Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/dev/cas/if_cas.c
39536 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (C) 2001 Eduardo Horvath.
5
* Copyright (c) 2001-2003 Thomas Moestl
6
* Copyright (c) 2007-2009 Marius Strobl <[email protected]>
7
* All rights reserved.
8
*
9
* Redistribution and use in source and binary forms, with or without
10
* modification, are permitted provided that the following conditions
11
* are met:
12
* 1. Redistributions of source code must retain the above copyright
13
* notice, this list of conditions and the following disclaimer.
14
* 2. Redistributions in binary form must reproduce the above copyright
15
* notice, this list of conditions and the following disclaimer in the
16
* documentation and/or other materials provided with the distribution.
17
*
18
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
19
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
22
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28
* SUCH DAMAGE.
29
*
30
* from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
31
* from: FreeBSD: if_gem.c 182060 2008-08-23 15:03:26Z marius
32
*/
33
34
#include <sys/cdefs.h>
35
/*
36
* driver for Sun Cassini/Cassini+ and National Semiconductor DP83065
37
* Saturn Gigabit Ethernet controllers
38
*/
39
40
#if 0
41
#define CAS_DEBUG
42
#endif
43
44
#include <sys/param.h>
45
#include <sys/systm.h>
46
#include <sys/bus.h>
47
#include <sys/callout.h>
48
#include <sys/endian.h>
49
#include <sys/mbuf.h>
50
#include <sys/malloc.h>
51
#include <sys/kernel.h>
52
#include <sys/lock.h>
53
#include <sys/module.h>
54
#include <sys/mutex.h>
55
#include <sys/refcount.h>
56
#include <sys/resource.h>
57
#include <sys/rman.h>
58
#include <sys/socket.h>
59
#include <sys/sockio.h>
60
#include <sys/taskqueue.h>
61
62
#include <net/bpf.h>
63
#include <net/ethernet.h>
64
#include <net/if.h>
65
#include <net/if_var.h>
66
#include <net/if_arp.h>
67
#include <net/if_dl.h>
68
#include <net/if_media.h>
69
#include <net/if_types.h>
70
#include <net/if_vlan_var.h>
71
72
#include <netinet/in.h>
73
#include <netinet/in_systm.h>
74
#include <netinet/ip.h>
75
#include <netinet/tcp.h>
76
#include <netinet/udp.h>
77
78
#include <machine/bus.h>
79
#if defined(__powerpc__)
80
#include <dev/ofw/ofw_bus.h>
81
#include <dev/ofw/openfirm.h>
82
#include <machine/ofw_machdep.h>
83
#endif
84
#include <machine/resource.h>
85
86
#include <dev/mii/mii.h>
87
#include <dev/mii/miivar.h>
88
89
#include <dev/cas/if_casreg.h>
90
#include <dev/cas/if_casvar.h>
91
92
#include <dev/pci/pcireg.h>
93
#include <dev/pci/pcivar.h>
94
95
#include "miibus_if.h"
96
97
#define RINGASSERT(n , min, max) \
98
CTASSERT(powerof2(n) && (n) >= (min) && (n) <= (max))
99
100
RINGASSERT(CAS_NRXCOMP, 128, 32768);
101
RINGASSERT(CAS_NRXDESC, 32, 8192);
102
RINGASSERT(CAS_NRXDESC2, 32, 8192);
103
RINGASSERT(CAS_NTXDESC, 32, 8192);
104
105
#undef RINGASSERT
106
107
#define CCDASSERT(m, a) \
108
CTASSERT((offsetof(struct cas_control_data, m) & ((a) - 1)) == 0)
109
110
CCDASSERT(ccd_rxcomps, CAS_RX_COMP_ALIGN);
111
CCDASSERT(ccd_rxdescs, CAS_RX_DESC_ALIGN);
112
CCDASSERT(ccd_rxdescs2, CAS_RX_DESC_ALIGN);
113
114
#undef CCDASSERT
115
116
#define CAS_TRIES 10000
117
118
/*
119
* According to documentation, the hardware has support for basic TCP
120
* checksum offloading only, in practice this can be also used for UDP
121
* however (i.e. the problem of previous Sun NICs that a checksum of 0x0
122
* is not converted to 0xffff no longer exists).
123
*/
124
#define CAS_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
125
126
static inline void cas_add_rxdesc(struct cas_softc *sc, u_int idx);
127
static int cas_attach(struct cas_softc *sc);
128
static int cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr,
129
uint32_t set);
130
static void cas_cddma_callback(void *xsc, bus_dma_segment_t *segs,
131
int nsegs, int error);
132
static void cas_detach(struct cas_softc *sc);
133
static int cas_disable_rx(struct cas_softc *sc);
134
static int cas_disable_tx(struct cas_softc *sc);
135
static void cas_eint(struct cas_softc *sc, u_int status);
136
static void cas_free(struct mbuf *m);
137
static void cas_init(void *xsc);
138
static void cas_init_locked(struct cas_softc *sc);
139
static void cas_init_regs(struct cas_softc *sc);
140
static int cas_intr(void *v);
141
static void cas_intr_task(void *arg, int pending __unused);
142
static int cas_ioctl(if_t ifp, u_long cmd, caddr_t data);
143
static int cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head);
144
static int cas_mediachange(if_t ifp);
145
static void cas_mediastatus(if_t ifp, struct ifmediareq *ifmr);
146
static void cas_meminit(struct cas_softc *sc);
147
static void cas_mifinit(struct cas_softc *sc);
148
static int cas_mii_readreg(device_t dev, int phy, int reg);
149
static void cas_mii_statchg(device_t dev);
150
static int cas_mii_writereg(device_t dev, int phy, int reg, int val);
151
static void cas_reset(struct cas_softc *sc);
152
static int cas_reset_rx(struct cas_softc *sc);
153
static int cas_reset_tx(struct cas_softc *sc);
154
static void cas_resume(struct cas_softc *sc);
155
static u_int cas_descsize(u_int sz);
156
static void cas_rint(struct cas_softc *sc);
157
static void cas_rint_timeout(void *arg);
158
static inline void cas_rxcksum(struct mbuf *m, uint16_t cksum);
159
static inline void cas_rxcompinit(struct cas_rx_comp *rxcomp);
160
static u_int cas_rxcompsize(u_int sz);
161
static void cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs,
162
int nsegs, int error);
163
static void cas_setladrf(struct cas_softc *sc);
164
static void cas_start(if_t ifp);
165
static void cas_stop(if_t ifp);
166
static void cas_suspend(struct cas_softc *sc);
167
static void cas_tick(void *arg);
168
static void cas_tint(struct cas_softc *sc);
169
static void cas_tx_task(void *arg, int pending __unused);
170
static inline void cas_txkick(struct cas_softc *sc);
171
static void cas_watchdog(struct cas_softc *sc);
172
173
MODULE_DEPEND(cas, ether, 1, 1, 1);
174
MODULE_DEPEND(cas, miibus, 1, 1, 1);
175
176
#ifdef CAS_DEBUG
177
#include <sys/ktr.h>
178
#define KTR_CAS KTR_SPARE2
179
#endif
180
181
static int
182
cas_attach(struct cas_softc *sc)
183
{
184
struct cas_txsoft *txs;
185
if_t ifp;
186
int error, i;
187
uint32_t v;
188
189
/* Set up ifnet structure. */
190
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
191
if_setsoftc(ifp, sc);
192
if_initname(ifp, device_get_name(sc->sc_dev),
193
device_get_unit(sc->sc_dev));
194
if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
195
if_setstartfn(ifp, cas_start);
196
if_setioctlfn(ifp, cas_ioctl);
197
if_setinitfn(ifp, cas_init);
198
if_setsendqlen(ifp, CAS_TXQUEUELEN);
199
if_setsendqready(ifp);
200
201
callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
202
callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0);
203
/* Create local taskq. */
204
NET_TASK_INIT(&sc->sc_intr_task, 0, cas_intr_task, sc);
205
TASK_INIT(&sc->sc_tx_task, 1, cas_tx_task, ifp);
206
sc->sc_tq = taskqueue_create_fast("cas_taskq", M_WAITOK,
207
taskqueue_thread_enqueue, &sc->sc_tq);
208
error = taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
209
device_get_nameunit(sc->sc_dev));
210
if (error != 0) {
211
device_printf(sc->sc_dev, "could not start threads\n");
212
goto fail_taskq;
213
}
214
215
/* Make sure the chip is stopped. */
216
cas_reset(sc);
217
218
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
219
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
220
BUS_SPACE_MAXSIZE, 0, BUS_SPACE_MAXSIZE, 0, NULL, NULL,
221
&sc->sc_pdmatag);
222
if (error != 0)
223
goto fail_taskq;
224
225
error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
226
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
227
CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, NULL, NULL, &sc->sc_rdmatag);
228
if (error != 0)
229
goto fail_ptag;
230
231
error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
232
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
233
MCLBYTES * CAS_NTXSEGS, CAS_NTXSEGS, MCLBYTES,
234
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
235
if (error != 0)
236
goto fail_rtag;
237
238
error = bus_dma_tag_create(sc->sc_pdmatag, CAS_TX_DESC_ALIGN, 0,
239
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
240
sizeof(struct cas_control_data), 1,
241
sizeof(struct cas_control_data), 0,
242
NULL, NULL, &sc->sc_cdmatag);
243
if (error != 0)
244
goto fail_ttag;
245
246
/*
247
* Allocate the control data structures, create and load the
248
* DMA map for it.
249
*/
250
if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
251
(void **)&sc->sc_control_data,
252
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
253
&sc->sc_cddmamap)) != 0) {
254
device_printf(sc->sc_dev,
255
"unable to allocate control data, error = %d\n", error);
256
goto fail_ctag;
257
}
258
259
sc->sc_cddma = 0;
260
if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
261
sc->sc_control_data, sizeof(struct cas_control_data),
262
cas_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
263
device_printf(sc->sc_dev,
264
"unable to load control data DMA map, error = %d\n",
265
error);
266
goto fail_cmem;
267
}
268
269
/*
270
* Initialize the transmit job descriptors.
271
*/
272
STAILQ_INIT(&sc->sc_txfreeq);
273
STAILQ_INIT(&sc->sc_txdirtyq);
274
275
/*
276
* Create the transmit buffer DMA maps.
277
*/
278
error = ENOMEM;
279
for (i = 0; i < CAS_TXQUEUELEN; i++) {
280
txs = &sc->sc_txsoft[i];
281
txs->txs_mbuf = NULL;
282
txs->txs_ndescs = 0;
283
if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
284
&txs->txs_dmamap)) != 0) {
285
device_printf(sc->sc_dev,
286
"unable to create TX DMA map %d, error = %d\n",
287
i, error);
288
goto fail_txd;
289
}
290
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
291
}
292
293
/*
294
* Allocate the receive buffers, create and load the DMA maps
295
* for them.
296
*/
297
for (i = 0; i < CAS_NRXDESC; i++) {
298
if ((error = bus_dmamem_alloc(sc->sc_rdmatag,
299
&sc->sc_rxdsoft[i].rxds_buf, BUS_DMA_WAITOK,
300
&sc->sc_rxdsoft[i].rxds_dmamap)) != 0) {
301
device_printf(sc->sc_dev,
302
"unable to allocate RX buffer %d, error = %d\n",
303
i, error);
304
goto fail_rxmem;
305
}
306
307
sc->sc_rxdptr = i;
308
sc->sc_rxdsoft[i].rxds_paddr = 0;
309
if ((error = bus_dmamap_load(sc->sc_rdmatag,
310
sc->sc_rxdsoft[i].rxds_dmamap, sc->sc_rxdsoft[i].rxds_buf,
311
CAS_PAGE_SIZE, cas_rxdma_callback, sc, 0)) != 0 ||
312
sc->sc_rxdsoft[i].rxds_paddr == 0) {
313
device_printf(sc->sc_dev,
314
"unable to load RX DMA map %d, error = %d\n",
315
i, error);
316
goto fail_rxmap;
317
}
318
}
319
320
if ((sc->sc_flags & CAS_SERDES) == 0) {
321
CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_MII);
322
CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4,
323
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
324
cas_mifinit(sc);
325
/*
326
* Look for an external PHY.
327
*/
328
error = ENXIO;
329
v = CAS_READ_4(sc, CAS_MIF_CONF);
330
if ((v & CAS_MIF_CONF_MDI1) != 0) {
331
v |= CAS_MIF_CONF_PHY_SELECT;
332
CAS_WRITE_4(sc, CAS_MIF_CONF, v);
333
CAS_BARRIER(sc, CAS_MIF_CONF, 4,
334
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
335
/* Enable/unfreeze the GMII pins of Saturn. */
336
if (sc->sc_variant == CAS_SATURN) {
337
CAS_WRITE_4(sc, CAS_SATURN_PCFG,
338
CAS_READ_4(sc, CAS_SATURN_PCFG) &
339
~CAS_SATURN_PCFG_FSI);
340
CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
341
BUS_SPACE_BARRIER_READ |
342
BUS_SPACE_BARRIER_WRITE);
343
DELAY(10000);
344
}
345
error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
346
cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
347
MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
348
}
349
/*
350
* Fall back on an internal PHY if no external PHY was found.
351
*/
352
if (error != 0 && (v & CAS_MIF_CONF_MDI0) != 0) {
353
v &= ~CAS_MIF_CONF_PHY_SELECT;
354
CAS_WRITE_4(sc, CAS_MIF_CONF, v);
355
CAS_BARRIER(sc, CAS_MIF_CONF, 4,
356
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
357
/* Freeze the GMII pins of Saturn for saving power. */
358
if (sc->sc_variant == CAS_SATURN) {
359
CAS_WRITE_4(sc, CAS_SATURN_PCFG,
360
CAS_READ_4(sc, CAS_SATURN_PCFG) |
361
CAS_SATURN_PCFG_FSI);
362
CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
363
BUS_SPACE_BARRIER_READ |
364
BUS_SPACE_BARRIER_WRITE);
365
DELAY(10000);
366
}
367
error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
368
cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
369
MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
370
}
371
} else {
372
/*
373
* Use the external PCS SERDES.
374
*/
375
CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_SERDES);
376
CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, BUS_SPACE_BARRIER_WRITE);
377
/* Enable/unfreeze the SERDES pins of Saturn. */
378
if (sc->sc_variant == CAS_SATURN) {
379
CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0);
380
CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
381
BUS_SPACE_BARRIER_WRITE);
382
}
383
CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, CAS_PCS_SERDES_CTRL_ESD);
384
CAS_BARRIER(sc, CAS_PCS_SERDES_CTRL, 4,
385
BUS_SPACE_BARRIER_WRITE);
386
CAS_WRITE_4(sc, CAS_PCS_CONF, CAS_PCS_CONF_EN);
387
CAS_BARRIER(sc, CAS_PCS_CONF, 4,
388
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
389
error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
390
cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
391
CAS_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_DOPAUSE);
392
}
393
if (error != 0) {
394
device_printf(sc->sc_dev, "attaching PHYs failed\n");
395
goto fail_rxmap;
396
}
397
sc->sc_mii = device_get_softc(sc->sc_miibus);
398
399
/*
400
* From this point forward, the attachment cannot fail. A failure
401
* before this point releases all resources that may have been
402
* allocated.
403
*/
404
405
/* Announce FIFO sizes. */
406
v = CAS_READ_4(sc, CAS_TX_FIFO_SIZE);
407
device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
408
CAS_RX_FIFO_SIZE / 1024, v / 16);
409
410
/* Attach the interface. */
411
ether_ifattach(ifp, sc->sc_enaddr);
412
413
/*
414
* Tell the upper layer(s) we support long frames/checksum offloads.
415
*/
416
if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
417
if_setcapabilities(ifp, IFCAP_VLAN_MTU);
418
if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
419
if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
420
if_sethwassist(ifp, CAS_CSUM_FEATURES);
421
}
422
if_setcapenable(ifp, if_getcapabilities(ifp));
423
424
return (0);
425
426
/*
427
* Free any resources we've allocated during the failed attach
428
* attempt. Do this in reverse order and fall through.
429
*/
430
fail_rxmap:
431
for (i = 0; i < CAS_NRXDESC; i++)
432
if (sc->sc_rxdsoft[i].rxds_paddr != 0)
433
bus_dmamap_unload(sc->sc_rdmatag,
434
sc->sc_rxdsoft[i].rxds_dmamap);
435
fail_rxmem:
436
for (i = 0; i < CAS_NRXDESC; i++)
437
if (sc->sc_rxdsoft[i].rxds_buf != NULL)
438
bus_dmamem_free(sc->sc_rdmatag,
439
sc->sc_rxdsoft[i].rxds_buf,
440
sc->sc_rxdsoft[i].rxds_dmamap);
441
fail_txd:
442
for (i = 0; i < CAS_TXQUEUELEN; i++)
443
if (sc->sc_txsoft[i].txs_dmamap != NULL)
444
bus_dmamap_destroy(sc->sc_tdmatag,
445
sc->sc_txsoft[i].txs_dmamap);
446
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
447
fail_cmem:
448
bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
449
sc->sc_cddmamap);
450
fail_ctag:
451
bus_dma_tag_destroy(sc->sc_cdmatag);
452
fail_ttag:
453
bus_dma_tag_destroy(sc->sc_tdmatag);
454
fail_rtag:
455
bus_dma_tag_destroy(sc->sc_rdmatag);
456
fail_ptag:
457
bus_dma_tag_destroy(sc->sc_pdmatag);
458
fail_taskq:
459
taskqueue_free(sc->sc_tq);
460
if_free(ifp);
461
return (error);
462
}
463
464
static void
465
cas_detach(struct cas_softc *sc)
466
{
467
if_t ifp = sc->sc_ifp;
468
int i;
469
470
ether_ifdetach(ifp);
471
CAS_LOCK(sc);
472
cas_stop(ifp);
473
CAS_UNLOCK(sc);
474
callout_drain(&sc->sc_tick_ch);
475
callout_drain(&sc->sc_rx_ch);
476
taskqueue_drain(sc->sc_tq, &sc->sc_intr_task);
477
taskqueue_drain(sc->sc_tq, &sc->sc_tx_task);
478
if_free(ifp);
479
taskqueue_free(sc->sc_tq);
480
bus_generic_detach(sc->sc_dev);
481
482
for (i = 0; i < CAS_NRXDESC; i++)
483
if (sc->sc_rxdsoft[i].rxds_dmamap != NULL)
484
bus_dmamap_sync(sc->sc_rdmatag,
485
sc->sc_rxdsoft[i].rxds_dmamap,
486
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
487
for (i = 0; i < CAS_NRXDESC; i++)
488
if (sc->sc_rxdsoft[i].rxds_paddr != 0)
489
bus_dmamap_unload(sc->sc_rdmatag,
490
sc->sc_rxdsoft[i].rxds_dmamap);
491
for (i = 0; i < CAS_NRXDESC; i++)
492
if (sc->sc_rxdsoft[i].rxds_buf != NULL)
493
bus_dmamem_free(sc->sc_rdmatag,
494
sc->sc_rxdsoft[i].rxds_buf,
495
sc->sc_rxdsoft[i].rxds_dmamap);
496
for (i = 0; i < CAS_TXQUEUELEN; i++)
497
if (sc->sc_txsoft[i].txs_dmamap != NULL)
498
bus_dmamap_destroy(sc->sc_tdmatag,
499
sc->sc_txsoft[i].txs_dmamap);
500
CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
501
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
502
bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
503
sc->sc_cddmamap);
504
bus_dma_tag_destroy(sc->sc_cdmatag);
505
bus_dma_tag_destroy(sc->sc_tdmatag);
506
bus_dma_tag_destroy(sc->sc_rdmatag);
507
bus_dma_tag_destroy(sc->sc_pdmatag);
508
}
509
510
static void
511
cas_suspend(struct cas_softc *sc)
512
{
513
if_t ifp = sc->sc_ifp;
514
515
CAS_LOCK(sc);
516
cas_stop(ifp);
517
CAS_UNLOCK(sc);
518
}
519
520
static void
521
cas_resume(struct cas_softc *sc)
522
{
523
if_t ifp = sc->sc_ifp;
524
525
CAS_LOCK(sc);
526
/*
527
* On resume all registers have to be initialized again like
528
* after power-on.
529
*/
530
sc->sc_flags &= ~CAS_INITED;
531
if (if_getflags(ifp) & IFF_UP)
532
cas_init_locked(sc);
533
CAS_UNLOCK(sc);
534
}
535
536
static inline void
537
cas_rxcksum(struct mbuf *m, uint16_t cksum)
538
{
539
struct ether_header *eh;
540
struct ip *ip;
541
struct udphdr *uh;
542
uint16_t *opts;
543
int32_t hlen, len, pktlen;
544
uint32_t temp32;
545
546
pktlen = m->m_pkthdr.len;
547
if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
548
return;
549
eh = mtod(m, struct ether_header *);
550
if (eh->ether_type != htons(ETHERTYPE_IP))
551
return;
552
ip = (struct ip *)(eh + 1);
553
if (ip->ip_v != IPVERSION)
554
return;
555
556
hlen = ip->ip_hl << 2;
557
pktlen -= sizeof(struct ether_header);
558
if (hlen < sizeof(struct ip))
559
return;
560
if (ntohs(ip->ip_len) < hlen)
561
return;
562
if (ntohs(ip->ip_len) != pktlen)
563
return;
564
if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
565
return; /* Cannot handle fragmented packet. */
566
567
switch (ip->ip_p) {
568
case IPPROTO_TCP:
569
if (pktlen < (hlen + sizeof(struct tcphdr)))
570
return;
571
break;
572
case IPPROTO_UDP:
573
if (pktlen < (hlen + sizeof(struct udphdr)))
574
return;
575
uh = (struct udphdr *)((uint8_t *)ip + hlen);
576
if (uh->uh_sum == 0)
577
return; /* no checksum */
578
break;
579
default:
580
return;
581
}
582
583
cksum = ~cksum;
584
/* checksum fixup for IP options */
585
len = hlen - sizeof(struct ip);
586
if (len > 0) {
587
opts = (uint16_t *)(ip + 1);
588
for (; len > 0; len -= sizeof(uint16_t), opts++) {
589
temp32 = cksum - *opts;
590
temp32 = (temp32 >> 16) + (temp32 & 65535);
591
cksum = temp32 & 65535;
592
}
593
}
594
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
595
m->m_pkthdr.csum_data = cksum;
596
}
597
598
static void
599
cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
600
{
601
struct cas_softc *sc = xsc;
602
603
if (error != 0)
604
return;
605
if (nsegs != 1)
606
panic("%s: bad control buffer segment count", __func__);
607
sc->sc_cddma = segs[0].ds_addr;
608
}
609
610
static void
611
cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
612
{
613
struct cas_softc *sc = xsc;
614
615
if (error != 0)
616
return;
617
if (nsegs != 1)
618
panic("%s: bad RX buffer segment count", __func__);
619
sc->sc_rxdsoft[sc->sc_rxdptr].rxds_paddr = segs[0].ds_addr;
620
}
621
622
static void
623
cas_tick(void *arg)
624
{
625
struct cas_softc *sc = arg;
626
if_t ifp = sc->sc_ifp;
627
uint32_t v;
628
629
CAS_LOCK_ASSERT(sc, MA_OWNED);
630
631
/*
632
* Unload collision and error counters.
633
*/
634
if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
635
CAS_READ_4(sc, CAS_MAC_NORM_COLL_CNT) +
636
CAS_READ_4(sc, CAS_MAC_FIRST_COLL_CNT));
637
v = CAS_READ_4(sc, CAS_MAC_EXCESS_COLL_CNT) +
638
CAS_READ_4(sc, CAS_MAC_LATE_COLL_CNT);
639
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, v);
640
if_inc_counter(ifp, IFCOUNTER_OERRORS, v);
641
if_inc_counter(ifp, IFCOUNTER_IERRORS,
642
CAS_READ_4(sc, CAS_MAC_RX_LEN_ERR_CNT) +
643
CAS_READ_4(sc, CAS_MAC_RX_ALIGN_ERR) +
644
CAS_READ_4(sc, CAS_MAC_RX_CRC_ERR_CNT) +
645
CAS_READ_4(sc, CAS_MAC_RX_CODE_VIOL));
646
647
/*
648
* Then clear the hardware counters.
649
*/
650
CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
651
CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
652
CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
653
CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
654
CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
655
CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
656
CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
657
CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
658
659
mii_tick(sc->sc_mii);
660
661
if (sc->sc_txfree != CAS_MAXTXFREE)
662
cas_tint(sc);
663
664
cas_watchdog(sc);
665
666
callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
667
}
668
669
static int
670
cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set)
671
{
672
int i;
673
uint32_t reg;
674
675
for (i = CAS_TRIES; i--; DELAY(100)) {
676
reg = CAS_READ_4(sc, r);
677
if ((reg & clr) == 0 && (reg & set) == set)
678
return (1);
679
}
680
return (0);
681
}
682
683
static void
684
cas_reset(struct cas_softc *sc)
685
{
686
687
#ifdef CAS_DEBUG
688
CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
689
#endif
690
/* Disable all interrupts in order to avoid spurious ones. */
691
CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
692
693
cas_reset_rx(sc);
694
cas_reset_tx(sc);
695
696
/*
697
* Do a full reset modulo the result of the last auto-negotiation
698
* when using the SERDES.
699
*/
700
CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX |
701
((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
702
CAS_BARRIER(sc, CAS_RESET, 4,
703
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
704
DELAY(3000);
705
if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
706
device_printf(sc->sc_dev, "cannot reset device\n");
707
}
708
709
static void
710
cas_stop(if_t ifp)
711
{
712
struct cas_softc *sc = if_getsoftc(ifp);
713
struct cas_txsoft *txs;
714
715
#ifdef CAS_DEBUG
716
CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
717
#endif
718
719
callout_stop(&sc->sc_tick_ch);
720
callout_stop(&sc->sc_rx_ch);
721
722
/* Disable all interrupts in order to avoid spurious ones. */
723
CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
724
725
cas_reset_tx(sc);
726
cas_reset_rx(sc);
727
728
/*
729
* Release any queued transmit buffers.
730
*/
731
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
732
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
733
if (txs->txs_ndescs != 0) {
734
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
735
BUS_DMASYNC_POSTWRITE);
736
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
737
if (txs->txs_mbuf != NULL) {
738
m_freem(txs->txs_mbuf);
739
txs->txs_mbuf = NULL;
740
}
741
}
742
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
743
}
744
745
/*
746
* Mark the interface down and cancel the watchdog timer.
747
*/
748
if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
749
sc->sc_flags &= ~CAS_LINK;
750
sc->sc_wdog_timer = 0;
751
}
752
753
static int
754
cas_reset_rx(struct cas_softc *sc)
755
{
756
757
/*
758
* Resetting while DMA is in progress can cause a bus hang, so we
759
* disable DMA first.
760
*/
761
(void)cas_disable_rx(sc);
762
CAS_WRITE_4(sc, CAS_RX_CONF, 0);
763
CAS_BARRIER(sc, CAS_RX_CONF, 4,
764
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
765
if (!cas_bitwait(sc, CAS_RX_CONF, CAS_RX_CONF_RXDMA_EN, 0))
766
device_printf(sc->sc_dev, "cannot disable RX DMA\n");
767
768
/* Finally, reset the ERX. */
769
CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX |
770
((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
771
CAS_BARRIER(sc, CAS_RESET, 4,
772
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
773
if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX, 0)) {
774
device_printf(sc->sc_dev, "cannot reset receiver\n");
775
return (1);
776
}
777
return (0);
778
}
779
780
static int
781
cas_reset_tx(struct cas_softc *sc)
782
{
783
784
/*
785
* Resetting while DMA is in progress can cause a bus hang, so we
786
* disable DMA first.
787
*/
788
(void)cas_disable_tx(sc);
789
CAS_WRITE_4(sc, CAS_TX_CONF, 0);
790
CAS_BARRIER(sc, CAS_TX_CONF, 4,
791
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
792
if (!cas_bitwait(sc, CAS_TX_CONF, CAS_TX_CONF_TXDMA_EN, 0))
793
device_printf(sc->sc_dev, "cannot disable TX DMA\n");
794
795
/* Finally, reset the ETX. */
796
CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_TX |
797
((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
798
CAS_BARRIER(sc, CAS_RESET, 4,
799
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
800
if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_TX, 0)) {
801
device_printf(sc->sc_dev, "cannot reset transmitter\n");
802
return (1);
803
}
804
return (0);
805
}
806
807
static int
808
cas_disable_rx(struct cas_softc *sc)
809
{
810
811
CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
812
CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_EN);
813
CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
814
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
815
if (cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0))
816
return (1);
817
if (bootverbose)
818
device_printf(sc->sc_dev, "cannot disable RX MAC\n");
819
return (0);
820
}
821
822
static int
823
cas_disable_tx(struct cas_softc *sc)
824
{
825
826
CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
827
CAS_READ_4(sc, CAS_MAC_TX_CONF) & ~CAS_MAC_TX_CONF_EN);
828
CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
829
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
830
if (cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0))
831
return (1);
832
if (bootverbose)
833
device_printf(sc->sc_dev, "cannot disable TX MAC\n");
834
return (0);
835
}
836
837
static inline void
838
cas_rxcompinit(struct cas_rx_comp *rxcomp)
839
{
840
841
rxcomp->crc_word1 = 0;
842
rxcomp->crc_word2 = 0;
843
rxcomp->crc_word3 =
844
htole64(CAS_SET(ETHER_HDR_LEN + sizeof(struct ip), CAS_RC3_CSO));
845
rxcomp->crc_word4 = htole64(CAS_RC4_ZERO);
846
}
847
848
static void
849
cas_meminit(struct cas_softc *sc)
850
{
851
int i;
852
853
CAS_LOCK_ASSERT(sc, MA_OWNED);
854
855
/*
856
* Initialize the transmit descriptor ring.
857
*/
858
for (i = 0; i < CAS_NTXDESC; i++) {
859
sc->sc_txdescs[i].cd_flags = 0;
860
sc->sc_txdescs[i].cd_buf_ptr = 0;
861
}
862
sc->sc_txfree = CAS_MAXTXFREE;
863
sc->sc_txnext = 0;
864
sc->sc_txwin = 0;
865
866
/*
867
* Initialize the receive completion ring.
868
*/
869
for (i = 0; i < CAS_NRXCOMP; i++)
870
cas_rxcompinit(&sc->sc_rxcomps[i]);
871
sc->sc_rxcptr = 0;
872
873
/*
874
* Initialize the first receive descriptor ring. We leave
875
* the second one zeroed as we don't actually use it.
876
*/
877
for (i = 0; i < CAS_NRXDESC; i++)
878
CAS_INIT_RXDESC(sc, i, i);
879
sc->sc_rxdptr = 0;
880
881
CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
882
}
883
884
static u_int
885
cas_descsize(u_int sz)
886
{
887
888
switch (sz) {
889
case 32:
890
return (CAS_DESC_32);
891
case 64:
892
return (CAS_DESC_64);
893
case 128:
894
return (CAS_DESC_128);
895
case 256:
896
return (CAS_DESC_256);
897
case 512:
898
return (CAS_DESC_512);
899
case 1024:
900
return (CAS_DESC_1K);
901
case 2048:
902
return (CAS_DESC_2K);
903
case 4096:
904
return (CAS_DESC_4K);
905
case 8192:
906
return (CAS_DESC_8K);
907
default:
908
printf("%s: invalid descriptor ring size %d\n", __func__, sz);
909
return (CAS_DESC_32);
910
}
911
}
912
913
static u_int
914
cas_rxcompsize(u_int sz)
915
{
916
917
switch (sz) {
918
case 128:
919
return (CAS_RX_CONF_COMP_128);
920
case 256:
921
return (CAS_RX_CONF_COMP_256);
922
case 512:
923
return (CAS_RX_CONF_COMP_512);
924
case 1024:
925
return (CAS_RX_CONF_COMP_1K);
926
case 2048:
927
return (CAS_RX_CONF_COMP_2K);
928
case 4096:
929
return (CAS_RX_CONF_COMP_4K);
930
case 8192:
931
return (CAS_RX_CONF_COMP_8K);
932
case 16384:
933
return (CAS_RX_CONF_COMP_16K);
934
case 32768:
935
return (CAS_RX_CONF_COMP_32K);
936
default:
937
printf("%s: invalid dcompletion ring size %d\n", __func__, sz);
938
return (CAS_RX_CONF_COMP_128);
939
}
940
}
941
942
static void
943
cas_init(void *xsc)
944
{
945
struct cas_softc *sc = xsc;
946
947
CAS_LOCK(sc);
948
cas_init_locked(sc);
949
CAS_UNLOCK(sc);
950
}
951
952
/*
953
* Initialization of interface; set up initialization block
954
* and transmit/receive descriptor rings.
955
*/
956
static void
957
cas_init_locked(struct cas_softc *sc)
958
{
959
if_t ifp = sc->sc_ifp;
960
uint32_t v;
961
962
CAS_LOCK_ASSERT(sc, MA_OWNED);
963
964
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
965
return;
966
967
#ifdef CAS_DEBUG
968
CTR2(KTR_CAS, "%s: %s: calling stop", device_get_name(sc->sc_dev),
969
__func__);
970
#endif
971
/*
972
* Initialization sequence. The numbered steps below correspond
973
* to the sequence outlined in section 6.3.5.1 in the Ethernet
974
* Channel Engine manual (part of the PCIO manual).
975
* See also the STP2002-STQ document from Sun Microsystems.
976
*/
977
978
/* step 1 & 2. Reset the Ethernet Channel. */
979
cas_stop(ifp);
980
cas_reset(sc);
981
#ifdef CAS_DEBUG
982
CTR2(KTR_CAS, "%s: %s: restarting", device_get_name(sc->sc_dev),
983
__func__);
984
#endif
985
986
if ((sc->sc_flags & CAS_SERDES) == 0)
987
/* Re-initialize the MIF. */
988
cas_mifinit(sc);
989
990
/* step 3. Setup data structures in host memory. */
991
cas_meminit(sc);
992
993
/* step 4. TX MAC registers & counters */
994
cas_init_regs(sc);
995
996
/* step 5. RX MAC registers & counters */
997
998
/* step 6 & 7. Program Ring Base Addresses. */
999
CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_HI,
1000
(((uint64_t)CAS_CDTXDADDR(sc, 0)) >> 32));
1001
CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_LO,
1002
CAS_CDTXDADDR(sc, 0) & 0xffffffff);
1003
1004
CAS_WRITE_4(sc, CAS_RX_COMP_BASE_HI,
1005
(((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
1006
CAS_WRITE_4(sc, CAS_RX_COMP_BASE_LO,
1007
CAS_CDRXCADDR(sc, 0) & 0xffffffff);
1008
1009
CAS_WRITE_4(sc, CAS_RX_DESC_BASE_HI,
1010
(((uint64_t)CAS_CDRXDADDR(sc, 0)) >> 32));
1011
CAS_WRITE_4(sc, CAS_RX_DESC_BASE_LO,
1012
CAS_CDRXDADDR(sc, 0) & 0xffffffff);
1013
1014
if ((sc->sc_flags & CAS_REG_PLUS) != 0) {
1015
CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_HI,
1016
(((uint64_t)CAS_CDRXD2ADDR(sc, 0)) >> 32));
1017
CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_LO,
1018
CAS_CDRXD2ADDR(sc, 0) & 0xffffffff);
1019
}
1020
1021
#ifdef CAS_DEBUG
1022
CTR5(KTR_CAS,
1023
"loading TXDR %lx, RXCR %lx, RXDR %lx, RXD2R %lx, cddma %lx",
1024
CAS_CDTXDADDR(sc, 0), CAS_CDRXCADDR(sc, 0), CAS_CDRXDADDR(sc, 0),
1025
CAS_CDRXD2ADDR(sc, 0), sc->sc_cddma);
1026
#endif
1027
1028
/* step 8. Global Configuration & Interrupt Masks */
1029
1030
/* Disable weighted round robin. */
1031
CAS_WRITE_4(sc, CAS_CAW, CAS_CAW_RR_DIS);
1032
1033
/*
1034
* Enable infinite bursts for revisions without PCI issues if
1035
* applicable. Doing so greatly improves the TX performance.
1036
*/
1037
CAS_WRITE_4(sc, CAS_INF_BURST,
1038
(sc->sc_flags & CAS_TABORT) == 0 ? CAS_INF_BURST_EN :
1039
0);
1040
1041
/* Set up interrupts. */
1042
CAS_WRITE_4(sc, CAS_INTMASK,
1043
~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
1044
CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
1045
CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
1046
CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
1047
CAS_INTR_PCI_ERROR_INT
1048
#ifdef CAS_DEBUG
1049
| CAS_INTR_PCS_INT | CAS_INTR_MIF
1050
#endif
1051
));
1052
/* Don't clear top level interrupts when CAS_STATUS_ALIAS is read. */
1053
CAS_WRITE_4(sc, CAS_CLEAR_ALIAS, 0);
1054
CAS_WRITE_4(sc, CAS_MAC_RX_MASK, ~CAS_MAC_RX_OVERFLOW);
1055
CAS_WRITE_4(sc, CAS_MAC_TX_MASK,
1056
~(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR));
1057
#ifdef CAS_DEBUG
1058
CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1059
~(CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1060
CAS_MAC_CTRL_NON_PAUSE));
1061
#else
1062
CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
1063
CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
1064
CAS_MAC_CTRL_NON_PAUSE);
1065
#endif
1066
1067
/* Enable PCI error interrupts. */
1068
CAS_WRITE_4(sc, CAS_ERROR_MASK,
1069
~(CAS_ERROR_DTRTO | CAS_ERROR_OTHER | CAS_ERROR_DMAW_ZERO |
1070
CAS_ERROR_DMAR_ZERO | CAS_ERROR_RTRTO));
1071
1072
/* Enable PCI error interrupts in BIM configuration. */
1073
CAS_WRITE_4(sc, CAS_BIM_CONF,
1074
CAS_BIM_CONF_DPAR_EN | CAS_BIM_CONF_RMA_EN | CAS_BIM_CONF_RTA_EN);
1075
1076
/*
1077
* step 9. ETX Configuration: encode receive descriptor ring size,
1078
* enable DMA and disable pre-interrupt writeback completion.
1079
*/
1080
v = cas_descsize(CAS_NTXDESC) << CAS_TX_CONF_DESC3_SHFT;
1081
CAS_WRITE_4(sc, CAS_TX_CONF, v | CAS_TX_CONF_TXDMA_EN |
1082
CAS_TX_CONF_RDPP_DIS | CAS_TX_CONF_PICWB_DIS);
1083
1084
/* step 10. ERX Configuration */
1085
1086
/*
1087
* Encode receive completion and descriptor ring sizes, set the
1088
* swivel offset.
1089
*/
1090
v = cas_rxcompsize(CAS_NRXCOMP) << CAS_RX_CONF_COMP_SHFT;
1091
v |= cas_descsize(CAS_NRXDESC) << CAS_RX_CONF_DESC_SHFT;
1092
if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1093
v |= cas_descsize(CAS_NRXDESC2) << CAS_RX_CONF_DESC2_SHFT;
1094
CAS_WRITE_4(sc, CAS_RX_CONF,
1095
v | (ETHER_ALIGN << CAS_RX_CONF_SOFF_SHFT));
1096
1097
/* Set the PAUSE thresholds. We use the maximum OFF threshold. */
1098
CAS_WRITE_4(sc, CAS_RX_PTHRS,
1099
(111 << CAS_RX_PTHRS_XOFF_SHFT) | (15 << CAS_RX_PTHRS_XON_SHFT));
1100
1101
/* RX blanking */
1102
CAS_WRITE_4(sc, CAS_RX_BLANK,
1103
(15 << CAS_RX_BLANK_TIME_SHFT) | (5 << CAS_RX_BLANK_PKTS_SHFT));
1104
1105
/* Set RX_COMP_AFULL threshold to half of the RX completions. */
1106
CAS_WRITE_4(sc, CAS_RX_AEMPTY_THRS,
1107
(CAS_NRXCOMP / 2) << CAS_RX_AEMPTY_COMP_SHFT);
1108
1109
/* Initialize the RX page size register as appropriate for 8k. */
1110
CAS_WRITE_4(sc, CAS_RX_PSZ,
1111
(CAS_RX_PSZ_8K << CAS_RX_PSZ_SHFT) |
1112
(4 << CAS_RX_PSZ_MB_CNT_SHFT) |
1113
(CAS_RX_PSZ_MB_STRD_2K << CAS_RX_PSZ_MB_STRD_SHFT) |
1114
(CAS_RX_PSZ_MB_OFF_64 << CAS_RX_PSZ_MB_OFF_SHFT));
1115
1116
/* Disable RX random early detection. */
1117
CAS_WRITE_4(sc, CAS_RX_RED, 0);
1118
1119
/* Zero the RX reassembly DMA table. */
1120
for (v = 0; v <= CAS_RX_REAS_DMA_ADDR_LC; v++) {
1121
CAS_WRITE_4(sc, CAS_RX_REAS_DMA_ADDR, v);
1122
CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_LO, 0);
1123
CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_MD, 0);
1124
CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_HI, 0);
1125
}
1126
1127
/* Ensure the RX control FIFO and RX IPP FIFO addresses are zero. */
1128
CAS_WRITE_4(sc, CAS_RX_CTRL_FIFO, 0);
1129
CAS_WRITE_4(sc, CAS_RX_IPP_ADDR, 0);
1130
1131
/* Finally, enable RX DMA. */
1132
CAS_WRITE_4(sc, CAS_RX_CONF,
1133
CAS_READ_4(sc, CAS_RX_CONF) | CAS_RX_CONF_RXDMA_EN);
1134
1135
/* step 11. Configure Media. */
1136
1137
/* step 12. RX_MAC Configuration Register */
1138
v = CAS_READ_4(sc, CAS_MAC_RX_CONF);
1139
v &= ~(CAS_MAC_RX_CONF_STRPPAD | CAS_MAC_RX_CONF_EN);
1140
v |= CAS_MAC_RX_CONF_STRPFCS;
1141
sc->sc_mac_rxcfg = v;
1142
/*
1143
* Clear the RX filter and reprogram it. This will also set the
1144
* current RX MAC configuration and enable it.
1145
*/
1146
cas_setladrf(sc);
1147
1148
/* step 13. TX_MAC Configuration Register */
1149
v = CAS_READ_4(sc, CAS_MAC_TX_CONF);
1150
v |= CAS_MAC_TX_CONF_EN;
1151
(void)cas_disable_tx(sc);
1152
CAS_WRITE_4(sc, CAS_MAC_TX_CONF, v);
1153
1154
/* step 14. Issue Transmit Pending command. */
1155
1156
/* step 15. Give the receiver a swift kick. */
1157
CAS_WRITE_4(sc, CAS_RX_KICK, CAS_NRXDESC - 4);
1158
CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, 0);
1159
if ((sc->sc_flags & CAS_REG_PLUS) != 0)
1160
CAS_WRITE_4(sc, CAS_RX_KICK2, CAS_NRXDESC2 - 4);
1161
1162
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
1163
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1164
1165
mii_mediachg(sc->sc_mii);
1166
1167
/* Start the one second timer. */
1168
sc->sc_wdog_timer = 0;
1169
callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
1170
}
1171
1172
static int
1173
cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head)
1174
{
1175
bus_dma_segment_t txsegs[CAS_NTXSEGS];
1176
struct cas_txsoft *txs;
1177
struct ip *ip;
1178
struct mbuf *m;
1179
uint64_t cflags;
1180
int error, nexttx, nsegs, offset, seg;
1181
1182
CAS_LOCK_ASSERT(sc, MA_OWNED);
1183
1184
/* Get a work queue entry. */
1185
if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
1186
/* Ran out of descriptors. */
1187
return (ENOBUFS);
1188
}
1189
1190
cflags = 0;
1191
if (((*m_head)->m_pkthdr.csum_flags & CAS_CSUM_FEATURES) != 0) {
1192
if (M_WRITABLE(*m_head) == 0) {
1193
m = m_dup(*m_head, M_NOWAIT);
1194
m_freem(*m_head);
1195
*m_head = m;
1196
if (m == NULL)
1197
return (ENOBUFS);
1198
}
1199
offset = sizeof(struct ether_header);
1200
m = m_pullup(*m_head, offset + sizeof(struct ip));
1201
if (m == NULL) {
1202
*m_head = NULL;
1203
return (ENOBUFS);
1204
}
1205
ip = (struct ip *)(mtod(m, caddr_t) + offset);
1206
offset += (ip->ip_hl << 2);
1207
cflags = (offset << CAS_TD_CKSUM_START_SHFT) |
1208
((offset + m->m_pkthdr.csum_data) <<
1209
CAS_TD_CKSUM_STUFF_SHFT) | CAS_TD_CKSUM_EN;
1210
*m_head = m;
1211
}
1212
1213
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap,
1214
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
1215
if (error == EFBIG) {
1216
m = m_collapse(*m_head, M_NOWAIT, CAS_NTXSEGS);
1217
if (m == NULL) {
1218
m_freem(*m_head);
1219
*m_head = NULL;
1220
return (ENOBUFS);
1221
}
1222
*m_head = m;
1223
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag,
1224
txs->txs_dmamap, *m_head, txsegs, &nsegs,
1225
BUS_DMA_NOWAIT);
1226
if (error != 0) {
1227
m_freem(*m_head);
1228
*m_head = NULL;
1229
return (error);
1230
}
1231
} else if (error != 0)
1232
return (error);
1233
/* If nsegs is wrong then the stack is corrupt. */
1234
KASSERT(nsegs <= CAS_NTXSEGS,
1235
("%s: too many DMA segments (%d)", __func__, nsegs));
1236
if (nsegs == 0) {
1237
m_freem(*m_head);
1238
*m_head = NULL;
1239
return (EIO);
1240
}
1241
1242
/*
1243
* Ensure we have enough descriptors free to describe
1244
* the packet. Note, we always reserve one descriptor
1245
* at the end of the ring as a termination point, in
1246
* order to prevent wrap-around.
1247
*/
1248
if (nsegs > sc->sc_txfree - 1) {
1249
txs->txs_ndescs = 0;
1250
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1251
return (ENOBUFS);
1252
}
1253
1254
txs->txs_ndescs = nsegs;
1255
txs->txs_firstdesc = sc->sc_txnext;
1256
nexttx = txs->txs_firstdesc;
1257
for (seg = 0; seg < nsegs; seg++, nexttx = CAS_NEXTTX(nexttx)) {
1258
#ifdef CAS_DEBUG
1259
CTR6(KTR_CAS,
1260
"%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)",
1261
__func__, seg, nexttx, txsegs[seg].ds_len,
1262
txsegs[seg].ds_addr, htole64(txsegs[seg].ds_addr));
1263
#endif
1264
sc->sc_txdescs[nexttx].cd_buf_ptr =
1265
htole64(txsegs[seg].ds_addr);
1266
KASSERT(txsegs[seg].ds_len <
1267
CAS_TD_BUF_LEN_MASK >> CAS_TD_BUF_LEN_SHFT,
1268
("%s: segment size too large!", __func__));
1269
sc->sc_txdescs[nexttx].cd_flags =
1270
htole64(txsegs[seg].ds_len << CAS_TD_BUF_LEN_SHFT);
1271
txs->txs_lastdesc = nexttx;
1272
}
1273
1274
/* Set EOF on the last descriptor. */
1275
#ifdef CAS_DEBUG
1276
CTR3(KTR_CAS, "%s: end of frame at segment %d, TX %d",
1277
__func__, seg, nexttx);
1278
#endif
1279
sc->sc_txdescs[txs->txs_lastdesc].cd_flags |=
1280
htole64(CAS_TD_END_OF_FRAME);
1281
1282
/* Lastly set SOF on the first descriptor. */
1283
#ifdef CAS_DEBUG
1284
CTR3(KTR_CAS, "%s: start of frame at segment %d, TX %d",
1285
__func__, seg, nexttx);
1286
#endif
1287
if (sc->sc_txwin += nsegs > CAS_MAXTXFREE * 2 / 3) {
1288
sc->sc_txwin = 0;
1289
sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1290
htole64(cflags | CAS_TD_START_OF_FRAME | CAS_TD_INT_ME);
1291
} else
1292
sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
1293
htole64(cflags | CAS_TD_START_OF_FRAME);
1294
1295
/* Sync the DMA map. */
1296
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1297
BUS_DMASYNC_PREWRITE);
1298
1299
#ifdef CAS_DEBUG
1300
CTR4(KTR_CAS, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d",
1301
__func__, txs->txs_firstdesc, txs->txs_lastdesc,
1302
txs->txs_ndescs);
1303
#endif
1304
STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
1305
STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1306
txs->txs_mbuf = *m_head;
1307
1308
sc->sc_txnext = CAS_NEXTTX(txs->txs_lastdesc);
1309
sc->sc_txfree -= txs->txs_ndescs;
1310
1311
return (0);
1312
}
1313
1314
static void
1315
cas_init_regs(struct cas_softc *sc)
1316
{
1317
int i;
1318
const u_char *laddr = if_getlladdr(sc->sc_ifp);
1319
1320
CAS_LOCK_ASSERT(sc, MA_OWNED);
1321
1322
/* These registers are not cleared on reset. */
1323
if ((sc->sc_flags & CAS_INITED) == 0) {
1324
/* magic values */
1325
CAS_WRITE_4(sc, CAS_MAC_IPG0, 0);
1326
CAS_WRITE_4(sc, CAS_MAC_IPG1, 8);
1327
CAS_WRITE_4(sc, CAS_MAC_IPG2, 4);
1328
1329
/* min frame length */
1330
CAS_WRITE_4(sc, CAS_MAC_MIN_FRAME, ETHER_MIN_LEN);
1331
/* max frame length and max burst size */
1332
CAS_WRITE_4(sc, CAS_MAC_MAX_BF,
1333
((ETHER_MAX_LEN_JUMBO + ETHER_VLAN_ENCAP_LEN) <<
1334
CAS_MAC_MAX_BF_FRM_SHFT) |
1335
(0x2000 << CAS_MAC_MAX_BF_BST_SHFT));
1336
1337
/* more magic values */
1338
CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
1339
CAS_WRITE_4(sc, CAS_MAC_JAM_SIZE, 0x4);
1340
CAS_WRITE_4(sc, CAS_MAC_ATTEMPT_LIMIT, 0x10);
1341
CAS_WRITE_4(sc, CAS_MAC_CTRL_TYPE, 0x8808);
1342
1343
/* random number seed */
1344
CAS_WRITE_4(sc, CAS_MAC_RANDOM_SEED,
1345
((laddr[5] << 8) | laddr[4]) & 0x3ff);
1346
1347
/* secondary MAC addresses: 0:0:0:0:0:0 */
1348
for (i = CAS_MAC_ADDR3; i <= CAS_MAC_ADDR41;
1349
i += CAS_MAC_ADDR4 - CAS_MAC_ADDR3)
1350
CAS_WRITE_4(sc, i, 0);
1351
1352
/* MAC control address: 01:80:c2:00:00:01 */
1353
CAS_WRITE_4(sc, CAS_MAC_ADDR42, 0x0001);
1354
CAS_WRITE_4(sc, CAS_MAC_ADDR43, 0xc200);
1355
CAS_WRITE_4(sc, CAS_MAC_ADDR44, 0x0180);
1356
1357
/* MAC filter address: 0:0:0:0:0:0 */
1358
CAS_WRITE_4(sc, CAS_MAC_AFILTER0, 0);
1359
CAS_WRITE_4(sc, CAS_MAC_AFILTER1, 0);
1360
CAS_WRITE_4(sc, CAS_MAC_AFILTER2, 0);
1361
CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK1_2, 0);
1362
CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK0, 0);
1363
1364
/* Zero the hash table. */
1365
for (i = CAS_MAC_HASH0; i <= CAS_MAC_HASH15;
1366
i += CAS_MAC_HASH1 - CAS_MAC_HASH0)
1367
CAS_WRITE_4(sc, i, 0);
1368
1369
sc->sc_flags |= CAS_INITED;
1370
}
1371
1372
/* Counters need to be zeroed. */
1373
CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
1374
CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
1375
CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
1376
CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
1377
CAS_WRITE_4(sc, CAS_MAC_DEFER_TMR_CNT, 0);
1378
CAS_WRITE_4(sc, CAS_MAC_PEAK_ATTEMPTS, 0);
1379
CAS_WRITE_4(sc, CAS_MAC_RX_FRAME_COUNT, 0);
1380
CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
1381
CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
1382
CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
1383
CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
1384
1385
/* Set XOFF PAUSE time. */
1386
CAS_WRITE_4(sc, CAS_MAC_SPC, 0x1BF0 << CAS_MAC_SPC_TIME_SHFT);
1387
1388
/* Set the station address. */
1389
CAS_WRITE_4(sc, CAS_MAC_ADDR0, (laddr[4] << 8) | laddr[5]);
1390
CAS_WRITE_4(sc, CAS_MAC_ADDR1, (laddr[2] << 8) | laddr[3]);
1391
CAS_WRITE_4(sc, CAS_MAC_ADDR2, (laddr[0] << 8) | laddr[1]);
1392
1393
/* Enable MII outputs. */
1394
CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, CAS_MAC_XIF_CONF_TX_OE);
1395
}
1396
1397
static void
1398
cas_tx_task(void *arg, int pending __unused)
1399
{
1400
if_t ifp;
1401
1402
ifp = (if_t)arg;
1403
cas_start(ifp);
1404
}
1405
1406
static inline void
1407
cas_txkick(struct cas_softc *sc)
1408
{
1409
1410
/*
1411
* Update the TX kick register. This register has to point to the
1412
* descriptor after the last valid one and for optimum performance
1413
* should be incremented in multiples of 4 (the DMA engine fetches/
1414
* updates descriptors in batches of 4).
1415
*/
1416
#ifdef CAS_DEBUG
1417
CTR3(KTR_CAS, "%s: %s: kicking TX %d",
1418
device_get_name(sc->sc_dev), __func__, sc->sc_txnext);
1419
#endif
1420
CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1421
CAS_WRITE_4(sc, CAS_TX_KICK3, sc->sc_txnext);
1422
}
1423
1424
static void
1425
cas_start(if_t ifp)
1426
{
1427
struct cas_softc *sc = if_getsoftc(ifp);
1428
struct mbuf *m;
1429
int kicked, ntx;
1430
1431
CAS_LOCK(sc);
1432
1433
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1434
IFF_DRV_RUNNING || (sc->sc_flags & CAS_LINK) == 0) {
1435
CAS_UNLOCK(sc);
1436
return;
1437
}
1438
1439
if (sc->sc_txfree < CAS_MAXTXFREE / 4)
1440
cas_tint(sc);
1441
1442
#ifdef CAS_DEBUG
1443
CTR4(KTR_CAS, "%s: %s: txfree %d, txnext %d",
1444
device_get_name(sc->sc_dev), __func__, sc->sc_txfree,
1445
sc->sc_txnext);
1446
#endif
1447
ntx = 0;
1448
kicked = 0;
1449
for (; !if_sendq_empty(ifp) && sc->sc_txfree > 1;) {
1450
m = if_dequeue(ifp);
1451
if (m == NULL)
1452
break;
1453
if (cas_load_txmbuf(sc, &m) != 0) {
1454
if (m == NULL)
1455
break;
1456
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
1457
if_sendq_prepend(ifp, m);
1458
break;
1459
}
1460
if ((sc->sc_txnext % 4) == 0) {
1461
cas_txkick(sc);
1462
kicked = 1;
1463
} else
1464
kicked = 0;
1465
ntx++;
1466
BPF_MTAP(ifp, m);
1467
}
1468
1469
if (ntx > 0) {
1470
if (kicked == 0)
1471
cas_txkick(sc);
1472
#ifdef CAS_DEBUG
1473
CTR2(KTR_CAS, "%s: packets enqueued, OWN on %d",
1474
device_get_name(sc->sc_dev), sc->sc_txnext);
1475
#endif
1476
1477
/* Set a watchdog timer in case the chip flakes out. */
1478
sc->sc_wdog_timer = 5;
1479
#ifdef CAS_DEBUG
1480
CTR3(KTR_CAS, "%s: %s: watchdog %d",
1481
device_get_name(sc->sc_dev), __func__,
1482
sc->sc_wdog_timer);
1483
#endif
1484
}
1485
1486
CAS_UNLOCK(sc);
1487
}
1488
1489
static void
1490
cas_tint(struct cas_softc *sc)
1491
{
1492
if_t ifp = sc->sc_ifp;
1493
struct cas_txsoft *txs;
1494
int progress;
1495
uint32_t txlast;
1496
#ifdef CAS_DEBUG
1497
int i;
1498
1499
CAS_LOCK_ASSERT(sc, MA_OWNED);
1500
1501
CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1502
#endif
1503
1504
/*
1505
* Go through our TX list and free mbufs for those
1506
* frames that have been transmitted.
1507
*/
1508
progress = 0;
1509
CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
1510
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1511
#ifdef CAS_DEBUG
1512
if ((if_getflags(ifp) & IFF_DEBUG) != 0) {
1513
printf(" txsoft %p transmit chain:\n", txs);
1514
for (i = txs->txs_firstdesc;; i = CAS_NEXTTX(i)) {
1515
printf("descriptor %d: ", i);
1516
printf("cd_flags: 0x%016llx\t",
1517
(long long)le64toh(
1518
sc->sc_txdescs[i].cd_flags));
1519
printf("cd_buf_ptr: 0x%016llx\n",
1520
(long long)le64toh(
1521
sc->sc_txdescs[i].cd_buf_ptr));
1522
if (i == txs->txs_lastdesc)
1523
break;
1524
}
1525
}
1526
#endif
1527
1528
/*
1529
* In theory, we could harvest some descriptors before
1530
* the ring is empty, but that's a bit complicated.
1531
*
1532
* CAS_TX_COMPn points to the last descriptor
1533
* processed + 1.
1534
*/
1535
txlast = CAS_READ_4(sc, CAS_TX_COMP3);
1536
#ifdef CAS_DEBUG
1537
CTR4(KTR_CAS, "%s: txs->txs_firstdesc = %d, "
1538
"txs->txs_lastdesc = %d, txlast = %d",
1539
__func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1540
#endif
1541
if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1542
if ((txlast >= txs->txs_firstdesc) &&
1543
(txlast <= txs->txs_lastdesc))
1544
break;
1545
} else {
1546
/* Ick -- this command wraps. */
1547
if ((txlast >= txs->txs_firstdesc) ||
1548
(txlast <= txs->txs_lastdesc))
1549
break;
1550
}
1551
1552
#ifdef CAS_DEBUG
1553
CTR1(KTR_CAS, "%s: releasing a descriptor", __func__);
1554
#endif
1555
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1556
1557
sc->sc_txfree += txs->txs_ndescs;
1558
1559
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
1560
BUS_DMASYNC_POSTWRITE);
1561
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
1562
if (txs->txs_mbuf != NULL) {
1563
m_freem(txs->txs_mbuf);
1564
txs->txs_mbuf = NULL;
1565
}
1566
1567
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1568
1569
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1570
progress = 1;
1571
}
1572
1573
#ifdef CAS_DEBUG
1574
CTR5(KTR_CAS, "%s: CAS_TX_SM1 %x CAS_TX_SM2 %x CAS_TX_DESC_BASE %llx "
1575
"CAS_TX_COMP3 %x",
1576
__func__, CAS_READ_4(sc, CAS_TX_SM1), CAS_READ_4(sc, CAS_TX_SM2),
1577
((long long)CAS_READ_4(sc, CAS_TX_DESC3_BASE_HI) << 32) |
1578
CAS_READ_4(sc, CAS_TX_DESC3_BASE_LO),
1579
CAS_READ_4(sc, CAS_TX_COMP3));
1580
#endif
1581
1582
if (progress) {
1583
/* We freed some descriptors, so reset IFF_DRV_OACTIVE. */
1584
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
1585
if (STAILQ_EMPTY(&sc->sc_txdirtyq))
1586
sc->sc_wdog_timer = 0;
1587
}
1588
1589
#ifdef CAS_DEBUG
1590
CTR3(KTR_CAS, "%s: %s: watchdog %d",
1591
device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer);
1592
#endif
1593
}
1594
1595
static void
1596
cas_rint_timeout(void *arg)
1597
{
1598
struct epoch_tracker et;
1599
struct cas_softc *sc = arg;
1600
1601
CAS_LOCK_ASSERT(sc, MA_OWNED);
1602
1603
NET_EPOCH_ENTER(et);
1604
cas_rint(sc);
1605
NET_EPOCH_EXIT(et);
1606
}
1607
1608
static void
1609
cas_rint(struct cas_softc *sc)
1610
{
1611
struct cas_rxdsoft *rxds, *rxds2;
1612
if_t ifp = sc->sc_ifp;
1613
struct mbuf *m, *m2;
1614
uint64_t word1, word2, word3 __unused, word4;
1615
uint32_t rxhead;
1616
u_int idx, idx2, len, off, skip;
1617
1618
CAS_LOCK_ASSERT(sc, MA_OWNED);
1619
1620
callout_stop(&sc->sc_rx_ch);
1621
1622
#ifdef CAS_DEBUG
1623
CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
1624
#endif
1625
1626
#define PRINTWORD(n, delimiter) \
1627
printf("word ## n: 0x%016llx%c", (long long)word ## n, delimiter)
1628
1629
#define SKIPASSERT(n) \
1630
KASSERT(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n == 0, \
1631
("%s: word ## n not 0", __func__))
1632
1633
#define WORDTOH(n) \
1634
word ## n = le64toh(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n)
1635
1636
/*
1637
* Read the completion head register once. This limits
1638
* how long the following loop can execute.
1639
*/
1640
rxhead = CAS_READ_4(sc, CAS_RX_COMP_HEAD);
1641
#ifdef CAS_DEBUG
1642
CTR4(KTR_CAS, "%s: sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1643
__func__, sc->sc_rxcptr, sc->sc_rxdptr, rxhead);
1644
#endif
1645
skip = 0;
1646
CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1647
for (; sc->sc_rxcptr != rxhead;
1648
sc->sc_rxcptr = CAS_NEXTRXCOMP(sc->sc_rxcptr)) {
1649
if (skip != 0) {
1650
SKIPASSERT(1);
1651
SKIPASSERT(2);
1652
SKIPASSERT(3);
1653
1654
--skip;
1655
goto skip;
1656
}
1657
1658
WORDTOH(1);
1659
WORDTOH(2);
1660
WORDTOH(3);
1661
WORDTOH(4);
1662
1663
#ifdef CAS_DEBUG
1664
if ((if_getflags(ifp) & IFF_DEBUG) != 0) {
1665
printf(" completion %d: ", sc->sc_rxcptr);
1666
PRINTWORD(1, '\t');
1667
PRINTWORD(2, '\t');
1668
PRINTWORD(3, '\t');
1669
PRINTWORD(4, '\n');
1670
}
1671
#endif
1672
1673
if (__predict_false(
1674
(word1 & CAS_RC1_TYPE_MASK) == CAS_RC1_TYPE_HW ||
1675
(word4 & CAS_RC4_ZERO) != 0)) {
1676
/*
1677
* The descriptor is still marked as owned, although
1678
* it is supposed to have completed. This has been
1679
* observed on some machines. Just exiting here
1680
* might leave the packet sitting around until another
1681
* one arrives to trigger a new interrupt, which is
1682
* generally undesirable, so set up a timeout.
1683
*/
1684
callout_reset(&sc->sc_rx_ch, CAS_RXOWN_TICKS,
1685
cas_rint_timeout, sc);
1686
break;
1687
}
1688
1689
if (__predict_false(
1690
(word4 & (CAS_RC4_BAD | CAS_RC4_LEN_MMATCH)) != 0)) {
1691
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1692
device_printf(sc->sc_dev,
1693
"receive error: CRC error\n");
1694
continue;
1695
}
1696
1697
KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1698
CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1699
("%s: data and header present", __func__));
1700
KASSERT((word1 & CAS_RC1_SPLIT_PKT) == 0 ||
1701
CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
1702
("%s: split and header present", __func__));
1703
KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
1704
(word1 & CAS_RC1_RELEASE_HDR) == 0,
1705
("%s: data present but header release", __func__));
1706
KASSERT(CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0 ||
1707
(word1 & CAS_RC1_RELEASE_DATA) == 0,
1708
("%s: header present but data release", __func__));
1709
1710
if ((len = CAS_GET(word2, CAS_RC2_HDR_SIZE)) != 0) {
1711
idx = CAS_GET(word2, CAS_RC2_HDR_INDEX);
1712
off = CAS_GET(word2, CAS_RC2_HDR_OFF);
1713
#ifdef CAS_DEBUG
1714
CTR4(KTR_CAS, "%s: hdr at idx %d, off %d, len %d",
1715
__func__, idx, off, len);
1716
#endif
1717
rxds = &sc->sc_rxdsoft[idx];
1718
MGETHDR(m, M_NOWAIT, MT_DATA);
1719
if (m != NULL) {
1720
refcount_acquire(&rxds->rxds_refcount);
1721
bus_dmamap_sync(sc->sc_rdmatag,
1722
rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1723
m_extadd(m, (char *)rxds->rxds_buf +
1724
off * 256 + ETHER_ALIGN, len, cas_free,
1725
sc, (void *)(uintptr_t)idx,
1726
M_RDONLY, EXT_NET_DRV);
1727
if ((m->m_flags & M_EXT) == 0) {
1728
m_freem(m);
1729
m = NULL;
1730
}
1731
}
1732
if (m != NULL) {
1733
m->m_pkthdr.rcvif = ifp;
1734
m->m_pkthdr.len = m->m_len = len;
1735
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1736
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1737
cas_rxcksum(m, CAS_GET(word4,
1738
CAS_RC4_TCP_CSUM));
1739
/* Pass it on. */
1740
CAS_UNLOCK(sc);
1741
if_input(ifp, m);
1742
CAS_LOCK(sc);
1743
} else
1744
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1745
1746
if ((word1 & CAS_RC1_RELEASE_HDR) != 0 &&
1747
refcount_release(&rxds->rxds_refcount) != 0)
1748
cas_add_rxdesc(sc, idx);
1749
} else if ((len = CAS_GET(word1, CAS_RC1_DATA_SIZE)) != 0) {
1750
idx = CAS_GET(word1, CAS_RC1_DATA_INDEX);
1751
off = CAS_GET(word1, CAS_RC1_DATA_OFF);
1752
#ifdef CAS_DEBUG
1753
CTR4(KTR_CAS, "%s: data at idx %d, off %d, len %d",
1754
__func__, idx, off, len);
1755
#endif
1756
rxds = &sc->sc_rxdsoft[idx];
1757
MGETHDR(m, M_NOWAIT, MT_DATA);
1758
if (m != NULL) {
1759
refcount_acquire(&rxds->rxds_refcount);
1760
off += ETHER_ALIGN;
1761
m->m_len = min(CAS_PAGE_SIZE - off, len);
1762
bus_dmamap_sync(sc->sc_rdmatag,
1763
rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
1764
m_extadd(m, (char *)rxds->rxds_buf + off,
1765
m->m_len, cas_free, sc,
1766
(void *)(uintptr_t)idx, M_RDONLY,
1767
EXT_NET_DRV);
1768
if ((m->m_flags & M_EXT) == 0) {
1769
m_freem(m);
1770
m = NULL;
1771
}
1772
}
1773
idx2 = 0;
1774
m2 = NULL;
1775
rxds2 = NULL;
1776
if ((word1 & CAS_RC1_SPLIT_PKT) != 0) {
1777
KASSERT((word1 & CAS_RC1_RELEASE_NEXT) != 0,
1778
("%s: split but no release next",
1779
__func__));
1780
1781
idx2 = CAS_GET(word2, CAS_RC2_NEXT_INDEX);
1782
#ifdef CAS_DEBUG
1783
CTR2(KTR_CAS, "%s: split at idx %d",
1784
__func__, idx2);
1785
#endif
1786
rxds2 = &sc->sc_rxdsoft[idx2];
1787
if (m != NULL) {
1788
MGET(m2, M_NOWAIT, MT_DATA);
1789
if (m2 != NULL) {
1790
refcount_acquire(
1791
&rxds2->rxds_refcount);
1792
m2->m_len = len - m->m_len;
1793
bus_dmamap_sync(
1794
sc->sc_rdmatag,
1795
rxds2->rxds_dmamap,
1796
BUS_DMASYNC_POSTREAD);
1797
m_extadd(m2,
1798
(char *)rxds2->rxds_buf,
1799
m2->m_len, cas_free, sc,
1800
(void *)(uintptr_t)idx2,
1801
M_RDONLY, EXT_NET_DRV);
1802
if ((m2->m_flags & M_EXT) ==
1803
0) {
1804
m_freem(m2);
1805
m2 = NULL;
1806
}
1807
}
1808
}
1809
if (m2 != NULL)
1810
m->m_next = m2;
1811
else if (m != NULL) {
1812
m_freem(m);
1813
m = NULL;
1814
}
1815
}
1816
if (m != NULL) {
1817
m->m_pkthdr.rcvif = ifp;
1818
m->m_pkthdr.len = len;
1819
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1820
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
1821
cas_rxcksum(m, CAS_GET(word4,
1822
CAS_RC4_TCP_CSUM));
1823
/* Pass it on. */
1824
CAS_UNLOCK(sc);
1825
if_input(ifp, m);
1826
CAS_LOCK(sc);
1827
} else
1828
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1829
1830
if ((word1 & CAS_RC1_RELEASE_DATA) != 0 &&
1831
refcount_release(&rxds->rxds_refcount) != 0)
1832
cas_add_rxdesc(sc, idx);
1833
if ((word1 & CAS_RC1_SPLIT_PKT) != 0 &&
1834
refcount_release(&rxds2->rxds_refcount) != 0)
1835
cas_add_rxdesc(sc, idx2);
1836
}
1837
1838
skip = CAS_GET(word1, CAS_RC1_SKIP);
1839
1840
skip:
1841
cas_rxcompinit(&sc->sc_rxcomps[sc->sc_rxcptr]);
1842
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1843
break;
1844
}
1845
CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1846
CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, sc->sc_rxcptr);
1847
1848
#undef PRINTWORD
1849
#undef SKIPASSERT
1850
#undef WORDTOH
1851
1852
#ifdef CAS_DEBUG
1853
CTR4(KTR_CAS, "%s: done sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
1854
__func__, sc->sc_rxcptr, sc->sc_rxdptr,
1855
CAS_READ_4(sc, CAS_RX_COMP_HEAD));
1856
#endif
1857
}
1858
1859
static void
1860
cas_free(struct mbuf *m)
1861
{
1862
struct cas_rxdsoft *rxds;
1863
struct cas_softc *sc;
1864
u_int idx, locked;
1865
1866
sc = m->m_ext.ext_arg1;
1867
idx = (uintptr_t)m->m_ext.ext_arg2;
1868
rxds = &sc->sc_rxdsoft[idx];
1869
if (refcount_release(&rxds->rxds_refcount) == 0)
1870
return;
1871
1872
/*
1873
* NB: this function can be called via m_freem(9) within
1874
* this driver!
1875
*/
1876
if ((locked = CAS_LOCK_OWNED(sc)) == 0)
1877
CAS_LOCK(sc);
1878
cas_add_rxdesc(sc, idx);
1879
if (locked == 0)
1880
CAS_UNLOCK(sc);
1881
}
1882
1883
static inline void
1884
cas_add_rxdesc(struct cas_softc *sc, u_int idx)
1885
{
1886
1887
CAS_LOCK_ASSERT(sc, MA_OWNED);
1888
1889
bus_dmamap_sync(sc->sc_rdmatag, sc->sc_rxdsoft[idx].rxds_dmamap,
1890
BUS_DMASYNC_PREREAD);
1891
CAS_UPDATE_RXDESC(sc, sc->sc_rxdptr, idx);
1892
sc->sc_rxdptr = CAS_NEXTRXDESC(sc->sc_rxdptr);
1893
1894
/*
1895
* Update the RX kick register. This register has to point to the
1896
* descriptor after the last valid one (before the current batch)
1897
* and for optimum performance should be incremented in multiples
1898
* of 4 (the DMA engine fetches/updates descriptors in batches of 4).
1899
*/
1900
if ((sc->sc_rxdptr % 4) == 0) {
1901
CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1902
CAS_WRITE_4(sc, CAS_RX_KICK,
1903
(sc->sc_rxdptr + CAS_NRXDESC - 4) & CAS_NRXDESC_MASK);
1904
}
1905
}
1906
1907
static void
1908
cas_eint(struct cas_softc *sc, u_int status)
1909
{
1910
if_t ifp = sc->sc_ifp;
1911
1912
CAS_LOCK_ASSERT(sc, MA_OWNED);
1913
1914
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1915
1916
device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status);
1917
if ((status & CAS_INTR_PCI_ERROR_INT) != 0) {
1918
status = CAS_READ_4(sc, CAS_ERROR_STATUS);
1919
printf(", PCI bus error 0x%x", status);
1920
if ((status & CAS_ERROR_OTHER) != 0) {
1921
status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
1922
printf(", PCI status 0x%x", status);
1923
pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
1924
}
1925
}
1926
printf("\n");
1927
1928
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
1929
cas_init_locked(sc);
1930
if (!if_sendq_empty(ifp))
1931
taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
1932
}
1933
1934
static int
1935
cas_intr(void *v)
1936
{
1937
struct cas_softc *sc = v;
1938
1939
if (__predict_false((CAS_READ_4(sc, CAS_STATUS_ALIAS) &
1940
CAS_INTR_SUMMARY) == 0))
1941
return (FILTER_STRAY);
1942
1943
/* Disable interrupts. */
1944
CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
1945
taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
1946
1947
return (FILTER_HANDLED);
1948
}
1949
1950
static void
1951
cas_intr_task(void *arg, int pending __unused)
1952
{
1953
struct cas_softc *sc = arg;
1954
if_t ifp = sc->sc_ifp;
1955
uint32_t status, status2;
1956
1957
CAS_LOCK_ASSERT(sc, MA_NOTOWNED);
1958
1959
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
1960
return;
1961
1962
status = CAS_READ_4(sc, CAS_STATUS);
1963
if (__predict_false((status & CAS_INTR_SUMMARY) == 0))
1964
goto done;
1965
1966
CAS_LOCK(sc);
1967
#ifdef CAS_DEBUG
1968
CTR4(KTR_CAS, "%s: %s: cplt %x, status %x",
1969
device_get_name(sc->sc_dev), __func__,
1970
(status >> CAS_STATUS_TX_COMP3_SHFT), (u_int)status);
1971
1972
/*
1973
* PCS interrupts must be cleared, otherwise no traffic is passed!
1974
*/
1975
if ((status & CAS_INTR_PCS_INT) != 0) {
1976
status2 =
1977
CAS_READ_4(sc, CAS_PCS_INTR_STATUS) |
1978
CAS_READ_4(sc, CAS_PCS_INTR_STATUS);
1979
if ((status2 & CAS_PCS_INTR_LINK) != 0)
1980
device_printf(sc->sc_dev,
1981
"%s: PCS link status changed\n", __func__);
1982
}
1983
if ((status & CAS_MAC_CTRL_STATUS) != 0) {
1984
status2 = CAS_READ_4(sc, CAS_MAC_CTRL_STATUS);
1985
if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
1986
device_printf(sc->sc_dev,
1987
"%s: PAUSE received (PAUSE time %d slots)\n",
1988
__func__,
1989
(status2 & CAS_MAC_CTRL_STATUS_PT_MASK) >>
1990
CAS_MAC_CTRL_STATUS_PT_SHFT);
1991
if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
1992
device_printf(sc->sc_dev,
1993
"%s: transited to PAUSE state\n", __func__);
1994
if ((status2 & CAS_MAC_CTRL_NON_PAUSE) != 0)
1995
device_printf(sc->sc_dev,
1996
"%s: transited to non-PAUSE state\n", __func__);
1997
}
1998
if ((status & CAS_INTR_MIF) != 0)
1999
device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__);
2000
#endif
2001
2002
if (__predict_false((status &
2003
(CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
2004
CAS_INTR_RX_LEN_MMATCH | CAS_INTR_PCI_ERROR_INT)) != 0)) {
2005
cas_eint(sc, status);
2006
CAS_UNLOCK(sc);
2007
return;
2008
}
2009
2010
if (__predict_false(status & CAS_INTR_TX_MAC_INT)) {
2011
status2 = CAS_READ_4(sc, CAS_MAC_TX_STATUS);
2012
if ((status2 &
2013
(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)) != 0)
2014
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2015
else if ((status2 & ~CAS_MAC_TX_FRAME_XMTD) != 0)
2016
device_printf(sc->sc_dev,
2017
"MAC TX fault, status %x\n", status2);
2018
}
2019
2020
if (__predict_false(status & CAS_INTR_RX_MAC_INT)) {
2021
status2 = CAS_READ_4(sc, CAS_MAC_RX_STATUS);
2022
if ((status2 & CAS_MAC_RX_OVERFLOW) != 0)
2023
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
2024
else if ((status2 & ~CAS_MAC_RX_FRAME_RCVD) != 0)
2025
device_printf(sc->sc_dev,
2026
"MAC RX fault, status %x\n", status2);
2027
}
2028
2029
if ((status &
2030
(CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2031
CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0) {
2032
cas_rint(sc);
2033
#ifdef CAS_DEBUG
2034
if (__predict_false((status &
2035
(CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
2036
CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0))
2037
device_printf(sc->sc_dev,
2038
"RX fault, status %x\n", status);
2039
#endif
2040
}
2041
2042
if ((status &
2043
(CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_DONE)) != 0)
2044
cas_tint(sc);
2045
2046
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
2047
CAS_UNLOCK(sc);
2048
return;
2049
} else if (!if_sendq_empty(ifp))
2050
taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2051
CAS_UNLOCK(sc);
2052
2053
status = CAS_READ_4(sc, CAS_STATUS_ALIAS);
2054
if (__predict_false((status & CAS_INTR_SUMMARY) != 0)) {
2055
taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
2056
return;
2057
}
2058
2059
done:
2060
/* Re-enable interrupts. */
2061
CAS_WRITE_4(sc, CAS_INTMASK,
2062
~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
2063
CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
2064
CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
2065
CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
2066
CAS_INTR_PCI_ERROR_INT
2067
#ifdef CAS_DEBUG
2068
| CAS_INTR_PCS_INT | CAS_INTR_MIF
2069
#endif
2070
));
2071
}
2072
2073
static void
2074
cas_watchdog(struct cas_softc *sc)
2075
{
2076
if_t ifp = sc->sc_ifp;
2077
2078
CAS_LOCK_ASSERT(sc, MA_OWNED);
2079
2080
#ifdef CAS_DEBUG
2081
CTR4(KTR_CAS,
2082
"%s: CAS_RX_CONF %x CAS_MAC_RX_STATUS %x CAS_MAC_RX_CONF %x",
2083
__func__, CAS_READ_4(sc, CAS_RX_CONF),
2084
CAS_READ_4(sc, CAS_MAC_RX_STATUS),
2085
CAS_READ_4(sc, CAS_MAC_RX_CONF));
2086
CTR4(KTR_CAS,
2087
"%s: CAS_TX_CONF %x CAS_MAC_TX_STATUS %x CAS_MAC_TX_CONF %x",
2088
__func__, CAS_READ_4(sc, CAS_TX_CONF),
2089
CAS_READ_4(sc, CAS_MAC_TX_STATUS),
2090
CAS_READ_4(sc, CAS_MAC_TX_CONF));
2091
#endif
2092
2093
if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
2094
return;
2095
2096
if ((sc->sc_flags & CAS_LINK) != 0)
2097
device_printf(sc->sc_dev, "device timeout\n");
2098
else if (bootverbose)
2099
device_printf(sc->sc_dev, "device timeout (no link)\n");
2100
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
2101
2102
/* Try to get more packets going. */
2103
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
2104
cas_init_locked(sc);
2105
if (!if_sendq_empty(ifp))
2106
taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
2107
}
2108
2109
static void
2110
cas_mifinit(struct cas_softc *sc)
2111
{
2112
2113
/* Configure the MIF in frame mode. */
2114
CAS_WRITE_4(sc, CAS_MIF_CONF,
2115
CAS_READ_4(sc, CAS_MIF_CONF) & ~CAS_MIF_CONF_BB_MODE);
2116
CAS_BARRIER(sc, CAS_MIF_CONF, 4,
2117
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2118
}
2119
2120
/*
2121
* MII interface
2122
*
2123
* The MII interface supports at least three different operating modes:
2124
*
2125
* Bitbang mode is implemented using data, clock and output enable registers.
2126
*
2127
* Frame mode is implemented by loading a complete frame into the frame
2128
* register and polling the valid bit for completion.
2129
*
2130
* Polling mode uses the frame register but completion is indicated by
2131
* an interrupt.
2132
*
2133
*/
2134
static int
2135
cas_mii_readreg(device_t dev, int phy, int reg)
2136
{
2137
struct cas_softc *sc;
2138
int n;
2139
uint32_t v;
2140
2141
#ifdef CAS_DEBUG_PHY
2142
printf("%s: phy %d reg %d\n", __func__, phy, reg);
2143
#endif
2144
2145
sc = device_get_softc(dev);
2146
if ((sc->sc_flags & CAS_SERDES) != 0) {
2147
switch (reg) {
2148
case MII_BMCR:
2149
reg = CAS_PCS_CTRL;
2150
break;
2151
case MII_BMSR:
2152
reg = CAS_PCS_STATUS;
2153
break;
2154
case MII_PHYIDR1:
2155
case MII_PHYIDR2:
2156
return (0);
2157
case MII_ANAR:
2158
reg = CAS_PCS_ANAR;
2159
break;
2160
case MII_ANLPAR:
2161
reg = CAS_PCS_ANLPAR;
2162
break;
2163
case MII_EXTSR:
2164
return (EXTSR_1000XFDX | EXTSR_1000XHDX);
2165
default:
2166
device_printf(sc->sc_dev,
2167
"%s: unhandled register %d\n", __func__, reg);
2168
return (0);
2169
}
2170
return (CAS_READ_4(sc, reg));
2171
}
2172
2173
/* Construct the frame command. */
2174
v = CAS_MIF_FRAME_READ |
2175
(phy << CAS_MIF_FRAME_PHY_SHFT) |
2176
(reg << CAS_MIF_FRAME_REG_SHFT);
2177
2178
CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2179
CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2180
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2181
for (n = 0; n < 100; n++) {
2182
DELAY(1);
2183
v = CAS_READ_4(sc, CAS_MIF_FRAME);
2184
if (v & CAS_MIF_FRAME_TA_LSB)
2185
return (v & CAS_MIF_FRAME_DATA);
2186
}
2187
2188
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2189
return (0);
2190
}
2191
2192
static int
2193
cas_mii_writereg(device_t dev, int phy, int reg, int val)
2194
{
2195
struct cas_softc *sc;
2196
int n;
2197
uint32_t v;
2198
2199
#ifdef CAS_DEBUG_PHY
2200
printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__);
2201
#endif
2202
2203
sc = device_get_softc(dev);
2204
if ((sc->sc_flags & CAS_SERDES) != 0) {
2205
switch (reg) {
2206
case MII_BMSR:
2207
reg = CAS_PCS_STATUS;
2208
break;
2209
case MII_BMCR:
2210
reg = CAS_PCS_CTRL;
2211
if ((val & CAS_PCS_CTRL_RESET) == 0)
2212
break;
2213
CAS_WRITE_4(sc, CAS_PCS_CTRL, val);
2214
CAS_BARRIER(sc, CAS_PCS_CTRL, 4,
2215
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2216
if (!cas_bitwait(sc, CAS_PCS_CTRL,
2217
CAS_PCS_CTRL_RESET, 0))
2218
device_printf(sc->sc_dev,
2219
"cannot reset PCS\n");
2220
/* FALLTHROUGH */
2221
case MII_ANAR:
2222
CAS_WRITE_4(sc, CAS_PCS_CONF, 0);
2223
CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2224
BUS_SPACE_BARRIER_WRITE);
2225
CAS_WRITE_4(sc, CAS_PCS_ANAR, val);
2226
CAS_BARRIER(sc, CAS_PCS_ANAR, 4,
2227
BUS_SPACE_BARRIER_WRITE);
2228
CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL,
2229
CAS_PCS_SERDES_CTRL_ESD);
2230
CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2231
BUS_SPACE_BARRIER_WRITE);
2232
CAS_WRITE_4(sc, CAS_PCS_CONF,
2233
CAS_PCS_CONF_EN);
2234
CAS_BARRIER(sc, CAS_PCS_CONF, 4,
2235
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2236
return (0);
2237
case MII_ANLPAR:
2238
reg = CAS_PCS_ANLPAR;
2239
break;
2240
default:
2241
device_printf(sc->sc_dev,
2242
"%s: unhandled register %d\n", __func__, reg);
2243
return (0);
2244
}
2245
CAS_WRITE_4(sc, reg, val);
2246
CAS_BARRIER(sc, reg, 4,
2247
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2248
return (0);
2249
}
2250
2251
/* Construct the frame command. */
2252
v = CAS_MIF_FRAME_WRITE |
2253
(phy << CAS_MIF_FRAME_PHY_SHFT) |
2254
(reg << CAS_MIF_FRAME_REG_SHFT) |
2255
(val & CAS_MIF_FRAME_DATA);
2256
2257
CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
2258
CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
2259
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2260
for (n = 0; n < 100; n++) {
2261
DELAY(1);
2262
v = CAS_READ_4(sc, CAS_MIF_FRAME);
2263
if (v & CAS_MIF_FRAME_TA_LSB)
2264
return (1);
2265
}
2266
2267
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
2268
return (0);
2269
}
2270
2271
static void
2272
cas_mii_statchg(device_t dev)
2273
{
2274
struct cas_softc *sc;
2275
if_t ifp;
2276
int gigabit;
2277
uint32_t rxcfg, txcfg, v;
2278
2279
sc = device_get_softc(dev);
2280
ifp = sc->sc_ifp;
2281
2282
CAS_LOCK_ASSERT(sc, MA_OWNED);
2283
2284
#ifdef CAS_DEBUG
2285
if ((if_getflags(ifp) & IFF_DEBUG) != 0)
2286
device_printf(sc->sc_dev, "%s: status changen", __func__);
2287
#endif
2288
2289
if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
2290
IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
2291
sc->sc_flags |= CAS_LINK;
2292
else
2293
sc->sc_flags &= ~CAS_LINK;
2294
2295
switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) {
2296
case IFM_1000_SX:
2297
case IFM_1000_LX:
2298
case IFM_1000_CX:
2299
case IFM_1000_T:
2300
gigabit = 1;
2301
break;
2302
default:
2303
gigabit = 0;
2304
}
2305
2306
/*
2307
* The configuration done here corresponds to the steps F) and
2308
* G) and as far as enabling of RX and TX MAC goes also step H)
2309
* of the initialization sequence outlined in section 11.2.1 of
2310
* the Cassini+ ASIC Specification.
2311
*/
2312
2313
rxcfg = sc->sc_mac_rxcfg;
2314
rxcfg &= ~CAS_MAC_RX_CONF_CARR;
2315
txcfg = CAS_MAC_TX_CONF_EN_IPG0 | CAS_MAC_TX_CONF_NGU |
2316
CAS_MAC_TX_CONF_NGUL;
2317
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2318
txcfg |= CAS_MAC_TX_CONF_ICARR | CAS_MAC_TX_CONF_ICOLLIS;
2319
else if (gigabit != 0) {
2320
rxcfg |= CAS_MAC_RX_CONF_CARR;
2321
txcfg |= CAS_MAC_TX_CONF_CARR;
2322
}
2323
(void)cas_disable_tx(sc);
2324
CAS_WRITE_4(sc, CAS_MAC_TX_CONF, txcfg);
2325
(void)cas_disable_rx(sc);
2326
CAS_WRITE_4(sc, CAS_MAC_RX_CONF, rxcfg);
2327
2328
v = CAS_READ_4(sc, CAS_MAC_CTRL_CONF) &
2329
~(CAS_MAC_CTRL_CONF_TXP | CAS_MAC_CTRL_CONF_RXP);
2330
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2331
IFM_ETH_RXPAUSE) != 0)
2332
v |= CAS_MAC_CTRL_CONF_RXP;
2333
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
2334
IFM_ETH_TXPAUSE) != 0)
2335
v |= CAS_MAC_CTRL_CONF_TXP;
2336
CAS_WRITE_4(sc, CAS_MAC_CTRL_CONF, v);
2337
2338
/*
2339
* All supported chips have a bug causing incorrect checksum
2340
* to be calculated when letting them strip the FCS in half-
2341
* duplex mode. In theory we could disable FCS stripping and
2342
* manually adjust the checksum accordingly. It seems to make
2343
* more sense to optimze for the common case and just disable
2344
* hardware checksumming in half-duplex mode though.
2345
*/
2346
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) {
2347
if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
2348
if_sethwassist(ifp, 0);
2349
} else if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
2350
if_setcapenable(ifp, if_getcapabilities(ifp));
2351
if_sethwassist(ifp, CAS_CSUM_FEATURES);
2352
}
2353
2354
if (sc->sc_variant == CAS_SATURN) {
2355
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2356
/* silicon bug workaround */
2357
CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x41);
2358
else
2359
CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
2360
}
2361
2362
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 &&
2363
gigabit != 0)
2364
CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2365
CAS_MAC_SLOT_TIME_CARR);
2366
else
2367
CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
2368
CAS_MAC_SLOT_TIME_NORM);
2369
2370
/* XIF Configuration */
2371
v = CAS_MAC_XIF_CONF_TX_OE | CAS_MAC_XIF_CONF_LNKLED;
2372
if ((sc->sc_flags & CAS_SERDES) == 0) {
2373
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
2374
v |= CAS_MAC_XIF_CONF_NOECHO;
2375
v |= CAS_MAC_XIF_CONF_BUF_OE;
2376
}
2377
if (gigabit != 0)
2378
v |= CAS_MAC_XIF_CONF_GMII;
2379
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
2380
v |= CAS_MAC_XIF_CONF_FDXLED;
2381
CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, v);
2382
2383
sc->sc_mac_rxcfg = rxcfg;
2384
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
2385
(sc->sc_flags & CAS_LINK) != 0) {
2386
CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
2387
txcfg | CAS_MAC_TX_CONF_EN);
2388
CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
2389
rxcfg | CAS_MAC_RX_CONF_EN);
2390
}
2391
}
2392
2393
static int
2394
cas_mediachange(if_t ifp)
2395
{
2396
struct cas_softc *sc = if_getsoftc(ifp);
2397
int error;
2398
2399
/* XXX add support for serial media. */
2400
2401
CAS_LOCK(sc);
2402
error = mii_mediachg(sc->sc_mii);
2403
CAS_UNLOCK(sc);
2404
return (error);
2405
}
2406
2407
static void
2408
cas_mediastatus(if_t ifp, struct ifmediareq *ifmr)
2409
{
2410
struct cas_softc *sc = if_getsoftc(ifp);
2411
2412
CAS_LOCK(sc);
2413
if ((if_getflags(ifp) & IFF_UP) == 0) {
2414
CAS_UNLOCK(sc);
2415
return;
2416
}
2417
2418
mii_pollstat(sc->sc_mii);
2419
ifmr->ifm_active = sc->sc_mii->mii_media_active;
2420
ifmr->ifm_status = sc->sc_mii->mii_media_status;
2421
CAS_UNLOCK(sc);
2422
}
2423
2424
static int
2425
cas_ioctl(if_t ifp, u_long cmd, caddr_t data)
2426
{
2427
struct cas_softc *sc = if_getsoftc(ifp);
2428
struct ifreq *ifr = (struct ifreq *)data;
2429
int error;
2430
2431
error = 0;
2432
switch (cmd) {
2433
case SIOCSIFFLAGS:
2434
CAS_LOCK(sc);
2435
if ((if_getflags(ifp) & IFF_UP) != 0) {
2436
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
2437
((if_getflags(ifp) ^ sc->sc_ifflags) &
2438
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
2439
cas_setladrf(sc);
2440
else
2441
cas_init_locked(sc);
2442
} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2443
cas_stop(ifp);
2444
sc->sc_ifflags = if_getflags(ifp);
2445
CAS_UNLOCK(sc);
2446
break;
2447
case SIOCSIFCAP:
2448
CAS_LOCK(sc);
2449
if ((sc->sc_flags & CAS_NO_CSUM) != 0) {
2450
error = EINVAL;
2451
CAS_UNLOCK(sc);
2452
break;
2453
}
2454
if_setcapenable(ifp, ifr->ifr_reqcap);
2455
if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
2456
if_sethwassist(ifp, CAS_CSUM_FEATURES);
2457
else
2458
if_sethwassist(ifp, 0);
2459
CAS_UNLOCK(sc);
2460
break;
2461
case SIOCADDMULTI:
2462
case SIOCDELMULTI:
2463
CAS_LOCK(sc);
2464
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
2465
cas_setladrf(sc);
2466
CAS_UNLOCK(sc);
2467
break;
2468
case SIOCSIFMTU:
2469
if ((ifr->ifr_mtu < ETHERMIN) ||
2470
(ifr->ifr_mtu > ETHERMTU_JUMBO))
2471
error = EINVAL;
2472
else
2473
if_setmtu(ifp, ifr->ifr_mtu);
2474
break;
2475
case SIOCGIFMEDIA:
2476
case SIOCSIFMEDIA:
2477
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
2478
break;
2479
default:
2480
error = ether_ioctl(ifp, cmd, data);
2481
break;
2482
}
2483
2484
return (error);
2485
}
2486
2487
static u_int
2488
cas_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
2489
{
2490
uint32_t crc, *hash = arg;
2491
2492
crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN);
2493
/* We just want the 8 most significant bits. */
2494
crc >>= 24;
2495
/* Set the corresponding bit in the filter. */
2496
hash[crc >> 4] |= 1 << (15 - (crc & 15));
2497
2498
return (1);
2499
}
2500
2501
static void
2502
cas_setladrf(struct cas_softc *sc)
2503
{
2504
if_t ifp = sc->sc_ifp;
2505
int i;
2506
uint32_t hash[16];
2507
uint32_t v;
2508
2509
CAS_LOCK_ASSERT(sc, MA_OWNED);
2510
2511
/*
2512
* Turn off the RX MAC and the hash filter as required by the Sun
2513
* Cassini programming restrictions.
2514
*/
2515
v = sc->sc_mac_rxcfg & ~(CAS_MAC_RX_CONF_HFILTER |
2516
CAS_MAC_RX_CONF_EN);
2517
CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
2518
CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
2519
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
2520
if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_HFILTER |
2521
CAS_MAC_RX_CONF_EN, 0))
2522
device_printf(sc->sc_dev,
2523
"cannot disable RX MAC or hash filter\n");
2524
2525
v &= ~(CAS_MAC_RX_CONF_PROMISC | CAS_MAC_RX_CONF_PGRP);
2526
if ((if_getflags(ifp) & IFF_PROMISC) != 0) {
2527
v |= CAS_MAC_RX_CONF_PROMISC;
2528
goto chipit;
2529
}
2530
if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
2531
v |= CAS_MAC_RX_CONF_PGRP;
2532
goto chipit;
2533
}
2534
2535
/*
2536
* Set up multicast address filter by passing all multicast
2537
* addresses through a crc generator, and then using the high
2538
* order 8 bits as an index into the 256 bit logical address
2539
* filter. The high order 4 bits selects the word, while the
2540
* other 4 bits select the bit within the word (where bit 0
2541
* is the MSB).
2542
*/
2543
2544
memset(hash, 0, sizeof(hash));
2545
if_foreach_llmaddr(ifp, cas_hash_maddr, &hash);
2546
2547
v |= CAS_MAC_RX_CONF_HFILTER;
2548
2549
/* Now load the hash table into the chip (if we are using it). */
2550
for (i = 0; i < 16; i++)
2551
CAS_WRITE_4(sc,
2552
CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
2553
hash[i]);
2554
2555
chipit:
2556
sc->sc_mac_rxcfg = v;
2557
CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v | CAS_MAC_RX_CONF_EN);
2558
}
2559
2560
static int cas_pci_attach(device_t dev);
2561
static int cas_pci_detach(device_t dev);
2562
static int cas_pci_probe(device_t dev);
2563
static int cas_pci_resume(device_t dev);
2564
static int cas_pci_suspend(device_t dev);
2565
2566
static device_method_t cas_pci_methods[] = {
2567
/* Device interface */
2568
DEVMETHOD(device_probe, cas_pci_probe),
2569
DEVMETHOD(device_attach, cas_pci_attach),
2570
DEVMETHOD(device_detach, cas_pci_detach),
2571
DEVMETHOD(device_suspend, cas_pci_suspend),
2572
DEVMETHOD(device_resume, cas_pci_resume),
2573
/* Use the suspend handler here, it is all that is required. */
2574
DEVMETHOD(device_shutdown, cas_pci_suspend),
2575
2576
/* MII interface */
2577
DEVMETHOD(miibus_readreg, cas_mii_readreg),
2578
DEVMETHOD(miibus_writereg, cas_mii_writereg),
2579
DEVMETHOD(miibus_statchg, cas_mii_statchg),
2580
2581
DEVMETHOD_END
2582
};
2583
2584
static driver_t cas_pci_driver = {
2585
"cas",
2586
cas_pci_methods,
2587
sizeof(struct cas_softc)
2588
};
2589
2590
static const struct cas_pci_dev {
2591
uint32_t cpd_devid;
2592
uint8_t cpd_revid;
2593
int cpd_variant;
2594
const char *cpd_desc;
2595
} cas_pci_devlist[] = {
2596
{ 0x0035100b, 0x0, CAS_SATURN, "NS DP83065 Saturn Gigabit Ethernet" },
2597
{ 0xabba108e, 0x10, CAS_CASPLUS, "Sun Cassini+ Gigabit Ethernet" },
2598
{ 0xabba108e, 0x0, CAS_CAS, "Sun Cassini Gigabit Ethernet" },
2599
{ 0, 0, 0, NULL }
2600
};
2601
2602
DRIVER_MODULE(cas, pci, cas_pci_driver, 0, 0);
2603
MODULE_PNP_INFO("W32:vendor/device", pci, cas, cas_pci_devlist,
2604
nitems(cas_pci_devlist) - 1);
2605
DRIVER_MODULE(miibus, cas, miibus_driver, 0, 0);
2606
MODULE_DEPEND(cas, pci, 1, 1, 1);
2607
2608
static int
2609
cas_pci_probe(device_t dev)
2610
{
2611
int i;
2612
2613
for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2614
if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2615
pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2616
device_set_desc(dev, cas_pci_devlist[i].cpd_desc);
2617
return (BUS_PROBE_DEFAULT);
2618
}
2619
}
2620
2621
return (ENXIO);
2622
}
2623
2624
static struct resource_spec cas_pci_res_spec[] = {
2625
{ SYS_RES_IRQ, 0, RF_SHAREABLE | RF_ACTIVE }, /* CAS_RES_INTR */
2626
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, /* CAS_RES_MEM */
2627
{ -1, 0 }
2628
};
2629
2630
#define CAS_LOCAL_MAC_ADDRESS "local-mac-address"
2631
#define CAS_PHY_INTERFACE "phy-interface"
2632
#define CAS_PHY_TYPE "phy-type"
2633
#define CAS_PHY_TYPE_PCS "pcs"
2634
2635
static int
2636
cas_pci_attach(device_t dev)
2637
{
2638
char buf[sizeof(CAS_LOCAL_MAC_ADDRESS)];
2639
struct cas_softc *sc;
2640
int i;
2641
#if !defined(__powerpc__)
2642
u_char enaddr[4][ETHER_ADDR_LEN];
2643
u_int j, k, lma, pcs[4], phy;
2644
#endif
2645
2646
sc = device_get_softc(dev);
2647
sc->sc_variant = CAS_UNKNOWN;
2648
for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
2649
if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
2650
pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
2651
sc->sc_variant = cas_pci_devlist[i].cpd_variant;
2652
break;
2653
}
2654
}
2655
if (sc->sc_variant == CAS_UNKNOWN) {
2656
device_printf(dev, "unknown adaptor\n");
2657
return (ENXIO);
2658
}
2659
2660
/* PCI configuration */
2661
pci_write_config(dev, PCIR_COMMAND,
2662
pci_read_config(dev, PCIR_COMMAND, 2) | PCIM_CMD_BUSMASTEREN |
2663
PCIM_CMD_MWRICEN | PCIM_CMD_PERRESPEN | PCIM_CMD_SERRESPEN, 2);
2664
2665
sc->sc_dev = dev;
2666
if (sc->sc_variant == CAS_CAS && pci_get_devid(dev) < 0x02)
2667
/* Hardware checksumming may hang TX. */
2668
sc->sc_flags |= CAS_NO_CSUM;
2669
if (sc->sc_variant == CAS_CASPLUS || sc->sc_variant == CAS_SATURN)
2670
sc->sc_flags |= CAS_REG_PLUS;
2671
if (sc->sc_variant == CAS_CAS ||
2672
(sc->sc_variant == CAS_CASPLUS && pci_get_revid(dev) < 0x11))
2673
sc->sc_flags |= CAS_TABORT;
2674
if (bootverbose)
2675
device_printf(dev, "flags=0x%x\n", sc->sc_flags);
2676
2677
if (bus_alloc_resources(dev, cas_pci_res_spec, sc->sc_res)) {
2678
device_printf(dev, "failed to allocate resources\n");
2679
bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2680
return (ENXIO);
2681
}
2682
2683
CAS_LOCK_INIT(sc, device_get_nameunit(dev));
2684
2685
#if defined(__powerpc__)
2686
OF_getetheraddr(dev, sc->sc_enaddr);
2687
if (OF_getprop(ofw_bus_get_node(dev), CAS_PHY_INTERFACE, buf,
2688
sizeof(buf)) > 0 || OF_getprop(ofw_bus_get_node(dev),
2689
CAS_PHY_TYPE, buf, sizeof(buf)) > 0) {
2690
buf[sizeof(buf) - 1] = '\0';
2691
if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2692
sc->sc_flags |= CAS_SERDES;
2693
}
2694
#else
2695
/*
2696
* Dig out VPD (vital product data) and read the MAC address as well
2697
* as the PHY type. The VPD resides in the PCI Expansion ROM (PCI
2698
* FCode) and can't be accessed via the PCI capability pointer.
2699
* SUNW,pci-ce and SUNW,pci-qge use the Enhanced VPD format described
2700
* in the free US Patent 7149820.
2701
*/
2702
2703
#define PCI_ROMHDR_SIZE 0x1c
2704
#define PCI_ROMHDR_SIG 0x00
2705
#define PCI_ROMHDR_SIG_MAGIC 0xaa55 /* little endian */
2706
#define PCI_ROMHDR_PTR_DATA 0x18
2707
#define PCI_ROM_SIZE 0x18
2708
#define PCI_ROM_SIG 0x00
2709
#define PCI_ROM_SIG_MAGIC 0x52494350 /* "PCIR", endian */
2710
/* reversed */
2711
#define PCI_ROM_VENDOR 0x04
2712
#define PCI_ROM_DEVICE 0x06
2713
#define PCI_ROM_PTR_VPD 0x08
2714
#define PCI_VPDRES_BYTE0 0x00
2715
#define PCI_VPDRES_ISLARGE(x) ((x) & 0x80)
2716
#define PCI_VPDRES_LARGE_NAME(x) ((x) & 0x7f)
2717
#define PCI_VPDRES_LARGE_LEN_LSB 0x01
2718
#define PCI_VPDRES_LARGE_LEN_MSB 0x02
2719
#define PCI_VPDRES_LARGE_SIZE 0x03
2720
#define PCI_VPDRES_TYPE_ID_STRING 0x02 /* large */
2721
#define PCI_VPDRES_TYPE_VPD 0x10 /* large */
2722
#define PCI_VPD_KEY0 0x00
2723
#define PCI_VPD_KEY1 0x01
2724
#define PCI_VPD_LEN 0x02
2725
#define PCI_VPD_SIZE 0x03
2726
2727
#define CAS_ROM_READ_1(sc, offs) \
2728
CAS_READ_1((sc), CAS_PCI_ROM_OFFSET + (offs))
2729
#define CAS_ROM_READ_2(sc, offs) \
2730
CAS_READ_2((sc), CAS_PCI_ROM_OFFSET + (offs))
2731
#define CAS_ROM_READ_4(sc, offs) \
2732
CAS_READ_4((sc), CAS_PCI_ROM_OFFSET + (offs))
2733
2734
lma = phy = 0;
2735
memset(enaddr, 0, sizeof(enaddr));
2736
memset(pcs, 0, sizeof(pcs));
2737
2738
/* Enable PCI Expansion ROM access. */
2739
CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN,
2740
CAS_BIM_LDEV_OEN_PAD | CAS_BIM_LDEV_OEN_PROM);
2741
2742
/* Read PCI Expansion ROM header. */
2743
if (CAS_ROM_READ_2(sc, PCI_ROMHDR_SIG) != PCI_ROMHDR_SIG_MAGIC ||
2744
(i = CAS_ROM_READ_2(sc, PCI_ROMHDR_PTR_DATA)) <
2745
PCI_ROMHDR_SIZE) {
2746
device_printf(dev, "unexpected PCI Expansion ROM header\n");
2747
goto fail_prom;
2748
}
2749
2750
/* Read PCI Expansion ROM data. */
2751
if (CAS_ROM_READ_4(sc, i + PCI_ROM_SIG) != PCI_ROM_SIG_MAGIC ||
2752
CAS_ROM_READ_2(sc, i + PCI_ROM_VENDOR) != pci_get_vendor(dev) ||
2753
CAS_ROM_READ_2(sc, i + PCI_ROM_DEVICE) != pci_get_device(dev) ||
2754
(j = CAS_ROM_READ_2(sc, i + PCI_ROM_PTR_VPD)) <
2755
i + PCI_ROM_SIZE) {
2756
device_printf(dev, "unexpected PCI Expansion ROM data\n");
2757
goto fail_prom;
2758
}
2759
2760
/* Read PCI VPD. */
2761
next:
2762
if (PCI_VPDRES_ISLARGE(CAS_ROM_READ_1(sc,
2763
j + PCI_VPDRES_BYTE0)) == 0) {
2764
device_printf(dev, "no large PCI VPD\n");
2765
goto fail_prom;
2766
}
2767
2768
i = (CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_MSB) << 8) |
2769
CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_LSB);
2770
switch (PCI_VPDRES_LARGE_NAME(CAS_ROM_READ_1(sc,
2771
j + PCI_VPDRES_BYTE0))) {
2772
case PCI_VPDRES_TYPE_ID_STRING:
2773
/* Skip identifier string. */
2774
j += PCI_VPDRES_LARGE_SIZE + i;
2775
goto next;
2776
case PCI_VPDRES_TYPE_VPD:
2777
for (j += PCI_VPDRES_LARGE_SIZE; i > 0;
2778
i -= PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN),
2779
j += PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN)) {
2780
if (CAS_ROM_READ_1(sc, j + PCI_VPD_KEY0) != 'Z')
2781
/* no Enhanced VPD */
2782
continue;
2783
if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE) != 'I')
2784
/* no instance property */
2785
continue;
2786
if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 'B') {
2787
/* byte array */
2788
if (CAS_ROM_READ_1(sc,
2789
j + PCI_VPD_SIZE + 4) != ETHER_ADDR_LEN)
2790
continue;
2791
bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2792
CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2793
buf, sizeof(buf));
2794
buf[sizeof(buf) - 1] = '\0';
2795
if (strcmp(buf, CAS_LOCAL_MAC_ADDRESS) != 0)
2796
continue;
2797
bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2798
CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2799
5 + sizeof(CAS_LOCAL_MAC_ADDRESS),
2800
enaddr[lma], sizeof(enaddr[lma]));
2801
lma++;
2802
if (lma == 4 && phy == 4)
2803
break;
2804
} else if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) ==
2805
'S') {
2806
/* string */
2807
if (CAS_ROM_READ_1(sc,
2808
j + PCI_VPD_SIZE + 4) !=
2809
sizeof(CAS_PHY_TYPE_PCS))
2810
continue;
2811
bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2812
CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
2813
buf, sizeof(buf));
2814
buf[sizeof(buf) - 1] = '\0';
2815
if (strcmp(buf, CAS_PHY_INTERFACE) == 0)
2816
k = sizeof(CAS_PHY_INTERFACE);
2817
else if (strcmp(buf, CAS_PHY_TYPE) == 0)
2818
k = sizeof(CAS_PHY_TYPE);
2819
else
2820
continue;
2821
bus_read_region_1(sc->sc_res[CAS_RES_MEM],
2822
CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
2823
5 + k, buf, sizeof(buf));
2824
buf[sizeof(buf) - 1] = '\0';
2825
if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
2826
pcs[phy] = 1;
2827
phy++;
2828
if (lma == 4 && phy == 4)
2829
break;
2830
}
2831
}
2832
break;
2833
default:
2834
device_printf(dev, "unexpected PCI VPD\n");
2835
goto fail_prom;
2836
}
2837
2838
fail_prom:
2839
CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 0);
2840
2841
if (lma == 0) {
2842
device_printf(dev, "could not determine Ethernet address\n");
2843
goto fail;
2844
}
2845
i = 0;
2846
if (lma > 1 && pci_get_slot(dev) < nitems(enaddr))
2847
i = pci_get_slot(dev);
2848
memcpy(sc->sc_enaddr, enaddr[i], ETHER_ADDR_LEN);
2849
2850
if (phy == 0) {
2851
device_printf(dev, "could not determine PHY type\n");
2852
goto fail;
2853
}
2854
i = 0;
2855
if (phy > 1 && pci_get_slot(dev) < nitems(pcs))
2856
i = pci_get_slot(dev);
2857
if (pcs[i] != 0)
2858
sc->sc_flags |= CAS_SERDES;
2859
#endif
2860
2861
if (cas_attach(sc) != 0) {
2862
device_printf(dev, "could not be attached\n");
2863
goto fail;
2864
}
2865
2866
if (bus_setup_intr(dev, sc->sc_res[CAS_RES_INTR], INTR_TYPE_NET |
2867
INTR_MPSAFE, cas_intr, NULL, sc, &sc->sc_ih) != 0) {
2868
device_printf(dev, "failed to set up interrupt\n");
2869
cas_detach(sc);
2870
goto fail;
2871
}
2872
return (0);
2873
2874
fail:
2875
CAS_LOCK_DESTROY(sc);
2876
bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2877
return (ENXIO);
2878
}
2879
2880
static int
2881
cas_pci_detach(device_t dev)
2882
{
2883
struct cas_softc *sc;
2884
2885
sc = device_get_softc(dev);
2886
bus_teardown_intr(dev, sc->sc_res[CAS_RES_INTR], sc->sc_ih);
2887
cas_detach(sc);
2888
CAS_LOCK_DESTROY(sc);
2889
bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
2890
return (0);
2891
}
2892
2893
static int
2894
cas_pci_suspend(device_t dev)
2895
{
2896
2897
cas_suspend(device_get_softc(dev));
2898
return (0);
2899
}
2900
2901
static int
2902
cas_pci_resume(device_t dev)
2903
{
2904
2905
cas_resume(device_get_softc(dev));
2906
return (0);
2907
}
2908
2909