Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/bxe/ecore_init_ops.h
39534 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
5
*
6
* Redistribution and use in source and binary forms, with or without
7
* modification, are permitted provided that the following conditions
8
* are met:
9
*
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
20
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
26
* THE POSSIBILITY OF SUCH DAMAGE.
27
*/
28
29
#include <sys/cdefs.h>
30
#ifndef ECORE_INIT_OPS_H
31
#define ECORE_INIT_OPS_H
32
33
34
35
36
37
38
39
40
41
42
static int ecore_gunzip(struct bxe_softc *sc, const uint8_t *zbuf, int len);
43
static void ecore_reg_wr_ind(struct bxe_softc *sc, uint32_t addr, uint32_t val);
44
static void ecore_write_dmae_phys_len(struct bxe_softc *sc,
45
ecore_dma_addr_t phys_addr, uint32_t addr,
46
uint32_t len);
47
48
static void ecore_init_str_wr(struct bxe_softc *sc, uint32_t addr,
49
const uint32_t *data, uint32_t len)
50
{
51
uint32_t i;
52
53
for (i = 0; i < len; i++)
54
REG_WR(sc, addr + i*4, data[i]);
55
}
56
57
static void ecore_init_ind_wr(struct bxe_softc *sc, uint32_t addr,
58
const uint32_t *data, uint32_t len)
59
{
60
uint32_t i;
61
62
for (i = 0; i < len; i++)
63
ecore_reg_wr_ind(sc, addr + i*4, data[i]);
64
}
65
66
static void ecore_write_big_buf(struct bxe_softc *sc, uint32_t addr, uint32_t len,
67
uint8_t wb)
68
{
69
if (DMAE_READY(sc))
70
ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
71
72
/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
73
else if (wb && CHIP_IS_E1(sc))
74
ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
75
76
/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
77
else
78
ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
79
}
80
81
static void ecore_init_fill(struct bxe_softc *sc, uint32_t addr, int fill,
82
uint32_t len, uint8_t wb)
83
{
84
uint32_t buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
85
uint32_t buf_len32 = buf_len/4;
86
uint32_t i;
87
88
ECORE_MEMSET(GUNZIP_BUF(sc), (uint8_t)fill, buf_len);
89
90
for (i = 0; i < len; i += buf_len32) {
91
uint32_t cur_len = min(buf_len32, len - i);
92
93
ecore_write_big_buf(sc, addr + i*4, cur_len, wb);
94
}
95
}
96
97
static void ecore_write_big_buf_wb(struct bxe_softc *sc, uint32_t addr, uint32_t len)
98
{
99
if (DMAE_READY(sc))
100
ecore_write_dmae_phys_len(sc, GUNZIP_PHYS(sc), addr, len);
101
102
/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
103
else if (CHIP_IS_E1(sc))
104
ecore_init_ind_wr(sc, addr, GUNZIP_BUF(sc), len);
105
106
/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
107
else
108
ecore_init_str_wr(sc, addr, GUNZIP_BUF(sc), len);
109
}
110
111
static void ecore_init_wr_64(struct bxe_softc *sc, uint32_t addr,
112
const uint32_t *data, uint32_t len64)
113
{
114
uint32_t buf_len32 = FW_BUF_SIZE/4;
115
uint32_t len = len64*2;
116
uint64_t data64 = 0;
117
uint32_t i;
118
119
/* 64 bit value is in a blob: first low DWORD, then high DWORD */
120
data64 = HILO_U64((*(data + 1)), (*data));
121
122
len64 = min((uint32_t)(FW_BUF_SIZE/8), len64);
123
for (i = 0; i < len64; i++) {
124
uint64_t *pdata = ((uint64_t *)(GUNZIP_BUF(sc))) + i;
125
126
*pdata = data64;
127
}
128
129
for (i = 0; i < len; i += buf_len32) {
130
uint32_t cur_len = min(buf_len32, len - i);
131
132
ecore_write_big_buf_wb(sc, addr + i*4, cur_len);
133
}
134
}
135
136
/*********************************************************
137
There are different blobs for each PRAM section.
138
In addition, each blob write operation is divided into a few operations
139
in order to decrease the amount of phys. contiguous buffer needed.
140
Thus, when we select a blob the address may be with some offset
141
from the beginning of PRAM section.
142
The same holds for the INT_TABLE sections.
143
**********************************************************/
144
#define IF_IS_INT_TABLE_ADDR(base, addr) \
145
if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
146
147
#define IF_IS_PRAM_ADDR(base, addr) \
148
if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
149
150
static const uint8_t *ecore_sel_blob(struct bxe_softc *sc, uint32_t addr,
151
const uint8_t *data)
152
{
153
IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
154
data = INIT_TSEM_INT_TABLE_DATA(sc);
155
else
156
IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
157
data = INIT_CSEM_INT_TABLE_DATA(sc);
158
else
159
IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
160
data = INIT_USEM_INT_TABLE_DATA(sc);
161
else
162
IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
163
data = INIT_XSEM_INT_TABLE_DATA(sc);
164
else
165
IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
166
data = INIT_TSEM_PRAM_DATA(sc);
167
else
168
IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
169
data = INIT_CSEM_PRAM_DATA(sc);
170
else
171
IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
172
data = INIT_USEM_PRAM_DATA(sc);
173
else
174
IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
175
data = INIT_XSEM_PRAM_DATA(sc);
176
177
return data;
178
}
179
180
static void ecore_init_wr_wb(struct bxe_softc *sc, uint32_t addr,
181
const uint32_t *data, uint32_t len)
182
{
183
if (DMAE_READY(sc))
184
VIRT_WR_DMAE_LEN(sc, data, addr, len, 0);
185
186
/* in E1 chips BIOS initiated ZLR may interrupt widebus writes */
187
else if (CHIP_IS_E1(sc))
188
ecore_init_ind_wr(sc, addr, data, len);
189
190
/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
191
else
192
ecore_init_str_wr(sc, addr, data, len);
193
}
194
195
#ifndef FW_ZIP_SUPPORT
196
static void ecore_init_fw(struct bxe_softc *sc, uint32_t addr, uint32_t len)
197
{
198
const uint8_t *data = NULL;
199
200
data = ecore_sel_blob(sc, addr, (const uint8_t *)data);
201
202
if (DMAE_READY(sc))
203
VIRT_WR_DMAE_LEN(sc, data, addr, len, 1);
204
205
/* in E1 BIOS initiated ZLR may interrupt widebus writes */
206
else if (CHIP_IS_E1(sc))
207
ecore_init_ind_wr(sc, addr, (const uint32_t *)data, len);
208
209
/* in later chips PXP root complex handles BIOS ZLR w/o interrupting */
210
else
211
ecore_init_str_wr(sc, addr, (const uint32_t *)data, len);
212
}
213
214
#endif
215
216
static void ecore_wr_64(struct bxe_softc *sc, uint32_t reg, uint32_t val_lo,
217
uint32_t val_hi)
218
{
219
uint32_t wb_write[2];
220
221
wb_write[0] = val_lo;
222
wb_write[1] = val_hi;
223
REG_WR_DMAE_LEN(sc, reg, wb_write, 2);
224
}
225
226
static void ecore_init_wr_zp(struct bxe_softc *sc, uint32_t addr, uint32_t len,
227
uint32_t blob_off)
228
{
229
const uint8_t *data = NULL;
230
int rc;
231
uint32_t i;
232
233
data = ecore_sel_blob(sc, addr, data) + blob_off*4;
234
235
rc = ecore_gunzip(sc, data, len);
236
if (rc)
237
return;
238
239
/* gunzip_outlen is in dwords */
240
len = GUNZIP_OUTLEN(sc);
241
for (i = 0; i < len; i++)
242
((uint32_t *)GUNZIP_BUF(sc))[i] = (uint32_t)
243
ECORE_CPU_TO_LE32(((uint32_t *)GUNZIP_BUF(sc))[i]);
244
245
ecore_write_big_buf_wb(sc, addr, len);
246
}
247
248
static void ecore_init_block(struct bxe_softc *sc, uint32_t block, uint32_t stage)
249
{
250
uint16_t op_start =
251
INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
252
STAGE_START)];
253
uint16_t op_end =
254
INIT_OPS_OFFSETS(sc)[BLOCK_OPS_IDX(block, stage,
255
STAGE_END)];
256
const union init_op *op;
257
uint32_t op_idx, op_type, addr, len;
258
const uint32_t *data, *data_base;
259
260
/* If empty block */
261
if (op_start == op_end)
262
return;
263
264
data_base = INIT_DATA(sc);
265
266
for (op_idx = op_start; op_idx < op_end; op_idx++) {
267
268
op = (const union init_op *)&(INIT_OPS(sc)[op_idx]);
269
/* Get generic data */
270
op_type = op->raw.op;
271
addr = op->raw.offset;
272
/* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
273
* OP_WR64 (we assume that op_arr_write and op_write have the
274
* same structure).
275
*/
276
len = op->arr_wr.data_len;
277
data = data_base + op->arr_wr.data_off;
278
279
switch (op_type) {
280
case OP_RD:
281
REG_RD(sc, addr);
282
break;
283
case OP_WR:
284
REG_WR(sc, addr, op->write.val);
285
break;
286
case OP_SW:
287
ecore_init_str_wr(sc, addr, data, len);
288
break;
289
case OP_WB:
290
ecore_init_wr_wb(sc, addr, data, len);
291
break;
292
#ifndef FW_ZIP_SUPPORT
293
case OP_FW:
294
ecore_init_fw(sc, addr, len);
295
break;
296
#endif
297
case OP_ZR:
298
ecore_init_fill(sc, addr, 0, op->zero.len, 0);
299
break;
300
case OP_WB_ZR:
301
ecore_init_fill(sc, addr, 0, op->zero.len, 1);
302
break;
303
case OP_ZP:
304
ecore_init_wr_zp(sc, addr, len,
305
op->arr_wr.data_off);
306
break;
307
case OP_WR_64:
308
ecore_init_wr_64(sc, addr, data, len);
309
break;
310
case OP_IF_MODE_AND:
311
/* if any of the flags doesn't match, skip the
312
* conditional block.
313
*/
314
if ((INIT_MODE_FLAGS(sc) &
315
op->if_mode.mode_bit_map) !=
316
op->if_mode.mode_bit_map)
317
op_idx += op->if_mode.cmd_offset;
318
break;
319
case OP_IF_MODE_OR:
320
/* if all the flags don't match, skip the conditional
321
* block.
322
*/
323
if ((INIT_MODE_FLAGS(sc) &
324
op->if_mode.mode_bit_map) == 0)
325
op_idx += op->if_mode.cmd_offset;
326
break;
327
/* the following opcodes are unused at the moment. */
328
case OP_IF_PHASE:
329
case OP_RT:
330
case OP_DELAY:
331
case OP_VERIFY:
332
default:
333
/* Should never get here! */
334
335
break;
336
}
337
}
338
}
339
340
341
/****************************************************************************
342
* PXP Arbiter
343
****************************************************************************/
344
/*
345
* This code configures the PCI read/write arbiter
346
* which implements a weighted round robin
347
* between the virtual queues in the chip.
348
*
349
* The values were derived for each PCI max payload and max request size.
350
* since max payload and max request size are only known at run time,
351
* this is done as a separate init stage.
352
*/
353
354
#define NUM_WR_Q 13
355
#define NUM_RD_Q 29
356
#define MAX_RD_ORD 3
357
#define MAX_WR_ORD 2
358
359
/* configuration for one arbiter queue */
360
struct arb_line {
361
int l;
362
int add;
363
int ubound;
364
};
365
366
/* derived configuration for each read queue for each max request size */
367
static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
368
/* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
369
{ {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
370
{ {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
371
{ {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
372
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
373
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
374
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
375
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
376
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
377
/* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
378
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
379
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
380
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
381
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
382
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
383
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
384
{ {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
385
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
386
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
387
/* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
388
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
389
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
390
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
391
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
392
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
393
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
394
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
395
{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
396
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
397
};
398
399
/* derived configuration for each write queue for each max request size */
400
static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
401
/* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
402
{ {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
403
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
404
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
405
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
406
{ {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
407
{ {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
408
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
409
{ {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
410
/* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
411
{ {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
412
{ {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
413
{ {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
414
};
415
416
/* register addresses for read queues */
417
static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
418
/* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
419
PXP2_REG_RQ_BW_RD_UBOUND0},
420
{PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
421
PXP2_REG_PSWRQ_BW_UB1},
422
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
423
PXP2_REG_PSWRQ_BW_UB2},
424
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
425
PXP2_REG_PSWRQ_BW_UB3},
426
{PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
427
PXP2_REG_RQ_BW_RD_UBOUND4},
428
{PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
429
PXP2_REG_RQ_BW_RD_UBOUND5},
430
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
431
PXP2_REG_PSWRQ_BW_UB6},
432
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
433
PXP2_REG_PSWRQ_BW_UB7},
434
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
435
PXP2_REG_PSWRQ_BW_UB8},
436
/* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
437
PXP2_REG_PSWRQ_BW_UB9},
438
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
439
PXP2_REG_PSWRQ_BW_UB10},
440
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
441
PXP2_REG_PSWRQ_BW_UB11},
442
{PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
443
PXP2_REG_RQ_BW_RD_UBOUND12},
444
{PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
445
PXP2_REG_RQ_BW_RD_UBOUND13},
446
{PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
447
PXP2_REG_RQ_BW_RD_UBOUND14},
448
{PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
449
PXP2_REG_RQ_BW_RD_UBOUND15},
450
{PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
451
PXP2_REG_RQ_BW_RD_UBOUND16},
452
{PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
453
PXP2_REG_RQ_BW_RD_UBOUND17},
454
{PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
455
PXP2_REG_RQ_BW_RD_UBOUND18},
456
/* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
457
PXP2_REG_RQ_BW_RD_UBOUND19},
458
{PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
459
PXP2_REG_RQ_BW_RD_UBOUND20},
460
{PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
461
PXP2_REG_RQ_BW_RD_UBOUND22},
462
{PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
463
PXP2_REG_RQ_BW_RD_UBOUND23},
464
{PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
465
PXP2_REG_RQ_BW_RD_UBOUND24},
466
{PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
467
PXP2_REG_RQ_BW_RD_UBOUND25},
468
{PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
469
PXP2_REG_RQ_BW_RD_UBOUND26},
470
{PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
471
PXP2_REG_RQ_BW_RD_UBOUND27},
472
{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
473
PXP2_REG_PSWRQ_BW_UB28}
474
};
475
476
/* register addresses for write queues */
477
static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
478
/* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
479
PXP2_REG_PSWRQ_BW_UB1},
480
{PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
481
PXP2_REG_PSWRQ_BW_UB2},
482
{PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
483
PXP2_REG_PSWRQ_BW_UB3},
484
{PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
485
PXP2_REG_PSWRQ_BW_UB6},
486
{PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
487
PXP2_REG_PSWRQ_BW_UB7},
488
{PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
489
PXP2_REG_PSWRQ_BW_UB8},
490
{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
491
PXP2_REG_PSWRQ_BW_UB9},
492
{PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
493
PXP2_REG_PSWRQ_BW_UB10},
494
{PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
495
PXP2_REG_PSWRQ_BW_UB11},
496
/* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
497
PXP2_REG_PSWRQ_BW_UB28},
498
{PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
499
PXP2_REG_RQ_BW_WR_UBOUND29},
500
{PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
501
PXP2_REG_RQ_BW_WR_UBOUND30}
502
};
503
504
static void ecore_init_pxp_arb(struct bxe_softc *sc, int r_order,
505
int w_order)
506
{
507
uint32_t val, i;
508
509
if (r_order > MAX_RD_ORD) {
510
ECORE_MSG(sc, "read order of %d order adjusted to %d\n",
511
r_order, MAX_RD_ORD);
512
r_order = MAX_RD_ORD;
513
}
514
if (w_order > MAX_WR_ORD) {
515
ECORE_MSG(sc, "write order of %d order adjusted to %d\n",
516
w_order, MAX_WR_ORD);
517
w_order = MAX_WR_ORD;
518
}
519
if (CHIP_REV_IS_FPGA(sc)) {
520
ECORE_MSG(sc, "write order adjusted to 1 for FPGA\n");
521
w_order = 0;
522
}
523
ECORE_MSG(sc, "read order %d write order %d\n", r_order, w_order);
524
525
for (i = 0; i < NUM_RD_Q-1; i++) {
526
REG_WR(sc, read_arb_addr[i].l, read_arb_data[i][r_order].l);
527
REG_WR(sc, read_arb_addr[i].add,
528
read_arb_data[i][r_order].add);
529
REG_WR(sc, read_arb_addr[i].ubound,
530
read_arb_data[i][r_order].ubound);
531
}
532
533
for (i = 0; i < NUM_WR_Q-1; i++) {
534
if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
535
(write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
536
537
REG_WR(sc, write_arb_addr[i].l,
538
write_arb_data[i][w_order].l);
539
540
REG_WR(sc, write_arb_addr[i].add,
541
write_arb_data[i][w_order].add);
542
543
REG_WR(sc, write_arb_addr[i].ubound,
544
write_arb_data[i][w_order].ubound);
545
} else {
546
547
val = REG_RD(sc, write_arb_addr[i].l);
548
REG_WR(sc, write_arb_addr[i].l,
549
val | (write_arb_data[i][w_order].l << 10));
550
551
val = REG_RD(sc, write_arb_addr[i].add);
552
REG_WR(sc, write_arb_addr[i].add,
553
val | (write_arb_data[i][w_order].add << 10));
554
555
val = REG_RD(sc, write_arb_addr[i].ubound);
556
REG_WR(sc, write_arb_addr[i].ubound,
557
val | (write_arb_data[i][w_order].ubound << 7));
558
}
559
}
560
561
val = write_arb_data[NUM_WR_Q-1][w_order].add;
562
val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
563
val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
564
REG_WR(sc, PXP2_REG_PSWRQ_BW_RD, val);
565
566
val = read_arb_data[NUM_RD_Q-1][r_order].add;
567
val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
568
val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
569
REG_WR(sc, PXP2_REG_PSWRQ_BW_WR, val);
570
571
REG_WR(sc, PXP2_REG_RQ_WR_MBS0, w_order);
572
REG_WR(sc, PXP2_REG_RQ_WR_MBS1, w_order);
573
REG_WR(sc, PXP2_REG_RQ_RD_MBS0, r_order);
574
REG_WR(sc, PXP2_REG_RQ_RD_MBS1, r_order);
575
576
if ((CHIP_IS_E1(sc) || CHIP_IS_E1H(sc)) && (r_order == MAX_RD_ORD))
577
REG_WR(sc, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
578
579
if (CHIP_IS_E3(sc))
580
REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x4 << w_order));
581
else if (CHIP_IS_E2(sc))
582
REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x8 << w_order));
583
else
584
REG_WR(sc, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
585
586
if (!CHIP_IS_E1(sc)) {
587
/* MPS w_order optimal TH presently TH
588
* 128 0 0 2
589
* 256 1 1 3
590
* >=512 2 2 3
591
*/
592
/* DMAE is special */
593
if (!CHIP_IS_E1H(sc)) {
594
/* E2 can use optimal TH */
595
val = w_order;
596
REG_WR(sc, PXP2_REG_WR_DMAE_MPS, val);
597
} else {
598
val = ((w_order == 0) ? 2 : 3);
599
REG_WR(sc, PXP2_REG_WR_DMAE_MPS, 2);
600
}
601
602
REG_WR(sc, PXP2_REG_WR_HC_MPS, val);
603
REG_WR(sc, PXP2_REG_WR_USDM_MPS, val);
604
REG_WR(sc, PXP2_REG_WR_CSDM_MPS, val);
605
REG_WR(sc, PXP2_REG_WR_TSDM_MPS, val);
606
REG_WR(sc, PXP2_REG_WR_XSDM_MPS, val);
607
REG_WR(sc, PXP2_REG_WR_QM_MPS, val);
608
REG_WR(sc, PXP2_REG_WR_TM_MPS, val);
609
REG_WR(sc, PXP2_REG_WR_SRC_MPS, val);
610
REG_WR(sc, PXP2_REG_WR_DBG_MPS, val);
611
REG_WR(sc, PXP2_REG_WR_CDU_MPS, val);
612
}
613
614
/* Validate number of tags suppoted by device */
615
#define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
616
val = REG_RD(sc, PCIE_REG_PCIER_TL_HDR_FC_ST);
617
val &= 0xFF;
618
if (val <= 0x20)
619
REG_WR(sc, PXP2_REG_PGL_TAGS_LIMIT, 0x20);
620
}
621
622
/****************************************************************************
623
* ILT management
624
****************************************************************************/
625
/*
626
* This codes hides the low level HW interaction for ILT management and
627
* configuration. The API consists of a shadow ILT table which is set by the
628
* driver and a set of routines to use it to configure the HW.
629
*
630
*/
631
632
/* ILT HW init operations */
633
634
/* ILT memory management operations */
635
#define ILT_MEMOP_ALLOC 0
636
#define ILT_MEMOP_FREE 1
637
638
/* the phys address is shifted right 12 bits and has an added
639
* 1=valid bit added to the 53rd bit
640
* then since this is a wide register(TM)
641
* we split it into two 32 bit writes
642
*/
643
#define ILT_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
644
#define ILT_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
645
#define ILT_RANGE(f, l) (((l) << 10) | f)
646
647
static int ecore_ilt_line_mem_op(struct bxe_softc *sc,
648
struct ilt_line *line, uint32_t size, uint8_t memop)
649
{
650
if (memop == ILT_MEMOP_FREE) {
651
ECORE_ILT_FREE(line->page, line->page_mapping, line->size);
652
return 0;
653
}
654
ECORE_ILT_ZALLOC(line->page, &line->page_mapping, size);
655
if (!line->page)
656
return -1;
657
line->size = size;
658
return 0;
659
}
660
661
662
static int ecore_ilt_client_mem_op(struct bxe_softc *sc, int cli_num,
663
uint8_t memop)
664
{
665
int i, rc;
666
struct ecore_ilt *ilt = SC_ILT(sc);
667
struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
668
669
if (!ilt || !ilt->lines)
670
return -1;
671
672
if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
673
return 0;
674
675
for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
676
rc = ecore_ilt_line_mem_op(sc, &ilt->lines[i],
677
ilt_cli->page_size, memop);
678
}
679
return rc;
680
}
681
682
static inline int ecore_ilt_mem_op_cnic(struct bxe_softc *sc, uint8_t memop)
683
{
684
int rc = 0;
685
686
if (CONFIGURE_NIC_MODE(sc))
687
rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
688
if (!rc)
689
rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_TM, memop);
690
691
return rc;
692
}
693
694
static int ecore_ilt_mem_op(struct bxe_softc *sc, uint8_t memop)
695
{
696
int rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_CDU, memop);
697
if (!rc)
698
rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_QM, memop);
699
if (!rc && CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
700
rc = ecore_ilt_client_mem_op(sc, ILT_CLIENT_SRC, memop);
701
702
return rc;
703
}
704
705
static void ecore_ilt_line_wr(struct bxe_softc *sc, int abs_idx,
706
ecore_dma_addr_t page_mapping)
707
{
708
uint32_t reg;
709
710
if (CHIP_IS_E1(sc))
711
reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
712
else
713
reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
714
715
ecore_wr_64(sc, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
716
}
717
718
static void ecore_ilt_line_init_op(struct bxe_softc *sc,
719
struct ecore_ilt *ilt, int idx, uint8_t initop)
720
{
721
ecore_dma_addr_t null_mapping;
722
int abs_idx = ilt->start_line + idx;
723
724
725
switch (initop) {
726
case INITOP_INIT:
727
/* set in the init-value array */
728
case INITOP_SET:
729
ecore_ilt_line_wr(sc, abs_idx, ilt->lines[idx].page_mapping);
730
break;
731
case INITOP_CLEAR:
732
null_mapping = 0;
733
ecore_ilt_line_wr(sc, abs_idx, null_mapping);
734
break;
735
}
736
}
737
738
static void ecore_ilt_boundry_init_op(struct bxe_softc *sc,
739
struct ilt_client_info *ilt_cli,
740
uint32_t ilt_start, uint8_t initop)
741
{
742
uint32_t start_reg = 0;
743
uint32_t end_reg = 0;
744
745
/* The boundary is either SET or INIT,
746
CLEAR => SET and for now SET ~~ INIT */
747
748
/* find the appropriate regs */
749
if (CHIP_IS_E1(sc)) {
750
switch (ilt_cli->client_num) {
751
case ILT_CLIENT_CDU:
752
start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
753
break;
754
case ILT_CLIENT_QM:
755
start_reg = PXP2_REG_PSWRQ_QM0_L2P;
756
break;
757
case ILT_CLIENT_SRC:
758
start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
759
break;
760
case ILT_CLIENT_TM:
761
start_reg = PXP2_REG_PSWRQ_TM0_L2P;
762
break;
763
}
764
REG_WR(sc, start_reg + SC_FUNC(sc)*4,
765
ILT_RANGE((ilt_start + ilt_cli->start),
766
(ilt_start + ilt_cli->end)));
767
} else {
768
switch (ilt_cli->client_num) {
769
case ILT_CLIENT_CDU:
770
start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
771
end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
772
break;
773
case ILT_CLIENT_QM:
774
start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
775
end_reg = PXP2_REG_RQ_QM_LAST_ILT;
776
break;
777
case ILT_CLIENT_SRC:
778
start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
779
end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
780
break;
781
case ILT_CLIENT_TM:
782
start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
783
end_reg = PXP2_REG_RQ_TM_LAST_ILT;
784
break;
785
}
786
REG_WR(sc, start_reg, (ilt_start + ilt_cli->start));
787
REG_WR(sc, end_reg, (ilt_start + ilt_cli->end));
788
}
789
}
790
791
static void ecore_ilt_client_init_op_ilt(struct bxe_softc *sc,
792
struct ecore_ilt *ilt,
793
struct ilt_client_info *ilt_cli,
794
uint8_t initop)
795
{
796
int i;
797
798
if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
799
return;
800
801
for (i = ilt_cli->start; i <= ilt_cli->end; i++)
802
ecore_ilt_line_init_op(sc, ilt, i, initop);
803
804
/* init/clear the ILT boundries */
805
ecore_ilt_boundry_init_op(sc, ilt_cli, ilt->start_line, initop);
806
}
807
808
static void ecore_ilt_client_init_op(struct bxe_softc *sc,
809
struct ilt_client_info *ilt_cli, uint8_t initop)
810
{
811
struct ecore_ilt *ilt = SC_ILT(sc);
812
813
ecore_ilt_client_init_op_ilt(sc, ilt, ilt_cli, initop);
814
}
815
816
static void ecore_ilt_client_id_init_op(struct bxe_softc *sc,
817
int cli_num, uint8_t initop)
818
{
819
struct ecore_ilt *ilt = SC_ILT(sc);
820
struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
821
822
ecore_ilt_client_init_op(sc, ilt_cli, initop);
823
}
824
825
static inline void ecore_ilt_init_op_cnic(struct bxe_softc *sc, uint8_t initop)
826
{
827
if (CONFIGURE_NIC_MODE(sc))
828
ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
829
ecore_ilt_client_id_init_op(sc, ILT_CLIENT_TM, initop);
830
}
831
832
static void ecore_ilt_init_op(struct bxe_softc *sc, uint8_t initop)
833
{
834
ecore_ilt_client_id_init_op(sc, ILT_CLIENT_CDU, initop);
835
ecore_ilt_client_id_init_op(sc, ILT_CLIENT_QM, initop);
836
if (CNIC_SUPPORT(sc) && !CONFIGURE_NIC_MODE(sc))
837
ecore_ilt_client_id_init_op(sc, ILT_CLIENT_SRC, initop);
838
}
839
840
static void ecore_ilt_init_client_psz(struct bxe_softc *sc, int cli_num,
841
uint32_t psz_reg, uint8_t initop)
842
{
843
struct ecore_ilt *ilt = SC_ILT(sc);
844
struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
845
846
if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
847
return;
848
849
switch (initop) {
850
case INITOP_INIT:
851
/* set in the init-value array */
852
case INITOP_SET:
853
REG_WR(sc, psz_reg, ILOG2(ilt_cli->page_size >> 12));
854
break;
855
case INITOP_CLEAR:
856
break;
857
}
858
}
859
860
/*
861
* called during init common stage, ilt clients should be initialized
862
* prioir to calling this function
863
*/
864
static void ecore_ilt_init_page_size(struct bxe_softc *sc, uint8_t initop)
865
{
866
ecore_ilt_init_client_psz(sc, ILT_CLIENT_CDU,
867
PXP2_REG_RQ_CDU_P_SIZE, initop);
868
ecore_ilt_init_client_psz(sc, ILT_CLIENT_QM,
869
PXP2_REG_RQ_QM_P_SIZE, initop);
870
ecore_ilt_init_client_psz(sc, ILT_CLIENT_SRC,
871
PXP2_REG_RQ_SRC_P_SIZE, initop);
872
ecore_ilt_init_client_psz(sc, ILT_CLIENT_TM,
873
PXP2_REG_RQ_TM_P_SIZE, initop);
874
}
875
876
/****************************************************************************
877
* QM initializations
878
****************************************************************************/
879
#define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
880
#define QM_INIT_MIN_CID_COUNT 31
881
#define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
882
883
/* called during init port stage */
884
static void ecore_qm_init_cid_count(struct bxe_softc *sc, int qm_cid_count,
885
uint8_t initop)
886
{
887
int port = SC_PORT(sc);
888
889
if (QM_INIT(qm_cid_count)) {
890
switch (initop) {
891
case INITOP_INIT:
892
/* set in the init-value array */
893
case INITOP_SET:
894
REG_WR(sc, QM_REG_CONNNUM_0 + port*4,
895
qm_cid_count/16 - 1);
896
break;
897
case INITOP_CLEAR:
898
break;
899
}
900
}
901
}
902
903
static void ecore_qm_set_ptr_table(struct bxe_softc *sc, int qm_cid_count,
904
uint32_t base_reg, uint32_t reg)
905
{
906
int i;
907
uint32_t wb_data[2] = {0, 0};
908
for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
909
REG_WR(sc, base_reg + i*4,
910
qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
911
ecore_init_wr_wb(sc, reg + i*8,
912
wb_data, 2);
913
}
914
}
915
916
/* called during init common stage */
917
static void ecore_qm_init_ptr_table(struct bxe_softc *sc, int qm_cid_count,
918
uint8_t initop)
919
{
920
if (!QM_INIT(qm_cid_count))
921
return;
922
923
switch (initop) {
924
case INITOP_INIT:
925
/* set in the init-value array */
926
case INITOP_SET:
927
ecore_qm_set_ptr_table(sc, qm_cid_count,
928
QM_REG_BASEADDR, QM_REG_PTRTBL);
929
if (CHIP_IS_E1H(sc))
930
ecore_qm_set_ptr_table(sc, qm_cid_count,
931
QM_REG_BASEADDR_EXT_A,
932
QM_REG_PTRTBL_EXT_A);
933
break;
934
case INITOP_CLEAR:
935
break;
936
}
937
}
938
939
/****************************************************************************
940
* SRC initializations
941
****************************************************************************/
942
#ifdef ECORE_L5
943
/* called during init func stage */
944
static void ecore_src_init_t2(struct bxe_softc *sc, struct src_ent *t2,
945
ecore_dma_addr_t t2_mapping, int src_cid_count)
946
{
947
int i;
948
int port = SC_PORT(sc);
949
950
/* Initialize T2 */
951
for (i = 0; i < src_cid_count-1; i++)
952
t2[i].next = (uint64_t)(t2_mapping +
953
(i+1)*sizeof(struct src_ent));
954
955
/* tell the searcher where the T2 table is */
956
REG_WR(sc, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
957
958
ecore_wr_64(sc, SRC_REG_FIRSTFREE0 + port*16,
959
U64_LO(t2_mapping), U64_HI(t2_mapping));
960
961
ecore_wr_64(sc, SRC_REG_LASTFREE0 + port*16,
962
U64_LO((uint64_t)t2_mapping +
963
(src_cid_count-1) * sizeof(struct src_ent)),
964
U64_HI((uint64_t)t2_mapping +
965
(src_cid_count-1) * sizeof(struct src_ent)));
966
}
967
#endif
968
#endif /* ECORE_INIT_OPS_H */
969
970