Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/net/altq/altq_subr.c
39536 views
1
/*-
2
* Copyright (C) 1997-2003
3
* Sony Computer Science Laboratories Inc. All rights reserved.
4
*
5
* Redistribution and use in source and binary forms, with or without
6
* modification, are permitted provided that the following conditions
7
* are met:
8
* 1. Redistributions of source code must retain the above copyright
9
* notice, this list of conditions and the following disclaimer.
10
* 2. Redistributions in binary form must reproduce the above copyright
11
* notice, this list of conditions and the following disclaimer in the
12
* documentation and/or other materials provided with the distribution.
13
*
14
* THIS SOFTWARE IS PROVIDED BY SONY CSL AND CONTRIBUTORS ``AS IS'' AND
15
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17
* ARE DISCLAIMED. IN NO EVENT SHALL SONY CSL OR CONTRIBUTORS BE LIABLE
18
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24
* SUCH DAMAGE.
25
*
26
* $KAME: altq_subr.c,v 1.21 2003/11/06 06:32:53 kjc Exp $
27
*/
28
29
#include "opt_altq.h"
30
#include "opt_inet.h"
31
#include "opt_inet6.h"
32
33
#include <sys/param.h>
34
#include <sys/malloc.h>
35
#include <sys/mbuf.h>
36
#include <sys/systm.h>
37
#include <sys/proc.h>
38
#include <sys/socket.h>
39
#include <sys/socketvar.h>
40
#include <sys/kernel.h>
41
#include <sys/errno.h>
42
#include <sys/syslog.h>
43
#include <sys/sysctl.h>
44
#include <sys/queue.h>
45
46
#include <net/if.h>
47
#include <net/if_var.h>
48
#include <net/if_private.h>
49
#include <net/if_dl.h>
50
#include <net/if_types.h>
51
#include <net/vnet.h>
52
53
#include <netinet/in.h>
54
#include <netinet/in_systm.h>
55
#include <netinet/ip.h>
56
#ifdef INET6
57
#include <netinet/ip6.h>
58
#endif
59
#include <netinet/tcp.h>
60
#include <netinet/udp.h>
61
62
#include <netpfil/pf/pf.h>
63
#include <netpfil/pf/pf_altq.h>
64
#include <net/altq/altq.h>
65
66
/* machine dependent clock related includes */
67
#include <sys/bus.h>
68
#include <sys/cpu.h>
69
#include <sys/eventhandler.h>
70
#include <machine/clock.h>
71
#if defined(__amd64__) || defined(__i386__)
72
#include <machine/cpufunc.h> /* for pentium tsc */
73
#include <machine/specialreg.h> /* for CPUID_TSC */
74
#include <machine/md_var.h> /* for cpu_feature */
75
#endif /* __amd64 || __i386__ */
76
77
/*
78
* internal function prototypes
79
*/
80
static void tbr_timeout(void *);
81
static struct mbuf *tbr_dequeue(struct ifaltq *, int);
82
static int tbr_timer = 0; /* token bucket regulator timer */
83
static struct callout tbr_callout;
84
85
#ifdef ALTQ3_CLFIER_COMPAT
86
static int extract_ports4(struct mbuf *, struct ip *, struct flowinfo_in *);
87
#ifdef INET6
88
static int extract_ports6(struct mbuf *, struct ip6_hdr *,
89
struct flowinfo_in6 *);
90
#endif
91
static int apply_filter4(u_int32_t, struct flow_filter *,
92
struct flowinfo_in *);
93
static int apply_ppfilter4(u_int32_t, struct flow_filter *,
94
struct flowinfo_in *);
95
#ifdef INET6
96
static int apply_filter6(u_int32_t, struct flow_filter6 *,
97
struct flowinfo_in6 *);
98
#endif
99
static int apply_tosfilter4(u_int32_t, struct flow_filter *,
100
struct flowinfo_in *);
101
static u_long get_filt_handle(struct acc_classifier *, int);
102
static struct acc_filter *filth_to_filtp(struct acc_classifier *, u_long);
103
static u_int32_t filt2fibmask(struct flow_filter *);
104
105
static void ip4f_cache(struct ip *, struct flowinfo_in *);
106
static int ip4f_lookup(struct ip *, struct flowinfo_in *);
107
static int ip4f_init(void);
108
static struct ip4_frag *ip4f_alloc(void);
109
static void ip4f_free(struct ip4_frag *);
110
#endif /* ALTQ3_CLFIER_COMPAT */
111
112
#ifdef ALTQ
113
SYSCTL_NODE(_kern_features, OID_AUTO, altq, CTLFLAG_RD | CTLFLAG_CAPRD, 0,
114
"ALTQ packet queuing");
115
116
#define ALTQ_FEATURE(name, desc) \
117
SYSCTL_INT_WITH_LABEL(_kern_features_altq, OID_AUTO, name, \
118
CTLFLAG_RD | CTLFLAG_CAPRD, SYSCTL_NULL_INT_PTR, 1, \
119
desc, "feature")
120
121
#ifdef ALTQ_CBQ
122
ALTQ_FEATURE(cbq, "ALTQ Class Based Queuing discipline");
123
#endif
124
#ifdef ALTQ_CODEL
125
ALTQ_FEATURE(codel, "ALTQ Controlled Delay discipline");
126
#endif
127
#ifdef ALTQ_RED
128
ALTQ_FEATURE(red, "ALTQ Random Early Detection discipline");
129
#endif
130
#ifdef ALTQ_RIO
131
ALTQ_FEATURE(rio, "ALTQ Random Early Drop discipline");
132
#endif
133
#ifdef ALTQ_HFSC
134
ALTQ_FEATURE(hfsc, "ALTQ Hierarchical Packet Scheduler discipline");
135
#endif
136
#ifdef ALTQ_PRIQ
137
ALTQ_FEATURE(priq, "ATLQ Priority Queuing discipline");
138
#endif
139
#ifdef ALTQ_FAIRQ
140
ALTQ_FEATURE(fairq, "ALTQ Fair Queuing discipline");
141
#endif
142
#endif
143
144
/*
145
* alternate queueing support routines
146
*/
147
148
/* look up the queue state by the interface name and the queueing type. */
149
void *
150
altq_lookup(char *name, int type)
151
{
152
struct ifnet *ifp;
153
154
if ((ifp = ifunit(name)) != NULL) {
155
/* read if_snd unlocked */
156
if (type != ALTQT_NONE && ifp->if_snd.altq_type == type)
157
return (ifp->if_snd.altq_disc);
158
}
159
160
return NULL;
161
}
162
163
int
164
altq_attach(struct ifaltq *ifq, int type, void *discipline,
165
int (*enqueue)(struct ifaltq *, struct mbuf *, struct altq_pktattr *),
166
struct mbuf *(*dequeue)(struct ifaltq *, int),
167
int (*request)(struct ifaltq *, int, void *))
168
{
169
IFQ_LOCK(ifq);
170
if (!ALTQ_IS_READY(ifq)) {
171
IFQ_UNLOCK(ifq);
172
return ENXIO;
173
}
174
175
ifq->altq_type = type;
176
ifq->altq_disc = discipline;
177
ifq->altq_enqueue = enqueue;
178
ifq->altq_dequeue = dequeue;
179
ifq->altq_request = request;
180
ifq->altq_flags &= (ALTQF_CANTCHANGE|ALTQF_ENABLED);
181
IFQ_UNLOCK(ifq);
182
return 0;
183
}
184
185
int
186
altq_detach(struct ifaltq *ifq)
187
{
188
IFQ_LOCK(ifq);
189
190
if (!ALTQ_IS_READY(ifq)) {
191
IFQ_UNLOCK(ifq);
192
return ENXIO;
193
}
194
if (ALTQ_IS_ENABLED(ifq)) {
195
IFQ_UNLOCK(ifq);
196
return EBUSY;
197
}
198
if (!ALTQ_IS_ATTACHED(ifq)) {
199
IFQ_UNLOCK(ifq);
200
return (0);
201
}
202
203
ifq->altq_type = ALTQT_NONE;
204
ifq->altq_disc = NULL;
205
ifq->altq_enqueue = NULL;
206
ifq->altq_dequeue = NULL;
207
ifq->altq_request = NULL;
208
ifq->altq_flags &= ALTQF_CANTCHANGE;
209
210
IFQ_UNLOCK(ifq);
211
return 0;
212
}
213
214
int
215
altq_enable(struct ifaltq *ifq)
216
{
217
int s;
218
219
IFQ_LOCK(ifq);
220
221
if (!ALTQ_IS_READY(ifq)) {
222
IFQ_UNLOCK(ifq);
223
return ENXIO;
224
}
225
if (ALTQ_IS_ENABLED(ifq)) {
226
IFQ_UNLOCK(ifq);
227
return 0;
228
}
229
230
s = splnet();
231
IFQ_PURGE_NOLOCK(ifq);
232
ASSERT(ifq->ifq_len == 0);
233
ifq->ifq_drv_maxlen = 0; /* disable bulk dequeue */
234
ifq->altq_flags |= ALTQF_ENABLED;
235
splx(s);
236
237
IFQ_UNLOCK(ifq);
238
return 0;
239
}
240
241
int
242
altq_disable(struct ifaltq *ifq)
243
{
244
int s;
245
246
IFQ_LOCK(ifq);
247
if (!ALTQ_IS_ENABLED(ifq)) {
248
IFQ_UNLOCK(ifq);
249
return 0;
250
}
251
252
s = splnet();
253
IFQ_PURGE_NOLOCK(ifq);
254
ASSERT(ifq->ifq_len == 0);
255
ifq->altq_flags &= ~(ALTQF_ENABLED);
256
splx(s);
257
258
IFQ_UNLOCK(ifq);
259
return 0;
260
}
261
262
#ifdef ALTQ_DEBUG
263
void
264
altq_assert(const char *file, int line, const char *failedexpr)
265
{
266
(void)printf("altq assertion \"%s\" failed: file \"%s\", line %d\n",
267
failedexpr, file, line);
268
panic("altq assertion");
269
/* NOTREACHED */
270
}
271
#endif
272
273
/*
274
* internal representation of token bucket parameters
275
* rate: (byte_per_unittime << TBR_SHIFT) / machclk_freq
276
* (((bits_per_sec) / 8) << TBR_SHIFT) / machclk_freq
277
* depth: byte << TBR_SHIFT
278
*
279
*/
280
#define TBR_SHIFT 29
281
#define TBR_SCALE(x) ((int64_t)(x) << TBR_SHIFT)
282
#define TBR_UNSCALE(x) ((x) >> TBR_SHIFT)
283
284
static struct mbuf *
285
tbr_dequeue(struct ifaltq *ifq, int op)
286
{
287
struct tb_regulator *tbr;
288
struct mbuf *m;
289
int64_t interval;
290
u_int64_t now;
291
292
IFQ_LOCK_ASSERT(ifq);
293
tbr = ifq->altq_tbr;
294
if (op == ALTDQ_REMOVE && tbr->tbr_lastop == ALTDQ_POLL) {
295
/* if this is a remove after poll, bypass tbr check */
296
} else {
297
/* update token only when it is negative */
298
if (tbr->tbr_token <= 0) {
299
now = read_machclk();
300
interval = now - tbr->tbr_last;
301
if (interval >= tbr->tbr_filluptime)
302
tbr->tbr_token = tbr->tbr_depth;
303
else {
304
tbr->tbr_token += interval * tbr->tbr_rate;
305
if (tbr->tbr_token > tbr->tbr_depth)
306
tbr->tbr_token = tbr->tbr_depth;
307
}
308
tbr->tbr_last = now;
309
}
310
/* if token is still negative, don't allow dequeue */
311
if (tbr->tbr_token <= 0)
312
return (NULL);
313
}
314
315
if (ALTQ_IS_ENABLED(ifq))
316
m = (*ifq->altq_dequeue)(ifq, op);
317
else {
318
if (op == ALTDQ_POLL)
319
_IF_POLL(ifq, m);
320
else
321
_IF_DEQUEUE(ifq, m);
322
}
323
324
if (m != NULL && op == ALTDQ_REMOVE)
325
tbr->tbr_token -= TBR_SCALE(m_pktlen(m));
326
tbr->tbr_lastop = op;
327
return (m);
328
}
329
330
/*
331
* set a token bucket regulator.
332
* if the specified rate is zero, the token bucket regulator is deleted.
333
*/
334
int
335
tbr_set(struct ifaltq *ifq, struct tb_profile *profile)
336
{
337
struct tb_regulator *tbr, *otbr;
338
339
if (tbr_dequeue_ptr == NULL)
340
tbr_dequeue_ptr = tbr_dequeue;
341
342
if (machclk_freq == 0)
343
init_machclk();
344
if (machclk_freq == 0) {
345
printf("tbr_set: no cpu clock available!\n");
346
return (ENXIO);
347
}
348
349
IFQ_LOCK(ifq);
350
if (profile->rate == 0) {
351
/* delete this tbr */
352
if ((tbr = ifq->altq_tbr) == NULL) {
353
IFQ_UNLOCK(ifq);
354
return (ENOENT);
355
}
356
ifq->altq_tbr = NULL;
357
free(tbr, M_DEVBUF);
358
IFQ_UNLOCK(ifq);
359
return (0);
360
}
361
362
tbr = malloc(sizeof(struct tb_regulator), M_DEVBUF, M_NOWAIT | M_ZERO);
363
if (tbr == NULL) {
364
IFQ_UNLOCK(ifq);
365
return (ENOMEM);
366
}
367
368
tbr->tbr_rate = TBR_SCALE(profile->rate / 8) / machclk_freq;
369
tbr->tbr_depth = TBR_SCALE(profile->depth);
370
if (tbr->tbr_rate > 0)
371
tbr->tbr_filluptime = tbr->tbr_depth / tbr->tbr_rate;
372
else
373
tbr->tbr_filluptime = LLONG_MAX;
374
/*
375
* The longest time between tbr_dequeue() calls will be about 1
376
* system tick, as the callout that drives it is scheduled once per
377
* tick. The refill-time detection logic in tbr_dequeue() can only
378
* properly detect the passage of up to LLONG_MAX machclk ticks.
379
* Therefore, in order for this logic to function properly in the
380
* extreme case, the maximum value of tbr_filluptime should be
381
* LLONG_MAX less one system tick's worth of machclk ticks less
382
* some additional slop factor (here one more system tick's worth
383
* of machclk ticks).
384
*/
385
if (tbr->tbr_filluptime > (LLONG_MAX - 2 * machclk_per_tick))
386
tbr->tbr_filluptime = LLONG_MAX - 2 * machclk_per_tick;
387
tbr->tbr_token = tbr->tbr_depth;
388
tbr->tbr_last = read_machclk();
389
tbr->tbr_lastop = ALTDQ_REMOVE;
390
391
otbr = ifq->altq_tbr;
392
ifq->altq_tbr = tbr; /* set the new tbr */
393
394
if (otbr != NULL)
395
free(otbr, M_DEVBUF);
396
else {
397
if (tbr_timer == 0) {
398
CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
399
tbr_timer = 1;
400
}
401
}
402
IFQ_UNLOCK(ifq);
403
return (0);
404
}
405
406
/*
407
* tbr_timeout goes through the interface list, and kicks the drivers
408
* if necessary.
409
*
410
* MPSAFE
411
*/
412
static void
413
tbr_timeout(void *arg)
414
{
415
VNET_ITERATOR_DECL(vnet_iter);
416
struct ifnet *ifp;
417
struct epoch_tracker et;
418
int active;
419
420
active = 0;
421
NET_EPOCH_ENTER(et);
422
VNET_LIST_RLOCK_NOSLEEP();
423
VNET_FOREACH(vnet_iter) {
424
CURVNET_SET(vnet_iter);
425
for (ifp = CK_STAILQ_FIRST(&V_ifnet); ifp;
426
ifp = CK_STAILQ_NEXT(ifp, if_link)) {
427
/* read from if_snd unlocked */
428
if (!TBR_IS_ENABLED(&ifp->if_snd))
429
continue;
430
active++;
431
if (!IFQ_IS_EMPTY(&ifp->if_snd) &&
432
ifp->if_start != NULL)
433
(*ifp->if_start)(ifp);
434
}
435
CURVNET_RESTORE();
436
}
437
VNET_LIST_RUNLOCK_NOSLEEP();
438
NET_EPOCH_EXIT(et);
439
if (active > 0)
440
CALLOUT_RESET(&tbr_callout, 1, tbr_timeout, (void *)0);
441
else
442
tbr_timer = 0; /* don't need tbr_timer anymore */
443
}
444
445
/*
446
* attach a discipline to the interface. if one already exists, it is
447
* overridden.
448
* Locking is done in the discipline specific attach functions. Basically
449
* they call back to altq_attach which takes care of the attach and locking.
450
*/
451
int
452
altq_pfattach(struct pf_altq *a)
453
{
454
int error = 0;
455
456
switch (a->scheduler) {
457
case ALTQT_NONE:
458
break;
459
#ifdef ALTQ_CBQ
460
case ALTQT_CBQ:
461
error = cbq_pfattach(a);
462
break;
463
#endif
464
#ifdef ALTQ_PRIQ
465
case ALTQT_PRIQ:
466
error = priq_pfattach(a);
467
break;
468
#endif
469
#ifdef ALTQ_HFSC
470
case ALTQT_HFSC:
471
error = hfsc_pfattach(a);
472
break;
473
#endif
474
#ifdef ALTQ_FAIRQ
475
case ALTQT_FAIRQ:
476
error = fairq_pfattach(a);
477
break;
478
#endif
479
#ifdef ALTQ_CODEL
480
case ALTQT_CODEL:
481
error = codel_pfattach(a);
482
break;
483
#endif
484
default:
485
error = ENXIO;
486
}
487
488
return (error);
489
}
490
491
/*
492
* detach a discipline from the interface.
493
* it is possible that the discipline was already overridden by another
494
* discipline.
495
*/
496
int
497
altq_pfdetach(struct pf_altq *a)
498
{
499
struct ifnet *ifp;
500
int s, error = 0;
501
502
if ((ifp = ifunit(a->ifname)) == NULL)
503
return (EINVAL);
504
505
/* if this discipline is no longer referenced, just return */
506
/* read unlocked from if_snd */
507
if (a->altq_disc == NULL || a->altq_disc != ifp->if_snd.altq_disc)
508
return (0);
509
510
s = splnet();
511
/* read unlocked from if_snd, _disable and _detach take care */
512
if (ALTQ_IS_ENABLED(&ifp->if_snd))
513
error = altq_disable(&ifp->if_snd);
514
if (error == 0)
515
error = altq_detach(&ifp->if_snd);
516
splx(s);
517
518
return (error);
519
}
520
521
/*
522
* add a discipline or a queue
523
* Locking is done in the discipline specific functions with regards to
524
* malloc with WAITOK, also it is not yet clear which lock to use.
525
*/
526
int
527
altq_add(struct ifnet *ifp, struct pf_altq *a)
528
{
529
int error = 0;
530
531
if (a->qname[0] != 0)
532
return (altq_add_queue(a));
533
534
if (machclk_freq == 0)
535
init_machclk();
536
if (machclk_freq == 0)
537
panic("altq_add: no cpu clock");
538
539
switch (a->scheduler) {
540
#ifdef ALTQ_CBQ
541
case ALTQT_CBQ:
542
error = cbq_add_altq(ifp, a);
543
break;
544
#endif
545
#ifdef ALTQ_PRIQ
546
case ALTQT_PRIQ:
547
error = priq_add_altq(ifp, a);
548
break;
549
#endif
550
#ifdef ALTQ_HFSC
551
case ALTQT_HFSC:
552
error = hfsc_add_altq(ifp, a);
553
break;
554
#endif
555
#ifdef ALTQ_FAIRQ
556
case ALTQT_FAIRQ:
557
error = fairq_add_altq(ifp, a);
558
break;
559
#endif
560
#ifdef ALTQ_CODEL
561
case ALTQT_CODEL:
562
error = codel_add_altq(ifp, a);
563
break;
564
#endif
565
default:
566
error = ENXIO;
567
}
568
569
return (error);
570
}
571
572
/*
573
* remove a discipline or a queue
574
* It is yet unclear what lock to use to protect this operation, the
575
* discipline specific functions will determine and grab it
576
*/
577
int
578
altq_remove(struct pf_altq *a)
579
{
580
int error = 0;
581
582
if (a->qname[0] != 0)
583
return (altq_remove_queue(a));
584
585
switch (a->scheduler) {
586
#ifdef ALTQ_CBQ
587
case ALTQT_CBQ:
588
error = cbq_remove_altq(a);
589
break;
590
#endif
591
#ifdef ALTQ_PRIQ
592
case ALTQT_PRIQ:
593
error = priq_remove_altq(a);
594
break;
595
#endif
596
#ifdef ALTQ_HFSC
597
case ALTQT_HFSC:
598
error = hfsc_remove_altq(a);
599
break;
600
#endif
601
#ifdef ALTQ_FAIRQ
602
case ALTQT_FAIRQ:
603
error = fairq_remove_altq(a);
604
break;
605
#endif
606
#ifdef ALTQ_CODEL
607
case ALTQT_CODEL:
608
error = codel_remove_altq(a);
609
break;
610
#endif
611
default:
612
error = ENXIO;
613
}
614
615
return (error);
616
}
617
618
/*
619
* add a queue to the discipline
620
* It is yet unclear what lock to use to protect this operation, the
621
* discipline specific functions will determine and grab it
622
*/
623
int
624
altq_add_queue(struct pf_altq *a)
625
{
626
int error = 0;
627
628
switch (a->scheduler) {
629
#ifdef ALTQ_CBQ
630
case ALTQT_CBQ:
631
error = cbq_add_queue(a);
632
break;
633
#endif
634
#ifdef ALTQ_PRIQ
635
case ALTQT_PRIQ:
636
error = priq_add_queue(a);
637
break;
638
#endif
639
#ifdef ALTQ_HFSC
640
case ALTQT_HFSC:
641
error = hfsc_add_queue(a);
642
break;
643
#endif
644
#ifdef ALTQ_FAIRQ
645
case ALTQT_FAIRQ:
646
error = fairq_add_queue(a);
647
break;
648
#endif
649
default:
650
error = ENXIO;
651
}
652
653
return (error);
654
}
655
656
/*
657
* remove a queue from the discipline
658
* It is yet unclear what lock to use to protect this operation, the
659
* discipline specific functions will determine and grab it
660
*/
661
int
662
altq_remove_queue(struct pf_altq *a)
663
{
664
int error = 0;
665
666
switch (a->scheduler) {
667
#ifdef ALTQ_CBQ
668
case ALTQT_CBQ:
669
error = cbq_remove_queue(a);
670
break;
671
#endif
672
#ifdef ALTQ_PRIQ
673
case ALTQT_PRIQ:
674
error = priq_remove_queue(a);
675
break;
676
#endif
677
#ifdef ALTQ_HFSC
678
case ALTQT_HFSC:
679
error = hfsc_remove_queue(a);
680
break;
681
#endif
682
#ifdef ALTQ_FAIRQ
683
case ALTQT_FAIRQ:
684
error = fairq_remove_queue(a);
685
break;
686
#endif
687
default:
688
error = ENXIO;
689
}
690
691
return (error);
692
}
693
694
/*
695
* get queue statistics
696
* Locking is done in the discipline specific functions with regards to
697
* copyout operations, also it is not yet clear which lock to use.
698
*/
699
int
700
altq_getqstats(struct pf_altq *a, void *ubuf, int *nbytes, int version)
701
{
702
int error = 0;
703
704
switch (a->scheduler) {
705
#ifdef ALTQ_CBQ
706
case ALTQT_CBQ:
707
error = cbq_getqstats(a, ubuf, nbytes, version);
708
break;
709
#endif
710
#ifdef ALTQ_PRIQ
711
case ALTQT_PRIQ:
712
error = priq_getqstats(a, ubuf, nbytes, version);
713
break;
714
#endif
715
#ifdef ALTQ_HFSC
716
case ALTQT_HFSC:
717
error = hfsc_getqstats(a, ubuf, nbytes, version);
718
break;
719
#endif
720
#ifdef ALTQ_FAIRQ
721
case ALTQT_FAIRQ:
722
error = fairq_getqstats(a, ubuf, nbytes, version);
723
break;
724
#endif
725
#ifdef ALTQ_CODEL
726
case ALTQT_CODEL:
727
error = codel_getqstats(a, ubuf, nbytes, version);
728
break;
729
#endif
730
default:
731
error = ENXIO;
732
}
733
734
return (error);
735
}
736
737
/*
738
* read and write diffserv field in IPv4 or IPv6 header
739
*/
740
u_int8_t
741
read_dsfield(struct mbuf *m, struct altq_pktattr *pktattr)
742
{
743
struct mbuf *m0;
744
u_int8_t ds_field = 0;
745
746
if (pktattr == NULL ||
747
(pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
748
return ((u_int8_t)0);
749
750
/* verify that pattr_hdr is within the mbuf data */
751
for (m0 = m; m0 != NULL; m0 = m0->m_next)
752
if ((pktattr->pattr_hdr >= m0->m_data) &&
753
(pktattr->pattr_hdr < m0->m_data + m0->m_len))
754
break;
755
if (m0 == NULL) {
756
/* ick, pattr_hdr is stale */
757
pktattr->pattr_af = AF_UNSPEC;
758
#ifdef ALTQ_DEBUG
759
printf("read_dsfield: can't locate header!\n");
760
#endif
761
return ((u_int8_t)0);
762
}
763
764
if (pktattr->pattr_af == AF_INET) {
765
struct ip *ip = (struct ip *)pktattr->pattr_hdr;
766
767
if (ip->ip_v != 4)
768
return ((u_int8_t)0); /* version mismatch! */
769
ds_field = ip->ip_tos;
770
}
771
#ifdef INET6
772
else if (pktattr->pattr_af == AF_INET6) {
773
struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
774
u_int32_t flowlabel;
775
776
flowlabel = ntohl(ip6->ip6_flow);
777
if ((flowlabel >> 28) != 6)
778
return ((u_int8_t)0); /* version mismatch! */
779
ds_field = (flowlabel >> 20) & 0xff;
780
}
781
#endif
782
return (ds_field);
783
}
784
785
void
786
write_dsfield(struct mbuf *m, struct altq_pktattr *pktattr, u_int8_t dsfield)
787
{
788
struct mbuf *m0;
789
790
if (pktattr == NULL ||
791
(pktattr->pattr_af != AF_INET && pktattr->pattr_af != AF_INET6))
792
return;
793
794
/* verify that pattr_hdr is within the mbuf data */
795
for (m0 = m; m0 != NULL; m0 = m0->m_next)
796
if ((pktattr->pattr_hdr >= m0->m_data) &&
797
(pktattr->pattr_hdr < m0->m_data + m0->m_len))
798
break;
799
if (m0 == NULL) {
800
/* ick, pattr_hdr is stale */
801
pktattr->pattr_af = AF_UNSPEC;
802
#ifdef ALTQ_DEBUG
803
printf("write_dsfield: can't locate header!\n");
804
#endif
805
return;
806
}
807
808
if (pktattr->pattr_af == AF_INET) {
809
struct ip *ip = (struct ip *)pktattr->pattr_hdr;
810
u_int8_t old;
811
int32_t sum;
812
813
if (ip->ip_v != 4)
814
return; /* version mismatch! */
815
old = ip->ip_tos;
816
dsfield |= old & 3; /* leave CU bits */
817
if (old == dsfield)
818
return;
819
ip->ip_tos = dsfield;
820
/*
821
* update checksum (from RFC1624)
822
* HC' = ~(~HC + ~m + m')
823
*/
824
sum = ~ntohs(ip->ip_sum) & 0xffff;
825
sum += 0xff00 + (~old & 0xff) + dsfield;
826
sum = (sum >> 16) + (sum & 0xffff);
827
sum += (sum >> 16); /* add carry */
828
829
ip->ip_sum = htons(~sum & 0xffff);
830
}
831
#ifdef INET6
832
else if (pktattr->pattr_af == AF_INET6) {
833
struct ip6_hdr *ip6 = (struct ip6_hdr *)pktattr->pattr_hdr;
834
u_int32_t flowlabel;
835
836
flowlabel = ntohl(ip6->ip6_flow);
837
if ((flowlabel >> 28) != 6)
838
return; /* version mismatch! */
839
flowlabel = (flowlabel & 0xf03fffff) | (dsfield << 20);
840
ip6->ip6_flow = htonl(flowlabel);
841
}
842
#endif
843
return;
844
}
845
846
/*
847
* high resolution clock support taking advantage of a machine dependent
848
* high resolution time counter (e.g., timestamp counter of intel pentium).
849
* we assume
850
* - 64-bit-long monotonically-increasing counter
851
* - frequency range is 100M-4GHz (CPU speed)
852
*/
853
/* if pcc is not available or disabled, emulate 256MHz using microtime() */
854
#define MACHCLK_SHIFT 8
855
856
int machclk_usepcc;
857
u_int32_t machclk_freq;
858
u_int32_t machclk_per_tick;
859
860
#if defined(__i386__) && defined(__NetBSD__)
861
extern u_int64_t cpu_tsc_freq;
862
#endif
863
864
/* Update TSC freq with the value indicated by the caller. */
865
static void
866
tsc_freq_changed(void *arg, const struct cf_level *level, int status)
867
{
868
/* If there was an error during the transition, don't do anything. */
869
if (status != 0)
870
return;
871
872
#if defined(__amd64__) || defined(__i386__)
873
/* If TSC is P-state invariant, don't do anything. */
874
if (tsc_is_invariant)
875
return;
876
#endif
877
878
/* Total setting for this level gives the new frequency in MHz. */
879
init_machclk();
880
}
881
EVENTHANDLER_DEFINE(cpufreq_post_change, tsc_freq_changed, NULL,
882
EVENTHANDLER_PRI_LAST);
883
884
static void
885
init_machclk_setup(void)
886
{
887
callout_init(&tbr_callout, 1);
888
889
machclk_usepcc = 1;
890
891
#if (!defined(__amd64__) && !defined(__i386__)) || defined(ALTQ_NOPCC)
892
machclk_usepcc = 0;
893
#endif
894
#if defined(__FreeBSD__) && defined(SMP)
895
machclk_usepcc = 0;
896
#endif
897
#if defined(__NetBSD__) && defined(MULTIPROCESSOR)
898
machclk_usepcc = 0;
899
#endif
900
#if defined(__amd64__) || defined(__i386__)
901
/* check if TSC is available */
902
if ((cpu_feature & CPUID_TSC) == 0 ||
903
atomic_load_acq_64(&tsc_freq) == 0)
904
machclk_usepcc = 0;
905
#endif
906
}
907
908
void
909
init_machclk(void)
910
{
911
static int called;
912
913
/* Call one-time initialization function. */
914
if (!called) {
915
init_machclk_setup();
916
called = 1;
917
}
918
919
if (machclk_usepcc == 0) {
920
/* emulate 256MHz using microtime() */
921
machclk_freq = 1000000 << MACHCLK_SHIFT;
922
machclk_per_tick = machclk_freq / hz;
923
#ifdef ALTQ_DEBUG
924
printf("altq: emulate %uHz cpu clock\n", machclk_freq);
925
#endif
926
return;
927
}
928
929
/*
930
* if the clock frequency (of Pentium TSC or Alpha PCC) is
931
* accessible, just use it.
932
*/
933
#if defined(__amd64__) || defined(__i386__)
934
machclk_freq = atomic_load_acq_64(&tsc_freq);
935
#endif
936
937
/*
938
* if we don't know the clock frequency, measure it.
939
*/
940
if (machclk_freq == 0) {
941
static int wait;
942
struct timeval tv_start, tv_end;
943
u_int64_t start, end, diff;
944
int timo;
945
946
microtime(&tv_start);
947
start = read_machclk();
948
timo = hz; /* 1 sec */
949
(void)tsleep(&wait, PWAIT | PCATCH, "init_machclk", timo);
950
microtime(&tv_end);
951
end = read_machclk();
952
diff = (u_int64_t)(tv_end.tv_sec - tv_start.tv_sec) * 1000000
953
+ tv_end.tv_usec - tv_start.tv_usec;
954
if (diff != 0)
955
machclk_freq = (u_int)((end - start) * 1000000 / diff);
956
}
957
958
machclk_per_tick = machclk_freq / hz;
959
960
#ifdef ALTQ_DEBUG
961
printf("altq: CPU clock: %uHz\n", machclk_freq);
962
#endif
963
}
964
965
#if defined(__OpenBSD__) && defined(__i386__)
966
static __inline u_int64_t
967
rdtsc(void)
968
{
969
u_int64_t rv;
970
__asm __volatile(".byte 0x0f, 0x31" : "=A" (rv));
971
return (rv);
972
}
973
#endif /* __OpenBSD__ && __i386__ */
974
975
u_int64_t
976
read_machclk(void)
977
{
978
u_int64_t val;
979
980
if (machclk_usepcc) {
981
#if defined(__amd64__) || defined(__i386__)
982
val = rdtsc();
983
#else
984
panic("read_machclk");
985
#endif
986
} else {
987
struct timeval tv, boottime;
988
989
microtime(&tv);
990
getboottime(&boottime);
991
val = (((u_int64_t)(tv.tv_sec - boottime.tv_sec) * 1000000
992
+ tv.tv_usec) << MACHCLK_SHIFT);
993
}
994
return (val);
995
}
996
997
#ifdef ALTQ3_CLFIER_COMPAT
998
999
#ifndef IPPROTO_ESP
1000
#define IPPROTO_ESP 50 /* encapsulating security payload */
1001
#endif
1002
#ifndef IPPROTO_AH
1003
#define IPPROTO_AH 51 /* authentication header */
1004
#endif
1005
1006
/*
1007
* extract flow information from a given packet.
1008
* filt_mask shows flowinfo fields required.
1009
* we assume the ip header is in one mbuf, and addresses and ports are
1010
* in network byte order.
1011
*/
1012
int
1013
altq_extractflow(m, af, flow, filt_bmask)
1014
struct mbuf *m;
1015
int af;
1016
struct flowinfo *flow;
1017
u_int32_t filt_bmask;
1018
{
1019
1020
switch (af) {
1021
case PF_INET: {
1022
struct flowinfo_in *fin;
1023
struct ip *ip;
1024
1025
ip = mtod(m, struct ip *);
1026
1027
if (ip->ip_v != 4)
1028
break;
1029
1030
fin = (struct flowinfo_in *)flow;
1031
fin->fi_len = sizeof(struct flowinfo_in);
1032
fin->fi_family = AF_INET;
1033
1034
fin->fi_proto = ip->ip_p;
1035
fin->fi_tos = ip->ip_tos;
1036
1037
fin->fi_src.s_addr = ip->ip_src.s_addr;
1038
fin->fi_dst.s_addr = ip->ip_dst.s_addr;
1039
1040
if (filt_bmask & FIMB4_PORTS)
1041
/* if port info is required, extract port numbers */
1042
extract_ports4(m, ip, fin);
1043
else {
1044
fin->fi_sport = 0;
1045
fin->fi_dport = 0;
1046
fin->fi_gpi = 0;
1047
}
1048
return (1);
1049
}
1050
1051
#ifdef INET6
1052
case PF_INET6: {
1053
struct flowinfo_in6 *fin6;
1054
struct ip6_hdr *ip6;
1055
1056
ip6 = mtod(m, struct ip6_hdr *);
1057
/* should we check the ip version? */
1058
1059
fin6 = (struct flowinfo_in6 *)flow;
1060
fin6->fi6_len = sizeof(struct flowinfo_in6);
1061
fin6->fi6_family = AF_INET6;
1062
1063
fin6->fi6_proto = ip6->ip6_nxt;
1064
fin6->fi6_tclass = IPV6_TRAFFIC_CLASS(ip6);
1065
1066
fin6->fi6_flowlabel = ip6->ip6_flow & htonl(0x000fffff);
1067
fin6->fi6_src = ip6->ip6_src;
1068
fin6->fi6_dst = ip6->ip6_dst;
1069
1070
if ((filt_bmask & FIMB6_PORTS) ||
1071
((filt_bmask & FIMB6_PROTO)
1072
&& ip6->ip6_nxt > IPPROTO_IPV6))
1073
/*
1074
* if port info is required, or proto is required
1075
* but there are option headers, extract port
1076
* and protocol numbers.
1077
*/
1078
extract_ports6(m, ip6, fin6);
1079
else {
1080
fin6->fi6_sport = 0;
1081
fin6->fi6_dport = 0;
1082
fin6->fi6_gpi = 0;
1083
}
1084
return (1);
1085
}
1086
#endif /* INET6 */
1087
1088
default:
1089
break;
1090
}
1091
1092
/* failed */
1093
flow->fi_len = sizeof(struct flowinfo);
1094
flow->fi_family = AF_UNSPEC;
1095
return (0);
1096
}
1097
1098
/*
1099
* helper routine to extract port numbers
1100
*/
1101
/* structure for ipsec and ipv6 option header template */
1102
struct _opt6 {
1103
u_int8_t opt6_nxt; /* next header */
1104
u_int8_t opt6_hlen; /* header extension length */
1105
u_int16_t _pad;
1106
u_int32_t ah_spi; /* security parameter index
1107
for authentication header */
1108
};
1109
1110
/*
1111
* extract port numbers from a ipv4 packet.
1112
*/
1113
static int
1114
extract_ports4(m, ip, fin)
1115
struct mbuf *m;
1116
struct ip *ip;
1117
struct flowinfo_in *fin;
1118
{
1119
struct mbuf *m0;
1120
u_short ip_off;
1121
u_int8_t proto;
1122
int off;
1123
1124
fin->fi_sport = 0;
1125
fin->fi_dport = 0;
1126
fin->fi_gpi = 0;
1127
1128
ip_off = ntohs(ip->ip_off);
1129
/* if it is a fragment, try cached fragment info */
1130
if (ip_off & IP_OFFMASK) {
1131
ip4f_lookup(ip, fin);
1132
return (1);
1133
}
1134
1135
/* locate the mbuf containing the protocol header */
1136
for (m0 = m; m0 != NULL; m0 = m0->m_next)
1137
if (((caddr_t)ip >= m0->m_data) &&
1138
((caddr_t)ip < m0->m_data + m0->m_len))
1139
break;
1140
if (m0 == NULL) {
1141
#ifdef ALTQ_DEBUG
1142
printf("extract_ports4: can't locate header! ip=%p\n", ip);
1143
#endif
1144
return (0);
1145
}
1146
off = ((caddr_t)ip - m0->m_data) + (ip->ip_hl << 2);
1147
proto = ip->ip_p;
1148
1149
#ifdef ALTQ_IPSEC
1150
again:
1151
#endif
1152
while (off >= m0->m_len) {
1153
off -= m0->m_len;
1154
m0 = m0->m_next;
1155
if (m0 == NULL)
1156
return (0); /* bogus ip_hl! */
1157
}
1158
if (m0->m_len < off + 4)
1159
return (0);
1160
1161
switch (proto) {
1162
case IPPROTO_TCP:
1163
case IPPROTO_UDP: {
1164
struct udphdr *udp;
1165
1166
udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
1167
fin->fi_sport = udp->uh_sport;
1168
fin->fi_dport = udp->uh_dport;
1169
fin->fi_proto = proto;
1170
}
1171
break;
1172
1173
#ifdef ALTQ_IPSEC
1174
case IPPROTO_ESP:
1175
if (fin->fi_gpi == 0){
1176
u_int32_t *gpi;
1177
1178
gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
1179
fin->fi_gpi = *gpi;
1180
}
1181
fin->fi_proto = proto;
1182
break;
1183
1184
case IPPROTO_AH: {
1185
/* get next header and header length */
1186
struct _opt6 *opt6;
1187
1188
opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1189
proto = opt6->opt6_nxt;
1190
off += 8 + (opt6->opt6_hlen * 4);
1191
if (fin->fi_gpi == 0 && m0->m_len >= off + 8)
1192
fin->fi_gpi = opt6->ah_spi;
1193
}
1194
/* goto the next header */
1195
goto again;
1196
#endif /* ALTQ_IPSEC */
1197
1198
default:
1199
fin->fi_proto = proto;
1200
return (0);
1201
}
1202
1203
/* if this is a first fragment, cache it. */
1204
if (ip_off & IP_MF)
1205
ip4f_cache(ip, fin);
1206
1207
return (1);
1208
}
1209
1210
#ifdef INET6
1211
static int
1212
extract_ports6(m, ip6, fin6)
1213
struct mbuf *m;
1214
struct ip6_hdr *ip6;
1215
struct flowinfo_in6 *fin6;
1216
{
1217
struct mbuf *m0;
1218
int off;
1219
u_int8_t proto;
1220
1221
fin6->fi6_gpi = 0;
1222
fin6->fi6_sport = 0;
1223
fin6->fi6_dport = 0;
1224
1225
/* locate the mbuf containing the protocol header */
1226
for (m0 = m; m0 != NULL; m0 = m0->m_next)
1227
if (((caddr_t)ip6 >= m0->m_data) &&
1228
((caddr_t)ip6 < m0->m_data + m0->m_len))
1229
break;
1230
if (m0 == NULL) {
1231
#ifdef ALTQ_DEBUG
1232
printf("extract_ports6: can't locate header! ip6=%p\n", ip6);
1233
#endif
1234
return (0);
1235
}
1236
off = ((caddr_t)ip6 - m0->m_data) + sizeof(struct ip6_hdr);
1237
1238
proto = ip6->ip6_nxt;
1239
do {
1240
while (off >= m0->m_len) {
1241
off -= m0->m_len;
1242
m0 = m0->m_next;
1243
if (m0 == NULL)
1244
return (0);
1245
}
1246
if (m0->m_len < off + 4)
1247
return (0);
1248
1249
switch (proto) {
1250
case IPPROTO_TCP:
1251
case IPPROTO_UDP: {
1252
struct udphdr *udp;
1253
1254
udp = (struct udphdr *)(mtod(m0, caddr_t) + off);
1255
fin6->fi6_sport = udp->uh_sport;
1256
fin6->fi6_dport = udp->uh_dport;
1257
fin6->fi6_proto = proto;
1258
}
1259
return (1);
1260
1261
case IPPROTO_ESP:
1262
if (fin6->fi6_gpi == 0) {
1263
u_int32_t *gpi;
1264
1265
gpi = (u_int32_t *)(mtod(m0, caddr_t) + off);
1266
fin6->fi6_gpi = *gpi;
1267
}
1268
fin6->fi6_proto = proto;
1269
return (1);
1270
1271
case IPPROTO_AH: {
1272
/* get next header and header length */
1273
struct _opt6 *opt6;
1274
1275
opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1276
if (fin6->fi6_gpi == 0 && m0->m_len >= off + 8)
1277
fin6->fi6_gpi = opt6->ah_spi;
1278
proto = opt6->opt6_nxt;
1279
off += 8 + (opt6->opt6_hlen * 4);
1280
/* goto the next header */
1281
break;
1282
}
1283
1284
case IPPROTO_HOPOPTS:
1285
case IPPROTO_ROUTING:
1286
case IPPROTO_DSTOPTS: {
1287
/* get next header and header length */
1288
struct _opt6 *opt6;
1289
1290
opt6 = (struct _opt6 *)(mtod(m0, caddr_t) + off);
1291
proto = opt6->opt6_nxt;
1292
off += (opt6->opt6_hlen + 1) * 8;
1293
/* goto the next header */
1294
break;
1295
}
1296
1297
case IPPROTO_FRAGMENT:
1298
/* ipv6 fragmentations are not supported yet */
1299
default:
1300
fin6->fi6_proto = proto;
1301
return (0);
1302
}
1303
} while (1);
1304
/*NOTREACHED*/
1305
}
1306
#endif /* INET6 */
1307
1308
/*
1309
* altq common classifier
1310
*/
1311
int
1312
acc_add_filter(classifier, filter, class, phandle)
1313
struct acc_classifier *classifier;
1314
struct flow_filter *filter;
1315
void *class;
1316
u_long *phandle;
1317
{
1318
struct acc_filter *afp, *prev, *tmp;
1319
int i, s;
1320
1321
#ifdef INET6
1322
if (filter->ff_flow.fi_family != AF_INET &&
1323
filter->ff_flow.fi_family != AF_INET6)
1324
return (EINVAL);
1325
#else
1326
if (filter->ff_flow.fi_family != AF_INET)
1327
return (EINVAL);
1328
#endif
1329
1330
afp = malloc(sizeof(*afp), M_DEVBUF, M_WAITOK | M_ZERO);
1331
afp->f_filter = *filter;
1332
afp->f_class = class;
1333
1334
i = ACC_WILDCARD_INDEX;
1335
if (filter->ff_flow.fi_family == AF_INET) {
1336
struct flow_filter *filter4 = &afp->f_filter;
1337
1338
/*
1339
* if address is 0, it's a wildcard. if address mask
1340
* isn't set, use full mask.
1341
*/
1342
if (filter4->ff_flow.fi_dst.s_addr == 0)
1343
filter4->ff_mask.mask_dst.s_addr = 0;
1344
else if (filter4->ff_mask.mask_dst.s_addr == 0)
1345
filter4->ff_mask.mask_dst.s_addr = 0xffffffff;
1346
if (filter4->ff_flow.fi_src.s_addr == 0)
1347
filter4->ff_mask.mask_src.s_addr = 0;
1348
else if (filter4->ff_mask.mask_src.s_addr == 0)
1349
filter4->ff_mask.mask_src.s_addr = 0xffffffff;
1350
1351
/* clear extra bits in addresses */
1352
filter4->ff_flow.fi_dst.s_addr &=
1353
filter4->ff_mask.mask_dst.s_addr;
1354
filter4->ff_flow.fi_src.s_addr &=
1355
filter4->ff_mask.mask_src.s_addr;
1356
1357
/*
1358
* if dst address is a wildcard, use hash-entry
1359
* ACC_WILDCARD_INDEX.
1360
*/
1361
if (filter4->ff_mask.mask_dst.s_addr != 0xffffffff)
1362
i = ACC_WILDCARD_INDEX;
1363
else
1364
i = ACC_GET_HASH_INDEX(filter4->ff_flow.fi_dst.s_addr);
1365
}
1366
#ifdef INET6
1367
else if (filter->ff_flow.fi_family == AF_INET6) {
1368
struct flow_filter6 *filter6 =
1369
(struct flow_filter6 *)&afp->f_filter;
1370
#ifndef IN6MASK0 /* taken from kame ipv6 */
1371
#define IN6MASK0 {{{ 0, 0, 0, 0 }}}
1372
#define IN6MASK128 {{{ 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }}}
1373
const struct in6_addr in6mask0 = IN6MASK0;
1374
const struct in6_addr in6mask128 = IN6MASK128;
1375
#endif
1376
1377
if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_dst))
1378
filter6->ff_mask6.mask6_dst = in6mask0;
1379
else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_dst))
1380
filter6->ff_mask6.mask6_dst = in6mask128;
1381
if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_flow6.fi6_src))
1382
filter6->ff_mask6.mask6_src = in6mask0;
1383
else if (IN6_IS_ADDR_UNSPECIFIED(&filter6->ff_mask6.mask6_src))
1384
filter6->ff_mask6.mask6_src = in6mask128;
1385
1386
/* clear extra bits in addresses */
1387
for (i = 0; i < 16; i++)
1388
filter6->ff_flow6.fi6_dst.s6_addr[i] &=
1389
filter6->ff_mask6.mask6_dst.s6_addr[i];
1390
for (i = 0; i < 16; i++)
1391
filter6->ff_flow6.fi6_src.s6_addr[i] &=
1392
filter6->ff_mask6.mask6_src.s6_addr[i];
1393
1394
if (filter6->ff_flow6.fi6_flowlabel == 0)
1395
i = ACC_WILDCARD_INDEX;
1396
else
1397
i = ACC_GET_HASH_INDEX(filter6->ff_flow6.fi6_flowlabel);
1398
}
1399
#endif /* INET6 */
1400
1401
afp->f_handle = get_filt_handle(classifier, i);
1402
1403
/* update filter bitmask */
1404
afp->f_fbmask = filt2fibmask(filter);
1405
classifier->acc_fbmask |= afp->f_fbmask;
1406
1407
/*
1408
* add this filter to the filter list.
1409
* filters are ordered from the highest rule number.
1410
*/
1411
s = splnet();
1412
prev = NULL;
1413
LIST_FOREACH(tmp, &classifier->acc_filters[i], f_chain) {
1414
if (tmp->f_filter.ff_ruleno > afp->f_filter.ff_ruleno)
1415
prev = tmp;
1416
else
1417
break;
1418
}
1419
if (prev == NULL)
1420
LIST_INSERT_HEAD(&classifier->acc_filters[i], afp, f_chain);
1421
else
1422
LIST_INSERT_AFTER(prev, afp, f_chain);
1423
splx(s);
1424
1425
*phandle = afp->f_handle;
1426
return (0);
1427
}
1428
1429
int
1430
acc_delete_filter(classifier, handle)
1431
struct acc_classifier *classifier;
1432
u_long handle;
1433
{
1434
struct acc_filter *afp;
1435
int s;
1436
1437
if ((afp = filth_to_filtp(classifier, handle)) == NULL)
1438
return (EINVAL);
1439
1440
s = splnet();
1441
LIST_REMOVE(afp, f_chain);
1442
splx(s);
1443
1444
free(afp, M_DEVBUF);
1445
1446
/* todo: update filt_bmask */
1447
1448
return (0);
1449
}
1450
1451
/*
1452
* delete filters referencing to the specified class.
1453
* if the all flag is not 0, delete all the filters.
1454
*/
1455
int
1456
acc_discard_filters(classifier, class, all)
1457
struct acc_classifier *classifier;
1458
void *class;
1459
int all;
1460
{
1461
struct acc_filter *afp;
1462
int i, s;
1463
1464
s = splnet();
1465
for (i = 0; i < ACC_FILTER_TABLESIZE; i++) {
1466
do {
1467
LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1468
if (all || afp->f_class == class) {
1469
LIST_REMOVE(afp, f_chain);
1470
free(afp, M_DEVBUF);
1471
/* start again from the head */
1472
break;
1473
}
1474
} while (afp != NULL);
1475
}
1476
splx(s);
1477
1478
if (all)
1479
classifier->acc_fbmask = 0;
1480
1481
return (0);
1482
}
1483
1484
void *
1485
acc_classify(clfier, m, af)
1486
void *clfier;
1487
struct mbuf *m;
1488
int af;
1489
{
1490
struct acc_classifier *classifier;
1491
struct flowinfo flow;
1492
struct acc_filter *afp;
1493
int i;
1494
1495
classifier = (struct acc_classifier *)clfier;
1496
altq_extractflow(m, af, &flow, classifier->acc_fbmask);
1497
1498
if (flow.fi_family == AF_INET) {
1499
struct flowinfo_in *fp = (struct flowinfo_in *)&flow;
1500
1501
if ((classifier->acc_fbmask & FIMB4_ALL) == FIMB4_TOS) {
1502
/* only tos is used */
1503
LIST_FOREACH(afp,
1504
&classifier->acc_filters[ACC_WILDCARD_INDEX],
1505
f_chain)
1506
if (apply_tosfilter4(afp->f_fbmask,
1507
&afp->f_filter, fp))
1508
/* filter matched */
1509
return (afp->f_class);
1510
} else if ((classifier->acc_fbmask &
1511
(~(FIMB4_PROTO|FIMB4_SPORT|FIMB4_DPORT) & FIMB4_ALL))
1512
== 0) {
1513
/* only proto and ports are used */
1514
LIST_FOREACH(afp,
1515
&classifier->acc_filters[ACC_WILDCARD_INDEX],
1516
f_chain)
1517
if (apply_ppfilter4(afp->f_fbmask,
1518
&afp->f_filter, fp))
1519
/* filter matched */
1520
return (afp->f_class);
1521
} else {
1522
/* get the filter hash entry from its dest address */
1523
i = ACC_GET_HASH_INDEX(fp->fi_dst.s_addr);
1524
do {
1525
/*
1526
* go through this loop twice. first for dst
1527
* hash, second for wildcards.
1528
*/
1529
LIST_FOREACH(afp, &classifier->acc_filters[i],
1530
f_chain)
1531
if (apply_filter4(afp->f_fbmask,
1532
&afp->f_filter, fp))
1533
/* filter matched */
1534
return (afp->f_class);
1535
1536
/*
1537
* check again for filters with a dst addr
1538
* wildcard.
1539
* (daddr == 0 || dmask != 0xffffffff).
1540
*/
1541
if (i != ACC_WILDCARD_INDEX)
1542
i = ACC_WILDCARD_INDEX;
1543
else
1544
break;
1545
} while (1);
1546
}
1547
}
1548
#ifdef INET6
1549
else if (flow.fi_family == AF_INET6) {
1550
struct flowinfo_in6 *fp6 = (struct flowinfo_in6 *)&flow;
1551
1552
/* get the filter hash entry from its flow ID */
1553
if (fp6->fi6_flowlabel != 0)
1554
i = ACC_GET_HASH_INDEX(fp6->fi6_flowlabel);
1555
else
1556
/* flowlable can be zero */
1557
i = ACC_WILDCARD_INDEX;
1558
1559
/* go through this loop twice. first for flow hash, second
1560
for wildcards. */
1561
do {
1562
LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1563
if (apply_filter6(afp->f_fbmask,
1564
(struct flow_filter6 *)&afp->f_filter,
1565
fp6))
1566
/* filter matched */
1567
return (afp->f_class);
1568
1569
/*
1570
* check again for filters with a wildcard.
1571
*/
1572
if (i != ACC_WILDCARD_INDEX)
1573
i = ACC_WILDCARD_INDEX;
1574
else
1575
break;
1576
} while (1);
1577
}
1578
#endif /* INET6 */
1579
1580
/* no filter matched */
1581
return (NULL);
1582
}
1583
1584
static int
1585
apply_filter4(fbmask, filt, pkt)
1586
u_int32_t fbmask;
1587
struct flow_filter *filt;
1588
struct flowinfo_in *pkt;
1589
{
1590
if (filt->ff_flow.fi_family != AF_INET)
1591
return (0);
1592
if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1593
return (0);
1594
if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1595
return (0);
1596
if ((fbmask & FIMB4_DADDR) &&
1597
filt->ff_flow.fi_dst.s_addr !=
1598
(pkt->fi_dst.s_addr & filt->ff_mask.mask_dst.s_addr))
1599
return (0);
1600
if ((fbmask & FIMB4_SADDR) &&
1601
filt->ff_flow.fi_src.s_addr !=
1602
(pkt->fi_src.s_addr & filt->ff_mask.mask_src.s_addr))
1603
return (0);
1604
if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1605
return (0);
1606
if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1607
(pkt->fi_tos & filt->ff_mask.mask_tos))
1608
return (0);
1609
if ((fbmask & FIMB4_GPI) && filt->ff_flow.fi_gpi != (pkt->fi_gpi))
1610
return (0);
1611
/* match */
1612
return (1);
1613
}
1614
1615
/*
1616
* filter matching function optimized for a common case that checks
1617
* only protocol and port numbers
1618
*/
1619
static int
1620
apply_ppfilter4(fbmask, filt, pkt)
1621
u_int32_t fbmask;
1622
struct flow_filter *filt;
1623
struct flowinfo_in *pkt;
1624
{
1625
if (filt->ff_flow.fi_family != AF_INET)
1626
return (0);
1627
if ((fbmask & FIMB4_SPORT) && filt->ff_flow.fi_sport != pkt->fi_sport)
1628
return (0);
1629
if ((fbmask & FIMB4_DPORT) && filt->ff_flow.fi_dport != pkt->fi_dport)
1630
return (0);
1631
if ((fbmask & FIMB4_PROTO) && filt->ff_flow.fi_proto != pkt->fi_proto)
1632
return (0);
1633
/* match */
1634
return (1);
1635
}
1636
1637
/*
1638
* filter matching function only for tos field.
1639
*/
1640
static int
1641
apply_tosfilter4(fbmask, filt, pkt)
1642
u_int32_t fbmask;
1643
struct flow_filter *filt;
1644
struct flowinfo_in *pkt;
1645
{
1646
if (filt->ff_flow.fi_family != AF_INET)
1647
return (0);
1648
if ((fbmask & FIMB4_TOS) && filt->ff_flow.fi_tos !=
1649
(pkt->fi_tos & filt->ff_mask.mask_tos))
1650
return (0);
1651
/* match */
1652
return (1);
1653
}
1654
1655
#ifdef INET6
1656
static int
1657
apply_filter6(fbmask, filt, pkt)
1658
u_int32_t fbmask;
1659
struct flow_filter6 *filt;
1660
struct flowinfo_in6 *pkt;
1661
{
1662
int i;
1663
1664
if (filt->ff_flow6.fi6_family != AF_INET6)
1665
return (0);
1666
if ((fbmask & FIMB6_FLABEL) &&
1667
filt->ff_flow6.fi6_flowlabel != pkt->fi6_flowlabel)
1668
return (0);
1669
if ((fbmask & FIMB6_PROTO) &&
1670
filt->ff_flow6.fi6_proto != pkt->fi6_proto)
1671
return (0);
1672
if ((fbmask & FIMB6_SPORT) &&
1673
filt->ff_flow6.fi6_sport != pkt->fi6_sport)
1674
return (0);
1675
if ((fbmask & FIMB6_DPORT) &&
1676
filt->ff_flow6.fi6_dport != pkt->fi6_dport)
1677
return (0);
1678
if (fbmask & FIMB6_SADDR) {
1679
for (i = 0; i < 4; i++)
1680
if (filt->ff_flow6.fi6_src.s6_addr32[i] !=
1681
(pkt->fi6_src.s6_addr32[i] &
1682
filt->ff_mask6.mask6_src.s6_addr32[i]))
1683
return (0);
1684
}
1685
if (fbmask & FIMB6_DADDR) {
1686
for (i = 0; i < 4; i++)
1687
if (filt->ff_flow6.fi6_dst.s6_addr32[i] !=
1688
(pkt->fi6_dst.s6_addr32[i] &
1689
filt->ff_mask6.mask6_dst.s6_addr32[i]))
1690
return (0);
1691
}
1692
if ((fbmask & FIMB6_TCLASS) &&
1693
filt->ff_flow6.fi6_tclass !=
1694
(pkt->fi6_tclass & filt->ff_mask6.mask6_tclass))
1695
return (0);
1696
if ((fbmask & FIMB6_GPI) &&
1697
filt->ff_flow6.fi6_gpi != pkt->fi6_gpi)
1698
return (0);
1699
/* match */
1700
return (1);
1701
}
1702
#endif /* INET6 */
1703
1704
/*
1705
* filter handle:
1706
* bit 20-28: index to the filter hash table
1707
* bit 0-19: unique id in the hash bucket.
1708
*/
1709
static u_long
1710
get_filt_handle(classifier, i)
1711
struct acc_classifier *classifier;
1712
int i;
1713
{
1714
static u_long handle_number = 1;
1715
u_long handle;
1716
struct acc_filter *afp;
1717
1718
while (1) {
1719
handle = handle_number++ & 0x000fffff;
1720
1721
if (LIST_EMPTY(&classifier->acc_filters[i]))
1722
break;
1723
1724
LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1725
if ((afp->f_handle & 0x000fffff) == handle)
1726
break;
1727
if (afp == NULL)
1728
break;
1729
/* this handle is already used, try again */
1730
}
1731
1732
return ((i << 20) | handle);
1733
}
1734
1735
/* convert filter handle to filter pointer */
1736
static struct acc_filter *
1737
filth_to_filtp(classifier, handle)
1738
struct acc_classifier *classifier;
1739
u_long handle;
1740
{
1741
struct acc_filter *afp;
1742
int i;
1743
1744
i = ACC_GET_HINDEX(handle);
1745
1746
LIST_FOREACH(afp, &classifier->acc_filters[i], f_chain)
1747
if (afp->f_handle == handle)
1748
return (afp);
1749
1750
return (NULL);
1751
}
1752
1753
/* create flowinfo bitmask */
1754
static u_int32_t
1755
filt2fibmask(filt)
1756
struct flow_filter *filt;
1757
{
1758
u_int32_t mask = 0;
1759
#ifdef INET6
1760
struct flow_filter6 *filt6;
1761
#endif
1762
1763
switch (filt->ff_flow.fi_family) {
1764
case AF_INET:
1765
if (filt->ff_flow.fi_proto != 0)
1766
mask |= FIMB4_PROTO;
1767
if (filt->ff_flow.fi_tos != 0)
1768
mask |= FIMB4_TOS;
1769
if (filt->ff_flow.fi_dst.s_addr != 0)
1770
mask |= FIMB4_DADDR;
1771
if (filt->ff_flow.fi_src.s_addr != 0)
1772
mask |= FIMB4_SADDR;
1773
if (filt->ff_flow.fi_sport != 0)
1774
mask |= FIMB4_SPORT;
1775
if (filt->ff_flow.fi_dport != 0)
1776
mask |= FIMB4_DPORT;
1777
if (filt->ff_flow.fi_gpi != 0)
1778
mask |= FIMB4_GPI;
1779
break;
1780
#ifdef INET6
1781
case AF_INET6:
1782
filt6 = (struct flow_filter6 *)filt;
1783
1784
if (filt6->ff_flow6.fi6_proto != 0)
1785
mask |= FIMB6_PROTO;
1786
if (filt6->ff_flow6.fi6_tclass != 0)
1787
mask |= FIMB6_TCLASS;
1788
if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_dst))
1789
mask |= FIMB6_DADDR;
1790
if (!IN6_IS_ADDR_UNSPECIFIED(&filt6->ff_flow6.fi6_src))
1791
mask |= FIMB6_SADDR;
1792
if (filt6->ff_flow6.fi6_sport != 0)
1793
mask |= FIMB6_SPORT;
1794
if (filt6->ff_flow6.fi6_dport != 0)
1795
mask |= FIMB6_DPORT;
1796
if (filt6->ff_flow6.fi6_gpi != 0)
1797
mask |= FIMB6_GPI;
1798
if (filt6->ff_flow6.fi6_flowlabel != 0)
1799
mask |= FIMB6_FLABEL;
1800
break;
1801
#endif /* INET6 */
1802
}
1803
return (mask);
1804
}
1805
1806
/*
1807
* helper functions to handle IPv4 fragments.
1808
* currently only in-sequence fragments are handled.
1809
* - fragment info is cached in a LRU list.
1810
* - when a first fragment is found, cache its flow info.
1811
* - when a non-first fragment is found, lookup the cache.
1812
*/
1813
1814
struct ip4_frag {
1815
TAILQ_ENTRY(ip4_frag) ip4f_chain;
1816
char ip4f_valid;
1817
u_short ip4f_id;
1818
struct flowinfo_in ip4f_info;
1819
};
1820
1821
static TAILQ_HEAD(ip4f_list, ip4_frag) ip4f_list; /* IPv4 fragment cache */
1822
1823
#define IP4F_TABSIZE 16 /* IPv4 fragment cache size */
1824
1825
static void
1826
ip4f_cache(ip, fin)
1827
struct ip *ip;
1828
struct flowinfo_in *fin;
1829
{
1830
struct ip4_frag *fp;
1831
1832
if (TAILQ_EMPTY(&ip4f_list)) {
1833
/* first time call, allocate fragment cache entries. */
1834
if (ip4f_init() < 0)
1835
/* allocation failed! */
1836
return;
1837
}
1838
1839
fp = ip4f_alloc();
1840
fp->ip4f_id = ip->ip_id;
1841
fp->ip4f_info.fi_proto = ip->ip_p;
1842
fp->ip4f_info.fi_src.s_addr = ip->ip_src.s_addr;
1843
fp->ip4f_info.fi_dst.s_addr = ip->ip_dst.s_addr;
1844
1845
/* save port numbers */
1846
fp->ip4f_info.fi_sport = fin->fi_sport;
1847
fp->ip4f_info.fi_dport = fin->fi_dport;
1848
fp->ip4f_info.fi_gpi = fin->fi_gpi;
1849
}
1850
1851
static int
1852
ip4f_lookup(ip, fin)
1853
struct ip *ip;
1854
struct flowinfo_in *fin;
1855
{
1856
struct ip4_frag *fp;
1857
1858
for (fp = TAILQ_FIRST(&ip4f_list); fp != NULL && fp->ip4f_valid;
1859
fp = TAILQ_NEXT(fp, ip4f_chain))
1860
if (ip->ip_id == fp->ip4f_id &&
1861
ip->ip_src.s_addr == fp->ip4f_info.fi_src.s_addr &&
1862
ip->ip_dst.s_addr == fp->ip4f_info.fi_dst.s_addr &&
1863
ip->ip_p == fp->ip4f_info.fi_proto) {
1864
/* found the matching entry */
1865
fin->fi_sport = fp->ip4f_info.fi_sport;
1866
fin->fi_dport = fp->ip4f_info.fi_dport;
1867
fin->fi_gpi = fp->ip4f_info.fi_gpi;
1868
1869
if ((ntohs(ip->ip_off) & IP_MF) == 0)
1870
/* this is the last fragment,
1871
release the entry. */
1872
ip4f_free(fp);
1873
1874
return (1);
1875
}
1876
1877
/* no matching entry found */
1878
return (0);
1879
}
1880
1881
static int
1882
ip4f_init(void)
1883
{
1884
struct ip4_frag *fp;
1885
int i;
1886
1887
TAILQ_INIT(&ip4f_list);
1888
for (i=0; i<IP4F_TABSIZE; i++) {
1889
fp = malloc(sizeof(struct ip4_frag),
1890
M_DEVBUF, M_NOWAIT);
1891
if (fp == NULL) {
1892
printf("ip4f_init: can't alloc %dth entry!\n", i);
1893
if (i == 0)
1894
return (-1);
1895
return (0);
1896
}
1897
fp->ip4f_valid = 0;
1898
TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1899
}
1900
return (0);
1901
}
1902
1903
static struct ip4_frag *
1904
ip4f_alloc(void)
1905
{
1906
struct ip4_frag *fp;
1907
1908
/* reclaim an entry at the tail, put it at the head */
1909
fp = TAILQ_LAST(&ip4f_list, ip4f_list);
1910
TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1911
fp->ip4f_valid = 1;
1912
TAILQ_INSERT_HEAD(&ip4f_list, fp, ip4f_chain);
1913
return (fp);
1914
}
1915
1916
static void
1917
ip4f_free(fp)
1918
struct ip4_frag *fp;
1919
{
1920
TAILQ_REMOVE(&ip4f_list, fp, ip4f_chain);
1921
fp->ip4f_valid = 0;
1922
TAILQ_INSERT_TAIL(&ip4f_list, fp, ip4f_chain);
1923
}
1924
1925
#endif /* ALTQ3_CLFIER_COMPAT */
1926
1927