Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/kern/imgact_elf.c
39475 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 2017 Dell EMC
5
* Copyright (c) 2000-2001, 2003 David O'Brien
6
* Copyright (c) 1995-1996 Søren Schmidt
7
* Copyright (c) 1996 Peter Wemm
8
* All rights reserved.
9
*
10
* Redistribution and use in source and binary forms, with or without
11
* modification, are permitted provided that the following conditions
12
* are met:
13
* 1. Redistributions of source code must retain the above copyright
14
* notice, this list of conditions and the following disclaimer
15
* in this position and unchanged.
16
* 2. Redistributions in binary form must reproduce the above copyright
17
* notice, this list of conditions and the following disclaimer in the
18
* documentation and/or other materials provided with the distribution.
19
* 3. The name of the author may not be used to endorse or promote products
20
* derived from this software without specific prior written permission
21
*
22
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
23
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
24
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
25
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
26
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
27
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
28
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
29
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
30
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
31
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32
*/
33
34
#include "opt_capsicum.h"
35
36
#include <sys/param.h>
37
#include <sys/capsicum.h>
38
#include <sys/compressor.h>
39
#include <sys/exec.h>
40
#include <sys/fcntl.h>
41
#include <sys/imgact.h>
42
#include <sys/imgact_elf.h>
43
#include <sys/jail.h>
44
#include <sys/kernel.h>
45
#include <sys/lock.h>
46
#include <sys/malloc.h>
47
#include <sys/mount.h>
48
#include <sys/mman.h>
49
#include <sys/namei.h>
50
#include <sys/proc.h>
51
#include <sys/procfs.h>
52
#include <sys/ptrace.h>
53
#include <sys/racct.h>
54
#include <sys/reg.h>
55
#include <sys/resourcevar.h>
56
#include <sys/rwlock.h>
57
#include <sys/sbuf.h>
58
#include <sys/sf_buf.h>
59
#include <sys/smp.h>
60
#include <sys/systm.h>
61
#include <sys/signalvar.h>
62
#include <sys/stat.h>
63
#include <sys/sx.h>
64
#include <sys/syscall.h>
65
#include <sys/sysctl.h>
66
#include <sys/sysent.h>
67
#include <sys/ucoredump.h>
68
#include <sys/vnode.h>
69
#include <sys/syslog.h>
70
#include <sys/eventhandler.h>
71
#include <sys/user.h>
72
73
#include <vm/vm.h>
74
#include <vm/vm_kern.h>
75
#include <vm/vm_param.h>
76
#include <vm/pmap.h>
77
#include <vm/vm_map.h>
78
#include <vm/vm_object.h>
79
#include <vm/vm_extern.h>
80
81
#include <machine/elf.h>
82
#include <machine/md_var.h>
83
84
#define ELF_NOTE_ROUNDSIZE 4
85
#define OLD_EI_BRAND 8
86
87
/*
88
* ELF_ABI_NAME is a string name of the ELF ABI. ELF_ABI_ID is used
89
* to build variable names.
90
*/
91
#define ELF_ABI_NAME __XSTRING(__CONCAT(ELF, __ELF_WORD_SIZE))
92
#define ELF_ABI_ID __CONCAT(elf, __ELF_WORD_SIZE)
93
94
static int __elfN(check_header)(const Elf_Ehdr *hdr);
95
static Elf_Brandinfo *__elfN(get_brandinfo)(struct image_params *imgp,
96
const char *interp, int32_t *osrel, uint32_t *fctl0);
97
static int __elfN(load_file)(struct proc *p, const char *file, u_long *addr,
98
u_long *entry);
99
static int __elfN(load_section)(const struct image_params *imgp,
100
vm_ooffset_t offset, caddr_t vmaddr, size_t memsz, size_t filsz,
101
vm_prot_t prot);
102
static int __CONCAT(exec_, __elfN(imgact))(struct image_params *imgp);
103
static bool __elfN(freebsd_trans_osrel)(const Elf_Note *note,
104
int32_t *osrel);
105
static bool kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel);
106
static bool __elfN(check_note)(struct image_params *imgp,
107
Elf_Brandnote *checknote, int32_t *osrel, bool *has_fctl0,
108
uint32_t *fctl0);
109
static vm_prot_t __elfN(trans_prot)(Elf_Word);
110
static Elf_Word __elfN(untrans_prot)(vm_prot_t);
111
static size_t __elfN(prepare_register_notes)(struct thread *td,
112
struct note_info_list *list, struct thread *target_td);
113
114
SYSCTL_NODE(_kern, OID_AUTO, ELF_ABI_ID, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
115
"");
116
117
#define ELF_NODE_OID __CONCAT(_kern_, ELF_ABI_ID)
118
119
int __elfN(fallback_brand) = -1;
120
SYSCTL_INT(ELF_NODE_OID, OID_AUTO,
121
fallback_brand, CTLFLAG_RWTUN, &__elfN(fallback_brand), 0,
122
ELF_ABI_NAME " brand of last resort");
123
124
static int elf_legacy_coredump = 0;
125
SYSCTL_INT(_debug, OID_AUTO, __elfN(legacy_coredump), CTLFLAG_RW,
126
&elf_legacy_coredump, 0,
127
"include all and only RW pages in core dumps");
128
129
int __elfN(nxstack) =
130
#if defined(__amd64__) || defined(__powerpc64__) /* both 64 and 32 bit */ || \
131
defined(__arm__) || defined(__aarch64__) || \
132
defined(__riscv)
133
1;
134
#else
135
0;
136
#endif
137
SYSCTL_INT(ELF_NODE_OID, OID_AUTO,
138
nxstack, CTLFLAG_RW, &__elfN(nxstack), 0,
139
ELF_ABI_NAME ": support PT_GNU_STACK for non-executable stack control");
140
141
#if defined(__amd64__)
142
static int __elfN(vdso) = 1;
143
SYSCTL_INT(ELF_NODE_OID, OID_AUTO,
144
vdso, CTLFLAG_RWTUN, &__elfN(vdso), 0,
145
ELF_ABI_NAME ": enable vdso preloading");
146
#else
147
static int __elfN(vdso) = 0;
148
#endif
149
150
#if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
151
int i386_read_exec = 0;
152
SYSCTL_INT(ELF_NODE_OID, OID_AUTO, read_exec, CTLFLAG_RW, &i386_read_exec, 0,
153
"enable execution from readable segments");
154
#endif
155
156
static u_long __elfN(pie_base) = ET_DYN_LOAD_ADDR;
157
static int
158
sysctl_pie_base(SYSCTL_HANDLER_ARGS)
159
{
160
u_long val;
161
int error;
162
163
val = __elfN(pie_base);
164
error = sysctl_handle_long(oidp, &val, 0, req);
165
if (error != 0 || req->newptr == NULL)
166
return (error);
167
if ((val & PAGE_MASK) != 0)
168
return (EINVAL);
169
__elfN(pie_base) = val;
170
return (0);
171
}
172
SYSCTL_PROC(ELF_NODE_OID, OID_AUTO, pie_base,
173
CTLTYPE_ULONG | CTLFLAG_MPSAFE | CTLFLAG_RW, NULL, 0,
174
sysctl_pie_base, "LU",
175
"PIE load base without randomization");
176
177
SYSCTL_NODE(ELF_NODE_OID, OID_AUTO, aslr,
178
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
179
"");
180
#define ASLR_NODE_OID __CONCAT(ELF_NODE_OID, _aslr)
181
182
/*
183
* Enable ASLR by default for 64-bit non-PIE binaries. 32-bit architectures
184
* have limited address space (which can cause issues for applications with
185
* high memory use) so we leave it off there.
186
*/
187
static int __elfN(aslr_enabled) = __ELF_WORD_SIZE == 64;
188
SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, enable, CTLFLAG_RWTUN,
189
&__elfN(aslr_enabled), 0,
190
ELF_ABI_NAME ": enable address map randomization");
191
192
/*
193
* Enable ASLR by default for 64-bit PIE binaries.
194
*/
195
static int __elfN(pie_aslr_enabled) = __ELF_WORD_SIZE == 64;
196
SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, pie_enable, CTLFLAG_RWTUN,
197
&__elfN(pie_aslr_enabled), 0,
198
ELF_ABI_NAME ": enable address map randomization for PIE binaries");
199
200
/*
201
* Sbrk is deprecated and it can be assumed that in most cases it will not be
202
* used anyway. This setting is valid only with ASLR enabled, and allows ASLR
203
* to use the bss grow region.
204
*/
205
static int __elfN(aslr_honor_sbrk) = 0;
206
SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, honor_sbrk, CTLFLAG_RW,
207
&__elfN(aslr_honor_sbrk), 0,
208
ELF_ABI_NAME ": assume sbrk is used");
209
210
static int __elfN(aslr_stack) = __ELF_WORD_SIZE == 64;
211
SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, stack, CTLFLAG_RWTUN,
212
&__elfN(aslr_stack), 0,
213
ELF_ABI_NAME ": enable stack address randomization");
214
215
static int __elfN(aslr_shared_page) = __ELF_WORD_SIZE == 64;
216
SYSCTL_INT(ASLR_NODE_OID, OID_AUTO, shared_page, CTLFLAG_RWTUN,
217
&__elfN(aslr_shared_page), 0,
218
ELF_ABI_NAME ": enable shared page address randomization");
219
220
static int __elfN(sigfastblock) = 1;
221
SYSCTL_INT(ELF_NODE_OID, OID_AUTO, sigfastblock,
222
CTLFLAG_RWTUN, &__elfN(sigfastblock), 0,
223
"enable sigfastblock for new processes");
224
225
static bool __elfN(allow_wx) = true;
226
SYSCTL_BOOL(ELF_NODE_OID, OID_AUTO, allow_wx,
227
CTLFLAG_RWTUN, &__elfN(allow_wx), 0,
228
"Allow pages to be mapped simultaneously writable and executable");
229
230
static Elf_Brandinfo *elf_brand_list[MAX_BRANDS];
231
232
#define aligned(a, t) (rounddown2((u_long)(a), sizeof(t)) == (u_long)(a))
233
234
Elf_Brandnote __elfN(freebsd_brandnote) = {
235
.hdr.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
236
.hdr.n_descsz = sizeof(int32_t),
237
.hdr.n_type = NT_FREEBSD_ABI_TAG,
238
.vendor = FREEBSD_ABI_VENDOR,
239
.flags = BN_TRANSLATE_OSREL,
240
.trans_osrel = __elfN(freebsd_trans_osrel)
241
};
242
243
static bool
244
__elfN(freebsd_trans_osrel)(const Elf_Note *note, int32_t *osrel)
245
{
246
uintptr_t p;
247
248
p = (uintptr_t)(note + 1);
249
p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
250
*osrel = *(const int32_t *)(p);
251
252
return (true);
253
}
254
255
static int GNU_KFREEBSD_ABI_DESC = 3;
256
257
Elf_Brandnote __elfN(kfreebsd_brandnote) = {
258
.hdr.n_namesz = sizeof(GNU_ABI_VENDOR),
259
.hdr.n_descsz = 16, /* XXX at least 16 */
260
.hdr.n_type = 1,
261
.vendor = GNU_ABI_VENDOR,
262
.flags = BN_TRANSLATE_OSREL,
263
.trans_osrel = kfreebsd_trans_osrel
264
};
265
266
static bool
267
kfreebsd_trans_osrel(const Elf_Note *note, int32_t *osrel)
268
{
269
const Elf32_Word *desc;
270
uintptr_t p;
271
272
p = (uintptr_t)(note + 1);
273
p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
274
275
desc = (const Elf32_Word *)p;
276
if (desc[0] != GNU_KFREEBSD_ABI_DESC)
277
return (false);
278
279
/*
280
* Debian GNU/kFreeBSD embed the earliest compatible kernel version
281
* (__FreeBSD_version: <major><two digit minor>Rxx) in the LSB way.
282
*/
283
*osrel = desc[1] * 100000 + desc[2] * 1000 + desc[3];
284
285
return (true);
286
}
287
288
int
289
__elfN(insert_brand_entry)(Elf_Brandinfo *entry)
290
{
291
int i;
292
293
for (i = 0; i < MAX_BRANDS; i++) {
294
if (elf_brand_list[i] == NULL) {
295
elf_brand_list[i] = entry;
296
break;
297
}
298
}
299
if (i == MAX_BRANDS) {
300
printf("WARNING: %s: could not insert brandinfo entry: %p\n",
301
__func__, entry);
302
return (-1);
303
}
304
return (0);
305
}
306
307
int
308
__elfN(remove_brand_entry)(Elf_Brandinfo *entry)
309
{
310
int i;
311
312
for (i = 0; i < MAX_BRANDS; i++) {
313
if (elf_brand_list[i] == entry) {
314
elf_brand_list[i] = NULL;
315
break;
316
}
317
}
318
if (i == MAX_BRANDS)
319
return (-1);
320
return (0);
321
}
322
323
bool
324
__elfN(brand_inuse)(Elf_Brandinfo *entry)
325
{
326
struct proc *p;
327
bool rval = false;
328
329
sx_slock(&allproc_lock);
330
FOREACH_PROC_IN_SYSTEM(p) {
331
if (p->p_sysent == entry->sysvec) {
332
rval = true;
333
break;
334
}
335
}
336
sx_sunlock(&allproc_lock);
337
338
return (rval);
339
}
340
341
static Elf_Brandinfo *
342
__elfN(get_brandinfo)(struct image_params *imgp, const char *interp,
343
int32_t *osrel, uint32_t *fctl0)
344
{
345
const Elf_Ehdr *hdr = (const Elf_Ehdr *)imgp->image_header;
346
Elf_Brandinfo *bi, *bi_m;
347
bool ret, has_fctl0;
348
int i, interp_name_len;
349
350
interp_name_len = interp != NULL ? strlen(interp) + 1 : 0;
351
352
/*
353
* We support four types of branding -- (1) the ELF EI_OSABI field
354
* that SCO added to the ELF spec, (2) FreeBSD 3.x's traditional string
355
* branding w/in the ELF header, (3) path of the `interp_path'
356
* field, and (4) the ".note.ABI-tag" ELF section.
357
*/
358
359
/* Look for an ".note.ABI-tag" ELF section */
360
bi_m = NULL;
361
for (i = 0; i < MAX_BRANDS; i++) {
362
bi = elf_brand_list[i];
363
if (bi == NULL)
364
continue;
365
if (interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0)
366
continue;
367
if (hdr->e_machine == bi->machine && (bi->flags &
368
(BI_BRAND_NOTE|BI_BRAND_NOTE_MANDATORY)) != 0) {
369
has_fctl0 = false;
370
*fctl0 = 0;
371
*osrel = 0;
372
ret = __elfN(check_note)(imgp, bi->brand_note, osrel,
373
&has_fctl0, fctl0);
374
/* Give brand a chance to veto check_note's guess */
375
if (ret && bi->header_supported) {
376
ret = bi->header_supported(imgp, osrel,
377
has_fctl0 ? fctl0 : NULL);
378
}
379
/*
380
* If note checker claimed the binary, but the
381
* interpreter path in the image does not
382
* match default one for the brand, try to
383
* search for other brands with the same
384
* interpreter. Either there is better brand
385
* with the right interpreter, or, failing
386
* this, we return first brand which accepted
387
* our note and, optionally, header.
388
*/
389
if (ret && bi_m == NULL && interp != NULL &&
390
(bi->interp_path == NULL ||
391
(strlen(bi->interp_path) + 1 != interp_name_len ||
392
strncmp(interp, bi->interp_path, interp_name_len)
393
!= 0))) {
394
bi_m = bi;
395
ret = 0;
396
}
397
if (ret)
398
return (bi);
399
}
400
}
401
if (bi_m != NULL)
402
return (bi_m);
403
404
/* If the executable has a brand, search for it in the brand list. */
405
for (i = 0; i < MAX_BRANDS; i++) {
406
bi = elf_brand_list[i];
407
if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
408
(interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
409
continue;
410
if (hdr->e_machine == bi->machine &&
411
(hdr->e_ident[EI_OSABI] == bi->brand ||
412
(bi->compat_3_brand != NULL &&
413
strcmp((const char *)&hdr->e_ident[OLD_EI_BRAND],
414
bi->compat_3_brand) == 0))) {
415
/* Looks good, but give brand a chance to veto */
416
if (bi->header_supported == NULL ||
417
bi->header_supported(imgp, NULL, NULL)) {
418
/*
419
* Again, prefer strictly matching
420
* interpreter path.
421
*/
422
if (interp_name_len == 0 &&
423
bi->interp_path == NULL)
424
return (bi);
425
if (bi->interp_path != NULL &&
426
strlen(bi->interp_path) + 1 ==
427
interp_name_len && strncmp(interp,
428
bi->interp_path, interp_name_len) == 0)
429
return (bi);
430
if (bi_m == NULL)
431
bi_m = bi;
432
}
433
}
434
}
435
if (bi_m != NULL)
436
return (bi_m);
437
438
/* No known brand, see if the header is recognized by any brand */
439
for (i = 0; i < MAX_BRANDS; i++) {
440
bi = elf_brand_list[i];
441
if (bi == NULL || bi->flags & BI_BRAND_NOTE_MANDATORY ||
442
bi->header_supported == NULL)
443
continue;
444
if (hdr->e_machine == bi->machine) {
445
ret = bi->header_supported(imgp, NULL, NULL);
446
if (ret)
447
return (bi);
448
}
449
}
450
451
/* Lacking a known brand, search for a recognized interpreter. */
452
if (interp != NULL) {
453
for (i = 0; i < MAX_BRANDS; i++) {
454
bi = elf_brand_list[i];
455
if (bi == NULL || (bi->flags &
456
(BI_BRAND_NOTE_MANDATORY | BI_BRAND_ONLY_STATIC))
457
!= 0)
458
continue;
459
if (hdr->e_machine == bi->machine &&
460
bi->interp_path != NULL &&
461
/* ELF image p_filesz includes terminating zero */
462
strlen(bi->interp_path) + 1 == interp_name_len &&
463
strncmp(interp, bi->interp_path, interp_name_len)
464
== 0 && (bi->header_supported == NULL ||
465
bi->header_supported(imgp, NULL, NULL)))
466
return (bi);
467
}
468
}
469
470
/* Lacking a recognized interpreter, try the default brand */
471
for (i = 0; i < MAX_BRANDS; i++) {
472
bi = elf_brand_list[i];
473
if (bi == NULL || (bi->flags & BI_BRAND_NOTE_MANDATORY) != 0 ||
474
(interp != NULL && (bi->flags & BI_BRAND_ONLY_STATIC) != 0))
475
continue;
476
if (hdr->e_machine == bi->machine &&
477
__elfN(fallback_brand) == bi->brand &&
478
(bi->header_supported == NULL ||
479
bi->header_supported(imgp, NULL, NULL)))
480
return (bi);
481
}
482
return (NULL);
483
}
484
485
static bool
486
__elfN(phdr_in_zero_page)(const Elf_Ehdr *hdr)
487
{
488
return (hdr->e_phoff <= PAGE_SIZE &&
489
(u_int)hdr->e_phentsize * hdr->e_phnum <= PAGE_SIZE - hdr->e_phoff);
490
}
491
492
static int
493
__elfN(check_header)(const Elf_Ehdr *hdr)
494
{
495
Elf_Brandinfo *bi;
496
int i;
497
498
if (!IS_ELF(*hdr) ||
499
hdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
500
hdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
501
hdr->e_ident[EI_VERSION] != EV_CURRENT ||
502
hdr->e_phentsize != sizeof(Elf_Phdr) ||
503
hdr->e_version != ELF_TARG_VER)
504
return (ENOEXEC);
505
506
/*
507
* Make sure we have at least one brand for this machine.
508
*/
509
510
for (i = 0; i < MAX_BRANDS; i++) {
511
bi = elf_brand_list[i];
512
if (bi != NULL && bi->machine == hdr->e_machine)
513
break;
514
}
515
if (i == MAX_BRANDS)
516
return (ENOEXEC);
517
518
return (0);
519
}
520
521
static int
522
__elfN(map_partial)(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
523
vm_offset_t start, vm_offset_t end, vm_prot_t prot)
524
{
525
struct sf_buf *sf;
526
int error;
527
vm_offset_t off;
528
529
/*
530
* Create the page if it doesn't exist yet. Ignore errors.
531
*/
532
vm_map_fixed(map, NULL, 0, trunc_page(start), round_page(end) -
533
trunc_page(start), VM_PROT_ALL, VM_PROT_ALL, MAP_CHECK_EXCL);
534
535
/*
536
* Find the page from the underlying object.
537
*/
538
if (object != NULL) {
539
sf = vm_imgact_map_page(object, offset);
540
if (sf == NULL)
541
return (KERN_FAILURE);
542
off = offset - trunc_page(offset);
543
error = copyout((caddr_t)sf_buf_kva(sf) + off, (caddr_t)start,
544
end - start);
545
vm_imgact_unmap_page(sf);
546
if (error != 0)
547
return (KERN_FAILURE);
548
}
549
550
return (KERN_SUCCESS);
551
}
552
553
static int
554
__elfN(map_insert)(const struct image_params *imgp, vm_map_t map,
555
vm_object_t object, vm_ooffset_t offset, vm_offset_t start, vm_offset_t end,
556
vm_prot_t prot, int cow)
557
{
558
struct sf_buf *sf;
559
vm_offset_t off;
560
vm_size_t sz;
561
int error, locked, rv;
562
563
if (start != trunc_page(start)) {
564
rv = __elfN(map_partial)(map, object, offset, start,
565
round_page(start), prot);
566
if (rv != KERN_SUCCESS)
567
return (rv);
568
offset += round_page(start) - start;
569
start = round_page(start);
570
}
571
if (end != round_page(end)) {
572
rv = __elfN(map_partial)(map, object, offset +
573
trunc_page(end) - start, trunc_page(end), end, prot);
574
if (rv != KERN_SUCCESS)
575
return (rv);
576
end = trunc_page(end);
577
}
578
if (start >= end)
579
return (KERN_SUCCESS);
580
if ((offset & PAGE_MASK) != 0) {
581
/*
582
* The mapping is not page aligned. This means that we have
583
* to copy the data.
584
*/
585
rv = vm_map_fixed(map, NULL, 0, start, end - start,
586
prot | VM_PROT_WRITE, VM_PROT_ALL, MAP_CHECK_EXCL);
587
if (rv != KERN_SUCCESS)
588
return (rv);
589
if (object == NULL)
590
return (KERN_SUCCESS);
591
for (; start < end; start += sz) {
592
sf = vm_imgact_map_page(object, offset);
593
if (sf == NULL)
594
return (KERN_FAILURE);
595
off = offset - trunc_page(offset);
596
sz = end - start;
597
if (sz > PAGE_SIZE - off)
598
sz = PAGE_SIZE - off;
599
error = copyout((caddr_t)sf_buf_kva(sf) + off,
600
(caddr_t)start, sz);
601
vm_imgact_unmap_page(sf);
602
if (error != 0)
603
return (KERN_FAILURE);
604
offset += sz;
605
}
606
} else {
607
vm_object_reference(object);
608
rv = vm_map_fixed(map, object, offset, start, end - start,
609
prot, VM_PROT_ALL, cow | MAP_CHECK_EXCL |
610
(object != NULL ? MAP_VN_EXEC : 0));
611
if (rv != KERN_SUCCESS) {
612
locked = VOP_ISLOCKED(imgp->vp);
613
VOP_UNLOCK(imgp->vp);
614
vm_object_deallocate(object);
615
vn_lock(imgp->vp, locked | LK_RETRY);
616
return (rv);
617
} else if (object != NULL) {
618
MPASS(imgp->vp->v_object == object);
619
VOP_SET_TEXT_CHECKED(imgp->vp);
620
}
621
}
622
return (KERN_SUCCESS);
623
}
624
625
static int
626
__elfN(load_section)(const struct image_params *imgp, vm_ooffset_t offset,
627
caddr_t vmaddr, size_t memsz, size_t filsz, vm_prot_t prot)
628
{
629
struct sf_buf *sf;
630
size_t map_len;
631
vm_map_t map;
632
vm_object_t object;
633
vm_offset_t map_addr;
634
int error, rv, cow;
635
size_t copy_len;
636
vm_ooffset_t file_addr;
637
638
/*
639
* It's necessary to fail if the filsz + offset taken from the
640
* header is greater than the actual file pager object's size.
641
* If we were to allow this, then the vm_map_find() below would
642
* walk right off the end of the file object and into the ether.
643
*
644
* While I'm here, might as well check for something else that
645
* is invalid: filsz cannot be greater than memsz.
646
*/
647
if ((filsz != 0 && (off_t)filsz + offset > imgp->attr->va_size) ||
648
filsz > memsz) {
649
uprintf("elf_load_section: truncated ELF file\n");
650
return (ENOEXEC);
651
}
652
653
object = imgp->object;
654
map = &imgp->proc->p_vmspace->vm_map;
655
map_addr = trunc_page((vm_offset_t)vmaddr);
656
file_addr = trunc_page(offset);
657
658
/*
659
* We have two choices. We can either clear the data in the last page
660
* of an oversized mapping, or we can start the anon mapping a page
661
* early and copy the initialized data into that first page. We
662
* choose the second.
663
*/
664
if (filsz == 0)
665
map_len = 0;
666
else if (memsz > filsz)
667
map_len = trunc_page(offset + filsz) - file_addr;
668
else
669
map_len = round_page(offset + filsz) - file_addr;
670
671
if (map_len != 0) {
672
/* cow flags: don't dump readonly sections in core */
673
cow = MAP_COPY_ON_WRITE | MAP_PREFAULT |
674
(prot & VM_PROT_WRITE ? 0 : MAP_DISABLE_COREDUMP);
675
676
rv = __elfN(map_insert)(imgp, map, object, file_addr,
677
map_addr, map_addr + map_len, prot, cow);
678
if (rv != KERN_SUCCESS)
679
return (EINVAL);
680
681
/* we can stop now if we've covered it all */
682
if (memsz == filsz)
683
return (0);
684
}
685
686
/*
687
* We have to get the remaining bit of the file into the first part
688
* of the oversized map segment. This is normally because the .data
689
* segment in the file is extended to provide bss. It's a neat idea
690
* to try and save a page, but it's a pain in the behind to implement.
691
*/
692
copy_len = filsz == 0 ? 0 : (offset + filsz) - trunc_page(offset +
693
filsz);
694
map_addr = trunc_page((vm_offset_t)vmaddr + filsz);
695
map_len = round_page((vm_offset_t)vmaddr + memsz) - map_addr;
696
697
/* This had damn well better be true! */
698
if (map_len != 0) {
699
rv = __elfN(map_insert)(imgp, map, NULL, 0, map_addr,
700
map_addr + map_len, prot, 0);
701
if (rv != KERN_SUCCESS)
702
return (EINVAL);
703
}
704
705
if (copy_len != 0) {
706
sf = vm_imgact_map_page(object, offset + filsz);
707
if (sf == NULL)
708
return (EIO);
709
710
/* send the page fragment to user space */
711
error = copyout((caddr_t)sf_buf_kva(sf), (caddr_t)map_addr,
712
copy_len);
713
vm_imgact_unmap_page(sf);
714
if (error != 0)
715
return (error);
716
}
717
718
/*
719
* Remove write access to the page if it was only granted by map_insert
720
* to allow copyout.
721
*/
722
if ((prot & VM_PROT_WRITE) == 0)
723
vm_map_protect(map, trunc_page(map_addr), round_page(map_addr +
724
map_len), prot, 0, VM_MAP_PROTECT_SET_PROT);
725
726
return (0);
727
}
728
729
static int
730
__elfN(load_sections)(const struct image_params *imgp, const Elf_Ehdr *hdr,
731
const Elf_Phdr *phdr, u_long rbase, u_long *base_addrp)
732
{
733
vm_prot_t prot;
734
u_long base_addr;
735
bool first;
736
int error, i;
737
738
ASSERT_VOP_LOCKED(imgp->vp, __func__);
739
740
base_addr = 0;
741
first = true;
742
743
for (i = 0; i < hdr->e_phnum; i++) {
744
if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
745
continue;
746
747
/* Loadable segment */
748
prot = __elfN(trans_prot)(phdr[i].p_flags);
749
error = __elfN(load_section)(imgp, phdr[i].p_offset,
750
(caddr_t)(uintptr_t)phdr[i].p_vaddr + rbase,
751
phdr[i].p_memsz, phdr[i].p_filesz, prot);
752
if (error != 0)
753
return (error);
754
755
/*
756
* Establish the base address if this is the first segment.
757
*/
758
if (first) {
759
base_addr = trunc_page(phdr[i].p_vaddr + rbase);
760
first = false;
761
}
762
}
763
764
if (base_addrp != NULL)
765
*base_addrp = base_addr;
766
767
return (0);
768
}
769
770
/*
771
* Load the file "file" into memory. It may be either a shared object
772
* or an executable.
773
*
774
* The "addr" reference parameter is in/out. On entry, it specifies
775
* the address where a shared object should be loaded. If the file is
776
* an executable, this value is ignored. On exit, "addr" specifies
777
* where the file was actually loaded.
778
*
779
* The "entry" reference parameter is out only. On exit, it specifies
780
* the entry point for the loaded file.
781
*/
782
static int
783
__elfN(load_file)(struct proc *p, const char *file, u_long *addr,
784
u_long *entry)
785
{
786
struct {
787
struct nameidata nd;
788
struct vattr attr;
789
struct image_params image_params;
790
} *tempdata;
791
const Elf_Ehdr *hdr = NULL;
792
const Elf_Phdr *phdr = NULL;
793
struct nameidata *nd;
794
struct vattr *attr;
795
struct image_params *imgp;
796
u_long rbase;
797
u_long base_addr = 0;
798
int error;
799
800
#ifdef CAPABILITY_MODE
801
/*
802
* XXXJA: This check can go away once we are sufficiently confident
803
* that the checks in namei() are correct.
804
*/
805
if (IN_CAPABILITY_MODE(curthread))
806
return (ECAPMODE);
807
#endif
808
809
tempdata = malloc(sizeof(*tempdata), M_TEMP, M_WAITOK | M_ZERO);
810
nd = &tempdata->nd;
811
attr = &tempdata->attr;
812
imgp = &tempdata->image_params;
813
814
/*
815
* Initialize part of the common data
816
*/
817
imgp->proc = p;
818
imgp->attr = attr;
819
820
NDINIT(nd, LOOKUP, ISOPEN | FOLLOW | LOCKSHARED | LOCKLEAF,
821
UIO_SYSSPACE, file);
822
if ((error = namei(nd)) != 0) {
823
nd->ni_vp = NULL;
824
goto fail;
825
}
826
NDFREE_PNBUF(nd);
827
imgp->vp = nd->ni_vp;
828
829
/*
830
* Check permissions, modes, uid, etc on the file, and "open" it.
831
*/
832
error = exec_check_permissions(imgp);
833
if (error)
834
goto fail;
835
836
error = exec_map_first_page(imgp);
837
if (error)
838
goto fail;
839
840
imgp->object = nd->ni_vp->v_object;
841
842
hdr = (const Elf_Ehdr *)imgp->image_header;
843
if ((error = __elfN(check_header)(hdr)) != 0)
844
goto fail;
845
if (hdr->e_type == ET_DYN)
846
rbase = *addr;
847
else if (hdr->e_type == ET_EXEC)
848
rbase = 0;
849
else {
850
error = ENOEXEC;
851
goto fail;
852
}
853
854
/* Only support headers that fit within first page for now */
855
if (!__elfN(phdr_in_zero_page)(hdr)) {
856
error = ENOEXEC;
857
goto fail;
858
}
859
860
phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
861
if (!aligned(phdr, Elf_Addr)) {
862
error = ENOEXEC;
863
goto fail;
864
}
865
866
error = __elfN(load_sections)(imgp, hdr, phdr, rbase, &base_addr);
867
if (error != 0)
868
goto fail;
869
870
if (p->p_sysent->sv_protect != NULL)
871
p->p_sysent->sv_protect(imgp, SVP_INTERP);
872
873
*addr = base_addr;
874
*entry = (unsigned long)hdr->e_entry + rbase;
875
876
fail:
877
if (imgp->firstpage)
878
exec_unmap_first_page(imgp);
879
880
if (nd->ni_vp) {
881
if (imgp->textset)
882
VOP_UNSET_TEXT_CHECKED(nd->ni_vp);
883
vput(nd->ni_vp);
884
}
885
free(tempdata, M_TEMP);
886
887
return (error);
888
}
889
890
/*
891
* Select randomized valid address in the map map, between minv and
892
* maxv, with specified alignment. The [minv, maxv) range must belong
893
* to the map. Note that function only allocates the address, it is
894
* up to caller to clamp maxv in a way that the final allocation
895
* length fit into the map.
896
*
897
* Result is returned in *resp, error code indicates that arguments
898
* did not pass sanity checks for overflow and range correctness.
899
*/
900
static int
901
__CONCAT(rnd_, __elfN(base))(vm_map_t map, u_long minv, u_long maxv,
902
u_int align, u_long *resp)
903
{
904
u_long rbase, res;
905
906
MPASS(vm_map_min(map) <= minv);
907
908
if (minv >= maxv || minv + align >= maxv || maxv > vm_map_max(map)) {
909
uprintf("Invalid ELF segments layout\n");
910
return (ENOEXEC);
911
}
912
913
arc4rand(&rbase, sizeof(rbase), 0);
914
res = roundup(minv, (u_long)align) + rbase % (maxv - minv);
915
res &= ~((u_long)align - 1);
916
if (res >= maxv)
917
res -= align;
918
919
KASSERT(res >= minv,
920
("res %#lx < minv %#lx, maxv %#lx rbase %#lx",
921
res, minv, maxv, rbase));
922
KASSERT(res < maxv,
923
("res %#lx > maxv %#lx, minv %#lx rbase %#lx",
924
res, maxv, minv, rbase));
925
926
*resp = res;
927
return (0);
928
}
929
930
static int
931
__elfN(enforce_limits)(struct image_params *imgp, const Elf_Ehdr *hdr,
932
const Elf_Phdr *phdr)
933
{
934
struct vmspace *vmspace;
935
const char *err_str;
936
u_long text_size, data_size, total_size, text_addr, data_addr;
937
u_long seg_size, seg_addr;
938
int i;
939
940
err_str = NULL;
941
text_size = data_size = total_size = text_addr = data_addr = 0;
942
943
for (i = 0; i < hdr->e_phnum; i++) {
944
if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
945
continue;
946
947
seg_addr = trunc_page(phdr[i].p_vaddr + imgp->et_dyn_addr);
948
seg_size = round_page(phdr[i].p_memsz +
949
phdr[i].p_vaddr + imgp->et_dyn_addr - seg_addr);
950
951
/*
952
* Make the largest executable segment the official
953
* text segment and all others data.
954
*
955
* Note that obreak() assumes that data_addr + data_size == end
956
* of data load area, and the ELF file format expects segments
957
* to be sorted by address. If multiple data segments exist,
958
* the last one will be used.
959
*/
960
961
if ((phdr[i].p_flags & PF_X) != 0 && text_size < seg_size) {
962
text_size = seg_size;
963
text_addr = seg_addr;
964
} else {
965
data_size = seg_size;
966
data_addr = seg_addr;
967
}
968
total_size += seg_size;
969
}
970
971
if (data_addr == 0 && data_size == 0) {
972
data_addr = text_addr;
973
data_size = text_size;
974
}
975
976
/*
977
* Check limits. It should be safe to check the
978
* limits after loading the segments since we do
979
* not actually fault in all the segments pages.
980
*/
981
PROC_LOCK(imgp->proc);
982
if (data_size > lim_cur_proc(imgp->proc, RLIMIT_DATA))
983
err_str = "Data segment size exceeds process limit";
984
else if (text_size > maxtsiz)
985
err_str = "Text segment size exceeds system limit";
986
else if (total_size > lim_cur_proc(imgp->proc, RLIMIT_VMEM))
987
err_str = "Total segment size exceeds process limit";
988
else if (racct_set(imgp->proc, RACCT_DATA, data_size) != 0)
989
err_str = "Data segment size exceeds resource limit";
990
else if (racct_set(imgp->proc, RACCT_VMEM, total_size) != 0)
991
err_str = "Total segment size exceeds resource limit";
992
PROC_UNLOCK(imgp->proc);
993
if (err_str != NULL) {
994
uprintf("%s\n", err_str);
995
return (ENOMEM);
996
}
997
998
vmspace = imgp->proc->p_vmspace;
999
vmspace->vm_tsize = text_size >> PAGE_SHIFT;
1000
vmspace->vm_taddr = (caddr_t)(uintptr_t)text_addr;
1001
vmspace->vm_dsize = data_size >> PAGE_SHIFT;
1002
vmspace->vm_daddr = (caddr_t)(uintptr_t)data_addr;
1003
1004
return (0);
1005
}
1006
1007
static int
1008
__elfN(get_interp)(struct image_params *imgp, const Elf_Phdr *phdr,
1009
char **interpp, bool *free_interpp)
1010
{
1011
struct thread *td;
1012
char *interp;
1013
int error, interp_name_len;
1014
1015
KASSERT(phdr->p_type == PT_INTERP,
1016
("%s: p_type %u != PT_INTERP", __func__, phdr->p_type));
1017
ASSERT_VOP_LOCKED(imgp->vp, __func__);
1018
1019
td = curthread;
1020
1021
/* Path to interpreter */
1022
if (phdr->p_filesz < 2 || phdr->p_filesz > MAXPATHLEN) {
1023
uprintf("Invalid PT_INTERP\n");
1024
return (ENOEXEC);
1025
}
1026
1027
interp_name_len = phdr->p_filesz;
1028
if (phdr->p_offset > PAGE_SIZE ||
1029
interp_name_len > PAGE_SIZE - phdr->p_offset) {
1030
/*
1031
* The vnode lock might be needed by the pagedaemon to
1032
* clean pages owned by the vnode. Do not allow sleep
1033
* waiting for memory with the vnode locked, instead
1034
* try non-sleepable allocation first, and if it
1035
* fails, go to the slow path were we drop the lock
1036
* and do M_WAITOK. A text reference prevents
1037
* modifications to the vnode content.
1038
*/
1039
interp = malloc(interp_name_len + 1, M_TEMP, M_NOWAIT);
1040
if (interp == NULL) {
1041
VOP_UNLOCK(imgp->vp);
1042
interp = malloc(interp_name_len + 1, M_TEMP, M_WAITOK);
1043
vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1044
}
1045
1046
error = vn_rdwr(UIO_READ, imgp->vp, interp,
1047
interp_name_len, phdr->p_offset,
1048
UIO_SYSSPACE, IO_NODELOCKED, td->td_ucred,
1049
NOCRED, NULL, td);
1050
if (error != 0) {
1051
free(interp, M_TEMP);
1052
uprintf("i/o error PT_INTERP %d\n", error);
1053
return (error);
1054
}
1055
interp[interp_name_len] = '\0';
1056
1057
*interpp = interp;
1058
*free_interpp = true;
1059
return (0);
1060
}
1061
1062
interp = __DECONST(char *, imgp->image_header) + phdr->p_offset;
1063
if (interp[interp_name_len - 1] != '\0') {
1064
uprintf("Invalid PT_INTERP\n");
1065
return (ENOEXEC);
1066
}
1067
1068
*interpp = interp;
1069
*free_interpp = false;
1070
return (0);
1071
}
1072
1073
static int
1074
__elfN(load_interp)(struct image_params *imgp, const Elf_Brandinfo *brand_info,
1075
const char *interp, u_long *addr, u_long *entry)
1076
{
1077
int error;
1078
1079
if (brand_info->interp_newpath != NULL &&
1080
(brand_info->interp_path == NULL ||
1081
strcmp(interp, brand_info->interp_path) == 0)) {
1082
error = __elfN(load_file)(imgp->proc,
1083
brand_info->interp_newpath, addr, entry);
1084
if (error == 0)
1085
return (0);
1086
}
1087
1088
error = __elfN(load_file)(imgp->proc, interp, addr, entry);
1089
if (error == 0)
1090
return (0);
1091
1092
uprintf("ELF interpreter %s not found, error %d\n", interp, error);
1093
return (error);
1094
}
1095
1096
/*
1097
* Impossible et_dyn_addr initial value indicating that the real base
1098
* must be calculated later with some randomization applied.
1099
*/
1100
#define ET_DYN_ADDR_RAND 1
1101
1102
static int
1103
__CONCAT(exec_, __elfN(imgact))(struct image_params *imgp)
1104
{
1105
struct thread *td;
1106
const Elf_Ehdr *hdr;
1107
const Elf_Phdr *phdr;
1108
Elf_Auxargs *elf_auxargs;
1109
struct vmspace *vmspace;
1110
vm_map_t map;
1111
char *interp;
1112
Elf_Brandinfo *brand_info;
1113
struct sysentvec *sv;
1114
u_long addr, baddr, entry, proghdr;
1115
u_long maxalign, maxsalign, mapsz, maxv, maxv1, anon_loc;
1116
uint32_t fctl0;
1117
int32_t osrel;
1118
bool free_interp;
1119
int error, i, n;
1120
1121
hdr = (const Elf_Ehdr *)imgp->image_header;
1122
1123
/*
1124
* Do we have a valid ELF header ?
1125
*
1126
* Only allow ET_EXEC & ET_DYN here, reject ET_DYN later
1127
* if particular brand doesn't support it.
1128
*/
1129
if (__elfN(check_header)(hdr) != 0 ||
1130
(hdr->e_type != ET_EXEC && hdr->e_type != ET_DYN))
1131
return (-1);
1132
1133
/*
1134
* From here on down, we return an errno, not -1, as we've
1135
* detected an ELF file.
1136
*/
1137
1138
if (!__elfN(phdr_in_zero_page)(hdr)) {
1139
uprintf("Program headers not in the first page\n");
1140
return (ENOEXEC);
1141
}
1142
phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
1143
if (!aligned(phdr, Elf_Addr)) {
1144
uprintf("Unaligned program headers\n");
1145
return (ENOEXEC);
1146
}
1147
1148
n = error = 0;
1149
baddr = 0;
1150
osrel = 0;
1151
fctl0 = 0;
1152
entry = proghdr = 0;
1153
interp = NULL;
1154
free_interp = false;
1155
td = curthread;
1156
1157
/*
1158
* Somewhat arbitrary, limit accepted max alignment for the
1159
* loadable segment to the max supported superpage size. Too
1160
* large alignment requests are not useful and are indicators
1161
* of corrupted or outright malicious binary.
1162
*/
1163
maxalign = PAGE_SIZE;
1164
maxsalign = PAGE_SIZE * 1024;
1165
for (i = MAXPAGESIZES - 1; i > 0; i--) {
1166
if (pagesizes[i] > maxsalign) {
1167
maxsalign = pagesizes[i];
1168
break;
1169
}
1170
}
1171
1172
mapsz = 0;
1173
1174
for (i = 0; i < hdr->e_phnum; i++) {
1175
switch (phdr[i].p_type) {
1176
case PT_LOAD:
1177
if (n == 0)
1178
baddr = phdr[i].p_vaddr;
1179
if (!powerof2(phdr[i].p_align) ||
1180
phdr[i].p_align > maxsalign) {
1181
uprintf("Invalid segment alignment\n");
1182
error = ENOEXEC;
1183
goto ret;
1184
}
1185
if (phdr[i].p_align > maxalign)
1186
maxalign = phdr[i].p_align;
1187
if (mapsz + phdr[i].p_memsz < mapsz) {
1188
uprintf("Mapsize overflow\n");
1189
error = ENOEXEC;
1190
goto ret;
1191
}
1192
mapsz += phdr[i].p_memsz;
1193
n++;
1194
1195
/*
1196
* If this segment contains the program headers,
1197
* remember their virtual address for the AT_PHDR
1198
* aux entry. Static binaries don't usually include
1199
* a PT_PHDR entry.
1200
*/
1201
if (phdr[i].p_offset == 0 &&
1202
hdr->e_phoff + hdr->e_phnum * hdr->e_phentsize <=
1203
phdr[i].p_filesz)
1204
proghdr = phdr[i].p_vaddr + hdr->e_phoff;
1205
break;
1206
case PT_INTERP:
1207
/* Path to interpreter */
1208
if (interp != NULL) {
1209
uprintf("Multiple PT_INTERP headers\n");
1210
error = ENOEXEC;
1211
goto ret;
1212
}
1213
error = __elfN(get_interp)(imgp, &phdr[i], &interp,
1214
&free_interp);
1215
if (error != 0)
1216
goto ret;
1217
break;
1218
case PT_GNU_STACK:
1219
if (__elfN(nxstack)) {
1220
imgp->stack_prot =
1221
__elfN(trans_prot)(phdr[i].p_flags);
1222
if ((imgp->stack_prot & VM_PROT_RW) !=
1223
VM_PROT_RW) {
1224
uprintf("Invalid PT_GNU_STACK\n");
1225
error = ENOEXEC;
1226
goto ret;
1227
}
1228
}
1229
imgp->stack_sz = phdr[i].p_memsz;
1230
break;
1231
case PT_PHDR: /* Program header table info */
1232
proghdr = phdr[i].p_vaddr;
1233
break;
1234
}
1235
}
1236
1237
brand_info = __elfN(get_brandinfo)(imgp, interp, &osrel, &fctl0);
1238
if (brand_info == NULL) {
1239
uprintf("ELF binary type \"%u\" not known.\n",
1240
hdr->e_ident[EI_OSABI]);
1241
error = ENOEXEC;
1242
goto ret;
1243
}
1244
sv = brand_info->sysvec;
1245
if (hdr->e_type == ET_DYN) {
1246
if ((brand_info->flags & BI_CAN_EXEC_DYN) == 0) {
1247
uprintf("Cannot execute shared object\n");
1248
error = ENOEXEC;
1249
goto ret;
1250
}
1251
/*
1252
* Honour the base load address from the dso if it is
1253
* non-zero for some reason.
1254
*/
1255
if (baddr == 0) {
1256
if ((sv->sv_flags & SV_ASLR) == 0 ||
1257
(fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0)
1258
imgp->et_dyn_addr = __elfN(pie_base);
1259
else if ((__elfN(pie_aslr_enabled) &&
1260
(imgp->proc->p_flag2 & P2_ASLR_DISABLE) == 0) ||
1261
(imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0)
1262
imgp->et_dyn_addr = ET_DYN_ADDR_RAND;
1263
else
1264
imgp->et_dyn_addr = __elfN(pie_base);
1265
}
1266
}
1267
1268
/*
1269
* Avoid a possible deadlock if the current address space is destroyed
1270
* and that address space maps the locked vnode. In the common case,
1271
* the locked vnode's v_usecount is decremented but remains greater
1272
* than zero. Consequently, the vnode lock is not needed by vrele().
1273
* However, in cases where the vnode lock is external, such as nullfs,
1274
* v_usecount may become zero.
1275
*
1276
* The VV_TEXT flag prevents modifications to the executable while
1277
* the vnode is unlocked.
1278
*/
1279
VOP_UNLOCK(imgp->vp);
1280
1281
/*
1282
* Decide whether to enable randomization of user mappings.
1283
* First, reset user preferences for the setid binaries.
1284
* Then, account for the support of the randomization by the
1285
* ABI, by user preferences, and make special treatment for
1286
* PIE binaries.
1287
*/
1288
if (imgp->credential_setid) {
1289
PROC_LOCK(imgp->proc);
1290
imgp->proc->p_flag2 &= ~(P2_ASLR_ENABLE | P2_ASLR_DISABLE |
1291
P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC);
1292
PROC_UNLOCK(imgp->proc);
1293
}
1294
if ((sv->sv_flags & SV_ASLR) == 0 ||
1295
(imgp->proc->p_flag2 & P2_ASLR_DISABLE) != 0 ||
1296
(fctl0 & NT_FREEBSD_FCTL_ASLR_DISABLE) != 0) {
1297
KASSERT(imgp->et_dyn_addr != ET_DYN_ADDR_RAND,
1298
("imgp->et_dyn_addr == RAND and !ASLR"));
1299
} else if ((imgp->proc->p_flag2 & P2_ASLR_ENABLE) != 0 ||
1300
(__elfN(aslr_enabled) && hdr->e_type == ET_EXEC) ||
1301
imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1302
imgp->map_flags |= MAP_ASLR;
1303
/*
1304
* If user does not care about sbrk, utilize the bss
1305
* grow region for mappings as well. We can select
1306
* the base for the image anywere and still not suffer
1307
* from the fragmentation.
1308
*/
1309
if (!__elfN(aslr_honor_sbrk) ||
1310
(imgp->proc->p_flag2 & P2_ASLR_IGNSTART) != 0)
1311
imgp->map_flags |= MAP_ASLR_IGNSTART;
1312
if (__elfN(aslr_stack))
1313
imgp->map_flags |= MAP_ASLR_STACK;
1314
if (__elfN(aslr_shared_page))
1315
imgp->imgp_flags |= IMGP_ASLR_SHARED_PAGE;
1316
}
1317
1318
if ((!__elfN(allow_wx) && (fctl0 & NT_FREEBSD_FCTL_WXNEEDED) == 0 &&
1319
(imgp->proc->p_flag2 & P2_WXORX_DISABLE) == 0) ||
1320
(imgp->proc->p_flag2 & P2_WXORX_ENABLE_EXEC) != 0)
1321
imgp->map_flags |= MAP_WXORX;
1322
1323
error = exec_new_vmspace(imgp, sv);
1324
1325
imgp->proc->p_sysent = sv;
1326
imgp->proc->p_elf_brandinfo = brand_info;
1327
1328
vmspace = imgp->proc->p_vmspace;
1329
map = &vmspace->vm_map;
1330
maxv = sv->sv_usrstack;
1331
if ((imgp->map_flags & MAP_ASLR_STACK) == 0)
1332
maxv -= lim_max(td, RLIMIT_STACK);
1333
if (error == 0 && mapsz >= maxv - vm_map_min(map)) {
1334
uprintf("Excessive mapping size\n");
1335
error = ENOEXEC;
1336
}
1337
1338
if (error == 0 && imgp->et_dyn_addr == ET_DYN_ADDR_RAND) {
1339
KASSERT((map->flags & MAP_ASLR) != 0,
1340
("ET_DYN_ADDR_RAND but !MAP_ASLR"));
1341
error = __CONCAT(rnd_, __elfN(base))(map,
1342
vm_map_min(map) + mapsz + lim_max(td, RLIMIT_DATA),
1343
/* reserve half of the address space to interpreter */
1344
maxv / 2, maxalign, &imgp->et_dyn_addr);
1345
}
1346
1347
vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1348
if (error != 0)
1349
goto ret;
1350
1351
error = __elfN(load_sections)(imgp, hdr, phdr, imgp->et_dyn_addr, NULL);
1352
if (error != 0)
1353
goto ret;
1354
1355
error = __elfN(enforce_limits)(imgp, hdr, phdr);
1356
if (error != 0)
1357
goto ret;
1358
1359
/*
1360
* We load the dynamic linker where a userland call
1361
* to mmap(0, ...) would put it. The rationale behind this
1362
* calculation is that it leaves room for the heap to grow to
1363
* its maximum allowed size.
1364
*/
1365
addr = round_page((vm_offset_t)vmspace->vm_daddr + lim_max(td,
1366
RLIMIT_DATA));
1367
if ((map->flags & MAP_ASLR) != 0) {
1368
maxv1 = maxv / 2 + addr / 2;
1369
error = __CONCAT(rnd_, __elfN(base))(map, addr, maxv1,
1370
#if VM_NRESERVLEVEL > 0
1371
pagesizes[VM_NRESERVLEVEL] != 0 ?
1372
/* Align anon_loc to the largest superpage size. */
1373
pagesizes[VM_NRESERVLEVEL] :
1374
#endif
1375
pagesizes[0], &anon_loc);
1376
if (error != 0)
1377
goto ret;
1378
map->anon_loc = anon_loc;
1379
} else {
1380
map->anon_loc = addr;
1381
}
1382
1383
entry = (u_long)hdr->e_entry + imgp->et_dyn_addr;
1384
imgp->entry_addr = entry;
1385
1386
if (sv->sv_protect != NULL)
1387
sv->sv_protect(imgp, SVP_IMAGE);
1388
1389
if (interp != NULL) {
1390
VOP_UNLOCK(imgp->vp);
1391
if ((map->flags & MAP_ASLR) != 0) {
1392
/* Assume that interpreter fits into 1/4 of AS */
1393
maxv1 = maxv / 2 + addr / 2;
1394
error = __CONCAT(rnd_, __elfN(base))(map, addr,
1395
maxv1, PAGE_SIZE, &addr);
1396
}
1397
if (error == 0) {
1398
error = __elfN(load_interp)(imgp, brand_info, interp,
1399
&addr, &imgp->entry_addr);
1400
}
1401
vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1402
if (error != 0)
1403
goto ret;
1404
} else
1405
addr = imgp->et_dyn_addr;
1406
1407
error = exec_map_stack(imgp);
1408
if (error != 0)
1409
goto ret;
1410
1411
/*
1412
* Construct auxargs table (used by the copyout_auxargs routine)
1413
*/
1414
elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_NOWAIT);
1415
if (elf_auxargs == NULL) {
1416
VOP_UNLOCK(imgp->vp);
1417
elf_auxargs = malloc(sizeof(Elf_Auxargs), M_TEMP, M_WAITOK);
1418
vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
1419
}
1420
elf_auxargs->execfd = -1;
1421
elf_auxargs->phdr = proghdr + imgp->et_dyn_addr;
1422
elf_auxargs->phent = hdr->e_phentsize;
1423
elf_auxargs->phnum = hdr->e_phnum;
1424
elf_auxargs->pagesz = PAGE_SIZE;
1425
elf_auxargs->base = addr;
1426
elf_auxargs->flags = 0;
1427
elf_auxargs->entry = entry;
1428
elf_auxargs->hdr_eflags = hdr->e_flags;
1429
1430
imgp->auxargs = elf_auxargs;
1431
imgp->interpreted = 0;
1432
imgp->reloc_base = addr;
1433
imgp->proc->p_osrel = osrel;
1434
imgp->proc->p_fctl0 = fctl0;
1435
imgp->proc->p_elf_flags = hdr->e_flags;
1436
1437
ret:
1438
ASSERT_VOP_LOCKED(imgp->vp, "skipped relock");
1439
if (free_interp)
1440
free(interp, M_TEMP);
1441
return (error);
1442
}
1443
1444
#define elf_suword __CONCAT(suword, __ELF_WORD_SIZE)
1445
1446
int
1447
__elfN(freebsd_copyout_auxargs)(struct image_params *imgp, uintptr_t base)
1448
{
1449
Elf_Auxargs *args = (Elf_Auxargs *)imgp->auxargs;
1450
Elf_Auxinfo *argarray, *pos;
1451
struct vmspace *vmspace;
1452
rlim_t stacksz;
1453
int error, oc;
1454
uint32_t bsdflags;
1455
1456
argarray = pos = malloc(AT_COUNT * sizeof(*pos), M_TEMP,
1457
M_WAITOK | M_ZERO);
1458
1459
vmspace = imgp->proc->p_vmspace;
1460
1461
if (args->execfd != -1)
1462
AUXARGS_ENTRY(pos, AT_EXECFD, args->execfd);
1463
AUXARGS_ENTRY(pos, AT_PHDR, args->phdr);
1464
AUXARGS_ENTRY(pos, AT_PHENT, args->phent);
1465
AUXARGS_ENTRY(pos, AT_PHNUM, args->phnum);
1466
AUXARGS_ENTRY(pos, AT_PAGESZ, args->pagesz);
1467
AUXARGS_ENTRY(pos, AT_FLAGS, args->flags);
1468
AUXARGS_ENTRY(pos, AT_ENTRY, args->entry);
1469
AUXARGS_ENTRY(pos, AT_BASE, args->base);
1470
AUXARGS_ENTRY(pos, AT_EHDRFLAGS, args->hdr_eflags);
1471
if (imgp->execpathp != 0)
1472
AUXARGS_ENTRY_PTR(pos, AT_EXECPATH, imgp->execpathp);
1473
AUXARGS_ENTRY(pos, AT_OSRELDATE,
1474
imgp->proc->p_ucred->cr_prison->pr_osreldate);
1475
if (imgp->canary != 0) {
1476
AUXARGS_ENTRY_PTR(pos, AT_CANARY, imgp->canary);
1477
AUXARGS_ENTRY(pos, AT_CANARYLEN, imgp->canarylen);
1478
}
1479
AUXARGS_ENTRY(pos, AT_NCPUS, mp_ncpus);
1480
if (imgp->pagesizes != 0) {
1481
AUXARGS_ENTRY_PTR(pos, AT_PAGESIZES, imgp->pagesizes);
1482
AUXARGS_ENTRY(pos, AT_PAGESIZESLEN, imgp->pagesizeslen);
1483
}
1484
if ((imgp->sysent->sv_flags & SV_TIMEKEEP) != 0) {
1485
AUXARGS_ENTRY(pos, AT_TIMEKEEP,
1486
vmspace->vm_shp_base + imgp->sysent->sv_timekeep_offset);
1487
}
1488
AUXARGS_ENTRY(pos, AT_STACKPROT, imgp->sysent->sv_shared_page_obj
1489
!= NULL && imgp->stack_prot != 0 ? imgp->stack_prot :
1490
imgp->sysent->sv_stackprot);
1491
if (imgp->sysent->sv_hwcap != NULL)
1492
AUXARGS_ENTRY(pos, AT_HWCAP, *imgp->sysent->sv_hwcap);
1493
if (imgp->sysent->sv_hwcap2 != NULL)
1494
AUXARGS_ENTRY(pos, AT_HWCAP2, *imgp->sysent->sv_hwcap2);
1495
if (imgp->sysent->sv_hwcap3 != NULL)
1496
AUXARGS_ENTRY(pos, AT_HWCAP3, *imgp->sysent->sv_hwcap3);
1497
if (imgp->sysent->sv_hwcap4 != NULL)
1498
AUXARGS_ENTRY(pos, AT_HWCAP4, *imgp->sysent->sv_hwcap4);
1499
bsdflags = 0;
1500
bsdflags |= __elfN(sigfastblock) ? ELF_BSDF_SIGFASTBLK : 0;
1501
oc = atomic_load_int(&vm_overcommit);
1502
bsdflags |= (oc & (SWAP_RESERVE_FORCE_ON | SWAP_RESERVE_RLIMIT_ON)) !=
1503
0 ? ELF_BSDF_VMNOOVERCOMMIT : 0;
1504
AUXARGS_ENTRY(pos, AT_BSDFLAGS, bsdflags);
1505
AUXARGS_ENTRY(pos, AT_ARGC, imgp->args->argc);
1506
AUXARGS_ENTRY_PTR(pos, AT_ARGV, imgp->argv);
1507
AUXARGS_ENTRY(pos, AT_ENVC, imgp->args->envc);
1508
AUXARGS_ENTRY_PTR(pos, AT_ENVV, imgp->envv);
1509
AUXARGS_ENTRY_PTR(pos, AT_PS_STRINGS, imgp->ps_strings);
1510
#ifdef RANDOM_FENESTRASX
1511
if ((imgp->sysent->sv_flags & SV_RNG_SEED_VER) != 0) {
1512
AUXARGS_ENTRY(pos, AT_FXRNG,
1513
vmspace->vm_shp_base + imgp->sysent->sv_fxrng_gen_offset);
1514
}
1515
#endif
1516
if ((imgp->sysent->sv_flags & SV_DSO_SIG) != 0 && __elfN(vdso) != 0) {
1517
AUXARGS_ENTRY(pos, AT_KPRELOAD,
1518
vmspace->vm_shp_base + imgp->sysent->sv_vdso_offset);
1519
}
1520
AUXARGS_ENTRY(pos, AT_USRSTACKBASE, round_page(vmspace->vm_stacktop));
1521
stacksz = imgp->proc->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
1522
AUXARGS_ENTRY(pos, AT_USRSTACKLIM, stacksz);
1523
AUXARGS_ENTRY(pos, AT_NULL, 0);
1524
1525
free(imgp->auxargs, M_TEMP);
1526
imgp->auxargs = NULL;
1527
KASSERT(pos - argarray <= AT_COUNT, ("Too many auxargs"));
1528
1529
error = copyout(argarray, (void *)base, sizeof(*argarray) * AT_COUNT);
1530
free(argarray, M_TEMP);
1531
return (error);
1532
}
1533
1534
int
1535
__elfN(freebsd_fixup)(uintptr_t *stack_base, struct image_params *imgp)
1536
{
1537
Elf_Addr *base;
1538
1539
base = (Elf_Addr *)*stack_base;
1540
base--;
1541
if (elf_suword(base, imgp->args->argc) == -1)
1542
return (EFAULT);
1543
*stack_base = (uintptr_t)base;
1544
return (0);
1545
}
1546
1547
/*
1548
* Code for generating ELF core dumps.
1549
*/
1550
1551
typedef void (*segment_callback)(vm_map_entry_t, void *);
1552
1553
/* Closure for cb_put_phdr(). */
1554
struct phdr_closure {
1555
Elf_Phdr *phdr; /* Program header to fill in */
1556
Elf_Off offset; /* Offset of segment in core file */
1557
};
1558
1559
struct note_info {
1560
int type; /* Note type. */
1561
struct regset *regset; /* Register set. */
1562
outfunc_t outfunc; /* Output function. */
1563
void *outarg; /* Argument for the output function. */
1564
size_t outsize; /* Output size. */
1565
TAILQ_ENTRY(note_info) link; /* Link to the next note info. */
1566
};
1567
1568
TAILQ_HEAD(note_info_list, note_info);
1569
1570
static void cb_put_phdr(vm_map_entry_t, void *);
1571
static void cb_size_segment(vm_map_entry_t, void *);
1572
static void each_dumpable_segment(struct thread *, segment_callback, void *,
1573
int);
1574
static int __elfN(corehdr)(struct coredump_params *, int, void *, size_t,
1575
struct note_info_list *, size_t, int);
1576
static void __elfN(putnote)(struct thread *td, struct note_info *, struct sbuf *);
1577
1578
static void __elfN(note_prpsinfo)(void *, struct sbuf *, size_t *);
1579
static void __elfN(note_threadmd)(void *, struct sbuf *, size_t *);
1580
static void __elfN(note_procstat_auxv)(void *, struct sbuf *, size_t *);
1581
static void __elfN(note_procstat_proc)(void *, struct sbuf *, size_t *);
1582
static void __elfN(note_procstat_psstrings)(void *, struct sbuf *, size_t *);
1583
static void __elfN(note_procstat_kqueues)(void *, struct sbuf *, size_t *);
1584
static void note_procstat_files(void *, struct sbuf *, size_t *);
1585
static void note_procstat_groups(void *, struct sbuf *, size_t *);
1586
static void note_procstat_osrel(void *, struct sbuf *, size_t *);
1587
static void note_procstat_rlimit(void *, struct sbuf *, size_t *);
1588
static void note_procstat_umask(void *, struct sbuf *, size_t *);
1589
static void note_procstat_vmmap(void *, struct sbuf *, size_t *);
1590
1591
static int
1592
core_compressed_write(void *base, size_t len, off_t offset, void *arg)
1593
{
1594
1595
return (core_write((struct coredump_params *)arg, base, len, offset,
1596
UIO_SYSSPACE, NULL));
1597
}
1598
1599
int
1600
__elfN(coredump)(struct thread *td, struct coredump_writer *cdw, off_t limit, int flags)
1601
{
1602
struct ucred *cred = td->td_ucred;
1603
int compm, error = 0;
1604
struct sseg_closure seginfo;
1605
struct note_info_list notelst;
1606
struct coredump_params params;
1607
struct note_info *ninfo;
1608
void *hdr, *tmpbuf;
1609
size_t hdrsize, notesz, coresize;
1610
1611
hdr = NULL;
1612
tmpbuf = NULL;
1613
TAILQ_INIT(&notelst);
1614
1615
/* Size the program segments. */
1616
__elfN(size_segments)(td, &seginfo, flags);
1617
1618
/*
1619
* Collect info about the core file header area.
1620
*/
1621
hdrsize = sizeof(Elf_Ehdr) + sizeof(Elf_Phdr) * (1 + seginfo.count);
1622
if (seginfo.count + 1 >= PN_XNUM)
1623
hdrsize += sizeof(Elf_Shdr);
1624
td->td_proc->p_sysent->sv_elf_core_prepare_notes(td, &notelst, &notesz);
1625
coresize = round_page(hdrsize + notesz) + seginfo.size;
1626
1627
/* Set up core dump parameters. */
1628
params.offset = 0;
1629
params.active_cred = cred;
1630
params.td = td;
1631
params.cdw = cdw;
1632
params.comp = NULL;
1633
1634
#ifdef RACCT
1635
if (racct_enable) {
1636
PROC_LOCK(td->td_proc);
1637
error = racct_add(td->td_proc, RACCT_CORE, coresize);
1638
PROC_UNLOCK(td->td_proc);
1639
if (error != 0) {
1640
error = EFAULT;
1641
goto done;
1642
}
1643
}
1644
#endif
1645
if (coresize >= limit) {
1646
error = EFAULT;
1647
goto done;
1648
}
1649
1650
/* Create a compression stream if necessary. */
1651
compm = compress_user_cores;
1652
if ((flags & (SVC_PT_COREDUMP | SVC_NOCOMPRESS)) == SVC_PT_COREDUMP &&
1653
compm == 0)
1654
compm = COMPRESS_GZIP;
1655
if (compm != 0) {
1656
params.comp = compressor_init(core_compressed_write,
1657
compm, CORE_BUF_SIZE,
1658
compress_user_cores_level, &params);
1659
if (params.comp == NULL) {
1660
error = EFAULT;
1661
goto done;
1662
}
1663
tmpbuf = malloc(CORE_BUF_SIZE, M_TEMP, M_WAITOK | M_ZERO);
1664
}
1665
1666
if (cdw->init_fn != NULL) {
1667
error = (*cdw->init_fn)(cdw, &params);
1668
if (error != 0)
1669
goto done;
1670
}
1671
1672
/*
1673
* Allocate memory for building the header, fill it up,
1674
* and write it out following the notes.
1675
*/
1676
hdr = malloc(hdrsize, M_TEMP, M_WAITOK);
1677
error = __elfN(corehdr)(&params, seginfo.count, hdr, hdrsize, &notelst,
1678
notesz, flags);
1679
1680
/* Write the contents of all of the writable segments. */
1681
if (error == 0) {
1682
Elf_Phdr *php;
1683
off_t offset;
1684
int i;
1685
1686
php = (Elf_Phdr *)((char *)hdr + sizeof(Elf_Ehdr)) + 1;
1687
offset = round_page(hdrsize + notesz);
1688
for (i = 0; i < seginfo.count; i++) {
1689
error = core_output((char *)(uintptr_t)php->p_vaddr,
1690
php->p_filesz, offset, &params, tmpbuf);
1691
if (error != 0)
1692
break;
1693
offset += php->p_filesz;
1694
php++;
1695
}
1696
if (error == 0 && params.comp != NULL)
1697
error = compressor_flush(params.comp);
1698
}
1699
if (error) {
1700
log(LOG_WARNING,
1701
"Failed to write core file for process %s (error %d)\n",
1702
curproc->p_comm, error);
1703
}
1704
1705
done:
1706
free(tmpbuf, M_TEMP);
1707
if (params.comp != NULL)
1708
compressor_fini(params.comp);
1709
while ((ninfo = TAILQ_FIRST(&notelst)) != NULL) {
1710
TAILQ_REMOVE(&notelst, ninfo, link);
1711
free(ninfo, M_TEMP);
1712
}
1713
if (hdr != NULL)
1714
free(hdr, M_TEMP);
1715
1716
return (error);
1717
}
1718
1719
/*
1720
* A callback for each_dumpable_segment() to write out the segment's
1721
* program header entry.
1722
*/
1723
static void
1724
cb_put_phdr(vm_map_entry_t entry, void *closure)
1725
{
1726
struct phdr_closure *phc = (struct phdr_closure *)closure;
1727
Elf_Phdr *phdr = phc->phdr;
1728
1729
phc->offset = round_page(phc->offset);
1730
1731
phdr->p_type = PT_LOAD;
1732
phdr->p_offset = phc->offset;
1733
phdr->p_vaddr = entry->start;
1734
phdr->p_paddr = 0;
1735
phdr->p_filesz = phdr->p_memsz = entry->end - entry->start;
1736
phdr->p_align = PAGE_SIZE;
1737
phdr->p_flags = __elfN(untrans_prot)(entry->protection);
1738
1739
phc->offset += phdr->p_filesz;
1740
phc->phdr++;
1741
}
1742
1743
/*
1744
* A callback for each_dumpable_segment() to gather information about
1745
* the number of segments and their total size.
1746
*/
1747
static void
1748
cb_size_segment(vm_map_entry_t entry, void *closure)
1749
{
1750
struct sseg_closure *ssc = (struct sseg_closure *)closure;
1751
1752
ssc->count++;
1753
ssc->size += entry->end - entry->start;
1754
}
1755
1756
void
1757
__elfN(size_segments)(struct thread *td, struct sseg_closure *seginfo,
1758
int flags)
1759
{
1760
seginfo->count = 0;
1761
seginfo->size = 0;
1762
1763
each_dumpable_segment(td, cb_size_segment, seginfo, flags);
1764
}
1765
1766
/*
1767
* For each writable segment in the process's memory map, call the given
1768
* function with a pointer to the map entry and some arbitrary
1769
* caller-supplied data.
1770
*/
1771
static void
1772
each_dumpable_segment(struct thread *td, segment_callback func, void *closure,
1773
int flags)
1774
{
1775
struct proc *p = td->td_proc;
1776
vm_map_t map = &p->p_vmspace->vm_map;
1777
vm_map_entry_t entry;
1778
vm_object_t backing_object, object;
1779
bool ignore_entry;
1780
1781
vm_map_lock_read(map);
1782
VM_MAP_ENTRY_FOREACH(entry, map) {
1783
/*
1784
* Don't dump inaccessible mappings, deal with legacy
1785
* coredump mode.
1786
*
1787
* Note that read-only segments related to the elf binary
1788
* are marked MAP_ENTRY_NOCOREDUMP now so we no longer
1789
* need to arbitrarily ignore such segments.
1790
*/
1791
if ((flags & SVC_ALL) == 0) {
1792
if (elf_legacy_coredump) {
1793
if ((entry->protection & VM_PROT_RW) !=
1794
VM_PROT_RW)
1795
continue;
1796
} else {
1797
if ((entry->protection & VM_PROT_ALL) == 0)
1798
continue;
1799
}
1800
}
1801
1802
/*
1803
* Dont include memory segment in the coredump if
1804
* MAP_NOCORE is set in mmap(2) or MADV_NOCORE in
1805
* madvise(2). Do not dump submaps (i.e. parts of the
1806
* kernel map).
1807
*/
1808
if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
1809
continue;
1810
if ((entry->eflags & MAP_ENTRY_NOCOREDUMP) != 0 &&
1811
(flags & SVC_ALL) == 0)
1812
continue;
1813
if ((object = entry->object.vm_object) == NULL)
1814
continue;
1815
1816
/* Ignore memory-mapped devices and such things. */
1817
VM_OBJECT_RLOCK(object);
1818
while ((backing_object = object->backing_object) != NULL) {
1819
VM_OBJECT_RLOCK(backing_object);
1820
VM_OBJECT_RUNLOCK(object);
1821
object = backing_object;
1822
}
1823
ignore_entry = (object->flags & OBJ_FICTITIOUS) != 0;
1824
VM_OBJECT_RUNLOCK(object);
1825
if (ignore_entry)
1826
continue;
1827
1828
(*func)(entry, closure);
1829
}
1830
vm_map_unlock_read(map);
1831
}
1832
1833
/*
1834
* Write the core file header to the file, including padding up to
1835
* the page boundary.
1836
*/
1837
static int
1838
__elfN(corehdr)(struct coredump_params *p, int numsegs, void *hdr,
1839
size_t hdrsize, struct note_info_list *notelst, size_t notesz,
1840
int flags)
1841
{
1842
struct note_info *ninfo;
1843
struct sbuf *sb;
1844
int error;
1845
1846
/* Fill in the header. */
1847
bzero(hdr, hdrsize);
1848
__elfN(puthdr)(p->td, hdr, hdrsize, numsegs, notesz, flags);
1849
1850
sb = sbuf_new(NULL, NULL, CORE_BUF_SIZE, SBUF_FIXEDLEN);
1851
sbuf_set_drain(sb, sbuf_drain_core_output, p);
1852
sbuf_start_section(sb, NULL);
1853
sbuf_bcat(sb, hdr, hdrsize);
1854
TAILQ_FOREACH(ninfo, notelst, link)
1855
__elfN(putnote)(p->td, ninfo, sb);
1856
/* Align up to a page boundary for the program segments. */
1857
sbuf_end_section(sb, -1, PAGE_SIZE, 0);
1858
error = sbuf_finish(sb);
1859
sbuf_delete(sb);
1860
1861
return (error);
1862
}
1863
1864
void
1865
__elfN(prepare_notes)(struct thread *td, struct note_info_list *list,
1866
size_t *sizep)
1867
{
1868
struct proc *p;
1869
struct thread *thr;
1870
size_t size;
1871
1872
p = td->td_proc;
1873
size = 0;
1874
1875
size += __elfN(register_note)(td, list, NT_PRPSINFO,
1876
__elfN(note_prpsinfo), p);
1877
1878
/*
1879
* To have the debugger select the right thread (LWP) as the initial
1880
* thread, we dump the state of the thread passed to us in td first.
1881
* This is the thread that causes the core dump and thus likely to
1882
* be the right thread one wants to have selected in the debugger.
1883
*/
1884
thr = td;
1885
while (thr != NULL) {
1886
size += __elfN(prepare_register_notes)(td, list, thr);
1887
size += __elfN(register_note)(td, list, -1,
1888
__elfN(note_threadmd), thr);
1889
1890
thr = thr == td ? TAILQ_FIRST(&p->p_threads) :
1891
TAILQ_NEXT(thr, td_plist);
1892
if (thr == td)
1893
thr = TAILQ_NEXT(thr, td_plist);
1894
}
1895
1896
size += __elfN(register_note)(td, list, NT_PROCSTAT_PROC,
1897
__elfN(note_procstat_proc), p);
1898
size += __elfN(register_note)(td, list, NT_PROCSTAT_FILES,
1899
note_procstat_files, p);
1900
size += __elfN(register_note)(td, list, NT_PROCSTAT_VMMAP,
1901
note_procstat_vmmap, p);
1902
size += __elfN(register_note)(td, list, NT_PROCSTAT_GROUPS,
1903
note_procstat_groups, p);
1904
size += __elfN(register_note)(td, list, NT_PROCSTAT_UMASK,
1905
note_procstat_umask, p);
1906
size += __elfN(register_note)(td, list, NT_PROCSTAT_RLIMIT,
1907
note_procstat_rlimit, p);
1908
size += __elfN(register_note)(td, list, NT_PROCSTAT_OSREL,
1909
note_procstat_osrel, p);
1910
size += __elfN(register_note)(td, list, NT_PROCSTAT_PSSTRINGS,
1911
__elfN(note_procstat_psstrings), p);
1912
size += __elfN(register_note)(td, list, NT_PROCSTAT_AUXV,
1913
__elfN(note_procstat_auxv), p);
1914
size += __elfN(register_note)(td, list, NT_PROCSTAT_KQUEUES,
1915
__elfN(note_procstat_kqueues), p);
1916
1917
*sizep = size;
1918
}
1919
1920
void
1921
__elfN(puthdr)(struct thread *td, void *hdr, size_t hdrsize, int numsegs,
1922
size_t notesz, int flags)
1923
{
1924
Elf_Ehdr *ehdr;
1925
Elf_Phdr *phdr;
1926
Elf_Shdr *shdr;
1927
struct phdr_closure phc;
1928
Elf_Brandinfo *bi;
1929
1930
ehdr = (Elf_Ehdr *)hdr;
1931
bi = td->td_proc->p_elf_brandinfo;
1932
1933
ehdr->e_ident[EI_MAG0] = ELFMAG0;
1934
ehdr->e_ident[EI_MAG1] = ELFMAG1;
1935
ehdr->e_ident[EI_MAG2] = ELFMAG2;
1936
ehdr->e_ident[EI_MAG3] = ELFMAG3;
1937
ehdr->e_ident[EI_CLASS] = ELF_CLASS;
1938
ehdr->e_ident[EI_DATA] = ELF_DATA;
1939
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1940
ehdr->e_ident[EI_OSABI] = td->td_proc->p_sysent->sv_elf_core_osabi;
1941
ehdr->e_ident[EI_ABIVERSION] = 0;
1942
ehdr->e_ident[EI_PAD] = 0;
1943
ehdr->e_type = ET_CORE;
1944
ehdr->e_machine = bi->machine;
1945
ehdr->e_version = EV_CURRENT;
1946
ehdr->e_entry = 0;
1947
ehdr->e_phoff = sizeof(Elf_Ehdr);
1948
ehdr->e_flags = td->td_proc->p_elf_flags;
1949
ehdr->e_ehsize = sizeof(Elf_Ehdr);
1950
ehdr->e_phentsize = sizeof(Elf_Phdr);
1951
ehdr->e_shentsize = sizeof(Elf_Shdr);
1952
ehdr->e_shstrndx = SHN_UNDEF;
1953
if (numsegs + 1 < PN_XNUM) {
1954
ehdr->e_phnum = numsegs + 1;
1955
ehdr->e_shnum = 0;
1956
} else {
1957
ehdr->e_phnum = PN_XNUM;
1958
ehdr->e_shnum = 1;
1959
1960
ehdr->e_shoff = ehdr->e_phoff +
1961
(numsegs + 1) * ehdr->e_phentsize;
1962
KASSERT(ehdr->e_shoff == hdrsize - sizeof(Elf_Shdr),
1963
("e_shoff: %zu, hdrsize - shdr: %zu",
1964
(size_t)ehdr->e_shoff, hdrsize - sizeof(Elf_Shdr)));
1965
1966
shdr = (Elf_Shdr *)((char *)hdr + ehdr->e_shoff);
1967
memset(shdr, 0, sizeof(*shdr));
1968
/*
1969
* A special first section is used to hold large segment and
1970
* section counts. This was proposed by Sun Microsystems in
1971
* Solaris and has been adopted by Linux; the standard ELF
1972
* tools are already familiar with the technique.
1973
*
1974
* See table 7-7 of the Solaris "Linker and Libraries Guide"
1975
* (or 12-7 depending on the version of the document) for more
1976
* details.
1977
*/
1978
shdr->sh_type = SHT_NULL;
1979
shdr->sh_size = ehdr->e_shnum;
1980
shdr->sh_link = ehdr->e_shstrndx;
1981
shdr->sh_info = numsegs + 1;
1982
}
1983
1984
/*
1985
* Fill in the program header entries.
1986
*/
1987
phdr = (Elf_Phdr *)((char *)hdr + ehdr->e_phoff);
1988
1989
/* The note segement. */
1990
phdr->p_type = PT_NOTE;
1991
phdr->p_offset = hdrsize;
1992
phdr->p_vaddr = 0;
1993
phdr->p_paddr = 0;
1994
phdr->p_filesz = notesz;
1995
phdr->p_memsz = 0;
1996
phdr->p_flags = PF_R;
1997
phdr->p_align = ELF_NOTE_ROUNDSIZE;
1998
phdr++;
1999
2000
/* All the writable segments from the program. */
2001
phc.phdr = phdr;
2002
phc.offset = round_page(hdrsize + notesz);
2003
each_dumpable_segment(td, cb_put_phdr, &phc, flags);
2004
}
2005
2006
static size_t
2007
__elfN(register_regset_note)(struct thread *td, struct note_info_list *list,
2008
struct regset *regset, struct thread *target_td)
2009
{
2010
const struct sysentvec *sv;
2011
struct note_info *ninfo;
2012
size_t size, notesize;
2013
2014
size = 0;
2015
if (!regset->get(regset, target_td, NULL, &size) || size == 0)
2016
return (0);
2017
2018
ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2019
ninfo->type = regset->note;
2020
ninfo->regset = regset;
2021
ninfo->outarg = target_td;
2022
ninfo->outsize = size;
2023
TAILQ_INSERT_TAIL(list, ninfo, link);
2024
2025
sv = td->td_proc->p_sysent;
2026
notesize = sizeof(Elf_Note) + /* note header */
2027
roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2028
/* note name */
2029
roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
2030
2031
return (notesize);
2032
}
2033
2034
size_t
2035
__elfN(register_note)(struct thread *td, struct note_info_list *list,
2036
int type, outfunc_t out, void *arg)
2037
{
2038
const struct sysentvec *sv;
2039
struct note_info *ninfo;
2040
size_t size, notesize;
2041
2042
sv = td->td_proc->p_sysent;
2043
size = 0;
2044
out(arg, NULL, &size);
2045
ninfo = malloc(sizeof(*ninfo), M_TEMP, M_ZERO | M_WAITOK);
2046
ninfo->type = type;
2047
ninfo->outfunc = out;
2048
ninfo->outarg = arg;
2049
ninfo->outsize = size;
2050
TAILQ_INSERT_TAIL(list, ninfo, link);
2051
2052
if (type == -1)
2053
return (size);
2054
2055
notesize = sizeof(Elf_Note) + /* note header */
2056
roundup2(strlen(sv->sv_elf_core_abi_vendor) + 1, ELF_NOTE_ROUNDSIZE) +
2057
/* note name */
2058
roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
2059
2060
return (notesize);
2061
}
2062
2063
static size_t
2064
append_note_data(const void *src, void *dst, size_t len)
2065
{
2066
size_t padded_len;
2067
2068
padded_len = roundup2(len, ELF_NOTE_ROUNDSIZE);
2069
if (dst != NULL) {
2070
bcopy(src, dst, len);
2071
bzero((char *)dst + len, padded_len - len);
2072
}
2073
return (padded_len);
2074
}
2075
2076
size_t
2077
__elfN(populate_note)(int type, void *src, void *dst, size_t size, void **descp)
2078
{
2079
Elf_Note *note;
2080
char *buf;
2081
size_t notesize;
2082
2083
buf = dst;
2084
if (buf != NULL) {
2085
note = (Elf_Note *)buf;
2086
note->n_namesz = sizeof(FREEBSD_ABI_VENDOR);
2087
note->n_descsz = size;
2088
note->n_type = type;
2089
buf += sizeof(*note);
2090
buf += append_note_data(FREEBSD_ABI_VENDOR, buf,
2091
sizeof(FREEBSD_ABI_VENDOR));
2092
append_note_data(src, buf, size);
2093
if (descp != NULL)
2094
*descp = buf;
2095
}
2096
2097
notesize = sizeof(Elf_Note) + /* note header */
2098
roundup2(sizeof(FREEBSD_ABI_VENDOR), ELF_NOTE_ROUNDSIZE) +
2099
/* note name */
2100
roundup2(size, ELF_NOTE_ROUNDSIZE); /* note description */
2101
2102
return (notesize);
2103
}
2104
2105
static void
2106
__elfN(putnote)(struct thread *td, struct note_info *ninfo, struct sbuf *sb)
2107
{
2108
Elf_Note note;
2109
const struct sysentvec *sv;
2110
ssize_t old_len, sect_len;
2111
size_t new_len, descsz, i;
2112
2113
if (ninfo->type == -1) {
2114
ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2115
return;
2116
}
2117
2118
sv = td->td_proc->p_sysent;
2119
2120
note.n_namesz = strlen(sv->sv_elf_core_abi_vendor) + 1;
2121
note.n_descsz = ninfo->outsize;
2122
note.n_type = ninfo->type;
2123
2124
sbuf_bcat(sb, &note, sizeof(note));
2125
sbuf_start_section(sb, &old_len);
2126
sbuf_bcat(sb, sv->sv_elf_core_abi_vendor,
2127
strlen(sv->sv_elf_core_abi_vendor) + 1);
2128
sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2129
if (note.n_descsz == 0)
2130
return;
2131
sbuf_start_section(sb, &old_len);
2132
if (ninfo->regset != NULL) {
2133
struct regset *regset = ninfo->regset;
2134
void *buf;
2135
2136
buf = malloc(ninfo->outsize, M_TEMP, M_ZERO | M_WAITOK);
2137
(void)regset->get(regset, ninfo->outarg, buf, &ninfo->outsize);
2138
sbuf_bcat(sb, buf, ninfo->outsize);
2139
free(buf, M_TEMP);
2140
} else
2141
ninfo->outfunc(ninfo->outarg, sb, &ninfo->outsize);
2142
sect_len = sbuf_end_section(sb, old_len, ELF_NOTE_ROUNDSIZE, 0);
2143
if (sect_len < 0)
2144
return;
2145
2146
new_len = (size_t)sect_len;
2147
descsz = roundup(note.n_descsz, ELF_NOTE_ROUNDSIZE);
2148
if (new_len < descsz) {
2149
/*
2150
* It is expected that individual note emitters will correctly
2151
* predict their expected output size and fill up to that size
2152
* themselves, padding in a format-specific way if needed.
2153
* However, in case they don't, just do it here with zeros.
2154
*/
2155
for (i = 0; i < descsz - new_len; i++)
2156
sbuf_putc(sb, 0);
2157
} else if (new_len > descsz) {
2158
/*
2159
* We can't always truncate sb -- we may have drained some
2160
* of it already.
2161
*/
2162
KASSERT(new_len == descsz, ("%s: Note type %u changed as we "
2163
"read it (%zu > %zu). Since it is longer than "
2164
"expected, this coredump's notes are corrupt. THIS "
2165
"IS A BUG in the note_procstat routine for type %u.\n",
2166
__func__, (unsigned)note.n_type, new_len, descsz,
2167
(unsigned)note.n_type));
2168
}
2169
}
2170
2171
/*
2172
* Miscellaneous note out functions.
2173
*/
2174
2175
#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2176
#include <compat/freebsd32/freebsd32.h>
2177
#include <compat/freebsd32/freebsd32_signal.h>
2178
2179
typedef struct prstatus32 elf_prstatus_t;
2180
typedef struct prpsinfo32 elf_prpsinfo_t;
2181
typedef struct fpreg32 elf_prfpregset_t;
2182
typedef struct fpreg32 elf_fpregset_t;
2183
typedef struct reg32 elf_gregset_t;
2184
typedef struct thrmisc32 elf_thrmisc_t;
2185
typedef struct ptrace_lwpinfo32 elf_lwpinfo_t;
2186
#define ELF_KERN_PROC_MASK KERN_PROC_MASK32
2187
typedef struct kinfo_proc32 elf_kinfo_proc_t;
2188
typedef uint32_t elf_ps_strings_t;
2189
#else
2190
typedef prstatus_t elf_prstatus_t;
2191
typedef prpsinfo_t elf_prpsinfo_t;
2192
typedef prfpregset_t elf_prfpregset_t;
2193
typedef prfpregset_t elf_fpregset_t;
2194
typedef gregset_t elf_gregset_t;
2195
typedef thrmisc_t elf_thrmisc_t;
2196
typedef struct ptrace_lwpinfo elf_lwpinfo_t;
2197
#define ELF_KERN_PROC_MASK 0
2198
typedef struct kinfo_proc elf_kinfo_proc_t;
2199
typedef vm_offset_t elf_ps_strings_t;
2200
#endif
2201
2202
static void
2203
__elfN(note_prpsinfo)(void *arg, struct sbuf *sb, size_t *sizep)
2204
{
2205
struct sbuf sbarg;
2206
size_t len;
2207
char *cp, *end;
2208
struct proc *p;
2209
elf_prpsinfo_t *psinfo;
2210
int error;
2211
2212
p = arg;
2213
if (sb != NULL) {
2214
KASSERT(*sizep == sizeof(*psinfo), ("invalid size"));
2215
psinfo = malloc(sizeof(*psinfo), M_TEMP, M_ZERO | M_WAITOK);
2216
psinfo->pr_version = PRPSINFO_VERSION;
2217
psinfo->pr_psinfosz = sizeof(elf_prpsinfo_t);
2218
strlcpy(psinfo->pr_fname, p->p_comm, sizeof(psinfo->pr_fname));
2219
PROC_LOCK(p);
2220
if (p->p_args != NULL) {
2221
len = sizeof(psinfo->pr_psargs) - 1;
2222
if (len > p->p_args->ar_length)
2223
len = p->p_args->ar_length;
2224
memcpy(psinfo->pr_psargs, p->p_args->ar_args, len);
2225
PROC_UNLOCK(p);
2226
error = 0;
2227
} else {
2228
_PHOLD(p);
2229
PROC_UNLOCK(p);
2230
sbuf_new(&sbarg, psinfo->pr_psargs,
2231
sizeof(psinfo->pr_psargs), SBUF_FIXEDLEN);
2232
error = proc_getargv(curthread, p, &sbarg);
2233
PRELE(p);
2234
if (sbuf_finish(&sbarg) == 0) {
2235
len = sbuf_len(&sbarg);
2236
if (len > 0)
2237
len--;
2238
} else {
2239
len = sizeof(psinfo->pr_psargs) - 1;
2240
}
2241
sbuf_delete(&sbarg);
2242
}
2243
if (error != 0 || len == 0 || (ssize_t)len == -1)
2244
strlcpy(psinfo->pr_psargs, p->p_comm,
2245
sizeof(psinfo->pr_psargs));
2246
else {
2247
KASSERT(len < sizeof(psinfo->pr_psargs),
2248
("len is too long: %zu vs %zu", len,
2249
sizeof(psinfo->pr_psargs)));
2250
cp = psinfo->pr_psargs;
2251
end = cp + len - 1;
2252
for (;;) {
2253
cp = memchr(cp, '\0', end - cp);
2254
if (cp == NULL)
2255
break;
2256
*cp = ' ';
2257
}
2258
}
2259
psinfo->pr_pid = p->p_pid;
2260
sbuf_bcat(sb, psinfo, sizeof(*psinfo));
2261
free(psinfo, M_TEMP);
2262
}
2263
*sizep = sizeof(*psinfo);
2264
}
2265
2266
static bool
2267
__elfN(get_prstatus)(struct regset *rs, struct thread *td, void *buf,
2268
size_t *sizep)
2269
{
2270
elf_prstatus_t *status;
2271
2272
if (buf != NULL) {
2273
KASSERT(*sizep == sizeof(*status), ("%s: invalid size",
2274
__func__));
2275
status = buf;
2276
memset(status, 0, *sizep);
2277
status->pr_version = PRSTATUS_VERSION;
2278
status->pr_statussz = sizeof(elf_prstatus_t);
2279
status->pr_gregsetsz = sizeof(elf_gregset_t);
2280
status->pr_fpregsetsz = sizeof(elf_fpregset_t);
2281
status->pr_osreldate = osreldate;
2282
status->pr_cursig = td->td_proc->p_sig;
2283
status->pr_pid = td->td_tid;
2284
#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2285
fill_regs32(td, &status->pr_reg);
2286
#else
2287
fill_regs(td, &status->pr_reg);
2288
#endif
2289
}
2290
*sizep = sizeof(*status);
2291
return (true);
2292
}
2293
2294
static bool
2295
__elfN(set_prstatus)(struct regset *rs, struct thread *td, void *buf,
2296
size_t size)
2297
{
2298
elf_prstatus_t *status;
2299
2300
KASSERT(size == sizeof(*status), ("%s: invalid size", __func__));
2301
status = buf;
2302
#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2303
set_regs32(td, &status->pr_reg);
2304
#else
2305
set_regs(td, &status->pr_reg);
2306
#endif
2307
return (true);
2308
}
2309
2310
static struct regset __elfN(regset_prstatus) = {
2311
.note = NT_PRSTATUS,
2312
.size = sizeof(elf_prstatus_t),
2313
.get = __elfN(get_prstatus),
2314
.set = __elfN(set_prstatus),
2315
};
2316
ELF_REGSET(__elfN(regset_prstatus));
2317
2318
static bool
2319
__elfN(get_fpregset)(struct regset *rs, struct thread *td, void *buf,
2320
size_t *sizep)
2321
{
2322
elf_prfpregset_t *fpregset;
2323
2324
if (buf != NULL) {
2325
KASSERT(*sizep == sizeof(*fpregset), ("%s: invalid size",
2326
__func__));
2327
fpregset = buf;
2328
#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2329
fill_fpregs32(td, fpregset);
2330
#else
2331
fill_fpregs(td, fpregset);
2332
#endif
2333
}
2334
*sizep = sizeof(*fpregset);
2335
return (true);
2336
}
2337
2338
static bool
2339
__elfN(set_fpregset)(struct regset *rs, struct thread *td, void *buf,
2340
size_t size)
2341
{
2342
elf_prfpregset_t *fpregset;
2343
2344
fpregset = buf;
2345
KASSERT(size == sizeof(*fpregset), ("%s: invalid size", __func__));
2346
#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2347
set_fpregs32(td, fpregset);
2348
#else
2349
set_fpregs(td, fpregset);
2350
#endif
2351
return (true);
2352
}
2353
2354
static struct regset __elfN(regset_fpregset) = {
2355
.note = NT_FPREGSET,
2356
.size = sizeof(elf_prfpregset_t),
2357
.get = __elfN(get_fpregset),
2358
.set = __elfN(set_fpregset),
2359
};
2360
ELF_REGSET(__elfN(regset_fpregset));
2361
2362
static bool
2363
__elfN(get_thrmisc)(struct regset *rs, struct thread *td, void *buf,
2364
size_t *sizep)
2365
{
2366
elf_thrmisc_t *thrmisc;
2367
2368
if (buf != NULL) {
2369
KASSERT(*sizep == sizeof(*thrmisc),
2370
("%s: invalid size", __func__));
2371
thrmisc = buf;
2372
bzero(thrmisc, sizeof(*thrmisc));
2373
strcpy(thrmisc->pr_tname, td->td_name);
2374
}
2375
*sizep = sizeof(*thrmisc);
2376
return (true);
2377
}
2378
2379
static struct regset __elfN(regset_thrmisc) = {
2380
.note = NT_THRMISC,
2381
.size = sizeof(elf_thrmisc_t),
2382
.get = __elfN(get_thrmisc),
2383
};
2384
ELF_REGSET(__elfN(regset_thrmisc));
2385
2386
static bool
2387
__elfN(get_lwpinfo)(struct regset *rs, struct thread *td, void *buf,
2388
size_t *sizep)
2389
{
2390
elf_lwpinfo_t pl;
2391
size_t size;
2392
int structsize;
2393
2394
size = sizeof(structsize) + sizeof(pl);
2395
if (buf != NULL) {
2396
KASSERT(*sizep == size, ("%s: invalid size", __func__));
2397
structsize = sizeof(pl);
2398
memcpy(buf, &structsize, sizeof(structsize));
2399
bzero(&pl, sizeof(pl));
2400
pl.pl_lwpid = td->td_tid;
2401
pl.pl_event = PL_EVENT_NONE;
2402
pl.pl_sigmask = td->td_sigmask;
2403
pl.pl_siglist = td->td_siglist;
2404
if (td->td_si.si_signo != 0) {
2405
pl.pl_event = PL_EVENT_SIGNAL;
2406
pl.pl_flags |= PL_FLAG_SI;
2407
#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2408
siginfo_to_siginfo32(&td->td_si, &pl.pl_siginfo);
2409
#else
2410
pl.pl_siginfo = td->td_si;
2411
#endif
2412
}
2413
strcpy(pl.pl_tdname, td->td_name);
2414
/* XXX TODO: supply more information in struct ptrace_lwpinfo*/
2415
memcpy((int *)buf + 1, &pl, sizeof(pl));
2416
}
2417
*sizep = size;
2418
return (true);
2419
}
2420
2421
static struct regset __elfN(regset_lwpinfo) = {
2422
.note = NT_PTLWPINFO,
2423
.size = sizeof(int) + sizeof(elf_lwpinfo_t),
2424
.get = __elfN(get_lwpinfo),
2425
};
2426
ELF_REGSET(__elfN(regset_lwpinfo));
2427
2428
static size_t
2429
__elfN(prepare_register_notes)(struct thread *td, struct note_info_list *list,
2430
struct thread *target_td)
2431
{
2432
struct sysentvec *sv = td->td_proc->p_sysent;
2433
struct regset **regsetp, **regset_end, *regset;
2434
size_t size;
2435
2436
size = 0;
2437
2438
if (target_td == td)
2439
cpu_update_pcb(target_td);
2440
2441
/* NT_PRSTATUS must be the first register set note. */
2442
size += __elfN(register_regset_note)(td, list, &__elfN(regset_prstatus),
2443
target_td);
2444
2445
regsetp = sv->sv_regset_begin;
2446
if (regsetp == NULL) {
2447
/* XXX: This shouldn't be true for any FreeBSD ABIs. */
2448
size += __elfN(register_regset_note)(td, list,
2449
&__elfN(regset_fpregset), target_td);
2450
return (size);
2451
}
2452
regset_end = sv->sv_regset_end;
2453
MPASS(regset_end != NULL);
2454
for (; regsetp < regset_end; regsetp++) {
2455
regset = *regsetp;
2456
if (regset->note == NT_PRSTATUS)
2457
continue;
2458
size += __elfN(register_regset_note)(td, list, regset,
2459
target_td);
2460
}
2461
return (size);
2462
}
2463
2464
/*
2465
* Allow for MD specific notes, as well as any MD
2466
* specific preparations for writing MI notes.
2467
*/
2468
static void
2469
__elfN(note_threadmd)(void *arg, struct sbuf *sb, size_t *sizep)
2470
{
2471
struct thread *td;
2472
void *buf;
2473
size_t size;
2474
2475
td = (struct thread *)arg;
2476
size = *sizep;
2477
if (size != 0 && sb != NULL)
2478
buf = malloc(size, M_TEMP, M_ZERO | M_WAITOK);
2479
else
2480
buf = NULL;
2481
size = 0;
2482
__elfN(dump_thread)(td, buf, &size);
2483
KASSERT(sb == NULL || *sizep == size, ("invalid size"));
2484
if (size != 0 && sb != NULL)
2485
sbuf_bcat(sb, buf, size);
2486
free(buf, M_TEMP);
2487
*sizep = size;
2488
}
2489
2490
#ifdef KINFO_PROC_SIZE
2491
CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
2492
#endif
2493
2494
static void
2495
__elfN(note_procstat_proc)(void *arg, struct sbuf *sb, size_t *sizep)
2496
{
2497
struct proc *p;
2498
size_t size;
2499
int structsize;
2500
2501
p = arg;
2502
size = sizeof(structsize) + p->p_numthreads *
2503
sizeof(elf_kinfo_proc_t);
2504
2505
if (sb != NULL) {
2506
KASSERT(*sizep == size, ("invalid size"));
2507
structsize = sizeof(elf_kinfo_proc_t);
2508
sbuf_bcat(sb, &structsize, sizeof(structsize));
2509
sx_slock(&proctree_lock);
2510
PROC_LOCK(p);
2511
kern_proc_out(p, sb, ELF_KERN_PROC_MASK);
2512
sx_sunlock(&proctree_lock);
2513
}
2514
*sizep = size;
2515
}
2516
2517
#ifdef KINFO_FILE_SIZE
2518
CTASSERT(sizeof(struct kinfo_file) == KINFO_FILE_SIZE);
2519
#endif
2520
2521
static void
2522
note_procstat_files(void *arg, struct sbuf *sb, size_t *sizep)
2523
{
2524
struct proc *p;
2525
size_t size, sect_sz, i;
2526
ssize_t start_len, sect_len;
2527
int structsize, filedesc_flags;
2528
2529
if (coredump_pack_fileinfo)
2530
filedesc_flags = KERN_FILEDESC_PACK_KINFO;
2531
else
2532
filedesc_flags = 0;
2533
2534
p = arg;
2535
structsize = sizeof(struct kinfo_file);
2536
if (sb == NULL) {
2537
size = 0;
2538
sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2539
sbuf_set_drain(sb, sbuf_count_drain, &size);
2540
sbuf_bcat(sb, &structsize, sizeof(structsize));
2541
PROC_LOCK(p);
2542
kern_proc_filedesc_out(p, sb, -1, filedesc_flags);
2543
sbuf_finish(sb);
2544
sbuf_delete(sb);
2545
*sizep = size;
2546
} else {
2547
sbuf_start_section(sb, &start_len);
2548
2549
sbuf_bcat(sb, &structsize, sizeof(structsize));
2550
PROC_LOCK(p);
2551
kern_proc_filedesc_out(p, sb, *sizep - sizeof(structsize),
2552
filedesc_flags);
2553
2554
sect_len = sbuf_end_section(sb, start_len, 0, 0);
2555
if (sect_len < 0)
2556
return;
2557
sect_sz = sect_len;
2558
2559
KASSERT(sect_sz <= *sizep,
2560
("kern_proc_filedesc_out did not respect maxlen; "
2561
"requested %zu, got %zu", *sizep - sizeof(structsize),
2562
sect_sz - sizeof(structsize)));
2563
2564
for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2565
sbuf_putc(sb, 0);
2566
}
2567
}
2568
2569
#ifdef KINFO_VMENTRY_SIZE
2570
CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2571
#endif
2572
2573
static void
2574
note_procstat_vmmap(void *arg, struct sbuf *sb, size_t *sizep)
2575
{
2576
struct proc *p;
2577
size_t size;
2578
int structsize, vmmap_flags;
2579
2580
if (coredump_pack_vmmapinfo)
2581
vmmap_flags = KERN_VMMAP_PACK_KINFO;
2582
else
2583
vmmap_flags = 0;
2584
2585
p = arg;
2586
structsize = sizeof(struct kinfo_vmentry);
2587
if (sb == NULL) {
2588
size = 0;
2589
sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2590
sbuf_set_drain(sb, sbuf_count_drain, &size);
2591
sbuf_bcat(sb, &structsize, sizeof(structsize));
2592
PROC_LOCK(p);
2593
kern_proc_vmmap_out(p, sb, -1, vmmap_flags);
2594
sbuf_finish(sb);
2595
sbuf_delete(sb);
2596
*sizep = size;
2597
} else {
2598
sbuf_bcat(sb, &structsize, sizeof(structsize));
2599
PROC_LOCK(p);
2600
kern_proc_vmmap_out(p, sb, *sizep - sizeof(structsize),
2601
vmmap_flags);
2602
}
2603
}
2604
2605
static void
2606
note_procstat_groups(void *arg, struct sbuf *sb, size_t *sizep)
2607
{
2608
struct proc *p;
2609
size_t size;
2610
int structsize;
2611
2612
p = arg;
2613
size = sizeof(structsize) +
2614
(1 + p->p_ucred->cr_ngroups) * sizeof(gid_t);
2615
if (sb != NULL) {
2616
KASSERT(*sizep == size, ("invalid size"));
2617
structsize = sizeof(gid_t);
2618
sbuf_bcat(sb, &structsize, sizeof(structsize));
2619
sbuf_bcat(sb, &p->p_ucred->cr_gid, sizeof(gid_t));
2620
sbuf_bcat(sb, p->p_ucred->cr_groups, p->p_ucred->cr_ngroups *
2621
sizeof(gid_t));
2622
}
2623
*sizep = size;
2624
}
2625
2626
static void
2627
note_procstat_umask(void *arg, struct sbuf *sb, size_t *sizep)
2628
{
2629
struct proc *p;
2630
size_t size;
2631
int structsize;
2632
2633
p = arg;
2634
size = sizeof(structsize) + sizeof(p->p_pd->pd_cmask);
2635
if (sb != NULL) {
2636
KASSERT(*sizep == size, ("invalid size"));
2637
structsize = sizeof(p->p_pd->pd_cmask);
2638
sbuf_bcat(sb, &structsize, sizeof(structsize));
2639
sbuf_bcat(sb, &p->p_pd->pd_cmask, sizeof(p->p_pd->pd_cmask));
2640
}
2641
*sizep = size;
2642
}
2643
2644
static void
2645
note_procstat_rlimit(void *arg, struct sbuf *sb, size_t *sizep)
2646
{
2647
struct proc *p;
2648
struct rlimit rlim[RLIM_NLIMITS];
2649
size_t size;
2650
int structsize, i;
2651
2652
p = arg;
2653
size = sizeof(structsize) + sizeof(rlim);
2654
if (sb != NULL) {
2655
KASSERT(*sizep == size, ("invalid size"));
2656
structsize = sizeof(rlim);
2657
sbuf_bcat(sb, &structsize, sizeof(structsize));
2658
PROC_LOCK(p);
2659
for (i = 0; i < RLIM_NLIMITS; i++)
2660
lim_rlimit_proc(p, i, &rlim[i]);
2661
PROC_UNLOCK(p);
2662
sbuf_bcat(sb, rlim, sizeof(rlim));
2663
}
2664
*sizep = size;
2665
}
2666
2667
static void
2668
note_procstat_osrel(void *arg, struct sbuf *sb, size_t *sizep)
2669
{
2670
struct proc *p;
2671
size_t size;
2672
int structsize;
2673
2674
p = arg;
2675
size = sizeof(structsize) + sizeof(p->p_osrel);
2676
if (sb != NULL) {
2677
KASSERT(*sizep == size, ("invalid size"));
2678
structsize = sizeof(p->p_osrel);
2679
sbuf_bcat(sb, &structsize, sizeof(structsize));
2680
sbuf_bcat(sb, &p->p_osrel, sizeof(p->p_osrel));
2681
}
2682
*sizep = size;
2683
}
2684
2685
static void
2686
__elfN(note_procstat_psstrings)(void *arg, struct sbuf *sb, size_t *sizep)
2687
{
2688
struct proc *p;
2689
elf_ps_strings_t ps_strings;
2690
size_t size;
2691
int structsize;
2692
2693
p = arg;
2694
size = sizeof(structsize) + sizeof(ps_strings);
2695
if (sb != NULL) {
2696
KASSERT(*sizep == size, ("invalid size"));
2697
structsize = sizeof(ps_strings);
2698
#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2699
ps_strings = PTROUT(PROC_PS_STRINGS(p));
2700
#else
2701
ps_strings = PROC_PS_STRINGS(p);
2702
#endif
2703
sbuf_bcat(sb, &structsize, sizeof(structsize));
2704
sbuf_bcat(sb, &ps_strings, sizeof(ps_strings));
2705
}
2706
*sizep = size;
2707
}
2708
2709
static void
2710
__elfN(note_procstat_auxv)(void *arg, struct sbuf *sb, size_t *sizep)
2711
{
2712
struct proc *p;
2713
size_t size;
2714
int structsize;
2715
2716
p = arg;
2717
if (sb == NULL) {
2718
size = 0;
2719
sb = sbuf_new(NULL, NULL, AT_COUNT * sizeof(Elf_Auxinfo),
2720
SBUF_FIXEDLEN);
2721
sbuf_set_drain(sb, sbuf_count_drain, &size);
2722
sbuf_bcat(sb, &structsize, sizeof(structsize));
2723
PHOLD(p);
2724
proc_getauxv(curthread, p, sb);
2725
PRELE(p);
2726
sbuf_finish(sb);
2727
sbuf_delete(sb);
2728
*sizep = size;
2729
} else {
2730
structsize = sizeof(Elf_Auxinfo);
2731
sbuf_bcat(sb, &structsize, sizeof(structsize));
2732
PHOLD(p);
2733
proc_getauxv(curthread, p, sb);
2734
PRELE(p);
2735
}
2736
}
2737
2738
static void
2739
__elfN(note_procstat_kqueues)(void *arg, struct sbuf *sb, size_t *sizep)
2740
{
2741
struct proc *p;
2742
size_t size, sect_sz, i;
2743
ssize_t start_len, sect_len;
2744
int structsize;
2745
bool compat32;
2746
2747
#if defined(COMPAT_FREEBSD32) && __ELF_WORD_SIZE == 32
2748
compat32 = true;
2749
structsize = sizeof(struct kinfo_knote32);
2750
#else
2751
compat32 = false;
2752
structsize = sizeof(struct kinfo_knote);
2753
#endif
2754
p = arg;
2755
if (sb == NULL) {
2756
size = 0;
2757
sb = sbuf_new(NULL, NULL, 128, SBUF_FIXEDLEN);
2758
sbuf_set_drain(sb, sbuf_count_drain, &size);
2759
sbuf_bcat(sb, &structsize, sizeof(structsize));
2760
kern_proc_kqueues_out(p, sb, -1, compat32);
2761
sbuf_finish(sb);
2762
sbuf_delete(sb);
2763
*sizep = size;
2764
} else {
2765
sbuf_start_section(sb, &start_len);
2766
2767
sbuf_bcat(sb, &structsize, sizeof(structsize));
2768
kern_proc_kqueues_out(p, sb, *sizep - sizeof(structsize),
2769
compat32);
2770
2771
sect_len = sbuf_end_section(sb, start_len, 0, 0);
2772
if (sect_len < 0)
2773
return;
2774
sect_sz = sect_len;
2775
2776
KASSERT(sect_sz <= *sizep,
2777
("kern_proc_kqueue_out did not respect maxlen; "
2778
"requested %zu, got %zu", *sizep - sizeof(structsize),
2779
sect_sz - sizeof(structsize)));
2780
2781
for (i = 0; i < *sizep - sect_sz && sb->s_error == 0; i++)
2782
sbuf_putc(sb, 0);
2783
}
2784
}
2785
2786
#define MAX_NOTES_LOOP 4096
2787
bool
2788
__elfN(parse_notes)(const struct image_params *imgp, const Elf_Note *checknote,
2789
const char *note_vendor, const Elf_Phdr *pnote,
2790
bool (*cb)(const Elf_Note *, void *, bool *), void *cb_arg)
2791
{
2792
const Elf_Note *note, *note0, *note_end;
2793
const char *note_name;
2794
char *buf;
2795
int i, error;
2796
bool res;
2797
2798
/* We need some limit, might as well use PAGE_SIZE. */
2799
if (pnote == NULL || pnote->p_filesz > PAGE_SIZE)
2800
return (false);
2801
ASSERT_VOP_LOCKED(imgp->vp, "parse_notes");
2802
if (pnote->p_offset > PAGE_SIZE ||
2803
pnote->p_filesz > PAGE_SIZE - pnote->p_offset) {
2804
buf = malloc(pnote->p_filesz, M_TEMP, M_NOWAIT);
2805
if (buf == NULL) {
2806
VOP_UNLOCK(imgp->vp);
2807
buf = malloc(pnote->p_filesz, M_TEMP, M_WAITOK);
2808
vn_lock(imgp->vp, LK_SHARED | LK_RETRY);
2809
}
2810
error = vn_rdwr(UIO_READ, imgp->vp, buf, pnote->p_filesz,
2811
pnote->p_offset, UIO_SYSSPACE, IO_NODELOCKED,
2812
curthread->td_ucred, NOCRED, NULL, curthread);
2813
if (error != 0) {
2814
uprintf("i/o error PT_NOTE\n");
2815
goto retf;
2816
}
2817
note = note0 = (const Elf_Note *)buf;
2818
note_end = (const Elf_Note *)(buf + pnote->p_filesz);
2819
} else {
2820
note = note0 = (const Elf_Note *)(imgp->image_header +
2821
pnote->p_offset);
2822
note_end = (const Elf_Note *)(imgp->image_header +
2823
pnote->p_offset + pnote->p_filesz);
2824
buf = NULL;
2825
}
2826
for (i = 0; i < MAX_NOTES_LOOP && note >= note0 && note < note_end;
2827
i++) {
2828
if (!aligned(note, Elf32_Addr)) {
2829
uprintf("Unaligned ELF note\n");
2830
goto retf;
2831
}
2832
if ((const char *)note_end - (const char *)note <
2833
sizeof(Elf_Note)) {
2834
uprintf("ELF note to short\n");
2835
goto retf;
2836
}
2837
if (note->n_namesz != checknote->n_namesz ||
2838
note->n_descsz != checknote->n_descsz ||
2839
note->n_type != checknote->n_type)
2840
goto nextnote;
2841
note_name = (const char *)(note + 1);
2842
if (note_name + checknote->n_namesz >=
2843
(const char *)note_end || strncmp(note_vendor,
2844
note_name, checknote->n_namesz) != 0)
2845
goto nextnote;
2846
2847
if (cb(note, cb_arg, &res))
2848
goto ret;
2849
nextnote:
2850
note = (const Elf_Note *)((const char *)(note + 1) +
2851
roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE) +
2852
roundup2(note->n_descsz, ELF_NOTE_ROUNDSIZE));
2853
}
2854
if (i >= MAX_NOTES_LOOP)
2855
uprintf("ELF note parser reached %d notes\n", i);
2856
retf:
2857
res = false;
2858
ret:
2859
free(buf, M_TEMP);
2860
return (res);
2861
}
2862
2863
struct brandnote_cb_arg {
2864
Elf_Brandnote *brandnote;
2865
int32_t *osrel;
2866
};
2867
2868
static bool
2869
brandnote_cb(const Elf_Note *note, void *arg0, bool *res)
2870
{
2871
struct brandnote_cb_arg *arg;
2872
2873
arg = arg0;
2874
2875
/*
2876
* Fetch the osreldate for binary from the ELF OSABI-note if
2877
* necessary.
2878
*/
2879
*res = (arg->brandnote->flags & BN_TRANSLATE_OSREL) != 0 &&
2880
arg->brandnote->trans_osrel != NULL ?
2881
arg->brandnote->trans_osrel(note, arg->osrel) : true;
2882
2883
return (true);
2884
}
2885
2886
static Elf_Note fctl_note = {
2887
.n_namesz = sizeof(FREEBSD_ABI_VENDOR),
2888
.n_descsz = sizeof(uint32_t),
2889
.n_type = NT_FREEBSD_FEATURE_CTL,
2890
};
2891
2892
struct fctl_cb_arg {
2893
bool *has_fctl0;
2894
uint32_t *fctl0;
2895
};
2896
2897
static bool
2898
note_fctl_cb(const Elf_Note *note, void *arg0, bool *res)
2899
{
2900
struct fctl_cb_arg *arg;
2901
const Elf32_Word *desc;
2902
uintptr_t p;
2903
2904
arg = arg0;
2905
p = (uintptr_t)(note + 1);
2906
p += roundup2(note->n_namesz, ELF_NOTE_ROUNDSIZE);
2907
desc = (const Elf32_Word *)p;
2908
*arg->has_fctl0 = true;
2909
*arg->fctl0 = desc[0];
2910
*res = true;
2911
return (true);
2912
}
2913
2914
/*
2915
* Try to find the appropriate ABI-note section for checknote, fetch
2916
* the osreldate and feature control flags for binary from the ELF
2917
* OSABI-note. Only the first page of the image is searched, the same
2918
* as for headers.
2919
*/
2920
static bool
2921
__elfN(check_note)(struct image_params *imgp, Elf_Brandnote *brandnote,
2922
int32_t *osrel, bool *has_fctl0, uint32_t *fctl0)
2923
{
2924
const Elf_Phdr *phdr;
2925
const Elf_Ehdr *hdr;
2926
struct brandnote_cb_arg b_arg;
2927
struct fctl_cb_arg f_arg;
2928
int i, j;
2929
2930
hdr = (const Elf_Ehdr *)imgp->image_header;
2931
phdr = (const Elf_Phdr *)(imgp->image_header + hdr->e_phoff);
2932
b_arg.brandnote = brandnote;
2933
b_arg.osrel = osrel;
2934
f_arg.has_fctl0 = has_fctl0;
2935
f_arg.fctl0 = fctl0;
2936
2937
for (i = 0; i < hdr->e_phnum; i++) {
2938
if (phdr[i].p_type == PT_NOTE && __elfN(parse_notes)(imgp,
2939
&brandnote->hdr, brandnote->vendor, &phdr[i], brandnote_cb,
2940
&b_arg)) {
2941
for (j = 0; j < hdr->e_phnum; j++) {
2942
if (phdr[j].p_type == PT_NOTE &&
2943
__elfN(parse_notes)(imgp, &fctl_note,
2944
FREEBSD_ABI_VENDOR, &phdr[j],
2945
note_fctl_cb, &f_arg))
2946
break;
2947
}
2948
return (true);
2949
}
2950
}
2951
return (false);
2952
2953
}
2954
2955
/*
2956
* Tell kern_execve.c about it, with a little help from the linker.
2957
*/
2958
static struct execsw __elfN(execsw) = {
2959
.ex_imgact = __CONCAT(exec_, __elfN(imgact)),
2960
.ex_name = ELF_ABI_NAME
2961
};
2962
EXEC_SET(ELF_ABI_ID, __elfN(execsw));
2963
2964
static vm_prot_t
2965
__elfN(trans_prot)(Elf_Word flags)
2966
{
2967
vm_prot_t prot;
2968
2969
prot = 0;
2970
if (flags & PF_X)
2971
prot |= VM_PROT_EXECUTE;
2972
if (flags & PF_W)
2973
prot |= VM_PROT_WRITE;
2974
if (flags & PF_R)
2975
prot |= VM_PROT_READ;
2976
#if __ELF_WORD_SIZE == 32 && (defined(__amd64__) || defined(__i386__))
2977
if (i386_read_exec && (flags & PF_R))
2978
prot |= VM_PROT_EXECUTE;
2979
#endif
2980
return (prot);
2981
}
2982
2983
static Elf_Word
2984
__elfN(untrans_prot)(vm_prot_t prot)
2985
{
2986
Elf_Word flags;
2987
2988
flags = 0;
2989
if (prot & VM_PROT_EXECUTE)
2990
flags |= PF_X;
2991
if (prot & VM_PROT_READ)
2992
flags |= PF_R;
2993
if (prot & VM_PROT_WRITE)
2994
flags |= PF_W;
2995
return (flags);
2996
}
2997
2998