Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/kern/kern_alq.c
39475 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2002, Jeffrey Roberson <[email protected]>
5
* Copyright (c) 2008-2009, Lawrence Stewart <[email protected]>
6
* Copyright (c) 2009-2010, The FreeBSD Foundation
7
* All rights reserved.
8
*
9
* Portions of this software were developed at the Centre for Advanced
10
* Internet Architectures, Swinburne University of Technology, Melbourne,
11
* Australia by Lawrence Stewart under sponsorship from the FreeBSD Foundation.
12
*
13
* Redistribution and use in source and binary forms, with or without
14
* modification, are permitted provided that the following conditions
15
* are met:
16
* 1. Redistributions of source code must retain the above copyright
17
* notice unmodified, this list of conditions, and the following
18
* disclaimer.
19
* 2. Redistributions in binary form must reproduce the above copyright
20
* notice, this list of conditions and the following disclaimer in the
21
* documentation and/or other materials provided with the distribution.
22
*
23
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33
*/
34
35
#include <sys/cdefs.h>
36
#include "opt_mac.h"
37
38
#include <sys/param.h>
39
#include <sys/systm.h>
40
#include <sys/alq.h>
41
#include <sys/eventhandler.h>
42
#include <sys/fcntl.h>
43
#include <sys/kernel.h>
44
#include <sys/kthread.h>
45
#include <sys/lock.h>
46
#include <sys/malloc.h>
47
#include <sys/mount.h>
48
#include <sys/mutex.h>
49
#include <sys/namei.h>
50
#include <sys/proc.h>
51
#include <sys/reboot.h>
52
#include <sys/unistd.h>
53
#include <sys/vnode.h>
54
55
#include <security/mac/mac_framework.h>
56
57
/* Async. Logging Queue */
58
struct alq {
59
char *aq_entbuf; /* Buffer for stored entries */
60
int aq_entmax; /* Max entries */
61
int aq_entlen; /* Entry length */
62
int aq_freebytes; /* Bytes available in buffer */
63
int aq_buflen; /* Total length of our buffer */
64
int aq_writehead; /* Location for next write */
65
int aq_writetail; /* Flush starts at this location */
66
int aq_wrapearly; /* # bytes left blank at end of buf */
67
int aq_flags; /* Queue flags */
68
int aq_waiters; /* Num threads waiting for resources
69
* NB: Used as a wait channel so must
70
* not be first field in the alq struct
71
*/
72
struct ale aq_getpost; /* ALE for use by get/post */
73
struct mtx aq_mtx; /* Queue lock */
74
struct vnode *aq_vp; /* Open vnode handle */
75
struct ucred *aq_cred; /* Credentials of the opening thread */
76
LIST_ENTRY(alq) aq_act; /* List of active queues */
77
LIST_ENTRY(alq) aq_link; /* List of all queues */
78
};
79
80
#define AQ_WANTED 0x0001 /* Wakeup sleeper when io is done */
81
#define AQ_ACTIVE 0x0002 /* on the active list */
82
#define AQ_FLUSHING 0x0004 /* doing IO */
83
#define AQ_SHUTDOWN 0x0008 /* Queue no longer valid */
84
#define AQ_ORDERED 0x0010 /* Queue enforces ordered writes */
85
#define AQ_LEGACY 0x0020 /* Legacy queue (fixed length writes) */
86
87
#define ALQ_LOCK(alq) mtx_lock_spin(&(alq)->aq_mtx)
88
#define ALQ_UNLOCK(alq) mtx_unlock_spin(&(alq)->aq_mtx)
89
90
#define HAS_PENDING_DATA(alq) ((alq)->aq_freebytes != (alq)->aq_buflen)
91
92
static MALLOC_DEFINE(M_ALD, "ALD", "ALD");
93
94
/*
95
* The ald_mtx protects the ald_queues list and the ald_active list.
96
*/
97
static struct mtx ald_mtx;
98
static LIST_HEAD(, alq) ald_queues;
99
static LIST_HEAD(, alq) ald_active;
100
static int ald_shutingdown = 0;
101
struct thread *ald_thread;
102
static struct proc *ald_proc;
103
static eventhandler_tag alq_eventhandler_tag = NULL;
104
105
#define ALD_LOCK() mtx_lock(&ald_mtx)
106
#define ALD_UNLOCK() mtx_unlock(&ald_mtx)
107
108
/* Daemon functions */
109
static int ald_add(struct alq *);
110
static int ald_rem(struct alq *);
111
static void ald_startup(void *);
112
static void ald_daemon(void);
113
static void ald_shutdown(void *, int);
114
static void ald_activate(struct alq *);
115
static void ald_deactivate(struct alq *);
116
117
/* Internal queue functions */
118
static void alq_shutdown(struct alq *);
119
static void alq_destroy(struct alq *);
120
static int alq_doio(struct alq *);
121
122
/*
123
* Add a new queue to the global list. Fail if we're shutting down.
124
*/
125
static int
126
ald_add(struct alq *alq)
127
{
128
int error;
129
130
error = 0;
131
132
ALD_LOCK();
133
if (ald_shutingdown) {
134
error = EBUSY;
135
goto done;
136
}
137
LIST_INSERT_HEAD(&ald_queues, alq, aq_link);
138
done:
139
ALD_UNLOCK();
140
return (error);
141
}
142
143
/*
144
* Remove a queue from the global list unless we're shutting down. If so,
145
* the ald will take care of cleaning up it's resources.
146
*/
147
static int
148
ald_rem(struct alq *alq)
149
{
150
int error;
151
152
error = 0;
153
154
ALD_LOCK();
155
if (ald_shutingdown) {
156
error = EBUSY;
157
goto done;
158
}
159
LIST_REMOVE(alq, aq_link);
160
done:
161
ALD_UNLOCK();
162
return (error);
163
}
164
165
/*
166
* Put a queue on the active list. This will schedule it for writing.
167
*/
168
static void
169
ald_activate(struct alq *alq)
170
{
171
LIST_INSERT_HEAD(&ald_active, alq, aq_act);
172
wakeup(&ald_active);
173
}
174
175
static void
176
ald_deactivate(struct alq *alq)
177
{
178
LIST_REMOVE(alq, aq_act);
179
alq->aq_flags &= ~AQ_ACTIVE;
180
}
181
182
static void
183
ald_startup(void *unused)
184
{
185
mtx_init(&ald_mtx, "ALDmtx", NULL, MTX_DEF|MTX_QUIET);
186
LIST_INIT(&ald_queues);
187
LIST_INIT(&ald_active);
188
}
189
190
static void
191
ald_daemon(void)
192
{
193
int needwakeup;
194
struct alq *alq;
195
196
ald_thread = FIRST_THREAD_IN_PROC(ald_proc);
197
198
alq_eventhandler_tag = EVENTHANDLER_REGISTER(shutdown_pre_sync,
199
ald_shutdown, NULL, SHUTDOWN_PRI_FIRST);
200
201
ALD_LOCK();
202
203
for (;;) {
204
while ((alq = LIST_FIRST(&ald_active)) == NULL &&
205
!ald_shutingdown)
206
mtx_sleep(&ald_active, &ald_mtx, PWAIT, "aldslp", 0);
207
208
/* Don't shutdown until all active ALQs are flushed. */
209
if (ald_shutingdown && alq == NULL) {
210
ALD_UNLOCK();
211
break;
212
}
213
214
ALQ_LOCK(alq);
215
ald_deactivate(alq);
216
ALD_UNLOCK();
217
needwakeup = alq_doio(alq);
218
ALQ_UNLOCK(alq);
219
if (needwakeup)
220
wakeup_one(alq);
221
ALD_LOCK();
222
}
223
224
kproc_exit(0);
225
}
226
227
static void
228
ald_shutdown(void *arg, int howto)
229
{
230
struct alq *alq;
231
232
if ((howto & RB_NOSYNC) != 0 || SCHEDULER_STOPPED())
233
return;
234
235
ALD_LOCK();
236
237
/* Ensure no new queues can be created. */
238
ald_shutingdown = 1;
239
240
/* Shutdown all ALQs prior to terminating the ald_daemon. */
241
while ((alq = LIST_FIRST(&ald_queues)) != NULL) {
242
LIST_REMOVE(alq, aq_link);
243
ALD_UNLOCK();
244
alq_shutdown(alq);
245
ALD_LOCK();
246
}
247
248
/* At this point, all ALQs are flushed and shutdown. */
249
250
/*
251
* Wake ald_daemon so that it exits. It won't be able to do
252
* anything until we mtx_sleep because we hold the ald_mtx.
253
*/
254
wakeup(&ald_active);
255
256
/* Wait for ald_daemon to exit. */
257
mtx_sleep(ald_proc, &ald_mtx, PWAIT, "aldslp", 0);
258
259
ALD_UNLOCK();
260
}
261
262
static void
263
alq_shutdown(struct alq *alq)
264
{
265
ALQ_LOCK(alq);
266
267
/* Stop any new writers. */
268
alq->aq_flags |= AQ_SHUTDOWN;
269
270
/*
271
* If the ALQ isn't active but has unwritten data (possible if
272
* the ALQ_NOACTIVATE flag has been used), explicitly activate the
273
* ALQ here so that the pending data gets flushed by the ald_daemon.
274
*/
275
if (!(alq->aq_flags & AQ_ACTIVE) && HAS_PENDING_DATA(alq)) {
276
alq->aq_flags |= AQ_ACTIVE;
277
ALQ_UNLOCK(alq);
278
ALD_LOCK();
279
ald_activate(alq);
280
ALD_UNLOCK();
281
ALQ_LOCK(alq);
282
}
283
284
/* Drain IO */
285
while (alq->aq_flags & AQ_ACTIVE) {
286
alq->aq_flags |= AQ_WANTED;
287
msleep_spin(alq, &alq->aq_mtx, "aldclose", 0);
288
}
289
ALQ_UNLOCK(alq);
290
291
vn_close(alq->aq_vp, FWRITE, alq->aq_cred,
292
curthread);
293
crfree(alq->aq_cred);
294
}
295
296
void
297
alq_destroy(struct alq *alq)
298
{
299
/* Drain all pending IO. */
300
alq_shutdown(alq);
301
302
mtx_destroy(&alq->aq_mtx);
303
free(alq->aq_entbuf, M_ALD);
304
free(alq, M_ALD);
305
}
306
307
/*
308
* Flush all pending data to disk. This operation will block.
309
*/
310
static int
311
alq_doio(struct alq *alq)
312
{
313
struct thread *td;
314
struct mount *mp;
315
struct vnode *vp;
316
struct uio auio;
317
struct iovec aiov[2];
318
int totlen;
319
int iov;
320
int wrapearly;
321
322
KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
323
324
vp = alq->aq_vp;
325
td = curthread;
326
totlen = 0;
327
iov = 1;
328
wrapearly = alq->aq_wrapearly;
329
330
bzero(&aiov, sizeof(aiov));
331
bzero(&auio, sizeof(auio));
332
333
/* Start the write from the location of our buffer tail pointer. */
334
aiov[0].iov_base = alq->aq_entbuf + alq->aq_writetail;
335
336
if (alq->aq_writetail < alq->aq_writehead) {
337
/* Buffer not wrapped. */
338
totlen = aiov[0].iov_len = alq->aq_writehead - alq->aq_writetail;
339
} else if (alq->aq_writehead == 0) {
340
/* Buffer not wrapped (special case to avoid an empty iov). */
341
totlen = aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
342
wrapearly;
343
} else {
344
/*
345
* Buffer wrapped, requires 2 aiov entries:
346
* - first is from writetail to end of buffer
347
* - second is from start of buffer to writehead
348
*/
349
aiov[0].iov_len = alq->aq_buflen - alq->aq_writetail -
350
wrapearly;
351
iov++;
352
aiov[1].iov_base = alq->aq_entbuf;
353
aiov[1].iov_len = alq->aq_writehead;
354
totlen = aiov[0].iov_len + aiov[1].iov_len;
355
}
356
357
alq->aq_flags |= AQ_FLUSHING;
358
ALQ_UNLOCK(alq);
359
360
auio.uio_iov = &aiov[0];
361
auio.uio_offset = 0;
362
auio.uio_segflg = UIO_SYSSPACE;
363
auio.uio_rw = UIO_WRITE;
364
auio.uio_iovcnt = iov;
365
auio.uio_resid = totlen;
366
auio.uio_td = td;
367
368
/*
369
* Do all of the junk required to write now.
370
*/
371
vn_start_write(vp, &mp, V_WAIT);
372
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
373
/*
374
* XXX: VOP_WRITE error checks are ignored.
375
*/
376
#ifdef MAC
377
if (mac_vnode_check_write(alq->aq_cred, NOCRED, vp) == 0)
378
#endif
379
VOP_WRITE(vp, &auio, IO_UNIT | IO_APPEND, alq->aq_cred);
380
VOP_UNLOCK(vp);
381
vn_finished_write(mp);
382
383
ALQ_LOCK(alq);
384
alq->aq_flags &= ~AQ_FLUSHING;
385
386
/* Adjust writetail as required, taking into account wrapping. */
387
alq->aq_writetail = (alq->aq_writetail + totlen + wrapearly) %
388
alq->aq_buflen;
389
alq->aq_freebytes += totlen + wrapearly;
390
391
/*
392
* If we just flushed part of the buffer which wrapped, reset the
393
* wrapearly indicator.
394
*/
395
if (wrapearly)
396
alq->aq_wrapearly = 0;
397
398
/*
399
* If we just flushed the buffer completely, reset indexes to 0 to
400
* minimise buffer wraps.
401
* This is also required to ensure alq_getn() can't wedge itself.
402
*/
403
if (!HAS_PENDING_DATA(alq))
404
alq->aq_writehead = alq->aq_writetail = 0;
405
406
KASSERT((alq->aq_writetail >= 0 && alq->aq_writetail < alq->aq_buflen),
407
("%s: aq_writetail < 0 || aq_writetail >= aq_buflen", __func__));
408
409
if (alq->aq_flags & AQ_WANTED) {
410
alq->aq_flags &= ~AQ_WANTED;
411
return (1);
412
}
413
414
return(0);
415
}
416
417
static struct kproc_desc ald_kp = {
418
"ALQ Daemon",
419
ald_daemon,
420
&ald_proc
421
};
422
423
SYSINIT(aldthread, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, kproc_start, &ald_kp);
424
SYSINIT(ald, SI_SUB_LOCK, SI_ORDER_ANY, ald_startup, NULL);
425
426
/* User visible queue functions */
427
428
/*
429
* Create the queue data structure, allocate the buffer, and open the file.
430
*/
431
432
int
433
alq_open_flags(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
434
int size, int flags)
435
{
436
struct nameidata nd;
437
struct alq *alq;
438
int oflags;
439
int error;
440
441
KASSERT((size > 0), ("%s: size <= 0", __func__));
442
443
*alqp = NULL;
444
445
NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, file);
446
oflags = FWRITE | O_NOFOLLOW | O_CREAT;
447
448
error = vn_open_cred(&nd, &oflags, cmode, 0, cred, NULL);
449
if (error)
450
return (error);
451
452
NDFREE_PNBUF(&nd);
453
/* We just unlock so we hold a reference */
454
VOP_UNLOCK(nd.ni_vp);
455
456
alq = malloc(sizeof(*alq), M_ALD, M_WAITOK|M_ZERO);
457
alq->aq_vp = nd.ni_vp;
458
alq->aq_cred = crhold(cred);
459
460
mtx_init(&alq->aq_mtx, "ALD Queue", NULL, MTX_SPIN|MTX_QUIET);
461
462
alq->aq_buflen = size;
463
alq->aq_entmax = 0;
464
alq->aq_entlen = 0;
465
466
alq->aq_freebytes = alq->aq_buflen;
467
alq->aq_entbuf = malloc(alq->aq_buflen, M_ALD, M_WAITOK|M_ZERO);
468
alq->aq_writehead = alq->aq_writetail = 0;
469
if (flags & ALQ_ORDERED)
470
alq->aq_flags |= AQ_ORDERED;
471
472
if ((error = ald_add(alq)) != 0) {
473
alq_destroy(alq);
474
return (error);
475
}
476
477
*alqp = alq;
478
479
return (0);
480
}
481
482
int
483
alq_open(struct alq **alqp, const char *file, struct ucred *cred, int cmode,
484
int size, int count)
485
{
486
int ret;
487
488
KASSERT((count >= 0), ("%s: count < 0", __func__));
489
490
if (count > 0) {
491
if ((ret = alq_open_flags(alqp, file, cred, cmode,
492
size*count, 0)) == 0) {
493
(*alqp)->aq_flags |= AQ_LEGACY;
494
(*alqp)->aq_entmax = count;
495
(*alqp)->aq_entlen = size;
496
}
497
} else
498
ret = alq_open_flags(alqp, file, cred, cmode, size, 0);
499
500
return (ret);
501
}
502
503
/*
504
* Copy a new entry into the queue. If the operation would block either
505
* wait or return an error depending on the value of waitok.
506
*/
507
int
508
alq_writen(struct alq *alq, void *data, int len, int flags)
509
{
510
int activate, copy, ret;
511
void *waitchan;
512
513
KASSERT((len > 0 && len <= alq->aq_buflen),
514
("%s: len <= 0 || len > aq_buflen", __func__));
515
516
activate = ret = 0;
517
copy = len;
518
waitchan = NULL;
519
520
ALQ_LOCK(alq);
521
522
/*
523
* Fail to perform the write and return EWOULDBLOCK if:
524
* - The message is larger than our underlying buffer.
525
* - The ALQ is being shutdown.
526
* - There is insufficient free space in our underlying buffer
527
* to accept the message and the user can't wait for space.
528
* - There is insufficient free space in our underlying buffer
529
* to accept the message and the alq is inactive due to prior
530
* use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
531
*/
532
if (len > alq->aq_buflen ||
533
alq->aq_flags & AQ_SHUTDOWN ||
534
(((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
535
HAS_PENDING_DATA(alq))) && alq->aq_freebytes < len)) {
536
ALQ_UNLOCK(alq);
537
return (EWOULDBLOCK);
538
}
539
540
/*
541
* If we want ordered writes and there is already at least one thread
542
* waiting for resources to become available, sleep until we're woken.
543
*/
544
if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
545
KASSERT(!(flags & ALQ_NOWAIT),
546
("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
547
alq->aq_waiters++;
548
msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqwnord", 0);
549
alq->aq_waiters--;
550
}
551
552
/*
553
* (ALQ_WAITOK && aq_freebytes < len) or aq_freebytes >= len, either
554
* enter while loop and sleep until we have enough free bytes (former)
555
* or skip (latter). If AQ_ORDERED is set, only 1 thread at a time will
556
* be in this loop. Otherwise, multiple threads may be sleeping here
557
* competing for ALQ resources.
558
*/
559
while (alq->aq_freebytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
560
KASSERT(!(flags & ALQ_NOWAIT),
561
("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
562
alq->aq_flags |= AQ_WANTED;
563
alq->aq_waiters++;
564
if (waitchan)
565
wakeup(waitchan);
566
msleep_spin(alq, &alq->aq_mtx, "alqwnres", 0);
567
alq->aq_waiters--;
568
569
/*
570
* If we're the first thread to wake after an AQ_WANTED wakeup
571
* but there isn't enough free space for us, we're going to loop
572
* and sleep again. If there are other threads waiting in this
573
* loop, schedule a wakeup so that they can see if the space
574
* they require is available.
575
*/
576
if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
577
alq->aq_freebytes < len && !(alq->aq_flags & AQ_WANTED))
578
waitchan = alq;
579
else
580
waitchan = NULL;
581
}
582
583
/*
584
* If there are waiters, we need to signal the waiting threads after we
585
* complete our work. The alq ptr is used as a wait channel for threads
586
* requiring resources to be freed up. In the AQ_ORDERED case, threads
587
* are not allowed to concurrently compete for resources in the above
588
* while loop, so we use a different wait channel in this case.
589
*/
590
if (alq->aq_waiters > 0) {
591
if (alq->aq_flags & AQ_ORDERED)
592
waitchan = &alq->aq_waiters;
593
else
594
waitchan = alq;
595
} else
596
waitchan = NULL;
597
598
/* Bail if we're shutting down. */
599
if (alq->aq_flags & AQ_SHUTDOWN) {
600
ret = EWOULDBLOCK;
601
goto unlock;
602
}
603
604
/*
605
* If we need to wrap the buffer to accommodate the write,
606
* we'll need 2 calls to bcopy.
607
*/
608
if ((alq->aq_buflen - alq->aq_writehead) < len)
609
copy = alq->aq_buflen - alq->aq_writehead;
610
611
/* Copy message (or part thereof if wrap required) to the buffer. */
612
bcopy(data, alq->aq_entbuf + alq->aq_writehead, copy);
613
alq->aq_writehead += copy;
614
615
if (alq->aq_writehead >= alq->aq_buflen) {
616
KASSERT((alq->aq_writehead == alq->aq_buflen),
617
("%s: alq->aq_writehead (%d) > alq->aq_buflen (%d)",
618
__func__,
619
alq->aq_writehead,
620
alq->aq_buflen));
621
alq->aq_writehead = 0;
622
}
623
624
if (copy != len) {
625
/*
626
* Wrap the buffer by copying the remainder of our message
627
* to the start of the buffer and resetting aq_writehead.
628
*/
629
bcopy(((uint8_t *)data)+copy, alq->aq_entbuf, len - copy);
630
alq->aq_writehead = len - copy;
631
}
632
633
KASSERT((alq->aq_writehead >= 0 && alq->aq_writehead < alq->aq_buflen),
634
("%s: aq_writehead < 0 || aq_writehead >= aq_buflen", __func__));
635
636
alq->aq_freebytes -= len;
637
638
if (!(alq->aq_flags & AQ_ACTIVE) && !(flags & ALQ_NOACTIVATE)) {
639
alq->aq_flags |= AQ_ACTIVE;
640
activate = 1;
641
}
642
643
KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
644
645
unlock:
646
ALQ_UNLOCK(alq);
647
648
if (activate) {
649
ALD_LOCK();
650
ald_activate(alq);
651
ALD_UNLOCK();
652
}
653
654
/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
655
if (waitchan != NULL)
656
wakeup_one(waitchan);
657
658
return (ret);
659
}
660
661
int
662
alq_write(struct alq *alq, void *data, int flags)
663
{
664
/* Should only be called in fixed length message (legacy) mode. */
665
KASSERT((alq->aq_flags & AQ_LEGACY),
666
("%s: fixed length write on variable length queue", __func__));
667
return (alq_writen(alq, data, alq->aq_entlen, flags));
668
}
669
670
/*
671
* Retrieve a pointer for the ALQ to write directly into, avoiding bcopy.
672
*/
673
struct ale *
674
alq_getn(struct alq *alq, int len, int flags)
675
{
676
int contigbytes;
677
void *waitchan;
678
679
KASSERT((len > 0 && len <= alq->aq_buflen),
680
("%s: len <= 0 || len > alq->aq_buflen", __func__));
681
682
waitchan = NULL;
683
684
ALQ_LOCK(alq);
685
686
/*
687
* Determine the number of free contiguous bytes.
688
* We ensure elsewhere that if aq_writehead == aq_writetail because
689
* the buffer is empty, they will both be set to 0 and therefore
690
* aq_freebytes == aq_buflen and is fully contiguous.
691
* If they are equal and the buffer is not empty, aq_freebytes will
692
* be 0 indicating the buffer is full.
693
*/
694
if (alq->aq_writehead <= alq->aq_writetail)
695
contigbytes = alq->aq_freebytes;
696
else {
697
contigbytes = alq->aq_buflen - alq->aq_writehead;
698
699
if (contigbytes < len) {
700
/*
701
* Insufficient space at end of buffer to handle a
702
* contiguous write. Wrap early if there's space at
703
* the beginning. This will leave a hole at the end
704
* of the buffer which we will have to skip over when
705
* flushing the buffer to disk.
706
*/
707
if (alq->aq_writetail >= len || flags & ALQ_WAITOK) {
708
/* Keep track of # bytes left blank. */
709
alq->aq_wrapearly = contigbytes;
710
/* Do the wrap and adjust counters. */
711
contigbytes = alq->aq_freebytes =
712
alq->aq_writetail;
713
alq->aq_writehead = 0;
714
}
715
}
716
}
717
718
/*
719
* Return a NULL ALE if:
720
* - The message is larger than our underlying buffer.
721
* - The ALQ is being shutdown.
722
* - There is insufficient free space in our underlying buffer
723
* to accept the message and the user can't wait for space.
724
* - There is insufficient free space in our underlying buffer
725
* to accept the message and the alq is inactive due to prior
726
* use of the ALQ_NOACTIVATE flag (which would lead to deadlock).
727
*/
728
if (len > alq->aq_buflen ||
729
alq->aq_flags & AQ_SHUTDOWN ||
730
(((flags & ALQ_NOWAIT) || (!(alq->aq_flags & AQ_ACTIVE) &&
731
HAS_PENDING_DATA(alq))) && contigbytes < len)) {
732
ALQ_UNLOCK(alq);
733
return (NULL);
734
}
735
736
/*
737
* If we want ordered writes and there is already at least one thread
738
* waiting for resources to become available, sleep until we're woken.
739
*/
740
if (alq->aq_flags & AQ_ORDERED && alq->aq_waiters > 0) {
741
KASSERT(!(flags & ALQ_NOWAIT),
742
("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
743
alq->aq_waiters++;
744
msleep_spin(&alq->aq_waiters, &alq->aq_mtx, "alqgnord", 0);
745
alq->aq_waiters--;
746
}
747
748
/*
749
* (ALQ_WAITOK && contigbytes < len) or contigbytes >= len, either enter
750
* while loop and sleep until we have enough contiguous free bytes
751
* (former) or skip (latter). If AQ_ORDERED is set, only 1 thread at a
752
* time will be in this loop. Otherwise, multiple threads may be
753
* sleeping here competing for ALQ resources.
754
*/
755
while (contigbytes < len && !(alq->aq_flags & AQ_SHUTDOWN)) {
756
KASSERT(!(flags & ALQ_NOWAIT),
757
("%s: ALQ_NOWAIT set but incorrectly ignored!", __func__));
758
alq->aq_flags |= AQ_WANTED;
759
alq->aq_waiters++;
760
if (waitchan)
761
wakeup(waitchan);
762
msleep_spin(alq, &alq->aq_mtx, "alqgnres", 0);
763
alq->aq_waiters--;
764
765
if (alq->aq_writehead <= alq->aq_writetail)
766
contigbytes = alq->aq_freebytes;
767
else
768
contigbytes = alq->aq_buflen - alq->aq_writehead;
769
770
/*
771
* If we're the first thread to wake after an AQ_WANTED wakeup
772
* but there isn't enough free space for us, we're going to loop
773
* and sleep again. If there are other threads waiting in this
774
* loop, schedule a wakeup so that they can see if the space
775
* they require is available.
776
*/
777
if (alq->aq_waiters > 0 && !(alq->aq_flags & AQ_ORDERED) &&
778
contigbytes < len && !(alq->aq_flags & AQ_WANTED))
779
waitchan = alq;
780
else
781
waitchan = NULL;
782
}
783
784
/*
785
* If there are waiters, we need to signal the waiting threads after we
786
* complete our work. The alq ptr is used as a wait channel for threads
787
* requiring resources to be freed up. In the AQ_ORDERED case, threads
788
* are not allowed to concurrently compete for resources in the above
789
* while loop, so we use a different wait channel in this case.
790
*/
791
if (alq->aq_waiters > 0) {
792
if (alq->aq_flags & AQ_ORDERED)
793
waitchan = &alq->aq_waiters;
794
else
795
waitchan = alq;
796
} else
797
waitchan = NULL;
798
799
/* Bail if we're shutting down. */
800
if (alq->aq_flags & AQ_SHUTDOWN) {
801
ALQ_UNLOCK(alq);
802
if (waitchan != NULL)
803
wakeup_one(waitchan);
804
return (NULL);
805
}
806
807
/*
808
* If we are here, we have a contiguous number of bytes >= len
809
* available in our buffer starting at aq_writehead.
810
*/
811
alq->aq_getpost.ae_data = alq->aq_entbuf + alq->aq_writehead;
812
alq->aq_getpost.ae_bytesused = len;
813
814
return (&alq->aq_getpost);
815
}
816
817
struct ale *
818
alq_get(struct alq *alq, int flags)
819
{
820
/* Should only be called in fixed length message (legacy) mode. */
821
KASSERT((alq->aq_flags & AQ_LEGACY),
822
("%s: fixed length get on variable length queue", __func__));
823
return (alq_getn(alq, alq->aq_entlen, flags));
824
}
825
826
void
827
alq_post_flags(struct alq *alq, struct ale *ale, int flags)
828
{
829
int activate;
830
void *waitchan;
831
832
activate = 0;
833
834
if (ale->ae_bytesused > 0) {
835
if (!(alq->aq_flags & AQ_ACTIVE) &&
836
!(flags & ALQ_NOACTIVATE)) {
837
alq->aq_flags |= AQ_ACTIVE;
838
activate = 1;
839
}
840
841
alq->aq_writehead += ale->ae_bytesused;
842
alq->aq_freebytes -= ale->ae_bytesused;
843
844
/* Wrap aq_writehead if we filled to the end of the buffer. */
845
if (alq->aq_writehead == alq->aq_buflen)
846
alq->aq_writehead = 0;
847
848
KASSERT((alq->aq_writehead >= 0 &&
849
alq->aq_writehead < alq->aq_buflen),
850
("%s: aq_writehead < 0 || aq_writehead >= aq_buflen",
851
__func__));
852
853
KASSERT((HAS_PENDING_DATA(alq)), ("%s: queue empty!", __func__));
854
}
855
856
/*
857
* If there are waiters, we need to signal the waiting threads after we
858
* complete our work. The alq ptr is used as a wait channel for threads
859
* requiring resources to be freed up. In the AQ_ORDERED case, threads
860
* are not allowed to concurrently compete for resources in the
861
* alq_getn() while loop, so we use a different wait channel in this case.
862
*/
863
if (alq->aq_waiters > 0) {
864
if (alq->aq_flags & AQ_ORDERED)
865
waitchan = &alq->aq_waiters;
866
else
867
waitchan = alq;
868
} else
869
waitchan = NULL;
870
871
ALQ_UNLOCK(alq);
872
873
if (activate) {
874
ALD_LOCK();
875
ald_activate(alq);
876
ALD_UNLOCK();
877
}
878
879
/* NB: We rely on wakeup_one waking threads in a FIFO manner. */
880
if (waitchan != NULL)
881
wakeup_one(waitchan);
882
}
883
884
void
885
alq_flush(struct alq *alq)
886
{
887
int needwakeup = 0;
888
889
ALD_LOCK();
890
ALQ_LOCK(alq);
891
892
/*
893
* Pull the lever iff there is data to flush and we're
894
* not already in the middle of a flush operation.
895
*/
896
if (HAS_PENDING_DATA(alq) && !(alq->aq_flags & AQ_FLUSHING)) {
897
if (alq->aq_flags & AQ_ACTIVE)
898
ald_deactivate(alq);
899
900
ALD_UNLOCK();
901
needwakeup = alq_doio(alq);
902
} else
903
ALD_UNLOCK();
904
905
ALQ_UNLOCK(alq);
906
907
if (needwakeup)
908
wakeup_one(alq);
909
}
910
911
/*
912
* Flush remaining data, close the file and free all resources.
913
*/
914
void
915
alq_close(struct alq *alq)
916
{
917
/* Only flush and destroy alq if not already shutting down. */
918
if (ald_rem(alq) == 0)
919
alq_destroy(alq);
920
}
921
922
static int
923
alq_load_handler(module_t mod, int what, void *arg)
924
{
925
int ret;
926
927
ret = 0;
928
929
switch (what) {
930
case MOD_LOAD:
931
case MOD_SHUTDOWN:
932
break;
933
934
case MOD_QUIESCE:
935
ALD_LOCK();
936
/* Only allow unload if there are no open queues. */
937
if (LIST_FIRST(&ald_queues) == NULL) {
938
ald_shutingdown = 1;
939
ALD_UNLOCK();
940
EVENTHANDLER_DEREGISTER(shutdown_pre_sync,
941
alq_eventhandler_tag);
942
ald_shutdown(NULL, 0);
943
mtx_destroy(&ald_mtx);
944
} else {
945
ALD_UNLOCK();
946
ret = EBUSY;
947
}
948
break;
949
950
case MOD_UNLOAD:
951
/* If MOD_QUIESCE failed we must fail here too. */
952
if (ald_shutingdown == 0)
953
ret = EBUSY;
954
break;
955
956
default:
957
ret = EINVAL;
958
break;
959
}
960
961
return (ret);
962
}
963
964
static moduledata_t alq_mod =
965
{
966
"alq",
967
alq_load_handler,
968
NULL
969
};
970
971
DECLARE_MODULE(alq, alq_mod, SI_SUB_LAST, SI_ORDER_ANY);
972
MODULE_VERSION(alq, 1);
973
974