Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/bxe/ecore_init.h
39534 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
5
*
6
* Redistribution and use in source and binary forms, with or without
7
* modification, are permitted provided that the following conditions
8
* are met:
9
*
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26
* THE POSSIBILITY OF SUCH DAMAGE.
27
*/
28
29
#include <sys/cdefs.h>
30
#ifndef ECORE_INIT_H
31
#define ECORE_INIT_H
32
33
/* Init operation types and structures */
34
enum {
35
OP_RD = 0x1, /* read a single register */
36
OP_WR, /* write a single register */
37
OP_SW, /* copy a string to the device */
38
OP_ZR, /* clear memory */
39
OP_ZP, /* unzip then copy with DMAE */
40
OP_WR_64, /* write 64 bit pattern */
41
OP_WB, /* copy a string using DMAE */
42
#ifndef FW_ZIP_SUPPORT
43
OP_FW, /* copy an array from fw data (only used with unzipped FW) */
44
#endif
45
OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */
46
OP_IF_MODE_OR, /* Skip the following ops if all init modes don't match */
47
OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */
48
OP_IF_PHASE,
49
OP_RT,
50
OP_DELAY,
51
OP_VERIFY,
52
OP_MAX
53
};
54
55
enum {
56
STAGE_START,
57
STAGE_END,
58
};
59
60
/* Returns the index of start or end of a specific block stage in ops array*/
61
#define BLOCK_OPS_IDX(block, stage, end) \
62
(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
63
64
65
/* structs for the various opcodes */
66
struct raw_op {
67
uint32_t op:8;
68
uint32_t offset:24;
69
uint32_t raw_data;
70
};
71
72
struct op_read {
73
uint32_t op:8;
74
uint32_t offset:24;
75
uint32_t val;
76
};
77
78
struct op_write {
79
uint32_t op:8;
80
uint32_t offset:24;
81
uint32_t val;
82
};
83
84
struct op_arr_write {
85
uint32_t op:8;
86
uint32_t offset:24;
87
#ifdef __BIG_ENDIAN
88
uint16_t data_len;
89
uint16_t data_off;
90
#else /* __LITTLE_ENDIAN */
91
uint16_t data_off;
92
uint16_t data_len;
93
#endif
94
};
95
96
struct op_zero {
97
uint32_t op:8;
98
uint32_t offset:24;
99
uint32_t len;
100
};
101
102
struct op_if_mode {
103
uint32_t op:8;
104
uint32_t cmd_offset:24;
105
uint32_t mode_bit_map;
106
};
107
108
struct op_if_phase {
109
uint32_t op:8;
110
uint32_t cmd_offset:24;
111
uint32_t phase_bit_map;
112
};
113
114
struct op_delay {
115
uint32_t op:8;
116
uint32_t reserved:24;
117
uint32_t delay;
118
};
119
120
union init_op {
121
struct op_read read;
122
struct op_write write;
123
struct op_arr_write arr_wr;
124
struct op_zero zero;
125
struct raw_op raw;
126
struct op_if_mode if_mode;
127
struct op_if_phase if_phase;
128
struct op_delay delay;
129
};
130
131
132
/* Init Phases */
133
enum {
134
PHASE_COMMON,
135
PHASE_PORT0,
136
PHASE_PORT1,
137
PHASE_PF0,
138
PHASE_PF1,
139
PHASE_PF2,
140
PHASE_PF3,
141
PHASE_PF4,
142
PHASE_PF5,
143
PHASE_PF6,
144
PHASE_PF7,
145
NUM_OF_INIT_PHASES
146
};
147
148
/* Init Modes */
149
enum {
150
MODE_ASIC = 0x00000001,
151
MODE_FPGA = 0x00000002,
152
MODE_EMUL = 0x00000004,
153
MODE_E2 = 0x00000008,
154
MODE_E3 = 0x00000010,
155
MODE_PORT2 = 0x00000020,
156
MODE_PORT4 = 0x00000040,
157
MODE_SF = 0x00000080,
158
MODE_MF = 0x00000100,
159
MODE_MF_SD = 0x00000200,
160
MODE_MF_SI = 0x00000400,
161
MODE_MF_AFEX = 0x00000800,
162
MODE_E3_A0 = 0x00001000,
163
MODE_E3_B0 = 0x00002000,
164
MODE_COS3 = 0x00004000,
165
MODE_COS6 = 0x00008000,
166
MODE_LITTLE_ENDIAN = 0x00010000,
167
MODE_BIG_ENDIAN = 0x00020000,
168
};
169
170
/* Init Blocks */
171
enum {
172
BLOCK_ATC,
173
BLOCK_BRB1,
174
BLOCK_CCM,
175
BLOCK_CDU,
176
BLOCK_CFC,
177
BLOCK_CSDM,
178
BLOCK_CSEM,
179
BLOCK_DBG,
180
BLOCK_DMAE,
181
BLOCK_DORQ,
182
BLOCK_HC,
183
BLOCK_IGU,
184
BLOCK_MISC,
185
BLOCK_NIG,
186
BLOCK_PBF,
187
BLOCK_PGLUE_B,
188
BLOCK_PRS,
189
BLOCK_PXP2,
190
BLOCK_PXP,
191
BLOCK_QM,
192
BLOCK_SRC,
193
BLOCK_TCM,
194
BLOCK_TM,
195
BLOCK_TSDM,
196
BLOCK_TSEM,
197
BLOCK_UCM,
198
BLOCK_UPB,
199
BLOCK_USDM,
200
BLOCK_USEM,
201
BLOCK_XCM,
202
BLOCK_XPB,
203
BLOCK_XSDM,
204
BLOCK_XSEM,
205
BLOCK_MISC_AEU,
206
NUM_OF_INIT_BLOCKS
207
};
208
209
210
211
212
213
214
215
216
/* Vnics per mode */
217
#define ECORE_PORT2_MODE_NUM_VNICS 4
218
219
220
/* QM queue numbers */
221
#define ECORE_ETH_Q 0
222
#define ECORE_TOE_Q 3
223
#define ECORE_TOE_ACK_Q 6
224
#define ECORE_ISCSI_Q 9
225
#define ECORE_ISCSI_ACK_Q 11
226
#define ECORE_FCOE_Q 10
227
228
/* Vnics per mode */
229
#define ECORE_PORT4_MODE_NUM_VNICS 2
230
231
/* COS offset for port1 in E3 B0 4port mode */
232
#define ECORE_E3B0_PORT1_COS_OFFSET 3
233
234
/* QM Register addresses */
235
#define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\
236
(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
237
#define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\
238
(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
239
#define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\
240
(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
241
242
/* extracts the QM queue number for the specified port and vnic */
243
#define ECORE_PF_Q_NUM(q_num, port, vnic)\
244
((((port) << 1) | (vnic)) * 16 + (q_num))
245
246
247
/* Maps the specified queue to the specified COS */
248
static inline void ecore_map_q_cos(struct bxe_softc *sc, uint32_t q_num, uint32_t new_cos)
249
{
250
/* find current COS mapping */
251
uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4);
252
253
/* check if queue->COS mapping has changed */
254
if (curr_cos != new_cos) {
255
uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS;
256
uint32_t reg_addr, reg_bit_map, vnic;
257
258
/* update parameters for 4port mode */
259
if (INIT_MODE_FLAGS(sc) & MODE_PORT4) {
260
num_vnics = ECORE_PORT4_MODE_NUM_VNICS;
261
if (PORT_ID(sc)) {
262
curr_cos += ECORE_E3B0_PORT1_COS_OFFSET;
263
new_cos += ECORE_E3B0_PORT1_COS_OFFSET;
264
}
265
}
266
267
/* change queue mapping for each VNIC */
268
for (vnic = 0; vnic < num_vnics; vnic++) {
269
uint32_t pf_q_num =
270
ECORE_PF_Q_NUM(q_num, PORT_ID(sc), vnic);
271
uint32_t q_bit_map = 1 << (pf_q_num & 0x1f);
272
273
/* overwrite queue->VOQ mapping */
274
REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
275
276
/* clear queue bit from current COS bit map */
277
reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
278
reg_bit_map = REG_RD(sc, reg_addr);
279
REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map));
280
281
/* set queue bit in new COS bit map */
282
reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
283
reg_bit_map = REG_RD(sc, reg_addr);
284
REG_WR(sc, reg_addr, reg_bit_map | q_bit_map);
285
286
/* set/clear queue bit in command-queue bit map
287
(E2/E3A0 only, valid COS values are 0/1) */
288
if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) {
289
reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num);
290
reg_bit_map = REG_RD(sc, reg_addr);
291
q_bit_map = 1 << (2 * (pf_q_num & 0xf));
292
reg_bit_map = new_cos ?
293
(reg_bit_map | q_bit_map) :
294
(reg_bit_map & (~q_bit_map));
295
REG_WR(sc, reg_addr, reg_bit_map);
296
}
297
}
298
}
299
}
300
301
/* Configures the QM according to the specified per-traffic-type COSes */
302
static inline void ecore_dcb_config_qm(struct bxe_softc *sc, enum cos_mode mode,
303
struct priority_cos *traffic_cos)
304
{
305
ecore_map_q_cos(sc, ECORE_FCOE_Q,
306
traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
307
ecore_map_q_cos(sc, ECORE_ISCSI_Q,
308
traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
309
ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q,
310
traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
311
if (mode != STATIC_COS) {
312
/* required only in OVERRIDE_COS mode */
313
ecore_map_q_cos(sc, ECORE_ETH_Q,
314
traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
315
ecore_map_q_cos(sc, ECORE_TOE_Q,
316
traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
317
ecore_map_q_cos(sc, ECORE_TOE_ACK_Q,
318
traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
319
}
320
}
321
322
323
/*
324
* congestion management port init api description
325
* the api works as follows:
326
* the driver should pass the cmng_init_input struct, the port_init function
327
* will prepare the required internal ram structure which will be passed back
328
* to the driver (cmng_init) that will write it into the internal ram.
329
*
330
* IMPORTANT REMARKS:
331
* 1. the cmng_init struct does not represent the contiguous internal ram
332
* structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
333
* offset in order to write the port sub struct and the
334
* PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
335
* words - don't use memcpy!).
336
* 2. although the cmng_init struct is filled for the maximal vnic number
337
* possible, the driver should only write the valid vnics into the internal
338
* ram according to the appropriate port mode.
339
*/
340
#define BITS_TO_BYTES(x) ((x)/8)
341
342
/* CMNG constants, as derived from system spec calculations */
343
344
/* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
345
#define DEF_MIN_RATE 100
346
347
/* resolution of the rate shaping timer - 400 usec */
348
#define RS_PERIODIC_TIMEOUT_USEC 400
349
350
/*
351
* number of bytes in single QM arbitration cycle -
352
* coefficient for calculating the fairness timer
353
*/
354
#define QM_ARB_BYTES 160000
355
356
/* resolution of Min algorithm 1:100 */
357
#define MIN_RES 100
358
359
/*
360
* how many bytes above threshold for
361
* the minimal credit of Min algorithm
362
*/
363
#define MIN_ABOVE_THRESH 32768
364
365
/*
366
* Fairness algorithm integration time coefficient -
367
* for calculating the actual Tfair
368
*/
369
#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
370
371
/* Memory of fairness algorithm - 2 cycles */
372
#define FAIR_MEM 2
373
#define SAFC_TIMEOUT_USEC 52
374
375
#define SDM_TICKS 4
376
377
378
static inline void ecore_init_max(const struct cmng_init_input *input_data,
379
uint32_t r_param, struct cmng_init *ram_data)
380
{
381
uint32_t vnic;
382
struct cmng_vnic *vdata = &ram_data->vnic;
383
struct cmng_struct_per_port *pdata = &ram_data->port;
384
/*
385
* rate shaping per-port variables
386
* 100 micro seconds in SDM ticks = 25
387
* since each tick is 4 microSeconds
388
*/
389
390
pdata->rs_vars.rs_periodic_timeout =
391
RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
392
393
/* this is the threshold below which no timer arming will occur.
394
* 1.25 coefficient is for the threshold to be a little bigger
395
* then the real time to compensate for timer in-accuracy
396
*/
397
pdata->rs_vars.rs_threshold =
398
(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
399
400
/* rate shaping per-vnic variables */
401
for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
402
/* global vnic counter */
403
vdata->vnic_max_rate[vnic].vn_counter.rate =
404
input_data->vnic_max_rate[vnic];
405
/*
406
* maximal Mbps for this vnic
407
* the quota in each timer period - number of bytes
408
* transmitted in this period
409
*/
410
vdata->vnic_max_rate[vnic].vn_counter.quota =
411
RS_PERIODIC_TIMEOUT_USEC *
412
(uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
413
}
414
415
}
416
417
static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate,
418
struct rate_shaping_vars_per_vn *ram_data)
419
{
420
/* global vnic counter */
421
ram_data->vn_counter.rate = vnic_max_rate;
422
423
/*
424
* maximal Mbps for this vnic
425
* the quota in each timer period - number of bytes
426
* transmitted in this period
427
*/
428
ram_data->vn_counter.quota =
429
RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8;
430
}
431
432
static inline void ecore_init_min(const struct cmng_init_input *input_data,
433
uint32_t r_param, struct cmng_init *ram_data)
434
{
435
uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
436
struct cmng_vnic *vdata = &ram_data->vnic;
437
struct cmng_struct_per_port *pdata = &ram_data->port;
438
439
/* this is the resolution of the fairness timer */
440
fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
441
442
/*
443
* fairness per-port variables
444
* for 10G it is 1000usec. for 1G it is 10000usec.
445
*/
446
tFair = T_FAIR_COEF / input_data->port_rate;
447
448
/* this is the threshold below which we won't arm the timer anymore */
449
pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
450
451
/*
452
* we multiply by 1e3/8 to get bytes/msec. We don't want the credits
453
* to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
454
*/
455
pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
456
457
/* since each tick is 4 microSeconds */
458
pdata->fair_vars.fairness_timeout =
459
fair_periodic_timeout_usec / SDM_TICKS;
460
461
/* calculate sum of weights */
462
vnicWeightSum = 0;
463
464
for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++)
465
vnicWeightSum += input_data->vnic_min_rate[vnic];
466
467
/* global vnic counter */
468
if (vnicWeightSum > 0) {
469
/* fairness per-vnic variables */
470
for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
471
/*
472
* this is the credit for each period of the fairness
473
* algorithm - number of bytes in T_FAIR (this vnic
474
* share of the port rate)
475
*/
476
vdata->vnic_min_rate[vnic].vn_credit_delta =
477
((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 *
478
(T_FAIR_COEF / (8 * 100 * vnicWeightSum)));
479
if (vdata->vnic_min_rate[vnic].vn_credit_delta <
480
pdata->fair_vars.fair_threshold +
481
MIN_ABOVE_THRESH) {
482
vdata->vnic_min_rate[vnic].vn_credit_delta =
483
pdata->fair_vars.fair_threshold +
484
MIN_ABOVE_THRESH;
485
}
486
}
487
}
488
}
489
490
static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data,
491
uint32_t r_param, struct cmng_init *ram_data)
492
{
493
uint32_t vnic, cos;
494
uint32_t cosWeightSum = 0;
495
struct cmng_vnic *vdata = &ram_data->vnic;
496
struct cmng_struct_per_port *pdata = &ram_data->port;
497
498
for (cos = 0; cos < MAX_COS_NUMBER; cos++)
499
cosWeightSum += input_data->cos_min_rate[cos];
500
501
if (cosWeightSum > 0) {
502
503
for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
504
/*
505
* Since cos and vnic shouldn't work together the rate
506
* to divide between the coses is the port rate.
507
*/
508
uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
509
for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
510
/*
511
* this is the credit for each period of
512
* the fairness algorithm - number of bytes
513
* in T_FAIR (this cos share of the vnic rate)
514
*/
515
ccd[cos] =
516
((uint32_t)input_data->cos_min_rate[cos] * 100 *
517
(T_FAIR_COEF / (8 * 100 * cosWeightSum)));
518
if (ccd[cos] < pdata->fair_vars.fair_threshold
519
+ MIN_ABOVE_THRESH) {
520
ccd[cos] =
521
pdata->fair_vars.fair_threshold +
522
MIN_ABOVE_THRESH;
523
}
524
}
525
}
526
}
527
}
528
529
static inline void ecore_init_safc(const struct cmng_init_input *input_data,
530
struct cmng_init *ram_data)
531
{
532
/* in microSeconds */
533
ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
534
}
535
536
/* Congestion management port init */
537
static inline void ecore_init_cmng(const struct cmng_init_input *input_data,
538
struct cmng_init *ram_data)
539
{
540
uint32_t r_param;
541
ECORE_MEMSET(ram_data, 0,sizeof(struct cmng_init));
542
543
ram_data->port.flags = input_data->flags;
544
545
/*
546
* number of bytes transmitted in a rate of 10Gbps
547
* in one usec = 1.25KB.
548
*/
549
r_param = BITS_TO_BYTES(input_data->port_rate);
550
ecore_init_max(input_data, r_param, ram_data);
551
ecore_init_min(input_data, r_param, ram_data);
552
ecore_init_fw_wrr(input_data, r_param, ram_data);
553
ecore_init_safc(input_data, ram_data);
554
}
555
556
557
558
559
/* Returns the index of start or end of a specific block stage in ops array*/
560
#define BLOCK_OPS_IDX(block, stage, end) \
561
(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
562
563
564
#define INITOP_SET 0 /* set the HW directly */
565
#define INITOP_CLEAR 1 /* clear the HW directly */
566
#define INITOP_INIT 2 /* set the init-value array */
567
568
/****************************************************************************
569
* ILT management
570
****************************************************************************/
571
struct ilt_line {
572
ecore_dma_addr_t page_mapping;
573
void *page;
574
uint32_t size;
575
};
576
577
struct ilt_client_info {
578
uint32_t page_size;
579
uint16_t start;
580
uint16_t end;
581
uint16_t client_num;
582
uint16_t flags;
583
#define ILT_CLIENT_SKIP_INIT 0x1
584
#define ILT_CLIENT_SKIP_MEM 0x2
585
};
586
587
struct ecore_ilt {
588
uint32_t start_line;
589
struct ilt_line *lines;
590
struct ilt_client_info clients[4];
591
#define ILT_CLIENT_CDU 0
592
#define ILT_CLIENT_QM 1
593
#define ILT_CLIENT_SRC 2
594
#define ILT_CLIENT_TM 3
595
};
596
597
/****************************************************************************
598
* SRC configuration
599
****************************************************************************/
600
struct src_ent {
601
uint8_t opaque[56];
602
uint64_t next;
603
};
604
605
/****************************************************************************
606
* Parity configuration
607
****************************************************************************/
608
#define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
609
{ \
610
block##_REG_##block##_PRTY_MASK, \
611
block##_REG_##block##_PRTY_STS_CLR, \
612
en_mask, {m1, m1h, m2, m3}, #block \
613
}
614
615
#define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
616
{ \
617
block##_REG_##block##_PRTY_MASK_0, \
618
block##_REG_##block##_PRTY_STS_CLR_0, \
619
en_mask, {m1, m1h, m2, m3}, #block"_0" \
620
}
621
622
#define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
623
{ \
624
block##_REG_##block##_PRTY_MASK_1, \
625
block##_REG_##block##_PRTY_STS_CLR_1, \
626
en_mask, {m1, m1h, m2, m3}, #block"_1" \
627
}
628
629
static const struct {
630
uint32_t mask_addr;
631
uint32_t sts_clr_addr;
632
uint32_t en_mask; /* Mask to enable parity attentions */
633
struct {
634
uint32_t e1; /* 57710 */
635
uint32_t e1h; /* 57711 */
636
uint32_t e2; /* 57712 */
637
uint32_t e3; /* 578xx */
638
} reg_mask; /* Register mask (all valid bits) */
639
char name[8]; /* Block's longest name is 7 characters long
640
* (name + suffix)
641
*/
642
} ecore_blocks_parity_data[] = {
643
/* bit 19 masked */
644
/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
645
/* bit 5,18,20-31 */
646
/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
647
/* bit 5 */
648
/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
649
/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
650
/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
651
652
/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
653
* want to handle "system kill" flow at the moment.
654
*/
655
BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
656
0x7ffffff),
657
BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
658
0xffffffff),
659
BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
660
BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
661
BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
662
BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
663
BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff),
664
BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
665
BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
666
BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
667
BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
668
BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
669
BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
670
{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
671
GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
672
{0xf, 0xf, 0xf, 0xf}, "UPB"},
673
{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
674
GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
675
{0xf, 0xf, 0xf, 0xf}, "XPB"},
676
BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
677
BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
678
BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
679
BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
680
BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
681
BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
682
BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
683
BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
684
BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
685
BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
686
BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
687
BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
688
BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
689
BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
690
BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
691
BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
692
BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
693
BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
694
0xffffffff),
695
BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
696
BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
697
0xffffffff),
698
BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
699
BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
700
0xffffffff),
701
BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
702
BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
703
0xffffffff),
704
BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
705
};
706
707
708
/* [28] MCP Latched rom_parity
709
* [29] MCP Latched ump_rx_parity
710
* [30] MCP Latched ump_tx_parity
711
* [31] MCP Latched scpad_parity
712
*/
713
#define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS \
714
(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
715
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
716
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
717
718
#define MISC_AEU_ENABLE_MCP_PRTY_BITS \
719
(MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
720
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
721
722
/* Below registers control the MCP parity attention output. When
723
* MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
724
* enabled, when cleared - disabled.
725
*/
726
static const struct {
727
uint32_t addr;
728
uint32_t bits;
729
} mcp_attn_ctl_regs[] = {
730
{ MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
731
MISC_AEU_ENABLE_MCP_PRTY_BITS },
732
{ MISC_REG_AEU_ENABLE4_NIG_0,
733
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
734
{ MISC_REG_AEU_ENABLE4_PXP_0,
735
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
736
{ MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
737
MISC_AEU_ENABLE_MCP_PRTY_BITS },
738
{ MISC_REG_AEU_ENABLE4_NIG_1,
739
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
740
{ MISC_REG_AEU_ENABLE4_PXP_1,
741
MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
742
};
743
744
static inline void ecore_set_mcp_parity(struct bxe_softc *sc, uint8_t enable)
745
{
746
int i;
747
uint32_t reg_val;
748
749
for (i = 0; i < ARRSIZE(mcp_attn_ctl_regs); i++) {
750
reg_val = REG_RD(sc, mcp_attn_ctl_regs[i].addr);
751
752
if (enable)
753
reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */
754
else
755
reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */
756
757
REG_WR(sc, mcp_attn_ctl_regs[i].addr, reg_val);
758
}
759
}
760
761
static inline uint32_t ecore_parity_reg_mask(struct bxe_softc *sc, int idx)
762
{
763
if (CHIP_IS_E1(sc))
764
return ecore_blocks_parity_data[idx].reg_mask.e1;
765
else if (CHIP_IS_E1H(sc))
766
return ecore_blocks_parity_data[idx].reg_mask.e1h;
767
else if (CHIP_IS_E2(sc))
768
return ecore_blocks_parity_data[idx].reg_mask.e2;
769
else /* CHIP_IS_E3 */
770
return ecore_blocks_parity_data[idx].reg_mask.e3;
771
}
772
773
static inline void ecore_disable_blocks_parity(struct bxe_softc *sc)
774
{
775
int i;
776
777
for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
778
uint32_t dis_mask = ecore_parity_reg_mask(sc, i);
779
780
if (dis_mask) {
781
REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
782
dis_mask);
783
ECORE_MSG(sc, "Setting parity mask "
784
"for %s to\t\t0x%x\n",
785
ecore_blocks_parity_data[i].name, dis_mask);
786
}
787
}
788
789
/* Disable MCP parity attentions */
790
ecore_set_mcp_parity(sc, FALSE);
791
}
792
793
/**
794
* Clear the parity error status registers.
795
*/
796
static inline void ecore_clear_blocks_parity(struct bxe_softc *sc)
797
{
798
int i;
799
uint32_t reg_val, mcp_aeu_bits =
800
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
801
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
802
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
803
AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
804
805
/* Clear SEM_FAST parities */
806
REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
807
REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
808
REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
809
REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
810
811
for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
812
uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
813
814
if (reg_mask) {
815
reg_val = REG_RD(sc, ecore_blocks_parity_data[i].
816
sts_clr_addr);
817
if (reg_val & reg_mask)
818
ECORE_MSG(sc,
819
"Parity errors in %s: 0x%x\n",
820
ecore_blocks_parity_data[i].name,
821
reg_val & reg_mask);
822
}
823
}
824
825
/* Check if there were parity attentions in MCP */
826
reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP);
827
if (reg_val & mcp_aeu_bits)
828
ECORE_MSG(sc, "Parity error in MCP: 0x%x\n",
829
reg_val & mcp_aeu_bits);
830
831
/* Clear parity attentions in MCP:
832
* [7] clears Latched rom_parity
833
* [8] clears Latched ump_rx_parity
834
* [9] clears Latched ump_tx_parity
835
* [10] clears Latched scpad_parity (both ports)
836
*/
837
REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
838
}
839
840
static inline void ecore_enable_blocks_parity(struct bxe_softc *sc)
841
{
842
int i;
843
844
for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
845
uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
846
847
if (reg_mask)
848
REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
849
ecore_blocks_parity_data[i].en_mask & reg_mask);
850
}
851
852
/* Enable MCP parity attentions */
853
ecore_set_mcp_parity(sc, TRUE);
854
}
855
856
857
#endif /* ECORE_INIT_H */
858
859
860