Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/geom/geom_ccd.c
39475 views
1
/*-
2
* SPDX-License-Identifier: (BSD-2-Clause AND BSD-3-Clause)
3
*
4
* Copyright (c) 2003 Poul-Henning Kamp.
5
* Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
6
* All rights reserved.
7
*
8
* This code is derived from software contributed to The NetBSD Foundation
9
* by Jason R. Thorpe.
10
*
11
* Redistribution and use in source and binary forms, with or without
12
* modification, are permitted provided that the following conditions
13
* are met:
14
* 1. Redistributions of source code must retain the above copyright
15
* notice, this list of conditions and the following disclaimer.
16
* 2. Redistributions in binary form must reproduce the above copyright
17
* notice, this list of conditions and the following disclaimer in the
18
* documentation and/or other materials provided with the distribution.
19
*
20
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30
* POSSIBILITY OF SUCH DAMAGE.
31
*
32
* $NetBSD: ccd.c,v 1.22 1995/12/08 19:13:26 thorpej Exp $
33
*/
34
35
/*-
36
* Copyright (c) 1988 University of Utah.
37
* Copyright (c) 1990, 1993
38
* The Regents of the University of California. All rights reserved.
39
*
40
* This code is derived from software contributed to Berkeley by
41
* the Systems Programming Group of the University of Utah Computer
42
* Science Department.
43
*
44
* Redistribution and use in source and binary forms, with or without
45
* modification, are permitted provided that the following conditions
46
* are met:
47
* 1. Redistributions of source code must retain the above copyright
48
* notice, this list of conditions and the following disclaimer.
49
* 2. Redistributions in binary form must reproduce the above copyright
50
* notice, this list of conditions and the following disclaimer in the
51
* documentation and/or other materials provided with the distribution.
52
* 3. Neither the name of the University nor the names of its contributors
53
* may be used to endorse or promote products derived from this software
54
* without specific prior written permission.
55
*
56
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66
* SUCH DAMAGE.
67
*
68
* from: Utah $Hdr: cd.c 1.6 90/11/28$
69
*/
70
71
/*
72
* Dynamic configuration and disklabel support by:
73
* Jason R. Thorpe <[email protected]>
74
* Numerical Aerodynamic Simulation Facility
75
* Mail Stop 258-6
76
* NASA Ames Research Center
77
* Moffett Field, CA 94035
78
*/
79
80
#include <sys/param.h>
81
#include <sys/systm.h>
82
#include <sys/kernel.h>
83
#include <sys/module.h>
84
#include <sys/bio.h>
85
#include <sys/malloc.h>
86
#include <sys/sbuf.h>
87
#include <geom/geom.h>
88
89
/*
90
* Number of blocks to untouched in front of a component partition.
91
* This is to avoid violating its disklabel area when it starts at the
92
* beginning of the slice.
93
*/
94
#if !defined(CCD_OFFSET)
95
#define CCD_OFFSET 16
96
#endif
97
98
/* sc_flags */
99
#define CCDF_UNIFORM 0x02 /* use LCCD of sizes for uniform interleave */
100
#define CCDF_MIRROR 0x04 /* use mirroring */
101
#define CCDF_NO_OFFSET 0x08 /* do not leave space in front */
102
#define CCDF_LINUX 0x10 /* use Linux compatibility mode */
103
104
/* Mask of user-settable ccd flags. */
105
#define CCDF_USERMASK (CCDF_UNIFORM|CCDF_MIRROR)
106
107
/*
108
* Interleave description table.
109
* Computed at boot time to speed irregular-interleave lookups.
110
* The idea is that we interleave in "groups". First we interleave
111
* evenly over all component disks up to the size of the smallest
112
* component (the first group), then we interleave evenly over all
113
* remaining disks up to the size of the next-smallest (second group),
114
* and so on.
115
*
116
* Each table entry describes the interleave characteristics of one
117
* of these groups. For example if a concatenated disk consisted of
118
* three components of 5, 3, and 7 DEV_BSIZE blocks interleaved at
119
* DEV_BSIZE (1), the table would have three entries:
120
*
121
* ndisk startblk startoff dev
122
* 3 0 0 0, 1, 2
123
* 2 9 3 0, 2
124
* 1 13 5 2
125
* 0 - - -
126
*
127
* which says that the first nine blocks (0-8) are interleaved over
128
* 3 disks (0, 1, 2) starting at block offset 0 on any component disk,
129
* the next 4 blocks (9-12) are interleaved over 2 disks (0, 2) starting
130
* at component block 3, and the remaining blocks (13-14) are on disk
131
* 2 starting at offset 5.
132
*/
133
struct ccdiinfo {
134
int ii_ndisk; /* # of disks range is interleaved over */
135
daddr_t ii_startblk; /* starting scaled block # for range */
136
daddr_t ii_startoff; /* starting component offset (block #) */
137
int *ii_index; /* ordered list of components in range */
138
};
139
140
/*
141
* Component info table.
142
* Describes a single component of a concatenated disk.
143
*/
144
struct ccdcinfo {
145
daddr_t ci_size; /* size */
146
struct g_provider *ci_provider; /* provider */
147
struct g_consumer *ci_consumer; /* consumer */
148
};
149
150
/*
151
* A concatenated disk is described by this structure.
152
*/
153
154
struct ccd_s {
155
LIST_ENTRY(ccd_s) list;
156
157
int sc_unit; /* logical unit number */
158
int sc_flags; /* flags */
159
daddr_t sc_size; /* size of ccd */
160
int sc_ileave; /* interleave */
161
u_int sc_ndisks; /* number of components */
162
struct ccdcinfo *sc_cinfo; /* component info */
163
struct ccdiinfo *sc_itable; /* interleave table */
164
uint32_t sc_secsize; /* # bytes per sector */
165
int sc_pick; /* side of mirror picked */
166
daddr_t sc_blk[2]; /* mirror localization */
167
uint32_t sc_offset; /* actual offset used */
168
};
169
170
static g_start_t g_ccd_start;
171
static void ccdiodone(struct bio *bp);
172
static void ccdinterleave(struct ccd_s *);
173
static int ccdinit(struct gctl_req *req, struct ccd_s *);
174
static int ccdbuffer(struct bio **ret, struct ccd_s *,
175
struct bio *, daddr_t, caddr_t, long);
176
177
static void
178
g_ccd_orphan(struct g_consumer *cp)
179
{
180
/*
181
* XXX: We don't do anything here. It is not obvious
182
* XXX: what DTRT would be, so we do what the previous
183
* XXX: code did: ignore it and let the user cope.
184
*/
185
}
186
187
static int
188
g_ccd_access(struct g_provider *pp, int dr, int dw, int de)
189
{
190
struct g_geom *gp;
191
struct g_consumer *cp1, *cp2;
192
int error;
193
194
de += dr;
195
de += dw;
196
197
gp = pp->geom;
198
error = ENXIO;
199
LIST_FOREACH(cp1, &gp->consumer, consumer) {
200
error = g_access(cp1, dr, dw, de);
201
if (error) {
202
LIST_FOREACH(cp2, &gp->consumer, consumer) {
203
if (cp1 == cp2)
204
break;
205
g_access(cp2, -dr, -dw, -de);
206
}
207
break;
208
}
209
}
210
return (error);
211
}
212
213
/*
214
* Free the softc and its substructures.
215
*/
216
static void
217
g_ccd_freesc(struct ccd_s *sc)
218
{
219
struct ccdiinfo *ii;
220
221
g_free(sc->sc_cinfo);
222
if (sc->sc_itable != NULL) {
223
for (ii = sc->sc_itable; ii->ii_ndisk > 0; ii++)
224
g_free(ii->ii_index);
225
g_free(sc->sc_itable);
226
}
227
g_free(sc);
228
}
229
230
static int
231
ccdinit(struct gctl_req *req, struct ccd_s *cs)
232
{
233
struct ccdcinfo *ci;
234
daddr_t size;
235
int ix;
236
daddr_t minsize;
237
int maxsecsize;
238
off_t mediasize;
239
u_int sectorsize;
240
241
cs->sc_size = 0;
242
243
maxsecsize = 0;
244
minsize = 0;
245
246
if (cs->sc_flags & CCDF_LINUX) {
247
cs->sc_offset = 0;
248
cs->sc_ileave *= 2;
249
if (cs->sc_flags & CCDF_MIRROR && cs->sc_ndisks != 2)
250
gctl_error(req, "Mirror mode for Linux raids is "
251
"only supported with 2 devices");
252
} else {
253
if (cs->sc_flags & CCDF_NO_OFFSET)
254
cs->sc_offset = 0;
255
else
256
cs->sc_offset = CCD_OFFSET;
257
}
258
for (ix = 0; ix < cs->sc_ndisks; ix++) {
259
ci = &cs->sc_cinfo[ix];
260
261
mediasize = ci->ci_provider->mediasize;
262
sectorsize = ci->ci_provider->sectorsize;
263
if (sectorsize > maxsecsize)
264
maxsecsize = sectorsize;
265
size = mediasize / DEV_BSIZE - cs->sc_offset;
266
267
/* Truncate to interleave boundary */
268
269
if (cs->sc_ileave > 1)
270
size -= size % cs->sc_ileave;
271
272
if (size == 0) {
273
gctl_error(req, "Component %s has effective size zero",
274
ci->ci_provider->name);
275
return(ENODEV);
276
}
277
278
if (minsize == 0 || size < minsize)
279
minsize = size;
280
ci->ci_size = size;
281
cs->sc_size += size;
282
}
283
284
/*
285
* Don't allow the interleave to be smaller than
286
* the biggest component sector.
287
*/
288
if ((cs->sc_ileave > 0) &&
289
(cs->sc_ileave < (maxsecsize / DEV_BSIZE))) {
290
gctl_error(req, "Interleave to small for sector size");
291
return(EINVAL);
292
}
293
294
/*
295
* If uniform interleave is desired set all sizes to that of
296
* the smallest component. This will guarantee that a single
297
* interleave table is generated.
298
*
299
* Lost space must be taken into account when calculating the
300
* overall size. Half the space is lost when CCDF_MIRROR is
301
* specified.
302
*/
303
if (cs->sc_flags & CCDF_UNIFORM) {
304
for (ix = 0; ix < cs->sc_ndisks; ix++) {
305
ci = &cs->sc_cinfo[ix];
306
ci->ci_size = minsize;
307
}
308
cs->sc_size = cs->sc_ndisks * minsize;
309
}
310
311
if (cs->sc_flags & CCDF_MIRROR) {
312
/*
313
* Check to see if an even number of components
314
* have been specified. The interleave must also
315
* be non-zero in order for us to be able to
316
* guarantee the topology.
317
*/
318
if (cs->sc_ndisks % 2) {
319
gctl_error(req,
320
"Mirroring requires an even number of disks");
321
return(EINVAL);
322
}
323
if (cs->sc_ileave == 0) {
324
gctl_error(req,
325
"An interleave must be specified when mirroring");
326
return(EINVAL);
327
}
328
cs->sc_size = (cs->sc_ndisks/2) * minsize;
329
}
330
331
/*
332
* Construct the interleave table.
333
*/
334
ccdinterleave(cs);
335
336
/*
337
* Create pseudo-geometry based on 1MB cylinders. It's
338
* pretty close.
339
*/
340
cs->sc_secsize = maxsecsize;
341
342
return (0);
343
}
344
345
static void
346
ccdinterleave(struct ccd_s *cs)
347
{
348
struct ccdcinfo *ci, *smallci;
349
struct ccdiinfo *ii;
350
daddr_t bn, lbn;
351
int ix;
352
daddr_t size;
353
354
/*
355
* Allocate an interleave table. The worst case occurs when each
356
* of N disks is of a different size, resulting in N interleave
357
* tables.
358
*
359
* Chances are this is too big, but we don't care.
360
*/
361
size = (cs->sc_ndisks + 1) * sizeof(struct ccdiinfo);
362
cs->sc_itable = g_malloc(size, M_WAITOK | M_ZERO);
363
364
/*
365
* Trivial case: no interleave (actually interleave of disk size).
366
* Each table entry represents a single component in its entirety.
367
*
368
* An interleave of 0 may not be used with a mirror setup.
369
*/
370
if (cs->sc_ileave == 0) {
371
bn = 0;
372
ii = cs->sc_itable;
373
374
for (ix = 0; ix < cs->sc_ndisks; ix++) {
375
/* Allocate space for ii_index. */
376
ii->ii_index = g_malloc(sizeof(int), M_WAITOK);
377
ii->ii_ndisk = 1;
378
ii->ii_startblk = bn;
379
ii->ii_startoff = 0;
380
ii->ii_index[0] = ix;
381
bn += cs->sc_cinfo[ix].ci_size;
382
ii++;
383
}
384
ii->ii_ndisk = 0;
385
return;
386
}
387
388
/*
389
* The following isn't fast or pretty; it doesn't have to be.
390
*/
391
size = 0;
392
bn = lbn = 0;
393
for (ii = cs->sc_itable; ; ii++) {
394
/*
395
* Allocate space for ii_index. We might allocate more then
396
* we use.
397
*/
398
ii->ii_index = g_malloc((sizeof(int) * cs->sc_ndisks),
399
M_WAITOK);
400
401
/*
402
* Locate the smallest of the remaining components
403
*/
404
smallci = NULL;
405
for (ci = cs->sc_cinfo; ci < &cs->sc_cinfo[cs->sc_ndisks];
406
ci++) {
407
if (ci->ci_size > size &&
408
(smallci == NULL ||
409
ci->ci_size < smallci->ci_size)) {
410
smallci = ci;
411
}
412
}
413
414
/*
415
* Nobody left, all done
416
*/
417
if (smallci == NULL) {
418
ii->ii_ndisk = 0;
419
g_free(ii->ii_index);
420
ii->ii_index = NULL;
421
break;
422
}
423
424
/*
425
* Record starting logical block using an sc_ileave blocksize.
426
*/
427
ii->ii_startblk = bn / cs->sc_ileave;
428
429
/*
430
* Record starting component block using an sc_ileave
431
* blocksize. This value is relative to the beginning of
432
* a component disk.
433
*/
434
ii->ii_startoff = lbn;
435
436
/*
437
* Determine how many disks take part in this interleave
438
* and record their indices.
439
*/
440
ix = 0;
441
for (ci = cs->sc_cinfo;
442
ci < &cs->sc_cinfo[cs->sc_ndisks]; ci++) {
443
if (ci->ci_size >= smallci->ci_size) {
444
ii->ii_index[ix++] = ci - cs->sc_cinfo;
445
}
446
}
447
ii->ii_ndisk = ix;
448
bn += ix * (smallci->ci_size - size);
449
lbn = smallci->ci_size / cs->sc_ileave;
450
size = smallci->ci_size;
451
}
452
}
453
454
static void
455
g_ccd_start(struct bio *bp)
456
{
457
long bcount, rcount;
458
struct bio *cbp[2];
459
caddr_t addr;
460
daddr_t bn;
461
int err;
462
struct ccd_s *cs;
463
464
cs = bp->bio_to->geom->softc;
465
466
/*
467
* Block all GETATTR requests, we wouldn't know which of our
468
* subdevices we should ship it off to.
469
* XXX: this may not be the right policy.
470
*/
471
if(bp->bio_cmd == BIO_GETATTR) {
472
g_io_deliver(bp, EINVAL);
473
return;
474
}
475
476
/*
477
* Translate the partition-relative block number to an absolute.
478
*/
479
bn = bp->bio_offset / cs->sc_secsize;
480
481
/*
482
* Allocate component buffers and fire off the requests
483
*/
484
addr = bp->bio_data;
485
for (bcount = bp->bio_length; bcount > 0; bcount -= rcount) {
486
err = ccdbuffer(cbp, cs, bp, bn, addr, bcount);
487
if (err) {
488
bp->bio_completed += bcount;
489
if (bp->bio_error == 0)
490
bp->bio_error = err;
491
if (bp->bio_completed == bp->bio_length)
492
g_io_deliver(bp, bp->bio_error);
493
return;
494
}
495
rcount = cbp[0]->bio_length;
496
497
if (cs->sc_flags & CCDF_MIRROR) {
498
/*
499
* Mirroring. Writes go to both disks, reads are
500
* taken from whichever disk seems most appropriate.
501
*
502
* We attempt to localize reads to the disk whos arm
503
* is nearest the read request. We ignore seeks due
504
* to writes when making this determination and we
505
* also try to avoid hogging.
506
*/
507
if (cbp[0]->bio_cmd != BIO_READ) {
508
g_io_request(cbp[0], cbp[0]->bio_from);
509
g_io_request(cbp[1], cbp[1]->bio_from);
510
} else {
511
int pick = cs->sc_pick;
512
daddr_t range = cs->sc_size / 16;
513
514
if (bn < cs->sc_blk[pick] - range ||
515
bn > cs->sc_blk[pick] + range
516
) {
517
cs->sc_pick = pick = 1 - pick;
518
}
519
cs->sc_blk[pick] = bn + btodb(rcount);
520
g_io_request(cbp[pick], cbp[pick]->bio_from);
521
}
522
} else {
523
/*
524
* Not mirroring
525
*/
526
g_io_request(cbp[0], cbp[0]->bio_from);
527
}
528
bn += btodb(rcount);
529
addr += rcount;
530
}
531
}
532
533
/*
534
* Build a component buffer header.
535
*/
536
static int
537
ccdbuffer(struct bio **cb, struct ccd_s *cs, struct bio *bp, daddr_t bn, caddr_t addr, long bcount)
538
{
539
struct ccdcinfo *ci, *ci2 = NULL;
540
struct bio *cbp;
541
daddr_t cbn, cboff;
542
off_t cbc;
543
544
/*
545
* Determine which component bn falls in.
546
*/
547
cbn = bn;
548
cboff = 0;
549
550
if (cs->sc_ileave == 0) {
551
/*
552
* Serially concatenated and neither a mirror nor a parity
553
* config. This is a special case.
554
*/
555
daddr_t sblk;
556
557
sblk = 0;
558
for (ci = cs->sc_cinfo; cbn >= sblk + ci->ci_size; ci++)
559
sblk += ci->ci_size;
560
cbn -= sblk;
561
} else {
562
struct ccdiinfo *ii;
563
int ccdisk, off;
564
565
/*
566
* Calculate cbn, the logical superblock (sc_ileave chunks),
567
* and cboff, a normal block offset (DEV_BSIZE chunks) relative
568
* to cbn.
569
*/
570
cboff = cbn % cs->sc_ileave; /* DEV_BSIZE gran */
571
cbn = cbn / cs->sc_ileave; /* DEV_BSIZE * ileave gran */
572
573
/*
574
* Figure out which interleave table to use.
575
*/
576
for (ii = cs->sc_itable; ii->ii_ndisk; ii++) {
577
if (ii->ii_startblk > cbn)
578
break;
579
}
580
ii--;
581
582
/*
583
* off is the logical superblock relative to the beginning
584
* of this interleave block.
585
*/
586
off = cbn - ii->ii_startblk;
587
588
/*
589
* We must calculate which disk component to use (ccdisk),
590
* and recalculate cbn to be the superblock relative to
591
* the beginning of the component. This is typically done by
592
* adding 'off' and ii->ii_startoff together. However, 'off'
593
* must typically be divided by the number of components in
594
* this interleave array to be properly convert it from a
595
* CCD-relative logical superblock number to a
596
* component-relative superblock number.
597
*/
598
if (ii->ii_ndisk == 1) {
599
/*
600
* When we have just one disk, it can't be a mirror
601
* or a parity config.
602
*/
603
ccdisk = ii->ii_index[0];
604
cbn = ii->ii_startoff + off;
605
} else {
606
if (cs->sc_flags & CCDF_MIRROR) {
607
/*
608
* We have forced a uniform mapping, resulting
609
* in a single interleave array. We double
610
* up on the first half of the available
611
* components and our mirror is in the second
612
* half. This only works with a single
613
* interleave array because doubling up
614
* doubles the number of sectors, so there
615
* cannot be another interleave array because
616
* the next interleave array's calculations
617
* would be off.
618
*/
619
int ndisk2 = ii->ii_ndisk / 2;
620
ccdisk = ii->ii_index[off % ndisk2];
621
cbn = ii->ii_startoff + off / ndisk2;
622
ci2 = &cs->sc_cinfo[ccdisk + ndisk2];
623
} else {
624
ccdisk = ii->ii_index[off % ii->ii_ndisk];
625
cbn = ii->ii_startoff + off / ii->ii_ndisk;
626
}
627
}
628
629
ci = &cs->sc_cinfo[ccdisk];
630
631
/*
632
* Convert cbn from a superblock to a normal block so it
633
* can be used to calculate (along with cboff) the normal
634
* block index into this particular disk.
635
*/
636
cbn *= cs->sc_ileave;
637
}
638
639
/*
640
* Fill in the component buf structure.
641
*/
642
cbp = g_clone_bio(bp);
643
if (cbp == NULL)
644
return (ENOMEM);
645
cbp->bio_done = g_std_done;
646
cbp->bio_offset = dbtob(cbn + cboff + cs->sc_offset);
647
cbp->bio_data = addr;
648
if (cs->sc_ileave == 0)
649
cbc = dbtob((off_t)(ci->ci_size - cbn));
650
else
651
cbc = dbtob((off_t)(cs->sc_ileave - cboff));
652
cbp->bio_length = (cbc < bcount) ? cbc : bcount;
653
654
cbp->bio_from = ci->ci_consumer;
655
cb[0] = cbp;
656
657
if (cs->sc_flags & CCDF_MIRROR) {
658
cbp = g_clone_bio(bp);
659
if (cbp == NULL)
660
return (ENOMEM);
661
cbp->bio_done = cb[0]->bio_done = ccdiodone;
662
cbp->bio_offset = cb[0]->bio_offset;
663
cbp->bio_data = cb[0]->bio_data;
664
cbp->bio_length = cb[0]->bio_length;
665
cbp->bio_from = ci2->ci_consumer;
666
cbp->bio_caller1 = cb[0];
667
cb[0]->bio_caller1 = cbp;
668
cb[1] = cbp;
669
}
670
return (0);
671
}
672
673
/*
674
* Called only for mirrored operations.
675
*/
676
static void
677
ccdiodone(struct bio *cbp)
678
{
679
struct bio *mbp, *pbp;
680
681
mbp = cbp->bio_caller1;
682
pbp = cbp->bio_parent;
683
684
if (pbp->bio_cmd == BIO_READ) {
685
if (cbp->bio_error == 0) {
686
/* We will not be needing the partner bio */
687
if (mbp != NULL) {
688
pbp->bio_inbed++;
689
g_destroy_bio(mbp);
690
}
691
g_std_done(cbp);
692
return;
693
}
694
if (mbp != NULL) {
695
/* Try partner the bio instead */
696
mbp->bio_caller1 = NULL;
697
pbp->bio_inbed++;
698
g_destroy_bio(cbp);
699
g_io_request(mbp, mbp->bio_from);
700
/*
701
* XXX: If this comes back OK, we should actually
702
* try to write the good data on the failed mirror
703
*/
704
return;
705
}
706
g_std_done(cbp);
707
return;
708
}
709
if (mbp != NULL) {
710
mbp->bio_caller1 = NULL;
711
pbp->bio_inbed++;
712
if (cbp->bio_error != 0 && pbp->bio_error == 0)
713
pbp->bio_error = cbp->bio_error;
714
g_destroy_bio(cbp);
715
return;
716
}
717
g_std_done(cbp);
718
}
719
720
static void
721
g_ccd_create(struct gctl_req *req, struct g_class *mp)
722
{
723
int *unit, *ileave, *nprovider;
724
struct g_geom *gp;
725
struct g_consumer *cp;
726
struct g_provider *pp;
727
struct ccd_s *sc;
728
struct sbuf *sb;
729
char buf[20];
730
int i, error;
731
732
g_topology_assert();
733
unit = gctl_get_paraml(req, "unit", sizeof(*unit));
734
if (unit == NULL) {
735
gctl_error(req, "unit parameter not given");
736
return;
737
}
738
ileave = gctl_get_paraml(req, "ileave", sizeof(*ileave));
739
if (ileave == NULL) {
740
gctl_error(req, "ileave parameter not given");
741
return;
742
}
743
nprovider = gctl_get_paraml(req, "nprovider", sizeof(*nprovider));
744
if (nprovider == NULL) {
745
gctl_error(req, "nprovider parameter not given");
746
return;
747
}
748
749
/* Check for duplicate unit */
750
LIST_FOREACH(gp, &mp->geom, geom) {
751
sc = gp->softc;
752
if (sc != NULL && sc->sc_unit == *unit) {
753
gctl_error(req, "Unit %d already configured", *unit);
754
return;
755
}
756
}
757
758
if (*nprovider <= 0) {
759
gctl_error(req, "Bogus nprovider argument (= %d)", *nprovider);
760
return;
761
}
762
763
/* Check all providers are valid */
764
for (i = 0; i < *nprovider; i++) {
765
snprintf(buf, sizeof(buf), "provider%d", i);
766
pp = gctl_get_provider(req, buf);
767
if (pp == NULL)
768
return;
769
}
770
771
gp = g_new_geomf(mp, "ccd%d", *unit);
772
sc = g_malloc(sizeof(*sc), M_WAITOK | M_ZERO);
773
gp->softc = sc;
774
sc->sc_ndisks = *nprovider;
775
776
/* Allocate space for the component info. */
777
sc->sc_cinfo = g_malloc(sc->sc_ndisks * sizeof(struct ccdcinfo),
778
M_WAITOK | M_ZERO);
779
780
/* Create consumers and attach to all providers */
781
for (i = 0; i < *nprovider; i++) {
782
snprintf(buf, sizeof(buf), "provider%d", i);
783
pp = gctl_get_provider(req, buf);
784
cp = g_new_consumer(gp);
785
error = g_attach(cp, pp);
786
KASSERT(error == 0, ("attach to %s failed", pp->name));
787
sc->sc_cinfo[i].ci_consumer = cp;
788
sc->sc_cinfo[i].ci_provider = pp;
789
}
790
791
sc->sc_unit = *unit;
792
sc->sc_ileave = *ileave;
793
794
if (gctl_get_param(req, "no_offset", NULL))
795
sc->sc_flags |= CCDF_NO_OFFSET;
796
if (gctl_get_param(req, "linux", NULL))
797
sc->sc_flags |= CCDF_LINUX;
798
799
if (gctl_get_param(req, "uniform", NULL))
800
sc->sc_flags |= CCDF_UNIFORM;
801
if (gctl_get_param(req, "mirror", NULL))
802
sc->sc_flags |= CCDF_MIRROR;
803
804
if (sc->sc_ileave == 0 && (sc->sc_flags & CCDF_MIRROR)) {
805
printf("%s: disabling mirror, interleave is 0\n", gp->name);
806
sc->sc_flags &= ~(CCDF_MIRROR);
807
}
808
809
if ((sc->sc_flags & CCDF_MIRROR) && !(sc->sc_flags & CCDF_UNIFORM)) {
810
printf("%s: mirror/parity forces uniform flag\n", gp->name);
811
sc->sc_flags |= CCDF_UNIFORM;
812
}
813
814
error = ccdinit(req, sc);
815
if (error != 0) {
816
g_ccd_freesc(sc);
817
gp->softc = NULL;
818
g_wither_geom(gp, ENXIO);
819
return;
820
}
821
822
pp = g_new_providerf(gp, "%s", gp->name);
823
pp->mediasize = sc->sc_size * (off_t)sc->sc_secsize;
824
pp->sectorsize = sc->sc_secsize;
825
g_error_provider(pp, 0);
826
827
sb = sbuf_new_auto();
828
sbuf_printf(sb, "ccd%d: %d components ", sc->sc_unit, *nprovider);
829
for (i = 0; i < *nprovider; i++) {
830
sbuf_printf(sb, "%s%s",
831
i == 0 ? "(" : ", ",
832
sc->sc_cinfo[i].ci_provider->name);
833
}
834
sbuf_printf(sb, "), %jd blocks ", (off_t)pp->mediasize / DEV_BSIZE);
835
if (sc->sc_ileave != 0)
836
sbuf_printf(sb, "interleaved at %d blocks\n",
837
sc->sc_ileave);
838
else
839
sbuf_printf(sb, "concatenated\n");
840
sbuf_finish(sb);
841
gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1);
842
sbuf_delete(sb);
843
}
844
845
static int
846
g_ccd_destroy_geom(struct gctl_req *req, struct g_class *mp, struct g_geom *gp)
847
{
848
struct g_provider *pp;
849
struct ccd_s *sc;
850
851
g_topology_assert();
852
sc = gp->softc;
853
pp = LIST_FIRST(&gp->provider);
854
if (sc == NULL || pp == NULL)
855
return (EBUSY);
856
if (pp->acr != 0 || pp->acw != 0 || pp->ace != 0) {
857
gctl_error(req, "%s is open(r%dw%de%d)", gp->name,
858
pp->acr, pp->acw, pp->ace);
859
return (EBUSY);
860
}
861
g_ccd_freesc(sc);
862
gp->softc = NULL;
863
g_wither_geom(gp, ENXIO);
864
return (0);
865
}
866
867
static void
868
g_ccd_list(struct gctl_req *req, struct g_class *mp)
869
{
870
struct sbuf *sb;
871
struct ccd_s *cs;
872
struct g_geom *gp;
873
int i, unit, *up;
874
875
up = gctl_get_paraml(req, "unit", sizeof(*up));
876
if (up == NULL) {
877
gctl_error(req, "unit parameter not given");
878
return;
879
}
880
unit = *up;
881
sb = sbuf_new_auto();
882
LIST_FOREACH(gp, &mp->geom, geom) {
883
cs = gp->softc;
884
if (cs == NULL || (unit >= 0 && unit != cs->sc_unit))
885
continue;
886
sbuf_printf(sb, "ccd%d\t\t%d\t%d\t",
887
cs->sc_unit, cs->sc_ileave, cs->sc_flags & CCDF_USERMASK);
888
889
for (i = 0; i < cs->sc_ndisks; ++i) {
890
sbuf_printf(sb, "%s/dev/%s", i == 0 ? "" : " ",
891
cs->sc_cinfo[i].ci_provider->name);
892
}
893
sbuf_printf(sb, "\n");
894
}
895
sbuf_finish(sb);
896
gctl_set_param_err(req, "output", sbuf_data(sb), sbuf_len(sb) + 1);
897
sbuf_delete(sb);
898
}
899
900
static void
901
g_ccd_config(struct gctl_req *req, struct g_class *mp, char const *verb)
902
{
903
struct g_geom *gp;
904
905
g_topology_assert();
906
if (!strcmp(verb, "create geom")) {
907
g_ccd_create(req, mp);
908
} else if (!strcmp(verb, "destroy geom")) {
909
gp = gctl_get_geom(req, mp, "geom");
910
if (gp != NULL)
911
g_ccd_destroy_geom(req, mp, gp);
912
} else if (!strcmp(verb, "list")) {
913
g_ccd_list(req, mp);
914
} else {
915
gctl_error(req, "unknown verb");
916
}
917
}
918
919
static struct g_class g_ccd_class = {
920
.name = "CCD",
921
.version = G_VERSION,
922
.ctlreq = g_ccd_config,
923
.destroy_geom = g_ccd_destroy_geom,
924
.start = g_ccd_start,
925
.orphan = g_ccd_orphan,
926
.access = g_ccd_access,
927
};
928
929
DECLARE_GEOM_CLASS(g_ccd_class, g_ccd);
930
MODULE_VERSION(geom_ccd, 0);
931
932