Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/bxe/bxe.h
39507 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
5
*
6
* Redistribution and use in source and binary forms, with or without
7
* modification, are permitted provided that the following conditions
8
* are met:
9
*
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
17
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26
* THE POSSIBILITY OF SUCH DAMAGE.
27
*/
28
29
#ifndef __BXE_H__
30
#define __BXE_H__
31
32
#include <sys/param.h>
33
#include <sys/kernel.h>
34
#include <sys/systm.h>
35
#include <sys/lock.h>
36
#include <sys/mutex.h>
37
#include <sys/sx.h>
38
#include <sys/module.h>
39
#include <sys/endian.h>
40
#include <sys/types.h>
41
#include <sys/malloc.h>
42
#include <sys/kobj.h>
43
#include <sys/bus.h>
44
#include <sys/rman.h>
45
#include <sys/socket.h>
46
#include <sys/sockio.h>
47
#include <sys/sysctl.h>
48
#include <sys/smp.h>
49
#include <sys/bitstring.h>
50
#include <sys/limits.h>
51
#include <sys/queue.h>
52
#include <sys/taskqueue.h>
53
#include <contrib/zlib/zlib.h>
54
55
#include <net/debugnet.h>
56
#include <net/if.h>
57
#include <net/if_types.h>
58
#include <net/if_arp.h>
59
#include <net/ethernet.h>
60
#include <net/if_dl.h>
61
#include <net/if_var.h>
62
#include <net/if_media.h>
63
#include <net/if_vlan_var.h>
64
#include <net/bpf.h>
65
66
#include <netinet/in.h>
67
#include <netinet/ip.h>
68
#include <netinet/ip6.h>
69
#include <netinet/tcp.h>
70
#include <netinet/udp.h>
71
72
#include <dev/pci/pcireg.h>
73
#include <dev/pci/pcivar.h>
74
75
#include <machine/atomic.h>
76
#include <machine/resource.h>
77
#include <machine/endian.h>
78
#include <machine/bus.h>
79
#include <machine/in_cksum.h>
80
81
#include "device_if.h"
82
#include "bus_if.h"
83
#include "pci_if.h"
84
85
#if _BYTE_ORDER == _LITTLE_ENDIAN
86
#ifndef LITTLE_ENDIAN
87
#define LITTLE_ENDIAN
88
#endif
89
#ifndef __LITTLE_ENDIAN
90
#define __LITTLE_ENDIAN
91
#endif
92
#undef BIG_ENDIAN
93
#undef __BIG_ENDIAN
94
#else /* _BIG_ENDIAN */
95
#ifndef BIG_ENDIAN
96
#define BIG_ENDIAN
97
#endif
98
#ifndef __BIG_ENDIAN
99
#define __BIG_ENDIAN
100
#endif
101
#undef LITTLE_ENDIAN
102
#undef __LITTLE_ENDIAN
103
#endif
104
105
#include "ecore_mfw_req.h"
106
#include "ecore_fw_defs.h"
107
#include "ecore_hsi.h"
108
#include "ecore_reg.h"
109
#include "bxe_dcb.h"
110
#include "bxe_stats.h"
111
112
#include "bxe_elink.h"
113
114
#define VF_MAC_CREDIT_CNT 0
115
#define VF_VLAN_CREDIT_CNT (0)
116
117
#ifndef ARRAY_SIZE
118
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
119
#endif
120
#ifndef ARRSIZE
121
#define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
122
#endif
123
#ifndef DIV_ROUND_UP
124
#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
125
#endif
126
#ifndef roundup
127
#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
128
#endif
129
130
#include "ecore_sp.h"
131
132
#define BRCM_VENDORID 0x14e4
133
#define QLOGIC_VENDORID 0x1077
134
#define PCI_ANY_ID (uint16_t)(~0U)
135
136
struct bxe_device_type
137
{
138
uint16_t bxe_vid;
139
uint16_t bxe_did;
140
uint16_t bxe_svid;
141
uint16_t bxe_sdid;
142
char *bxe_name;
143
};
144
145
#define BCM_PAGE_SHIFT 12
146
#define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT)
147
#define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1))
148
#define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
149
150
#if BCM_PAGE_SIZE != 4096
151
#error Page sizes other than 4KB are unsupported!
152
#endif
153
154
#if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
155
#define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
156
#define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
157
#else
158
#define U64_LO(addr) ((uint32_t)(addr))
159
#define U64_HI(addr) (0)
160
#endif
161
#define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
162
163
#define SET_FLAG(value, mask, flag) \
164
do { \
165
(value) &= ~(mask); \
166
(value) |= ((flag) << (mask##_SHIFT)); \
167
} while (0)
168
169
#define GET_FLAG(value, mask) \
170
(((value) & (mask)) >> (mask##_SHIFT))
171
172
#define GET_FIELD(value, fname) \
173
(((value) & (fname##_MASK)) >> (fname##_SHIFT))
174
175
#define BXE_MAX_SEGMENTS 12 /* 13-1 for parsing buffer */
176
#define BXE_TSO_MAX_SEGMENTS 32
177
#define BXE_TSO_MAX_SIZE (65535 + sizeof(struct ether_vlan_header))
178
#define BXE_TSO_MAX_SEG_SIZE 4096
179
180
/* dropless fc FW/HW related params */
181
#define BRB_SIZE(sc) (CHIP_IS_E3(sc) ? 1024 : 512)
182
#define MAX_AGG_QS(sc) (CHIP_IS_E1(sc) ? \
183
ETH_MAX_AGGREGATION_QUEUES_E1 : \
184
ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
185
#define FW_DROP_LEVEL(sc) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
186
#define FW_PREFETCH_CNT 16
187
#define DROPLESS_FC_HEADROOM 100
188
189
/******************/
190
/* RX SGE defines */
191
/******************/
192
193
#define RX_SGE_NUM_PAGES 2 /* must be a power of 2 */
194
#define RX_SGE_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
195
#define RX_SGE_NEXT_PAGE_DESC_CNT 2
196
#define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
197
#define RX_SGE_PER_PAGE_MASK (RX_SGE_TOTAL_PER_PAGE - 1)
198
#define RX_SGE_TOTAL (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
199
#define RX_SGE_USABLE (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
200
#define RX_SGE_MAX (RX_SGE_TOTAL - 1)
201
#define RX_SGE(x) ((x) & RX_SGE_MAX)
202
203
#define RX_SGE_NEXT(x) \
204
((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
205
? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
206
207
#define RX_SGE_MASK_ELEM_SZ 64
208
#define RX_SGE_MASK_ELEM_SHIFT 6
209
#define RX_SGE_MASK_ELEM_MASK ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
210
211
/*
212
* Creates a bitmask of all ones in less significant bits.
213
* idx - index of the most significant bit in the created mask.
214
*/
215
#define RX_SGE_ONES_MASK(idx) \
216
(((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
217
#define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
218
219
/* Number of uint64_t elements in SGE mask array. */
220
#define RX_SGE_MASK_LEN \
221
((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
222
#define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1)
223
#define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
224
225
/*
226
* dropless fc calculations for SGEs
227
* Number of required SGEs is the sum of two:
228
* 1. Number of possible opened aggregations (next packet for
229
* these aggregations will probably consume SGE immidiatelly)
230
* 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
231
* after placement on BD for new TPA aggregation)
232
* Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
233
*/
234
#define NUM_SGE_REQ(sc) \
235
(MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
236
#define NUM_SGE_PG_REQ(sc) \
237
((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
238
#define SGE_TH_LO(sc) \
239
(NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
240
#define SGE_TH_HI(sc) \
241
(SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
242
243
#define PAGES_PER_SGE_SHIFT 0
244
#define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT)
245
#define SGE_PAGE_SIZE BCM_PAGE_SIZE
246
#define SGE_PAGE_SHIFT BCM_PAGE_SHIFT
247
#define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
248
#define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE)
249
#define TPA_AGG_SIZE min((8 * SGE_PAGES), 0xffff)
250
251
/*****************/
252
/* TX BD defines */
253
/*****************/
254
255
#define TX_BD_NUM_PAGES 16 /* must be a power of 2 */
256
#define TX_BD_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
257
#define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
258
#define TX_BD_TOTAL (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
259
#define TX_BD_USABLE (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
260
#define TX_BD_MAX (TX_BD_TOTAL - 1)
261
262
#define TX_BD_NEXT(x) \
263
((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
264
((x) + 2) : ((x) + 1))
265
#define TX_BD(x) ((x) & TX_BD_MAX)
266
#define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
267
#define TX_BD_IDX(x) ((x) & TX_BD_USABLE_PER_PAGE)
268
269
/*
270
* Trigger pending transmits when the number of available BDs is greater
271
* than 1/8 of the total number of usable BDs.
272
*/
273
#define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
274
#define BXE_TX_TIMEOUT 5
275
276
/*****************/
277
/* RX BD defines */
278
/*****************/
279
280
#define RX_BD_NUM_PAGES 8 /* power of 2 */
281
#define RX_BD_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
282
#define RX_BD_NEXT_PAGE_DESC_CNT 2
283
#define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
284
#define RX_BD_PER_PAGE_MASK (RX_BD_TOTAL_PER_PAGE - 1)
285
#define RX_BD_TOTAL (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
286
#define RX_BD_USABLE (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
287
#define RX_BD_MAX (RX_BD_TOTAL - 1)
288
289
#define RX_BD_NEXT(x) \
290
((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
291
((x) + 3) : ((x) + 1))
292
#define RX_BD(x) ((x) & RX_BD_MAX)
293
#define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
294
#define RX_BD_IDX(x) ((x) & RX_BD_PER_PAGE_MASK)
295
296
/*
297
* dropless fc calculations for BDs
298
* Number of BDs should be as number of buffers in BRB:
299
* Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
300
* "next" elements on each page
301
*/
302
#define NUM_BD_REQ(sc) \
303
BRB_SIZE(sc)
304
#define NUM_BD_PG_REQ(sc) \
305
((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
306
#define BD_TH_LO(sc) \
307
(NUM_BD_REQ(sc) + \
308
NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
309
FW_DROP_LEVEL(sc))
310
#define BD_TH_HI(sc) \
311
(BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
312
#define MIN_RX_AVAIL(sc) \
313
((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
314
#define MIN_RX_SIZE_TPA_HW(sc) \
315
(CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 : \
316
ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
317
#define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
318
#define MIN_RX_SIZE_TPA(sc) \
319
(max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
320
#define MIN_RX_SIZE_NONTPA(sc) \
321
(max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
322
323
/***************/
324
/* RCQ defines */
325
/***************/
326
327
/*
328
* As long as CQE is X times bigger than BD entry we have to allocate X times
329
* more pages for CQ ring in order to keep it balanced with BD ring
330
*/
331
#define CQE_BD_REL (sizeof(union eth_rx_cqe) / \
332
sizeof(struct eth_rx_bd))
333
#define RCQ_NUM_PAGES (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
334
#define RCQ_TOTAL_PER_PAGE (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
335
#define RCQ_NEXT_PAGE_DESC_CNT 1
336
#define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
337
#define RCQ_TOTAL (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
338
#define RCQ_USABLE (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
339
#define RCQ_MAX (RCQ_TOTAL - 1)
340
341
#define RCQ_NEXT(x) \
342
((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
343
((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
344
#define RCQ(x) ((x) & RCQ_MAX)
345
#define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
346
#define RCQ_IDX(x) ((x) & RCQ_USABLE_PER_PAGE)
347
348
/*
349
* dropless fc calculations for RCQs
350
* Number of RCQs should be as number of buffers in BRB:
351
* Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
352
* "next" elements on each page
353
*/
354
#define NUM_RCQ_REQ(sc) \
355
BRB_SIZE(sc)
356
#define NUM_RCQ_PG_REQ(sc) \
357
((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
358
#define RCQ_TH_LO(sc) \
359
(NUM_RCQ_REQ(sc) + \
360
NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
361
FW_DROP_LEVEL(sc))
362
#define RCQ_TH_HI(sc) \
363
(RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
364
365
/* This is needed for determening of last_max */
366
#define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
367
368
#define __SGE_MASK_SET_BIT(el, bit) \
369
do { \
370
(el) = ((el) | ((uint64_t)0x1 << (bit))); \
371
} while (0)
372
373
#define __SGE_MASK_CLEAR_BIT(el, bit) \
374
do { \
375
(el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
376
} while (0)
377
378
#define SGE_MASK_SET_BIT(fp, idx) \
379
__SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
380
((idx) & RX_SGE_MASK_ELEM_MASK))
381
382
#define SGE_MASK_CLEAR_BIT(fp, idx) \
383
__SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
384
((idx) & RX_SGE_MASK_ELEM_MASK))
385
386
/* Load / Unload modes */
387
#define LOAD_NORMAL 0
388
#define LOAD_OPEN 1
389
#define LOAD_DIAG 2
390
#define LOAD_LOOPBACK_EXT 3
391
#define UNLOAD_NORMAL 0
392
#define UNLOAD_CLOSE 1
393
#define UNLOAD_RECOVERY 2
394
395
/* Some constants... */
396
//#define MAX_PATH_NUM 2
397
//#define E2_MAX_NUM_OF_VFS 64
398
//#define E1H_FUNC_MAX 8
399
//#define E2_FUNC_MAX 4 /* per path */
400
#define MAX_VNIC_NUM 4
401
#define MAX_FUNC_NUM 8 /* common to all chips */
402
//#define MAX_NDSB HC_SB_MAX_SB_E2 /* max non-default status block */
403
#define MAX_RSS_CHAINS 16 /* a constant for HW limit */
404
#define MAX_MSI_VECTOR 8 /* a constant for HW limit */
405
406
#define ILT_NUM_PAGE_ENTRIES 3072
407
/*
408
* 57710/11 we use whole table since we have 8 functions.
409
* 57712 we have only 4 functions, but use same size per func, so only half
410
* of the table is used.
411
*/
412
#define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES / 8)
413
#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
414
/*
415
* the phys address is shifted right 12 bits and has an added
416
* 1=valid bit added to the 53rd bit
417
* then since this is a wide register(TM)
418
* we split it into two 32 bit writes
419
*/
420
#define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
421
#define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
422
423
/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
424
#define ETH_HLEN 14
425
#define ETH_OVERHEAD (ETH_HLEN + 8 + 8)
426
#define ETH_MIN_PACKET_SIZE 60
427
#define ETH_MAX_PACKET_SIZE ETHERMTU /* 1500 */
428
#define ETH_MAX_JUMBO_PACKET_SIZE 9600
429
/* TCP with Timestamp Option (32) + IPv6 (40) */
430
#define ETH_MAX_TPA_HEADER_SIZE 72
431
432
/* max supported alignment is 256 (8 shift) */
433
//#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
434
#define BXE_RX_ALIGN_SHIFT 8
435
/* FW uses 2 cache lines alignment for start packet and size */
436
#define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
437
#define BXE_FW_RX_ALIGN_END (1 << BXE_RX_ALIGN_SHIFT)
438
439
#define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
440
#define BXE_SET_ERROR_BIT(sc, error) \
441
{ \
442
(sc)->error_status |= (error); \
443
}
444
445
struct bxe_bar {
446
struct resource *resource;
447
int rid;
448
bus_space_tag_t tag;
449
bus_space_handle_t handle;
450
vm_offset_t kva;
451
};
452
453
struct bxe_intr {
454
struct resource *resource;
455
int rid;
456
void *tag;
457
};
458
459
/* Used to manage DMA allocations. */
460
struct bxe_dma {
461
struct bxe_softc *sc;
462
bus_addr_t paddr;
463
void *vaddr;
464
bus_dma_tag_t tag;
465
bus_dmamap_t map;
466
bus_dma_segment_t seg;
467
bus_size_t size;
468
int nseg;
469
char msg[32];
470
};
471
472
/* attn group wiring */
473
#define MAX_DYNAMIC_ATTN_GRPS 8
474
475
struct attn_route {
476
uint32_t sig[5];
477
};
478
479
struct iro {
480
uint32_t base;
481
uint16_t m1;
482
uint16_t m2;
483
uint16_t m3;
484
uint16_t size;
485
};
486
487
union bxe_host_hc_status_block {
488
/* pointer to fp status block e2 */
489
struct host_hc_status_block_e2 *e2_sb;
490
/* pointer to fp status block e1x */
491
struct host_hc_status_block_e1x *e1x_sb;
492
};
493
494
union bxe_db_prod {
495
struct doorbell_set_prod data;
496
uint32_t raw;
497
};
498
499
struct bxe_sw_tx_bd {
500
struct mbuf *m;
501
bus_dmamap_t m_map;
502
uint16_t first_bd;
503
uint8_t flags;
504
/* set on the first BD descriptor when there is a split BD */
505
#define BXE_TSO_SPLIT_BD (1 << 0)
506
};
507
508
struct bxe_sw_rx_bd {
509
struct mbuf *m;
510
bus_dmamap_t m_map;
511
};
512
513
struct bxe_sw_tpa_info {
514
struct bxe_sw_rx_bd bd;
515
bus_dma_segment_t seg;
516
uint8_t state;
517
#define BXE_TPA_STATE_START 1
518
#define BXE_TPA_STATE_STOP 2
519
uint8_t placement_offset;
520
uint16_t parsing_flags;
521
uint16_t vlan_tag;
522
uint16_t len_on_bd;
523
};
524
525
/*
526
* This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
527
* instances of the fastpath structure when using multiple queues.
528
*/
529
struct bxe_fastpath {
530
/* pointer back to parent structure */
531
struct bxe_softc *sc;
532
533
struct mtx tx_mtx;
534
char tx_mtx_name[32];
535
struct mtx rx_mtx;
536
char rx_mtx_name[32];
537
538
#define BXE_FP_TX_LOCK(fp) mtx_lock(&fp->tx_mtx)
539
#define BXE_FP_TX_UNLOCK(fp) mtx_unlock(&fp->tx_mtx)
540
#define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
541
#define BXE_FP_TX_TRYLOCK(fp) mtx_trylock(&fp->tx_mtx)
542
543
#define BXE_FP_RX_LOCK(fp) mtx_lock(&fp->rx_mtx)
544
#define BXE_FP_RX_UNLOCK(fp) mtx_unlock(&fp->rx_mtx)
545
#define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
546
547
/* status block */
548
struct bxe_dma sb_dma;
549
union bxe_host_hc_status_block status_block;
550
551
/* transmit chain (tx bds) */
552
struct bxe_dma tx_dma;
553
union eth_tx_bd_types *tx_chain;
554
555
/* receive chain (rx bds) */
556
struct bxe_dma rx_dma;
557
struct eth_rx_bd *rx_chain;
558
559
/* receive completion queue chain (rcq bds) */
560
struct bxe_dma rcq_dma;
561
union eth_rx_cqe *rcq_chain;
562
563
/* receive scatter/gather entry chain (for TPA) */
564
struct bxe_dma rx_sge_dma;
565
struct eth_rx_sge *rx_sge_chain;
566
567
/* tx mbufs */
568
bus_dma_tag_t tx_mbuf_tag;
569
struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
570
571
/* rx mbufs */
572
bus_dma_tag_t rx_mbuf_tag;
573
struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
574
bus_dmamap_t rx_mbuf_spare_map;
575
576
/* rx sge mbufs */
577
bus_dma_tag_t rx_sge_mbuf_tag;
578
struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
579
bus_dmamap_t rx_sge_mbuf_spare_map;
580
581
/* rx tpa mbufs (use the larger size for TPA queue length) */
582
int tpa_enable; /* disabled per fastpath upon error */
583
struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
584
bus_dmamap_t rx_tpa_info_mbuf_spare_map;
585
uint64_t rx_tpa_queue_used;
586
587
uint16_t *sb_index_values;
588
uint16_t *sb_running_index;
589
uint32_t ustorm_rx_prods_offset;
590
591
uint8_t igu_sb_id; /* status block number in HW */
592
uint8_t fw_sb_id; /* status block number in FW */
593
594
uint32_t rx_buf_size;
595
int mbuf_alloc_size;
596
597
int state;
598
#define BXE_FP_STATE_CLOSED 0x01
599
#define BXE_FP_STATE_IRQ 0x02
600
#define BXE_FP_STATE_OPENING 0x04
601
#define BXE_FP_STATE_OPEN 0x08
602
#define BXE_FP_STATE_HALTING 0x10
603
#define BXE_FP_STATE_HALTED 0x20
604
605
/* reference back to this fastpath queue number */
606
uint8_t index; /* this is also the 'cid' */
607
#define FP_IDX(fp) (fp->index)
608
609
/* interrupt taskqueue (fast) */
610
struct task tq_task;
611
struct taskqueue *tq;
612
char tq_name[32];
613
614
struct task tx_task;
615
struct timeout_task tx_timeout_task;
616
617
/* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
618
uint8_t cl_id;
619
#define FP_CL_ID(fp) (fp->cl_id)
620
uint8_t cl_qzone_id;
621
622
uint16_t fp_hc_idx;
623
624
/* driver copy of the receive buffer descriptor prod/cons indices */
625
uint16_t rx_bd_prod;
626
uint16_t rx_bd_cons;
627
628
/* driver copy of the receive completion queue prod/cons indices */
629
uint16_t rx_cq_prod;
630
uint16_t rx_cq_cons;
631
632
union bxe_db_prod tx_db;
633
634
/* Transmit packet producer index (used in eth_tx_bd). */
635
uint16_t tx_pkt_prod;
636
uint16_t tx_pkt_cons;
637
638
/* Transmit buffer descriptor producer index. */
639
uint16_t tx_bd_prod;
640
uint16_t tx_bd_cons;
641
642
uint64_t sge_mask[RX_SGE_MASK_LEN];
643
uint16_t rx_sge_prod;
644
645
struct tstorm_per_queue_stats old_tclient;
646
struct ustorm_per_queue_stats old_uclient;
647
struct xstorm_per_queue_stats old_xclient;
648
struct bxe_eth_q_stats eth_q_stats;
649
struct bxe_eth_q_stats_old eth_q_stats_old;
650
651
/* Pointer to the receive consumer in the status block */
652
uint16_t *rx_cq_cons_sb;
653
654
/* Pointer to the transmit consumer in the status block */
655
uint16_t *tx_cons_sb;
656
657
/* transmit timeout until chip reset */
658
int watchdog_timer;
659
660
/* Free/used buffer descriptor counters. */
661
//uint16_t used_tx_bd;
662
663
/* Last maximal completed SGE */
664
uint16_t last_max_sge;
665
666
//uint16_t rx_sge_free_idx;
667
668
//uint8_t segs;
669
670
#define BXE_BR_SIZE 4096
671
struct buf_ring *tx_br;
672
}; /* struct bxe_fastpath */
673
674
/* sriov XXX */
675
#define BXE_MAX_NUM_OF_VFS 64
676
#define BXE_VF_CID_WND 0
677
#define BXE_CIDS_PER_VF (1 << BXE_VF_CID_WND)
678
#define BXE_CLIENTS_PER_VF 1
679
#define BXE_FIRST_VF_CID 256
680
#define BXE_VF_CIDS (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
681
#define BXE_VF_ID_INVALID 0xFF
682
#define IS_SRIOV(sc) 0
683
684
#define GET_NUM_VFS_PER_PATH(sc) 0
685
#define GET_NUM_VFS_PER_PF(sc) 0
686
687
/* maximum number of fast-path interrupt contexts */
688
#define FP_SB_MAX_E1x 16
689
#define FP_SB_MAX_E2 HC_SB_MAX_SB_E2
690
691
union cdu_context {
692
struct eth_context eth;
693
char pad[1024];
694
};
695
696
/* CDU host DB constants */
697
#define CDU_ILT_PAGE_SZ_HW 2
698
#define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
699
#define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
700
701
#define CNIC_ISCSI_CID_MAX 256
702
#define CNIC_FCOE_CID_MAX 2048
703
#define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
704
#define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
705
706
#define QM_ILT_PAGE_SZ_HW 0
707
#define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
708
#define QM_CID_ROUND 1024
709
710
/* TM (timers) host DB constants */
711
#define TM_ILT_PAGE_SZ_HW 0
712
#define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
713
/*#define TM_CONN_NUM (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
714
#define TM_CONN_NUM 1024
715
#define TM_ILT_SZ (8 * TM_CONN_NUM)
716
#define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
717
718
/* SRC (Searcher) host DB constants */
719
#define SRC_ILT_PAGE_SZ_HW 0
720
#define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
721
#define SRC_HASH_BITS 10
722
#define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */
723
#define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM)
724
#define SRC_T2_SZ SRC_ILT_SZ
725
#define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
726
727
struct hw_context {
728
struct bxe_dma vcxt_dma;
729
union cdu_context *vcxt;
730
//bus_addr_t cxt_mapping;
731
size_t size;
732
};
733
734
#define SM_RX_ID 0
735
#define SM_TX_ID 1
736
737
/* defines for multiple tx priority indices */
738
#define FIRST_TX_ONLY_COS_INDEX 1
739
#define FIRST_TX_COS_INDEX 0
740
741
#define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
742
743
#define HC_INDEX_ETH_RX_CQ_CONS 1
744
#define HC_INDEX_OOO_TX_CQ_CONS 4
745
#define HC_INDEX_ETH_TX_CQ_CONS_COS0 5
746
#define HC_INDEX_ETH_TX_CQ_CONS_COS1 6
747
#define HC_INDEX_ETH_TX_CQ_CONS_COS2 7
748
#define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
749
750
/* congestion management fairness mode */
751
#define CMNG_FNS_NONE 0
752
#define CMNG_FNS_MINMAX 1
753
754
/* CMNG constants, as derived from system spec calculations */
755
/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
756
#define DEF_MIN_RATE 100
757
/* resolution of the rate shaping timer - 400 usec */
758
#define RS_PERIODIC_TIMEOUT_USEC 400
759
/* number of bytes in single QM arbitration cycle -
760
* coefficient for calculating the fairness timer */
761
#define QM_ARB_BYTES 160000
762
/* resolution of Min algorithm 1:100 */
763
#define MIN_RES 100
764
/* how many bytes above threshold for the minimal credit of Min algorithm*/
765
#define MIN_ABOVE_THRESH 32768
766
/* fairness algorithm integration time coefficient -
767
* for calculating the actual Tfair */
768
#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
769
/* memory of fairness algorithm - 2 cycles */
770
#define FAIR_MEM 2
771
772
#define HC_SEG_ACCESS_DEF 0 /* Driver decision 0-3 */
773
#define HC_SEG_ACCESS_ATTN 4
774
#define HC_SEG_ACCESS_NORM 0 /* Driver decision 0-1 */
775
776
/*
777
* The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
778
* control by the number of fast-path status blocks supported by the
779
* device (HW/FW). Each fast-path status block (FP-SB) aka non-default
780
* status block represents an independent interrupts context that can
781
* serve a regular L2 networking queue. However special L2 queues such
782
* as the FCoE queue do not require a FP-SB and other components like
783
* the CNIC may consume FP-SB reducing the number of possible L2 queues
784
*
785
* If the maximum number of FP-SB available is X then:
786
* a. If CNIC is supported it consumes 1 FP-SB thus the max number of
787
* regular L2 queues is Y=X-1
788
* b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
789
* c. If the FCoE L2 queue is supported the actual number of L2 queues
790
* is Y+1
791
* d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
792
* slow-path interrupts) or Y+2 if CNIC is supported (one additional
793
* FP interrupt context for the CNIC).
794
* e. The number of HW context (CID count) is always X or X+1 if FCoE
795
* L2 queue is supported. the cid for the FCoE L2 queue is always X.
796
*
797
* So this is quite simple for now as no ULPs are supported yet. :-)
798
*/
799
#define BXE_NUM_QUEUES(sc) ((sc)->num_queues)
800
#define BXE_NUM_ETH_QUEUES(sc) BXE_NUM_QUEUES(sc)
801
#define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
802
#define BXE_NUM_RX_QUEUES(sc) BXE_NUM_QUEUES(sc)
803
804
#define FOR_EACH_QUEUE(sc, var) \
805
for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
806
807
#define FOR_EACH_NONDEFAULT_QUEUE(sc, var) \
808
for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
809
810
#define FOR_EACH_ETH_QUEUE(sc, var) \
811
for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
812
813
#define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var) \
814
for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
815
816
#define FOR_EACH_COS_IN_TX_QUEUE(sc, var) \
817
for ((var) = 0; (var) < (sc)->max_cos; (var)++)
818
819
#define FOR_EACH_CNIC_QUEUE(sc, var) \
820
for ((var) = BXE_NUM_ETH_QUEUES(sc); \
821
(var) < BXE_NUM_QUEUES(sc); \
822
(var)++)
823
824
enum {
825
OOO_IDX_OFFSET,
826
FCOE_IDX_OFFSET,
827
FWD_IDX_OFFSET,
828
};
829
830
#define FCOE_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
831
#define bxe_fcoe_fp(sc) (&sc->fp[FCOE_IDX(sc)])
832
#define bxe_fcoe(sc, var) (bxe_fcoe_fp(sc)->var)
833
#define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
834
#define bxe_fcoe_sp_obj(sc, var) (bxe_fcoe_inner_sp_obj(sc)->var)
835
#define bxe_fcoe_tx(sc, var) (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
836
837
#define OOO_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
838
#define bxe_ooo_fp(sc) (&sc->fp[OOO_IDX(sc)])
839
#define bxe_ooo(sc, var) (bxe_ooo_fp(sc)->var)
840
#define bxe_ooo_inner_sp_obj(sc) (&sc->sp_objs[OOO_IDX(sc)])
841
#define bxe_ooo_sp_obj(sc, var) (bxe_ooo_inner_sp_obj(sc)->var)
842
843
#define FWD_IDX(sc) (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
844
#define bxe_fwd_fp(sc) (&sc->fp[FWD_IDX(sc)])
845
#define bxe_fwd(sc, var) (bxe_fwd_fp(sc)->var)
846
#define bxe_fwd_inner_sp_obj(sc) (&sc->sp_objs[FWD_IDX(sc)])
847
#define bxe_fwd_sp_obj(sc, var) (bxe_fwd_inner_sp_obj(sc)->var)
848
#define bxe_fwd_txdata(fp) (fp->txdata_ptr[FIRST_TX_COS_INDEX])
849
850
#define IS_ETH_FP(fp) ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
851
#define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->sc))
852
#define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
853
#define IS_FWD_FP(fp) ((fp)->index == FWD_IDX((fp)->sc))
854
#define IS_FWD_IDX(idx) ((idx) == FWD_IDX(sc))
855
#define IS_OOO_FP(fp) ((fp)->index == OOO_IDX((fp)->sc))
856
#define IS_OOO_IDX(idx) ((idx) == OOO_IDX(sc))
857
858
enum {
859
BXE_PORT_QUERY_IDX,
860
BXE_PF_QUERY_IDX,
861
BXE_FCOE_QUERY_IDX,
862
BXE_FIRST_QUEUE_QUERY_IDX,
863
};
864
865
struct bxe_fw_stats_req {
866
struct stats_query_header hdr;
867
struct stats_query_entry query[FP_SB_MAX_E1x +
868
BXE_FIRST_QUEUE_QUERY_IDX];
869
};
870
871
struct bxe_fw_stats_data {
872
struct stats_counter storm_counters;
873
struct per_port_stats port;
874
struct per_pf_stats pf;
875
//struct fcoe_statistics_params fcoe;
876
struct per_queue_stats queue_stats[1];
877
};
878
879
/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
880
#define BXE_IGU_STAS_MSG_VF_CNT 64
881
#define BXE_IGU_STAS_MSG_PF_CNT 4
882
883
#define MAX_DMAE_C 8
884
885
/*
886
* For the main interface up/down code paths, a not-so-fine-grained CORE
887
* mutex lock is used. Inside this code are various calls to kernel routines
888
* that can cause a sleep to occur. Namely memory allocations and taskqueue
889
* handling. If using an MTX lock we are *not* allowed to sleep but we can
890
* with an SX lock. This define forces the CORE lock to use and SX lock.
891
* Undefine this and an MTX lock will be used instead. Note that the IOCTL
892
* path can cause problems since it's called by a non-sleepable thread. To
893
* alleviate a potential sleep, any IOCTL processing that results in the
894
* chip/interface being started/stopped/reinitialized, the actual work is
895
* offloaded to a taskqueue.
896
*/
897
#define BXE_CORE_LOCK_SX
898
899
/*
900
* This is the slowpath data structure. It is mapped into non-paged memory
901
* so that the hardware can access it's contents directly and must be page
902
* aligned.
903
*/
904
struct bxe_slowpath {
905
906
/* used by the DMAE command executer */
907
struct dmae_cmd dmae[MAX_DMAE_C];
908
909
/* statistics completion */
910
uint32_t stats_comp;
911
912
/* firmware defined statistics blocks */
913
union mac_stats mac_stats;
914
struct nig_stats nig_stats;
915
struct host_port_stats port_stats;
916
struct host_func_stats func_stats;
917
//struct host_func_stats func_stats_base;
918
919
/* DMAE completion value and data source/sink */
920
uint32_t wb_comp;
921
uint32_t wb_data[4];
922
923
union {
924
struct mac_configuration_cmd e1x;
925
struct eth_classify_rules_ramrod_data e2;
926
} mac_rdata;
927
928
union {
929
struct tstorm_eth_mac_filter_config e1x;
930
struct eth_filter_rules_ramrod_data e2;
931
} rx_mode_rdata;
932
933
struct eth_rss_update_ramrod_data rss_rdata;
934
935
union {
936
struct mac_configuration_cmd e1;
937
struct eth_multicast_rules_ramrod_data e2;
938
} mcast_rdata;
939
940
union {
941
struct function_start_data func_start;
942
struct flow_control_configuration pfc_config; /* for DCBX ramrod */
943
} func_rdata;
944
945
/* Queue State related ramrods */
946
union {
947
struct client_init_ramrod_data init_data;
948
struct client_update_ramrod_data update_data;
949
} q_rdata;
950
951
/*
952
* AFEX ramrod can not be a part of func_rdata union because these
953
* events might arrive in parallel to other events from func_rdata.
954
* If they were defined in the same union the data can get corrupted.
955
*/
956
struct afex_vif_list_ramrod_data func_afex_rdata;
957
958
union drv_info_to_mcp drv_info_to_mcp;
959
}; /* struct bxe_slowpath */
960
961
/*
962
* Port specifc data structure.
963
*/
964
struct bxe_port {
965
/*
966
* Port Management Function (for 57711E only).
967
* When this field is set the driver instance is
968
* responsible for managing port specifc
969
* configurations such as handling link attentions.
970
*/
971
uint32_t pmf;
972
973
/* Ethernet maximum transmission unit. */
974
uint16_t ether_mtu;
975
976
uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
977
978
uint32_t ext_phy_config;
979
980
/* Port feature config.*/
981
uint32_t config;
982
983
/* Defines the features supported by the PHY. */
984
uint32_t supported[ELINK_LINK_CONFIG_SIZE];
985
986
/* Defines the features advertised by the PHY. */
987
uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
988
#define ADVERTISED_10baseT_Half (1 << 1)
989
#define ADVERTISED_10baseT_Full (1 << 2)
990
#define ADVERTISED_100baseT_Half (1 << 3)
991
#define ADVERTISED_100baseT_Full (1 << 4)
992
#define ADVERTISED_1000baseT_Half (1 << 5)
993
#define ADVERTISED_1000baseT_Full (1 << 6)
994
#define ADVERTISED_TP (1 << 7)
995
#define ADVERTISED_FIBRE (1 << 8)
996
#define ADVERTISED_Autoneg (1 << 9)
997
#define ADVERTISED_Asym_Pause (1 << 10)
998
#define ADVERTISED_Pause (1 << 11)
999
#define ADVERTISED_2500baseX_Full (1 << 15)
1000
#define ADVERTISED_10000baseT_Full (1 << 16)
1001
1002
uint32_t phy_addr;
1003
1004
/* Used to synchronize phy accesses. */
1005
struct mtx phy_mtx;
1006
char phy_mtx_name[32];
1007
1008
#define BXE_PHY_LOCK(sc) mtx_lock(&sc->port.phy_mtx)
1009
#define BXE_PHY_UNLOCK(sc) mtx_unlock(&sc->port.phy_mtx)
1010
#define BXE_PHY_LOCK_ASSERT(sc) mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1011
1012
/*
1013
* MCP scratchpad address for port specific statistics.
1014
* The device is responsible for writing statistcss
1015
* back to the MCP for use with management firmware such
1016
* as UMP/NC-SI.
1017
*/
1018
uint32_t port_stx;
1019
1020
struct nig_stats old_nig_stats;
1021
}; /* struct bxe_port */
1022
1023
struct bxe_mf_info {
1024
uint32_t mf_config[E1HVN_MAX];
1025
1026
uint32_t vnics_per_port; /* 1, 2 or 4 */
1027
uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1028
uint32_t path_has_ovlan; /* MF mode in the path (can be different than the MF mode of the function */
1029
1030
#define IS_MULTI_VNIC(sc) ((sc)->devinfo.mf_info.multi_vnics_mode)
1031
#define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1032
#define VNICS_PER_PATH(sc) \
1033
((sc)->devinfo.mf_info.vnics_per_port * \
1034
((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1035
1036
uint8_t min_bw[MAX_VNIC_NUM];
1037
uint8_t max_bw[MAX_VNIC_NUM];
1038
1039
uint16_t ext_id; /* vnic outer vlan or VIF ID */
1040
#define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1041
#define INVALID_VIF_ID 0xFFFF
1042
#define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1043
#define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1044
1045
uint16_t default_vlan;
1046
#define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1047
1048
uint8_t niv_allowed_priorities;
1049
#define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1050
1051
uint8_t niv_default_cos;
1052
#define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1053
1054
uint8_t niv_mba_enabled;
1055
1056
enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1057
#define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1058
int afex_def_vlan_tag;
1059
uint32_t pending_max;
1060
1061
uint16_t flags;
1062
#define MF_INFO_VALID_MAC 0x0001
1063
1064
uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1065
#define IS_MF(sc) \
1066
(IS_MULTI_VNIC(sc) && \
1067
((sc)->devinfo.mf_info.mf_mode != 0))
1068
#define IS_MF_SD(sc) \
1069
(IS_MULTI_VNIC(sc) && \
1070
((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1071
#define IS_MF_SI(sc) \
1072
(IS_MULTI_VNIC(sc) && \
1073
((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1074
#define IS_MF_AFEX(sc) \
1075
(IS_MULTI_VNIC(sc) && \
1076
((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1077
#define IS_MF_SD_MODE(sc) IS_MF_SD(sc)
1078
#define IS_MF_SI_MODE(sc) IS_MF_SI(sc)
1079
#define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1080
1081
uint32_t mf_protos_supported;
1082
#define MF_PROTO_SUPPORT_ETHERNET 0x1
1083
#define MF_PROTO_SUPPORT_ISCSI 0x2
1084
#define MF_PROTO_SUPPORT_FCOE 0x4
1085
}; /* struct bxe_mf_info */
1086
1087
/* Device information data structure. */
1088
struct bxe_devinfo {
1089
/* PCIe info */
1090
uint16_t vendor_id;
1091
uint16_t device_id;
1092
uint16_t subvendor_id;
1093
uint16_t subdevice_id;
1094
1095
/*
1096
* chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1097
* C = Chip Number (bits 16-31)
1098
* R = Chip Revision (bits 12-15)
1099
* M = Chip Metal (bits 4-11)
1100
* B = Chip Bond ID (bits 0-3)
1101
*/
1102
uint32_t chip_id;
1103
#define CHIP_ID(sc) ((sc)->devinfo.chip_id & 0xffff0000)
1104
#define CHIP_NUM(sc) ((sc)->devinfo.chip_id >> 16)
1105
/* device ids */
1106
#define CHIP_NUM_57710 0x164e
1107
#define CHIP_NUM_57711 0x164f
1108
#define CHIP_NUM_57711E 0x1650
1109
#define CHIP_NUM_57712 0x1662
1110
#define CHIP_NUM_57712_MF 0x1663
1111
#define CHIP_NUM_57712_VF 0x166f
1112
#define CHIP_NUM_57800 0x168a
1113
#define CHIP_NUM_57800_MF 0x16a5
1114
#define CHIP_NUM_57800_VF 0x16a9
1115
#define CHIP_NUM_57810 0x168e
1116
#define CHIP_NUM_57810_MF 0x16ae
1117
#define CHIP_NUM_57810_VF 0x16af
1118
#define CHIP_NUM_57811 0x163d
1119
#define CHIP_NUM_57811_MF 0x163e
1120
#define CHIP_NUM_57811_VF 0x163f
1121
#define CHIP_NUM_57840_OBS 0x168d
1122
#define CHIP_NUM_57840_OBS_MF 0x16ab
1123
#define CHIP_NUM_57840_4_10 0x16a1
1124
#define CHIP_NUM_57840_2_20 0x16a2
1125
#define CHIP_NUM_57840_MF 0x16a4
1126
#define CHIP_NUM_57840_VF 0x16ad
1127
1128
#define CHIP_REV_SHIFT 12
1129
#define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT)
1130
#define CHIP_REV(sc) ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1131
1132
#define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT)
1133
#define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT)
1134
#define CHIP_REV_Cx (0x2 << CHIP_REV_SHIFT)
1135
1136
#define CHIP_REV_IS_SLOW(sc) \
1137
(CHIP_REV(sc) > 0x00005000)
1138
#define CHIP_REV_IS_FPGA(sc) \
1139
(CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1140
#define CHIP_REV_IS_EMUL(sc) \
1141
(CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1142
#define CHIP_REV_IS_ASIC(sc) \
1143
(!CHIP_REV_IS_SLOW(sc))
1144
1145
#define CHIP_METAL(sc) ((sc->devinfo.chip_id) & 0x00000ff0)
1146
#define CHIP_BOND_ID(sc) ((sc->devinfo.chip_id) & 0x0000000f)
1147
1148
#define CHIP_IS_E1(sc) (CHIP_NUM(sc) == CHIP_NUM_57710)
1149
#define CHIP_IS_57710(sc) (CHIP_NUM(sc) == CHIP_NUM_57710)
1150
#define CHIP_IS_57711(sc) (CHIP_NUM(sc) == CHIP_NUM_57711)
1151
#define CHIP_IS_57711E(sc) (CHIP_NUM(sc) == CHIP_NUM_57711E)
1152
#define CHIP_IS_E1H(sc) ((CHIP_IS_57711(sc)) || \
1153
(CHIP_IS_57711E(sc)))
1154
#define CHIP_IS_E1x(sc) (CHIP_IS_E1((sc)) || \
1155
CHIP_IS_E1H((sc)))
1156
1157
#define CHIP_IS_57712(sc) (CHIP_NUM(sc) == CHIP_NUM_57712)
1158
#define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1159
#define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1160
#define CHIP_IS_E2(sc) (CHIP_IS_57712(sc) || \
1161
CHIP_IS_57712_MF(sc))
1162
1163
#define CHIP_IS_57800(sc) (CHIP_NUM(sc) == CHIP_NUM_57800)
1164
#define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1165
#define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1166
#define CHIP_IS_57810(sc) (CHIP_NUM(sc) == CHIP_NUM_57810)
1167
#define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1168
#define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1169
#define CHIP_IS_57811(sc) (CHIP_NUM(sc) == CHIP_NUM_57811)
1170
#define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1171
#define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1172
#define CHIP_IS_57840(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS) || \
1173
(CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1174
(CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1175
#define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1176
(CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1177
#define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1178
1179
#define CHIP_IS_E3(sc) (CHIP_IS_57800(sc) || \
1180
CHIP_IS_57800_MF(sc) || \
1181
CHIP_IS_57800_VF(sc) || \
1182
CHIP_IS_57810(sc) || \
1183
CHIP_IS_57810_MF(sc) || \
1184
CHIP_IS_57810_VF(sc) || \
1185
CHIP_IS_57811(sc) || \
1186
CHIP_IS_57811_MF(sc) || \
1187
CHIP_IS_57811_VF(sc) || \
1188
CHIP_IS_57840(sc) || \
1189
CHIP_IS_57840_MF(sc) || \
1190
CHIP_IS_57840_VF(sc))
1191
#define CHIP_IS_E3A0(sc) (CHIP_IS_E3(sc) && \
1192
(CHIP_REV(sc) == CHIP_REV_Ax))
1193
#define CHIP_IS_E3B0(sc) (CHIP_IS_E3(sc) && \
1194
(CHIP_REV(sc) == CHIP_REV_Bx))
1195
1196
#define USES_WARPCORE(sc) (CHIP_IS_E3(sc))
1197
#define CHIP_IS_E2E3(sc) (CHIP_IS_E2(sc) || \
1198
CHIP_IS_E3(sc))
1199
1200
#define CHIP_IS_MF_CAP(sc) (CHIP_IS_57711E(sc) || \
1201
CHIP_IS_57712_MF(sc) || \
1202
CHIP_IS_E3(sc))
1203
1204
#define IS_VF(sc) (CHIP_IS_57712_VF(sc) || \
1205
CHIP_IS_57800_VF(sc) || \
1206
CHIP_IS_57810_VF(sc) || \
1207
CHIP_IS_57840_VF(sc))
1208
#define IS_PF(sc) (!IS_VF(sc))
1209
1210
/*
1211
* This define is used in two main places:
1212
* 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1213
* to nic-only mode or to offload mode. Offload mode is configured if either
1214
* the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1215
* already registered for this port (which means that the user wants storage
1216
* services).
1217
* 2. During cnic-related load, to know if offload mode is already configured
1218
* in the HW or needs to be configrued. Since the transition from nic-mode to
1219
* offload-mode in HW causes traffic coruption, nic-mode is configured only
1220
* in ports on which storage services where never requested.
1221
*/
1222
#define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1223
1224
uint8_t chip_port_mode;
1225
#define CHIP_4_PORT_MODE 0x0
1226
#define CHIP_2_PORT_MODE 0x1
1227
#define CHIP_PORT_MODE_NONE 0x2
1228
#define CHIP_PORT_MODE(sc) ((sc)->devinfo.chip_port_mode)
1229
#define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1230
1231
uint8_t int_block;
1232
#define INT_BLOCK_HC 0
1233
#define INT_BLOCK_IGU 1
1234
#define INT_BLOCK_MODE_NORMAL 0
1235
#define INT_BLOCK_MODE_BW_COMP 2
1236
#define CHIP_INT_MODE_IS_NBC(sc) \
1237
(!CHIP_IS_E1x(sc) && \
1238
!((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1239
#define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1240
1241
uint32_t shmem_base;
1242
uint32_t shmem2_base;
1243
uint32_t bc_ver;
1244
char bc_ver_str[32];
1245
uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1246
struct bxe_mf_info mf_info;
1247
1248
int flash_size;
1249
#define NVRAM_1MB_SIZE 0x20000
1250
#define NVRAM_TIMEOUT_COUNT 30000
1251
#define NVRAM_PAGE_SIZE 256
1252
1253
/* PCIe capability information */
1254
uint32_t pcie_cap_flags;
1255
#define BXE_PM_CAPABLE_FLAG 0x00000001
1256
#define BXE_PCIE_CAPABLE_FLAG 0x00000002
1257
#define BXE_MSI_CAPABLE_FLAG 0x00000004
1258
#define BXE_MSIX_CAPABLE_FLAG 0x00000008
1259
uint16_t pcie_pm_cap_reg;
1260
uint16_t pcie_pcie_cap_reg;
1261
//uint16_t pcie_devctl;
1262
uint16_t pcie_link_width;
1263
uint16_t pcie_link_speed;
1264
uint16_t pcie_msi_cap_reg;
1265
uint16_t pcie_msix_cap_reg;
1266
1267
/* device configuration read from bootcode shared memory */
1268
uint32_t hw_config;
1269
uint32_t hw_config2;
1270
}; /* struct bxe_devinfo */
1271
1272
struct bxe_sp_objs {
1273
struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1274
struct ecore_queue_sp_obj q_obj; /* Queue State object */
1275
}; /* struct bxe_sp_objs */
1276
1277
/*
1278
* Data that will be used to create a link report message. We will keep the
1279
* data used for the last link report in order to prevent reporting the same
1280
* link parameters twice.
1281
*/
1282
struct bxe_link_report_data {
1283
uint16_t line_speed; /* Effective line speed */
1284
unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1285
};
1286
enum {
1287
BXE_LINK_REPORT_FULL_DUPLEX,
1288
BXE_LINK_REPORT_LINK_DOWN,
1289
BXE_LINK_REPORT_RX_FC_ON,
1290
BXE_LINK_REPORT_TX_FC_ON
1291
};
1292
1293
/* Top level device private data structure. */
1294
struct bxe_softc {
1295
/*
1296
* First entry must be a pointer to the BSD ifnet struct which
1297
* has a first element of 'void *if_softc' (which is us). XXX
1298
*/
1299
if_t ifp;
1300
struct ifmedia ifmedia; /* network interface media structure */
1301
int media;
1302
1303
volatile int state; /* device state */
1304
#define BXE_STATE_CLOSED 0x0000
1305
#define BXE_STATE_OPENING_WAITING_LOAD 0x1000
1306
#define BXE_STATE_OPENING_WAITING_PORT 0x2000
1307
#define BXE_STATE_OPEN 0x3000
1308
#define BXE_STATE_CLOSING_WAITING_HALT 0x4000
1309
#define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1310
#define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1311
#define BXE_STATE_DISABLED 0xD000
1312
#define BXE_STATE_DIAG 0xE000
1313
#define BXE_STATE_ERROR 0xF000
1314
1315
int flags;
1316
#define BXE_ONE_PORT_FLAG 0x00000001
1317
#define BXE_NO_ISCSI 0x00000002
1318
#define BXE_NO_FCOE 0x00000004
1319
#define BXE_ONE_PORT(sc) (sc->flags & BXE_ONE_PORT_FLAG)
1320
//#define BXE_NO_WOL_FLAG 0x00000008
1321
//#define BXE_USING_DAC_FLAG 0x00000010
1322
//#define BXE_USING_MSIX_FLAG 0x00000020
1323
//#define BXE_USING_MSI_FLAG 0x00000040
1324
//#define BXE_DISABLE_MSI_FLAG 0x00000080
1325
#define BXE_NO_MCP_FLAG 0x00000200
1326
#define BXE_NOMCP(sc) (sc->flags & BXE_NO_MCP_FLAG)
1327
//#define BXE_SAFC_TX_FLAG 0x00000400
1328
#define BXE_MF_FUNC_DIS 0x00000800
1329
#define BXE_TX_SWITCHING 0x00001000
1330
#define BXE_NO_PULSE 0x00002000
1331
1332
unsigned long debug; /* per-instance debug logging config */
1333
1334
#define MAX_BARS 5
1335
struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1336
1337
uint16_t doorbell_size;
1338
1339
/* periodic timer callout */
1340
#define PERIODIC_STOP 0
1341
#define PERIODIC_GO 1
1342
volatile unsigned long periodic_flags;
1343
struct callout periodic_callout;
1344
1345
/* chip start/stop/reset taskqueue */
1346
#define CHIP_TQ_NONE 0
1347
#define CHIP_TQ_START 1
1348
#define CHIP_TQ_STOP 2
1349
#define CHIP_TQ_REINIT 3
1350
volatile unsigned long chip_tq_flags;
1351
struct task chip_tq_task;
1352
struct taskqueue *chip_tq;
1353
char chip_tq_name[32];
1354
1355
struct timeout_task sp_err_timeout_task;
1356
1357
/* slowpath interrupt taskqueue */
1358
struct task sp_tq_task;
1359
struct taskqueue *sp_tq;
1360
char sp_tq_name[32];
1361
1362
struct bxe_fastpath fp[MAX_RSS_CHAINS];
1363
struct bxe_sp_objs sp_objs[MAX_RSS_CHAINS];
1364
1365
device_t dev; /* parent device handle */
1366
uint8_t unit; /* driver instance number */
1367
1368
int pcie_bus; /* PCIe bus number */
1369
int pcie_device; /* PCIe device/slot number */
1370
int pcie_func; /* PCIe function number */
1371
1372
uint8_t pfunc_rel; /* function relative */
1373
uint8_t pfunc_abs; /* function absolute */
1374
uint8_t path_id; /* function absolute */
1375
#define SC_PATH(sc) (sc->path_id)
1376
#define SC_PORT(sc) (sc->pfunc_rel & 1)
1377
#define SC_FUNC(sc) (sc->pfunc_rel)
1378
#define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1379
#define SC_VN(sc) (sc->pfunc_rel >> 1)
1380
#define SC_L_ID(sc) (SC_VN(sc) << 2)
1381
#define PORT_ID(sc) SC_PORT(sc)
1382
#define PATH_ID(sc) SC_PATH(sc)
1383
#define VNIC_ID(sc) SC_VN(sc)
1384
#define FUNC_ID(sc) SC_FUNC(sc)
1385
#define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1386
#define SC_FW_MB_IDX_VN(sc, vn) \
1387
(SC_PORT(sc) + (vn) * \
1388
((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1389
#define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1390
1391
int if_capen; /* enabled interface capabilities */
1392
1393
struct bxe_devinfo devinfo;
1394
char fw_ver_str[32];
1395
char mf_mode_str[32];
1396
char pci_link_str[32];
1397
1398
const struct iro *iro_array;
1399
1400
#ifdef BXE_CORE_LOCK_SX
1401
struct sx core_sx;
1402
char core_sx_name[32];
1403
#else
1404
struct mtx core_mtx;
1405
char core_mtx_name[32];
1406
#endif
1407
struct mtx sp_mtx;
1408
char sp_mtx_name[32];
1409
struct mtx dmae_mtx;
1410
char dmae_mtx_name[32];
1411
struct mtx fwmb_mtx;
1412
char fwmb_mtx_name[32];
1413
struct mtx print_mtx;
1414
char print_mtx_name[32];
1415
struct mtx stats_mtx;
1416
char stats_mtx_name[32];
1417
struct mtx mcast_mtx;
1418
char mcast_mtx_name[32];
1419
1420
#ifdef BXE_CORE_LOCK_SX
1421
#define BXE_CORE_TRYLOCK(sc) sx_try_xlock(&sc->core_sx)
1422
#define BXE_CORE_LOCK(sc) sx_xlock(&sc->core_sx)
1423
#define BXE_CORE_UNLOCK(sc) sx_xunlock(&sc->core_sx)
1424
#define BXE_CORE_LOCK_ASSERT(sc) sx_assert(&sc->core_sx, SA_XLOCKED)
1425
#else
1426
#define BXE_CORE_TRYLOCK(sc) mtx_trylock(&sc->core_mtx)
1427
#define BXE_CORE_LOCK(sc) mtx_lock(&sc->core_mtx)
1428
#define BXE_CORE_UNLOCK(sc) mtx_unlock(&sc->core_mtx)
1429
#define BXE_CORE_LOCK_ASSERT(sc) mtx_assert(&sc->core_mtx, MA_OWNED)
1430
#endif
1431
1432
#define BXE_SP_LOCK(sc) mtx_lock(&sc->sp_mtx)
1433
#define BXE_SP_UNLOCK(sc) mtx_unlock(&sc->sp_mtx)
1434
#define BXE_SP_LOCK_ASSERT(sc) mtx_assert(&sc->sp_mtx, MA_OWNED)
1435
1436
#define BXE_DMAE_LOCK(sc) mtx_lock(&sc->dmae_mtx)
1437
#define BXE_DMAE_UNLOCK(sc) mtx_unlock(&sc->dmae_mtx)
1438
#define BXE_DMAE_LOCK_ASSERT(sc) mtx_assert(&sc->dmae_mtx, MA_OWNED)
1439
1440
#define BXE_FWMB_LOCK(sc) mtx_lock(&sc->fwmb_mtx)
1441
#define BXE_FWMB_UNLOCK(sc) mtx_unlock(&sc->fwmb_mtx)
1442
#define BXE_FWMB_LOCK_ASSERT(sc) mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1443
1444
#define BXE_PRINT_LOCK(sc) mtx_lock(&sc->print_mtx)
1445
#define BXE_PRINT_UNLOCK(sc) mtx_unlock(&sc->print_mtx)
1446
#define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1447
1448
#define BXE_STATS_LOCK(sc) mtx_lock(&sc->stats_mtx)
1449
#define BXE_STATS_UNLOCK(sc) mtx_unlock(&sc->stats_mtx)
1450
#define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1451
1452
#define BXE_MCAST_LOCK(sc) mtx_lock(&sc->mcast_mtx);
1453
#define BXE_MCAST_UNLOCK(sc) mtx_unlock(&sc->mcast_mtx);
1454
#define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1455
1456
int dmae_ready;
1457
#define DMAE_READY(sc) (sc->dmae_ready)
1458
1459
struct ecore_credit_pool_obj vlans_pool;
1460
struct ecore_credit_pool_obj macs_pool;
1461
struct ecore_rx_mode_obj rx_mode_obj;
1462
struct ecore_mcast_obj mcast_obj;
1463
struct ecore_rss_config_obj rss_conf_obj;
1464
struct ecore_func_sp_obj func_obj;
1465
1466
uint16_t fw_seq;
1467
uint16_t fw_drv_pulse_wr_seq;
1468
uint32_t func_stx;
1469
1470
struct elink_params link_params;
1471
struct elink_vars link_vars;
1472
uint32_t link_cnt;
1473
struct bxe_link_report_data last_reported_link;
1474
char mac_addr_str[32];
1475
1476
int last_reported_link_state;
1477
1478
int tx_ring_size;
1479
int rx_ring_size;
1480
int wol;
1481
1482
int is_leader;
1483
int recovery_state;
1484
#define BXE_RECOVERY_DONE 1
1485
#define BXE_RECOVERY_INIT 2
1486
#define BXE_RECOVERY_WAIT 3
1487
#define BXE_RECOVERY_FAILED 4
1488
#define BXE_RECOVERY_NIC_LOADING 5
1489
1490
#define BXE_ERR_TXQ_STUCK 0x1 /* Tx queue stuck detected by driver. */
1491
#define BXE_ERR_MISC 0x2 /* MISC ERR */
1492
#define BXE_ERR_PARITY 0x4 /* Parity error detected. */
1493
#define BXE_ERR_STATS_TO 0x8 /* Statistics timeout detected. */
1494
#define BXE_ERR_MC_ASSERT 0x10 /* MC assert attention received. */
1495
#define BXE_ERR_PANIC 0x20 /* Driver asserted. */
1496
#define BXE_ERR_MCP_ASSERT 0x40 /* MCP assert attention received. No Recovery*/
1497
#define BXE_ERR_GLOBAL 0x80 /* PCIe/PXP/IGU/MISC/NIG device blocks error- needs PCIe/Fundamental reset */
1498
uint32_t error_status;
1499
1500
uint32_t rx_mode;
1501
#define BXE_RX_MODE_NONE 0
1502
#define BXE_RX_MODE_NORMAL 1
1503
#define BXE_RX_MODE_ALLMULTI 2
1504
#define BXE_RX_MODE_PROMISC 3
1505
#define BXE_MAX_MULTICAST 64
1506
1507
struct bxe_port port;
1508
1509
struct cmng_init cmng;
1510
1511
/* user configs */
1512
int num_queues;
1513
int max_rx_bufs;
1514
int hc_rx_ticks;
1515
int hc_tx_ticks;
1516
int rx_budget;
1517
int max_aggregation_size;
1518
int mrrs;
1519
int autogreeen;
1520
#define AUTO_GREEN_HW_DEFAULT 0
1521
#define AUTO_GREEN_FORCE_ON 1
1522
#define AUTO_GREEN_FORCE_OFF 2
1523
int interrupt_mode;
1524
#define INTR_MODE_INTX 0
1525
#define INTR_MODE_MSI 1
1526
#define INTR_MODE_MSIX 2
1527
int udp_rss;
1528
1529
/* interrupt allocations */
1530
struct bxe_intr intr[MAX_RSS_CHAINS+1];
1531
int intr_count;
1532
uint8_t igu_dsb_id;
1533
uint8_t igu_base_sb;
1534
uint8_t igu_sb_cnt;
1535
//uint8_t min_msix_vec_cnt;
1536
uint32_t igu_base_addr;
1537
//bus_addr_t def_status_blk_mapping;
1538
uint8_t base_fw_ndsb;
1539
#define DEF_SB_IGU_ID 16
1540
#define DEF_SB_ID HC_SP_SB_ID
1541
1542
/* parent bus DMA tag */
1543
bus_dma_tag_t parent_dma_tag;
1544
1545
/* default status block */
1546
struct bxe_dma def_sb_dma;
1547
struct host_sp_status_block *def_sb;
1548
uint16_t def_idx;
1549
uint16_t def_att_idx;
1550
uint32_t attn_state;
1551
struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS];
1552
1553
/* general SP events - stats query, cfc delete, etc */
1554
#define HC_SP_INDEX_ETH_DEF_CONS 3
1555
/* EQ completions */
1556
#define HC_SP_INDEX_EQ_CONS 7
1557
/* FCoE L2 connection completions */
1558
#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6
1559
#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4
1560
/* iSCSI L2 */
1561
#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5
1562
#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1563
1564
/* event queue */
1565
struct bxe_dma eq_dma;
1566
union event_ring_elem *eq;
1567
uint16_t eq_prod;
1568
uint16_t eq_cons;
1569
uint16_t *eq_cons_sb;
1570
#define NUM_EQ_PAGES 1 /* must be a power of 2 */
1571
#define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1572
#define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1573
#define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1574
#define EQ_DESC_MASK (NUM_EQ_DESC - 1)
1575
#define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1576
/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1577
#define NEXT_EQ_IDX(x) \
1578
((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1579
((x) + 2) : ((x) + 1))
1580
/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1581
#define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1582
1583
/* slow path */
1584
struct bxe_dma sp_dma;
1585
struct bxe_slowpath *sp;
1586
unsigned long sp_state;
1587
1588
/* slow path queue */
1589
struct bxe_dma spq_dma;
1590
struct eth_spe *spq;
1591
#define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1592
#define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1593
#define MAX_SPQ_PENDING 8
1594
1595
uint16_t spq_prod_idx;
1596
struct eth_spe *spq_prod_bd;
1597
struct eth_spe *spq_last_bd;
1598
uint16_t *dsb_sp_prod;
1599
//uint16_t *spq_hw_con;
1600
//uint16_t spq_left;
1601
1602
volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1603
volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1604
1605
/* fw decompression buffer */
1606
struct bxe_dma gz_buf_dma;
1607
void *gz_buf;
1608
z_streamp gz_strm;
1609
uint32_t gz_outlen;
1610
#define GUNZIP_BUF(sc) (sc->gz_buf)
1611
#define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1612
#define GUNZIP_PHYS(sc) (sc->gz_buf_dma.paddr)
1613
#define FW_BUF_SIZE 0x40000
1614
1615
const struct raw_op *init_ops;
1616
const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1617
const uint32_t *init_data; /* data blob, 32 bit granularity */
1618
uint32_t init_mode_flags;
1619
#define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1620
/* PRAM blobs - raw data */
1621
const uint8_t *tsem_int_table_data;
1622
const uint8_t *tsem_pram_data;
1623
const uint8_t *usem_int_table_data;
1624
const uint8_t *usem_pram_data;
1625
const uint8_t *xsem_int_table_data;
1626
const uint8_t *xsem_pram_data;
1627
const uint8_t *csem_int_table_data;
1628
const uint8_t *csem_pram_data;
1629
#define INIT_OPS(sc) (sc->init_ops)
1630
#define INIT_OPS_OFFSETS(sc) (sc->init_ops_offsets)
1631
#define INIT_DATA(sc) (sc->init_data)
1632
#define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1633
#define INIT_TSEM_PRAM_DATA(sc) (sc->tsem_pram_data)
1634
#define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1635
#define INIT_USEM_PRAM_DATA(sc) (sc->usem_pram_data)
1636
#define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1637
#define INIT_XSEM_PRAM_DATA(sc) (sc->xsem_pram_data)
1638
#define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1639
#define INIT_CSEM_PRAM_DATA(sc) (sc->csem_pram_data)
1640
1641
/* ILT
1642
* For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1643
* context size we need 8 ILT entries.
1644
*/
1645
#define ILT_MAX_L2_LINES 8
1646
struct hw_context context[ILT_MAX_L2_LINES];
1647
struct ecore_ilt *ilt;
1648
#define ILT_MAX_LINES 256
1649
1650
/* max supported number of RSS queues: IGU SBs minus one for CNIC */
1651
#define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1652
/* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1653
#if 1
1654
#define BXE_L2_MAX_CID(sc) \
1655
(BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1656
#else
1657
#define BXE_L2_MAX_CID(sc) /* OOO + FWD */ \
1658
(BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1659
#endif
1660
#if 1
1661
#define BXE_L2_CID_COUNT(sc) \
1662
(BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1663
#else
1664
#define BXE_L2_CID_COUNT(sc) /* OOO + FWD */ \
1665
(BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1666
#endif
1667
#define L2_ILT_LINES(sc) \
1668
(DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1669
1670
int qm_cid_count;
1671
1672
uint8_t dropless_fc;
1673
1674
/* total number of FW statistics requests */
1675
uint8_t fw_stats_num;
1676
/*
1677
* This is a memory buffer that will contain both statistics ramrod
1678
* request and data.
1679
*/
1680
struct bxe_dma fw_stats_dma;
1681
/*
1682
* FW statistics request shortcut (points at the beginning of fw_stats
1683
* buffer).
1684
*/
1685
int fw_stats_req_size;
1686
struct bxe_fw_stats_req *fw_stats_req;
1687
bus_addr_t fw_stats_req_mapping;
1688
/*
1689
* FW statistics data shortcut (points at the beginning of fw_stats
1690
* buffer + fw_stats_req_size).
1691
*/
1692
int fw_stats_data_size;
1693
struct bxe_fw_stats_data *fw_stats_data;
1694
bus_addr_t fw_stats_data_mapping;
1695
1696
/* tracking a pending STAT_QUERY ramrod */
1697
uint16_t stats_pending;
1698
/* number of completed statistics ramrods */
1699
uint16_t stats_comp;
1700
uint16_t stats_counter;
1701
uint8_t stats_init;
1702
int stats_state;
1703
1704
struct bxe_eth_stats eth_stats;
1705
struct host_func_stats func_stats;
1706
struct bxe_eth_stats_old eth_stats_old;
1707
struct bxe_net_stats_old net_stats_old;
1708
struct bxe_fw_port_stats_old fw_stats_old;
1709
1710
struct dmae_cmd stats_dmae; /* used by dmae command loader */
1711
int executer_idx;
1712
1713
int mtu;
1714
1715
/* LLDP params */
1716
struct bxe_config_lldp_params lldp_config_params;
1717
/* DCB support on/off */
1718
int dcb_state;
1719
#define BXE_DCB_STATE_OFF 0
1720
#define BXE_DCB_STATE_ON 1
1721
/* DCBX engine mode */
1722
int dcbx_enabled;
1723
#define BXE_DCBX_ENABLED_OFF 0
1724
#define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1725
#define BXE_DCBX_ENABLED_ON_NEG_ON 2
1726
#define BXE_DCBX_ENABLED_INVALID -1
1727
uint8_t dcbx_mode_uset;
1728
struct bxe_config_dcbx_params dcbx_config_params;
1729
struct bxe_dcbx_port_params dcbx_port_params;
1730
int dcb_version;
1731
1732
uint8_t cnic_support;
1733
uint8_t cnic_enabled;
1734
uint8_t cnic_loaded;
1735
#define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1736
#define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1737
#define CNIC_LOADED(sc) 0 /* ((sc)->cnic_loaded) */
1738
1739
/* multiple tx classes of service */
1740
uint8_t max_cos;
1741
#define BXE_MAX_PRIORITY 8
1742
/* priority to cos mapping */
1743
uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1744
1745
int panic;
1746
1747
struct cdev *ioctl_dev;
1748
1749
void *grc_dump;
1750
unsigned int trigger_grcdump;
1751
unsigned int grcdump_done;
1752
unsigned int grcdump_started;
1753
int bxe_pause_param;
1754
void *eeprom;
1755
}; /* struct bxe_softc */
1756
1757
/* IOCTL sub-commands for edebug and firmware upgrade */
1758
#define BXE_IOC_RD_NVRAM 1
1759
#define BXE_IOC_WR_NVRAM 2
1760
#define BXE_IOC_STATS_SHOW_NUM 3
1761
#define BXE_IOC_STATS_SHOW_STR 4
1762
#define BXE_IOC_STATS_SHOW_CNT 5
1763
1764
struct bxe_nvram_data {
1765
uint32_t op; /* ioctl sub-command */
1766
uint32_t offset;
1767
uint32_t len;
1768
uint32_t value[1]; /* variable */
1769
};
1770
1771
union bxe_stats_show_data {
1772
uint32_t op; /* ioctl sub-command */
1773
1774
struct {
1775
uint32_t num; /* return number of stats */
1776
uint32_t len; /* length of each string item */
1777
} desc;
1778
1779
/* variable length... */
1780
char str[1]; /* holds names of desc.num stats, each desc.len in length */
1781
1782
/* variable length... */
1783
uint64_t stats[1]; /* holds all stats */
1784
};
1785
1786
/* function init flags */
1787
#define FUNC_FLG_RSS 0x0001
1788
#define FUNC_FLG_STATS 0x0002
1789
/* FUNC_FLG_UNMATCHED 0x0004 */
1790
#define FUNC_FLG_TPA 0x0008
1791
#define FUNC_FLG_SPQ 0x0010
1792
#define FUNC_FLG_LEADING 0x0020 /* PF only */
1793
1794
struct bxe_func_init_params {
1795
bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1796
bus_addr_t spq_map; /* (dma) valid if FUNC_FLG_SPQ */
1797
uint16_t func_flgs;
1798
uint16_t func_id; /* abs function id */
1799
uint16_t pf_id;
1800
uint16_t spq_prod; /* valid if FUNC_FLG_SPQ */
1801
};
1802
1803
/* memory resources reside at BARs 0, 2, 4 */
1804
/* Run `pciconf -lb` to see mappings */
1805
#define BAR0 0
1806
#define BAR1 2
1807
#define BAR2 4
1808
1809
#ifdef BXE_REG_NO_INLINE
1810
1811
uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1812
uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1813
uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1814
1815
void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1816
void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1817
void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1818
1819
#define REG_RD8(sc, offset) bxe_reg_read8(sc, offset)
1820
#define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1821
#define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1822
1823
#define REG_WR8(sc, offset, val) bxe_reg_write8(sc, offset, val)
1824
#define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1825
#define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1826
1827
#else /* not BXE_REG_NO_INLINE */
1828
1829
#define REG_WR8(sc, offset, val) \
1830
bus_space_write_1(sc->bar[BAR0].tag, \
1831
sc->bar[BAR0].handle, \
1832
offset, val)
1833
1834
#define REG_WR16(sc, offset, val) \
1835
bus_space_write_2(sc->bar[BAR0].tag, \
1836
sc->bar[BAR0].handle, \
1837
offset, val)
1838
1839
#define REG_WR32(sc, offset, val) \
1840
bus_space_write_4(sc->bar[BAR0].tag, \
1841
sc->bar[BAR0].handle, \
1842
offset, val)
1843
1844
#define REG_RD8(sc, offset) \
1845
bus_space_read_1(sc->bar[BAR0].tag, \
1846
sc->bar[BAR0].handle, \
1847
offset)
1848
1849
#define REG_RD16(sc, offset) \
1850
bus_space_read_2(sc->bar[BAR0].tag, \
1851
sc->bar[BAR0].handle, \
1852
offset)
1853
1854
#define REG_RD32(sc, offset) \
1855
bus_space_read_4(sc->bar[BAR0].tag, \
1856
sc->bar[BAR0].handle, \
1857
offset)
1858
1859
#endif /* BXE_REG_NO_INLINE */
1860
1861
#define REG_RD(sc, offset) REG_RD32(sc, offset)
1862
#define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1863
1864
#define REG_RD_IND(sc, offset) bxe_reg_rd_ind(sc, offset)
1865
#define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1866
1867
#define BXE_SP(sc, var) (&(sc)->sp->var)
1868
#define BXE_SP_MAPPING(sc, var) \
1869
(sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1870
1871
#define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1872
#define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1873
1874
#define REG_RD_DMAE(sc, offset, valp, len32) \
1875
do { \
1876
bxe_read_dmae(sc, offset, len32); \
1877
memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1878
} while (0)
1879
1880
#define REG_WR_DMAE(sc, offset, valp, len32) \
1881
do { \
1882
memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4); \
1883
bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1884
} while (0)
1885
1886
#define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1887
REG_WR_DMAE(sc, offset, valp, len32)
1888
1889
#define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1890
REG_RD_DMAE(sc, offset, valp, len32)
1891
1892
#define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap) \
1893
do { \
1894
/* if (le32_swap) { */ \
1895
/* BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1896
/* } */ \
1897
memcpy(GUNZIP_BUF(sc), data, len32 * 4); \
1898
ecore_write_big_buf_wb(sc, addr, len32); \
1899
} while (0)
1900
1901
#define BXE_DB_MIN_SHIFT 3 /* 8 bytes */
1902
#define BXE_DB_SHIFT 7 /* 128 bytes */
1903
#if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1904
#error "Minimum DB doorbell stride is 8"
1905
#endif
1906
#define DPM_TRIGGER_TYPE 0x40
1907
#define DOORBELL(sc, cid, val) \
1908
do { \
1909
bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle, \
1910
((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
1911
(uint32_t)val); \
1912
} while(0)
1913
1914
#define SHMEM_ADDR(sc, field) \
1915
(sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
1916
#define SHMEM_RD(sc, field) REG_RD(sc, SHMEM_ADDR(sc, field))
1917
#define SHMEM_RD16(sc, field) REG_RD16(sc, SHMEM_ADDR(sc, field))
1918
#define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
1919
1920
#define SHMEM2_ADDR(sc, field) \
1921
(sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
1922
#define SHMEM2_HAS(sc, field) \
1923
(sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) > \
1924
offsetof(struct shmem2_region, field)))
1925
#define SHMEM2_RD(sc, field) REG_RD(sc, SHMEM2_ADDR(sc, field))
1926
#define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
1927
1928
#define MFCFG_ADDR(sc, field) \
1929
(sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
1930
#define MFCFG_RD(sc, field) REG_RD(sc, MFCFG_ADDR(sc, field))
1931
#define MFCFG_RD16(sc, field) REG_RD16(sc, MFCFG_ADDR(sc, field))
1932
#define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
1933
1934
/* DMAE command defines */
1935
1936
#define DMAE_TIMEOUT -1
1937
#define DMAE_PCI_ERROR -2 /* E2 and onward */
1938
#define DMAE_NOT_RDY -3
1939
#define DMAE_PCI_ERR_FLAG 0x80000000
1940
1941
#define DMAE_SRC_PCI 0
1942
#define DMAE_SRC_GRC 1
1943
1944
#define DMAE_DST_NONE 0
1945
#define DMAE_DST_PCI 1
1946
#define DMAE_DST_GRC 2
1947
1948
#define DMAE_COMP_PCI 0
1949
#define DMAE_COMP_GRC 1
1950
1951
#define DMAE_COMP_REGULAR 0
1952
#define DMAE_COM_SET_ERR 1
1953
1954
#define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_CMD_SRC_SHIFT)
1955
#define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_CMD_SRC_SHIFT)
1956
#define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_CMD_DST_SHIFT)
1957
#define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_CMD_DST_SHIFT)
1958
1959
#define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_CMD_C_DST_SHIFT)
1960
#define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_CMD_C_DST_SHIFT)
1961
1962
#define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_CMD_ENDIANITY_SHIFT)
1963
#define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_CMD_ENDIANITY_SHIFT)
1964
#define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_CMD_ENDIANITY_SHIFT)
1965
#define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_CMD_ENDIANITY_SHIFT)
1966
1967
#define DMAE_CMD_PORT_0 0
1968
#define DMAE_CMD_PORT_1 DMAE_CMD_PORT
1969
1970
#define DMAE_SRC_PF 0
1971
#define DMAE_SRC_VF 1
1972
1973
#define DMAE_DST_PF 0
1974
#define DMAE_DST_VF 1
1975
1976
#define DMAE_C_SRC 0
1977
#define DMAE_C_DST 1
1978
1979
#define DMAE_LEN32_RD_MAX 0x80
1980
#define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
1981
1982
#define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
1983
1984
#define MAX_DMAE_C_PER_PORT 8
1985
#define INIT_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
1986
#define PMF_DMAE_C(sc) ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
1987
1988
static const uint32_t dmae_reg_go_c[] = {
1989
DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
1990
DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
1991
DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
1992
DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
1993
};
1994
1995
#define ATTN_NIG_FOR_FUNC (1L << 8)
1996
#define ATTN_SW_TIMER_4_FUNC (1L << 9)
1997
#define GPIO_2_FUNC (1L << 10)
1998
#define GPIO_3_FUNC (1L << 11)
1999
#define GPIO_4_FUNC (1L << 12)
2000
#define ATTN_GENERAL_ATTN_1 (1L << 13)
2001
#define ATTN_GENERAL_ATTN_2 (1L << 14)
2002
#define ATTN_GENERAL_ATTN_3 (1L << 15)
2003
#define ATTN_GENERAL_ATTN_4 (1L << 13)
2004
#define ATTN_GENERAL_ATTN_5 (1L << 14)
2005
#define ATTN_GENERAL_ATTN_6 (1L << 15)
2006
#define ATTN_HARD_WIRED_MASK 0xff00
2007
#define ATTENTION_ID 4
2008
2009
#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2010
AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2011
2012
#define MAX_IGU_ATTN_ACK_TO 100
2013
2014
#define STORM_ASSERT_ARRAY_SIZE 50
2015
2016
#define BXE_PMF_LINK_ASSERT(sc) \
2017
GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2018
2019
#define BXE_MC_ASSERT_BITS \
2020
(GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2021
GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2022
GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2023
GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2024
2025
#define BXE_MCP_ASSERT \
2026
GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2027
2028
#define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2029
#define BXE_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2030
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2031
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2032
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2033
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2034
GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2035
2036
#define MULTI_MASK 0x7f
2037
2038
#define PFS_PER_PORT(sc) \
2039
((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2040
#define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2041
2042
#define FIRST_ABS_FUNC_IN_PORT(sc) \
2043
((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ? \
2044
PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2045
2046
#define FOREACH_ABS_FUNC_IN_PORT(sc, i) \
2047
for ((i) = FIRST_ABS_FUNC_IN_PORT(sc); \
2048
(i) < MAX_FUNC_NUM; \
2049
(i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2050
2051
#define BXE_SWCID_SHIFT 17
2052
#define BXE_SWCID_MASK ((0x1 << BXE_SWCID_SHIFT) - 1)
2053
2054
#define SW_CID(x) (le32toh(x) & BXE_SWCID_MASK)
2055
#define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2056
2057
#define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2058
#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2059
#define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2060
#define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2061
#define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2062
2063
/* must be used on a CID before placing it on a HW ring */
2064
#define HW_CID(sc, x) \
2065
((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2066
2067
#define SPEED_10 10
2068
#define SPEED_100 100
2069
#define SPEED_1000 1000
2070
#define SPEED_2500 2500
2071
#define SPEED_10000 10000
2072
2073
#define PCI_PM_D0 1
2074
#define PCI_PM_D3hot 2
2075
2076
#ifndef DUPLEX_UNKNOWN
2077
#define DUPLEX_UNKNOWN (0xff)
2078
#endif
2079
2080
#ifndef SPEED_UNKNOWN
2081
#define SPEED_UNKNOWN (-1)
2082
#endif
2083
2084
/* Enable or disable autonegotiation. */
2085
#define AUTONEG_DISABLE 0x00
2086
#define AUTONEG_ENABLE 0x01
2087
2088
/* Which connector port. */
2089
#define PORT_TP 0x00
2090
#define PORT_AUI 0x01
2091
#define PORT_MII 0x02
2092
#define PORT_FIBRE 0x03
2093
#define PORT_BNC 0x04
2094
#define PORT_DA 0x05
2095
#define PORT_NONE 0xef
2096
#define PORT_OTHER 0xff
2097
2098
int bxe_test_bit(int nr, volatile unsigned long * addr);
2099
void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2100
void bxe_clear_bit(int nr, volatile unsigned long * addr);
2101
int bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2102
int bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2103
int bxe_cmpxchg(volatile int *addr, int old, int new);
2104
2105
void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2106
uint32_t val);
2107
uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2108
2109
2110
int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2111
struct bxe_dma *dma, const char *msg);
2112
void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2113
2114
uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2115
uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2116
uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2117
uint8_t dst_type, uint8_t with_comp,
2118
uint8_t comp_type);
2119
void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx);
2120
void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2121
void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2122
uint32_t dst_addr, uint32_t len32);
2123
void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2124
uint32_t addr, uint32_t len);
2125
2126
void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2127
uint32_t cid);
2128
void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2129
uint8_t sb_index, uint8_t disable,
2130
uint16_t usec);
2131
2132
int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2133
uint32_t data_hi, uint32_t data_lo, int cmd_type);
2134
2135
void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2136
uint8_t segment, uint16_t index, uint8_t op,
2137
uint8_t update);
2138
2139
void ecore_init_e1_firmware(struct bxe_softc *sc);
2140
void ecore_init_e1h_firmware(struct bxe_softc *sc);
2141
void ecore_init_e2_firmware(struct bxe_softc *sc);
2142
2143
void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2144
size_t size, uint32_t *data);
2145
2146
/*********************/
2147
/* LOGGING AND DEBUG */
2148
/*********************/
2149
2150
/* debug logging codepaths */
2151
#define DBG_LOAD 0x00000001 /* load and unload */
2152
#define DBG_INTR 0x00000002 /* interrupt handling */
2153
#define DBG_SP 0x00000004 /* slowpath handling */
2154
#define DBG_STATS 0x00000008 /* stats updates */
2155
#define DBG_TX 0x00000010 /* packet transmit */
2156
#define DBG_RX 0x00000020 /* packet receive */
2157
#define DBG_PHY 0x00000040 /* phy/link handling */
2158
#define DBG_IOCTL 0x00000080 /* ioctl handling */
2159
#define DBG_MBUF 0x00000100 /* dumping mbuf info */
2160
#define DBG_REGS 0x00000200 /* register access */
2161
#define DBG_LRO 0x00000400 /* lro processing */
2162
#define DBG_ASSERT 0x80000000 /* debug assert */
2163
#define DBG_ALL 0xFFFFFFFF /* flying monkeys */
2164
2165
#define DBASSERT(sc, exp, msg) \
2166
do { \
2167
if (__predict_false(sc->debug & DBG_ASSERT)) { \
2168
if (__predict_false(!(exp))) { \
2169
panic msg; \
2170
} \
2171
} \
2172
} while (0)
2173
2174
/* log a debug message */
2175
#define BLOGD(sc, codepath, format, args...) \
2176
do { \
2177
if (__predict_false(sc->debug & (codepath))) { \
2178
device_printf((sc)->dev, \
2179
"%s(%s:%d) " format, \
2180
__FUNCTION__, \
2181
__FILE__, \
2182
__LINE__, \
2183
## args); \
2184
} \
2185
} while(0)
2186
2187
/* log a info message */
2188
#define BLOGI(sc, format, args...) \
2189
do { \
2190
if (__predict_false(sc->debug)) { \
2191
device_printf((sc)->dev, \
2192
"%s(%s:%d) " format, \
2193
__FUNCTION__, \
2194
__FILE__, \
2195
__LINE__, \
2196
## args); \
2197
} else { \
2198
device_printf((sc)->dev, \
2199
format, \
2200
## args); \
2201
} \
2202
} while(0)
2203
2204
/* log a warning message */
2205
#define BLOGW(sc, format, args...) \
2206
do { \
2207
if (__predict_false(sc->debug)) { \
2208
device_printf((sc)->dev, \
2209
"%s(%s:%d) WARNING: " format, \
2210
__FUNCTION__, \
2211
__FILE__, \
2212
__LINE__, \
2213
## args); \
2214
} else { \
2215
device_printf((sc)->dev, \
2216
"WARNING: " format, \
2217
## args); \
2218
} \
2219
} while(0)
2220
2221
/* log a error message */
2222
#define BLOGE(sc, format, args...) \
2223
do { \
2224
if (__predict_false(sc->debug)) { \
2225
device_printf((sc)->dev, \
2226
"%s(%s:%d) ERROR: " format, \
2227
__FUNCTION__, \
2228
__FILE__, \
2229
__LINE__, \
2230
## args); \
2231
} else { \
2232
device_printf((sc)->dev, \
2233
"ERROR: " format, \
2234
## args); \
2235
} \
2236
} while(0)
2237
2238
#ifdef ECORE_STOP_ON_ERROR
2239
2240
#define bxe_panic(sc, msg) \
2241
do { \
2242
panic msg; \
2243
} while (0)
2244
2245
#else
2246
2247
#define bxe_panic(sc, msg) \
2248
device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
2249
2250
#endif
2251
2252
#define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2253
#define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2254
2255
void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2256
uint8_t *mem, uint32_t len);
2257
void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2258
struct mbuf *m, uint8_t contents);
2259
2260
#define BXE_SET_FLOWID(m) M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE)
2261
#define BXE_VALID_FLOWID(m) (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2262
2263
/***********/
2264
/* INLINES */
2265
/***********/
2266
2267
static inline uint32_t
2268
reg_poll(struct bxe_softc *sc,
2269
uint32_t reg,
2270
uint32_t expected,
2271
int ms,
2272
int wait)
2273
{
2274
uint32_t val;
2275
2276
do {
2277
val = REG_RD(sc, reg);
2278
if (val == expected) {
2279
break;
2280
}
2281
ms -= wait;
2282
DELAY(wait * 1000);
2283
} while (ms > 0);
2284
2285
return (val);
2286
}
2287
2288
static inline void
2289
bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2290
{
2291
mb(); /* status block is written to by the chip */
2292
fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2293
}
2294
2295
static inline void
2296
bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2297
uint8_t igu_sb_id,
2298
uint8_t segment,
2299
uint16_t index,
2300
uint8_t op,
2301
uint8_t update,
2302
uint32_t igu_addr)
2303
{
2304
struct igu_regular cmd_data = {0};
2305
2306
cmd_data.sb_id_and_flags =
2307
((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2308
(segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2309
(update << IGU_REGULAR_BUPDATE_SHIFT) |
2310
(op << IGU_REGULAR_ENABLE_INT_SHIFT));
2311
2312
BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2313
cmd_data.sb_id_and_flags, igu_addr);
2314
REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2315
2316
/* Make sure that ACK is written */
2317
bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2318
BUS_SPACE_BARRIER_WRITE);
2319
mb();
2320
}
2321
2322
static inline void
2323
bxe_hc_ack_sb(struct bxe_softc *sc,
2324
uint8_t sb_id,
2325
uint8_t storm,
2326
uint16_t index,
2327
uint8_t op,
2328
uint8_t update)
2329
{
2330
uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2331
COMMAND_REG_INT_ACK);
2332
struct igu_ack_register igu_ack;
2333
2334
igu_ack.status_block_index = index;
2335
igu_ack.sb_id_and_flags =
2336
((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2337
(storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2338
(update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2339
(op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2340
2341
REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2342
2343
/* Make sure that ACK is written */
2344
bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2345
BUS_SPACE_BARRIER_WRITE);
2346
mb();
2347
}
2348
2349
static inline void
2350
bxe_ack_sb(struct bxe_softc *sc,
2351
uint8_t igu_sb_id,
2352
uint8_t storm,
2353
uint16_t index,
2354
uint8_t op,
2355
uint8_t update)
2356
{
2357
if (sc->devinfo.int_block == INT_BLOCK_HC)
2358
bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2359
else {
2360
uint8_t segment;
2361
if (CHIP_INT_MODE_IS_BC(sc)) {
2362
segment = storm;
2363
} else if (igu_sb_id != sc->igu_dsb_id) {
2364
segment = IGU_SEG_ACCESS_DEF;
2365
} else if (storm == ATTENTION_ID) {
2366
segment = IGU_SEG_ACCESS_ATTN;
2367
} else {
2368
segment = IGU_SEG_ACCESS_DEF;
2369
}
2370
bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2371
}
2372
}
2373
2374
static inline uint16_t
2375
bxe_hc_ack_int(struct bxe_softc *sc)
2376
{
2377
uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2378
COMMAND_REG_SIMD_MASK);
2379
uint32_t result = REG_RD(sc, hc_addr);
2380
2381
mb();
2382
return (result);
2383
}
2384
2385
static inline uint16_t
2386
bxe_igu_ack_int(struct bxe_softc *sc)
2387
{
2388
uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2389
uint32_t result = REG_RD(sc, igu_addr);
2390
2391
BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2392
result, igu_addr);
2393
2394
mb();
2395
return (result);
2396
}
2397
2398
static inline uint16_t
2399
bxe_ack_int(struct bxe_softc *sc)
2400
{
2401
mb();
2402
if (sc->devinfo.int_block == INT_BLOCK_HC) {
2403
return (bxe_hc_ack_int(sc));
2404
} else {
2405
return (bxe_igu_ack_int(sc));
2406
}
2407
}
2408
2409
static inline int
2410
func_by_vn(struct bxe_softc *sc,
2411
int vn)
2412
{
2413
return (2 * vn + SC_PORT(sc));
2414
}
2415
2416
/*
2417
* Statistics ID are global per chip/path, while Client IDs for E1x
2418
* are per port.
2419
*/
2420
static inline uint8_t
2421
bxe_stats_id(struct bxe_fastpath *fp)
2422
{
2423
struct bxe_softc *sc = fp->sc;
2424
2425
if (!CHIP_IS_E1x(sc)) {
2426
return (fp->cl_id);
2427
}
2428
2429
return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2430
}
2431
2432
#endif /* __BXE_H__ */
2433
2434
2435