Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/kern/kern_fork.c
39475 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 1982, 1986, 1989, 1991, 1993
5
* The Regents of the University of California. All rights reserved.
6
* (c) UNIX System Laboratories, Inc.
7
* All or some portions of this file are derived from material licensed
8
* to the University of California by American Telephone and Telegraph
9
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
10
* the permission of UNIX System Laboratories, Inc.
11
*
12
* Redistribution and use in source and binary forms, with or without
13
* modification, are permitted provided that the following conditions
14
* are met:
15
* 1. Redistributions of source code must retain the above copyright
16
* notice, this list of conditions and the following disclaimer.
17
* 2. Redistributions in binary form must reproduce the above copyright
18
* notice, this list of conditions and the following disclaimer in the
19
* documentation and/or other materials provided with the distribution.
20
* 3. Neither the name of the University nor the names of its contributors
21
* may be used to endorse or promote products derived from this software
22
* without specific prior written permission.
23
*
24
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34
* SUCH DAMAGE.
35
*/
36
37
#include <sys/cdefs.h>
38
#include "opt_ktrace.h"
39
#include "opt_kstack_pages.h"
40
41
#include <sys/param.h>
42
#include <sys/systm.h>
43
#include <sys/bitstring.h>
44
#include <sys/sysproto.h>
45
#include <sys/eventhandler.h>
46
#include <sys/fcntl.h>
47
#include <sys/filedesc.h>
48
#include <sys/jail.h>
49
#include <sys/kernel.h>
50
#include <sys/kthread.h>
51
#include <sys/sysctl.h>
52
#include <sys/lock.h>
53
#include <sys/malloc.h>
54
#include <sys/msan.h>
55
#include <sys/mutex.h>
56
#include <sys/priv.h>
57
#include <sys/proc.h>
58
#include <sys/procdesc.h>
59
#include <sys/ptrace.h>
60
#include <sys/racct.h>
61
#include <sys/resourcevar.h>
62
#include <sys/sched.h>
63
#include <sys/syscall.h>
64
#include <sys/vmmeter.h>
65
#include <sys/vnode.h>
66
#include <sys/acct.h>
67
#include <sys/ktr.h>
68
#include <sys/ktrace.h>
69
#include <sys/unistd.h>
70
#include <sys/sdt.h>
71
#include <sys/sx.h>
72
#include <sys/sysent.h>
73
#include <sys/signalvar.h>
74
75
#include <security/audit/audit.h>
76
#include <security/mac/mac_framework.h>
77
78
#include <vm/vm.h>
79
#include <vm/pmap.h>
80
#include <vm/vm_map.h>
81
#include <vm/vm_extern.h>
82
#include <vm/uma.h>
83
84
#ifdef KDTRACE_HOOKS
85
#include <sys/dtrace_bsd.h>
86
dtrace_fork_func_t dtrace_fasttrap_fork;
87
#endif
88
89
SDT_PROVIDER_DECLARE(proc);
90
SDT_PROBE_DEFINE3(proc, , , create, "struct proc *", "struct proc *", "int");
91
92
#ifndef _SYS_SYSPROTO_H_
93
struct fork_args {
94
int dummy;
95
};
96
#endif
97
98
/* ARGSUSED */
99
int
100
sys_fork(struct thread *td, struct fork_args *uap)
101
{
102
struct fork_req fr;
103
int error, pid;
104
105
bzero(&fr, sizeof(fr));
106
fr.fr_flags = RFFDG | RFPROC;
107
fr.fr_pidp = &pid;
108
error = fork1(td, &fr);
109
if (error == 0) {
110
td->td_retval[0] = pid;
111
td->td_retval[1] = 0;
112
}
113
return (error);
114
}
115
116
/* ARGUSED */
117
int
118
sys_pdfork(struct thread *td, struct pdfork_args *uap)
119
{
120
struct fork_req fr;
121
int error, fd, pid;
122
123
bzero(&fr, sizeof(fr));
124
fr.fr_flags = RFFDG | RFPROC | RFPROCDESC;
125
fr.fr_pidp = &pid;
126
fr.fr_pd_fd = &fd;
127
fr.fr_pd_flags = uap->flags;
128
AUDIT_ARG_FFLAGS(uap->flags);
129
/*
130
* It is necessary to return fd by reference because 0 is a valid file
131
* descriptor number, and the child needs to be able to distinguish
132
* itself from the parent using the return value.
133
*/
134
error = fork1(td, &fr);
135
if (error == 0) {
136
td->td_retval[0] = pid;
137
td->td_retval[1] = 0;
138
error = copyout(&fd, uap->fdp, sizeof(fd));
139
}
140
return (error);
141
}
142
143
/* ARGSUSED */
144
int
145
sys_vfork(struct thread *td, struct vfork_args *uap)
146
{
147
struct fork_req fr;
148
int error, pid;
149
150
bzero(&fr, sizeof(fr));
151
fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
152
fr.fr_pidp = &pid;
153
error = fork1(td, &fr);
154
if (error == 0) {
155
td->td_retval[0] = pid;
156
td->td_retval[1] = 0;
157
}
158
return (error);
159
}
160
161
int
162
sys_rfork(struct thread *td, struct rfork_args *uap)
163
{
164
struct fork_req fr;
165
int error, pid;
166
167
/* Don't allow kernel-only flags. */
168
if ((uap->flags & RFKERNELONLY) != 0)
169
return (EINVAL);
170
/* RFSPAWN must not appear with others */
171
if ((uap->flags & RFSPAWN) != 0 && uap->flags != RFSPAWN)
172
return (EINVAL);
173
174
AUDIT_ARG_FFLAGS(uap->flags);
175
bzero(&fr, sizeof(fr));
176
if ((uap->flags & RFSPAWN) != 0) {
177
fr.fr_flags = RFFDG | RFPROC | RFPPWAIT | RFMEM;
178
fr.fr_flags2 = FR2_DROPSIG_CAUGHT;
179
} else {
180
fr.fr_flags = uap->flags;
181
}
182
fr.fr_pidp = &pid;
183
error = fork1(td, &fr);
184
if (error == 0) {
185
td->td_retval[0] = pid;
186
td->td_retval[1] = 0;
187
}
188
return (error);
189
}
190
191
int __exclusive_cache_line nprocs = 1; /* process 0 */
192
int lastpid = 0;
193
SYSCTL_INT(_kern, OID_AUTO, lastpid, CTLFLAG_RD, &lastpid, 0,
194
"Last used PID");
195
196
/*
197
* Random component to lastpid generation. We mix in a random factor to make
198
* it a little harder to predict. We sanity check the modulus value to avoid
199
* doing it in critical paths. Don't let it be too small or we pointlessly
200
* waste randomness entropy, and don't let it be impossibly large. Using a
201
* modulus that is too big causes a LOT more process table scans and slows
202
* down fork processing as the pidchecked caching is defeated.
203
*/
204
static int randompid = 0;
205
206
static int
207
sysctl_kern_randompid(SYSCTL_HANDLER_ARGS)
208
{
209
int error, pid;
210
211
error = sysctl_wire_old_buffer(req, sizeof(int));
212
if (error != 0)
213
return(error);
214
sx_xlock(&allproc_lock);
215
pid = randompid;
216
error = sysctl_handle_int(oidp, &pid, 0, req);
217
if (error == 0 && req->newptr != NULL) {
218
if (pid == 0)
219
randompid = 0;
220
else if (pid == 1)
221
/* generate a random PID modulus between 100 and 1123 */
222
randompid = 100 + arc4random() % 1024;
223
else if (pid < 0 || pid > pid_max - 100)
224
/* out of range */
225
randompid = pid_max - 100;
226
else if (pid < 100)
227
/* Make it reasonable */
228
randompid = 100;
229
else
230
randompid = pid;
231
}
232
sx_xunlock(&allproc_lock);
233
return (error);
234
}
235
236
SYSCTL_PROC(_kern, OID_AUTO, randompid,
237
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
238
sysctl_kern_randompid, "I",
239
"Random PID modulus. Special values: 0: disable, 1: choose random value");
240
241
extern bitstr_t proc_id_pidmap;
242
extern bitstr_t proc_id_grpidmap;
243
extern bitstr_t proc_id_sessidmap;
244
extern bitstr_t proc_id_reapmap;
245
246
/*
247
* Find an unused process ID
248
*
249
* If RFHIGHPID is set (used during system boot), do not allocate
250
* low-numbered pids.
251
*/
252
static int
253
fork_findpid(int flags)
254
{
255
pid_t result;
256
int trypid, random;
257
258
/*
259
* Avoid calling arc4random with procid_lock held.
260
*/
261
random = 0;
262
if (__predict_false(randompid))
263
random = arc4random() % randompid;
264
265
mtx_lock(&procid_lock);
266
267
trypid = lastpid + 1;
268
if (flags & RFHIGHPID) {
269
if (trypid < 10)
270
trypid = 10;
271
} else {
272
trypid += random;
273
}
274
retry:
275
if (trypid >= pid_max)
276
trypid = 2;
277
278
bit_ffc_at(&proc_id_pidmap, trypid, pid_max, &result);
279
if (result == -1) {
280
KASSERT(trypid != 2, ("unexpectedly ran out of IDs"));
281
trypid = 2;
282
goto retry;
283
}
284
if (bit_test(&proc_id_grpidmap, result) ||
285
bit_test(&proc_id_sessidmap, result) ||
286
bit_test(&proc_id_reapmap, result)) {
287
trypid = result + 1;
288
goto retry;
289
}
290
291
/*
292
* RFHIGHPID does not mess with the lastpid counter during boot.
293
*/
294
if ((flags & RFHIGHPID) == 0)
295
lastpid = result;
296
297
bit_set(&proc_id_pidmap, result);
298
mtx_unlock(&procid_lock);
299
300
return (result);
301
}
302
303
static int
304
fork_norfproc(struct thread *td, int flags)
305
{
306
struct proc *p1;
307
int error;
308
309
KASSERT((flags & RFPROC) == 0,
310
("fork_norfproc called with RFPROC set"));
311
p1 = td->td_proc;
312
313
/*
314
* Quiesce other threads if necessary. If RFMEM is not specified we
315
* must ensure that other threads do not concurrently create a second
316
* process sharing the vmspace, see vmspace_unshare().
317
*/
318
if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
319
((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
320
PROC_LOCK(p1);
321
if (thread_single(p1, SINGLE_BOUNDARY)) {
322
PROC_UNLOCK(p1);
323
return (ERESTART);
324
}
325
PROC_UNLOCK(p1);
326
}
327
328
error = vm_forkproc(td, NULL, NULL, NULL, flags);
329
if (error != 0)
330
goto fail;
331
332
/*
333
* Close all file descriptors.
334
*/
335
if ((flags & RFCFDG) != 0) {
336
struct filedesc *fdtmp;
337
struct pwddesc *pdtmp;
338
339
pdtmp = pdinit(td->td_proc->p_pd, false);
340
fdtmp = fdinit();
341
pdescfree(td);
342
fdescfree(td);
343
p1->p_fd = fdtmp;
344
p1->p_pd = pdtmp;
345
}
346
347
/*
348
* Unshare file descriptors (from parent).
349
*/
350
if ((flags & RFFDG) != 0) {
351
fdunshare(td);
352
pdunshare(td);
353
}
354
355
fail:
356
if ((p1->p_flag & (P_HADTHREADS | P_SYSTEM)) == P_HADTHREADS &&
357
((flags & (RFCFDG | RFFDG)) != 0 || (flags & RFMEM) == 0)) {
358
PROC_LOCK(p1);
359
thread_single_end(p1, SINGLE_BOUNDARY);
360
PROC_UNLOCK(p1);
361
}
362
return (error);
363
}
364
365
static void
366
do_fork(struct thread *td, struct fork_req *fr, struct proc *p2, struct thread *td2,
367
struct vmspace *vm2, struct file *fp_procdesc)
368
{
369
struct proc *p1, *pptr;
370
struct filedesc *fd;
371
struct filedesc_to_leader *fdtol;
372
struct pwddesc *pd;
373
struct sigacts *newsigacts;
374
375
p1 = td->td_proc;
376
377
PROC_LOCK(p1);
378
bcopy(&p1->p_startcopy, &p2->p_startcopy,
379
__rangeof(struct proc, p_startcopy, p_endcopy));
380
pargs_hold(p2->p_args);
381
PROC_UNLOCK(p1);
382
383
bzero(&p2->p_startzero,
384
__rangeof(struct proc, p_startzero, p_endzero));
385
386
/* Tell the prison that we exist. */
387
prison_proc_hold(p2->p_ucred->cr_prison);
388
389
p2->p_state = PRS_NEW; /* protect against others */
390
p2->p_pid = fork_findpid(fr->fr_flags);
391
AUDIT_ARG_PID(p2->p_pid);
392
TSFORK(p2->p_pid, p1->p_pid);
393
394
sx_xlock(&allproc_lock);
395
LIST_INSERT_HEAD(&allproc, p2, p_list);
396
allproc_gen++;
397
prison_proc_link(p2->p_ucred->cr_prison, p2);
398
sx_xunlock(&allproc_lock);
399
400
sx_xlock(PIDHASHLOCK(p2->p_pid));
401
LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
402
sx_xunlock(PIDHASHLOCK(p2->p_pid));
403
404
tidhash_add(td2);
405
406
/*
407
* Malloc things while we don't hold any locks.
408
*/
409
if (fr->fr_flags & RFSIGSHARE)
410
newsigacts = NULL;
411
else
412
newsigacts = sigacts_alloc();
413
414
/*
415
* Copy filedesc.
416
*/
417
if (fr->fr_flags & RFCFDG) {
418
pd = pdinit(p1->p_pd, false);
419
fd = fdinit();
420
fdtol = NULL;
421
} else if (fr->fr_flags & RFFDG) {
422
if (fr->fr_flags2 & FR2_SHARE_PATHS)
423
pd = pdshare(p1->p_pd);
424
else
425
pd = pdcopy(p1->p_pd);
426
fd = fdcopy(p1->p_fd);
427
fdtol = NULL;
428
} else {
429
if (fr->fr_flags2 & FR2_SHARE_PATHS)
430
pd = pdcopy(p1->p_pd);
431
else
432
pd = pdshare(p1->p_pd);
433
fd = fdshare(p1->p_fd);
434
if (p1->p_fdtol == NULL)
435
p1->p_fdtol = filedesc_to_leader_alloc(NULL, NULL,
436
p1->p_leader);
437
if ((fr->fr_flags & RFTHREAD) != 0) {
438
/*
439
* Shared file descriptor table, and shared
440
* process leaders.
441
*/
442
fdtol = filedesc_to_leader_share(p1->p_fdtol, p1->p_fd);
443
} else {
444
/*
445
* Shared file descriptor table, and different
446
* process leaders.
447
*/
448
fdtol = filedesc_to_leader_alloc(p1->p_fdtol,
449
p1->p_fd, p2);
450
}
451
}
452
/*
453
* Make a proc table entry for the new process.
454
* Start by zeroing the section of proc that is zero-initialized,
455
* then copy the section that is copied directly from the parent.
456
*/
457
458
PROC_LOCK(p2);
459
PROC_LOCK(p1);
460
461
bzero(&td2->td_startzero,
462
__rangeof(struct thread, td_startzero, td_endzero));
463
464
bcopy(&td->td_startcopy, &td2->td_startcopy,
465
__rangeof(struct thread, td_startcopy, td_endcopy));
466
467
bcopy(&p2->p_comm, &td2->td_name, sizeof(td2->td_name));
468
td2->td_sigstk = td->td_sigstk;
469
td2->td_flags = TDF_INMEM;
470
td2->td_lend_user_pri = PRI_MAX;
471
472
#ifdef VIMAGE
473
td2->td_vnet = NULL;
474
td2->td_vnet_lpush = NULL;
475
#endif
476
477
/*
478
* Allow the scheduler to initialize the child.
479
*/
480
thread_lock(td);
481
sched_fork(td, td2);
482
/*
483
* Request AST to check for TDP_RFPPWAIT. Do it here
484
* to avoid calling thread_lock() again.
485
*/
486
if ((fr->fr_flags & RFPPWAIT) != 0)
487
ast_sched_locked(td, TDA_VFORK);
488
thread_unlock(td);
489
490
/*
491
* Duplicate sub-structures as needed.
492
* Increase reference counts on shared objects.
493
*/
494
p2->p_flag = P_INMEM;
495
p2->p_flag2 = p1->p_flag2 & (P2_ASLR_DISABLE | P2_ASLR_ENABLE |
496
P2_ASLR_IGNSTART | P2_NOTRACE | P2_NOTRACE_EXEC |
497
P2_PROTMAX_ENABLE | P2_PROTMAX_DISABLE | P2_TRAPCAP |
498
P2_STKGAP_DISABLE | P2_STKGAP_DISABLE_EXEC | P2_NO_NEW_PRIVS |
499
P2_WXORX_DISABLE | P2_WXORX_ENABLE_EXEC | P2_LOGSIGEXIT_CTL |
500
P2_LOGSIGEXIT_ENABLE);
501
p2->p_swtick = ticks;
502
if (p1->p_flag & P_PROFIL)
503
startprofclock(p2);
504
505
if (fr->fr_flags & RFSIGSHARE) {
506
p2->p_sigacts = sigacts_hold(p1->p_sigacts);
507
} else {
508
sigacts_copy(newsigacts, p1->p_sigacts);
509
p2->p_sigacts = newsigacts;
510
if ((fr->fr_flags2 & (FR2_DROPSIG_CAUGHT | FR2_KPROC)) != 0) {
511
mtx_lock(&p2->p_sigacts->ps_mtx);
512
if ((fr->fr_flags2 & FR2_DROPSIG_CAUGHT) != 0)
513
sig_drop_caught(p2);
514
if ((fr->fr_flags2 & FR2_KPROC) != 0)
515
p2->p_sigacts->ps_flag |= PS_NOCLDWAIT;
516
mtx_unlock(&p2->p_sigacts->ps_mtx);
517
}
518
}
519
520
if (fr->fr_flags & RFTSIGZMB)
521
p2->p_sigparent = RFTSIGNUM(fr->fr_flags);
522
else if (fr->fr_flags & RFLINUXTHPN)
523
p2->p_sigparent = SIGUSR1;
524
else
525
p2->p_sigparent = SIGCHLD;
526
527
if ((fr->fr_flags2 & FR2_KPROC) != 0) {
528
p2->p_flag |= P_SYSTEM | P_KPROC;
529
td2->td_pflags |= TDP_KTHREAD;
530
}
531
532
p2->p_textvp = p1->p_textvp;
533
p2->p_textdvp = p1->p_textdvp;
534
p2->p_fd = fd;
535
p2->p_fdtol = fdtol;
536
p2->p_pd = pd;
537
538
if (p1->p_flag2 & P2_INHERIT_PROTECTED) {
539
p2->p_flag |= P_PROTECTED;
540
p2->p_flag2 |= P2_INHERIT_PROTECTED;
541
}
542
543
/*
544
* p_limit is copy-on-write. Bump its refcount.
545
*/
546
lim_fork(p1, p2);
547
548
thread_cow_get_proc(td2, p2);
549
550
pstats_fork(p1->p_stats, p2->p_stats);
551
552
PROC_UNLOCK(p1);
553
PROC_UNLOCK(p2);
554
555
/*
556
* Bump references to the text vnode and directory, and copy
557
* the hardlink name.
558
*/
559
if (p2->p_textvp != NULL)
560
vrefact(p2->p_textvp);
561
if (p2->p_textdvp != NULL)
562
vrefact(p2->p_textdvp);
563
p2->p_binname = p1->p_binname == NULL ? NULL :
564
strdup(p1->p_binname, M_PARGS);
565
566
/*
567
* Set up linkage for kernel based threading.
568
*/
569
if ((fr->fr_flags & RFTHREAD) != 0) {
570
mtx_lock(&ppeers_lock);
571
p2->p_peers = p1->p_peers;
572
p1->p_peers = p2;
573
p2->p_leader = p1->p_leader;
574
mtx_unlock(&ppeers_lock);
575
PROC_LOCK(p1->p_leader);
576
if ((p1->p_leader->p_flag & P_WEXIT) != 0) {
577
PROC_UNLOCK(p1->p_leader);
578
/*
579
* The task leader is exiting, so process p1 is
580
* going to be killed shortly. Since p1 obviously
581
* isn't dead yet, we know that the leader is either
582
* sending SIGKILL's to all the processes in this
583
* task or is sleeping waiting for all the peers to
584
* exit. We let p1 complete the fork, but we need
585
* to go ahead and kill the new process p2 since
586
* the task leader may not get a chance to send
587
* SIGKILL to it. We leave it on the list so that
588
* the task leader will wait for this new process
589
* to commit suicide.
590
*/
591
PROC_LOCK(p2);
592
kern_psignal(p2, SIGKILL);
593
PROC_UNLOCK(p2);
594
} else
595
PROC_UNLOCK(p1->p_leader);
596
} else {
597
p2->p_peers = NULL;
598
p2->p_leader = p2;
599
}
600
601
sx_xlock(&proctree_lock);
602
PGRP_LOCK(p1->p_pgrp);
603
PROC_LOCK(p2);
604
PROC_LOCK(p1);
605
606
/*
607
* Preserve some more flags in subprocess. P_PROFIL has already
608
* been preserved.
609
*/
610
p2->p_flag |= p1->p_flag & P_SUGID;
611
td2->td_pflags |= td->td_pflags & (TDP_ALTSTACK | TDP_SIGFASTBLOCK);
612
td2->td_pflags2 |= td->td_pflags2 & TDP2_UEXTERR;
613
if (p1->p_flag & P_CONTROLT) {
614
SESS_LOCK(p1->p_session);
615
if (p1->p_session->s_ttyvp != NULL)
616
p2->p_flag |= P_CONTROLT;
617
SESS_UNLOCK(p1->p_session);
618
}
619
if (fr->fr_flags & RFPPWAIT)
620
p2->p_flag |= P_PPWAIT;
621
622
p2->p_pgrp = p1->p_pgrp;
623
LIST_INSERT_AFTER(p1, p2, p_pglist);
624
PGRP_UNLOCK(p1->p_pgrp);
625
LIST_INIT(&p2->p_children);
626
LIST_INIT(&p2->p_orphans);
627
628
callout_init_mtx(&p2->p_itcallout, &p2->p_mtx, 0);
629
630
/*
631
* This begins the section where we must prevent the parent
632
* from being swapped.
633
*/
634
_PHOLD(p1);
635
PROC_UNLOCK(p1);
636
637
/*
638
* Attach the new process to its parent.
639
*
640
* If RFNOWAIT is set, the newly created process becomes a child
641
* of init. This effectively disassociates the child from the
642
* parent.
643
*/
644
if ((fr->fr_flags & RFNOWAIT) != 0) {
645
pptr = p1->p_reaper;
646
p2->p_reaper = pptr;
647
} else {
648
p2->p_reaper = (p1->p_treeflag & P_TREE_REAPER) != 0 ?
649
p1 : p1->p_reaper;
650
pptr = p1;
651
}
652
p2->p_pptr = pptr;
653
p2->p_oppid = pptr->p_pid;
654
LIST_INSERT_HEAD(&pptr->p_children, p2, p_sibling);
655
LIST_INIT(&p2->p_reaplist);
656
LIST_INSERT_HEAD(&p2->p_reaper->p_reaplist, p2, p_reapsibling);
657
if (p2->p_reaper == p1 && p1 != initproc) {
658
p2->p_reapsubtree = p2->p_pid;
659
proc_id_set_cond(PROC_ID_REAP, p2->p_pid);
660
}
661
sx_xunlock(&proctree_lock);
662
663
/* Inform accounting that we have forked. */
664
p2->p_acflag = AFORK;
665
PROC_UNLOCK(p2);
666
667
#ifdef KTRACE
668
ktrprocfork(p1, p2);
669
#endif
670
671
/*
672
* Finish creating the child process. It will return via a different
673
* execution path later. (ie: directly into user mode)
674
*/
675
vm_forkproc(td, p2, td2, vm2, fr->fr_flags);
676
677
if (fr->fr_flags == (RFFDG | RFPROC)) {
678
VM_CNT_INC(v_forks);
679
VM_CNT_ADD(v_forkpages, p2->p_vmspace->vm_dsize +
680
p2->p_vmspace->vm_ssize);
681
} else if (fr->fr_flags == (RFFDG | RFPROC | RFPPWAIT | RFMEM)) {
682
VM_CNT_INC(v_vforks);
683
VM_CNT_ADD(v_vforkpages, p2->p_vmspace->vm_dsize +
684
p2->p_vmspace->vm_ssize);
685
} else if (p1 == &proc0) {
686
VM_CNT_INC(v_kthreads);
687
VM_CNT_ADD(v_kthreadpages, p2->p_vmspace->vm_dsize +
688
p2->p_vmspace->vm_ssize);
689
} else {
690
VM_CNT_INC(v_rforks);
691
VM_CNT_ADD(v_rforkpages, p2->p_vmspace->vm_dsize +
692
p2->p_vmspace->vm_ssize);
693
}
694
695
/*
696
* Associate the process descriptor with the process before anything
697
* can happen that might cause that process to need the descriptor.
698
* However, don't do this until after fork(2) can no longer fail.
699
*/
700
if (fr->fr_flags & RFPROCDESC)
701
procdesc_new(p2, fr->fr_pd_flags);
702
703
/*
704
* Both processes are set up, now check if any loadable modules want
705
* to adjust anything.
706
*/
707
EVENTHANDLER_DIRECT_INVOKE(process_fork, p1, p2, fr->fr_flags);
708
709
/*
710
* Set the child start time and mark the process as being complete.
711
*/
712
PROC_LOCK(p2);
713
PROC_LOCK(p1);
714
microuptime(&p2->p_stats->p_start);
715
PROC_SLOCK(p2);
716
p2->p_state = PRS_NORMAL;
717
PROC_SUNLOCK(p2);
718
719
#ifdef KDTRACE_HOOKS
720
/*
721
* Tell the DTrace fasttrap provider about the new process so that any
722
* tracepoints inherited from the parent can be removed. We have to do
723
* this only after p_state is PRS_NORMAL since the fasttrap module will
724
* use pfind() later on.
725
*/
726
if ((fr->fr_flags & RFMEM) == 0 && dtrace_fasttrap_fork)
727
dtrace_fasttrap_fork(p1, p2);
728
#endif
729
if (fr->fr_flags & RFPPWAIT) {
730
td->td_pflags |= TDP_RFPPWAIT;
731
td->td_rfppwait_p = p2;
732
td->td_dbgflags |= TDB_VFORK;
733
}
734
PROC_UNLOCK(p2);
735
736
/*
737
* Tell any interested parties about the new process.
738
*/
739
knote_fork(p1->p_klist, p2->p_pid);
740
741
/*
742
* Now can be swapped.
743
*/
744
_PRELE(p1);
745
PROC_UNLOCK(p1);
746
SDT_PROBE3(proc, , , create, p2, p1, fr->fr_flags);
747
748
if (fr->fr_flags & RFPROCDESC) {
749
procdesc_finit(p2->p_procdesc, fp_procdesc);
750
fdrop(fp_procdesc, td);
751
}
752
753
/*
754
* Speculative check for PTRACE_FORK. PTRACE_FORK is not
755
* synced with forks in progress so it is OK if we miss it
756
* if being set atm.
757
*/
758
if ((p1->p_ptevents & PTRACE_FORK) != 0) {
759
sx_xlock(&proctree_lock);
760
PROC_LOCK(p2);
761
762
/*
763
* p1->p_ptevents & p1->p_pptr are protected by both
764
* process and proctree locks for modifications,
765
* so owning proctree_lock allows the race-free read.
766
*/
767
if ((p1->p_ptevents & PTRACE_FORK) != 0) {
768
/*
769
* Arrange for debugger to receive the fork event.
770
*
771
* We can report PL_FLAG_FORKED regardless of
772
* P_FOLLOWFORK settings, but it does not make a sense
773
* for runaway child.
774
*/
775
td->td_dbgflags |= TDB_FORK;
776
td->td_dbg_forked = p2->p_pid;
777
td2->td_dbgflags |= TDB_STOPATFORK;
778
proc_set_traced(p2, true);
779
CTR2(KTR_PTRACE,
780
"do_fork: attaching to new child pid %d: oppid %d",
781
p2->p_pid, p2->p_oppid);
782
proc_reparent(p2, p1->p_pptr, false);
783
}
784
PROC_UNLOCK(p2);
785
sx_xunlock(&proctree_lock);
786
}
787
788
racct_proc_fork_done(p2);
789
790
if ((fr->fr_flags & RFSTOPPED) == 0) {
791
if (fr->fr_pidp != NULL)
792
*fr->fr_pidp = p2->p_pid;
793
/*
794
* If RFSTOPPED not requested, make child runnable and
795
* add to run queue.
796
*/
797
thread_lock(td2);
798
TD_SET_CAN_RUN(td2);
799
sched_add(td2, SRQ_BORING);
800
} else {
801
*fr->fr_procp = p2;
802
}
803
}
804
805
static void
806
ast_vfork(struct thread *td, int tda __unused)
807
{
808
struct proc *p, *p2;
809
810
MPASS(td->td_pflags & TDP_RFPPWAIT);
811
812
p = td->td_proc;
813
/*
814
* Preserve synchronization semantics of vfork. If
815
* waiting for child to exec or exit, fork set
816
* P_PPWAIT on child, and there we sleep on our proc
817
* (in case of exit).
818
*
819
* Do it after the ptracestop() above is finished, to
820
* not block our debugger until child execs or exits
821
* to finish vfork wait.
822
*/
823
td->td_pflags &= ~TDP_RFPPWAIT;
824
p2 = td->td_rfppwait_p;
825
again:
826
PROC_LOCK(p2);
827
while (p2->p_flag & P_PPWAIT) {
828
PROC_LOCK(p);
829
if (thread_suspend_check_needed()) {
830
PROC_UNLOCK(p2);
831
thread_suspend_check(0);
832
PROC_UNLOCK(p);
833
goto again;
834
} else {
835
PROC_UNLOCK(p);
836
}
837
cv_timedwait(&p2->p_pwait, &p2->p_mtx, hz);
838
}
839
PROC_UNLOCK(p2);
840
841
if (td->td_dbgflags & TDB_VFORK) {
842
PROC_LOCK(p);
843
if (p->p_ptevents & PTRACE_VFORK)
844
ptracestop(td, SIGTRAP, NULL);
845
td->td_dbgflags &= ~TDB_VFORK;
846
PROC_UNLOCK(p);
847
}
848
}
849
850
int
851
fork1(struct thread *td, struct fork_req *fr)
852
{
853
struct proc *p1, *newproc;
854
struct thread *td2;
855
struct vmspace *vm2;
856
struct ucred *cred;
857
struct file *fp_procdesc;
858
struct pgrp *pg;
859
vm_ooffset_t mem_charged;
860
int error, nprocs_new;
861
static int curfail;
862
static struct timeval lastfail;
863
int flags, pages;
864
bool killsx_locked, singlethreaded;
865
866
flags = fr->fr_flags;
867
pages = fr->fr_pages;
868
869
if ((flags & RFSTOPPED) != 0)
870
MPASS(fr->fr_procp != NULL && fr->fr_pidp == NULL);
871
else
872
MPASS(fr->fr_procp == NULL);
873
874
/* Check for the undefined or unimplemented flags. */
875
if ((flags & ~(RFFLAGS | RFTSIGFLAGS(RFTSIGMASK))) != 0)
876
return (EINVAL);
877
878
/* Signal value requires RFTSIGZMB. */
879
if ((flags & RFTSIGFLAGS(RFTSIGMASK)) != 0 && (flags & RFTSIGZMB) == 0)
880
return (EINVAL);
881
882
/* Can't copy and clear. */
883
if ((flags & (RFFDG|RFCFDG)) == (RFFDG|RFCFDG))
884
return (EINVAL);
885
886
/* Check the validity of the signal number. */
887
if ((flags & RFTSIGZMB) != 0 && (u_int)RFTSIGNUM(flags) > _SIG_MAXSIG)
888
return (EINVAL);
889
890
if ((flags & RFPROCDESC) != 0) {
891
/* Can't not create a process yet get a process descriptor. */
892
if ((flags & RFPROC) == 0)
893
return (EINVAL);
894
895
/* Must provide a place to put a procdesc if creating one. */
896
if (fr->fr_pd_fd == NULL)
897
return (EINVAL);
898
899
/* Check if we are using supported flags. */
900
if ((fr->fr_pd_flags & ~PD_ALLOWED_AT_FORK) != 0)
901
return (EINVAL);
902
}
903
904
p1 = td->td_proc;
905
906
/*
907
* Here we don't create a new process, but we divorce
908
* certain parts of a process from itself.
909
*/
910
if ((flags & RFPROC) == 0) {
911
if (fr->fr_procp != NULL)
912
*fr->fr_procp = NULL;
913
else if (fr->fr_pidp != NULL)
914
*fr->fr_pidp = 0;
915
return (fork_norfproc(td, flags));
916
}
917
918
fp_procdesc = NULL;
919
newproc = NULL;
920
vm2 = NULL;
921
killsx_locked = false;
922
singlethreaded = false;
923
924
/*
925
* Increment the nprocs resource before allocations occur.
926
* Although process entries are dynamically created, we still
927
* keep a global limit on the maximum number we will
928
* create. There are hard-limits as to the number of processes
929
* that can run, established by the KVA and memory usage for
930
* the process data.
931
*
932
* Don't allow a nonprivileged user to use the last ten
933
* processes; don't let root exceed the limit.
934
*/
935
nprocs_new = atomic_fetchadd_int(&nprocs, 1) + 1;
936
if (nprocs_new >= maxproc - 10) {
937
if (priv_check_cred(td->td_ucred, PRIV_MAXPROC) != 0 ||
938
nprocs_new >= maxproc) {
939
error = EAGAIN;
940
sx_xlock(&allproc_lock);
941
if (ppsratecheck(&lastfail, &curfail, 1)) {
942
printf("maxproc limit exceeded by uid %u "
943
"(pid %d); see tuning(7) and "
944
"login.conf(5)\n",
945
td->td_ucred->cr_ruid, p1->p_pid);
946
}
947
sx_xunlock(&allproc_lock);
948
goto fail2;
949
}
950
}
951
952
/*
953
* If we are possibly multi-threaded, and there is a process
954
* sending a signal to our group right now, ensure that our
955
* other threads cannot be chosen for the signal queueing.
956
* Otherwise, this might delay signal action, and make the new
957
* child escape the signaling.
958
*/
959
pg = p1->p_pgrp;
960
if (p1->p_numthreads > 1) {
961
if (sx_try_slock(&pg->pg_killsx) != 0) {
962
killsx_locked = true;
963
} else {
964
PROC_LOCK(p1);
965
if (thread_single(p1, SINGLE_BOUNDARY)) {
966
PROC_UNLOCK(p1);
967
error = ERESTART;
968
goto fail2;
969
}
970
PROC_UNLOCK(p1);
971
singlethreaded = true;
972
}
973
}
974
975
/*
976
* Atomically check for signals and block processes from sending
977
* a signal to our process group until the child is visible.
978
*/
979
if (!killsx_locked && sx_slock_sig(&pg->pg_killsx) != 0) {
980
error = ERESTART;
981
goto fail2;
982
}
983
if (__predict_false(p1->p_pgrp != pg || sig_intr() != 0)) {
984
/*
985
* Either the process was moved to other process
986
* group, or there is pending signal. sx_slock_sig()
987
* does not check for signals if not sleeping for the
988
* lock.
989
*/
990
sx_sunlock(&pg->pg_killsx);
991
killsx_locked = false;
992
error = ERESTART;
993
goto fail2;
994
} else {
995
killsx_locked = true;
996
}
997
998
/*
999
* If required, create a process descriptor in the parent first; we
1000
* will abandon it if something goes wrong. We don't finit() until
1001
* later.
1002
*/
1003
if (flags & RFPROCDESC) {
1004
error = procdesc_falloc(td, &fp_procdesc, fr->fr_pd_fd,
1005
fr->fr_pd_flags, fr->fr_pd_fcaps);
1006
if (error != 0)
1007
goto fail2;
1008
AUDIT_ARG_FD(*fr->fr_pd_fd);
1009
}
1010
1011
mem_charged = 0;
1012
if (pages == 0)
1013
pages = kstack_pages;
1014
/* Allocate new proc. */
1015
newproc = uma_zalloc(proc_zone, M_WAITOK);
1016
td2 = FIRST_THREAD_IN_PROC(newproc);
1017
if (td2 == NULL) {
1018
td2 = thread_alloc(pages);
1019
if (td2 == NULL) {
1020
error = ENOMEM;
1021
goto fail2;
1022
}
1023
proc_linkup(newproc, td2);
1024
} else {
1025
error = thread_recycle(td2, pages);
1026
if (error != 0)
1027
goto fail2;
1028
}
1029
1030
if ((flags & RFMEM) == 0) {
1031
vm2 = vmspace_fork(p1->p_vmspace, &mem_charged);
1032
if (vm2 == NULL) {
1033
error = ENOMEM;
1034
goto fail2;
1035
}
1036
if (!swap_reserve(mem_charged)) {
1037
/*
1038
* The swap reservation failed. The accounting
1039
* from the entries of the copied vm2 will be
1040
* subtracted in vmspace_free(), so force the
1041
* reservation there.
1042
*/
1043
swap_reserve_force(mem_charged);
1044
error = ENOMEM;
1045
goto fail2;
1046
}
1047
} else
1048
vm2 = NULL;
1049
1050
/*
1051
* XXX: This is ugly; when we copy resource usage, we need to bump
1052
* per-cred resource counters.
1053
*/
1054
newproc->p_ucred = crcowget(td->td_ucred);
1055
1056
/*
1057
* Initialize resource accounting for the child process.
1058
*/
1059
error = racct_proc_fork(p1, newproc);
1060
if (error != 0) {
1061
error = EAGAIN;
1062
goto fail1;
1063
}
1064
1065
#ifdef MAC
1066
mac_proc_init(newproc);
1067
#endif
1068
newproc->p_klist = knlist_alloc(&newproc->p_mtx);
1069
STAILQ_INIT(&newproc->p_ktr);
1070
1071
/*
1072
* Increment the count of procs running with this uid. Don't allow
1073
* a nonprivileged user to exceed their current limit.
1074
*/
1075
cred = td->td_ucred;
1076
if (!chgproccnt(cred->cr_ruidinfo, 1, lim_cur(td, RLIMIT_NPROC))) {
1077
if (priv_check_cred(cred, PRIV_PROC_LIMIT) != 0)
1078
goto fail0;
1079
chgproccnt(cred->cr_ruidinfo, 1, 0);
1080
}
1081
1082
do_fork(td, fr, newproc, td2, vm2, fp_procdesc);
1083
error = 0;
1084
goto cleanup;
1085
fail0:
1086
error = EAGAIN;
1087
#ifdef MAC
1088
mac_proc_destroy(newproc);
1089
#endif
1090
racct_proc_exit(newproc);
1091
fail1:
1092
proc_unset_cred(newproc, false);
1093
fail2:
1094
if (vm2 != NULL)
1095
vmspace_free(vm2);
1096
uma_zfree(proc_zone, newproc);
1097
if ((flags & RFPROCDESC) != 0 && fp_procdesc != NULL) {
1098
fdclose(td, fp_procdesc, *fr->fr_pd_fd);
1099
fdrop(fp_procdesc, td);
1100
}
1101
atomic_add_int(&nprocs, -1);
1102
cleanup:
1103
if (killsx_locked)
1104
sx_sunlock(&pg->pg_killsx);
1105
if (singlethreaded) {
1106
PROC_LOCK(p1);
1107
thread_single_end(p1, SINGLE_BOUNDARY);
1108
PROC_UNLOCK(p1);
1109
}
1110
if (error != 0)
1111
pause("fork", hz / 2);
1112
return (error);
1113
}
1114
1115
/*
1116
* Handle the return of a child process from fork1(). This function
1117
* is called from the MD fork_trampoline() entry point.
1118
*/
1119
void
1120
fork_exit(void (*callout)(void *, struct trapframe *), void *arg,
1121
struct trapframe *frame)
1122
{
1123
struct proc *p;
1124
struct thread *td;
1125
struct thread *dtd;
1126
1127
kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED);
1128
1129
td = curthread;
1130
p = td->td_proc;
1131
KASSERT(p->p_state == PRS_NORMAL, ("executing process is still new"));
1132
1133
CTR4(KTR_PROC, "fork_exit: new thread %p (td_sched %p, pid %d, %s)",
1134
td, td_get_sched(td), p->p_pid, td->td_name);
1135
1136
sched_fork_exit(td);
1137
1138
/*
1139
* Processes normally resume in mi_switch() after being
1140
* cpu_switch()'ed to, but when children start up they arrive here
1141
* instead, so we must do much the same things as mi_switch() would.
1142
*/
1143
if ((dtd = PCPU_GET(deadthread))) {
1144
PCPU_SET(deadthread, NULL);
1145
thread_stash(dtd);
1146
}
1147
thread_unlock(td);
1148
1149
/*
1150
* cpu_fork_kthread_handler intercepts this function call to
1151
* have this call a non-return function to stay in kernel mode.
1152
* initproc has its own fork handler, but it does return.
1153
*/
1154
KASSERT(callout != NULL, ("NULL callout in fork_exit"));
1155
callout(arg, frame);
1156
1157
/*
1158
* Check if a kernel thread misbehaved and returned from its main
1159
* function.
1160
*/
1161
if (p->p_flag & P_KPROC) {
1162
printf("Kernel thread \"%s\" (pid %d) exited prematurely.\n",
1163
td->td_name, p->p_pid);
1164
kthread_exit();
1165
}
1166
mtx_assert(&Giant, MA_NOTOWNED);
1167
1168
/*
1169
* Now going to return to userland.
1170
*/
1171
1172
if (p->p_sysent->sv_schedtail != NULL)
1173
(p->p_sysent->sv_schedtail)(td);
1174
1175
userret(td, frame);
1176
}
1177
1178
/*
1179
* Simplified back end of syscall(), used when returning from fork()
1180
* directly into user mode. This function is passed in to fork_exit()
1181
* as the first parameter and is called when returning to a new
1182
* userland process.
1183
*/
1184
void
1185
fork_return(struct thread *td, struct trapframe *frame)
1186
{
1187
struct proc *p;
1188
1189
p = td->td_proc;
1190
if (td->td_dbgflags & TDB_STOPATFORK) {
1191
PROC_LOCK(p);
1192
if ((p->p_flag & P_TRACED) != 0) {
1193
/*
1194
* Inform the debugger if one is still present.
1195
*/
1196
td->td_dbgflags |= TDB_CHILD | TDB_SCX | TDB_FSTP;
1197
ptracestop(td, SIGSTOP, NULL);
1198
td->td_dbgflags &= ~(TDB_CHILD | TDB_SCX);
1199
} else {
1200
/*
1201
* ... otherwise clear the request.
1202
*/
1203
td->td_dbgflags &= ~TDB_STOPATFORK;
1204
}
1205
PROC_UNLOCK(p);
1206
} else if (p->p_flag & P_TRACED) {
1207
/*
1208
* This is the start of a new thread in a traced
1209
* process. Report a system call exit event.
1210
*/
1211
PROC_LOCK(p);
1212
td->td_dbgflags |= TDB_SCX;
1213
if ((p->p_ptevents & PTRACE_SCX) != 0 ||
1214
(td->td_dbgflags & TDB_BORN) != 0)
1215
ptracestop(td, SIGTRAP, NULL);
1216
td->td_dbgflags &= ~(TDB_SCX | TDB_BORN);
1217
PROC_UNLOCK(p);
1218
}
1219
1220
/*
1221
* If the prison was killed mid-fork, die along with it.
1222
*/
1223
if (!prison_isalive(td->td_ucred->cr_prison))
1224
exit1(td, 0, SIGKILL);
1225
1226
#ifdef KTRACE
1227
if (KTRPOINT(td, KTR_SYSRET))
1228
ktrsysret(td->td_sa.code, 0, 0);
1229
#endif
1230
}
1231
1232
static void
1233
fork_init(void *arg __unused)
1234
{
1235
ast_register(TDA_VFORK, ASTR_ASTF_REQUIRED | ASTR_TDP, TDP_RFPPWAIT,
1236
ast_vfork);
1237
}
1238
SYSINIT(fork, SI_SUB_INTRINSIC, SI_ORDER_ANY, fork_init, NULL);
1239
1240