Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/kgssapi/krb5/kcrypto_aes.c
39507 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2008 Isilon Inc http://www.isilon.com/
5
* Authors: Doug Rabson <[email protected]>
6
* Developed with Red Inc: Alfred Perlstein <[email protected]>
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
*
17
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27
* SUCH DAMAGE.
28
*/
29
30
#include <sys/param.h>
31
#include <sys/lock.h>
32
#include <sys/malloc.h>
33
#include <sys/mutex.h>
34
#include <sys/kobj.h>
35
#include <sys/mbuf.h>
36
#include <opencrypto/cryptodev.h>
37
38
#include <kgssapi/gssapi.h>
39
#include <kgssapi/gssapi_impl.h>
40
41
#include "kcrypto.h"
42
43
struct aes_state {
44
struct mtx as_lock;
45
crypto_session_t as_session_aes;
46
crypto_session_t as_session_sha1;
47
};
48
49
static void
50
aes_init(struct krb5_key_state *ks)
51
{
52
struct aes_state *as;
53
54
as = malloc(sizeof(struct aes_state), M_GSSAPI, M_WAITOK|M_ZERO);
55
mtx_init(&as->as_lock, "gss aes lock", NULL, MTX_DEF);
56
ks->ks_priv = as;
57
}
58
59
static void
60
aes_destroy(struct krb5_key_state *ks)
61
{
62
struct aes_state *as = ks->ks_priv;
63
64
if (as->as_session_aes != 0)
65
crypto_freesession(as->as_session_aes);
66
if (as->as_session_sha1 != 0)
67
crypto_freesession(as->as_session_sha1);
68
mtx_destroy(&as->as_lock);
69
free(ks->ks_priv, M_GSSAPI);
70
}
71
72
static void
73
aes_set_key(struct krb5_key_state *ks, const void *in)
74
{
75
void *kp = ks->ks_key;
76
struct aes_state *as = ks->ks_priv;
77
struct crypto_session_params csp;
78
79
if (kp != in)
80
bcopy(in, kp, ks->ks_class->ec_keylen);
81
82
if (as->as_session_aes != 0)
83
crypto_freesession(as->as_session_aes);
84
if (as->as_session_sha1 != 0)
85
crypto_freesession(as->as_session_sha1);
86
87
/*
88
* We only want the first 96 bits of the HMAC.
89
*/
90
memset(&csp, 0, sizeof(csp));
91
csp.csp_mode = CSP_MODE_DIGEST;
92
csp.csp_auth_alg = CRYPTO_SHA1_HMAC;
93
csp.csp_auth_klen = ks->ks_class->ec_keybits / 8;
94
csp.csp_auth_mlen = 12;
95
csp.csp_auth_key = ks->ks_key;
96
crypto_newsession(&as->as_session_sha1, &csp,
97
CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE);
98
99
memset(&csp, 0, sizeof(csp));
100
csp.csp_mode = CSP_MODE_CIPHER;
101
csp.csp_cipher_alg = CRYPTO_AES_CBC;
102
csp.csp_cipher_klen = ks->ks_class->ec_keybits / 8;
103
csp.csp_cipher_key = ks->ks_key;
104
csp.csp_ivlen = 16;
105
crypto_newsession(&as->as_session_aes, &csp,
106
CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE);
107
}
108
109
static void
110
aes_random_to_key(struct krb5_key_state *ks, const void *in)
111
{
112
113
aes_set_key(ks, in);
114
}
115
116
static int
117
aes_crypto_cb(struct cryptop *crp)
118
{
119
struct aes_state *as = (struct aes_state *) crp->crp_opaque;
120
121
if (CRYPTO_SESS_SYNC(crp->crp_session)) {
122
KASSERT(crp->crp_etype == 0,
123
("%s: callback with error %d", __func__, crp->crp_etype));
124
return (0);
125
}
126
127
if (crp->crp_etype == EAGAIN) {
128
crp->crp_etype = 0;
129
(void)crypto_dispatch(crp);
130
} else {
131
mtx_lock(&as->as_lock);
132
crp->crp_opaque = NULL;
133
wakeup(crp);
134
mtx_unlock(&as->as_lock);
135
}
136
137
return (0);
138
}
139
140
static void
141
aes_encrypt_1(const struct krb5_key_state *ks, int buftype, void *buf,
142
size_t skip, size_t len, void *ivec, bool encrypt)
143
{
144
struct aes_state *as = ks->ks_priv;
145
struct cryptop *crp;
146
int error;
147
148
crp = crypto_getreq(as->as_session_aes, M_WAITOK);
149
150
crp->crp_payload_start = skip;
151
crp->crp_payload_length = len;
152
crp->crp_op = encrypt ? CRYPTO_OP_ENCRYPT : CRYPTO_OP_DECRYPT;
153
crp->crp_flags = CRYPTO_F_CBIFSYNC | CRYPTO_F_IV_SEPARATE;
154
if (ivec) {
155
memcpy(crp->crp_iv, ivec, 16);
156
} else {
157
memset(crp->crp_iv, 0, 16);
158
}
159
160
if (buftype == CRYPTO_BUF_MBUF)
161
crypto_use_mbuf(crp, buf);
162
else
163
crypto_use_buf(crp, buf, skip + len);
164
crp->crp_opaque = as;
165
crp->crp_callback = aes_crypto_cb;
166
167
error = crypto_dispatch(crp);
168
169
if (!CRYPTO_SESS_SYNC(as->as_session_aes)) {
170
mtx_lock(&as->as_lock);
171
if (error == 0 && crp->crp_opaque != NULL)
172
error = msleep(crp, &as->as_lock, 0, "gssaes", 0);
173
mtx_unlock(&as->as_lock);
174
}
175
if (crp->crp_etype != 0)
176
panic("%s: crypto req failed: %d", __func__, crp->crp_etype);
177
crypto_freereq(crp);
178
}
179
180
static void
181
aes_encrypt(const struct krb5_key_state *ks, struct mbuf *inout,
182
size_t skip, size_t len, void *ivec, size_t ivlen)
183
{
184
size_t blocklen = 16, plen;
185
struct {
186
uint8_t cn_1[16], cn[16];
187
} last2;
188
int i, off;
189
190
/*
191
* AES encryption with cyphertext stealing:
192
*
193
* CTSencrypt(P[0], ..., P[n], IV, K):
194
* len = length(P[n])
195
* (C[0], ..., C[n-2], E[n-1]) =
196
* CBCencrypt(P[0], ..., P[n-1], IV, K)
197
* P = pad(P[n], 0, blocksize)
198
* E[n] = CBCencrypt(P, E[n-1], K);
199
* C[n-1] = E[n]
200
* C[n] = E[n-1]{0..len-1}
201
*/
202
plen = len % blocklen;
203
if (len == blocklen) {
204
/*
205
* Note: caller will ensure len >= blocklen.
206
*/
207
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len, ivec,
208
true);
209
} else if (plen == 0) {
210
/*
211
* This is equivalent to CBC mode followed by swapping
212
* the last two blocks. We assume that neither of the
213
* last two blocks cross iov boundaries.
214
*/
215
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len, ivec,
216
true);
217
off = skip + len - 2 * blocklen;
218
m_copydata(inout, off, 2 * blocklen, (void*) &last2);
219
m_copyback(inout, off, blocklen, last2.cn);
220
m_copyback(inout, off + blocklen, blocklen, last2.cn_1);
221
} else {
222
/*
223
* This is the difficult case. We encrypt all but the
224
* last partial block first. We then create a padded
225
* copy of the last block and encrypt that using the
226
* second to last encrypted block as IV. Once we have
227
* the encrypted versions of the last two blocks, we
228
* reshuffle to create the final result.
229
*/
230
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len - plen,
231
ivec, true);
232
233
/*
234
* Copy out the last two blocks, pad the last block
235
* and encrypt it. Rearrange to get the final
236
* result. The cyphertext for cn_1 is in cn. The
237
* cyphertext for cn is the first plen bytes of what
238
* is in cn_1 now.
239
*/
240
off = skip + len - blocklen - plen;
241
m_copydata(inout, off, blocklen + plen, (void*) &last2);
242
for (i = plen; i < blocklen; i++)
243
last2.cn[i] = 0;
244
aes_encrypt_1(ks, CRYPTO_BUF_CONTIG, last2.cn, 0, blocklen,
245
last2.cn_1, true);
246
m_copyback(inout, off, blocklen, last2.cn);
247
m_copyback(inout, off + blocklen, plen, last2.cn_1);
248
}
249
}
250
251
static void
252
aes_decrypt(const struct krb5_key_state *ks, struct mbuf *inout,
253
size_t skip, size_t len, void *ivec, size_t ivlen)
254
{
255
size_t blocklen = 16, plen;
256
struct {
257
uint8_t cn_1[16], cn[16];
258
} last2;
259
int i, off, t;
260
261
/*
262
* AES decryption with cyphertext stealing:
263
*
264
* CTSencrypt(C[0], ..., C[n], IV, K):
265
* len = length(C[n])
266
* E[n] = C[n-1]
267
* X = decrypt(E[n], K)
268
* P[n] = (X ^ C[n]){0..len-1}
269
* E[n-1] = {C[n,0],...,C[n,len-1],X[len],...,X[blocksize-1]}
270
* (P[0],...,P[n-1]) = CBCdecrypt(C[0],...,C[n-2],E[n-1], IV, K)
271
*/
272
plen = len % blocklen;
273
if (len == blocklen) {
274
/*
275
* Note: caller will ensure len >= blocklen.
276
*/
277
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len, ivec,
278
false);
279
} else if (plen == 0) {
280
/*
281
* This is equivalent to CBC mode followed by swapping
282
* the last two blocks.
283
*/
284
off = skip + len - 2 * blocklen;
285
m_copydata(inout, off, 2 * blocklen, (void*) &last2);
286
m_copyback(inout, off, blocklen, last2.cn);
287
m_copyback(inout, off + blocklen, blocklen, last2.cn_1);
288
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len, ivec,
289
false);
290
} else {
291
/*
292
* This is the difficult case. We first decrypt the
293
* second to last block with a zero IV to make X. The
294
* plaintext for the last block is the XOR of X and
295
* the last cyphertext block.
296
*
297
* We derive a new cypher text for the second to last
298
* block by mixing the unused bytes of X with the last
299
* cyphertext block. The result of that can be
300
* decrypted with the rest in CBC mode.
301
*/
302
off = skip + len - plen - blocklen;
303
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, off, blocklen,
304
NULL, false);
305
m_copydata(inout, off, blocklen + plen, (void*) &last2);
306
307
for (i = 0; i < plen; i++) {
308
t = last2.cn[i];
309
last2.cn[i] ^= last2.cn_1[i];
310
last2.cn_1[i] = t;
311
}
312
313
m_copyback(inout, off, blocklen + plen, (void*) &last2);
314
aes_encrypt_1(ks, CRYPTO_BUF_MBUF, inout, skip, len - plen,
315
ivec, false);
316
}
317
318
}
319
320
static void
321
aes_checksum(const struct krb5_key_state *ks, int usage,
322
struct mbuf *inout, size_t skip, size_t inlen, size_t outlen)
323
{
324
struct aes_state *as = ks->ks_priv;
325
struct cryptop *crp;
326
int error;
327
328
crp = crypto_getreq(as->as_session_sha1, M_WAITOK);
329
330
crp->crp_payload_start = skip;
331
crp->crp_payload_length = inlen;
332
crp->crp_digest_start = skip + inlen;
333
crp->crp_flags = CRYPTO_F_CBIFSYNC;
334
crypto_use_mbuf(crp, inout);
335
crp->crp_opaque = as;
336
crp->crp_callback = aes_crypto_cb;
337
338
error = crypto_dispatch(crp);
339
340
if (!CRYPTO_SESS_SYNC(as->as_session_sha1)) {
341
mtx_lock(&as->as_lock);
342
if (error == 0 && crp->crp_opaque != NULL)
343
error = msleep(crp, &as->as_lock, 0, "gssaes", 0);
344
mtx_unlock(&as->as_lock);
345
}
346
347
if (crp->crp_etype != 0)
348
panic("%s: crypto req failed: %d", __func__, crp->crp_etype);
349
crypto_freereq(crp);
350
}
351
352
struct krb5_encryption_class krb5_aes128_encryption_class = {
353
"aes128-cts-hmac-sha1-96", /* name */
354
ETYPE_AES128_CTS_HMAC_SHA1_96, /* etype */
355
EC_DERIVED_KEYS, /* flags */
356
16, /* blocklen */
357
1, /* msgblocklen */
358
12, /* checksumlen */
359
128, /* keybits */
360
16, /* keylen */
361
aes_init,
362
aes_destroy,
363
aes_set_key,
364
aes_random_to_key,
365
aes_encrypt,
366
aes_decrypt,
367
aes_checksum
368
};
369
370
struct krb5_encryption_class krb5_aes256_encryption_class = {
371
"aes256-cts-hmac-sha1-96", /* name */
372
ETYPE_AES256_CTS_HMAC_SHA1_96, /* etype */
373
EC_DERIVED_KEYS, /* flags */
374
16, /* blocklen */
375
1, /* msgblocklen */
376
12, /* checksumlen */
377
256, /* keybits */
378
32, /* keylen */
379
aes_init,
380
aes_destroy,
381
aes_set_key,
382
aes_random_to_key,
383
aes_encrypt,
384
aes_decrypt,
385
aes_checksum
386
};
387
388