_t
13287
bxe_get_shmem_ext_proto_support_flags(struct bxe_softc *sc)
13288
{
13289
uint32_t retval = 0;
13290
uint32_t val;
13291
13292
val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13293
13294
if (val & MACP_FUNC_CFG_FLAGS_ENABLED) {
13295
if (val & MACP_FUNC_CFG_FLAGS_ETHERNET) {
13296
retval |= MF_PROTO_SUPPORT_ETHERNET;
13297
}
13298
if (val & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
13299
retval |= MF_PROTO_SUPPORT_ISCSI;
13300
}
13301
if (val & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
13302
retval |= MF_PROTO_SUPPORT_FCOE;
13303
}
13304
}
13305
13306
return (retval);
13307
}
13308
13309
static int
13310
bxe_get_shmem_mf_cfg_info_si(struct bxe_softc *sc)
13311
{
13312
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13313
uint32_t val;
13314
13315
/*
13316
* There is no outer vlan if we're in switch-independent mode.
13317
* If the mac is valid then assume multi-function.
13318
*/
13319
13320
val = MFCFG_RD(sc, func_ext_config[SC_ABS_FUNC(sc)].func_cfg);
13321
13322
mf_info->multi_vnics_mode = ((val & MACP_FUNC_CFG_FLAGS_MASK) != 0);
13323
13324
mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13325
13326
mf_info->vnics_per_port =
13327
(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13328
13329
return (0);
13330
}
13331
13332
static int
13333
bxe_get_shmem_mf_cfg_info_niv(struct bxe_softc *sc)
13334
{
13335
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13336
uint32_t e1hov_tag;
13337
uint32_t func_config;
13338
uint32_t niv_config;
13339
13340
mf_info->multi_vnics_mode = 1;
13341
13342
e1hov_tag = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13343
func_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13344
niv_config = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].afex_config);
13345
13346
mf_info->ext_id =
13347
(uint16_t)((e1hov_tag & FUNC_MF_CFG_E1HOV_TAG_MASK) >>
13348
FUNC_MF_CFG_E1HOV_TAG_SHIFT);
13349
13350
mf_info->default_vlan =
13351
(uint16_t)((e1hov_tag & FUNC_MF_CFG_AFEX_VLAN_MASK) >>
13352
FUNC_MF_CFG_AFEX_VLAN_SHIFT);
13353
13354
mf_info->niv_allowed_priorities =
13355
(uint8_t)((niv_config & FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
13356
FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT);
13357
13358
mf_info->niv_default_cos =
13359
(uint8_t)((func_config & FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
13360
FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT);
13361
13362
mf_info->afex_vlan_mode =
13363
((niv_config & FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
13364
FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT);
13365
13366
mf_info->niv_mba_enabled =
13367
((niv_config & FUNC_MF_CFG_AFEX_MBA_ENABLED_MASK) >>
13368
FUNC_MF_CFG_AFEX_MBA_ENABLED_SHIFT);
13369
13370
mf_info->mf_protos_supported = bxe_get_shmem_ext_proto_support_flags(sc);
13371
13372
mf_info->vnics_per_port =
13373
(CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4;
13374
13375
return (0);
13376
}
13377
13378
static int
13379
bxe_check_valid_mf_cfg(struct bxe_softc *sc)
13380
{
13381
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13382
uint32_t mf_cfg1;
13383
uint32_t mf_cfg2;
13384
uint32_t ovlan1;
13385
uint32_t ovlan2;
13386
uint8_t i, j;
13387
13388
BLOGD(sc, DBG_LOAD, "MF config parameters for function %d\n",
13389
SC_PORT(sc));
13390
BLOGD(sc, DBG_LOAD, "\tmf_config=0x%x\n",
13391
mf_info->mf_config[SC_VN(sc)]);
13392
BLOGD(sc, DBG_LOAD, "\tmulti_vnics_mode=%d\n",
13393
mf_info->multi_vnics_mode);
13394
BLOGD(sc, DBG_LOAD, "\tvnics_per_port=%d\n",
13395
mf_info->vnics_per_port);
13396
BLOGD(sc, DBG_LOAD, "\tovlan/vifid=%d\n",
13397
mf_info->ext_id);
13398
BLOGD(sc, DBG_LOAD, "\tmin_bw=%d/%d/%d/%d\n",
13399
mf_info->min_bw[0], mf_info->min_bw[1],
13400
mf_info->min_bw[2], mf_info->min_bw[3]);
13401
BLOGD(sc, DBG_LOAD, "\tmax_bw=%d/%d/%d/%d\n",
13402
mf_info->max_bw[0], mf_info->max_bw[1],
13403
mf_info->max_bw[2], mf_info->max_bw[3]);
13404
BLOGD(sc, DBG_LOAD, "\tmac_addr: %s\n",
13405
sc->mac_addr_str);
13406
13407
/* various MF mode sanity checks... */
13408
13409
if (mf_info->mf_config[SC_VN(sc)] & FUNC_MF_CFG_FUNC_HIDE) {
13410
BLOGE(sc, "Enumerated function %d is marked as hidden\n",
13411
SC_PORT(sc));
13412
return (1);
13413
}
13414
13415
if ((mf_info->vnics_per_port > 1) && !mf_info->multi_vnics_mode) {
13416
BLOGE(sc, "vnics_per_port=%d multi_vnics_mode=%d\n",
13417
mf_info->vnics_per_port, mf_info->multi_vnics_mode);
13418
return (1);
13419
}
13420
13421
if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13422
/* vnic id > 0 must have valid ovlan in switch-dependent mode */
13423
if ((SC_VN(sc) > 0) && !VALID_OVLAN(OVLAN(sc))) {
13424
BLOGE(sc, "mf_mode=SD vnic_id=%d ovlan=%d\n",
13425
SC_VN(sc), OVLAN(sc));
13426
return (1);
13427
}
13428
13429
if (!VALID_OVLAN(OVLAN(sc)) && mf_info->multi_vnics_mode) {
13430
BLOGE(sc, "mf_mode=SD multi_vnics_mode=%d ovlan=%d\n",
13431
mf_info->multi_vnics_mode, OVLAN(sc));
13432
return (1);
13433
}
13434
13435
/*
13436
* Verify all functions are either MF or SF mode. If MF, make sure
13437
* sure that all non-hidden functions have a valid ovlan. If SF,
13438
* make sure that all non-hidden functions have an invalid ovlan.
13439
*/
13440
FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13441
mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13442
ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13443
if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13444
(((mf_info->multi_vnics_mode) && !VALID_OVLAN(ovlan1)) ||
13445
((!mf_info->multi_vnics_mode) && VALID_OVLAN(ovlan1)))) {
13446
BLOGE(sc, "mf_mode=SD function %d MF config "
13447
"mismatch, multi_vnics_mode=%d ovlan=%d\n",
13448
i, mf_info->multi_vnics_mode, ovlan1);
13449
return (1);
13450
}
13451
}
13452
13453
/* Verify all funcs on the same port each have a different ovlan. */
13454
FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13455
mf_cfg1 = MFCFG_RD(sc, func_mf_config[i].config);
13456
ovlan1 = MFCFG_RD(sc, func_mf_config[i].e1hov_tag);
13457
/* iterate from the next function on the port to the max func */
13458
for (j = i + 2; j < MAX_FUNC_NUM; j += 2) {
13459
mf_cfg2 = MFCFG_RD(sc, func_mf_config[j].config);
13460
ovlan2 = MFCFG_RD(sc, func_mf_config[j].e1hov_tag);
13461
if (!(mf_cfg1 & FUNC_MF_CFG_FUNC_HIDE) &&
13462
VALID_OVLAN(ovlan1) &&
13463
!(mf_cfg2 & FUNC_MF_CFG_FUNC_HIDE) &&
13464
VALID_OVLAN(ovlan2) &&
13465
(ovlan1 == ovlan2)) {
13466
BLOGE(sc, "mf_mode=SD functions %d and %d "
13467
"have the same ovlan (%d)\n",
13468
i, j, ovlan1);
13469
return (1);
13470
}
13471
}
13472
}
13473
} /* MULTI_FUNCTION_SD */
13474
13475
return (0);
13476
}
13477
13478
static int
13479
bxe_get_mf_cfg_info(struct bxe_softc *sc)
13480
{
13481
struct bxe_mf_info *mf_info = &sc->devinfo.mf_info;
13482
uint32_t val, mac_upper;
13483
uint8_t i, vnic;
13484
13485
/* initialize mf_info defaults */
13486
mf_info->vnics_per_port = 1;
13487
mf_info->multi_vnics_mode = FALSE;
13488
mf_info->path_has_ovlan = FALSE;
13489
mf_info->mf_mode = SINGLE_FUNCTION;
13490
13491
if (!CHIP_IS_MF_CAP(sc)) {
13492
return (0);
13493
}
13494
13495
if (sc->devinfo.mf_cfg_base == SHMEM_MF_CFG_ADDR_NONE) {
13496
BLOGE(sc, "Invalid mf_cfg_base!\n");
13497
return (1);
13498
}
13499
13500
/* get the MF mode (switch dependent / independent / single-function) */
13501
13502
val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13503
13504
switch (val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK)
13505
{
13506
case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
13507
13508
mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13509
13510
/* check for legal upper mac bytes */
13511
if (mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT) {
13512
mf_info->mf_mode = MULTI_FUNCTION_SI;
13513
} else {
13514
BLOGE(sc, "Invalid config for Switch Independent mode\n");
13515
}
13516
13517
break;
13518
13519
case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
13520
case SHARED_FEAT_CFG_FORCE_SF_MODE_SPIO4:
13521
13522
/* get outer vlan configuration */
13523
val = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].e1hov_tag);
13524
13525
if ((val & FUNC_MF_CFG_E1HOV_TAG_MASK) !=
13526
FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
13527
mf_info->mf_mode = MULTI_FUNCTION_SD;
13528
} else {
13529
BLOGE(sc, "Invalid config for Switch Dependent mode\n");
13530
}
13531
13532
break;
13533
13534
case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
13535
13536
/* not in MF mode, vnics_per_port=1 and multi_vnics_mode=FALSE */
13537
return (0);
13538
13539
case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
13540
13541
/*
13542
* Mark MF mode as NIV if MCP version includes NPAR-SD support
13543
* and the MAC address is valid.
13544
*/
13545
mac_upper = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13546
13547
if ((SHMEM2_HAS(sc, afex_driver_support)) &&
13548
(mac_upper != FUNC_MF_CFG_UPPERMAC_DEFAULT)) {
13549
mf_info->mf_mode = MULTI_FUNCTION_AFEX;
13550
} else {
13551
BLOGE(sc, "Invalid config for AFEX mode\n");
13552
}
13553
13554
break;
13555
13556
default:
13557
13558
BLOGE(sc, "Unknown MF mode (0x%08x)\n",
13559
(val & SHARED_FEAT_CFG_FORCE_SF_MODE_MASK));
13560
13561
return (1);
13562
}
13563
13564
/* set path mf_mode (which could be different than function mf_mode) */
13565
if (mf_info->mf_mode == MULTI_FUNCTION_SD) {
13566
mf_info->path_has_ovlan = TRUE;
13567
} else if (mf_info->mf_mode == SINGLE_FUNCTION) {
13568
/*
13569
* Decide on path multi vnics mode. If we're not in MF mode and in
13570
* 4-port mode, this is good enough to check vnic-0 of the other port
13571
* on the same path
13572
*/
13573
if (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) {
13574
uint8_t other_port = !(PORT_ID(sc) & 1);
13575
uint8_t abs_func_other_port = (SC_PATH(sc) + (2 * other_port));
13576
13577
val = MFCFG_RD(sc, func_mf_config[abs_func_other_port].e1hov_tag);
13578
13579
mf_info->path_has_ovlan = VALID_OVLAN((uint16_t)val) ? 1 : 0;
13580
}
13581
}
13582
13583
if (mf_info->mf_mode == SINGLE_FUNCTION) {
13584
/* invalid MF config */
13585
if (SC_VN(sc) >= 1) {
13586
BLOGE(sc, "VNIC ID >= 1 in SF mode\n");
13587
return (1);
13588
}
13589
13590
return (0);
13591
}
13592
13593
/* get the MF configuration */
13594
mf_info->mf_config[SC_VN(sc)] =
13595
MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].config);
13596
13597
switch(mf_info->mf_mode)
13598
{
13599
case MULTI_FUNCTION_SD:
13600
13601
bxe_get_shmem_mf_cfg_info_sd(sc);
13602
break;
13603
13604
case MULTI_FUNCTION_SI:
13605
13606
bxe_get_shmem_mf_cfg_info_si(sc);
13607
break;
13608
13609
case MULTI_FUNCTION_AFEX:
13610
13611
bxe_get_shmem_mf_cfg_info_niv(sc);
13612
break;
13613
13614
default:
13615
13616
BLOGE(sc, "Get MF config failed (mf_mode=0x%08x)\n",
13617
mf_info->mf_mode);
13618
return (1);
13619
}
13620
13621
/* get the congestion management parameters */
13622
13623
vnic = 0;
13624
FOREACH_ABS_FUNC_IN_PORT(sc, i) {
13625
/* get min/max bw */
13626
val = MFCFG_RD(sc, func_mf_config[i].config);
13627
mf_info->min_bw[vnic] =
13628
((val & FUNC_MF_CFG_MIN_BW_MASK) >> FUNC_MF_CFG_MIN_BW_SHIFT);
13629
mf_info->max_bw[vnic] =
13630
((val & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT);
13631
vnic++;
13632
}
13633
13634
return (bxe_check_valid_mf_cfg(sc));
13635
}
13636
13637
static int
13638
bxe_get_shmem_info(struct bxe_softc *sc)
13639
{
13640
int port;
13641
uint32_t mac_hi, mac_lo, val;
13642
13643
port = SC_PORT(sc);
13644
mac_hi = mac_lo = 0;
13645
13646
sc->link_params.sc = sc;
13647
sc->link_params.port = port;
13648
13649
/* get the hardware config info */
13650
sc->devinfo.hw_config =
13651
SHMEM_RD(sc, dev_info.shared_hw_config.config);
13652
sc->devinfo.hw_config2 =
13653
SHMEM_RD(sc, dev_info.shared_hw_config.config2);
13654
13655
sc->link_params.hw_led_mode =
13656
((sc->devinfo.hw_config & SHARED_HW_CFG_LED_MODE_MASK) >>
13657
SHARED_HW_CFG_LED_MODE_SHIFT);
13658
13659
/* get the port feature config */
13660
sc->port.config =
13661
SHMEM_RD(sc, dev_info.port_feature_config[port].config);
13662
13663
/* get the link params */
13664
sc->link_params.speed_cap_mask[0] =
13665
SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask);
13666
sc->link_params.speed_cap_mask[1] =
13667
SHMEM_RD(sc, dev_info.port_hw_config[port].speed_capability_mask2);
13668
13669
/* get the lane config */
13670
sc->link_params.lane_config =
13671
SHMEM_RD(sc, dev_info.port_hw_config[port].lane_config);
13672
13673
/* get the link config */
13674
val = SHMEM_RD(sc, dev_info.port_feature_config[port].link_config);
13675
sc->port.link_config[ELINK_INT_PHY] = val;
13676
sc->link_params.switch_cfg = (val & PORT_FEATURE_CONNECTED_SWITCH_MASK);
13677
sc->port.link_config[ELINK_EXT_PHY1] =
13678
SHMEM_RD(sc, dev_info.port_feature_config[port].link_config2);
13679
13680
/* get the override preemphasis flag and enable it or turn it off */
13681
val = SHMEM_RD(sc, dev_info.shared_feature_config.config);
13682
if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED) {
13683
sc->link_params.feature_config_flags |=
13684
ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13685
} else {
13686
sc->link_params.feature_config_flags &=
13687
~ELINK_FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
13688
}
13689
13690
/* get the initial value of the link params */
13691
sc->link_params.multi_phy_config =
13692
SHMEM_RD(sc, dev_info.port_hw_config[port].multi_phy_config);
13693
13694
/* get external phy info */
13695
sc->port.ext_phy_config =
13696
SHMEM_RD(sc, dev_info.port_hw_config[port].external_phy_config);
13697
13698
/* get the multifunction configuration */
13699
bxe_get_mf_cfg_info(sc);
13700
13701
/* get the mac address */
13702
if (IS_MF(sc)) {
13703
mac_hi = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_upper);
13704
mac_lo = MFCFG_RD(sc, func_mf_config[SC_ABS_FUNC(sc)].mac_lower);
13705
} else {
13706
mac_hi = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_upper);
13707
mac_lo = SHMEM_RD(sc, dev_info.port_hw_config[port].mac_lower);
13708
}
13709
13710
if ((mac_lo == 0) && (mac_hi == 0)) {
13711
*sc->mac_addr_str = 0;
13712
BLOGE(sc, "No Ethernet address programmed!\n");
13713
} else {
13714
sc->link_params.mac_addr[0] = (uint8_t)(mac_hi >> 8);
13715
sc->link_params.mac_addr[1] = (uint8_t)(mac_hi);
13716
sc->link_params.mac_addr[2] = (uint8_t)(mac_lo >> 24);
13717
sc->link_params.mac_addr[3] = (uint8_t)(mac_lo >> 16);
13718
sc->link_params.mac_addr[4] = (uint8_t)(mac_lo >> 8);
13719
sc->link_params.mac_addr[5] = (uint8_t)(mac_lo);
13720
snprintf(sc->mac_addr_str, sizeof(sc->mac_addr_str),
13721
"%02x:%02x:%02x:%02x:%02x:%02x",
13722
sc->link_params.mac_addr[0], sc->link_params.mac_addr[1],
13723
sc->link_params.mac_addr[2], sc->link_params.mac_addr[3],
13724
sc->link_params.mac_addr[4], sc->link_params.mac_addr[5]);
13725
BLOGD(sc, DBG_LOAD, "Ethernet address: %s\n", sc->mac_addr_str);
13726
}
13727
13728
return (0);
13729
}
13730
13731
static void
13732
bxe_get_tunable_params(struct bxe_softc *sc)
13733
{
13734
/* sanity checks */
13735
13736
if ((bxe_interrupt_mode != INTR_MODE_INTX) &&
13737
(bxe_interrupt_mode != INTR_MODE_MSI) &&
13738
(bxe_interrupt_mode != INTR_MODE_MSIX)) {
13739
BLOGW(sc, "invalid interrupt_mode value (%d)\n", bxe_interrupt_mode);
13740
bxe_interrupt_mode = INTR_MODE_MSIX;
13741
}
13742
13743
if ((bxe_queue_count < 0) || (bxe_queue_count > MAX_RSS_CHAINS)) {
13744
BLOGW(sc, "invalid queue_count value (%d)\n", bxe_queue_count);
13745
bxe_queue_count = 0;
13746
}
13747
13748
if ((bxe_max_rx_bufs < 1) || (bxe_max_rx_bufs > RX_BD_USABLE)) {
13749
if (bxe_max_rx_bufs == 0) {
13750
bxe_max_rx_bufs = RX_BD_USABLE;
13751
} else {
13752
BLOGW(sc, "invalid max_rx_bufs (%d)\n", bxe_max_rx_bufs);
13753
bxe_max_rx_bufs = 2048;
13754
}
13755
}
13756
13757
if ((bxe_hc_rx_ticks < 1) || (bxe_hc_rx_ticks > 100)) {
13758
BLOGW(sc, "invalid hc_rx_ticks (%d)\n", bxe_hc_rx_ticks);
13759
bxe_hc_rx_ticks = 25;
13760
}
13761
13762
if ((bxe_hc_tx_ticks < 1) || (bxe_hc_tx_ticks > 100)) {
13763
BLOGW(sc, "invalid hc_tx_ticks (%d)\n", bxe_hc_tx_ticks);
13764
bxe_hc_tx_ticks = 50;
13765
}
13766
13767
if (bxe_max_aggregation_size == 0) {
13768
bxe_max_aggregation_size = TPA_AGG_SIZE;
13769
}
13770
13771
if (bxe_max_aggregation_size > 0xffff) {
13772
BLOGW(sc, "invalid max_aggregation_size (%d)\n",
13773
bxe_max_aggregation_size);
13774
bxe_max_aggregation_size = TPA_AGG_SIZE;
13775
}
13776
13777
if ((bxe_mrrs < -1) || (bxe_mrrs > 3)) {
13778
BLOGW(sc, "invalid mrrs (%d)\n", bxe_mrrs);
13779
bxe_mrrs = -1;
13780
}
13781
13782
if ((bxe_autogreeen < 0) || (bxe_autogreeen > 2)) {
13783
BLOGW(sc, "invalid autogreeen (%d)\n", bxe_autogreeen);
13784
bxe_autogreeen = 0;
13785
}
13786
13787
if ((bxe_udp_rss < 0) || (bxe_udp_rss > 1)) {
13788
BLOGW(sc, "invalid udp_rss (%d)\n", bxe_udp_rss);
13789
bxe_udp_rss = 0;
13790
}
13791
13792
/* pull in user settings */
13793
13794
sc->interrupt_mode = bxe_interrupt_mode;
13795
sc->max_rx_bufs = bxe_max_rx_bufs;
13796
sc->hc_rx_ticks = bxe_hc_rx_ticks;
13797
sc->hc_tx_ticks = bxe_hc_tx_ticks;
13798
sc->max_aggregation_size = bxe_max_aggregation_size;
13799
sc->mrrs = bxe_mrrs;
13800
sc->autogreeen = bxe_autogreeen;
13801
sc->udp_rss = bxe_udp_rss;
13802
13803
if (bxe_interrupt_mode == INTR_MODE_INTX) {
13804
sc->num_queues = 1;
13805
} else { /* INTR_MODE_MSI or INTR_MODE_MSIX */
13806
sc->num_queues =
13807
min((bxe_queue_count ? bxe_queue_count : mp_ncpus),
13808
MAX_RSS_CHAINS);
13809
if (sc->num_queues > mp_ncpus) {
13810
sc->num_queues = mp_ncpus;
13811
}
13812
}
13813
13814
BLOGD(sc, DBG_LOAD,
13815
"User Config: "
13816
"debug=0x%lx "
13817
"interrupt_mode=%d "
13818
"queue_count=%d "
13819
"hc_rx_ticks=%d "
13820
"hc_tx_ticks=%d "
13821
"rx_budget=%d "
13822
"max_aggregation_size=%d "
13823
"mrrs=%d "
13824
"autogreeen=%d "
13825
"udp_rss=%d\n",
13826
bxe_debug,
13827
sc->interrupt_mode,
13828
sc->num_queues,
13829
sc->hc_rx_ticks,
13830
sc->hc_tx_ticks,
13831
bxe_rx_budget,
13832
sc->max_aggregation_size,
13833
sc->mrrs,
13834
sc->autogreeen,
13835
sc->udp_rss);
13836
}
13837
13838
static int
13839
bxe_media_detect(struct bxe_softc *sc)
13840
{
13841
int port_type;
13842
uint32_t phy_idx = bxe_get_cur_phy_idx(sc);
13843
13844
switch (sc->link_params.phy[phy_idx].media_type) {
13845
case ELINK_ETH_PHY_SFPP_10G_FIBER:
13846
case ELINK_ETH_PHY_XFP_FIBER:
13847
BLOGI(sc, "Found 10Gb Fiber media.\n");
13848
sc->media = IFM_10G_SR;
13849
port_type = PORT_FIBRE;
13850
break;
13851
case ELINK_ETH_PHY_SFP_1G_FIBER:
13852
BLOGI(sc, "Found 1Gb Fiber media.\n");
13853
sc->media = IFM_1000_SX;
13854
port_type = PORT_FIBRE;
13855
break;
13856
case ELINK_ETH_PHY_KR:
13857
case ELINK_ETH_PHY_CX4:
13858
BLOGI(sc, "Found 10GBase-CX4 media.\n");
13859
sc->media = IFM_10G_CX4;
13860
port_type = PORT_FIBRE;
13861
break;
13862
case ELINK_ETH_PHY_DA_TWINAX:
13863
BLOGI(sc, "Found 10Gb Twinax media.\n");
13864
sc->media = IFM_10G_TWINAX;
13865
port_type = PORT_DA;
13866
break;
13867
case ELINK_ETH_PHY_BASE_T:
13868
if (sc->link_params.speed_cap_mask[0] &
13869
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G) {
13870
BLOGI(sc, "Found 10GBase-T media.\n");
13871
sc->media = IFM_10G_T;
13872
port_type = PORT_TP;
13873
} else {
13874
BLOGI(sc, "Found 1000Base-T media.\n");
13875
sc->media = IFM_1000_T;
13876
port_type = PORT_TP;
13877
}
13878
break;
13879
case ELINK_ETH_PHY_NOT_PRESENT:
13880
BLOGI(sc, "Media not present.\n");
13881
sc->media = 0;
13882
port_type = PORT_OTHER;
13883
break;
13884
case ELINK_ETH_PHY_UNSPECIFIED:
13885
default:
13886
BLOGI(sc, "Unknown media!\n");
13887
sc->media = 0;
13888
port_type = PORT_OTHER;
13889
break;
13890
}
13891
return port_type;
13892
}
13893
13894
#define GET_FIELD(value, fname) \
13895
(((value) & (fname##_MASK)) >> (fname##_SHIFT))
13896
#define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
13897
#define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
13898
13899
static int
13900
bxe_get_igu_cam_info(struct bxe_softc *sc)
13901
{
13902
int pfid = SC_FUNC(sc);
13903
int igu_sb_id;
13904
uint32_t val;
13905
uint8_t fid, igu_sb_cnt = 0;
13906
13907
sc->igu_base_sb = 0xff;
13908
13909
if (CHIP_INT_MODE_IS_BC(sc)) {
13910
int vn = SC_VN(sc);
13911
igu_sb_cnt = sc->igu_sb_cnt;
13912
sc->igu_base_sb = ((CHIP_IS_MODE_4_PORT(sc) ? pfid : vn) *
13913
FP_SB_MAX_E1x);
13914
sc->igu_dsb_id = (E1HVN_MAX * FP_SB_MAX_E1x +
13915
(CHIP_IS_MODE_4_PORT(sc) ? pfid : vn));
13916
return (0);
13917
}
13918
13919
/* IGU in normal mode - read CAM */
13920
for (igu_sb_id = 0;
13921
igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
13922
igu_sb_id++) {
13923
val = REG_RD(sc, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
13924
if (!(val & IGU_REG_MAPPING_MEMORY_VALID)) {
13925
continue;
13926
}
13927
fid = IGU_FID(val);
13928
if ((fid & IGU_FID_ENCODE_IS_PF)) {
13929
if ((fid & IGU_FID_PF_NUM_MASK) != pfid) {
13930
continue;
13931
}
13932
if (IGU_VEC(val) == 0) {
13933
/* default status block */
13934
sc->igu_dsb_id = igu_sb_id;
13935
} else {
13936
if (sc->igu_base_sb == 0xff) {
13937
sc->igu_base_sb = igu_sb_id;
13938
}
13939
igu_sb_cnt++;
13940
}
13941
}
13942
}
13943
13944
/*
13945
* Due to new PF resource allocation by MFW T7.4 and above, it's optional
13946
* that number of CAM entries will not be equal to the value advertised in
13947
* PCI. Driver should use the minimal value of both as the actual status
13948
* block count
13949
*/
13950
sc->igu_sb_cnt = min(sc->igu_sb_cnt, igu_sb_cnt);
13951
13952
if (igu_sb_cnt == 0) {
13953
BLOGE(sc, "CAM configuration error\n");
13954
return (-1);
13955
}
13956
13957
return (0);
13958
}
13959
13960
/*
13961
* Gather various information from the device config space, the device itself,
13962
* shmem, and the user input.
13963
*/
13964
static int
13965
bxe_get_device_info(struct bxe_softc *sc)
13966
{
13967
uint32_t val;
13968
int rc;
13969
13970
/* Get the data for the device */
13971
sc->devinfo.vendor_id = pci_get_vendor(sc->dev);
13972
sc->devinfo.device_id = pci_get_device(sc->dev);
13973
sc->devinfo.subvendor_id = pci_get_subvendor(sc->dev);
13974
sc->devinfo.subdevice_id = pci_get_subdevice(sc->dev);
13975
13976
/* get the chip revision (chip metal comes from pci config space) */
13977
sc->devinfo.chip_id =
13978
sc->link_params.chip_id =
13979
(((REG_RD(sc, MISC_REG_CHIP_NUM) & 0xffff) << 16) |
13980
((REG_RD(sc, MISC_REG_CHIP_REV) & 0xf) << 12) |
13981
(((REG_RD(sc, PCICFG_OFFSET + PCI_ID_VAL3) >> 24) & 0xf) << 4) |
13982
((REG_RD(sc, MISC_REG_BOND_ID) & 0xf) << 0));
13983
13984
/* force 57811 according to MISC register */
13985
if (REG_RD(sc, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
13986
if (CHIP_IS_57810(sc)) {
13987
sc->devinfo.chip_id = ((CHIP_NUM_57811 << 16) |
13988
(sc->devinfo.chip_id & 0x0000ffff));
13989
} else if (CHIP_IS_57810_MF(sc)) {
13990
sc->devinfo.chip_id = ((CHIP_NUM_57811_MF << 16) |
13991
(sc->devinfo.chip_id & 0x0000ffff));
13992
}
13993
sc->devinfo.chip_id |= 0x1;
13994
}
13995
13996
BLOGD(sc, DBG_LOAD,
13997
"chip_id=0x%08x (num=0x%04x rev=0x%01x metal=0x%02x bond=0x%01x)\n",
13998
sc->devinfo.chip_id,
13999
((sc->devinfo.chip_id >> 16) & 0xffff),
14000
((sc->devinfo.chip_id >> 12) & 0xf),
14001
((sc->devinfo.chip_id >> 4) & 0xff),
14002
((sc->devinfo.chip_id >> 0) & 0xf));
14003
14004
val = (REG_RD(sc, 0x2874) & 0x55);
14005
if ((sc->devinfo.chip_id & 0x1) ||
14006
(CHIP_IS_E1(sc) && val) ||
14007
(CHIP_IS_E1H(sc) && (val == 0x55))) {
14008
sc->flags |= BXE_ONE_PORT_FLAG;
14009
BLOGD(sc, DBG_LOAD, "single port device\n");
14010
}
14011
14012
/* set the doorbell size */
14013
sc->doorbell_size = (1 << BXE_DB_SHIFT);
14014
14015
/* determine whether the device is in 2 port or 4 port mode */
14016
sc->devinfo.chip_port_mode = CHIP_PORT_MODE_NONE; /* E1 & E1h*/
14017
if (CHIP_IS_E2E3(sc)) {
14018
/*
14019
* Read port4mode_en_ovwr[0]:
14020
* If 1, four port mode is in port4mode_en_ovwr[1].
14021
* If 0, four port mode is in port4mode_en[0].
14022
*/
14023
val = REG_RD(sc, MISC_REG_PORT4MODE_EN_OVWR);
14024
if (val & 1) {
14025
val = ((val >> 1) & 1);
14026
} else {
14027
val = REG_RD(sc, MISC_REG_PORT4MODE_EN);
14028
}
14029
14030
sc->devinfo.chip_port_mode =
14031
(val) ? CHIP_4_PORT_MODE : CHIP_2_PORT_MODE;
14032
14033
BLOGD(sc, DBG_LOAD, "Port mode = %s\n", (val) ? "4" : "2");
14034
}
14035
14036
/* get the function and path info for the device */
14037
bxe_get_function_num(sc);
14038
14039
/* get the shared memory base address */
14040
sc->devinfo.shmem_base =
14041
sc->link_params.shmem_base =
14042
REG_RD(sc, MISC_REG_SHARED_MEM_ADDR);
14043
sc->devinfo.shmem2_base =
14044
REG_RD(sc, (SC_PATH(sc) ? MISC_REG_GENERIC_CR_1 :
14045
MISC_REG_GENERIC_CR_0));
14046
14047
BLOGD(sc, DBG_LOAD, "shmem_base=0x%08x, shmem2_base=0x%08x\n",
14048
sc->devinfo.shmem_base, sc->devinfo.shmem2_base);
14049
14050
if (!sc->devinfo.shmem_base) {
14051
/* this should ONLY prevent upcoming shmem reads */
14052
BLOGI(sc, "MCP not active\n");
14053
sc->flags |= BXE_NO_MCP_FLAG;
14054
return (0);
14055
}
14056
14057
/* make sure the shared memory contents are valid */
14058
val = SHMEM_RD(sc, validity_map[SC_PORT(sc)]);
14059
if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) !=
14060
(SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB)) {
14061
BLOGE(sc, "Invalid SHMEM validity signature: 0x%08x\n", val);
14062
return (0);
14063
}
14064
BLOGD(sc, DBG_LOAD, "Valid SHMEM validity signature: 0x%08x\n", val);
14065
14066
/* get the bootcode version */
14067
sc->devinfo.bc_ver = SHMEM_RD(sc, dev_info.bc_rev);
14068
snprintf(sc->devinfo.bc_ver_str,
14069
sizeof(sc->devinfo.bc_ver_str),
14070
"%d.%d.%d",
14071
((sc->devinfo.bc_ver >> 24) & 0xff),
14072
((sc->devinfo.bc_ver >> 16) & 0xff),
14073
((sc->devinfo.bc_ver >> 8) & 0xff));
14074
BLOGD(sc, DBG_LOAD, "Bootcode version: %s\n", sc->devinfo.bc_ver_str);
14075
14076
/* get the bootcode shmem address */
14077
sc->devinfo.mf_cfg_base = bxe_get_shmem_mf_cfg_base(sc);
14078
BLOGD(sc, DBG_LOAD, "mf_cfg_base=0x08%x \n", sc->devinfo.mf_cfg_base);
14079
14080
/* clean indirect addresses as they're not used */
14081
pci_write_config(sc->dev, PCICFG_GRC_ADDRESS, 0, 4);
14082
if (IS_PF(sc)) {
14083
REG_WR(sc, PXP2_REG_PGL_ADDR_88_F0, 0);
14084
REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F0, 0);
14085
REG_WR(sc, PXP2_REG_PGL_ADDR_90_F0, 0);
14086
REG_WR(sc, PXP2_REG_PGL_ADDR_94_F0, 0);
14087
if (CHIP_IS_E1x(sc)) {
14088
REG_WR(sc, PXP2_REG_PGL_ADDR_88_F1, 0);
14089
REG_WR(sc, PXP2_REG_PGL_ADDR_8C_F1, 0);
14090
REG_WR(sc, PXP2_REG_PGL_ADDR_90_F1, 0);
14091
REG_WR(sc, PXP2_REG_PGL_ADDR_94_F1, 0);
14092
}
14093
14094
/*
14095
* Enable internal target-read (in case we are probed after PF
14096
* FLR). Must be done prior to any BAR read access. Only for
14097
* 57712 and up
14098
*/
14099
if (!CHIP_IS_E1x(sc)) {
14100
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
14101
}
14102
}
14103
14104
/* get the nvram size */
14105
val = REG_RD(sc, MCP_REG_MCPR_NVM_CFG4);
14106
sc->devinfo.flash_size =
14107
(NVRAM_1MB_SIZE << (val & MCPR_NVM_CFG4_FLASH_SIZE));
14108
BLOGD(sc, DBG_LOAD, "nvram flash size: %d\n", sc->devinfo.flash_size);
14109
14110
/* get PCI capabilites */
14111
bxe_probe_pci_caps(sc);
14112
14113
bxe_set_power_state(sc, PCI_PM_D0);
14114
14115
/* get various configuration parameters from shmem */
14116
bxe_get_shmem_info(sc);
14117
14118
if (sc->devinfo.pcie_msix_cap_reg != 0) {
14119
val = pci_read_config(sc->dev,
14120
(sc->devinfo.pcie_msix_cap_reg +
14121
PCIR_MSIX_CTRL),
14122
2);
14123
sc->igu_sb_cnt = (val & PCIM_MSIXCTRL_TABLE_SIZE);
14124
} else {
14125
sc->igu_sb_cnt = 1;
14126
}
14127
14128
sc->igu_base_addr = BAR_IGU_INTMEM;
14129
14130
/* initialize IGU parameters */
14131
if (CHIP_IS_E1x(sc)) {
14132
sc->devinfo.int_block = INT_BLOCK_HC;
14133
sc->igu_dsb_id = DEF_SB_IGU_ID;
14134
sc->igu_base_sb = 0;
14135
} else {
14136
sc->devinfo.int_block = INT_BLOCK_IGU;
14137
14138
/* do not allow device reset during IGU info preocessing */
14139
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14140
14141
val = REG_RD(sc, IGU_REG_BLOCK_CONFIGURATION);
14142
14143
if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14144
int tout = 5000;
14145
14146
BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode\n");
14147
14148
val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
14149
REG_WR(sc, IGU_REG_BLOCK_CONFIGURATION, val);
14150
REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x7f);
14151
14152
while (tout && REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14153
tout--;
14154
DELAY(1000);
14155
}
14156
14157
if (REG_RD(sc, IGU_REG_RESET_MEMORIES)) {
14158
BLOGD(sc, DBG_LOAD, "FORCING IGU Normal Mode failed!!!\n");
14159
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14160
return (-1);
14161
}
14162
}
14163
14164
if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
14165
BLOGD(sc, DBG_LOAD, "IGU Backward Compatible Mode\n");
14166
sc->devinfo.int_block |= INT_BLOCK_MODE_BW_COMP;
14167
} else {
14168
BLOGD(sc, DBG_LOAD, "IGU Normal Mode\n");
14169
}
14170
14171
rc = bxe_get_igu_cam_info(sc);
14172
14173
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
14174
14175
if (rc) {
14176
return (rc);
14177
}
14178
}
14179
14180
/*
14181
* Get base FW non-default (fast path) status block ID. This value is
14182
* used to initialize the fw_sb_id saved on the fp/queue structure to
14183
* determine the id used by the FW.
14184
*/
14185
if (CHIP_IS_E1x(sc)) {
14186
sc->base_fw_ndsb = ((SC_PORT(sc) * FP_SB_MAX_E1x) + SC_L_ID(sc));
14187
} else {
14188
/*
14189
* 57712+ - We currently use one FW SB per IGU SB (Rx and Tx of
14190
* the same queue are indicated on the same IGU SB). So we prefer
14191
* FW and IGU SBs to be the same value.
14192
*/
14193
sc->base_fw_ndsb = sc->igu_base_sb;
14194
}
14195
14196
BLOGD(sc, DBG_LOAD,
14197
"igu_dsb_id=%d igu_base_sb=%d igu_sb_cnt=%d base_fw_ndsb=%d\n",
14198
sc->igu_dsb_id, sc->igu_base_sb,
14199
sc->igu_sb_cnt, sc->base_fw_ndsb);
14200
14201
elink_phy_probe(&sc->link_params);
14202
14203
return (0);
14204
}
14205
14206
static void
14207
bxe_link_settings_supported(struct bxe_softc *sc,
14208
uint32_t switch_cfg)
14209
{
14210
uint32_t cfg_size = 0;
14211
uint32_t idx;
14212
uint8_t port = SC_PORT(sc);
14213
14214
/* aggregation of supported attributes of all external phys */
14215
sc->port.supported[0] = 0;
14216
sc->port.supported[1] = 0;
14217
14218
switch (sc->link_params.num_phys) {
14219
case 1:
14220
sc->port.supported[0] = sc->link_params.phy[ELINK_INT_PHY].supported;
14221
cfg_size = 1;
14222
break;
14223
case 2:
14224
sc->port.supported[0] = sc->link_params.phy[ELINK_EXT_PHY1].supported;
14225
cfg_size = 1;
14226
break;
14227
case 3:
14228
if (sc->link_params.multi_phy_config &
14229
PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
14230
sc->port.supported[1] =
14231
sc->link_params.phy[ELINK_EXT_PHY1].supported;
14232
sc->port.supported[0] =
14233
sc->link_params.phy[ELINK_EXT_PHY2].supported;
14234
} else {
14235
sc->port.supported[0] =
14236
sc->link_params.phy[ELINK_EXT_PHY1].supported;
14237
sc->port.supported[1] =
14238
sc->link_params.phy[ELINK_EXT_PHY2].supported;
14239
}
14240
cfg_size = 2;
14241
break;
14242
}
14243
14244
if (!(sc->port.supported[0] || sc->port.supported[1])) {
14245
BLOGE(sc, "Invalid phy config in NVRAM (PHY1=0x%08x PHY2=0x%08x)\n",
14246
SHMEM_RD(sc,
14247
dev_info.port_hw_config[port].external_phy_config),
14248
SHMEM_RD(sc,
14249
dev_info.port_hw_config[port].external_phy_config2));
14250
return;
14251
}
14252
14253
if (CHIP_IS_E3(sc))
14254
sc->port.phy_addr = REG_RD(sc, MISC_REG_WC0_CTRL_PHY_ADDR);
14255
else {
14256
switch (switch_cfg) {
14257
case ELINK_SWITCH_CFG_1G:
14258
sc->port.phy_addr =
14259
REG_RD(sc, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
14260
break;
14261
case ELINK_SWITCH_CFG_10G:
14262
sc->port.phy_addr =
14263
REG_RD(sc, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
14264
break;
14265
default:
14266
BLOGE(sc, "Invalid switch config in link_config=0x%08x\n",
14267
sc->port.link_config[0]);
14268
return;
14269
}
14270
}
14271
14272
BLOGD(sc, DBG_LOAD, "PHY addr 0x%08x\n", sc->port.phy_addr);
14273
14274
/* mask what we support according to speed_cap_mask per configuration */
14275
for (idx = 0; idx < cfg_size; idx++) {
14276
if (!(sc->link_params.speed_cap_mask[idx] &
14277
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF)) {
14278
sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Half;
14279
}
14280
14281
if (!(sc->link_params.speed_cap_mask[idx] &
14282
PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL)) {
14283
sc->port.supported[idx] &= ~ELINK_SUPPORTED_10baseT_Full;
14284
}
14285
14286
if (!(sc->link_params.speed_cap_mask[idx] &
14287
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF)) {
14288
sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Half;
14289
}
14290
14291
if (!(sc->link_params.speed_cap_mask[idx] &
14292
PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL)) {
14293
sc->port.supported[idx] &= ~ELINK_SUPPORTED_100baseT_Full;
14294
}
14295
14296
if (!(sc->link_params.speed_cap_mask[idx] &
14297
PORT_HW_CFG_SPEED_CAPABILITY_D0_1G)) {
14298
sc->port.supported[idx] &= ~ELINK_SUPPORTED_1000baseT_Full;
14299
}
14300
14301
if (!(sc->link_params.speed_cap_mask[idx] &
14302
PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G)) {
14303
sc->port.supported[idx] &= ~ELINK_SUPPORTED_2500baseX_Full;
14304
}
14305
14306
if (!(sc->link_params.speed_cap_mask[idx] &
14307
PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)) {
14308
sc->port.supported[idx] &= ~ELINK_SUPPORTED_10000baseT_Full;
14309
}
14310
14311
if (!(sc->link_params.speed_cap_mask[idx] &
14312
PORT_HW_CFG_SPEED_CAPABILITY_D0_20G)) {
14313
sc->port.supported[idx] &= ~ELINK_SUPPORTED_20000baseKR2_Full;
14314
}
14315
}
14316
14317
BLOGD(sc, DBG_LOAD, "PHY supported 0=0x%08x 1=0x%08x\n",
14318
sc->port.supported[0], sc->port.supported[1]);
14319
ELINK_DEBUG_P2(sc, "PHY supported 0=0x%08x 1=0x%08x\n",
14320
sc->port.supported[0], sc->port.supported[1]);
14321
}
14322
14323
static void
14324
bxe_link_settings_requested(struct bxe_softc *sc)
14325
{
14326
uint32_t link_config;
14327
uint32_t idx;
14328
uint32_t cfg_size = 0;
14329
14330
sc->port.advertising[0] = 0;
14331
sc->port.advertising[1] = 0;
14332
14333
switch (sc->link_params.num_phys) {
14334
case 1:
14335
case 2:
14336
cfg_size = 1;
14337
break;
14338
case 3:
14339
cfg_size = 2;
14340
break;
14341
}
14342
14343
for (idx = 0; idx < cfg_size; idx++) {
14344
sc->link_params.req_duplex[idx] = DUPLEX_FULL;
14345
link_config = sc->port.link_config[idx];
14346
14347
switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
14348
case PORT_FEATURE_LINK_SPEED_AUTO:
14349
if (sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg) {
14350
sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14351
sc->port.advertising[idx] |= sc->port.supported[idx];
14352
if (sc->link_params.phy[ELINK_EXT_PHY1].type ==
14353
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
14354
sc->port.advertising[idx] |=
14355
(ELINK_SUPPORTED_100baseT_Half |
14356
ELINK_SUPPORTED_100baseT_Full);
14357
} else {
14358
/* force 10G, no AN */
14359
sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14360
sc->port.advertising[idx] |=
14361
(ADVERTISED_10000baseT_Full | ADVERTISED_FIBRE);
14362
continue;
14363
}
14364
break;
14365
14366
case PORT_FEATURE_LINK_SPEED_10M_FULL:
14367
if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Full) {
14368
sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14369
sc->port.advertising[idx] |= (ADVERTISED_10baseT_Full |
14370
ADVERTISED_TP);
14371
} else {
14372
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14373
"speed_cap_mask=0x%08x\n",
14374
link_config, sc->link_params.speed_cap_mask[idx]);
14375
return;
14376
}
14377
break;
14378
14379
case PORT_FEATURE_LINK_SPEED_10M_HALF:
14380
if (sc->port.supported[idx] & ELINK_SUPPORTED_10baseT_Half) {
14381
sc->link_params.req_line_speed[idx] = ELINK_SPEED_10;
14382
sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14383
sc->port.advertising[idx] |= (ADVERTISED_10baseT_Half |
14384
ADVERTISED_TP);
14385
ELINK_DEBUG_P1(sc, "driver requesting DUPLEX_HALF req_duplex = %x!\n",
14386
sc->link_params.req_duplex[idx]);
14387
} else {
14388
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14389
"speed_cap_mask=0x%08x\n",
14390
link_config, sc->link_params.speed_cap_mask[idx]);
14391
return;
14392
}
14393
break;
14394
14395
case PORT_FEATURE_LINK_SPEED_100M_FULL:
14396
if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Full) {
14397
sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14398
sc->port.advertising[idx] |= (ADVERTISED_100baseT_Full |
14399
ADVERTISED_TP);
14400
} else {
14401
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14402
"speed_cap_mask=0x%08x\n",
14403
link_config, sc->link_params.speed_cap_mask[idx]);
14404
return;
14405
}
14406
break;
14407
14408
case PORT_FEATURE_LINK_SPEED_100M_HALF:
14409
if (sc->port.supported[idx] & ELINK_SUPPORTED_100baseT_Half) {
14410
sc->link_params.req_line_speed[idx] = ELINK_SPEED_100;
14411
sc->link_params.req_duplex[idx] = DUPLEX_HALF;
14412
sc->port.advertising[idx] |= (ADVERTISED_100baseT_Half |
14413
ADVERTISED_TP);
14414
} else {
14415
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14416
"speed_cap_mask=0x%08x\n",
14417
link_config, sc->link_params.speed_cap_mask[idx]);
14418
return;
14419
}
14420
break;
14421
14422
case PORT_FEATURE_LINK_SPEED_1G:
14423
if (sc->port.supported[idx] & ELINK_SUPPORTED_1000baseT_Full) {
14424
sc->link_params.req_line_speed[idx] = ELINK_SPEED_1000;
14425
sc->port.advertising[idx] |= (ADVERTISED_1000baseT_Full |
14426
ADVERTISED_TP);
14427
} else {
14428
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14429
"speed_cap_mask=0x%08x\n",
14430
link_config, sc->link_params.speed_cap_mask[idx]);
14431
return;
14432
}
14433
break;
14434
14435
case PORT_FEATURE_LINK_SPEED_2_5G:
14436
if (sc->port.supported[idx] & ELINK_SUPPORTED_2500baseX_Full) {
14437
sc->link_params.req_line_speed[idx] = ELINK_SPEED_2500;
14438
sc->port.advertising[idx] |= (ADVERTISED_2500baseX_Full |
14439
ADVERTISED_TP);
14440
} else {
14441
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14442
"speed_cap_mask=0x%08x\n",
14443
link_config, sc->link_params.speed_cap_mask[idx]);
14444
return;
14445
}
14446
break;
14447
14448
case PORT_FEATURE_LINK_SPEED_10G_CX4:
14449
if (sc->port.supported[idx] & ELINK_SUPPORTED_10000baseT_Full) {
14450
sc->link_params.req_line_speed[idx] = ELINK_SPEED_10000;
14451
sc->port.advertising[idx] |= (ADVERTISED_10000baseT_Full |
14452
ADVERTISED_FIBRE);
14453
} else {
14454
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14455
"speed_cap_mask=0x%08x\n",
14456
link_config, sc->link_params.speed_cap_mask[idx]);
14457
return;
14458
}
14459
break;
14460
14461
case PORT_FEATURE_LINK_SPEED_20G:
14462
sc->link_params.req_line_speed[idx] = ELINK_SPEED_20000;
14463
break;
14464
14465
default:
14466
BLOGE(sc, "Invalid NVRAM config link_config=0x%08x "
14467
"speed_cap_mask=0x%08x\n",
14468
link_config, sc->link_params.speed_cap_mask[idx]);
14469
sc->link_params.req_line_speed[idx] = ELINK_SPEED_AUTO_NEG;
14470
sc->port.advertising[idx] = sc->port.supported[idx];
14471
break;
14472
}
14473
14474
sc->link_params.req_flow_ctrl[idx] =
14475
(link_config & PORT_FEATURE_FLOW_CONTROL_MASK);
14476
14477
if (sc->link_params.req_flow_ctrl[idx] == ELINK_FLOW_CTRL_AUTO) {
14478
if (!(sc->port.supported[idx] & ELINK_SUPPORTED_Autoneg)) {
14479
sc->link_params.req_flow_ctrl[idx] = ELINK_FLOW_CTRL_NONE;
14480
} else {
14481
bxe_set_requested_fc(sc);
14482
}
14483
}
14484
14485
BLOGD(sc, DBG_LOAD, "req_line_speed=%d req_duplex=%d "
14486
"req_flow_ctrl=0x%x advertising=0x%x\n",
14487
sc->link_params.req_line_speed[idx],
14488
sc->link_params.req_duplex[idx],
14489
sc->link_params.req_flow_ctrl[idx],
14490
sc->port.advertising[idx]);
14491
ELINK_DEBUG_P3(sc, "req_line_speed=%d req_duplex=%d "
14492
"advertising=0x%x\n",
14493
sc->link_params.req_line_speed[idx],
14494
sc->link_params.req_duplex[idx],
14495
sc->port.advertising[idx]);
14496
}
14497
}
14498
14499
static void
14500
bxe_get_phy_info(struct bxe_softc *sc)
14501
{
14502
uint8_t port = SC_PORT(sc);
14503
uint32_t config = sc->port.config;
14504
uint32_t eee_mode;
14505
14506
/* shmem data already read in bxe_get_shmem_info() */
14507
14508
ELINK_DEBUG_P3(sc, "lane_config=0x%08x speed_cap_mask0=0x%08x "
14509
"link_config0=0x%08x\n",
14510
sc->link_params.lane_config,
14511
sc->link_params.speed_cap_mask[0],
14512
sc->port.link_config[0]);
14513
14514
14515
bxe_link_settings_supported(sc, sc->link_params.switch_cfg);
14516
bxe_link_settings_requested(sc);
14517
14518
if (sc->autogreeen == AUTO_GREEN_FORCE_ON) {
14519
sc->link_params.feature_config_flags |=
14520
ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14521
} else if (sc->autogreeen == AUTO_GREEN_FORCE_OFF) {
14522
sc->link_params.feature_config_flags &=
14523
~ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14524
} else if (config & PORT_FEAT_CFG_AUTOGREEEN_ENABLED) {
14525
sc->link_params.feature_config_flags |=
14526
ELINK_FEATURE_CONFIG_AUTOGREEEN_ENABLED;
14527
}
14528
14529
/* configure link feature according to nvram value */
14530
eee_mode =
14531
(((SHMEM_RD(sc, dev_info.port_feature_config[port].eee_power_mode)) &
14532
PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
14533
PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
14534
if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
14535
sc->link_params.eee_mode = (ELINK_EEE_MODE_ADV_LPI |
14536
ELINK_EEE_MODE_ENABLE_LPI |
14537
ELINK_EEE_MODE_OUTPUT_TIME);
14538
} else {
14539
sc->link_params.eee_mode = 0;
14540
}
14541
14542
/* get the media type */
14543
bxe_media_detect(sc);
14544
ELINK_DEBUG_P1(sc, "detected media type\n", sc->media);
14545
}
14546
14547
static void
14548
bxe_get_params(struct bxe_softc *sc)
14549
{
14550
/* get user tunable params */
14551
bxe_get_tunable_params(sc);
14552
14553
/* select the RX and TX ring sizes */
14554
sc->tx_ring_size = TX_BD_USABLE;
14555
sc->rx_ring_size = RX_BD_USABLE;
14556
14557
/* XXX disable WoL */
14558
sc->wol = 0;
14559
}
14560
14561
static void
14562
bxe_set_modes_bitmap(struct bxe_softc *sc)
14563
{
14564
uint32_t flags = 0;
14565
14566
if (CHIP_REV_IS_FPGA(sc)) {
14567
SET_FLAGS(flags, MODE_FPGA);
14568
} else if (CHIP_REV_IS_EMUL(sc)) {
14569
SET_FLAGS(flags, MODE_EMUL);
14570
} else {
14571
SET_FLAGS(flags, MODE_ASIC);
14572
}
14573
14574
if (CHIP_IS_MODE_4_PORT(sc)) {
14575
SET_FLAGS(flags, MODE_PORT4);
14576
} else {
14577
SET_FLAGS(flags, MODE_PORT2);
14578
}
14579
14580
if (CHIP_IS_E2(sc)) {
14581
SET_FLAGS(flags, MODE_E2);
14582
} else if (CHIP_IS_E3(sc)) {
14583
SET_FLAGS(flags, MODE_E3);
14584
if (CHIP_REV(sc) == CHIP_REV_Ax) {
14585
SET_FLAGS(flags, MODE_E3_A0);
14586
} else /*if (CHIP_REV(sc) == CHIP_REV_Bx)*/ {
14587
SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
14588
}
14589
}
14590
14591
if (IS_MF(sc)) {
14592
SET_FLAGS(flags, MODE_MF);
14593
switch (sc->devinfo.mf_info.mf_mode) {
14594
case MULTI_FUNCTION_SD:
14595
SET_FLAGS(flags, MODE_MF_SD);
14596
break;
14597
case MULTI_FUNCTION_SI:
14598
SET_FLAGS(flags, MODE_MF_SI);
14599
break;
14600
case MULTI_FUNCTION_AFEX:
14601
SET_FLAGS(flags, MODE_MF_AFEX);
14602
break;
14603
}
14604
} else {
14605
SET_FLAGS(flags, MODE_SF);
14606
}
14607
14608
#if defined(__LITTLE_ENDIAN)
14609
SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
14610
#else /* __BIG_ENDIAN */
14611
SET_FLAGS(flags, MODE_BIG_ENDIAN);
14612
#endif
14613
14614
INIT_MODE_FLAGS(sc) = flags;
14615
}
14616
14617
static int
14618
bxe_alloc_hsi_mem(struct bxe_softc *sc)
14619
{
14620
struct bxe_fastpath *fp;
14621
bus_addr_t busaddr;
14622
int max_agg_queues;
14623
int max_segments;
14624
bus_size_t max_size;
14625
bus_size_t max_seg_size;
14626
char buf[32];
14627
int rc;
14628
int i, j;
14629
14630
/* XXX zero out all vars here and call bxe_alloc_hsi_mem on error */
14631
14632
/* allocate the parent bus DMA tag */
14633
rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), /* parent tag */
14634
1, /* alignment */
14635
0, /* boundary limit */
14636
BUS_SPACE_MAXADDR, /* restricted low */
14637
BUS_SPACE_MAXADDR, /* restricted hi */
14638
NULL, /* addr filter() */
14639
NULL, /* addr filter() arg */
14640
BUS_SPACE_MAXSIZE_32BIT, /* max map size */
14641
BUS_SPACE_UNRESTRICTED, /* num discontinuous */
14642
BUS_SPACE_MAXSIZE_32BIT, /* max seg size */
14643
0, /* flags */
14644
NULL, /* lock() */
14645
NULL, /* lock() arg */
14646
&sc->parent_dma_tag); /* returned dma tag */
14647
if (rc != 0) {
14648
BLOGE(sc, "Failed to alloc parent DMA tag (%d)!\n", rc);
14649
return (1);
14650
}
14651
14652
/************************/
14653
/* DEFAULT STATUS BLOCK */
14654
/************************/
14655
14656
if (bxe_dma_alloc(sc, sizeof(struct host_sp_status_block),
14657
&sc->def_sb_dma, "default status block") != 0) {
14658
/* XXX */
14659
bus_dma_tag_destroy(sc->parent_dma_tag);
14660
return (1);
14661
}
14662
14663
sc->def_sb = (struct host_sp_status_block *)sc->def_sb_dma.vaddr;
14664
14665
/***************/
14666
/* EVENT QUEUE */
14667
/***************/
14668
14669
if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14670
&sc->eq_dma, "event queue") != 0) {
14671
/* XXX */
14672
bxe_dma_free(sc, &sc->def_sb_dma);
14673
sc->def_sb = NULL;
14674
bus_dma_tag_destroy(sc->parent_dma_tag);
14675
return (1);
14676
}
14677
14678
sc->eq = (union event_ring_elem * )sc->eq_dma.vaddr;
14679
14680
/*************/
14681
/* SLOW PATH */
14682
/*************/
14683
14684
if (bxe_dma_alloc(sc, sizeof(struct bxe_slowpath),
14685
&sc->sp_dma, "slow path") != 0) {
14686
/* XXX */
14687
bxe_dma_free(sc, &sc->eq_dma);
14688
sc->eq = NULL;
14689
bxe_dma_free(sc, &sc->def_sb_dma);
14690
sc->def_sb = NULL;
14691
bus_dma_tag_destroy(sc->parent_dma_tag);
14692
return (1);
14693
}
14694
14695
sc->sp = (struct bxe_slowpath *)sc->sp_dma.vaddr;
14696
14697
/*******************/
14698
/* SLOW PATH QUEUE */
14699
/*******************/
14700
14701
if (bxe_dma_alloc(sc, BCM_PAGE_SIZE,
14702
&sc->spq_dma, "slow path queue") != 0) {
14703
/* XXX */
14704
bxe_dma_free(sc, &sc->sp_dma);
14705
sc->sp = NULL;
14706
bxe_dma_free(sc, &sc->eq_dma);
14707
sc->eq = NULL;
14708
bxe_dma_free(sc, &sc->def_sb_dma);
14709
sc->def_sb = NULL;
14710
bus_dma_tag_destroy(sc->parent_dma_tag);
14711
return (1);
14712
}
14713
14714
sc->spq = (struct eth_spe *)sc->spq_dma.vaddr;
14715
14716
/***************************/
14717
/* FW DECOMPRESSION BUFFER */
14718
/***************************/
14719
14720
if (bxe_dma_alloc(sc, FW_BUF_SIZE, &sc->gz_buf_dma,
14721
"fw decompression buffer") != 0) {
14722
/* XXX */
14723
bxe_dma_free(sc, &sc->spq_dma);
14724
sc->spq = NULL;
14725
bxe_dma_free(sc, &sc->sp_dma);
14726
sc->sp = NULL;
14727
bxe_dma_free(sc, &sc->eq_dma);
14728
sc->eq = NULL;
14729
bxe_dma_free(sc, &sc->def_sb_dma);
14730
sc->def_sb = NULL;
14731
bus_dma_tag_destroy(sc->parent_dma_tag);
14732
return (1);
14733
}
14734
14735
sc->gz_buf = (void *)sc->gz_buf_dma.vaddr;
14736
14737
if ((sc->gz_strm =
14738
malloc(sizeof(*sc->gz_strm), M_DEVBUF, M_NOWAIT)) == NULL) {
14739
/* XXX */
14740
bxe_dma_free(sc, &sc->gz_buf_dma);
14741
sc->gz_buf = NULL;
14742
bxe_dma_free(sc, &sc->spq_dma);
14743
sc->spq = NULL;
14744
bxe_dma_free(sc, &sc->sp_dma);
14745
sc->sp = NULL;
14746
bxe_dma_free(sc, &sc->eq_dma);
14747
sc->eq = NULL;
14748
bxe_dma_free(sc, &sc->def_sb_dma);
14749
sc->def_sb = NULL;
14750
bus_dma_tag_destroy(sc->parent_dma_tag);
14751
return (1);
14752
}
14753
14754
/*************/
14755
/* FASTPATHS */
14756
/*************/
14757
14758
/* allocate DMA memory for each fastpath structure */
14759
for (i = 0; i < sc->num_queues; i++) {
14760
fp = &sc->fp[i];
14761
fp->sc = sc;
14762
fp->index = i;
14763
14764
/*******************/
14765
/* FP STATUS BLOCK */
14766
/*******************/
14767
14768
snprintf(buf, sizeof(buf), "fp %d status block", i);
14769
if (bxe_dma_alloc(sc, sizeof(union bxe_host_hc_status_block),
14770
&fp->sb_dma, buf) != 0) {
14771
/* XXX unwind and free previous fastpath allocations */
14772
BLOGE(sc, "Failed to alloc %s\n", buf);
14773
return (1);
14774
} else {
14775
if (CHIP_IS_E2E3(sc)) {
14776
fp->status_block.e2_sb =
14777
(struct host_hc_status_block_e2 *)fp->sb_dma.vaddr;
14778
} else {
14779
fp->status_block.e1x_sb =
14780
(struct host_hc_status_block_e1x *)fp->sb_dma.vaddr;
14781
}
14782
}
14783
14784
/******************/
14785
/* FP TX BD CHAIN */
14786
/******************/
14787
14788
snprintf(buf, sizeof(buf), "fp %d tx bd chain", i);
14789
if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * TX_BD_NUM_PAGES),
14790
&fp->tx_dma, buf) != 0) {
14791
/* XXX unwind and free previous fastpath allocations */
14792
BLOGE(sc, "Failed to alloc %s\n", buf);
14793
return (1);
14794
} else {
14795
fp->tx_chain = (union eth_tx_bd_types *)fp->tx_dma.vaddr;
14796
}
14797
14798
/* link together the tx bd chain pages */
14799
for (j = 1; j <= TX_BD_NUM_PAGES; j++) {
14800
/* index into the tx bd chain array to last entry per page */
14801
struct eth_tx_next_bd *tx_next_bd =
14802
&fp->tx_chain[TX_BD_TOTAL_PER_PAGE * j - 1].next_bd;
14803
/* point to the next page and wrap from last page */
14804
busaddr = (fp->tx_dma.paddr +
14805
(BCM_PAGE_SIZE * (j % TX_BD_NUM_PAGES)));
14806
tx_next_bd->addr_hi = htole32(U64_HI(busaddr));
14807
tx_next_bd->addr_lo = htole32(U64_LO(busaddr));
14808
}
14809
14810
/******************/
14811
/* FP RX BD CHAIN */
14812
/******************/
14813
14814
snprintf(buf, sizeof(buf), "fp %d rx bd chain", i);
14815
if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_BD_NUM_PAGES),
14816
&fp->rx_dma, buf) != 0) {
14817
/* XXX unwind and free previous fastpath allocations */
14818
BLOGE(sc, "Failed to alloc %s\n", buf);
14819
return (1);
14820
} else {
14821
fp->rx_chain = (struct eth_rx_bd *)fp->rx_dma.vaddr;
14822
}
14823
14824
/* link together the rx bd chain pages */
14825
for (j = 1; j <= RX_BD_NUM_PAGES; j++) {
14826
/* index into the rx bd chain array to last entry per page */
14827
struct eth_rx_bd *rx_bd =
14828
&fp->rx_chain[RX_BD_TOTAL_PER_PAGE * j - 2];
14829
/* point to the next page and wrap from last page */
14830
busaddr = (fp->rx_dma.paddr +
14831
(BCM_PAGE_SIZE * (j % RX_BD_NUM_PAGES)));
14832
rx_bd->addr_hi = htole32(U64_HI(busaddr));
14833
rx_bd->addr_lo = htole32(U64_LO(busaddr));
14834
}
14835
14836
/*******************/
14837
/* FP RX RCQ CHAIN */
14838
/*******************/
14839
14840
snprintf(buf, sizeof(buf), "fp %d rcq chain", i);
14841
if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RCQ_NUM_PAGES),
14842
&fp->rcq_dma, buf) != 0) {
14843
/* XXX unwind and free previous fastpath allocations */
14844
BLOGE(sc, "Failed to alloc %s\n", buf);
14845
return (1);
14846
} else {
14847
fp->rcq_chain = (union eth_rx_cqe *)fp->rcq_dma.vaddr;
14848
}
14849
14850
/* link together the rcq chain pages */
14851
for (j = 1; j <= RCQ_NUM_PAGES; j++) {
14852
/* index into the rcq chain array to last entry per page */
14853
struct eth_rx_cqe_next_page *rx_cqe_next =
14854
(struct eth_rx_cqe_next_page *)
14855
&fp->rcq_chain[RCQ_TOTAL_PER_PAGE * j - 1];
14856
/* point to the next page and wrap from last page */
14857
busaddr = (fp->rcq_dma.paddr +
14858
(BCM_PAGE_SIZE * (j % RCQ_NUM_PAGES)));
14859
rx_cqe_next->addr_hi = htole32(U64_HI(busaddr));
14860
rx_cqe_next->addr_lo = htole32(U64_LO(busaddr));
14861
}
14862
14863
/*******************/
14864
/* FP RX SGE CHAIN */
14865
/*******************/
14866
14867
snprintf(buf, sizeof(buf), "fp %d sge chain", i);
14868
if (bxe_dma_alloc(sc, (BCM_PAGE_SIZE * RX_SGE_NUM_PAGES),
14869
&fp->rx_sge_dma, buf) != 0) {
14870
/* XXX unwind and free previous fastpath allocations */
14871
BLOGE(sc, "Failed to alloc %s\n", buf);
14872
return (1);
14873
} else {
14874
fp->rx_sge_chain = (struct eth_rx_sge *)fp->rx_sge_dma.vaddr;
14875
}
14876
14877
/* link together the sge chain pages */
14878
for (j = 1; j <= RX_SGE_NUM_PAGES; j++) {
14879
/* index into the rcq chain array to last entry per page */
14880
struct eth_rx_sge *rx_sge =
14881
&fp->rx_sge_chain[RX_SGE_TOTAL_PER_PAGE * j - 2];
14882
/* point to the next page and wrap from last page */
14883
busaddr = (fp->rx_sge_dma.paddr +
14884
(BCM_PAGE_SIZE * (j % RX_SGE_NUM_PAGES)));
14885
rx_sge->addr_hi = htole32(U64_HI(busaddr));
14886
rx_sge->addr_lo = htole32(U64_LO(busaddr));
14887
}
14888
14889
/***********************/
14890
/* FP TX MBUF DMA MAPS */
14891
/***********************/
14892
14893
/* set required sizes before mapping to conserve resources */
14894
if (if_getcapenable(sc->ifp) & (IFCAP_TSO4 | IFCAP_TSO6)) {
14895
max_size = BXE_TSO_MAX_SIZE;
14896
max_segments = BXE_TSO_MAX_SEGMENTS;
14897
max_seg_size = BXE_TSO_MAX_SEG_SIZE;
14898
} else {
14899
max_size = (MCLBYTES * BXE_MAX_SEGMENTS);
14900
max_segments = BXE_MAX_SEGMENTS;
14901
max_seg_size = MCLBYTES;
14902
}
14903
14904
/* create a dma tag for the tx mbufs */
14905
rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14906
1, /* alignment */
14907
0, /* boundary limit */
14908
BUS_SPACE_MAXADDR, /* restricted low */
14909
BUS_SPACE_MAXADDR, /* restricted hi */
14910
NULL, /* addr filter() */
14911
NULL, /* addr filter() arg */
14912
max_size, /* max map size */
14913
max_segments, /* num discontinuous */
14914
max_seg_size, /* max seg size */
14915
0, /* flags */
14916
NULL, /* lock() */
14917
NULL, /* lock() arg */
14918
&fp->tx_mbuf_tag); /* returned dma tag */
14919
if (rc != 0) {
14920
/* XXX unwind and free previous fastpath allocations */
14921
BLOGE(sc, "Failed to create dma tag for "
14922
"'fp %d tx mbufs' (%d)\n", i, rc);
14923
return (1);
14924
}
14925
14926
/* create dma maps for each of the tx mbuf clusters */
14927
for (j = 0; j < TX_BD_TOTAL; j++) {
14928
if (bus_dmamap_create(fp->tx_mbuf_tag,
14929
BUS_DMA_NOWAIT,
14930
&fp->tx_mbuf_chain[j].m_map)) {
14931
/* XXX unwind and free previous fastpath allocations */
14932
BLOGE(sc, "Failed to create dma map for "
14933
"'fp %d tx mbuf %d' (%d)\n", i, j, rc);
14934
return (1);
14935
}
14936
}
14937
14938
/***********************/
14939
/* FP RX MBUF DMA MAPS */
14940
/***********************/
14941
14942
/* create a dma tag for the rx mbufs */
14943
rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14944
1, /* alignment */
14945
0, /* boundary limit */
14946
BUS_SPACE_MAXADDR, /* restricted low */
14947
BUS_SPACE_MAXADDR, /* restricted hi */
14948
NULL, /* addr filter() */
14949
NULL, /* addr filter() arg */
14950
MJUM9BYTES, /* max map size */
14951
1, /* num discontinuous */
14952
MJUM9BYTES, /* max seg size */
14953
0, /* flags */
14954
NULL, /* lock() */
14955
NULL, /* lock() arg */
14956
&fp->rx_mbuf_tag); /* returned dma tag */
14957
if (rc != 0) {
14958
/* XXX unwind and free previous fastpath allocations */
14959
BLOGE(sc, "Failed to create dma tag for "
14960
"'fp %d rx mbufs' (%d)\n", i, rc);
14961
return (1);
14962
}
14963
14964
/* create dma maps for each of the rx mbuf clusters */
14965
for (j = 0; j < RX_BD_TOTAL; j++) {
14966
if (bus_dmamap_create(fp->rx_mbuf_tag,
14967
BUS_DMA_NOWAIT,
14968
&fp->rx_mbuf_chain[j].m_map)) {
14969
/* XXX unwind and free previous fastpath allocations */
14970
BLOGE(sc, "Failed to create dma map for "
14971
"'fp %d rx mbuf %d' (%d)\n", i, j, rc);
14972
return (1);
14973
}
14974
}
14975
14976
/* create dma map for the spare rx mbuf cluster */
14977
if (bus_dmamap_create(fp->rx_mbuf_tag,
14978
BUS_DMA_NOWAIT,
14979
&fp->rx_mbuf_spare_map)) {
14980
/* XXX unwind and free previous fastpath allocations */
14981
BLOGE(sc, "Failed to create dma map for "
14982
"'fp %d spare rx mbuf' (%d)\n", i, rc);
14983
return (1);
14984
}
14985
14986
/***************************/
14987
/* FP RX SGE MBUF DMA MAPS */
14988
/***************************/
14989
14990
/* create a dma tag for the rx sge mbufs */
14991
rc = bus_dma_tag_create(sc->parent_dma_tag, /* parent tag */
14992
1, /* alignment */
14993
0, /* boundary limit */
14994
BUS_SPACE_MAXADDR, /* restricted low */
14995
BUS_SPACE_MAXADDR, /* restricted hi */
14996
NULL, /* addr filter() */
14997
NULL, /* addr filter() arg */
14998
BCM_PAGE_SIZE, /* max map size */
14999
1, /* num discontinuous */
15000
BCM_PAGE_SIZE, /* max seg size */
15001
0, /* flags */
15002
NULL, /* lock() */
15003
NULL, /* lock() arg */
15004
&fp->rx_sge_mbuf_tag); /* returned dma tag */
15005
if (rc != 0) {
15006
/* XXX unwind and free previous fastpath allocations */
15007
BLOGE(sc, "Failed to create dma tag for "
15008
"'fp %d rx sge mbufs' (%d)\n", i, rc);
15009
return (1);
15010
}
15011
15012
/* create dma maps for the rx sge mbuf clusters */
15013
for (j = 0; j < RX_SGE_TOTAL; j++) {
15014
if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15015
BUS_DMA_NOWAIT,
15016
&fp->rx_sge_mbuf_chain[j].m_map)) {
15017
/* XXX unwind and free previous fastpath allocations */
15018
BLOGE(sc, "Failed to create dma map for "
15019
"'fp %d rx sge mbuf %d' (%d)\n", i, j, rc);
15020
return (1);
15021
}
15022
}
15023
15024
/* create dma map for the spare rx sge mbuf cluster */
15025
if (bus_dmamap_create(fp->rx_sge_mbuf_tag,
15026
BUS_DMA_NOWAIT,
15027
&fp->rx_sge_mbuf_spare_map)) {
15028
/* XXX unwind and free previous fastpath allocations */
15029
BLOGE(sc, "Failed to create dma map for "
15030
"'fp %d spare rx sge mbuf' (%d)\n", i, rc);
15031
return (1);
15032
}
15033
15034
/***************************/
15035
/* FP RX TPA MBUF DMA MAPS */
15036
/***************************/
15037
15038
/* create dma maps for the rx tpa mbuf clusters */
15039
max_agg_queues = MAX_AGG_QS(sc);
15040
15041
for (j = 0; j < max_agg_queues; j++) {
15042
if (bus_dmamap_create(fp->rx_mbuf_tag,
15043
BUS_DMA_NOWAIT,
15044
&fp->rx_tpa_info[j].bd.m_map)) {
15045
/* XXX unwind and free previous fastpath allocations */
15046
BLOGE(sc, "Failed to create dma map for "
15047
"'fp %d rx tpa mbuf %d' (%d)\n", i, j, rc);
15048
return (1);
15049
}
15050
}
15051
15052
/* create dma map for the spare rx tpa mbuf cluster */
15053
if (bus_dmamap_create(fp->rx_mbuf_tag,
15054
BUS_DMA_NOWAIT,
15055
&fp->rx_tpa_info_mbuf_spare_map)) {
15056
/* XXX unwind and free previous fastpath allocations */
15057
BLOGE(sc, "Failed to create dma map for "
15058
"'fp %d spare rx tpa mbuf' (%d)\n", i, rc);
15059
return (1);
15060
}
15061
15062
bxe_init_sge_ring_bit_mask(fp);
15063
}
15064
15065
return (0);
15066
}
15067
15068
static void
15069
bxe_free_hsi_mem(struct bxe_softc *sc)
15070
{
15071
struct bxe_fastpath *fp;
15072
int max_agg_queues;
15073
int i, j;
15074
15075
if (sc->parent_dma_tag == NULL) {
15076
return; /* assume nothing was allocated */
15077
}
15078
15079
for (i = 0; i < sc->num_queues; i++) {
15080
fp = &sc->fp[i];
15081
15082
/*******************/
15083
/* FP STATUS BLOCK */
15084
/*******************/
15085
15086
bxe_dma_free(sc, &fp->sb_dma);
15087
memset(&fp->status_block, 0, sizeof(fp->status_block));
15088
15089
/******************/
15090
/* FP TX BD CHAIN */
15091
/******************/
15092
15093
bxe_dma_free(sc, &fp->tx_dma);
15094
fp->tx_chain = NULL;
15095
15096
/******************/
15097
/* FP RX BD CHAIN */
15098
/******************/
15099
15100
bxe_dma_free(sc, &fp->rx_dma);
15101
fp->rx_chain = NULL;
15102
15103
/*******************/
15104
/* FP RX RCQ CHAIN */
15105
/*******************/
15106
15107
bxe_dma_free(sc, &fp->rcq_dma);
15108
fp->rcq_chain = NULL;
15109
15110
/*******************/
15111
/* FP RX SGE CHAIN */
15112
/*******************/
15113
15114
bxe_dma_free(sc, &fp->rx_sge_dma);
15115
fp->rx_sge_chain = NULL;
15116
15117
/***********************/
15118
/* FP TX MBUF DMA MAPS */
15119
/***********************/
15120
15121
if (fp->tx_mbuf_tag != NULL) {
15122
for (j = 0; j < TX_BD_TOTAL; j++) {
15123
if (fp->tx_mbuf_chain[j].m_map != NULL) {
15124
bus_dmamap_unload(fp->tx_mbuf_tag,
15125
fp->tx_mbuf_chain[j].m_map);
15126
bus_dmamap_destroy(fp->tx_mbuf_tag,
15127
fp->tx_mbuf_chain[j].m_map);
15128
}
15129
}
15130
15131
bus_dma_tag_destroy(fp->tx_mbuf_tag);
15132
fp->tx_mbuf_tag = NULL;
15133
}
15134
15135
/***********************/
15136
/* FP RX MBUF DMA MAPS */
15137
/***********************/
15138
15139
if (fp->rx_mbuf_tag != NULL) {
15140
for (j = 0; j < RX_BD_TOTAL; j++) {
15141
if (fp->rx_mbuf_chain[j].m_map != NULL) {
15142
bus_dmamap_unload(fp->rx_mbuf_tag,
15143
fp->rx_mbuf_chain[j].m_map);
15144
bus_dmamap_destroy(fp->rx_mbuf_tag,
15145
fp->rx_mbuf_chain[j].m_map);
15146
}
15147
}
15148
15149
if (fp->rx_mbuf_spare_map != NULL) {
15150
bus_dmamap_unload(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15151
bus_dmamap_destroy(fp->rx_mbuf_tag, fp->rx_mbuf_spare_map);
15152
}
15153
15154
/***************************/
15155
/* FP RX TPA MBUF DMA MAPS */
15156
/***************************/
15157
15158
max_agg_queues = MAX_AGG_QS(sc);
15159
15160
for (j = 0; j < max_agg_queues; j++) {
15161
if (fp->rx_tpa_info[j].bd.m_map != NULL) {
15162
bus_dmamap_unload(fp->rx_mbuf_tag,
15163
fp->rx_tpa_info[j].bd.m_map);
15164
bus_dmamap_destroy(fp->rx_mbuf_tag,
15165
fp->rx_tpa_info[j].bd.m_map);
15166
}
15167
}
15168
15169
if (fp->rx_tpa_info_mbuf_spare_map != NULL) {
15170
bus_dmamap_unload(fp->rx_mbuf_tag,
15171
fp->rx_tpa_info_mbuf_spare_map);
15172
bus_dmamap_destroy(fp->rx_mbuf_tag,
15173
fp->rx_tpa_info_mbuf_spare_map);
15174
}
15175
15176
bus_dma_tag_destroy(fp->rx_mbuf_tag);
15177
fp->rx_mbuf_tag = NULL;
15178
}
15179
15180
/***************************/
15181
/* FP RX SGE MBUF DMA MAPS */
15182
/***************************/
15183
15184
if (fp->rx_sge_mbuf_tag != NULL) {
15185
for (j = 0; j < RX_SGE_TOTAL; j++) {
15186
if (fp->rx_sge_mbuf_chain[j].m_map != NULL) {
15187
bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15188
fp->rx_sge_mbuf_chain[j].m_map);
15189
bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15190
fp->rx_sge_mbuf_chain[j].m_map);
15191
}
15192
}
15193
15194
if (fp->rx_sge_mbuf_spare_map != NULL) {
15195
bus_dmamap_unload(fp->rx_sge_mbuf_tag,
15196
fp->rx_sge_mbuf_spare_map);
15197
bus_dmamap_destroy(fp->rx_sge_mbuf_tag,
15198
fp->rx_sge_mbuf_spare_map);
15199
}
15200
15201
bus_dma_tag_destroy(fp->rx_sge_mbuf_tag);
15202
fp->rx_sge_mbuf_tag = NULL;
15203
}
15204
}
15205
15206
/***************************/
15207
/* FW DECOMPRESSION BUFFER */
15208
/***************************/
15209
15210
bxe_dma_free(sc, &sc->gz_buf_dma);
15211
sc->gz_buf = NULL;
15212
free(sc->gz_strm, M_DEVBUF);
15213
sc->gz_strm = NULL;
15214
15215
/*******************/
15216
/* SLOW PATH QUEUE */
15217
/*******************/
15218
15219
bxe_dma_free(sc, &sc->spq_dma);
15220
sc->spq = NULL;
15221
15222
/*************/
15223
/* SLOW PATH */
15224
/*************/
15225
15226
bxe_dma_free(sc, &sc->sp_dma);
15227
sc->sp = NULL;
15228
15229
/***************/
15230
/* EVENT QUEUE */
15231
/***************/
15232
15233
bxe_dma_free(sc, &sc->eq_dma);
15234
sc->eq = NULL;
15235
15236
/************************/
15237
/* DEFAULT STATUS BLOCK */
15238
/************************/
15239
15240
bxe_dma_free(sc, &sc->def_sb_dma);
15241
sc->def_sb = NULL;
15242
15243
bus_dma_tag_destroy(sc->parent_dma_tag);
15244
sc->parent_dma_tag = NULL;
15245
}
15246
15247
/*
15248
* Previous driver DMAE transaction may have occurred when pre-boot stage
15249
* ended and boot began. This would invalidate the addresses of the
15250
* transaction, resulting in was-error bit set in the PCI causing all
15251
* hw-to-host PCIe transactions to timeout. If this happened we want to clear
15252
* the interrupt which detected this from the pglueb and the was-done bit
15253
*/
15254
static void
15255
bxe_prev_interrupted_dmae(struct bxe_softc *sc)
15256
{
15257
uint32_t val;
15258
15259
if (!CHIP_IS_E1x(sc)) {
15260
val = REG_RD(sc, PGLUE_B_REG_PGLUE_B_INT_STS);
15261
if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
15262
BLOGD(sc, DBG_LOAD,
15263
"Clearing 'was-error' bit that was set in pglueb");
15264
REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, 1 << SC_FUNC(sc));
15265
}
15266
}
15267
}
15268
15269
static int
15270
bxe_prev_mcp_done(struct bxe_softc *sc)
15271
{
15272
uint32_t rc = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_DONE,
15273
DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
15274
if (!rc) {
15275
BLOGE(sc, "MCP response failure, aborting\n");
15276
return (-1);
15277
}
15278
15279
return (0);
15280
}
15281
15282
static struct bxe_prev_list_node *
15283
bxe_prev_path_get_entry(struct bxe_softc *sc)
15284
{
15285
struct bxe_prev_list_node *tmp;
15286
15287
LIST_FOREACH(tmp, &bxe_prev_list, node) {
15288
if ((sc->pcie_bus == tmp->bus) &&
15289
(sc->pcie_device == tmp->slot) &&
15290
(SC_PATH(sc) == tmp->path)) {
15291
return (tmp);
15292
}
15293
}
15294
15295
return (NULL);
15296
}
15297
15298
static uint8_t
15299
bxe_prev_is_path_marked(struct bxe_softc *sc)
15300
{
15301
struct bxe_prev_list_node *tmp;
15302
int rc = FALSE;
15303
15304
mtx_lock(&bxe_prev_mtx);
15305
15306
tmp = bxe_prev_path_get_entry(sc);
15307
if (tmp) {
15308
if (tmp->aer) {
15309
BLOGD(sc, DBG_LOAD,
15310
"Path %d/%d/%d was marked by AER\n",
15311
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15312
} else {
15313
rc = TRUE;
15314
BLOGD(sc, DBG_LOAD,
15315
"Path %d/%d/%d was already cleaned from previous drivers\n",
15316
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15317
}
15318
}
15319
15320
mtx_unlock(&bxe_prev_mtx);
15321
15322
return (rc);
15323
}
15324
15325
static int
15326
bxe_prev_mark_path(struct bxe_softc *sc,
15327
uint8_t after_undi)
15328
{
15329
struct bxe_prev_list_node *tmp;
15330
15331
mtx_lock(&bxe_prev_mtx);
15332
15333
/* Check whether the entry for this path already exists */
15334
tmp = bxe_prev_path_get_entry(sc);
15335
if (tmp) {
15336
if (!tmp->aer) {
15337
BLOGD(sc, DBG_LOAD,
15338
"Re-marking AER in path %d/%d/%d\n",
15339
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15340
} else {
15341
BLOGD(sc, DBG_LOAD,
15342
"Removing AER indication from path %d/%d/%d\n",
15343
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15344
tmp->aer = 0;
15345
}
15346
15347
mtx_unlock(&bxe_prev_mtx);
15348
return (0);
15349
}
15350
15351
mtx_unlock(&bxe_prev_mtx);
15352
15353
/* Create an entry for this path and add it */
15354
tmp = malloc(sizeof(struct bxe_prev_list_node), M_DEVBUF,
15355
(M_NOWAIT | M_ZERO));
15356
if (!tmp) {
15357
BLOGE(sc, "Failed to allocate 'bxe_prev_list_node'\n");
15358
return (-1);
15359
}
15360
15361
tmp->bus = sc->pcie_bus;
15362
tmp->slot = sc->pcie_device;
15363
tmp->path = SC_PATH(sc);
15364
tmp->aer = 0;
15365
tmp->undi = after_undi ? (1 << SC_PORT(sc)) : 0;
15366
15367
mtx_lock(&bxe_prev_mtx);
15368
15369
BLOGD(sc, DBG_LOAD,
15370
"Marked path %d/%d/%d - finished previous unload\n",
15371
sc->pcie_bus, sc->pcie_device, SC_PATH(sc));
15372
LIST_INSERT_HEAD(&bxe_prev_list, tmp, node);
15373
15374
mtx_unlock(&bxe_prev_mtx);
15375
15376
return (0);
15377
}
15378
15379
static int
15380
bxe_do_flr(struct bxe_softc *sc)
15381
{
15382
int i;
15383
15384
/* only E2 and onwards support FLR */
15385
if (CHIP_IS_E1x(sc)) {
15386
BLOGD(sc, DBG_LOAD, "FLR not supported in E1/E1H\n");
15387
return (-1);
15388
}
15389
15390
/* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
15391
if (sc->devinfo.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
15392
BLOGD(sc, DBG_LOAD, "FLR not supported by BC_VER: 0x%08x\n",
15393
sc->devinfo.bc_ver);
15394
return (-1);
15395
}
15396
15397
/* Wait for Transaction Pending bit clean */
15398
for (i = 0; i < 4; i++) {
15399
if (i) {
15400
DELAY(((1 << (i - 1)) * 100) * 1000);
15401
}
15402
15403
if (!bxe_is_pcie_pending(sc)) {
15404
goto clear;
15405
}
15406
}
15407
15408
BLOGE(sc, "PCIE transaction is not cleared, "
15409
"proceeding with reset anyway\n");
15410
15411
clear:
15412
15413
BLOGD(sc, DBG_LOAD, "Initiating FLR\n");
15414
bxe_fw_command(sc, DRV_MSG_CODE_INITIATE_FLR, 0);
15415
15416
return (0);
15417
}
15418
15419
struct bxe_mac_vals {
15420
uint32_t xmac_addr;
15421
uint32_t xmac_val;
15422
uint32_t emac_addr;
15423
uint32_t emac_val;
15424
uint32_t umac_addr;
15425
uint32_t umac_val;
15426
uint32_t bmac_addr;
15427
uint32_t bmac_val[2];
15428
};
15429
15430
static void
15431
bxe_prev_unload_close_mac(struct bxe_softc *sc,
15432
struct bxe_mac_vals *vals)
15433
{
15434
uint32_t val, base_addr, offset, mask, reset_reg;
15435
uint8_t mac_stopped = FALSE;
15436
uint8_t port = SC_PORT(sc);
15437
uint32_t wb_data[2];
15438
15439
/* reset addresses as they also mark which values were changed */
15440
vals->bmac_addr = 0;
15441
vals->umac_addr = 0;
15442
vals->xmac_addr = 0;
15443
vals->emac_addr = 0;
15444
15445
reset_reg = REG_RD(sc, MISC_REG_RESET_REG_2);
15446
15447
if (!CHIP_IS_E3(sc)) {
15448
val = REG_RD(sc, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
15449
mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
15450
if ((mask & reset_reg) && val) {
15451
BLOGD(sc, DBG_LOAD, "Disable BMAC Rx\n");
15452
base_addr = SC_PORT(sc) ? NIG_REG_INGRESS_BMAC1_MEM
15453
: NIG_REG_INGRESS_BMAC0_MEM;
15454
offset = CHIP_IS_E2(sc) ? BIGMAC2_REGISTER_BMAC_CONTROL
15455
: BIGMAC_REGISTER_BMAC_CONTROL;
15456
15457
/*
15458
* use rd/wr since we cannot use dmae. This is safe
15459
* since MCP won't access the bus due to the request
15460
* to unload, and no function on the path can be
15461
* loaded at this time.
15462
*/
15463
wb_data[0] = REG_RD(sc, base_addr + offset);
15464
wb_data[1] = REG_RD(sc, base_addr + offset + 0x4);
15465
vals->bmac_addr = base_addr + offset;
15466
vals->bmac_val[0] = wb_data[0];
15467
vals->bmac_val[1] = wb_data[1];
15468
wb_data[0] &= ~ELINK_BMAC_CONTROL_RX_ENABLE;
15469
REG_WR(sc, vals->bmac_addr, wb_data[0]);
15470
REG_WR(sc, vals->bmac_addr + 0x4, wb_data[1]);
15471
}
15472
15473
BLOGD(sc, DBG_LOAD, "Disable EMAC Rx\n");
15474
vals->emac_addr = NIG_REG_NIG_EMAC0_EN + SC_PORT(sc)*4;
15475
vals->emac_val = REG_RD(sc, vals->emac_addr);
15476
REG_WR(sc, vals->emac_addr, 0);
15477
mac_stopped = TRUE;
15478
} else {
15479
if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
15480
BLOGD(sc, DBG_LOAD, "Disable XMAC Rx\n");
15481
base_addr = SC_PORT(sc) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
15482
val = REG_RD(sc, base_addr + XMAC_REG_PFC_CTRL_HI);
15483
REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val & ~(1 << 1));
15484
REG_WR(sc, base_addr + XMAC_REG_PFC_CTRL_HI, val | (1 << 1));
15485
vals->xmac_addr = base_addr + XMAC_REG_CTRL;
15486
vals->xmac_val = REG_RD(sc, vals->xmac_addr);
15487
REG_WR(sc, vals->xmac_addr, 0);
15488
mac_stopped = TRUE;
15489
}
15490
15491
mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
15492
if (mask & reset_reg) {
15493
BLOGD(sc, DBG_LOAD, "Disable UMAC Rx\n");
15494
base_addr = SC_PORT(sc) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
15495
vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
15496
vals->umac_val = REG_RD(sc, vals->umac_addr);
15497
REG_WR(sc, vals->umac_addr, 0);
15498
mac_stopped = TRUE;
15499
}
15500
}
15501
15502
if (mac_stopped) {
15503
DELAY(20000);
15504
}
15505
}
15506
15507
#define BXE_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
15508
#define BXE_PREV_UNDI_RCQ(val) ((val) & 0xffff)
15509
#define BXE_PREV_UNDI_BD(val) ((val) >> 16 & 0xffff)
15510
#define BXE_PREV_UNDI_PROD(rcq, bd) ((bd) << 16 | (rcq))
15511
15512
static void
15513
bxe_prev_unload_undi_inc(struct bxe_softc *sc,
15514
uint8_t port,
15515
uint8_t inc)
15516
{
15517
uint16_t rcq, bd;
15518
uint32_t tmp_reg = REG_RD(sc, BXE_PREV_UNDI_PROD_ADDR(port));
15519
15520
rcq = BXE_PREV_UNDI_RCQ(tmp_reg) + inc;
15521
bd = BXE_PREV_UNDI_BD(tmp_reg) + inc;
15522
15523
tmp_reg = BXE_PREV_UNDI_PROD(rcq, bd);
15524
REG_WR(sc, BXE_PREV_UNDI_PROD_ADDR(port), tmp_reg);
15525
15526
BLOGD(sc, DBG_LOAD,
15527
"UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
15528
port, bd, rcq);
15529
}
15530
15531
static int
15532
bxe_prev_unload_common(struct bxe_softc *sc)
15533
{
15534
uint32_t reset_reg, tmp_reg = 0, rc;
15535
uint8_t prev_undi = FALSE;
15536
struct bxe_mac_vals mac_vals;
15537
uint32_t timer_count = 1000;
15538
uint32_t prev_brb;
15539
15540
/*
15541
* It is possible a previous function received 'common' answer,
15542
* but hasn't loaded yet, therefore creating a scenario of
15543
* multiple functions receiving 'common' on the same path.
15544
*/
15545
BLOGD(sc, DBG_LOAD, "Common unload Flow\n");
15546
15547
memset(&mac_vals, 0, sizeof(mac_vals));
15548
15549
if (bxe_prev_is_path_marked(sc)) {
15550
return (bxe_prev_mcp_done(sc));
15551
}
15552
15553
reset_reg = REG_RD(sc, MISC_REG_RESET_REG_1);
15554
15555
/* Reset should be performed after BRB is emptied */
15556
if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
15557
/* Close the MAC Rx to prevent BRB from filling up */
15558
bxe_prev_unload_close_mac(sc, &mac_vals);
15559
15560
/* close LLH filters towards the BRB */
15561
elink_set_rx_filter(&sc->link_params, 0);
15562
15563
/*
15564
* Check if the UNDI driver was previously loaded.
15565
* UNDI driver initializes CID offset for normal bell to 0x7
15566
*/
15567
if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
15568
tmp_reg = REG_RD(sc, DORQ_REG_NORM_CID_OFST);
15569
if (tmp_reg == 0x7) {
15570
BLOGD(sc, DBG_LOAD, "UNDI previously loaded\n");
15571
prev_undi = TRUE;
15572
/* clear the UNDI indication */
15573
REG_WR(sc, DORQ_REG_NORM_CID_OFST, 0);
15574
/* clear possible idle check errors */
15575
REG_RD(sc, NIG_REG_NIG_INT_STS_CLR_0);
15576
}
15577
}
15578
15579
/* wait until BRB is empty */
15580
tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15581
while (timer_count) {
15582
prev_brb = tmp_reg;
15583
15584
tmp_reg = REG_RD(sc, BRB1_REG_NUM_OF_FULL_BLOCKS);
15585
if (!tmp_reg) {
15586
break;
15587
}
15588
15589
BLOGD(sc, DBG_LOAD, "BRB still has 0x%08x\n", tmp_reg);
15590
15591
/* reset timer as long as BRB actually gets emptied */
15592
if (prev_brb > tmp_reg) {
15593
timer_count = 1000;
15594
} else {
15595
timer_count--;
15596
}
15597
15598
/* If UNDI resides in memory, manually increment it */
15599
if (prev_undi) {
15600
bxe_prev_unload_undi_inc(sc, SC_PORT(sc), 1);
15601
}
15602
15603
DELAY(10);
15604
}
15605
15606
if (!timer_count) {
15607
BLOGE(sc, "Failed to empty BRB\n");
15608
}
15609
}
15610
15611
/* No packets are in the pipeline, path is ready for reset */
15612
bxe_reset_common(sc);
15613
15614
if (mac_vals.xmac_addr) {
15615
REG_WR(sc, mac_vals.xmac_addr, mac_vals.xmac_val);
15616
}
15617
if (mac_vals.umac_addr) {
15618
REG_WR(sc, mac_vals.umac_addr, mac_vals.umac_val);
15619
}
15620
if (mac_vals.emac_addr) {
15621
REG_WR(sc, mac_vals.emac_addr, mac_vals.emac_val);
15622
}
15623
if (mac_vals.bmac_addr) {
15624
REG_WR(sc, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
15625
REG_WR(sc, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
15626
}
15627
15628
rc = bxe_prev_mark_path(sc, prev_undi);
15629
if (rc) {
15630
bxe_prev_mcp_done(sc);
15631
return (rc);
15632
}
15633
15634
return (bxe_prev_mcp_done(sc));
15635
}
15636
15637
static int
15638
bxe_prev_unload_uncommon(struct bxe_softc *sc)
15639
{
15640
int rc;
15641
15642
BLOGD(sc, DBG_LOAD, "Uncommon unload Flow\n");
15643
15644
/* Test if previous unload process was already finished for this path */
15645
if (bxe_prev_is_path_marked(sc)) {
15646
return (bxe_prev_mcp_done(sc));
15647
}
15648
15649
BLOGD(sc, DBG_LOAD, "Path is unmarked\n");
15650
15651
/*
15652
* If function has FLR capabilities, and existing FW version matches
15653
* the one required, then FLR will be sufficient to clean any residue
15654
* left by previous driver
15655
*/
15656
rc = bxe_nic_load_analyze_req(sc, FW_MSG_CODE_DRV_LOAD_FUNCTION);
15657
if (!rc) {
15658
/* fw version is good */
15659
BLOGD(sc, DBG_LOAD, "FW version matches our own, attempting FLR\n");
15660
rc = bxe_do_flr(sc);
15661
}
15662
15663
if (!rc) {
15664
/* FLR was performed */
15665
BLOGD(sc, DBG_LOAD, "FLR successful\n");
15666
return (0);
15667
}
15668
15669
BLOGD(sc, DBG_LOAD, "Could not FLR\n");
15670
15671
/* Close the MCP request, return failure*/
15672
rc = bxe_prev_mcp_done(sc);
15673
if (!rc) {
15674
rc = BXE_PREV_WAIT_NEEDED;
15675
}
15676
15677
return (rc);
15678
}
15679
15680
static int
15681
bxe_prev_unload(struct bxe_softc *sc)
15682
{
15683
int time_counter = 10;
15684
uint32_t fw, hw_lock_reg, hw_lock_val;
15685
uint32_t rc = 0;
15686
15687
/*
15688
* Clear HW from errors which may have resulted from an interrupted
15689
* DMAE transaction.
15690
*/
15691
bxe_prev_interrupted_dmae(sc);
15692
15693
/* Release previously held locks */
15694
hw_lock_reg =
15695
(SC_FUNC(sc) <= 5) ?
15696
(MISC_REG_DRIVER_CONTROL_1 + SC_FUNC(sc) * 8) :
15697
(MISC_REG_DRIVER_CONTROL_7 + (SC_FUNC(sc) - 6) * 8);
15698
15699
hw_lock_val = (REG_RD(sc, hw_lock_reg));
15700
if (hw_lock_val) {
15701
if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
15702
BLOGD(sc, DBG_LOAD, "Releasing previously held NVRAM lock\n");
15703
REG_WR(sc, MCP_REG_MCPR_NVM_SW_ARB,
15704
(MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << SC_PORT(sc)));
15705
}
15706
BLOGD(sc, DBG_LOAD, "Releasing previously held HW lock\n");
15707
REG_WR(sc, hw_lock_reg, 0xffffffff);
15708
} else {
15709
BLOGD(sc, DBG_LOAD, "No need to release HW/NVRAM locks\n");
15710
}
15711
15712
if (MCPR_ACCESS_LOCK_LOCK & REG_RD(sc, MCP_REG_MCPR_ACCESS_LOCK)) {
15713
BLOGD(sc, DBG_LOAD, "Releasing previously held ALR\n");
15714
REG_WR(sc, MCP_REG_MCPR_ACCESS_LOCK, 0);
15715
}
15716
15717
do {
15718
/* Lock MCP using an unload request */
15719
fw = bxe_fw_command(sc, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
15720
if (!fw) {
15721
BLOGE(sc, "MCP response failure, aborting\n");
15722
rc = -1;
15723
break;
15724
}
15725
15726
if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON) {
15727
rc = bxe_prev_unload_common(sc);
15728
break;
15729
}
15730
15731
/* non-common reply from MCP night require looping */
15732
rc = bxe_prev_unload_uncommon(sc);
15733
if (rc != BXE_PREV_WAIT_NEEDED) {
15734
break;
15735
}
15736
15737
DELAY(20000);
15738
} while (--time_counter);
15739
15740
if (!time_counter || rc) {
15741
BLOGE(sc, "Failed to unload previous driver!"
15742
" time_counter %d rc %d\n", time_counter, rc);
15743
rc = -1;
15744
}
15745
15746
return (rc);
15747
}
15748
15749
void
15750
bxe_dcbx_set_state(struct bxe_softc *sc,
15751
uint8_t dcb_on,
15752
uint32_t dcbx_enabled)
15753
{
15754
if (!CHIP_IS_E1x(sc)) {
15755
sc->dcb_state = dcb_on;
15756
sc->dcbx_enabled = dcbx_enabled;
15757
} else {
15758
sc->dcb_state = FALSE;
15759
sc->dcbx_enabled = BXE_DCBX_ENABLED_INVALID;
15760
}
15761
BLOGD(sc, DBG_LOAD,
15762
"DCB state [%s:%s]\n",
15763
dcb_on ? "ON" : "OFF",
15764
(dcbx_enabled == BXE_DCBX_ENABLED_OFF) ? "user-mode" :
15765
(dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_OFF) ? "on-chip static" :
15766
(dcbx_enabled == BXE_DCBX_ENABLED_ON_NEG_ON) ?
15767
"on-chip with negotiation" : "invalid");
15768
}
15769
15770
/* must be called after sriov-enable */
15771
static int
15772
bxe_set_qm_cid_count(struct bxe_softc *sc)
15773
{
15774
int cid_count = BXE_L2_MAX_CID(sc);
15775
15776
if (IS_SRIOV(sc)) {
15777
cid_count += BXE_VF_CIDS;
15778
}
15779
15780
if (CNIC_SUPPORT(sc)) {
15781
cid_count += CNIC_CID_MAX;
15782
}
15783
15784
return (roundup(cid_count, QM_CID_ROUND));
15785
}
15786
15787
static void
15788
bxe_init_multi_cos(struct bxe_softc *sc)
15789
{
15790
int pri, cos;
15791
15792
uint32_t pri_map = 0; /* XXX change to user config */
15793
15794
for (pri = 0; pri < BXE_MAX_PRIORITY; pri++) {
15795
cos = ((pri_map & (0xf << (pri * 4))) >> (pri * 4));
15796
if (cos < sc->max_cos) {
15797
sc->prio_to_cos[pri] = cos;
15798
} else {
15799
BLOGW(sc, "Invalid COS %d for priority %d "
15800
"(max COS is %d), setting to 0\n",
15801
cos, pri, (sc->max_cos - 1));
15802
sc->prio_to_cos[pri] = 0;
15803
}
15804
}
15805
}
15806
15807
static int
15808
bxe_sysctl_state(SYSCTL_HANDLER_ARGS)
15809
{
15810
struct bxe_softc *sc;
15811
int error, result;
15812
15813
result = 0;
15814
error = sysctl_handle_int(oidp, &result, 0, req);
15815
15816
if (error || !req->newptr) {
15817
return (error);
15818
}
15819
15820
if (result == 1) {
15821
uint32_t temp;
15822
sc = (struct bxe_softc *)arg1;
15823
15824
BLOGI(sc, "... dumping driver state ...\n");
15825
temp = SHMEM2_RD(sc, temperature_in_half_celsius);
15826
BLOGI(sc, "\t Device Temperature = %d Celsius\n", (temp/2));
15827
}
15828
15829
return (error);
15830
}
15831
15832
static int
15833
bxe_sysctl_eth_stat(SYSCTL_HANDLER_ARGS)
15834
{
15835
struct bxe_softc *sc = (struct bxe_softc *)arg1;
15836
uint32_t *eth_stats = (uint32_t *)&sc->eth_stats;
15837
uint32_t *offset;
15838
uint64_t value = 0;
15839
int index = (int)arg2;
15840
15841
if (index >= BXE_NUM_ETH_STATS) {
15842
BLOGE(sc, "bxe_eth_stats index out of range (%d)\n", index);
15843
return (-1);
15844
}
15845
15846
offset = (eth_stats + bxe_eth_stats_arr[index].offset);
15847
15848
switch (bxe_eth_stats_arr[index].size) {
15849
case 4:
15850
value = (uint64_t)*offset;
15851
break;
15852
case 8:
15853
value = HILO_U64(*offset, *(offset + 1));
15854
break;
15855
default:
15856
BLOGE(sc, "Invalid bxe_eth_stats size (index=%d size=%d)\n",
15857
index, bxe_eth_stats_arr[index].size);
15858
return (-1);
15859
}
15860
15861
return (sysctl_handle_64(oidp, &value, 0, req));
15862
}
15863
15864
static int
15865
bxe_sysctl_eth_q_stat(SYSCTL_HANDLER_ARGS)
15866
{
15867
struct bxe_softc *sc = (struct bxe_softc *)arg1;
15868
uint32_t *eth_stats;
15869
uint32_t *offset;
15870
uint64_t value = 0;
15871
uint32_t q_stat = (uint32_t)arg2;
15872
uint32_t fp_index = ((q_stat >> 16) & 0xffff);
15873
uint32_t index = (q_stat & 0xffff);
15874
15875
eth_stats = (uint32_t *)&sc->fp[fp_index].eth_q_stats;
15876
15877
if (index >= BXE_NUM_ETH_Q_STATS) {
15878
BLOGE(sc, "bxe_eth_q_stats index out of range (%d)\n", index);
15879
return (-1);
15880
}
15881
15882
offset = (eth_stats + bxe_eth_q_stats_arr[index].offset);
15883
15884
switch (bxe_eth_q_stats_arr[index].size) {
15885
case 4:
15886
value = (uint64_t)*offset;
15887
break;
15888
case 8:
15889
value = HILO_U64(*offset, *(offset + 1));
15890
break;
15891
default:
15892
BLOGE(sc, "Invalid bxe_eth_q_stats size (index=%d size=%d)\n",
15893
index, bxe_eth_q_stats_arr[index].size);
15894
return (-1);
15895
}
15896
15897
return (sysctl_handle_64(oidp, &value, 0, req));
15898
}
15899
15900
static void bxe_force_link_reset(struct bxe_softc *sc)
15901
{
15902
15903
bxe_acquire_phy_lock(sc);
15904
elink_link_reset(&sc->link_params, &sc->link_vars, 1);
15905
bxe_release_phy_lock(sc);
15906
}
15907
15908
static int
15909
bxe_sysctl_pauseparam(SYSCTL_HANDLER_ARGS)
15910
{
15911
struct bxe_softc *sc = (struct bxe_softc *)arg1;
15912
uint32_t cfg_idx = bxe_get_link_cfg_idx(sc);
15913
int rc = 0;
15914
int error;
15915
int result;
15916
15917
15918
error = sysctl_handle_int(oidp, &sc->bxe_pause_param, 0, req);
15919
15920
if (error || !req->newptr) {
15921
return (error);
15922
}
15923
if ((sc->bxe_pause_param < 0) || (sc->bxe_pause_param > 8)) {
15924
BLOGW(sc, "invalid pause param (%d) - use integers between 1 & 8\n",sc->bxe_pause_param);
15925
sc->bxe_pause_param = 8;
15926
}
15927
15928
result = (sc->bxe_pause_param << PORT_FEATURE_FLOW_CONTROL_SHIFT);
15929
15930
15931
if((result & 0x400) && !(sc->port.supported[cfg_idx] & ELINK_SUPPORTED_Autoneg)) {
15932
BLOGW(sc, "Does not support Autoneg pause_param %d\n", sc->bxe_pause_param);
15933
return -EINVAL;
15934
}
15935
15936
if(IS_MF(sc))
15937
return 0;
15938
sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_AUTO;
15939
if(result & ELINK_FLOW_CTRL_RX)
15940
sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_RX;
15941
15942
if(result & ELINK_FLOW_CTRL_TX)
15943
sc->link_params.req_flow_ctrl[cfg_idx] |= ELINK_FLOW_CTRL_TX;
15944
if(sc->link_params.req_flow_ctrl[cfg_idx] == ELINK_FLOW_CTRL_AUTO)
15945
sc->link_params.req_flow_ctrl[cfg_idx] = ELINK_FLOW_CTRL_NONE;
15946
15947
if(result & 0x400) {
15948
if (sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG) {
15949
sc->link_params.req_flow_ctrl[cfg_idx] =
15950
ELINK_FLOW_CTRL_AUTO;
15951
}
15952
sc->link_params.req_fc_auto_adv = 0;
15953
if (result & ELINK_FLOW_CTRL_RX)
15954
sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_RX;
15955
15956
if (result & ELINK_FLOW_CTRL_TX)
15957
sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_TX;
15958
if (!sc->link_params.req_fc_auto_adv)
15959
sc->link_params.req_fc_auto_adv |= ELINK_FLOW_CTRL_NONE;
15960
}
15961
if (IS_PF(sc)) {
15962
if (sc->link_vars.link_up) {
15963
bxe_stats_handle(sc, STATS_EVENT_STOP);
15964
}
15965
if (if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) {
15966
bxe_force_link_reset(sc);
15967
bxe_acquire_phy_lock(sc);
15968
15969
rc = elink_phy_init(&sc->link_params, &sc->link_vars);
15970
15971
bxe_release_phy_lock(sc);
15972
15973
bxe_calc_fc_adv(sc);
15974
}
15975
}
15976
return rc;
15977
}
15978
15979
15980
static void
15981
bxe_add_sysctls(struct bxe_softc *sc)
15982
{
15983
struct sysctl_ctx_list *ctx;
15984
struct sysctl_oid_list *children;
15985
struct sysctl_oid *queue_top, *queue;
15986
struct sysctl_oid_list *queue_top_children, *queue_children;
15987
char queue_num_buf[32];
15988
uint32_t q_stat;
15989
int i, j;
15990
15991
ctx = device_get_sysctl_ctx(sc->dev);
15992
children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
15993
15994
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "version",
15995
CTLFLAG_RD, BXE_DRIVER_VERSION, 0,
15996
"version");
15997
15998
snprintf(sc->fw_ver_str, sizeof(sc->fw_ver_str), "%d.%d.%d.%d",
15999
BCM_5710_FW_MAJOR_VERSION,
16000
BCM_5710_FW_MINOR_VERSION,
16001
BCM_5710_FW_REVISION_VERSION,
16002
BCM_5710_FW_ENGINEERING_VERSION);
16003
16004
snprintf(sc->mf_mode_str, sizeof(sc->mf_mode_str), "%s",
16005
((sc->devinfo.mf_info.mf_mode == SINGLE_FUNCTION) ? "Single" :
16006
(sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD) ? "MF-SD" :
16007
(sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI) ? "MF-SI" :
16008
(sc->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX) ? "MF-AFEX" :
16009
"Unknown"));
16010
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "mf_vnics",
16011
CTLFLAG_RD, &sc->devinfo.mf_info.vnics_per_port, 0,
16012
"multifunction vnics per port");
16013
16014
snprintf(sc->pci_link_str, sizeof(sc->pci_link_str), "%s x%d",
16015
((sc->devinfo.pcie_link_speed == 1) ? "2.5GT/s" :
16016
(sc->devinfo.pcie_link_speed == 2) ? "5.0GT/s" :
16017
(sc->devinfo.pcie_link_speed == 4) ? "8.0GT/s" :
16018
"???GT/s"),
16019
sc->devinfo.pcie_link_width);
16020
16021
sc->debug = bxe_debug;
16022
16023
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bc_version",
16024
CTLFLAG_RD, sc->devinfo.bc_ver_str, 0,
16025
"bootcode version");
16026
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "fw_version",
16027
CTLFLAG_RD, sc->fw_ver_str, 0,
16028
"firmware version");
16029
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mf_mode",
16030
CTLFLAG_RD, sc->mf_mode_str, 0,
16031
"multifunction mode");
16032
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "mac_addr",
16033
CTLFLAG_RD, sc->mac_addr_str, 0,
16034
"mac address");
16035
SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pci_link",
16036
CTLFLAG_RD, sc->pci_link_str, 0,
16037
"pci link status");
16038
SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "debug",
16039
CTLFLAG_RW, &sc->debug,
16040
"debug logging mode");
16041
16042
sc->trigger_grcdump = 0;
16043
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "trigger_grcdump",
16044
CTLFLAG_RW, &sc->trigger_grcdump, 0,
16045
"trigger grcdump should be invoked"
16046
" before collecting grcdump");
16047
16048
sc->grcdump_started = 0;
16049
sc->grcdump_done = 0;
16050
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "grcdump_done",
16051
CTLFLAG_RD, &sc->grcdump_done, 0,
16052
"set by driver when grcdump is done");
16053
16054
sc->rx_budget = bxe_rx_budget;
16055
SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_budget",
16056
CTLFLAG_RW, &sc->rx_budget, 0,
16057
"rx processing budget");
16058
16059
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_param",
16060
CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
16061
bxe_sysctl_pauseparam, "IU",
16062
"need pause frames- DEF:0/TX:1/RX:2/BOTH:3/AUTO:4/AUTOTX:5/AUTORX:6/AUTORXTX:7/NONE:8");
16063
16064
16065
SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "state",
16066
CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
16067
bxe_sysctl_state, "IU", "dump driver state");
16068
16069
for (i = 0; i < BXE_NUM_ETH_STATS; i++) {
16070
SYSCTL_ADD_PROC(ctx, children, OID_AUTO,
16071
bxe_eth_stats_arr[i].string,
16072
CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i,
16073
bxe_sysctl_eth_stat, "LU", bxe_eth_stats_arr[i].string);
16074
}
16075
16076
/* add a new parent node for all queues "dev.bxe.#.queue" */
16077
queue_top = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "queue",
16078
CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "queue");
16079
queue_top_children = SYSCTL_CHILDREN(queue_top);
16080
16081
for (i = 0; i < sc->num_queues; i++) {
16082
/* add a new parent node for a single queue "dev.bxe.#.queue.#" */
16083
snprintf(queue_num_buf, sizeof(queue_num_buf), "%d", i);
16084
queue = SYSCTL_ADD_NODE(ctx, queue_top_children, OID_AUTO,
16085
queue_num_buf, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "single queue");
16086
queue_children = SYSCTL_CHILDREN(queue);
16087
16088
for (j = 0; j < BXE_NUM_ETH_Q_STATS; j++) {
16089
q_stat = ((i << 16) | j);
16090
SYSCTL_ADD_PROC(ctx, queue_children, OID_AUTO,
16091
bxe_eth_q_stats_arr[j].string,
16092
CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, q_stat,
16093
bxe_sysctl_eth_q_stat, "LU", bxe_eth_q_stats_arr[j].string);
16094
}
16095
}
16096
}
16097
16098
static int
16099
bxe_alloc_buf_rings(struct bxe_softc *sc)
16100
{
16101
int i;
16102
struct bxe_fastpath *fp;
16103
16104
for (i = 0; i < sc->num_queues; i++) {
16105
16106
fp = &sc->fp[i];
16107
16108
fp->tx_br = buf_ring_alloc(BXE_BR_SIZE, M_DEVBUF,
16109
M_NOWAIT, &fp->tx_mtx);
16110
if (fp->tx_br == NULL)
16111
return (-1);
16112
}
16113
16114
return (0);
16115
}
16116
16117
static void
16118
bxe_free_buf_rings(struct bxe_softc *sc)
16119
{
16120
int i;
16121
struct bxe_fastpath *fp;
16122
16123
for (i = 0; i < sc->num_queues; i++) {
16124
16125
fp = &sc->fp[i];
16126
16127
if (fp->tx_br) {
16128
buf_ring_free(fp->tx_br, M_DEVBUF);
16129
fp->tx_br = NULL;
16130
}
16131
}
16132
}
16133
16134
static void
16135
bxe_init_fp_mutexs(struct bxe_softc *sc)
16136
{
16137
int i;
16138
struct bxe_fastpath *fp;
16139
16140
for (i = 0; i < sc->num_queues; i++) {
16141
16142
fp = &sc->fp[i];
16143
16144
snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
16145
"bxe%d_fp%d_tx_lock", sc->unit, i);
16146
mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
16147
16148
snprintf(fp->rx_mtx_name, sizeof(fp->rx_mtx_name),
16149
"bxe%d_fp%d_rx_lock", sc->unit, i);
16150
mtx_init(&fp->rx_mtx, fp->rx_mtx_name, NULL, MTX_DEF);
16151
}
16152
}
16153
16154
static void
16155
bxe_destroy_fp_mutexs(struct bxe_softc *sc)
16156
{
16157
int i;
16158
struct bxe_fastpath *fp;
16159
16160
for (i = 0; i < sc->num_queues; i++) {
16161
16162
fp = &sc->fp[i];
16163
16164
if (mtx_initialized(&fp->tx_mtx)) {
16165
mtx_destroy(&fp->tx_mtx);
16166
}
16167
16168
if (mtx_initialized(&fp->rx_mtx)) {
16169
mtx_destroy(&fp->rx_mtx);
16170
}
16171
}
16172
}
16173
16174
16175
/*
16176
* Device attach function.
16177
*
16178
* Allocates device resources, performs secondary chip identification, and
16179
* initializes driver instance variables. This function is called from driver
16180
* load after a successful probe.
16181
*
16182
* Returns:
16183
* 0 = Success, >0 = Failure
16184
*/
16185
static int
16186
bxe_attach(device_t dev)
16187
{
16188
struct bxe_softc *sc;
16189
16190
sc = device_get_softc(dev);
16191
16192
BLOGD(sc, DBG_LOAD, "Starting attach...\n");
16193
16194
sc->state = BXE_STATE_CLOSED;
16195
16196
sc->dev = dev;
16197
sc->unit = device_get_unit(dev);
16198
16199
BLOGD(sc, DBG_LOAD, "softc = %p\n", sc);
16200
16201
sc->pcie_bus = pci_get_bus(dev);
16202
sc->pcie_device = pci_get_slot(dev);
16203
sc->pcie_func = pci_get_function(dev);
16204
16205
/* enable bus master capability */
16206
pci_enable_busmaster(dev);
16207
16208
/* get the BARs */
16209
if (bxe_allocate_bars(sc) != 0) {
16210
return (ENXIO);
16211
}
16212
16213
/* initialize the mutexes */
16214
bxe_init_mutexes(sc);
16215
16216
/* prepare the periodic callout */
16217
callout_init(&sc->periodic_callout, 1);
16218
16219
/* prepare the chip taskqueue */
16220
sc->chip_tq_flags = CHIP_TQ_NONE;
16221
snprintf(sc->chip_tq_name, sizeof(sc->chip_tq_name),
16222
"bxe%d_chip_tq", sc->unit);
16223
TASK_INIT(&sc->chip_tq_task, 0, bxe_handle_chip_tq, sc);
16224
sc->chip_tq = taskqueue_create(sc->chip_tq_name, M_NOWAIT,
16225
taskqueue_thread_enqueue,
16226
&sc->chip_tq);
16227
taskqueue_start_threads(&sc->chip_tq, 1, PWAIT, /* lower priority */
16228
"%s", sc->chip_tq_name);
16229
16230
TIMEOUT_TASK_INIT(taskqueue_thread,
16231
&sc->sp_err_timeout_task, 0, bxe_sp_err_timeout_task, sc);
16232
16233
16234
/* get device info and set params */
16235
if (bxe_get_device_info(sc) != 0) {
16236
BLOGE(sc, "getting device info\n");
16237
bxe_deallocate_bars(sc);
16238
pci_disable_busmaster(dev);
16239
return (ENXIO);
16240
}
16241
16242
/* get final misc params */
16243
bxe_get_params(sc);
16244
16245
/* set the default MTU (changed via ifconfig) */
16246
sc->mtu = ETHERMTU;
16247
16248
bxe_set_modes_bitmap(sc);
16249
16250
/* XXX
16251
* If in AFEX mode and the function is configured for FCoE
16252
* then bail... no L2 allowed.
16253
*/
16254
16255
/* get phy settings from shmem and 'and' against admin settings */
16256
bxe_get_phy_info(sc);
16257
16258
/* initialize the FreeBSD ifnet interface */
16259
bxe_init_ifnet(sc);
16260
16261
if (bxe_add_cdev(sc) != 0) {
16262
if (sc->ifp != NULL) {
16263
ether_ifdetach(sc->ifp);
16264
}
16265
ifmedia_removeall(&sc->ifmedia);
16266
bxe_release_mutexes(sc);
16267
bxe_deallocate_bars(sc);
16268
pci_disable_busmaster(dev);
16269
return (ENXIO);
16270
}
16271
16272
/* allocate device interrupts */
16273
if (bxe_interrupt_alloc(sc) != 0) {
16274
bxe_del_cdev(sc);
16275
if (sc->ifp != NULL) {
16276
ether_ifdetach(sc->ifp);
16277
}
16278
ifmedia_removeall(&sc->ifmedia);
16279
bxe_release_mutexes(sc);
16280
bxe_deallocate_bars(sc);
16281
pci_disable_busmaster(dev);
16282
return (ENXIO);
16283
}
16284
16285
bxe_init_fp_mutexs(sc);
16286
16287
if (bxe_alloc_buf_rings(sc) != 0) {
16288
bxe_free_buf_rings(sc);
16289
bxe_interrupt_free(sc);
16290
bxe_del_cdev(sc);
16291
if (sc->ifp != NULL) {
16292
ether_ifdetach(sc->ifp);
16293
}
16294
ifmedia_removeall(&sc->ifmedia);
16295
bxe_release_mutexes(sc);
16296
bxe_deallocate_bars(sc);
16297
pci_disable_busmaster(dev);
16298
return (ENXIO);
16299
}
16300
16301
/* allocate ilt */
16302
if (bxe_alloc_ilt_mem(sc) != 0) {
16303
bxe_free_buf_rings(sc);
16304
bxe_interrupt_free(sc);
16305
bxe_del_cdev(sc);
16306
if (sc->ifp != NULL) {
16307
ether_ifdetach(sc->ifp);
16308
}
16309
ifmedia_removeall(&sc->ifmedia);
16310
bxe_release_mutexes(sc);
16311
bxe_deallocate_bars(sc);
16312
pci_disable_busmaster(dev);
16313
return (ENXIO);
16314
}
16315
16316
/* allocate the host hardware/software hsi structures */
16317
if (bxe_alloc_hsi_mem(sc) != 0) {
16318
bxe_free_ilt_mem(sc);
16319
bxe_free_buf_rings(sc);
16320
bxe_interrupt_free(sc);
16321
bxe_del_cdev(sc);
16322
if (sc->ifp != NULL) {
16323
ether_ifdetach(sc->ifp);
16324
}
16325
ifmedia_removeall(&sc->ifmedia);
16326
bxe_release_mutexes(sc);
16327
bxe_deallocate_bars(sc);
16328
pci_disable_busmaster(dev);
16329
return (ENXIO);
16330
}
16331
16332
/* need to reset chip if UNDI was active */
16333
if (IS_PF(sc) && !BXE_NOMCP(sc)) {
16334
/* init fw_seq */
16335
sc->fw_seq =
16336
(SHMEM_RD(sc, func_mb[SC_FW_MB_IDX(sc)].drv_mb_header) &
16337
DRV_MSG_SEQ_NUMBER_MASK);
16338
BLOGD(sc, DBG_LOAD, "prev unload fw_seq 0x%04x\n", sc->fw_seq);
16339
bxe_prev_unload(sc);
16340
}
16341
16342
#if 1
16343
/* XXX */
16344
bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16345
#else
16346
if (SHMEM2_HAS(sc, dcbx_lldp_params_offset) &&
16347
SHMEM2_HAS(sc, dcbx_lldp_dcbx_stat_offset) &&
16348
SHMEM2_RD(sc, dcbx_lldp_params_offset) &&
16349
SHMEM2_RD(sc, dcbx_lldp_dcbx_stat_offset)) {
16350
bxe_dcbx_set_state(sc, TRUE, BXE_DCBX_ENABLED_ON_NEG_ON);
16351
bxe_dcbx_init_params(sc);
16352
} else {
16353
bxe_dcbx_set_state(sc, FALSE, BXE_DCBX_ENABLED_OFF);
16354
}
16355
#endif
16356
16357
/* calculate qm_cid_count */
16358
sc->qm_cid_count = bxe_set_qm_cid_count(sc);
16359
BLOGD(sc, DBG_LOAD, "qm_cid_count=%d\n", sc->qm_cid_count);
16360
16361
sc->max_cos = 1;
16362
bxe_init_multi_cos(sc);
16363
16364
bxe_add_sysctls(sc);
16365
16366
return (0);
16367
}
16368
16369
/*
16370
* Device detach function.
16371
*
16372
* Stops the controller, resets the controller, and releases resources.
16373
*
16374
* Returns:
16375
* 0 = Success, >0 = Failure
16376
*/
16377
static int
16378
bxe_detach(device_t dev)
16379
{
16380
struct bxe_softc *sc;
16381
if_t ifp;
16382
16383
sc = device_get_softc(dev);
16384
16385
BLOGD(sc, DBG_LOAD, "Starting detach...\n");
16386
16387
ifp = sc->ifp;
16388
if (ifp != NULL && if_vlantrunkinuse(ifp)) {
16389
BLOGE(sc, "Cannot detach while VLANs are in use.\n");
16390
return(EBUSY);
16391
}
16392
16393
bxe_del_cdev(sc);
16394
16395
/* stop the periodic callout */
16396
bxe_periodic_stop(sc);
16397
16398
/* stop the chip taskqueue */
16399
atomic_store_rel_long(&sc->chip_tq_flags, CHIP_TQ_NONE);
16400
if (sc->chip_tq) {
16401
taskqueue_drain(sc->chip_tq, &sc->chip_tq_task);
16402
taskqueue_free(sc->chip_tq);
16403
sc->chip_tq = NULL;
16404
taskqueue_drain_timeout(taskqueue_thread,
16405
&sc->sp_err_timeout_task);
16406
}
16407
16408
/* stop and reset the controller if it was open */
16409
if (sc->state != BXE_STATE_CLOSED) {
16410
BXE_CORE_LOCK(sc);
16411
bxe_nic_unload(sc, UNLOAD_CLOSE, TRUE);
16412
sc->state = BXE_STATE_DISABLED;
16413
BXE_CORE_UNLOCK(sc);
16414
}
16415
16416
/* release the network interface */
16417
if (ifp != NULL) {
16418
ether_ifdetach(ifp);
16419
}
16420
ifmedia_removeall(&sc->ifmedia);
16421
16422
/* XXX do the following based on driver state... */
16423
16424
/* free the host hardware/software hsi structures */
16425
bxe_free_hsi_mem(sc);
16426
16427
/* free ilt */
16428
bxe_free_ilt_mem(sc);
16429
16430
bxe_free_buf_rings(sc);
16431
16432
/* release the interrupts */
16433
bxe_interrupt_free(sc);
16434
16435
/* Release the mutexes*/
16436
bxe_destroy_fp_mutexs(sc);
16437
bxe_release_mutexes(sc);
16438
16439
16440
/* Release the PCIe BAR mapped memory */
16441
bxe_deallocate_bars(sc);
16442
16443
/* Release the FreeBSD interface. */
16444
if (sc->ifp != NULL) {
16445
if_free(sc->ifp);
16446
}
16447
16448
pci_disable_busmaster(dev);
16449
16450
return (0);
16451
}
16452
16453
/*
16454
* Device shutdown function.
16455
*
16456
* Stops and resets the controller.
16457
*
16458
* Returns:
16459
* Nothing
16460
*/
16461
static int
16462
bxe_shutdown(device_t dev)
16463
{
16464
struct bxe_softc *sc;
16465
16466
sc = device_get_softc(dev);
16467
16468
BLOGD(sc, DBG_LOAD, "Starting shutdown...\n");
16469
16470
/* stop the periodic callout */
16471
bxe_periodic_stop(sc);
16472
16473
if (sc->state != BXE_STATE_CLOSED) {
16474
BXE_CORE_LOCK(sc);
16475
bxe_nic_unload(sc, UNLOAD_NORMAL, FALSE);
16476
BXE_CORE_UNLOCK(sc);
16477
}
16478
16479
return (0);
16480
}
16481
16482
void
16483
bxe_igu_ack_sb(struct bxe_softc *sc,
16484
uint8_t igu_sb_id,
16485
uint8_t segment,
16486
uint16_t index,
16487
uint8_t op,
16488
uint8_t update)
16489
{
16490
uint32_t igu_addr = sc->igu_base_addr;
16491
igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
16492
bxe_igu_ack_sb_gen(sc, igu_sb_id, segment, index, op, update, igu_addr);
16493
}
16494
16495
static void
16496
bxe_igu_clear_sb_gen(struct bxe_softc *sc,
16497
uint8_t func,
16498
uint8_t idu_sb_id,
16499
uint8_t is_pf)
16500
{
16501
uint32_t data, ctl, cnt = 100;
16502
uint32_t igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
16503
uint32_t igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
16504
uint32_t igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
16505
uint32_t sb_bit = 1 << (idu_sb_id%32);
16506
uint32_t func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
16507
uint32_t addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
16508
16509
/* Not supported in BC mode */
16510
if (CHIP_INT_MODE_IS_BC(sc)) {
16511
return;
16512
}
16513
16514
data = ((IGU_USE_REGISTER_cstorm_type_0_sb_cleanup <<
16515
IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
16516
IGU_REGULAR_CLEANUP_SET |
16517
IGU_REGULAR_BCLEANUP);
16518
16519
ctl = ((addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT) |
16520
(func_encode << IGU_CTRL_REG_FID_SHIFT) |
16521
(IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT));
16522
16523
BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16524
data, igu_addr_data);
16525
REG_WR(sc, igu_addr_data, data);
16526
16527
bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16528
BUS_SPACE_BARRIER_WRITE);
16529
mb();
16530
16531
BLOGD(sc, DBG_LOAD, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
16532
ctl, igu_addr_ctl);
16533
REG_WR(sc, igu_addr_ctl, ctl);
16534
16535
bus_space_barrier(sc->bar[BAR0].tag, sc->bar[BAR0].handle, 0, 0,
16536
BUS_SPACE_BARRIER_WRITE);
16537
mb();
16538
16539
/* wait for clean up to finish */
16540
while (!(REG_RD(sc, igu_addr_ack) & sb_bit) && --cnt) {
16541
DELAY(20000);
16542
}
16543
16544
if (!(REG_RD(sc, igu_addr_ack) & sb_bit)) {
16545
BLOGD(sc, DBG_LOAD,
16546
"Unable to finish IGU cleanup: "
16547
"idu_sb_id %d offset %d bit %d (cnt %d)\n",
16548
idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
16549
}
16550
}
16551
16552
static void
16553
bxe_igu_clear_sb(struct bxe_softc *sc,
16554
uint8_t idu_sb_id)
16555
{
16556
bxe_igu_clear_sb_gen(sc, SC_FUNC(sc), idu_sb_id, TRUE /*PF*/);
16557
}
16558
16559
16560
16561
16562
16563
16564
16565
/*******************/
16566
/* ECORE CALLBACKS */
16567
/*******************/
16568
16569
static void
16570
bxe_reset_common(struct bxe_softc *sc)
16571
{
16572
uint32_t val = 0x1400;
16573
16574
/* reset_common */
16575
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR), 0xd3ffff7f);
16576
16577
if (CHIP_IS_E3(sc)) {
16578
val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
16579
val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
16580
}
16581
16582
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR), val);
16583
}
16584
16585
static void
16586
bxe_common_init_phy(struct bxe_softc *sc)
16587
{
16588
uint32_t shmem_base[2];
16589
uint32_t shmem2_base[2];
16590
16591
/* Avoid common init in case MFW supports LFA */
16592
if (SHMEM2_RD(sc, size) >
16593
(uint32_t)offsetof(struct shmem2_region,
16594
lfa_host_addr[SC_PORT(sc)])) {
16595
return;
16596
}
16597
16598
shmem_base[0] = sc->devinfo.shmem_base;
16599
shmem2_base[0] = sc->devinfo.shmem2_base;
16600
16601
if (!CHIP_IS_E1x(sc)) {
16602
shmem_base[1] = SHMEM2_RD(sc, other_shmem_base_addr);
16603
shmem2_base[1] = SHMEM2_RD(sc, other_shmem2_base_addr);
16604
}
16605
16606
bxe_acquire_phy_lock(sc);
16607
elink_common_init_phy(sc, shmem_base, shmem2_base,
16608
sc->devinfo.chip_id, 0);
16609
bxe_release_phy_lock(sc);
16610
}
16611
16612
static void
16613
bxe_pf_disable(struct bxe_softc *sc)
16614
{
16615
uint32_t val = REG_RD(sc, IGU_REG_PF_CONFIGURATION);
16616
16617
val &= ~IGU_PF_CONF_FUNC_EN;
16618
16619
REG_WR(sc, IGU_REG_PF_CONFIGURATION, val);
16620
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
16621
REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 0);
16622
}
16623
16624
static void
16625
bxe_init_pxp(struct bxe_softc *sc)
16626
{
16627
uint16_t devctl;
16628
int r_order, w_order;
16629
16630
devctl = bxe_pcie_capability_read(sc, PCIER_DEVICE_CTL, 2);
16631
16632
BLOGD(sc, DBG_LOAD, "read 0x%08x from devctl\n", devctl);
16633
16634
w_order = ((devctl & PCIEM_CTL_MAX_PAYLOAD) >> 5);
16635
16636
if (sc->mrrs == -1) {
16637
r_order = ((devctl & PCIEM_CTL_MAX_READ_REQUEST) >> 12);
16638
} else {
16639
BLOGD(sc, DBG_LOAD, "forcing read order to %d\n", sc->mrrs);
16640
r_order = sc->mrrs;
16641
}
16642
16643
ecore_init_pxp_arb(sc, r_order, w_order);
16644
}
16645
16646
static uint32_t
16647
bxe_get_pretend_reg(struct bxe_softc *sc)
16648
{
16649
uint32_t base = PXP2_REG_PGL_PRETEND_FUNC_F0;
16650
uint32_t stride = (PXP2_REG_PGL_PRETEND_FUNC_F1 - base);
16651
return (base + (SC_ABS_FUNC(sc)) * stride);
16652
}
16653
16654
/*
16655
* Called only on E1H or E2.
16656
* When pretending to be PF, the pretend value is the function number 0..7.
16657
* When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
16658
* combination.
16659
*/
16660
static int
16661
bxe_pretend_func(struct bxe_softc *sc,
16662
uint16_t pretend_func_val)
16663
{
16664
uint32_t pretend_reg;
16665
16666
if (CHIP_IS_E1H(sc) && (pretend_func_val > E1H_FUNC_MAX)) {
16667
return (-1);
16668
}
16669
16670
/* get my own pretend register */
16671
pretend_reg = bxe_get_pretend_reg(sc);
16672
REG_WR(sc, pretend_reg, pretend_func_val);
16673
REG_RD(sc, pretend_reg);
16674
return (0);
16675
}
16676
16677
static void
16678
bxe_iov_init_dmae(struct bxe_softc *sc)
16679
{
16680
return;
16681
}
16682
16683
static void
16684
bxe_iov_init_dq(struct bxe_softc *sc)
16685
{
16686
return;
16687
}
16688
16689
/* send a NIG loopback debug packet */
16690
static void
16691
bxe_lb_pckt(struct bxe_softc *sc)
16692
{
16693
uint32_t wb_write[3];
16694
16695
/* Ethernet source and destination addresses */
16696
wb_write[0] = 0x55555555;
16697
wb_write[1] = 0x55555555;
16698
wb_write[2] = 0x20; /* SOP */
16699
REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16700
16701
/* NON-IP protocol */
16702
wb_write[0] = 0x09000000;
16703
wb_write[1] = 0x55555555;
16704
wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
16705
REG_WR_DMAE(sc, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
16706
}
16707
16708
/*
16709
* Some of the internal memories are not directly readable from the driver.
16710
* To test them we send debug packets.
16711
*/
16712
static int
16713
bxe_int_mem_test(struct bxe_softc *sc)
16714
{
16715
int factor;
16716
int count, i;
16717
uint32_t val = 0;
16718
16719
if (CHIP_REV_IS_FPGA(sc)) {
16720
factor = 120;
16721
} else if (CHIP_REV_IS_EMUL(sc)) {
16722
factor = 200;
16723
} else {
16724
factor = 1;
16725
}
16726
16727
/* disable inputs of parser neighbor blocks */
16728
REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16729
REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16730
REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16731
REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16732
16733
/* write 0 to parser credits for CFC search request */
16734
REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16735
16736
/* send Ethernet packet */
16737
bxe_lb_pckt(sc);
16738
16739
/* TODO do i reset NIG statistic? */
16740
/* Wait until NIG register shows 1 packet of size 0x10 */
16741
count = 1000 * factor;
16742
while (count) {
16743
bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16744
val = *BXE_SP(sc, wb_data[0]);
16745
if (val == 0x10) {
16746
break;
16747
}
16748
16749
DELAY(10000);
16750
count--;
16751
}
16752
16753
if (val != 0x10) {
16754
BLOGE(sc, "NIG timeout val=0x%x\n", val);
16755
return (-1);
16756
}
16757
16758
/* wait until PRS register shows 1 packet */
16759
count = (1000 * factor);
16760
while (count) {
16761
val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16762
if (val == 1) {
16763
break;
16764
}
16765
16766
DELAY(10000);
16767
count--;
16768
}
16769
16770
if (val != 0x1) {
16771
BLOGE(sc, "PRS timeout val=0x%x\n", val);
16772
return (-2);
16773
}
16774
16775
/* Reset and init BRB, PRS */
16776
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16777
DELAY(50000);
16778
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16779
DELAY(50000);
16780
ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16781
ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16782
16783
/* Disable inputs of parser neighbor blocks */
16784
REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x0);
16785
REG_WR(sc, TCM_REG_PRS_IFEN, 0x0);
16786
REG_WR(sc, CFC_REG_DEBUG0, 0x1);
16787
REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x0);
16788
16789
/* Write 0 to parser credits for CFC search request */
16790
REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
16791
16792
/* send 10 Ethernet packets */
16793
for (i = 0; i < 10; i++) {
16794
bxe_lb_pckt(sc);
16795
}
16796
16797
/* Wait until NIG register shows 10+1 packets of size 11*0x10 = 0xb0 */
16798
count = (1000 * factor);
16799
while (count) {
16800
bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
16801
val = *BXE_SP(sc, wb_data[0]);
16802
if (val == 0xb0) {
16803
break;
16804
}
16805
16806
DELAY(10000);
16807
count--;
16808
}
16809
16810
if (val != 0xb0) {
16811
BLOGE(sc, "NIG timeout val=0x%x\n", val);
16812
return (-3);
16813
}
16814
16815
/* Wait until PRS register shows 2 packets */
16816
val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16817
if (val != 2) {
16818
BLOGE(sc, "PRS timeout val=0x%x\n", val);
16819
}
16820
16821
/* Write 1 to parser credits for CFC search request */
16822
REG_WR(sc, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
16823
16824
/* Wait until PRS register shows 3 packets */
16825
DELAY(10000 * factor);
16826
16827
/* Wait until NIG register shows 1 packet of size 0x10 */
16828
val = REG_RD(sc, PRS_REG_NUM_OF_PACKETS);
16829
if (val != 3) {
16830
BLOGE(sc, "PRS timeout val=0x%x\n", val);
16831
}
16832
16833
/* clear NIG EOP FIFO */
16834
for (i = 0; i < 11; i++) {
16835
REG_RD(sc, NIG_REG_INGRESS_EOP_LB_FIFO);
16836
}
16837
16838
val = REG_RD(sc, NIG_REG_INGRESS_EOP_LB_EMPTY);
16839
if (val != 1) {
16840
BLOGE(sc, "clear of NIG failed val=0x%x\n", val);
16841
return (-4);
16842
}
16843
16844
/* Reset and init BRB, PRS, NIG */
16845
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
16846
DELAY(50000);
16847
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
16848
DELAY(50000);
16849
ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
16850
ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
16851
if (!CNIC_SUPPORT(sc)) {
16852
/* set NIC mode */
16853
REG_WR(sc, PRS_REG_NIC_MODE, 1);
16854
}
16855
16856
/* Enable inputs of parser neighbor blocks */
16857
REG_WR(sc, TSDM_REG_ENABLE_IN1, 0x7fffffff);
16858
REG_WR(sc, TCM_REG_PRS_IFEN, 0x1);
16859
REG_WR(sc, CFC_REG_DEBUG0, 0x0);
16860
REG_WR(sc, NIG_REG_PRS_REQ_IN_EN, 0x1);
16861
16862
return (0);
16863
}
16864
16865
static void
16866
bxe_setup_fan_failure_detection(struct bxe_softc *sc)
16867
{
16868
int is_required;
16869
uint32_t val;
16870
int port;
16871
16872
is_required = 0;
16873
val = (SHMEM_RD(sc, dev_info.shared_hw_config.config2) &
16874
SHARED_HW_CFG_FAN_FAILURE_MASK);
16875
16876
if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED) {
16877
is_required = 1;
16878
}
16879
/*
16880
* The fan failure mechanism is usually related to the PHY type since
16881
* the power consumption of the board is affected by the PHY. Currently,
16882
* fan is required for most designs with SFX7101, BCM8727 and BCM8481.
16883
*/
16884
else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE) {
16885
for (port = PORT_0; port < PORT_MAX; port++) {
16886
is_required |= elink_fan_failure_det_req(sc,
16887
sc->devinfo.shmem_base,
16888
sc->devinfo.shmem2_base,
16889
port);
16890
}
16891
}
16892
16893
BLOGD(sc, DBG_LOAD, "fan detection setting: %d\n", is_required);
16894
16895
if (is_required == 0) {
16896
return;
16897
}
16898
16899
/* Fan failure is indicated by SPIO 5 */
16900
bxe_set_spio(sc, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
16901
16902
/* set to active low mode */
16903
val = REG_RD(sc, MISC_REG_SPIO_INT);
16904
val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
16905
REG_WR(sc, MISC_REG_SPIO_INT, val);
16906
16907
/* enable interrupt to signal the IGU */
16908
val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
16909
val |= MISC_SPIO_SPIO5;
16910
REG_WR(sc, MISC_REG_SPIO_EVENT_EN, val);
16911
}
16912
16913
static void
16914
bxe_enable_blocks_attention(struct bxe_softc *sc)
16915
{
16916
uint32_t val;
16917
16918
REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
16919
if (!CHIP_IS_E1x(sc)) {
16920
REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0x40);
16921
} else {
16922
REG_WR(sc, PXP_REG_PXP_INT_MASK_1, 0);
16923
}
16924
REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
16925
REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
16926
/*
16927
* mask read length error interrupts in brb for parser
16928
* (parsing unit and 'checksum and crc' unit)
16929
* these errors are legal (PU reads fixed length and CAC can cause
16930
* read length error on truncated packets)
16931
*/
16932
REG_WR(sc, BRB1_REG_BRB1_INT_MASK, 0xFC00);
16933
REG_WR(sc, QM_REG_QM_INT_MASK, 0);
16934
REG_WR(sc, TM_REG_TM_INT_MASK, 0);
16935
REG_WR(sc, XSDM_REG_XSDM_INT_MASK_0, 0);
16936
REG_WR(sc, XSDM_REG_XSDM_INT_MASK_1, 0);
16937
REG_WR(sc, XCM_REG_XCM_INT_MASK, 0);
16938
/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_0, 0); */
16939
/* REG_WR(sc, XSEM_REG_XSEM_INT_MASK_1, 0); */
16940
REG_WR(sc, USDM_REG_USDM_INT_MASK_0, 0);
16941
REG_WR(sc, USDM_REG_USDM_INT_MASK_1, 0);
16942
REG_WR(sc, UCM_REG_UCM_INT_MASK, 0);
16943
/* REG_WR(sc, USEM_REG_USEM_INT_MASK_0, 0); */
16944
/* REG_WR(sc, USEM_REG_USEM_INT_MASK_1, 0); */
16945
REG_WR(sc, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
16946
REG_WR(sc, CSDM_REG_CSDM_INT_MASK_0, 0);
16947
REG_WR(sc, CSDM_REG_CSDM_INT_MASK_1, 0);
16948
REG_WR(sc, CCM_REG_CCM_INT_MASK, 0);
16949
/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_0, 0); */
16950
/* REG_WR(sc, CSEM_REG_CSEM_INT_MASK_1, 0); */
16951
16952
val = (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT |
16953
PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
16954
PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN);
16955
if (!CHIP_IS_E1x(sc)) {
16956
val |= (PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
16957
PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED);
16958
}
16959
REG_WR(sc, PXP2_REG_PXP2_INT_MASK_0, val);
16960
16961
REG_WR(sc, TSDM_REG_TSDM_INT_MASK_0, 0);
16962
REG_WR(sc, TSDM_REG_TSDM_INT_MASK_1, 0);
16963
REG_WR(sc, TCM_REG_TCM_INT_MASK, 0);
16964
/* REG_WR(sc, TSEM_REG_TSEM_INT_MASK_0, 0); */
16965
16966
if (!CHIP_IS_E1x(sc)) {
16967
/* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
16968
REG_WR(sc, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
16969
}
16970
16971
REG_WR(sc, CDU_REG_CDU_INT_MASK, 0);
16972
REG_WR(sc, DMAE_REG_DMAE_INT_MASK, 0);
16973
/* REG_WR(sc, MISC_REG_MISC_INT_MASK, 0); */
16974
REG_WR(sc, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
16975
}
16976
16977
/**
16978
* bxe_init_hw_common - initialize the HW at the COMMON phase.
16979
*
16980
* @sc: driver handle
16981
*/
16982
static int
16983
bxe_init_hw_common(struct bxe_softc *sc)
16984
{
16985
uint8_t abs_func_id;
16986
uint32_t val;
16987
16988
BLOGD(sc, DBG_LOAD, "starting common init for func %d\n",
16989
SC_ABS_FUNC(sc));
16990
16991
/*
16992
* take the RESET lock to protect undi_unload flow from accessing
16993
* registers while we are resetting the chip
16994
*/
16995
bxe_acquire_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
16996
16997
bxe_reset_common(sc);
16998
16999
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET), 0xffffffff);
17000
17001
val = 0xfffc;
17002
if (CHIP_IS_E3(sc)) {
17003
val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
17004
val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
17005
}
17006
17007
REG_WR(sc, (GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET), val);
17008
17009
bxe_release_hw_lock(sc, HW_LOCK_RESOURCE_RESET);
17010
17011
ecore_init_block(sc, BLOCK_MISC, PHASE_COMMON);
17012
BLOGD(sc, DBG_LOAD, "after misc block init\n");
17013
17014
if (!CHIP_IS_E1x(sc)) {
17015
/*
17016
* 4-port mode or 2-port mode we need to turn off master-enable for
17017
* everyone. After that we turn it back on for self. So, we disregard
17018
* multi-function, and always disable all functions on the given path,
17019
* this means 0,2,4,6 for path 0 and 1,3,5,7 for path 1
17020
*/
17021
for (abs_func_id = SC_PATH(sc);
17022
abs_func_id < (E2_FUNC_MAX * 2);
17023
abs_func_id += 2) {
17024
if (abs_func_id == SC_ABS_FUNC(sc)) {
17025
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17026
continue;
17027
}
17028
17029
bxe_pretend_func(sc, abs_func_id);
17030
17031
/* clear pf enable */
17032
bxe_pf_disable(sc);
17033
17034
bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17035
}
17036
}
17037
17038
BLOGD(sc, DBG_LOAD, "after pf disable\n");
17039
17040
ecore_init_block(sc, BLOCK_PXP, PHASE_COMMON);
17041
17042
if (CHIP_IS_E1(sc)) {
17043
/*
17044
* enable HW interrupt from PXP on USDM overflow
17045
* bit 16 on INT_MASK_0
17046
*/
17047
REG_WR(sc, PXP_REG_PXP_INT_MASK_0, 0);
17048
}
17049
17050
ecore_init_block(sc, BLOCK_PXP2, PHASE_COMMON);
17051
bxe_init_pxp(sc);
17052
17053
#ifdef __BIG_ENDIAN
17054
REG_WR(sc, PXP2_REG_RQ_QM_ENDIAN_M, 1);
17055
REG_WR(sc, PXP2_REG_RQ_TM_ENDIAN_M, 1);
17056
REG_WR(sc, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
17057
REG_WR(sc, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
17058
REG_WR(sc, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
17059
/* make sure this value is 0 */
17060
REG_WR(sc, PXP2_REG_RQ_HC_ENDIAN_M, 0);
17061
17062
//REG_WR(sc, PXP2_REG_RD_PBF_SWAP_MODE, 1);
17063
REG_WR(sc, PXP2_REG_RD_QM_SWAP_MODE, 1);
17064
REG_WR(sc, PXP2_REG_RD_TM_SWAP_MODE, 1);
17065
REG_WR(sc, PXP2_REG_RD_SRC_SWAP_MODE, 1);
17066
REG_WR(sc, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
17067
#endif
17068
17069
ecore_ilt_init_page_size(sc, INITOP_SET);
17070
17071
if (CHIP_REV_IS_FPGA(sc) && CHIP_IS_E1H(sc)) {
17072
REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
17073
}
17074
17075
/* let the HW do it's magic... */
17076
DELAY(100000);
17077
17078
/* finish PXP init */
17079
val = REG_RD(sc, PXP2_REG_RQ_CFG_DONE);
17080
if (val != 1) {
17081
BLOGE(sc, "PXP2 CFG failed PXP2_REG_RQ_CFG_DONE val = 0x%x\n",
17082
val);
17083
return (-1);
17084
}
17085
val = REG_RD(sc, PXP2_REG_RD_INIT_DONE);
17086
if (val != 1) {
17087
BLOGE(sc, "PXP2 RD_INIT failed val = 0x%x\n", val);
17088
return (-1);
17089
}
17090
17091
BLOGD(sc, DBG_LOAD, "after pxp init\n");
17092
17093
/*
17094
* Timer bug workaround for E2 only. We need to set the entire ILT to have
17095
* entries with value "0" and valid bit on. This needs to be done by the
17096
* first PF that is loaded in a path (i.e. common phase)
17097
*/
17098
if (!CHIP_IS_E1x(sc)) {
17099
/*
17100
* In E2 there is a bug in the timers block that can cause function 6 / 7
17101
* (i.e. vnic3) to start even if it is marked as "scan-off".
17102
* This occurs when a different function (func2,3) is being marked
17103
* as "scan-off". Real-life scenario for example: if a driver is being
17104
* load-unloaded while func6,7 are down. This will cause the timer to access
17105
* the ilt, translate to a logical address and send a request to read/write.
17106
* Since the ilt for the function that is down is not valid, this will cause
17107
* a translation error which is unrecoverable.
17108
* The Workaround is intended to make sure that when this happens nothing
17109
* fatal will occur. The workaround:
17110
* 1. First PF driver which loads on a path will:
17111
* a. After taking the chip out of reset, by using pretend,
17112
* it will write "0" to the following registers of
17113
* the other vnics.
17114
* REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
17115
* REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
17116
* REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
17117
* And for itself it will write '1' to
17118
* PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
17119
* dmae-operations (writing to pram for example.)
17120
* note: can be done for only function 6,7 but cleaner this
17121
* way.
17122
* b. Write zero+valid to the entire ILT.
17123
* c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
17124
* VNIC3 (of that port). The range allocated will be the
17125
* entire ILT. This is needed to prevent ILT range error.
17126
* 2. Any PF driver load flow:
17127
* a. ILT update with the physical addresses of the allocated
17128
* logical pages.
17129
* b. Wait 20msec. - note that this timeout is needed to make
17130
* sure there are no requests in one of the PXP internal
17131
* queues with "old" ILT addresses.
17132
* c. PF enable in the PGLC.
17133
* d. Clear the was_error of the PF in the PGLC. (could have
17134
* occurred while driver was down)
17135
* e. PF enable in the CFC (WEAK + STRONG)
17136
* f. Timers scan enable
17137
* 3. PF driver unload flow:
17138
* a. Clear the Timers scan_en.
17139
* b. Polling for scan_on=0 for that PF.
17140
* c. Clear the PF enable bit in the PXP.
17141
* d. Clear the PF enable in the CFC (WEAK + STRONG)
17142
* e. Write zero+valid to all ILT entries (The valid bit must
17143
* stay set)
17144
* f. If this is VNIC 3 of a port then also init
17145
* first_timers_ilt_entry to zero and last_timers_ilt_entry
17146
* to the last entry in the ILT.
17147
*
17148
* Notes:
17149
* Currently the PF error in the PGLC is non recoverable.
17150
* In the future the there will be a recovery routine for this error.
17151
* Currently attention is masked.
17152
* Having an MCP lock on the load/unload process does not guarantee that
17153
* there is no Timer disable during Func6/7 enable. This is because the
17154
* Timers scan is currently being cleared by the MCP on FLR.
17155
* Step 2.d can be done only for PF6/7 and the driver can also check if
17156
* there is error before clearing it. But the flow above is simpler and
17157
* more general.
17158
* All ILT entries are written by zero+valid and not just PF6/7
17159
* ILT entries since in the future the ILT entries allocation for
17160
* PF-s might be dynamic.
17161
*/
17162
struct ilt_client_info ilt_cli;
17163
struct ecore_ilt ilt;
17164
17165
memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
17166
memset(&ilt, 0, sizeof(struct ecore_ilt));
17167
17168
/* initialize dummy TM client */
17169
ilt_cli.start = 0;
17170
ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
17171
ilt_cli.client_num = ILT_CLIENT_TM;
17172
17173
/*
17174
* Step 1: set zeroes to all ilt page entries with valid bit on
17175
* Step 2: set the timers first/last ilt entry to point
17176
* to the entire range to prevent ILT range error for 3rd/4th
17177
* vnic (this code assumes existence of the vnic)
17178
*
17179
* both steps performed by call to ecore_ilt_client_init_op()
17180
* with dummy TM client
17181
*
17182
* we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
17183
* and his brother are split registers
17184
*/
17185
17186
bxe_pretend_func(sc, (SC_PATH(sc) + 6));
17187
ecore_ilt_client_init_op_ilt(sc, &ilt, &ilt_cli, INITOP_CLEAR);
17188
bxe_pretend_func(sc, SC_ABS_FUNC(sc));
17189
17190
REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN, BXE_PXP_DRAM_ALIGN);
17191
REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_RD, BXE_PXP_DRAM_ALIGN);
17192
REG_WR(sc, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
17193
}
17194
17195
REG_WR(sc, PXP2_REG_RQ_DISABLE_INPUTS, 0);
17196
REG_WR(sc, PXP2_REG_RD_DISABLE_INPUTS, 0);
17197
17198
if (!CHIP_IS_E1x(sc)) {
17199
int factor = CHIP_REV_IS_EMUL(sc) ? 1000 :
17200
(CHIP_REV_IS_FPGA(sc) ? 400 : 0);
17201
17202
ecore_init_block(sc, BLOCK_PGLUE_B, PHASE_COMMON);
17203
ecore_init_block(sc, BLOCK_ATC, PHASE_COMMON);
17204
17205
/* let the HW do it's magic... */
17206
do {
17207
DELAY(200000);
17208
val = REG_RD(sc, ATC_REG_ATC_INIT_DONE);
17209
} while (factor-- && (val != 1));
17210
17211
if (val != 1) {
17212
BLOGE(sc, "ATC_INIT failed val = 0x%x\n", val);
17213
return (-1);
17214
}
17215
}
17216
17217
BLOGD(sc, DBG_LOAD, "after pglue and atc init\n");
17218
17219
ecore_init_block(sc, BLOCK_DMAE, PHASE_COMMON);
17220
17221
bxe_iov_init_dmae(sc);
17222
17223
/* clean the DMAE memory */
17224
sc->dmae_ready = 1;
17225
ecore_init_fill(sc, TSEM_REG_PRAM, 0, 8, 1);
17226
17227
ecore_init_block(sc, BLOCK_TCM, PHASE_COMMON);
17228
17229
ecore_init_block(sc, BLOCK_UCM, PHASE_COMMON);
17230
17231
ecore_init_block(sc, BLOCK_CCM, PHASE_COMMON);
17232
17233
ecore_init_block(sc, BLOCK_XCM, PHASE_COMMON);
17234
17235
bxe_read_dmae(sc, XSEM_REG_PASSIVE_BUFFER, 3);
17236
bxe_read_dmae(sc, CSEM_REG_PASSIVE_BUFFER, 3);
17237
bxe_read_dmae(sc, TSEM_REG_PASSIVE_BUFFER, 3);
17238
bxe_read_dmae(sc, USEM_REG_PASSIVE_BUFFER, 3);
17239
17240
ecore_init_block(sc, BLOCK_QM, PHASE_COMMON);
17241
17242
/* QM queues pointers table */
17243
ecore_qm_init_ptr_table(sc, sc->qm_cid_count, INITOP_SET);
17244
17245
/* soft reset pulse */
17246
REG_WR(sc, QM_REG_SOFT_RESET, 1);
17247
REG_WR(sc, QM_REG_SOFT_RESET, 0);
17248
17249
if (CNIC_SUPPORT(sc))
17250
ecore_init_block(sc, BLOCK_TM, PHASE_COMMON);
17251
17252
ecore_init_block(sc, BLOCK_DORQ, PHASE_COMMON);
17253
REG_WR(sc, DORQ_REG_DPM_CID_OFST, BXE_DB_SHIFT);
17254
if (!CHIP_REV_IS_SLOW(sc)) {
17255
/* enable hw interrupt from doorbell Q */
17256
REG_WR(sc, DORQ_REG_DORQ_INT_MASK, 0);
17257
}
17258
17259
ecore_init_block(sc, BLOCK_BRB1, PHASE_COMMON);
17260
17261
ecore_init_block(sc, BLOCK_PRS, PHASE_COMMON);
17262
REG_WR(sc, PRS_REG_A_PRSU_20, 0xf);
17263
17264
if (!CHIP_IS_E1(sc)) {
17265
REG_WR(sc, PRS_REG_E1HOV_MODE, sc->devinfo.mf_info.path_has_ovlan);
17266
}
17267
17268
if (!CHIP_IS_E1x(sc) && !CHIP_IS_E3B0(sc)) {
17269
if (IS_MF_AFEX(sc)) {
17270
/*
17271
* configure that AFEX and VLAN headers must be
17272
* received in AFEX mode
17273
*/
17274
REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC, 0xE);
17275
REG_WR(sc, PRS_REG_MUST_HAVE_HDRS, 0xA);
17276
REG_WR(sc, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
17277
REG_WR(sc, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
17278
REG_WR(sc, PRS_REG_TAG_LEN_0, 0x4);
17279
} else {
17280
/*
17281
* Bit-map indicating which L2 hdrs may appear
17282
* after the basic Ethernet header
17283
*/
17284
REG_WR(sc, PRS_REG_HDRS_AFTER_BASIC,
17285
sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17286
}
17287
}
17288
17289
ecore_init_block(sc, BLOCK_TSDM, PHASE_COMMON);
17290
ecore_init_block(sc, BLOCK_CSDM, PHASE_COMMON);
17291
ecore_init_block(sc, BLOCK_USDM, PHASE_COMMON);
17292
ecore_init_block(sc, BLOCK_XSDM, PHASE_COMMON);
17293
17294
if (!CHIP_IS_E1x(sc)) {
17295
/* reset VFC memories */
17296
REG_WR(sc, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17297
VFC_MEMORIES_RST_REG_CAM_RST |
17298
VFC_MEMORIES_RST_REG_RAM_RST);
17299
REG_WR(sc, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
17300
VFC_MEMORIES_RST_REG_CAM_RST |
17301
VFC_MEMORIES_RST_REG_RAM_RST);
17302
17303
DELAY(20000);
17304
}
17305
17306
ecore_init_block(sc, BLOCK_TSEM, PHASE_COMMON);
17307
ecore_init_block(sc, BLOCK_USEM, PHASE_COMMON);
17308
ecore_init_block(sc, BLOCK_CSEM, PHASE_COMMON);
17309
ecore_init_block(sc, BLOCK_XSEM, PHASE_COMMON);
17310
17311
/* sync semi rtc */
17312
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
17313
0x80000000);
17314
REG_WR(sc, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
17315
0x80000000);
17316
17317
ecore_init_block(sc, BLOCK_UPB, PHASE_COMMON);
17318
ecore_init_block(sc, BLOCK_XPB, PHASE_COMMON);
17319
ecore_init_block(sc, BLOCK_PBF, PHASE_COMMON);
17320
17321
if (!CHIP_IS_E1x(sc)) {
17322
if (IS_MF_AFEX(sc)) {
17323
/*
17324
* configure that AFEX and VLAN headers must be
17325
* sent in AFEX mode
17326
*/
17327
REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC, 0xE);
17328
REG_WR(sc, PBF_REG_MUST_HAVE_HDRS, 0xA);
17329
REG_WR(sc, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
17330
REG_WR(sc, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
17331
REG_WR(sc, PBF_REG_TAG_LEN_0, 0x4);
17332
} else {
17333
REG_WR(sc, PBF_REG_HDRS_AFTER_BASIC,
17334
sc->devinfo.mf_info.path_has_ovlan ? 7 : 6);
17335
}
17336
}
17337
17338
REG_WR(sc, SRC_REG_SOFT_RST, 1);
17339
17340
ecore_init_block(sc, BLOCK_SRC, PHASE_COMMON);
17341
17342
if (CNIC_SUPPORT(sc)) {
17343
REG_WR(sc, SRC_REG_KEYSEARCH_0, 0x63285672);
17344
REG_WR(sc, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
17345
REG_WR(sc, SRC_REG_KEYSEARCH_2, 0x223aef9b);
17346
REG_WR(sc, SRC_REG_KEYSEARCH_3, 0x26001e3a);
17347
REG_WR(sc, SRC_REG_KEYSEARCH_4, 0x7ae91116);
17348
REG_WR(sc, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
17349
REG_WR(sc, SRC_REG_KEYSEARCH_6, 0x298d8adf);
17350
REG_WR(sc, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
17351
REG_WR(sc, SRC_REG_KEYSEARCH_8, 0x1830f82f);
17352
REG_WR(sc, SRC_REG_KEYSEARCH_9, 0x01e46be7);
17353
}
17354
REG_WR(sc, SRC_REG_SOFT_RST, 0);
17355
17356
if (sizeof(union cdu_context) != 1024) {
17357
/* we currently assume that a context is 1024 bytes */
17358
BLOGE(sc, "please adjust the size of cdu_context(%ld)\n",
17359
(long)sizeof(union cdu_context));
17360
}
17361
17362
ecore_init_block(sc, BLOCK_CDU, PHASE_COMMON);
17363
val = (4 << 24) + (0 << 12) + 1024;
17364
REG_WR(sc, CDU_REG_CDU_GLOBAL_PARAMS, val);
17365
17366
ecore_init_block(sc, BLOCK_CFC, PHASE_COMMON);
17367
17368
REG_WR(sc, CFC_REG_INIT_REG, 0x7FF);
17369
/* enable context validation interrupt from CFC */
17370
REG_WR(sc, CFC_REG_CFC_INT_MASK, 0);
17371
17372
/* set the thresholds to prevent CFC/CDU race */
17373
REG_WR(sc, CFC_REG_DEBUG0, 0x20020000);
17374
ecore_init_block(sc, BLOCK_HC, PHASE_COMMON);
17375
17376
if (!CHIP_IS_E1x(sc) && BXE_NOMCP(sc)) {
17377
REG_WR(sc, IGU_REG_RESET_MEMORIES, 0x36);
17378
}
17379
17380
ecore_init_block(sc, BLOCK_IGU, PHASE_COMMON);
17381
ecore_init_block(sc, BLOCK_MISC_AEU, PHASE_COMMON);
17382
17383
/* Reset PCIE errors for debug */
17384
REG_WR(sc, 0x2814, 0xffffffff);
17385
REG_WR(sc, 0x3820, 0xffffffff);
17386
17387
if (!CHIP_IS_E1x(sc)) {
17388
REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
17389
(PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
17390
PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
17391
REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
17392
(PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
17393
PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
17394
PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
17395
REG_WR(sc, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
17396
(PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
17397
PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
17398
PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
17399
}
17400
17401
ecore_init_block(sc, BLOCK_NIG, PHASE_COMMON);
17402
17403
if (!CHIP_IS_E1(sc)) {
17404
/* in E3 this done in per-port section */
17405
if (!CHIP_IS_E3(sc))
17406
REG_WR(sc, NIG_REG_LLH_MF_MODE, IS_MF(sc));
17407
}
17408
17409
if (CHIP_IS_E1H(sc)) {
17410
/* not applicable for E2 (and above ...) */
17411
REG_WR(sc, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(sc));
17412
}
17413
17414
if (CHIP_REV_IS_SLOW(sc)) {
17415
DELAY(200000);
17416
}
17417
17418
/* finish CFC init */
17419
val = reg_poll(sc, CFC_REG_LL_INIT_DONE, 1, 100, 10);
17420
if (val != 1) {
17421
BLOGE(sc, "CFC LL_INIT failed val=0x%x\n", val);
17422
return (-1);
17423
}
17424
val = reg_poll(sc, CFC_REG_AC_INIT_DONE, 1, 100, 10);
17425
if (val != 1) {
17426
BLOGE(sc, "CFC AC_INIT failed val=0x%x\n", val);
17427
return (-1);
17428
}
17429
val = reg_poll(sc, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
17430
if (val != 1) {
17431
BLOGE(sc, "CFC CAM_INIT failed val=0x%x\n", val);
17432
return (-1);
17433
}
17434
REG_WR(sc, CFC_REG_DEBUG0, 0);
17435
17436
if (CHIP_IS_E1(sc)) {
17437
/* read NIG statistic to see if this is our first up since powerup */
17438
bxe_read_dmae(sc, NIG_REG_STAT2_BRB_OCTET, 2);
17439
val = *BXE_SP(sc, wb_data[0]);
17440
17441
/* do internal memory self test */
17442
if ((val == 0) && bxe_int_mem_test(sc)) {
17443
BLOGE(sc, "internal mem self test failed val=0x%x\n", val);
17444
return (-1);
17445
}
17446
}
17447
17448
bxe_setup_fan_failure_detection(sc);
17449
17450
/* clear PXP2 attentions */
17451
REG_RD(sc, PXP2_REG_PXP2_INT_STS_CLR_0);
17452
17453
bxe_enable_blocks_attention(sc);
17454
17455
if (!CHIP_REV_IS_SLOW(sc)) {
17456
ecore_enable_blocks_parity(sc);
17457
}
17458
17459
if (!BXE_NOMCP(sc)) {
17460
if (CHIP_IS_E1x(sc)) {
17461
bxe_common_init_phy(sc);
17462
}
17463
}
17464
17465
return (0);
17466
}
17467
17468
/**
17469
* bxe_init_hw_common_chip - init HW at the COMMON_CHIP phase.
17470
*
17471
* @sc: driver handle
17472
*/
17473
static int
17474
bxe_init_hw_common_chip(struct bxe_softc *sc)
17475
{
17476
int rc = bxe_init_hw_common(sc);
17477
17478
if (rc) {
17479
BLOGE(sc, "bxe_init_hw_common failed rc=%d\n", rc);
17480
return (rc);
17481
}
17482
17483
/* In E2 2-PORT mode, same ext phy is used for the two paths */
17484
if (!BXE_NOMCP(sc)) {
17485
bxe_common_init_phy(sc);
17486
}
17487
17488
return (0);
17489
}
17490
17491
static int
17492
bxe_init_hw_port(struct bxe_softc *sc)
17493
{
17494
int port = SC_PORT(sc);
17495
int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
17496
uint32_t low, high;
17497
uint32_t val;
17498
17499
BLOGD(sc, DBG_LOAD, "starting port init for port %d\n", port);
17500
17501
REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
17502
17503
ecore_init_block(sc, BLOCK_MISC, init_phase);
17504
ecore_init_block(sc, BLOCK_PXP, init_phase);
17505
ecore_init_block(sc, BLOCK_PXP2, init_phase);
17506
17507
/*
17508
* Timers bug workaround: disables the pf_master bit in pglue at
17509
* common phase, we need to enable it here before any dmae access are
17510
* attempted. Therefore we manually added the enable-master to the
17511
* port phase (it also happens in the function phase)
17512
*/
17513
if (!CHIP_IS_E1x(sc)) {
17514
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
17515
}
17516
17517
ecore_init_block(sc, BLOCK_ATC, init_phase);
17518
ecore_init_block(sc, BLOCK_DMAE, init_phase);
17519
ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
17520
ecore_init_block(sc, BLOCK_QM, init_phase);
17521
17522
ecore_init_block(sc, BLOCK_TCM, init_phase);
17523
ecore_init_block(sc, BLOCK_UCM, init_phase);
17524
ecore_init_block(sc, BLOCK_CCM, init_phase);
17525
ecore_init_block(sc, BLOCK_XCM, init_phase);
17526
17527
/* QM cid (connection) count */
17528
ecore_qm_init_cid_count(sc, sc->qm_cid_count, INITOP_SET);
17529
17530
if (CNIC_SUPPORT(sc)) {
17531
ecore_init_block(sc, BLOCK_TM, init_phase);
17532
REG_WR(sc, TM_REG_LIN0_SCAN_TIME + port*4, 20);
17533
REG_WR(sc, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
17534
}
17535
17536
ecore_init_block(sc, BLOCK_DORQ, init_phase);
17537
17538
ecore_init_block(sc, BLOCK_BRB1, init_phase);
17539
17540
if (CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) {
17541
if (IS_MF(sc)) {
17542
low = (BXE_ONE_PORT(sc) ? 160 : 246);
17543
} else if (sc->mtu > 4096) {
17544
if (BXE_ONE_PORT(sc)) {
17545
low = 160;
17546
} else {
17547
val = sc->mtu;
17548
/* (24*1024 + val*4)/256 */
17549
low = (96 + (val / 64) + ((val % 64) ? 1 : 0));
17550
}
17551
} else {
17552
low = (BXE_ONE_PORT(sc) ? 80 : 160);
17553
}
17554
high = (low + 56); /* 14*1024/256 */
17555
REG_WR(sc, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
17556
REG_WR(sc, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
17557
}
17558
17559
if (CHIP_IS_MODE_4_PORT(sc)) {
17560
REG_WR(sc, SC_PORT(sc) ?
17561
BRB1_REG_MAC_GUARANTIED_1 :
17562
BRB1_REG_MAC_GUARANTIED_0, 40);
17563
}
17564
17565
ecore_init_block(sc, BLOCK_PRS, init_phase);
17566
if (CHIP_IS_E3B0(sc)) {
17567
if (IS_MF_AFEX(sc)) {
17568
/* configure headers for AFEX mode */
17569
REG_WR(sc, SC_PORT(sc) ?
17570
PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17571
PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
17572
REG_WR(sc, SC_PORT(sc) ?
17573
PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
17574
PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
17575
REG_WR(sc, SC_PORT(sc) ?
17576
PRS_REG_MUST_HAVE_HDRS_PORT_1 :
17577
PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
17578
} else {
17579
/* Ovlan exists only if we are in multi-function +
17580
* switch-dependent mode, in switch-independent there
17581
* is no ovlan headers
17582
*/
17583
REG_WR(sc, SC_PORT(sc) ?
17584
PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
17585
PRS_REG_HDRS_AFTER_BASIC_PORT_0,
17586
(sc->devinfo.mf_info.path_has_ovlan ? 7 : 6));
17587
}
17588
}
17589
17590
ecore_init_block(sc, BLOCK_TSDM, init_phase);
17591
ecore_init_block(sc, BLOCK_CSDM, init_phase);
17592
ecore_init_block(sc, BLOCK_USDM, init_phase);
17593
ecore_init_block(sc, BLOCK_XSDM, init_phase);
17594
17595
ecore_init_block(sc, BLOCK_TSEM, init_phase);
17596
ecore_init_block(sc, BLOCK_USEM, init_phase);
17597
ecore_init_block(sc, BLOCK_CSEM, init_phase);
17598
ecore_init_block(sc, BLOCK_XSEM, init_phase);
17599
17600
ecore_init_block(sc, BLOCK_UPB, init_phase);
17601
ecore_init_block(sc, BLOCK_XPB, init_phase);
17602
17603
ecore_init_block(sc, BLOCK_PBF, init_phase);
17604
17605
if (CHIP_IS_E1x(sc)) {
17606
/* configure PBF to work without PAUSE mtu 9000 */
17607
REG_WR(sc, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
17608
17609
/* update threshold */
17610
REG_WR(sc, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
17611
/* update init credit */
17612
REG_WR(sc, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
17613
17614
/* probe changes */
17615
REG_WR(sc, PBF_REG_INIT_P0 + port*4, 1);
17616
DELAY(50);
17617
REG_WR(sc, PBF_REG_INIT_P0 + port*4, 0);
17618
}
17619
17620
if (CNIC_SUPPORT(sc)) {
17621
ecore_init_block(sc, BLOCK_SRC, init_phase);
17622
}
17623
17624
ecore_init_block(sc, BLOCK_CDU, init_phase);
17625
ecore_init_block(sc, BLOCK_CFC, init_phase);
17626
17627
if (CHIP_IS_E1(sc)) {
17628
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
17629
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
17630
}
17631
ecore_init_block(sc, BLOCK_HC, init_phase);
17632
17633
ecore_init_block(sc, BLOCK_IGU, init_phase);
17634
17635
ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
17636
/* init aeu_mask_attn_func_0/1:
17637
* - SF mode: bits 3-7 are masked. only bits 0-2 are in use
17638
* - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
17639
* bits 4-7 are used for "per vn group attention" */
17640
val = IS_MF(sc) ? 0xF7 : 0x7;
17641
/* Enable DCBX attention for all but E1 */
17642
val |= CHIP_IS_E1(sc) ? 0 : 0x10;
17643
REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
17644
17645
ecore_init_block(sc, BLOCK_NIG, init_phase);
17646
17647
if (!CHIP_IS_E1x(sc)) {
17648
/* Bit-map indicating which L2 hdrs may appear after the
17649
* basic Ethernet header
17650
*/
17651
if (IS_MF_AFEX(sc)) {
17652
REG_WR(sc, SC_PORT(sc) ?
17653
NIG_REG_P1_HDRS_AFTER_BASIC :
17654
NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
17655
} else {
17656
REG_WR(sc, SC_PORT(sc) ?
17657
NIG_REG_P1_HDRS_AFTER_BASIC :
17658
NIG_REG_P0_HDRS_AFTER_BASIC,
17659
IS_MF_SD(sc) ? 7 : 6);
17660
}
17661
17662
if (CHIP_IS_E3(sc)) {
17663
REG_WR(sc, SC_PORT(sc) ?
17664
NIG_REG_LLH1_MF_MODE :
17665
NIG_REG_LLH_MF_MODE, IS_MF(sc));
17666
}
17667
}
17668
if (!CHIP_IS_E3(sc)) {
17669
REG_WR(sc, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
17670
}
17671
17672
if (!CHIP_IS_E1(sc)) {
17673
/* 0x2 disable mf_ov, 0x1 enable */
17674
REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
17675
(IS_MF_SD(sc) ? 0x1 : 0x2));
17676
17677
if (!CHIP_IS_E1x(sc)) {
17678
val = 0;
17679
switch (sc->devinfo.mf_info.mf_mode) {
17680
case MULTI_FUNCTION_SD:
17681
val = 1;
17682
break;
17683
case MULTI_FUNCTION_SI:
17684
case MULTI_FUNCTION_AFEX:
17685
val = 2;
17686
break;
17687
}
17688
17689
REG_WR(sc, (SC_PORT(sc) ? NIG_REG_LLH1_CLS_TYPE :
17690
NIG_REG_LLH0_CLS_TYPE), val);
17691
}
17692
REG_WR(sc, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
17693
REG_WR(sc, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
17694
REG_WR(sc, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
17695
}
17696
17697
/* If SPIO5 is set to generate interrupts, enable it for this port */
17698
val = REG_RD(sc, MISC_REG_SPIO_EVENT_EN);
17699
if (val & MISC_SPIO_SPIO5) {
17700
uint32_t reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
17701
MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
17702
val = REG_RD(sc, reg_addr);
17703
val |= AEU_INPUTS_ATTN_BITS_SPIO5;
17704
REG_WR(sc, reg_addr, val);
17705
}
17706
17707
return (0);
17708
}
17709
17710
static uint32_t
17711
bxe_flr_clnup_reg_poll(struct bxe_softc *sc,
17712
uint32_t reg,
17713
uint32_t expected,
17714
uint32_t poll_count)
17715
{
17716
uint32_t cur_cnt = poll_count;
17717
uint32_t val;
17718
17719
while ((val = REG_RD(sc, reg)) != expected && cur_cnt--) {
17720
DELAY(FLR_WAIT_INTERVAL);
17721
}
17722
17723
return (val);
17724
}
17725
17726
static int
17727
bxe_flr_clnup_poll_hw_counter(struct bxe_softc *sc,
17728
uint32_t reg,
17729
char *msg,
17730
uint32_t poll_cnt)
17731
{
17732
uint32_t val = bxe_flr_clnup_reg_poll(sc, reg, 0, poll_cnt);
17733
17734
if (val != 0) {
17735
BLOGE(sc, "%s usage count=%d\n", msg, val);
17736
return (1);
17737
}
17738
17739
return (0);
17740
}
17741
17742
/* Common routines with VF FLR cleanup */
17743
static uint32_t
17744
bxe_flr_clnup_poll_count(struct bxe_softc *sc)
17745
{
17746
/* adjust polling timeout */
17747
if (CHIP_REV_IS_EMUL(sc)) {
17748
return (FLR_POLL_CNT * 2000);
17749
}
17750
17751
if (CHIP_REV_IS_FPGA(sc)) {
17752
return (FLR_POLL_CNT * 120);
17753
}
17754
17755
return (FLR_POLL_CNT);
17756
}
17757
17758
static int
17759
bxe_poll_hw_usage_counters(struct bxe_softc *sc,
17760
uint32_t poll_cnt)
17761
{
17762
/* wait for CFC PF usage-counter to zero (includes all the VFs) */
17763
if (bxe_flr_clnup_poll_hw_counter(sc,
17764
CFC_REG_NUM_LCIDS_INSIDE_PF,
17765
"CFC PF usage counter timed out",
17766
poll_cnt)) {
17767
return (1);
17768
}
17769
17770
/* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
17771
if (bxe_flr_clnup_poll_hw_counter(sc,
17772
DORQ_REG_PF_USAGE_CNT,
17773
"DQ PF usage counter timed out",
17774
poll_cnt)) {
17775
return (1);
17776
}
17777
17778
/* Wait for QM PF usage-counter to zero (until DQ cleanup) */
17779
if (bxe_flr_clnup_poll_hw_counter(sc,
17780
QM_REG_PF_USG_CNT_0 + 4*SC_FUNC(sc),
17781
"QM PF usage counter timed out",
17782
poll_cnt)) {
17783
return (1);
17784
}
17785
17786
/* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
17787
if (bxe_flr_clnup_poll_hw_counter(sc,
17788
TM_REG_LIN0_VNIC_UC + 4*SC_PORT(sc),
17789
"Timers VNIC usage counter timed out",
17790
poll_cnt)) {
17791
return (1);
17792
}
17793
17794
if (bxe_flr_clnup_poll_hw_counter(sc,
17795
TM_REG_LIN0_NUM_SCANS + 4*SC_PORT(sc),
17796
"Timers NUM_SCANS usage counter timed out",
17797
poll_cnt)) {
17798
return (1);
17799
}
17800
17801
/* Wait DMAE PF usage counter to zero */
17802
if (bxe_flr_clnup_poll_hw_counter(sc,
17803
dmae_reg_go_c[INIT_DMAE_C(sc)],
17804
"DMAE dommand register timed out",
17805
poll_cnt)) {
17806
return (1);
17807
}
17808
17809
return (0);
17810
}
17811
17812
#define OP_GEN_PARAM(param) \
17813
(((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
17814
#define OP_GEN_TYPE(type) \
17815
(((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
17816
#define OP_GEN_AGG_VECT(index) \
17817
(((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
17818
17819
static int
17820
bxe_send_final_clnup(struct bxe_softc *sc,
17821
uint8_t clnup_func,
17822
uint32_t poll_cnt)
17823
{
17824
uint32_t op_gen_command = 0;
17825
uint32_t comp_addr = (BAR_CSTRORM_INTMEM +
17826
CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func));
17827
int ret = 0;
17828
17829
if (REG_RD(sc, comp_addr)) {
17830
BLOGE(sc, "Cleanup complete was not 0 before sending\n");
17831
return (1);
17832
}
17833
17834
op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
17835
op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
17836
op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
17837
op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
17838
17839
BLOGD(sc, DBG_LOAD, "sending FW Final cleanup\n");
17840
REG_WR(sc, XSDM_REG_OPERATION_GEN, op_gen_command);
17841
17842
if (bxe_flr_clnup_reg_poll(sc, comp_addr, 1, poll_cnt) != 1) {
17843
BLOGE(sc, "FW final cleanup did not succeed\n");
17844
BLOGD(sc, DBG_LOAD, "At timeout completion address contained %x\n",
17845
(REG_RD(sc, comp_addr)));
17846
bxe_panic(sc, ("FLR cleanup failed\n"));
17847
return (1);
17848
}
17849
17850
/* Zero completion for nxt FLR */
17851
REG_WR(sc, comp_addr, 0);
17852
17853
return (ret);
17854
}
17855
17856
static void
17857
bxe_pbf_pN_buf_flushed(struct bxe_softc *sc,
17858
struct pbf_pN_buf_regs *regs,
17859
uint32_t poll_count)
17860
{
17861
uint32_t init_crd, crd, crd_start, crd_freed, crd_freed_start;
17862
uint32_t cur_cnt = poll_count;
17863
17864
crd_freed = crd_freed_start = REG_RD(sc, regs->crd_freed);
17865
crd = crd_start = REG_RD(sc, regs->crd);
17866
init_crd = REG_RD(sc, regs->init_crd);
17867
17868
BLOGD(sc, DBG_LOAD, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
17869
BLOGD(sc, DBG_LOAD, "CREDIT[%d] : s:%x\n", regs->pN, crd);
17870
BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
17871
17872
while ((crd != init_crd) &&
17873
((uint32_t)((int32_t)crd_freed - (int32_t)crd_freed_start) <
17874
(init_crd - crd_start))) {
17875
if (cur_cnt--) {
17876
DELAY(FLR_WAIT_INTERVAL);
17877
crd = REG_RD(sc, regs->crd);
17878
crd_freed = REG_RD(sc, regs->crd_freed);
17879
} else {
17880
BLOGD(sc, DBG_LOAD, "PBF tx buffer[%d] timed out\n", regs->pN);
17881
BLOGD(sc, DBG_LOAD, "CREDIT[%d] : c:%x\n", regs->pN, crd);
17882
BLOGD(sc, DBG_LOAD, "CREDIT_FREED[%d]: c:%x\n", regs->pN, crd_freed);
17883
break;
17884
}
17885
}
17886
17887
BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF tx buffer[%d]\n",
17888
poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17889
}
17890
17891
static void
17892
bxe_pbf_pN_cmd_flushed(struct bxe_softc *sc,
17893
struct pbf_pN_cmd_regs *regs,
17894
uint32_t poll_count)
17895
{
17896
uint32_t occup, to_free, freed, freed_start;
17897
uint32_t cur_cnt = poll_count;
17898
17899
occup = to_free = REG_RD(sc, regs->lines_occup);
17900
freed = freed_start = REG_RD(sc, regs->lines_freed);
17901
17902
BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
17903
BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17904
17905
while (occup &&
17906
((uint32_t)((int32_t)freed - (int32_t)freed_start) < to_free)) {
17907
if (cur_cnt--) {
17908
DELAY(FLR_WAIT_INTERVAL);
17909
occup = REG_RD(sc, regs->lines_occup);
17910
freed = REG_RD(sc, regs->lines_freed);
17911
} else {
17912
BLOGD(sc, DBG_LOAD, "PBF cmd queue[%d] timed out\n", regs->pN);
17913
BLOGD(sc, DBG_LOAD, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
17914
BLOGD(sc, DBG_LOAD, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
17915
break;
17916
}
17917
}
17918
17919
BLOGD(sc, DBG_LOAD, "Waited %d*%d usec for PBF cmd queue[%d]\n",
17920
poll_count - cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
17921
}
17922
17923
static void
17924
bxe_tx_hw_flushed(struct bxe_softc *sc, uint32_t poll_count)
17925
{
17926
struct pbf_pN_cmd_regs cmd_regs[] = {
17927
{0, (CHIP_IS_E3B0(sc)) ?
17928
PBF_REG_TQ_OCCUPANCY_Q0 :
17929
PBF_REG_P0_TQ_OCCUPANCY,
17930
(CHIP_IS_E3B0(sc)) ?
17931
PBF_REG_TQ_LINES_FREED_CNT_Q0 :
17932
PBF_REG_P0_TQ_LINES_FREED_CNT},
17933
{1, (CHIP_IS_E3B0(sc)) ?
17934
PBF_REG_TQ_OCCUPANCY_Q1 :
17935
PBF_REG_P1_TQ_OCCUPANCY,
17936
(CHIP_IS_E3B0(sc)) ?
17937
PBF_REG_TQ_LINES_FREED_CNT_Q1 :
17938
PBF_REG_P1_TQ_LINES_FREED_CNT},
17939
{4, (CHIP_IS_E3B0(sc)) ?
17940
PBF_REG_TQ_OCCUPANCY_LB_Q :
17941
PBF_REG_P4_TQ_OCCUPANCY,
17942
(CHIP_IS_E3B0(sc)) ?
17943
PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
17944
PBF_REG_P4_TQ_LINES_FREED_CNT}
17945
};
17946
17947
struct pbf_pN_buf_regs buf_regs[] = {
17948
{0, (CHIP_IS_E3B0(sc)) ?
17949
PBF_REG_INIT_CRD_Q0 :
17950
PBF_REG_P0_INIT_CRD ,
17951
(CHIP_IS_E3B0(sc)) ?
17952
PBF_REG_CREDIT_Q0 :
17953
PBF_REG_P0_CREDIT,
17954
(CHIP_IS_E3B0(sc)) ?
17955
PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
17956
PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
17957
{1, (CHIP_IS_E3B0(sc)) ?
17958
PBF_REG_INIT_CRD_Q1 :
17959
PBF_REG_P1_INIT_CRD,
17960
(CHIP_IS_E3B0(sc)) ?
17961
PBF_REG_CREDIT_Q1 :
17962
PBF_REG_P1_CREDIT,
17963
(CHIP_IS_E3B0(sc)) ?
17964
PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
17965
PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
17966
{4, (CHIP_IS_E3B0(sc)) ?
17967
PBF_REG_INIT_CRD_LB_Q :
17968
PBF_REG_P4_INIT_CRD,
17969
(CHIP_IS_E3B0(sc)) ?
17970
PBF_REG_CREDIT_LB_Q :
17971
PBF_REG_P4_CREDIT,
17972
(CHIP_IS_E3B0(sc)) ?
17973
PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
17974
PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
17975
};
17976
17977
int i;
17978
17979
/* Verify the command queues are flushed P0, P1, P4 */
17980
for (i = 0; i < ARRAY_SIZE(cmd_regs); i++) {
17981
bxe_pbf_pN_cmd_flushed(sc, &cmd_regs[i], poll_count);
17982
}
17983
17984
/* Verify the transmission buffers are flushed P0, P1, P4 */
17985
for (i = 0; i < ARRAY_SIZE(buf_regs); i++) {
17986
bxe_pbf_pN_buf_flushed(sc, &buf_regs[i], poll_count);
17987
}
17988
}
17989
17990
static void
17991
bxe_hw_enable_status(struct bxe_softc *sc)
17992
{
17993
uint32_t val;
17994
17995
val = REG_RD(sc, CFC_REG_WEAK_ENABLE_PF);
17996
BLOGD(sc, DBG_LOAD, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
17997
17998
val = REG_RD(sc, PBF_REG_DISABLE_PF);
17999
BLOGD(sc, DBG_LOAD, "PBF_REG_DISABLE_PF is 0x%x\n", val);
18000
18001
val = REG_RD(sc, IGU_REG_PCI_PF_MSI_EN);
18002
BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
18003
18004
val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_EN);
18005
BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
18006
18007
val = REG_RD(sc, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
18008
BLOGD(sc, DBG_LOAD, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
18009
18010
val = REG_RD(sc, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
18011
BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
18012
18013
val = REG_RD(sc, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
18014
BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
18015
18016
val = REG_RD(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
18017
BLOGD(sc, DBG_LOAD, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n", val);
18018
}
18019
18020
static int
18021
bxe_pf_flr_clnup(struct bxe_softc *sc)
18022
{
18023
uint32_t poll_cnt = bxe_flr_clnup_poll_count(sc);
18024
18025
BLOGD(sc, DBG_LOAD, "Cleanup after FLR PF[%d]\n", SC_ABS_FUNC(sc));
18026
18027
/* Re-enable PF target read access */
18028
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
18029
18030
/* Poll HW usage counters */
18031
BLOGD(sc, DBG_LOAD, "Polling usage counters\n");
18032
if (bxe_poll_hw_usage_counters(sc, poll_cnt)) {
18033
return (-1);
18034
}
18035
18036
/* Zero the igu 'trailing edge' and 'leading edge' */
18037
18038
/* Send the FW cleanup command */
18039
if (bxe_send_final_clnup(sc, (uint8_t)SC_FUNC(sc), poll_cnt)) {
18040
return (-1);
18041
}
18042
18043
/* ATC cleanup */
18044
18045
/* Verify TX hw is flushed */
18046
bxe_tx_hw_flushed(sc, poll_cnt);
18047
18048
/* Wait 100ms (not adjusted according to platform) */
18049
DELAY(100000);
18050
18051
/* Verify no pending pci transactions */
18052
if (bxe_is_pcie_pending(sc)) {
18053
BLOGE(sc, "PCIE Transactions still pending\n");
18054
}
18055
18056
/* Debug */
18057
bxe_hw_enable_status(sc);
18058
18059
/*
18060
* Master enable - Due to WB DMAE writes performed before this
18061
* register is re-initialized as part of the regular function init
18062
*/
18063
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18064
18065
return (0);
18066
}
18067
18068
static int
18069
bxe_init_hw_func(struct bxe_softc *sc)
18070
{
18071
int port = SC_PORT(sc);
18072
int func = SC_FUNC(sc);
18073
int init_phase = PHASE_PF0 + func;
18074
struct ecore_ilt *ilt = sc->ilt;
18075
uint16_t cdu_ilt_start;
18076
uint32_t addr, val;
18077
uint32_t main_mem_base, main_mem_size, main_mem_prty_clr;
18078
int i, main_mem_width, rc;
18079
18080
BLOGD(sc, DBG_LOAD, "starting func init for func %d\n", func);
18081
18082
/* FLR cleanup */
18083
if (!CHIP_IS_E1x(sc)) {
18084
rc = bxe_pf_flr_clnup(sc);
18085
if (rc) {
18086
BLOGE(sc, "FLR cleanup failed!\n");
18087
// XXX bxe_fw_dump(sc);
18088
// XXX bxe_idle_chk(sc);
18089
return (rc);
18090
}
18091
}
18092
18093
/* set MSI reconfigure capability */
18094
if (sc->devinfo.int_block == INT_BLOCK_HC) {
18095
addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
18096
val = REG_RD(sc, addr);
18097
val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
18098
REG_WR(sc, addr, val);
18099
}
18100
18101
ecore_init_block(sc, BLOCK_PXP, init_phase);
18102
ecore_init_block(sc, BLOCK_PXP2, init_phase);
18103
18104
ilt = sc->ilt;
18105
cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
18106
18107
for (i = 0; i < L2_ILT_LINES(sc); i++) {
18108
ilt->lines[cdu_ilt_start + i].page = sc->context[i].vcxt;
18109
ilt->lines[cdu_ilt_start + i].page_mapping =
18110
sc->context[i].vcxt_dma.paddr;
18111
ilt->lines[cdu_ilt_start + i].size = sc->context[i].size;
18112
}
18113
ecore_ilt_init_op(sc, INITOP_SET);
18114
18115
/* Set NIC mode */
18116
REG_WR(sc, PRS_REG_NIC_MODE, 1);
18117
BLOGD(sc, DBG_LOAD, "NIC MODE configured\n");
18118
18119
if (!CHIP_IS_E1x(sc)) {
18120
uint32_t pf_conf = IGU_PF_CONF_FUNC_EN;
18121
18122
/* Turn on a single ISR mode in IGU if driver is going to use
18123
* INT#x or MSI
18124
*/
18125
if (sc->interrupt_mode != INTR_MODE_MSIX) {
18126
pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
18127
}
18128
18129
/*
18130
* Timers workaround bug: function init part.
18131
* Need to wait 20msec after initializing ILT,
18132
* needed to make sure there are no requests in
18133
* one of the PXP internal queues with "old" ILT addresses
18134
*/
18135
DELAY(20000);
18136
18137
/*
18138
* Master enable - Due to WB DMAE writes performed before this
18139
* register is re-initialized as part of the regular function
18140
* init
18141
*/
18142
REG_WR(sc, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
18143
/* Enable the function in IGU */
18144
REG_WR(sc, IGU_REG_PF_CONFIGURATION, pf_conf);
18145
}
18146
18147
sc->dmae_ready = 1;
18148
18149
ecore_init_block(sc, BLOCK_PGLUE_B, init_phase);
18150
18151
if (!CHIP_IS_E1x(sc))
18152
REG_WR(sc, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
18153
18154
ecore_init_block(sc, BLOCK_ATC, init_phase);
18155
ecore_init_block(sc, BLOCK_DMAE, init_phase);
18156
ecore_init_block(sc, BLOCK_NIG, init_phase);
18157
ecore_init_block(sc, BLOCK_SRC, init_phase);
18158
ecore_init_block(sc, BLOCK_MISC, init_phase);
18159
ecore_init_block(sc, BLOCK_TCM, init_phase);
18160
ecore_init_block(sc, BLOCK_UCM, init_phase);
18161
ecore_init_block(sc, BLOCK_CCM, init_phase);
18162
ecore_init_block(sc, BLOCK_XCM, init_phase);
18163
ecore_init_block(sc, BLOCK_TSEM, init_phase);
18164
ecore_init_block(sc, BLOCK_USEM, init_phase);
18165
ecore_init_block(sc, BLOCK_CSEM, init_phase);
18166
ecore_init_block(sc, BLOCK_XSEM, init_phase);
18167
18168
if (!CHIP_IS_E1x(sc))
18169
REG_WR(sc, QM_REG_PF_EN, 1);
18170
18171
if (!CHIP_IS_E1x(sc)) {
18172
REG_WR(sc, TSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18173
REG_WR(sc, USEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18174
REG_WR(sc, CSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18175
REG_WR(sc, XSEM_REG_VFPF_ERR_NUM, BXE_MAX_NUM_OF_VFS + func);
18176
}
18177
ecore_init_block(sc, BLOCK_QM, init_phase);
18178
18179
ecore_init_block(sc, BLOCK_TM, init_phase);
18180
ecore_init_block(sc, BLOCK_DORQ, init_phase);
18181
18182
bxe_iov_init_dq(sc);
18183
18184
ecore_init_block(sc, BLOCK_BRB1, init_phase);
18185
ecore_init_block(sc, BLOCK_PRS, init_phase);
18186
ecore_init_block(sc, BLOCK_TSDM, init_phase);
18187
ecore_init_block(sc, BLOCK_CSDM, init_phase);
18188
ecore_init_block(sc, BLOCK_USDM, init_phase);
18189
ecore_init_block(sc, BLOCK_XSDM, init_phase);
18190
ecore_init_block(sc, BLOCK_UPB, init_phase);
18191
ecore_init_block(sc, BLOCK_XPB, init_phase);
18192
ecore_init_block(sc, BLOCK_PBF, init_phase);
18193
if (!CHIP_IS_E1x(sc))
18194
REG_WR(sc, PBF_REG_DISABLE_PF, 0);
18195
18196
ecore_init_block(sc, BLOCK_CDU, init_phase);
18197
18198
ecore_init_block(sc, BLOCK_CFC, init_phase);
18199
18200
if (!CHIP_IS_E1x(sc))
18201
REG_WR(sc, CFC_REG_WEAK_ENABLE_PF, 1);
18202
18203
if (IS_MF(sc)) {
18204
REG_WR(sc, NIG_REG_LLH0_FUNC_EN + port*8, 1);
18205
REG_WR(sc, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, OVLAN(sc));
18206
}
18207
18208
ecore_init_block(sc, BLOCK_MISC_AEU, init_phase);
18209
18210
/* HC init per function */
18211
if (sc->devinfo.int_block == INT_BLOCK_HC) {
18212
if (CHIP_IS_E1H(sc)) {
18213
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18214
18215
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18216
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18217
}
18218
ecore_init_block(sc, BLOCK_HC, init_phase);
18219
18220
} else {
18221
int num_segs, sb_idx, prod_offset;
18222
18223
REG_WR(sc, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
18224
18225
if (!CHIP_IS_E1x(sc)) {
18226
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18227
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18228
}
18229
18230
ecore_init_block(sc, BLOCK_IGU, init_phase);
18231
18232
if (!CHIP_IS_E1x(sc)) {
18233
int dsb_idx = 0;
18234
/**
18235
* Producer memory:
18236
* E2 mode: address 0-135 match to the mapping memory;
18237
* 136 - PF0 default prod; 137 - PF1 default prod;
18238
* 138 - PF2 default prod; 139 - PF3 default prod;
18239
* 140 - PF0 attn prod; 141 - PF1 attn prod;
18240
* 142 - PF2 attn prod; 143 - PF3 attn prod;
18241
* 144-147 reserved.
18242
*
18243
* E1.5 mode - In backward compatible mode;
18244
* for non default SB; each even line in the memory
18245
* holds the U producer and each odd line hold
18246
* the C producer. The first 128 producers are for
18247
* NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
18248
* producers are for the DSB for each PF.
18249
* Each PF has five segments: (the order inside each
18250
* segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
18251
* 132-135 C prods; 136-139 X prods; 140-143 T prods;
18252
* 144-147 attn prods;
18253
*/
18254
/* non-default-status-blocks */
18255
num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18256
IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
18257
for (sb_idx = 0; sb_idx < sc->igu_sb_cnt; sb_idx++) {
18258
prod_offset = (sc->igu_base_sb + sb_idx) *
18259
num_segs;
18260
18261
for (i = 0; i < num_segs; i++) {
18262
addr = IGU_REG_PROD_CONS_MEMORY +
18263
(prod_offset + i) * 4;
18264
REG_WR(sc, addr, 0);
18265
}
18266
/* send consumer update with value 0 */
18267
bxe_ack_sb(sc, sc->igu_base_sb + sb_idx,
18268
USTORM_ID, 0, IGU_INT_NOP, 1);
18269
bxe_igu_clear_sb(sc, sc->igu_base_sb + sb_idx);
18270
}
18271
18272
/* default-status-blocks */
18273
num_segs = CHIP_INT_MODE_IS_BC(sc) ?
18274
IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
18275
18276
if (CHIP_IS_MODE_4_PORT(sc))
18277
dsb_idx = SC_FUNC(sc);
18278
else
18279
dsb_idx = SC_VN(sc);
18280
18281
prod_offset = (CHIP_INT_MODE_IS_BC(sc) ?
18282
IGU_BC_BASE_DSB_PROD + dsb_idx :
18283
IGU_NORM_BASE_DSB_PROD + dsb_idx);
18284
18285
/*
18286
* igu prods come in chunks of E1HVN_MAX (4) -
18287
* does not matters what is the current chip mode
18288
*/
18289
for (i = 0; i < (num_segs * E1HVN_MAX);
18290
i += E1HVN_MAX) {
18291
addr = IGU_REG_PROD_CONS_MEMORY +
18292
(prod_offset + i)*4;
18293
REG_WR(sc, addr, 0);
18294
}
18295
/* send consumer update with 0 */
18296
if (CHIP_INT_MODE_IS_BC(sc)) {
18297
bxe_ack_sb(sc, sc->igu_dsb_id,
18298
USTORM_ID, 0, IGU_INT_NOP, 1);
18299
bxe_ack_sb(sc, sc->igu_dsb_id,
18300
CSTORM_ID, 0, IGU_INT_NOP, 1);
18301
bxe_ack_sb(sc, sc->igu_dsb_id,
18302
XSTORM_ID, 0, IGU_INT_NOP, 1);
18303
bxe_ack_sb(sc, sc->igu_dsb_id,
18304
TSTORM_ID, 0, IGU_INT_NOP, 1);
18305
bxe_ack_sb(sc, sc->igu_dsb_id,
18306
ATTENTION_ID, 0, IGU_INT_NOP, 1);
18307
} else {
18308
bxe_ack_sb(sc, sc->igu_dsb_id,
18309
USTORM_ID, 0, IGU_INT_NOP, 1);
18310
bxe_ack_sb(sc, sc->igu_dsb_id,
18311
ATTENTION_ID, 0, IGU_INT_NOP, 1);
18312
}
18313
bxe_igu_clear_sb(sc, sc->igu_dsb_id);
18314
18315
/* !!! these should become driver const once
18316
rf-tool supports split-68 const */
18317
REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
18318
REG_WR(sc, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
18319
REG_WR(sc, IGU_REG_SB_MASK_LSB, 0);
18320
REG_WR(sc, IGU_REG_SB_MASK_MSB, 0);
18321
REG_WR(sc, IGU_REG_PBA_STATUS_LSB, 0);
18322
REG_WR(sc, IGU_REG_PBA_STATUS_MSB, 0);
18323
}
18324
}
18325
18326
/* Reset PCIE errors for debug */
18327
REG_WR(sc, 0x2114, 0xffffffff);
18328
REG_WR(sc, 0x2120, 0xffffffff);
18329
18330
if (CHIP_IS_E1x(sc)) {
18331
main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
18332
main_mem_base = HC_REG_MAIN_MEMORY +
18333
SC_PORT(sc) * (main_mem_size * 4);
18334
main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
18335
main_mem_width = 8;
18336
18337
val = REG_RD(sc, main_mem_prty_clr);
18338
if (val) {
18339
BLOGD(sc, DBG_LOAD,
18340
"Parity errors in HC block during function init (0x%x)!\n",
18341
val);
18342
}
18343
18344
/* Clear "false" parity errors in MSI-X table */
18345
for (i = main_mem_base;
18346
i < main_mem_base + main_mem_size * 4;
18347
i += main_mem_width) {
18348
bxe_read_dmae(sc, i, main_mem_width / 4);
18349
bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data),
18350
i, main_mem_width / 4);
18351
}
18352
/* Clear HC parity attention */
18353
REG_RD(sc, main_mem_prty_clr);
18354
}
18355
18356
#if 1
18357
/* Enable STORMs SP logging */
18358
REG_WR8(sc, BAR_USTRORM_INTMEM +
18359
USTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18360
REG_WR8(sc, BAR_TSTRORM_INTMEM +
18361
TSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18362
REG_WR8(sc, BAR_CSTRORM_INTMEM +
18363
CSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18364
REG_WR8(sc, BAR_XSTRORM_INTMEM +
18365
XSTORM_RECORD_SLOW_PATH_OFFSET(SC_FUNC(sc)), 1);
18366
#endif
18367
18368
elink_phy_probe(&sc->link_params);
18369
18370
return (0);
18371
}
18372
18373
static void
18374
bxe_link_reset(struct bxe_softc *sc)
18375
{
18376
if (!BXE_NOMCP(sc)) {
18377
bxe_acquire_phy_lock(sc);
18378
elink_lfa_reset(&sc->link_params, &sc->link_vars);
18379
bxe_release_phy_lock(sc);
18380
} else {
18381
if (!CHIP_REV_IS_SLOW(sc)) {
18382
BLOGW(sc, "Bootcode is missing - cannot reset link\n");
18383
}
18384
}
18385
}
18386
18387
static void
18388
bxe_reset_port(struct bxe_softc *sc)
18389
{
18390
int port = SC_PORT(sc);
18391
uint32_t val;
18392
18393
ELINK_DEBUG_P0(sc, "bxe_reset_port called\n");
18394
/* reset physical Link */
18395
bxe_link_reset(sc);
18396
18397
REG_WR(sc, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
18398
18399
/* Do not rcv packets to BRB */
18400
REG_WR(sc, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
18401
/* Do not direct rcv packets that are not for MCP to the BRB */
18402
REG_WR(sc, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
18403
NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
18404
18405
/* Configure AEU */
18406
REG_WR(sc, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
18407
18408
DELAY(100000);
18409
18410
/* Check for BRB port occupancy */
18411
val = REG_RD(sc, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
18412
if (val) {
18413
BLOGD(sc, DBG_LOAD,
18414
"BRB1 is not empty, %d blocks are occupied\n", val);
18415
}
18416
18417
/* TODO: Close Doorbell port? */
18418
}
18419
18420
static void
18421
bxe_ilt_wr(struct bxe_softc *sc,
18422
uint32_t index,
18423
bus_addr_t addr)
18424
{
18425
int reg;
18426
uint32_t wb_write[2];
18427
18428
if (CHIP_IS_E1(sc)) {
18429
reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
18430
} else {
18431
reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
18432
}
18433
18434
wb_write[0] = ONCHIP_ADDR1(addr);
18435
wb_write[1] = ONCHIP_ADDR2(addr);
18436
REG_WR_DMAE(sc, reg, wb_write, 2);
18437
}
18438
18439
static void
18440
bxe_clear_func_ilt(struct bxe_softc *sc,
18441
uint32_t func)
18442
{
18443
uint32_t i, base = FUNC_ILT_BASE(func);
18444
for (i = base; i < base + ILT_PER_FUNC; i++) {
18445
bxe_ilt_wr(sc, i, 0);
18446
}
18447
}
18448
18449
static void
18450
bxe_reset_func(struct bxe_softc *sc)
18451
{
18452
struct bxe_fastpath *fp;
18453
int port = SC_PORT(sc);
18454
int func = SC_FUNC(sc);
18455
int i;
18456
18457
/* Disable the function in the FW */
18458
REG_WR8(sc, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
18459
REG_WR8(sc, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
18460
REG_WR8(sc, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
18461
REG_WR8(sc, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
18462
18463
/* FP SBs */
18464
FOR_EACH_ETH_QUEUE(sc, i) {
18465
fp = &sc->fp[i];
18466
REG_WR8(sc, BAR_CSTRORM_INTMEM +
18467
CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
18468
SB_DISABLED);
18469
}
18470
18471
/* SP SB */
18472
REG_WR8(sc, BAR_CSTRORM_INTMEM +
18473
CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
18474
SB_DISABLED);
18475
18476
for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++) {
18477
REG_WR(sc, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func), 0);
18478
}
18479
18480
/* Configure IGU */
18481
if (sc->devinfo.int_block == INT_BLOCK_HC) {
18482
REG_WR(sc, HC_REG_LEADING_EDGE_0 + port*8, 0);
18483
REG_WR(sc, HC_REG_TRAILING_EDGE_0 + port*8, 0);
18484
} else {
18485
REG_WR(sc, IGU_REG_LEADING_EDGE_LATCH, 0);
18486
REG_WR(sc, IGU_REG_TRAILING_EDGE_LATCH, 0);
18487
}
18488
18489
if (CNIC_LOADED(sc)) {
18490
/* Disable Timer scan */
18491
REG_WR(sc, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
18492
/*
18493
* Wait for at least 10ms and up to 2 second for the timers
18494
* scan to complete
18495
*/
18496
for (i = 0; i < 200; i++) {
18497
DELAY(10000);
18498
if (!REG_RD(sc, TM_REG_LIN0_SCAN_ON + port*4))
18499
break;
18500
}
18501
}
18502
18503
/* Clear ILT */
18504
bxe_clear_func_ilt(sc, func);
18505
18506
/*
18507
* Timers workaround bug for E2: if this is vnic-3,
18508
* we need to set the entire ilt range for this timers.
18509
*/
18510
if (!CHIP_IS_E1x(sc) && SC_VN(sc) == 3) {
18511
struct ilt_client_info ilt_cli;
18512
/* use dummy TM client */
18513
memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
18514
ilt_cli.start = 0;
18515
ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
18516
ilt_cli.client_num = ILT_CLIENT_TM;
18517
18518
ecore_ilt_boundry_init_op(sc, &ilt_cli, 0, INITOP_CLEAR);
18519
}
18520
18521
/* this assumes that reset_port() called before reset_func()*/
18522
if (!CHIP_IS_E1x(sc)) {
18523
bxe_pf_disable(sc);
18524
}
18525
18526
sc->dmae_ready = 0;
18527
}
18528
18529
static int
18530
bxe_gunzip_init(struct bxe_softc *sc)
18531
{
18532
return (0);
18533
}
18534
18535
static void
18536
bxe_gunzip_end(struct bxe_softc *sc)
18537
{
18538
return;
18539
}
18540
18541
static int
18542
bxe_init_firmware(struct bxe_softc *sc)
18543
{
18544
if (CHIP_IS_E1(sc)) {
18545
ecore_init_e1_firmware(sc);
18546
sc->iro_array = e1_iro_arr;
18547
} else if (CHIP_IS_E1H(sc)) {
18548
ecore_init_e1h_firmware(sc);
18549
sc->iro_array = e1h_iro_arr;
18550
} else if (!CHIP_IS_E1x(sc)) {
18551
ecore_init_e2_firmware(sc);
18552
sc->iro_array = e2_iro_arr;
18553
} else {
18554
BLOGE(sc, "Unsupported chip revision\n");
18555
return (-1);
18556
}
18557
18558
return (0);
18559
}
18560
18561
static void
18562
bxe_release_firmware(struct bxe_softc *sc)
18563
{
18564
/* Do nothing */
18565
return;
18566
}
18567
18568
static int
18569
ecore_gunzip(struct bxe_softc *sc,
18570
const uint8_t *zbuf,
18571
int len)
18572
{
18573
/* XXX : Implement... */
18574
BLOGD(sc, DBG_LOAD, "ECORE_GUNZIP NOT IMPLEMENTED\n");
18575
return (FALSE);
18576
}
18577
18578
static void
18579
ecore_reg_wr_ind(struct bxe_softc *sc,
18580
uint32_t addr,
18581
uint32_t val)
18582
{
18583
bxe_reg_wr_ind(sc, addr, val);
18584
}
18585
18586
static void
18587
ecore_write_dmae_phys_len(struct bxe_softc *sc,
18588
bus_addr_t phys_addr,
18589
uint32_t addr,
18590
uint32_t len)
18591
{
18592
bxe_write_dmae_phys_len(sc, phys_addr, addr, len);
18593
}
18594
18595
void
18596
ecore_storm_memset_struct(struct bxe_softc *sc,
18597
uint32_t addr,
18598
size_t size,
18599
uint32_t *data)
18600
{
18601
uint8_t i;
18602
for (i = 0; i < size/4; i++) {
18603
REG_WR(sc, addr + (i * 4), data[i]);
18604
}
18605
}
18606
18607
18608
/*
18609
* character device - ioctl interface definitions
18610
*/
18611
18612
18613
#include "bxe_dump.h"
18614
#include "bxe_ioctl.h"
18615
#include <sys/conf.h>
18616
18617
static int bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
18618
struct thread *td);
18619
18620
static struct cdevsw bxe_cdevsw = {
18621
.d_version = D_VERSION,
18622
.d_ioctl = bxe_eioctl,
18623
.d_name = "bxecnic",
18624
};
18625
18626
#define BXE_PATH(sc) (CHIP_IS_E1x(sc) ? 0 : (sc->pcie_func & 1))
18627
18628
18629
#define DUMP_ALL_PRESETS 0x1FFF
18630
#define DUMP_MAX_PRESETS 13
18631
#define IS_E1_REG(chips) ((chips & DUMP_CHIP_E1) == DUMP_CHIP_E1)
18632
#define IS_E1H_REG(chips) ((chips & DUMP_CHIP_E1H) == DUMP_CHIP_E1H)
18633
#define IS_E2_REG(chips) ((chips & DUMP_CHIP_E2) == DUMP_CHIP_E2)
18634
#define IS_E3A0_REG(chips) ((chips & DUMP_CHIP_E3A0) == DUMP_CHIP_E3A0)
18635
#define IS_E3B0_REG(chips) ((chips & DUMP_CHIP_E3B0) == DUMP_CHIP_E3B0)
18636
18637
#define IS_REG_IN_PRESET(presets, idx) \
18638
((presets & (1 << (idx-1))) == (1 << (idx-1)))
18639
18640
18641
static int
18642
bxe_get_preset_regs_len(struct bxe_softc *sc, uint32_t preset)
18643
{
18644
if (CHIP_IS_E1(sc))
18645
return dump_num_registers[0][preset-1];
18646
else if (CHIP_IS_E1H(sc))
18647
return dump_num_registers[1][preset-1];
18648
else if (CHIP_IS_E2(sc))
18649
return dump_num_registers[2][preset-1];
18650
else if (CHIP_IS_E3A0(sc))
18651
return dump_num_registers[3][preset-1];
18652
else if (CHIP_IS_E3B0(sc))
18653
return dump_num_registers[4][preset-1];
18654
else
18655
return 0;
18656
}
18657
18658
static int
18659
bxe_get_total_regs_len32(struct bxe_softc *sc)
18660
{
18661
uint32_t preset_idx;
18662
int regdump_len32 = 0;
18663
18664
18665
/* Calculate the total preset regs length */
18666
for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18667
regdump_len32 += bxe_get_preset_regs_len(sc, preset_idx);
18668
}
18669
18670
return regdump_len32;
18671
}
18672
18673
static const uint32_t *
18674
__bxe_get_page_addr_ar(struct bxe_softc *sc)
18675
{
18676
if (CHIP_IS_E2(sc))
18677
return page_vals_e2;
18678
else if (CHIP_IS_E3(sc))
18679
return page_vals_e3;
18680
else
18681
return NULL;
18682
}
18683
18684
static uint32_t
18685
__bxe_get_page_reg_num(struct bxe_softc *sc)
18686
{
18687
if (CHIP_IS_E2(sc))
18688
return PAGE_MODE_VALUES_E2;
18689
else if (CHIP_IS_E3(sc))
18690
return PAGE_MODE_VALUES_E3;
18691
else
18692
return 0;
18693
}
18694
18695
static const uint32_t *
18696
__bxe_get_page_write_ar(struct bxe_softc *sc)
18697
{
18698
if (CHIP_IS_E2(sc))
18699
return page_write_regs_e2;
18700
else if (CHIP_IS_E3(sc))
18701
return page_write_regs_e3;
18702
else
18703
return NULL;
18704
}
18705
18706
static uint32_t
18707
__bxe_get_page_write_num(struct bxe_softc *sc)
18708
{
18709
if (CHIP_IS_E2(sc))
18710
return PAGE_WRITE_REGS_E2;
18711
else if (CHIP_IS_E3(sc))
18712
return PAGE_WRITE_REGS_E3;
18713
else
18714
return 0;
18715
}
18716
18717
static const struct reg_addr *
18718
__bxe_get_page_read_ar(struct bxe_softc *sc)
18719
{
18720
if (CHIP_IS_E2(sc))
18721
return page_read_regs_e2;
18722
else if (CHIP_IS_E3(sc))
18723
return page_read_regs_e3;
18724
else
18725
return NULL;
18726
}
18727
18728
static uint32_t
18729
__bxe_get_page_read_num(struct bxe_softc *sc)
18730
{
18731
if (CHIP_IS_E2(sc))
18732
return PAGE_READ_REGS_E2;
18733
else if (CHIP_IS_E3(sc))
18734
return PAGE_READ_REGS_E3;
18735
else
18736
return 0;
18737
}
18738
18739
static bool
18740
bxe_is_reg_in_chip(struct bxe_softc *sc, const struct reg_addr *reg_info)
18741
{
18742
if (CHIP_IS_E1(sc))
18743
return IS_E1_REG(reg_info->chips);
18744
else if (CHIP_IS_E1H(sc))
18745
return IS_E1H_REG(reg_info->chips);
18746
else if (CHIP_IS_E2(sc))
18747
return IS_E2_REG(reg_info->chips);
18748
else if (CHIP_IS_E3A0(sc))
18749
return IS_E3A0_REG(reg_info->chips);
18750
else if (CHIP_IS_E3B0(sc))
18751
return IS_E3B0_REG(reg_info->chips);
18752
else
18753
return 0;
18754
}
18755
18756
static bool
18757
bxe_is_wreg_in_chip(struct bxe_softc *sc, const struct wreg_addr *wreg_info)
18758
{
18759
if (CHIP_IS_E1(sc))
18760
return IS_E1_REG(wreg_info->chips);
18761
else if (CHIP_IS_E1H(sc))
18762
return IS_E1H_REG(wreg_info->chips);
18763
else if (CHIP_IS_E2(sc))
18764
return IS_E2_REG(wreg_info->chips);
18765
else if (CHIP_IS_E3A0(sc))
18766
return IS_E3A0_REG(wreg_info->chips);
18767
else if (CHIP_IS_E3B0(sc))
18768
return IS_E3B0_REG(wreg_info->chips);
18769
else
18770
return 0;
18771
}
18772
18773
/**
18774
* bxe_read_pages_regs - read "paged" registers
18775
*
18776
* @bp device handle
18777
* @p output buffer
18778
*
18779
* Reads "paged" memories: memories that may only be read by first writing to a
18780
* specific address ("write address") and then reading from a specific address
18781
* ("read address"). There may be more than one write address per "page" and
18782
* more than one read address per write address.
18783
*/
18784
static void
18785
bxe_read_pages_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18786
{
18787
uint32_t i, j, k, n;
18788
18789
/* addresses of the paged registers */
18790
const uint32_t *page_addr = __bxe_get_page_addr_ar(sc);
18791
/* number of paged registers */
18792
int num_pages = __bxe_get_page_reg_num(sc);
18793
/* write addresses */
18794
const uint32_t *write_addr = __bxe_get_page_write_ar(sc);
18795
/* number of write addresses */
18796
int write_num = __bxe_get_page_write_num(sc);
18797
/* read addresses info */
18798
const struct reg_addr *read_addr = __bxe_get_page_read_ar(sc);
18799
/* number of read addresses */
18800
int read_num = __bxe_get_page_read_num(sc);
18801
uint32_t addr, size;
18802
18803
for (i = 0; i < num_pages; i++) {
18804
for (j = 0; j < write_num; j++) {
18805
REG_WR(sc, write_addr[j], page_addr[i]);
18806
18807
for (k = 0; k < read_num; k++) {
18808
if (IS_REG_IN_PRESET(read_addr[k].presets, preset)) {
18809
size = read_addr[k].size;
18810
for (n = 0; n < size; n++) {
18811
addr = read_addr[k].addr + n*4;
18812
*p++ = REG_RD(sc, addr);
18813
}
18814
}
18815
}
18816
}
18817
}
18818
return;
18819
}
18820
18821
18822
static int
18823
bxe_get_preset_regs(struct bxe_softc *sc, uint32_t *p, uint32_t preset)
18824
{
18825
uint32_t i, j, addr;
18826
const struct wreg_addr *wreg_addr_p = NULL;
18827
18828
if (CHIP_IS_E1(sc))
18829
wreg_addr_p = &wreg_addr_e1;
18830
else if (CHIP_IS_E1H(sc))
18831
wreg_addr_p = &wreg_addr_e1h;
18832
else if (CHIP_IS_E2(sc))
18833
wreg_addr_p = &wreg_addr_e2;
18834
else if (CHIP_IS_E3A0(sc))
18835
wreg_addr_p = &wreg_addr_e3;
18836
else if (CHIP_IS_E3B0(sc))
18837
wreg_addr_p = &wreg_addr_e3b0;
18838
else
18839
return (-1);
18840
18841
/* Read the idle_chk registers */
18842
for (i = 0; i < IDLE_REGS_COUNT; i++) {
18843
if (bxe_is_reg_in_chip(sc, &idle_reg_addrs[i]) &&
18844
IS_REG_IN_PRESET(idle_reg_addrs[i].presets, preset)) {
18845
for (j = 0; j < idle_reg_addrs[i].size; j++)
18846
*p++ = REG_RD(sc, idle_reg_addrs[i].addr + j*4);
18847
}
18848
}
18849
18850
/* Read the regular registers */
18851
for (i = 0; i < REGS_COUNT; i++) {
18852
if (bxe_is_reg_in_chip(sc, &reg_addrs[i]) &&
18853
IS_REG_IN_PRESET(reg_addrs[i].presets, preset)) {
18854
for (j = 0; j < reg_addrs[i].size; j++)
18855
*p++ = REG_RD(sc, reg_addrs[i].addr + j*4);
18856
}
18857
}
18858
18859
/* Read the CAM registers */
18860
if (bxe_is_wreg_in_chip(sc, wreg_addr_p) &&
18861
IS_REG_IN_PRESET(wreg_addr_p->presets, preset)) {
18862
for (i = 0; i < wreg_addr_p->size; i++) {
18863
*p++ = REG_RD(sc, wreg_addr_p->addr + i*4);
18864
18865
/* In case of wreg_addr register, read additional
18866
registers from read_regs array
18867
*/
18868
for (j = 0; j < wreg_addr_p->read_regs_count; j++) {
18869
addr = *(wreg_addr_p->read_regs);
18870
*p++ = REG_RD(sc, addr + j*4);
18871
}
18872
}
18873
}
18874
18875
/* Paged registers are supported in E2 & E3 only */
18876
if (CHIP_IS_E2(sc) || CHIP_IS_E3(sc)) {
18877
/* Read "paged" registers */
18878
bxe_read_pages_regs(sc, p, preset);
18879
}
18880
18881
return 0;
18882
}
18883
18884
int
18885
bxe_grc_dump(struct bxe_softc *sc)
18886
{
18887
int rval = 0;
18888
uint32_t preset_idx;
18889
uint8_t *buf;
18890
uint32_t size;
18891
struct dump_header *d_hdr;
18892
uint32_t i;
18893
uint32_t reg_val;
18894
uint32_t reg_addr;
18895
uint32_t cmd_offset;
18896
struct ecore_ilt *ilt = SC_ILT(sc);
18897
struct bxe_fastpath *fp;
18898
struct ilt_client_info *ilt_cli;
18899
int grc_dump_size;
18900
18901
18902
if (sc->grcdump_done || sc->grcdump_started)
18903
return (rval);
18904
18905
sc->grcdump_started = 1;
18906
BLOGI(sc, "Started collecting grcdump\n");
18907
18908
grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
18909
sizeof(struct dump_header);
18910
18911
sc->grc_dump = malloc(grc_dump_size, M_DEVBUF, M_NOWAIT);
18912
18913
if (sc->grc_dump == NULL) {
18914
BLOGW(sc, "Unable to allocate memory for grcdump collection\n");
18915
return(ENOMEM);
18916
}
18917
18918
18919
18920
/* Disable parity attentions as long as following dump may
18921
* cause false alarms by reading never written registers. We
18922
* will re-enable parity attentions right after the dump.
18923
*/
18924
18925
/* Disable parity on path 0 */
18926
bxe_pretend_func(sc, 0);
18927
18928
ecore_disable_blocks_parity(sc);
18929
18930
/* Disable parity on path 1 */
18931
bxe_pretend_func(sc, 1);
18932
ecore_disable_blocks_parity(sc);
18933
18934
/* Return to current function */
18935
bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18936
18937
buf = sc->grc_dump;
18938
d_hdr = sc->grc_dump;
18939
18940
d_hdr->header_size = (sizeof(struct dump_header) >> 2) - 1;
18941
d_hdr->version = BNX2X_DUMP_VERSION;
18942
d_hdr->preset = DUMP_ALL_PRESETS;
18943
18944
if (CHIP_IS_E1(sc)) {
18945
d_hdr->dump_meta_data = DUMP_CHIP_E1;
18946
} else if (CHIP_IS_E1H(sc)) {
18947
d_hdr->dump_meta_data = DUMP_CHIP_E1H;
18948
} else if (CHIP_IS_E2(sc)) {
18949
d_hdr->dump_meta_data = DUMP_CHIP_E2 |
18950
(BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18951
} else if (CHIP_IS_E3A0(sc)) {
18952
d_hdr->dump_meta_data = DUMP_CHIP_E3A0 |
18953
(BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18954
} else if (CHIP_IS_E3B0(sc)) {
18955
d_hdr->dump_meta_data = DUMP_CHIP_E3B0 |
18956
(BXE_PATH(sc) ? DUMP_PATH_1 : DUMP_PATH_0);
18957
}
18958
18959
buf += sizeof(struct dump_header);
18960
18961
for (preset_idx = 1; preset_idx <= DUMP_MAX_PRESETS; preset_idx++) {
18962
18963
/* Skip presets with IOR */
18964
if ((preset_idx == 2) || (preset_idx == 5) || (preset_idx == 8) ||
18965
(preset_idx == 11))
18966
continue;
18967
18968
rval = bxe_get_preset_regs(sc, (uint32_t *)buf, preset_idx);
18969
18970
if (rval)
18971
break;
18972
18973
size = bxe_get_preset_regs_len(sc, preset_idx) * (sizeof (uint32_t));
18974
18975
buf += size;
18976
}
18977
18978
bxe_pretend_func(sc, 0);
18979
ecore_clear_blocks_parity(sc);
18980
ecore_enable_blocks_parity(sc);
18981
18982
bxe_pretend_func(sc, 1);
18983
ecore_clear_blocks_parity(sc);
18984
ecore_enable_blocks_parity(sc);
18985
18986
/* Return to current function */
18987
bxe_pretend_func(sc, SC_ABS_FUNC(sc));
18988
18989
18990
18991
if(sc->state == BXE_STATE_OPEN) {
18992
if(sc->fw_stats_req != NULL) {
18993
BLOGI(sc, "fw stats start_paddr %#jx end_paddr %#jx vaddr %p size 0x%x\n",
18994
(uintmax_t)sc->fw_stats_req_mapping,
18995
(uintmax_t)sc->fw_stats_data_mapping,
18996
sc->fw_stats_req, (sc->fw_stats_req_size + sc->fw_stats_data_size));
18997
}
18998
if(sc->def_sb != NULL) {
18999
BLOGI(sc, "def_status_block paddr %p vaddr %p size 0x%zx\n",
19000
(void *)sc->def_sb_dma.paddr, sc->def_sb,
19001
sizeof(struct host_sp_status_block));
19002
}
19003
if(sc->eq_dma.vaddr != NULL) {
19004
BLOGI(sc, "event_queue paddr %#jx vaddr %p size 0x%x\n",
19005
(uintmax_t)sc->eq_dma.paddr, sc->eq_dma.vaddr, BCM_PAGE_SIZE);
19006
}
19007
if(sc->sp_dma.vaddr != NULL) {
19008
BLOGI(sc, "slow path paddr %#jx vaddr %p size 0x%zx\n",
19009
(uintmax_t)sc->sp_dma.paddr, sc->sp_dma.vaddr,
19010
sizeof(struct bxe_slowpath));
19011
}
19012
if(sc->spq_dma.vaddr != NULL) {
19013
BLOGI(sc, "slow path queue paddr %#jx vaddr %p size 0x%x\n",
19014
(uintmax_t)sc->spq_dma.paddr, sc->spq_dma.vaddr, BCM_PAGE_SIZE);
19015
}
19016
if(sc->gz_buf_dma.vaddr != NULL) {
19017
BLOGI(sc, "fw_buf paddr %#jx vaddr %p size 0x%x\n",
19018
(uintmax_t)sc->gz_buf_dma.paddr, sc->gz_buf_dma.vaddr,
19019
FW_BUF_SIZE);
19020
}
19021
for (i = 0; i < sc->num_queues; i++) {
19022
fp = &sc->fp[i];
19023
if(fp->sb_dma.vaddr != NULL && fp->tx_dma.vaddr != NULL &&
19024
fp->rx_dma.vaddr != NULL && fp->rcq_dma.vaddr != NULL &&
19025
fp->rx_sge_dma.vaddr != NULL) {
19026
19027
BLOGI(sc, "FP status block fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19028
(uintmax_t)fp->sb_dma.paddr, fp->sb_dma.vaddr,
19029
sizeof(union bxe_host_hc_status_block));
19030
BLOGI(sc, "TX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19031
(uintmax_t)fp->tx_dma.paddr, fp->tx_dma.vaddr,
19032
(BCM_PAGE_SIZE * TX_BD_NUM_PAGES));
19033
BLOGI(sc, "RX BD CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19034
(uintmax_t)fp->rx_dma.paddr, fp->rx_dma.vaddr,
19035
(BCM_PAGE_SIZE * RX_BD_NUM_PAGES));
19036
BLOGI(sc, "RX RCQ CHAIN fp %d paddr %#jx vaddr %p size 0x%zx\n", i,
19037
(uintmax_t)fp->rcq_dma.paddr, fp->rcq_dma.vaddr,
19038
(BCM_PAGE_SIZE * RCQ_NUM_PAGES));
19039
BLOGI(sc, "RX SGE CHAIN fp %d paddr %#jx vaddr %p size 0x%x\n", i,
19040
(uintmax_t)fp->rx_sge_dma.paddr, fp->rx_sge_dma.vaddr,
19041
(BCM_PAGE_SIZE * RX_SGE_NUM_PAGES));
19042
}
19043
}
19044
if(ilt != NULL ) {
19045
ilt_cli = &ilt->clients[1];
19046
if(ilt->lines != NULL) {
19047
for (i = ilt_cli->start; i <= ilt_cli->end; i++) {
19048
BLOGI(sc, "ECORE_ILT paddr %#jx vaddr %p size 0x%x\n",
19049
(uintmax_t)(((struct bxe_dma *)((&ilt->lines[i])->page))->paddr),
19050
((struct bxe_dma *)((&ilt->lines[i])->page))->vaddr, BCM_PAGE_SIZE);
19051
}
19052
}
19053
}
19054
19055
19056
cmd_offset = DMAE_REG_CMD_MEM;
19057
for (i = 0; i < 224; i++) {
19058
reg_addr = (cmd_offset +(i * 4));
19059
reg_val = REG_RD(sc, reg_addr);
19060
BLOGI(sc, "DMAE_REG_CMD_MEM i=%d reg_addr 0x%x reg_val 0x%08x\n",i,
19061
reg_addr, reg_val);
19062
}
19063
}
19064
19065
BLOGI(sc, "Collection of grcdump done\n");
19066
sc->grcdump_done = 1;
19067
return(rval);
19068
}
19069
19070
static int
19071
bxe_add_cdev(struct bxe_softc *sc)
19072
{
19073
sc->eeprom = malloc(BXE_EEPROM_MAX_DATA_LEN, M_DEVBUF, M_NOWAIT);
19074
19075
if (sc->eeprom == NULL) {
19076
BLOGW(sc, "Unable to alloc for eeprom size buffer\n");
19077
return (-1);
19078
}
19079
19080
sc->ioctl_dev = make_dev(&bxe_cdevsw,
19081
if_getdunit(sc->ifp),
19082
UID_ROOT,
19083
GID_WHEEL,
19084
0600,
19085
"%s",
19086
if_name(sc->ifp));
19087
19088
if (sc->ioctl_dev == NULL) {
19089
free(sc->eeprom, M_DEVBUF);
19090
sc->eeprom = NULL;
19091
return (-1);
19092
}
19093
19094
sc->ioctl_dev->si_drv1 = sc;
19095
19096
return (0);
19097
}
19098
19099
static void
19100
bxe_del_cdev(struct bxe_softc *sc)
19101
{
19102
if (sc->ioctl_dev != NULL)
19103
destroy_dev(sc->ioctl_dev);
19104
19105
if (sc->eeprom != NULL) {
19106
free(sc->eeprom, M_DEVBUF);
19107
sc->eeprom = NULL;
19108
}
19109
sc->ioctl_dev = NULL;
19110
19111
return;
19112
}
19113
19114
static bool bxe_is_nvram_accessible(struct bxe_softc *sc)
19115
{
19116
19117
if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
19118
return FALSE;
19119
19120
return TRUE;
19121
}
19122
19123
19124
static int
19125
bxe_wr_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19126
{
19127
int rval = 0;
19128
19129
if(!bxe_is_nvram_accessible(sc)) {
19130
BLOGW(sc, "Cannot access eeprom when interface is down\n");
19131
return (-EAGAIN);
19132
}
19133
rval = bxe_nvram_write(sc, offset, (uint8_t *)data, len);
19134
19135
19136
return (rval);
19137
}
19138
19139
static int
19140
bxe_rd_eeprom(struct bxe_softc *sc, void *data, uint32_t offset, uint32_t len)
19141
{
19142
int rval = 0;
19143
19144
if(!bxe_is_nvram_accessible(sc)) {
19145
BLOGW(sc, "Cannot access eeprom when interface is down\n");
19146
return (-EAGAIN);
19147
}
19148
rval = bxe_nvram_read(sc, offset, (uint8_t *)data, len);
19149
19150
return (rval);
19151
}
19152
19153
static int
19154
bxe_eeprom_rd_wr(struct bxe_softc *sc, bxe_eeprom_t *eeprom)
19155
{
19156
int rval = 0;
19157
19158
switch (eeprom->eeprom_cmd) {
19159
19160
case BXE_EEPROM_CMD_SET_EEPROM:
19161
19162
rval = copyin(eeprom->eeprom_data, sc->eeprom,
19163
eeprom->eeprom_data_len);
19164
19165
if (rval)
19166
break;
19167
19168
rval = bxe_wr_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19169
eeprom->eeprom_data_len);
19170
break;
19171
19172
case BXE_EEPROM_CMD_GET_EEPROM:
19173
19174
rval = bxe_rd_eeprom(sc, sc->eeprom, eeprom->eeprom_offset,
19175
eeprom->eeprom_data_len);
19176
19177
if (rval) {
19178
break;
19179
}
19180
19181
rval = copyout(sc->eeprom, eeprom->eeprom_data,
19182
eeprom->eeprom_data_len);
19183
break;
19184
19185
default:
19186
rval = EINVAL;
19187
break;
19188
}
19189
19190
if (rval) {
19191
BLOGW(sc, "ioctl cmd %d failed rval %d\n", eeprom->eeprom_cmd, rval);
19192
}
19193
19194
return (rval);
19195
}
19196
19197
static int
19198
bxe_get_settings(struct bxe_softc *sc, bxe_dev_setting_t *dev_p)
19199
{
19200
uint32_t ext_phy_config;
19201
int port = SC_PORT(sc);
19202
int cfg_idx = bxe_get_link_cfg_idx(sc);
19203
19204
dev_p->supported = sc->port.supported[cfg_idx] |
19205
(sc->port.supported[cfg_idx ^ 1] &
19206
(ELINK_SUPPORTED_TP | ELINK_SUPPORTED_FIBRE));
19207
dev_p->advertising = sc->port.advertising[cfg_idx];
19208
if(sc->link_params.phy[bxe_get_cur_phy_idx(sc)].media_type ==
19209
ELINK_ETH_PHY_SFP_1G_FIBER) {
19210
dev_p->supported = ~(ELINK_SUPPORTED_10000baseT_Full);
19211
dev_p->advertising &= ~(ADVERTISED_10000baseT_Full);
19212
}
19213
if ((sc->state == BXE_STATE_OPEN) && sc->link_vars.link_up &&
19214
!(sc->flags & BXE_MF_FUNC_DIS)) {
19215
dev_p->duplex = sc->link_vars.duplex;
19216
if (IS_MF(sc) && !BXE_NOMCP(sc))
19217
dev_p->speed = bxe_get_mf_speed(sc);
19218
else
19219
dev_p->speed = sc->link_vars.line_speed;
19220
} else {
19221
dev_p->duplex = DUPLEX_UNKNOWN;
19222
dev_p->speed = SPEED_UNKNOWN;
19223
}
19224
19225
dev_p->port = bxe_media_detect(sc);
19226
19227
ext_phy_config = SHMEM_RD(sc,
19228
dev_info.port_hw_config[port].external_phy_config);
19229
if((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) ==
19230
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
19231
dev_p->phy_address = sc->port.phy_addr;
19232
else if(((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19233
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
19234
((ext_phy_config & PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK) !=
19235
PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
19236
dev_p->phy_address = ELINK_XGXS_EXT_PHY_ADDR(ext_phy_config);
19237
else
19238
dev_p->phy_address = 0;
19239
19240
if(sc->link_params.req_line_speed[cfg_idx] == ELINK_SPEED_AUTO_NEG)
19241
dev_p->autoneg = AUTONEG_ENABLE;
19242
else
19243
dev_p->autoneg = AUTONEG_DISABLE;
19244
19245
19246
return 0;
19247
}
19248
19249
static int
19250
bxe_eioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
19251
struct thread *td)
19252
{
19253
struct bxe_softc *sc;
19254
int rval = 0;
19255
bxe_grcdump_t *dump = NULL;
19256
int grc_dump_size;
19257
bxe_drvinfo_t *drv_infop = NULL;
19258
bxe_dev_setting_t *dev_p;
19259
bxe_dev_setting_t dev_set;
19260
bxe_get_regs_t *reg_p;
19261
bxe_reg_rdw_t *reg_rdw_p;
19262
bxe_pcicfg_rdw_t *cfg_rdw_p;
19263
bxe_perm_mac_addr_t *mac_addr_p;
19264
19265
19266
if ((sc = (struct bxe_softc *)dev->si_drv1) == NULL)
19267
return ENXIO;
19268
19269
dump = (bxe_grcdump_t *)data;
19270
19271
switch(cmd) {
19272
19273
case BXE_GRC_DUMP_SIZE:
19274
dump->pci_func = sc->pcie_func;
19275
dump->grcdump_size =
19276
(bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19277
sizeof(struct dump_header);
19278
break;
19279
19280
case BXE_GRC_DUMP:
19281
19282
grc_dump_size = (bxe_get_total_regs_len32(sc) * sizeof(uint32_t)) +
19283
sizeof(struct dump_header);
19284
if ((!sc->trigger_grcdump) || (dump->grcdump == NULL) ||
19285
(dump->grcdump_size < grc_dump_size)) {
19286
rval = EINVAL;
19287
break;
19288
}
19289
19290
if((sc->trigger_grcdump) && (!sc->grcdump_done) &&
19291
(!sc->grcdump_started)) {
19292
rval = bxe_grc_dump(sc);
19293
}
19294
19295
if((!rval) && (sc->grcdump_done) && (sc->grcdump_started) &&
19296
(sc->grc_dump != NULL)) {
19297
dump->grcdump_dwords = grc_dump_size >> 2;
19298
rval = copyout(sc->grc_dump, dump->grcdump, grc_dump_size);
19299
free(sc->grc_dump, M_DEVBUF);
19300
sc->grc_dump = NULL;
19301
sc->grcdump_started = 0;
19302
sc->grcdump_done = 0;
19303
}
19304
19305
break;
19306
19307
case BXE_DRV_INFO:
19308
drv_infop = (bxe_drvinfo_t *)data;
19309
snprintf(drv_infop->drv_name, BXE_DRV_NAME_LENGTH, "%s", "bxe");
19310
snprintf(drv_infop->drv_version, BXE_DRV_VERSION_LENGTH, "v:%s",
19311
BXE_DRIVER_VERSION);
19312
snprintf(drv_infop->mfw_version, BXE_MFW_VERSION_LENGTH, "%s",
19313
sc->devinfo.bc_ver_str);
19314
snprintf(drv_infop->stormfw_version, BXE_STORMFW_VERSION_LENGTH,
19315
"%s", sc->fw_ver_str);
19316
drv_infop->eeprom_dump_len = sc->devinfo.flash_size;
19317
drv_infop->reg_dump_len =
19318
(bxe_get_total_regs_len32(sc) * sizeof(uint32_t))
19319
+ sizeof(struct dump_header);
19320
snprintf(drv_infop->bus_info, BXE_BUS_INFO_LENGTH, "%d:%d:%d",
19321
sc->pcie_bus, sc->pcie_device, sc->pcie_func);
19322
break;
19323
19324
case BXE_DEV_SETTING:
19325
dev_p = (bxe_dev_setting_t *)data;
19326
bxe_get_settings(sc, &dev_set);
19327
dev_p->supported = dev_set.supported;
19328
dev_p->advertising = dev_set.advertising;
19329
dev_p->speed = dev_set.speed;
19330
dev_p->duplex = dev_set.duplex;
19331
dev_p->port = dev_set.port;
19332
dev_p->phy_address = dev_set.phy_address;
19333
dev_p->autoneg = dev_set.autoneg;
19334
19335
break;
19336
19337
case BXE_GET_REGS:
19338
19339
reg_p = (bxe_get_regs_t *)data;
19340
grc_dump_size = reg_p->reg_buf_len;
19341
19342
if((!sc->grcdump_done) && (!sc->grcdump_started)) {
19343
bxe_grc_dump(sc);
19344
}
19345
if((sc->grcdump_done) && (sc->grcdump_started) &&
19346
(sc->grc_dump != NULL)) {
19347
rval = copyout(sc->grc_dump, reg_p->reg_buf, grc_dump_size);
19348
free(sc->grc_dump, M_DEVBUF);
19349
sc->grc_dump = NULL;
19350
sc->grcdump_started = 0;
19351
sc->grcdump_done = 0;
19352
}
19353
19354
break;
19355
19356
case BXE_RDW_REG:
19357
reg_rdw_p = (bxe_reg_rdw_t *)data;
19358
if((reg_rdw_p->reg_cmd == BXE_READ_REG_CMD) &&
19359
(reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19360
reg_rdw_p->reg_val = REG_RD(sc, reg_rdw_p->reg_id);
19361
19362
if((reg_rdw_p->reg_cmd == BXE_WRITE_REG_CMD) &&
19363
(reg_rdw_p->reg_access_type == BXE_REG_ACCESS_DIRECT))
19364
REG_WR(sc, reg_rdw_p->reg_id, reg_rdw_p->reg_val);
19365
19366
break;
19367
19368
case BXE_RDW_PCICFG:
19369
cfg_rdw_p = (bxe_pcicfg_rdw_t *)data;
19370
if(cfg_rdw_p->cfg_cmd == BXE_READ_PCICFG) {
19371
19372
cfg_rdw_p->cfg_val = pci_read_config(sc->dev, cfg_rdw_p->cfg_id,
19373
cfg_rdw_p->cfg_width);
19374
19375
} else if(cfg_rdw_p->cfg_cmd == BXE_WRITE_PCICFG) {
19376
pci_write_config(sc->dev, cfg_rdw_p->cfg_id, cfg_rdw_p->cfg_val,
19377
cfg_rdw_p->cfg_width);
19378
} else {
19379
BLOGW(sc, "BXE_RDW_PCICFG ioctl wrong cmd passed\n");
19380
}
19381
break;
19382
19383
case BXE_MAC_ADDR:
19384
mac_addr_p = (bxe_perm_mac_addr_t *)data;
19385
snprintf(mac_addr_p->mac_addr_str, sizeof(sc->mac_addr_str), "%s",
19386
sc->mac_addr_str);
19387
break;
19388
19389
case BXE_EEPROM:
19390
rval = bxe_eeprom_rd_wr(sc, (bxe_eeprom_t *)data);
19391
break;
19392
19393
19394
default:
19395
break;
19396
}
19397
19398
return (rval);
19399
}
19400
19401
#ifdef DEBUGNET
19402
static void
19403
bxe_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize)
19404
{
19405
struct bxe_softc *sc;
19406
19407
sc = if_getsoftc(ifp);
19408
BXE_CORE_LOCK(sc);
19409
*nrxr = sc->num_queues;
19410
*ncl = DEBUGNET_MAX_IN_FLIGHT;
19411
*clsize = sc->fp[0].mbuf_alloc_size;
19412
BXE_CORE_UNLOCK(sc);
19413
}
19414
19415
static void
19416
bxe_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused)
19417
{
19418
}
19419
19420
static int
19421
bxe_debugnet_transmit(if_t ifp, struct mbuf *m)
19422
{
19423
struct bxe_softc *sc;
19424
int error;
19425
19426
sc = if_getsoftc(ifp);
19427
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
19428
IFF_DRV_RUNNING || !sc->link_vars.link_up)
19429
return (ENOENT);
19430
19431
error = bxe_tx_encap(&sc->fp[0], &m);
19432
if (error != 0 && m != NULL)
19433
m_freem(m);
19434
return (error);
19435
}
19436
19437
static int
19438
bxe_debugnet_poll(if_t ifp, int count)
19439
{
19440
struct bxe_softc *sc;
19441
int i;
19442
19443
sc = if_getsoftc(ifp);
19444
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 ||
19445
!sc->link_vars.link_up)
19446
return (ENOENT);
19447
19448
for (i = 0; i < sc->num_queues; i++)
19449
(void)bxe_rxeof(sc, &sc->fp[i]);
19450
(void)bxe_txeof(sc, &sc->fp[0]);
19451
return (0);
19452
}
19453
#endif /* DEBUGNET */
19454
19455