Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/net/if_ethersubr.c
103825 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 1982, 1989, 1993
5
* The Regents of the University of California. All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
* 3. Neither the name of the University nor the names of its contributors
16
* may be used to endorse or promote products derived from this software
17
* without specific prior written permission.
18
*
19
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29
* SUCH DAMAGE.
30
*/
31
32
#include "opt_inet.h"
33
#include "opt_inet6.h"
34
#include "opt_netgraph.h"
35
#include "opt_mbuf_profiling.h"
36
#include "opt_rss.h"
37
38
#include <sys/param.h>
39
#include <sys/systm.h>
40
#include <sys/devctl.h>
41
#include <sys/eventhandler.h>
42
#include <sys/jail.h>
43
#include <sys/kernel.h>
44
#include <sys/lock.h>
45
#include <sys/malloc.h>
46
#include <sys/mbuf.h>
47
#include <sys/module.h>
48
#include <sys/msan.h>
49
#include <sys/proc.h>
50
#include <sys/priv.h>
51
#include <sys/random.h>
52
#include <sys/socket.h>
53
#include <sys/sockio.h>
54
#include <sys/sysctl.h>
55
#include <sys/uuid.h>
56
#ifdef KDB
57
#include <sys/kdb.h>
58
#endif
59
60
#include <net/ieee_oui.h>
61
#include <net/if.h>
62
#include <net/if_var.h>
63
#include <net/if_private.h>
64
#include <net/if_arp.h>
65
#include <net/netisr.h>
66
#include <net/route.h>
67
#include <net/if_llc.h>
68
#include <net/if_dl.h>
69
#include <net/if_types.h>
70
#include <net/bpf.h>
71
#include <net/ethernet.h>
72
#include <net/if_bridgevar.h>
73
#include <net/if_vlan_var.h>
74
#include <net/if_llatbl.h>
75
#include <net/pfil.h>
76
#include <net/rss_config.h>
77
#include <net/vnet.h>
78
79
#include <netpfil/pf/pf_mtag.h>
80
81
#if defined(INET) || defined(INET6)
82
#include <netinet/in.h>
83
#include <netinet/in_var.h>
84
#include <netinet/if_ether.h>
85
#include <netinet/ip_carp.h>
86
#include <netinet/ip_var.h>
87
#endif
88
#ifdef INET6
89
#include <netinet6/nd6.h>
90
#endif
91
#include <security/mac/mac_framework.h>
92
93
#include <crypto/sha1.h>
94
95
VNET_DEFINE(pfil_head_t, link_pfil_head); /* Packet filter hooks */
96
97
/* netgraph node hooks for ng_ether(4) */
98
void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
99
void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
100
int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
101
102
/* if_bridge(4) support */
103
void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
104
bool (*bridge_same_p)(const void *, const void *);
105
void *(*bridge_get_softc_p)(struct ifnet *);
106
bool (*bridge_member_ifaddrs_p)(void);
107
108
/* if_lagg(4) support */
109
struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
110
111
static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
112
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
113
114
static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
115
struct sockaddr *);
116
static int ether_requestencap(struct ifnet *, struct if_encap_req *);
117
118
static inline bool ether_do_pcp(struct ifnet *, struct mbuf *);
119
120
#define senderr(e) do { error = (e); goto bad;} while (0)
121
122
static void
123
update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
124
{
125
int csum_flags = 0;
126
127
if (src->m_pkthdr.csum_flags & CSUM_IP)
128
csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
129
if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
130
csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
131
if (src->m_pkthdr.csum_flags & CSUM_SCTP)
132
csum_flags |= CSUM_SCTP_VALID;
133
dst->m_pkthdr.csum_flags |= csum_flags;
134
if (csum_flags & CSUM_DATA_VALID)
135
dst->m_pkthdr.csum_data = 0xffff;
136
}
137
138
/*
139
* Handle link-layer encapsulation requests.
140
*/
141
static int
142
ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
143
{
144
struct ether_header *eh;
145
struct arphdr *ah;
146
uint16_t etype;
147
const u_char *lladdr;
148
149
if (req->rtype != IFENCAP_LL)
150
return (EOPNOTSUPP);
151
152
if (req->bufsize < ETHER_HDR_LEN)
153
return (ENOMEM);
154
155
eh = (struct ether_header *)req->buf;
156
lladdr = req->lladdr;
157
req->lladdr_off = 0;
158
159
switch (req->family) {
160
case AF_INET:
161
etype = htons(ETHERTYPE_IP);
162
break;
163
case AF_INET6:
164
etype = htons(ETHERTYPE_IPV6);
165
break;
166
case AF_ARP:
167
ah = (struct arphdr *)req->hdata;
168
ah->ar_hrd = htons(ARPHRD_ETHER);
169
170
switch(ntohs(ah->ar_op)) {
171
case ARPOP_REVREQUEST:
172
case ARPOP_REVREPLY:
173
etype = htons(ETHERTYPE_REVARP);
174
break;
175
case ARPOP_REQUEST:
176
case ARPOP_REPLY:
177
default:
178
etype = htons(ETHERTYPE_ARP);
179
break;
180
}
181
182
if (req->flags & IFENCAP_FLAG_BROADCAST)
183
lladdr = ifp->if_broadcastaddr;
184
break;
185
default:
186
return (EAFNOSUPPORT);
187
}
188
189
memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
190
memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
191
memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
192
req->bufsize = sizeof(struct ether_header);
193
194
return (0);
195
}
196
197
static int
198
ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
199
const struct sockaddr *dst, struct route *ro, u_char *phdr,
200
uint32_t *pflags, struct llentry **plle)
201
{
202
uint32_t lleflags = 0;
203
int error = 0;
204
#if defined(INET) || defined(INET6)
205
struct ether_header *eh = (struct ether_header *)phdr;
206
uint16_t etype;
207
#endif
208
209
if (plle)
210
*plle = NULL;
211
212
switch (dst->sa_family) {
213
#ifdef INET
214
case AF_INET:
215
if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
216
error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
217
plle);
218
else {
219
if (m->m_flags & M_BCAST)
220
memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
221
ETHER_ADDR_LEN);
222
else {
223
const struct in_addr *a;
224
a = &(((const struct sockaddr_in *)dst)->sin_addr);
225
ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
226
}
227
etype = htons(ETHERTYPE_IP);
228
memcpy(&eh->ether_type, &etype, sizeof(etype));
229
memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
230
}
231
break;
232
#endif
233
#ifdef INET6
234
case AF_INET6:
235
if ((m->m_flags & M_MCAST) == 0) {
236
int af = RO_GET_FAMILY(ro, dst);
237
error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr,
238
&lleflags, plle);
239
} else {
240
const struct in6_addr *a6;
241
a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
242
ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
243
etype = htons(ETHERTYPE_IPV6);
244
memcpy(&eh->ether_type, &etype, sizeof(etype));
245
memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
246
}
247
break;
248
#endif
249
default:
250
if_printf(ifp, "can't handle af%d\n", dst->sa_family);
251
if (m != NULL)
252
m_freem(m);
253
return (EAFNOSUPPORT);
254
}
255
256
if (error == EHOSTDOWN) {
257
if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
258
error = EHOSTUNREACH;
259
}
260
261
if (error != 0)
262
return (error);
263
264
*pflags = RT_MAY_LOOP;
265
if (lleflags & LLE_IFADDR)
266
*pflags |= RT_L2_ME;
267
268
return (0);
269
}
270
271
/*
272
* Ethernet output routine.
273
* Encapsulate a packet of type family for the local net.
274
* Use trailer local net encapsulation if enough data in first
275
* packet leaves a multiple of 512 bytes of data in remainder.
276
*/
277
int
278
ether_output(struct ifnet *ifp, struct mbuf *m,
279
const struct sockaddr *dst, struct route *ro)
280
{
281
int error = 0;
282
char linkhdr[ETHER_HDR_LEN], *phdr;
283
struct ether_header *eh;
284
struct pf_mtag *t;
285
bool loop_copy;
286
int hlen; /* link layer header length */
287
uint32_t pflags;
288
struct llentry *lle = NULL;
289
int addref = 0;
290
291
phdr = NULL;
292
pflags = 0;
293
if (ro != NULL) {
294
/* XXX BPF uses ro_prepend */
295
if (ro->ro_prepend != NULL) {
296
phdr = ro->ro_prepend;
297
hlen = ro->ro_plen;
298
} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
299
if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
300
lle = ro->ro_lle;
301
if (lle != NULL &&
302
(lle->la_flags & LLE_VALID) == 0) {
303
LLE_FREE(lle);
304
lle = NULL; /* redundant */
305
ro->ro_lle = NULL;
306
}
307
if (lle == NULL) {
308
/* if we lookup, keep cache */
309
addref = 1;
310
} else
311
/*
312
* Notify LLE code that
313
* the entry was used
314
* by datapath.
315
*/
316
llentry_provide_feedback(lle);
317
}
318
if (lle != NULL) {
319
phdr = lle->r_linkdata;
320
hlen = lle->r_hdrlen;
321
pflags = lle->r_flags;
322
}
323
}
324
}
325
326
#ifdef MAC
327
error = mac_ifnet_check_transmit(ifp, m);
328
if (error)
329
senderr(error);
330
#endif
331
332
M_PROFILE(m);
333
if (ifp->if_flags & IFF_MONITOR)
334
senderr(ENETDOWN);
335
if (!((ifp->if_flags & IFF_UP) &&
336
(ifp->if_drv_flags & IFF_DRV_RUNNING)))
337
senderr(ENETDOWN);
338
339
if (phdr == NULL) {
340
/* No prepend data supplied. Try to calculate ourselves. */
341
phdr = linkhdr;
342
hlen = ETHER_HDR_LEN;
343
error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
344
addref ? &lle : NULL);
345
if (addref && lle != NULL)
346
ro->ro_lle = lle;
347
if (error != 0)
348
return (error == EWOULDBLOCK ? 0 : error);
349
}
350
351
if ((pflags & RT_L2_ME) != 0) {
352
update_mbuf_csumflags(m, m);
353
return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0));
354
}
355
loop_copy = (pflags & RT_MAY_LOOP) != 0;
356
357
/*
358
* Add local net header. If no space in first mbuf,
359
* allocate another.
360
*
361
* Note that we do prepend regardless of RT_HAS_HEADER flag.
362
* This is done because BPF code shifts m_data pointer
363
* to the end of ethernet header prior to calling if_output().
364
*/
365
M_PREPEND(m, hlen, M_NOWAIT);
366
if (m == NULL)
367
senderr(ENOBUFS);
368
if ((pflags & RT_HAS_HEADER) == 0) {
369
eh = mtod(m, struct ether_header *);
370
memcpy(eh, phdr, hlen);
371
}
372
373
/*
374
* If a simplex interface, and the packet is being sent to our
375
* Ethernet address or a broadcast address, loopback a copy.
376
* XXX To make a simplex device behave exactly like a duplex
377
* device, we should copy in the case of sending to our own
378
* ethernet address (thus letting the original actually appear
379
* on the wire). However, we don't do that here for security
380
* reasons and compatibility with the original behavior.
381
*/
382
if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
383
((t = pf_find_mtag(m)) == NULL || !t->routed)) {
384
struct mbuf *n;
385
386
/*
387
* Because if_simloop() modifies the packet, we need a
388
* writable copy through m_dup() instead of a readonly
389
* one as m_copy[m] would give us. The alternative would
390
* be to modify if_simloop() to handle the readonly mbuf,
391
* but performancewise it is mostly equivalent (trading
392
* extra data copying vs. extra locking).
393
*
394
* XXX This is a local workaround. A number of less
395
* often used kernel parts suffer from the same bug.
396
* See PR kern/105943 for a proposed general solution.
397
*/
398
if ((n = m_dup(m, M_NOWAIT)) != NULL) {
399
update_mbuf_csumflags(m, n);
400
(void)if_simloop(ifp, n, RO_GET_FAMILY(ro, dst), hlen);
401
} else
402
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
403
}
404
405
/*
406
* Bridges require special output handling.
407
*/
408
if (ifp->if_bridge) {
409
BRIDGE_OUTPUT(ifp, m, error);
410
return (error);
411
}
412
413
#if defined(INET) || defined(INET6)
414
if (ifp->if_carp &&
415
(error = (*carp_output_p)(ifp, m, dst)))
416
goto bad;
417
#endif
418
419
/* Handle ng_ether(4) processing, if any */
420
if (ifp->if_l2com != NULL) {
421
KASSERT(ng_ether_output_p != NULL,
422
("ng_ether_output_p is NULL"));
423
if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
424
bad: if (m != NULL)
425
m_freem(m);
426
return (error);
427
}
428
if (m == NULL)
429
return (0);
430
}
431
432
/* Continue with link-layer output */
433
return ether_output_frame(ifp, m);
434
}
435
436
static bool
437
ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
438
{
439
struct ether_8021q_tag qtag;
440
struct ether_header *eh;
441
442
eh = mtod(*mp, struct ether_header *);
443
if (eh->ether_type == htons(ETHERTYPE_VLAN) ||
444
eh->ether_type == htons(ETHERTYPE_QINQ)) {
445
(*mp)->m_flags &= ~M_VLANTAG;
446
return (true);
447
}
448
449
qtag.vid = 0;
450
qtag.pcp = pcp;
451
qtag.proto = ETHERTYPE_VLAN;
452
if (ether_8021q_frame(mp, ifp, ifp, &qtag))
453
return (true);
454
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
455
return (false);
456
}
457
458
/*
459
* Ethernet link layer output routine to send a raw frame to the device.
460
*
461
* This assumes that the 14 byte Ethernet header is present and contiguous
462
* in the first mbuf (if BRIDGE'ing).
463
*/
464
int
465
ether_output_frame(struct ifnet *ifp, struct mbuf *m)
466
{
467
if (ether_do_pcp(ifp, m) && !ether_set_pcp(&m, ifp, ifp->if_pcp))
468
return (0);
469
470
if (PFIL_HOOKED_OUT(V_link_pfil_head))
471
switch (pfil_mbuf_out(V_link_pfil_head, &m, ifp, NULL)) {
472
case PFIL_DROPPED:
473
return (EACCES);
474
case PFIL_CONSUMED:
475
return (0);
476
}
477
478
#ifdef EXPERIMENTAL
479
#if defined(INET6) && defined(INET)
480
/* draft-ietf-6man-ipv6only-flag */
481
/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
482
if ((ifp->if_inet6->nd_flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
483
struct ether_header *eh;
484
485
eh = mtod(m, struct ether_header *);
486
switch (ntohs(eh->ether_type)) {
487
case ETHERTYPE_IP:
488
case ETHERTYPE_ARP:
489
case ETHERTYPE_REVARP:
490
m_freem(m);
491
return (EAFNOSUPPORT);
492
/* NOTREACHED */
493
break;
494
};
495
}
496
#endif
497
#endif
498
499
/*
500
* Queue message on interface, update output statistics if successful,
501
* and start output if interface not yet active.
502
*
503
* If KMSAN is enabled, use it to verify that the data does not contain
504
* any uninitialized bytes.
505
*/
506
kmsan_check_mbuf(m, "ether_output");
507
return ((ifp->if_transmit)(ifp, m));
508
}
509
510
/*
511
* Process a received Ethernet packet; the packet is in the
512
* mbuf chain m with the ethernet header at the front.
513
*/
514
static void
515
ether_input_internal(struct ifnet *ifp, struct mbuf *m)
516
{
517
struct ether_header *eh;
518
u_short etype;
519
520
if ((ifp->if_flags & IFF_UP) == 0) {
521
m_freem(m);
522
return;
523
}
524
#ifdef DIAGNOSTIC
525
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
526
if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
527
m_freem(m);
528
return;
529
}
530
#endif
531
if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
532
/* Drivers should pullup and ensure the mbuf is valid */
533
if_printf(ifp, "discard frame w/o leading ethernet "
534
"header (len %d pkt len %d)\n",
535
m->m_len, m->m_pkthdr.len);
536
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
537
m_freem(m);
538
return;
539
}
540
eh = mtod(m, struct ether_header *);
541
etype = ntohs(eh->ether_type);
542
random_harvest_queue_ether(m, sizeof(*m));
543
544
#ifdef EXPERIMENTAL
545
#if defined(INET6) && defined(INET)
546
/* draft-ietf-6man-ipv6only-flag */
547
/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
548
if ((ifp->if_inet6->nd_flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
549
switch (etype) {
550
case ETHERTYPE_IP:
551
case ETHERTYPE_ARP:
552
case ETHERTYPE_REVARP:
553
m_freem(m);
554
return;
555
/* NOTREACHED */
556
break;
557
};
558
}
559
#endif
560
#endif
561
562
CURVNET_SET_QUIET(ifp->if_vnet);
563
564
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
565
if (ETHER_IS_BROADCAST(eh->ether_dhost))
566
m->m_flags |= M_BCAST;
567
else
568
m->m_flags |= M_MCAST;
569
if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
570
}
571
572
#ifdef MAC
573
/*
574
* Tag the mbuf with an appropriate MAC label before any other
575
* consumers can get to it.
576
*/
577
mac_ifnet_create_mbuf(ifp, m);
578
#endif
579
580
/*
581
* Give bpf a chance at the packet.
582
*/
583
ETHER_BPF_MTAP(ifp, m);
584
585
if (!(ifp->if_capenable & IFCAP_HWSTATS))
586
if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
587
588
/* Allow monitor mode to claim this frame, after stats are updated. */
589
if (ifp->if_flags & IFF_MONITOR) {
590
m_freem(m);
591
CURVNET_RESTORE();
592
return;
593
}
594
595
/* Handle input from a lagg(4) port */
596
if (ifp->if_type == IFT_IEEE8023ADLAG) {
597
KASSERT(lagg_input_ethernet_p != NULL,
598
("%s: if_lagg not loaded!", __func__));
599
m = (*lagg_input_ethernet_p)(ifp, m);
600
if (m != NULL)
601
ifp = m->m_pkthdr.rcvif;
602
else {
603
CURVNET_RESTORE();
604
return;
605
}
606
}
607
608
/*
609
* If the hardware did not process an 802.1Q tag, do this now,
610
* to allow 802.1P priority frames to be passed to the main input
611
* path correctly.
612
*/
613
if ((m->m_flags & M_VLANTAG) == 0 &&
614
((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) {
615
struct ether_vlan_header *evl;
616
617
if (m->m_len < sizeof(*evl) &&
618
(m = m_pullup(m, sizeof(*evl))) == NULL) {
619
#ifdef DIAGNOSTIC
620
if_printf(ifp, "cannot pullup VLAN header\n");
621
#endif
622
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
623
CURVNET_RESTORE();
624
return;
625
}
626
627
evl = mtod(m, struct ether_vlan_header *);
628
m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
629
m->m_flags |= M_VLANTAG;
630
631
bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
632
ETHER_HDR_LEN - ETHER_TYPE_LEN);
633
m_adj(m, ETHER_VLAN_ENCAP_LEN);
634
eh = mtod(m, struct ether_header *);
635
}
636
637
M_SETFIB(m, ifp->if_fib);
638
639
/* Allow ng_ether(4) to claim this frame. */
640
if (ifp->if_l2com != NULL) {
641
KASSERT(ng_ether_input_p != NULL,
642
("%s: ng_ether_input_p is NULL", __func__));
643
m->m_flags &= ~M_PROMISC;
644
(*ng_ether_input_p)(ifp, &m);
645
if (m == NULL) {
646
CURVNET_RESTORE();
647
return;
648
}
649
eh = mtod(m, struct ether_header *);
650
}
651
652
/*
653
* Allow if_bridge(4) to claim this frame.
654
*
655
* The BRIDGE_INPUT() macro will update ifp if the bridge changed it
656
* and the frame should be delivered locally.
657
*
658
* If M_BRIDGE_INJECT is set, the packet was received directly by the
659
* bridge via netmap, so "ifp" is the bridge itself and the packet
660
* should be re-examined.
661
*/
662
if (ifp->if_bridge != NULL || (m->m_flags & M_BRIDGE_INJECT) != 0) {
663
m->m_flags &= ~M_PROMISC;
664
BRIDGE_INPUT(ifp, m);
665
if (m == NULL) {
666
CURVNET_RESTORE();
667
return;
668
}
669
eh = mtod(m, struct ether_header *);
670
}
671
672
#if defined(INET) || defined(INET6)
673
/*
674
* Clear M_PROMISC on frame so that carp(4) will see it when the
675
* mbuf flows up to Layer 3.
676
* FreeBSD's implementation of carp(4) uses the inprotosw
677
* to dispatch IPPROTO_CARP. carp(4) also allocates its own
678
* Ethernet addresses of the form 00:00:5e:00:01:xx, which
679
* is outside the scope of the M_PROMISC test below.
680
* TODO: Maintain a hash table of ethernet addresses other than
681
* ether_dhost which may be active on this ifp.
682
*/
683
if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
684
m->m_flags &= ~M_PROMISC;
685
} else
686
#endif
687
{
688
/*
689
* If the frame received was not for our MAC address, set the
690
* M_PROMISC flag on the mbuf chain. The frame may need to
691
* be seen by the rest of the Ethernet input path in case of
692
* re-entry (e.g. bridge, vlan, netgraph) but should not be
693
* seen by upper protocol layers.
694
*/
695
if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
696
memcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
697
m->m_flags |= M_PROMISC;
698
}
699
700
ether_demux(ifp, m);
701
CURVNET_RESTORE();
702
}
703
704
/*
705
* Ethernet input dispatch; by default, direct dispatch here regardless of
706
* global configuration. However, if RSS is enabled, hook up RSS affinity
707
* so that when deferred or hybrid dispatch is enabled, we can redistribute
708
* load based on RSS.
709
*
710
* XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
711
* not it had already done work distribution via multi-queue. Then we could
712
* direct dispatch in the event load balancing was already complete and
713
* handle the case of interfaces with different capabilities better.
714
*
715
* XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
716
* at multiple layers?
717
*
718
* XXXRW: For now, enable all this only if RSS is compiled in, although it
719
* works fine without RSS. Need to characterise the performance overhead
720
* of the detour through the netisr code in the event the result is always
721
* direct dispatch.
722
*/
723
static void
724
ether_nh_input(struct mbuf *m)
725
{
726
727
M_ASSERTPKTHDR(m);
728
KASSERT(m->m_pkthdr.rcvif != NULL,
729
("%s: NULL interface pointer", __func__));
730
ether_input_internal(m->m_pkthdr.rcvif, m);
731
}
732
733
static struct netisr_handler ether_nh = {
734
.nh_name = "ether",
735
.nh_handler = ether_nh_input,
736
.nh_proto = NETISR_ETHER,
737
#ifdef RSS
738
.nh_policy = NETISR_POLICY_CPU,
739
.nh_dispatch = NETISR_DISPATCH_DIRECT,
740
.nh_m2cpuid = rss_m2cpuid,
741
#else
742
.nh_policy = NETISR_POLICY_SOURCE,
743
.nh_dispatch = NETISR_DISPATCH_DIRECT,
744
#endif
745
};
746
747
static void
748
ether_init(__unused void *arg)
749
{
750
751
netisr_register(&ether_nh);
752
}
753
SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
754
755
static void
756
vnet_ether_init(const __unused void *arg)
757
{
758
struct pfil_head_args args;
759
760
args.pa_version = PFIL_VERSION;
761
args.pa_flags = PFIL_IN | PFIL_OUT;
762
args.pa_type = PFIL_TYPE_ETHERNET;
763
args.pa_headname = PFIL_ETHER_NAME;
764
V_link_pfil_head = pfil_head_register(&args);
765
766
#ifdef VIMAGE
767
netisr_register_vnet(&ether_nh);
768
#endif
769
}
770
VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
771
vnet_ether_init, NULL);
772
773
#ifdef VIMAGE
774
static void
775
vnet_ether_pfil_destroy(const __unused void *arg)
776
{
777
778
pfil_head_unregister(V_link_pfil_head);
779
}
780
VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
781
vnet_ether_pfil_destroy, NULL);
782
783
static void
784
vnet_ether_destroy(__unused void *arg)
785
{
786
787
netisr_unregister_vnet(&ether_nh);
788
}
789
VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
790
vnet_ether_destroy, NULL);
791
#endif
792
793
static void
794
ether_input(struct ifnet *ifp, struct mbuf *m)
795
{
796
struct epoch_tracker et;
797
struct mbuf *mn;
798
bool needs_epoch;
799
800
needs_epoch = (ifp->if_flags & IFF_NEEDSEPOCH);
801
#ifdef INVARIANTS
802
/*
803
* This temporary code is here to prevent epoch unaware and unmarked
804
* drivers to panic the system. Once all drivers are taken care of,
805
* the whole INVARIANTS block should go away.
806
*/
807
if (!needs_epoch && !in_epoch(net_epoch_preempt)) {
808
static bool printedonce;
809
810
needs_epoch = true;
811
if (!printedonce) {
812
printedonce = true;
813
if_printf(ifp, "called %s w/o net epoch! "
814
"PLEASE file a bug report.", __func__);
815
#ifdef KDB
816
kdb_backtrace();
817
#endif
818
}
819
}
820
#endif
821
822
/*
823
* The drivers are allowed to pass in a chain of packets linked with
824
* m_nextpkt. We split them up into separate packets here and pass
825
* them up. This allows the drivers to amortize the receive lock.
826
*/
827
CURVNET_SET_QUIET(ifp->if_vnet);
828
if (__predict_false(needs_epoch))
829
NET_EPOCH_ENTER(et);
830
while (m) {
831
mn = m->m_nextpkt;
832
m->m_nextpkt = NULL;
833
834
/*
835
* We will rely on rcvif being set properly in the deferred
836
* context, so assert it is correct here.
837
*/
838
MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
839
KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
840
"rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
841
netisr_dispatch(NETISR_ETHER, m);
842
m = mn;
843
}
844
if (__predict_false(needs_epoch))
845
NET_EPOCH_EXIT(et);
846
CURVNET_RESTORE();
847
}
848
849
/*
850
* Upper layer processing for a received Ethernet packet.
851
*/
852
void
853
ether_demux(struct ifnet *ifp, struct mbuf *m)
854
{
855
struct ether_header *eh;
856
int i, isr;
857
u_short ether_type;
858
859
NET_EPOCH_ASSERT();
860
KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
861
862
/* Do not grab PROMISC frames in case we are re-entered. */
863
if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
864
i = pfil_mbuf_in(V_link_pfil_head, &m, ifp, NULL);
865
if (i != PFIL_PASS)
866
return;
867
}
868
869
eh = mtod(m, struct ether_header *);
870
ether_type = ntohs(eh->ether_type);
871
872
/*
873
* If this frame has a VLAN tag other than 0, call vlan_input()
874
* if its module is loaded. Otherwise, drop.
875
*/
876
if ((m->m_flags & M_VLANTAG) &&
877
EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
878
if (ifp->if_vlantrunk == NULL) {
879
if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
880
m_freem(m);
881
return;
882
}
883
KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
884
__func__));
885
/* Clear before possibly re-entering ether_input(). */
886
m->m_flags &= ~M_PROMISC;
887
(*vlan_input_p)(ifp, m);
888
return;
889
}
890
891
/*
892
* Pass promiscuously received frames to the upper layer if the user
893
* requested this by setting IFF_PPROMISC. Otherwise, drop them.
894
*/
895
if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
896
m_freem(m);
897
return;
898
}
899
900
/*
901
* Reset layer specific mbuf flags to avoid confusing upper layers.
902
*/
903
m->m_flags &= ~M_VLANTAG;
904
m_clrprotoflags(m);
905
906
/*
907
* Dispatch frame to upper layer.
908
*/
909
switch (ether_type) {
910
#ifdef INET
911
case ETHERTYPE_IP:
912
isr = NETISR_IP;
913
break;
914
915
case ETHERTYPE_ARP:
916
if (ifp->if_flags & IFF_NOARP) {
917
/* Discard packet if ARP is disabled on interface */
918
m_freem(m);
919
return;
920
}
921
isr = NETISR_ARP;
922
break;
923
#endif
924
#ifdef INET6
925
case ETHERTYPE_IPV6:
926
isr = NETISR_IPV6;
927
break;
928
#endif
929
default:
930
goto discard;
931
}
932
933
/* Strip off Ethernet header. */
934
m_adj(m, ETHER_HDR_LEN);
935
936
netisr_dispatch(isr, m);
937
return;
938
939
discard:
940
/*
941
* Packet is to be discarded. If netgraph is present,
942
* hand the packet to it for last chance processing;
943
* otherwise dispose of it.
944
*/
945
if (ifp->if_l2com != NULL) {
946
KASSERT(ng_ether_input_orphan_p != NULL,
947
("ng_ether_input_orphan_p is NULL"));
948
(*ng_ether_input_orphan_p)(ifp, m);
949
return;
950
}
951
m_freem(m);
952
}
953
954
/*
955
* Convert Ethernet address to printable (loggable) representation.
956
* This routine is for compatibility; it's better to just use
957
*
958
* printf("%6D", <pointer to address>, ":");
959
*
960
* since there's no static buffer involved.
961
*/
962
char *
963
ether_sprintf(const u_char *ap)
964
{
965
static char etherbuf[18];
966
snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
967
return (etherbuf);
968
}
969
970
/*
971
* Perform common duties while attaching to interface list
972
*/
973
void
974
ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
975
{
976
int i;
977
struct ifaddr *ifa;
978
struct sockaddr_dl *sdl;
979
980
ifp->if_addrlen = ETHER_ADDR_LEN;
981
ifp->if_hdrlen = (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0 ?
982
ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN : ETHER_HDR_LEN;
983
ifp->if_mtu = ETHERMTU;
984
if_attach(ifp);
985
ifp->if_output = ether_output;
986
ifp->if_input = ether_input;
987
ifp->if_resolvemulti = ether_resolvemulti;
988
ifp->if_requestencap = ether_requestencap;
989
if (ifp->if_baudrate == 0)
990
ifp->if_baudrate = IF_Mbps(10); /* just a default */
991
ifp->if_broadcastaddr = etherbroadcastaddr;
992
993
ifa = ifp->if_addr;
994
KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
995
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
996
sdl->sdl_type = IFT_ETHER;
997
sdl->sdl_alen = ifp->if_addrlen;
998
bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
999
1000
if (ifp->if_hw_addr != NULL)
1001
bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
1002
1003
bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
1004
1005
/* Announce Ethernet MAC address if non-zero. */
1006
for (i = 0; i < ifp->if_addrlen; i++)
1007
if (lla[i] != 0)
1008
break;
1009
if (i != ifp->if_addrlen)
1010
if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
1011
1012
uuid_ether_add(LLADDR(sdl));
1013
1014
/* Add necessary bits are setup; announce it now. */
1015
EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
1016
if (IS_DEFAULT_VNET(curvnet))
1017
devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
1018
}
1019
1020
/*
1021
* Perform common duties while detaching an Ethernet interface
1022
*/
1023
void
1024
ether_ifdetach(struct ifnet *ifp)
1025
{
1026
struct sockaddr_dl *sdl;
1027
1028
sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
1029
uuid_ether_del(LLADDR(sdl));
1030
1031
bpfdetach(ifp);
1032
if_detach(ifp);
1033
}
1034
1035
SYSCTL_DECL(_net_link);
1036
SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1037
"Ethernet");
1038
1039
#if 0
1040
/*
1041
* This is for reference. We have a table-driven version
1042
* of the little-endian crc32 generator, which is faster
1043
* than the double-loop.
1044
*/
1045
uint32_t
1046
ether_crc32_le(const uint8_t *buf, size_t len)
1047
{
1048
size_t i;
1049
uint32_t crc;
1050
int bit;
1051
uint8_t data;
1052
1053
crc = 0xffffffff; /* initial value */
1054
1055
for (i = 0; i < len; i++) {
1056
for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1057
carry = (crc ^ data) & 1;
1058
crc >>= 1;
1059
if (carry)
1060
crc = (crc ^ ETHER_CRC_POLY_LE);
1061
}
1062
}
1063
1064
return (crc);
1065
}
1066
#else
1067
uint32_t
1068
ether_crc32_le(const uint8_t *buf, size_t len)
1069
{
1070
static const uint32_t crctab[] = {
1071
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1072
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1073
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1074
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1075
};
1076
size_t i;
1077
uint32_t crc;
1078
1079
crc = 0xffffffff; /* initial value */
1080
1081
for (i = 0; i < len; i++) {
1082
crc ^= buf[i];
1083
crc = (crc >> 4) ^ crctab[crc & 0xf];
1084
crc = (crc >> 4) ^ crctab[crc & 0xf];
1085
}
1086
1087
return (crc);
1088
}
1089
#endif
1090
1091
uint32_t
1092
ether_crc32_be(const uint8_t *buf, size_t len)
1093
{
1094
size_t i;
1095
uint32_t crc, carry;
1096
int bit;
1097
uint8_t data;
1098
1099
crc = 0xffffffff; /* initial value */
1100
1101
for (i = 0; i < len; i++) {
1102
for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1103
carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1104
crc <<= 1;
1105
if (carry)
1106
crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1107
}
1108
}
1109
1110
return (crc);
1111
}
1112
1113
int
1114
ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1115
{
1116
struct ifaddr *ifa = (struct ifaddr *) data;
1117
struct ifreq *ifr = (struct ifreq *) data;
1118
int error = 0;
1119
1120
switch (command) {
1121
case SIOCSIFADDR:
1122
ifp->if_flags |= IFF_UP;
1123
1124
switch (ifa->ifa_addr->sa_family) {
1125
#ifdef INET
1126
case AF_INET:
1127
ifp->if_init(ifp->if_softc); /* before arpwhohas */
1128
arp_ifinit(ifp, ifa);
1129
break;
1130
#endif
1131
default:
1132
ifp->if_init(ifp->if_softc);
1133
break;
1134
}
1135
break;
1136
1137
case SIOCGIFADDR:
1138
bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1139
ETHER_ADDR_LEN);
1140
break;
1141
1142
case SIOCSIFMTU:
1143
/*
1144
* Set the interface MTU.
1145
*/
1146
if (ifr->ifr_mtu > ETHERMTU) {
1147
error = EINVAL;
1148
} else {
1149
ifp->if_mtu = ifr->ifr_mtu;
1150
}
1151
break;
1152
1153
case SIOCSLANPCP:
1154
error = priv_check(curthread, PRIV_NET_SETLANPCP);
1155
if (error != 0)
1156
break;
1157
if (ifr->ifr_lan_pcp > 7 &&
1158
ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1159
error = EINVAL;
1160
} else {
1161
ifp->if_pcp = ifr->ifr_lan_pcp;
1162
/* broadcast event about PCP change */
1163
EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1164
}
1165
break;
1166
1167
case SIOCGLANPCP:
1168
ifr->ifr_lan_pcp = ifp->if_pcp;
1169
break;
1170
1171
default:
1172
error = EINVAL; /* XXX netbsd has ENOTTY??? */
1173
break;
1174
}
1175
return (error);
1176
}
1177
1178
static int
1179
ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1180
struct sockaddr *sa)
1181
{
1182
struct sockaddr_dl *sdl;
1183
#ifdef INET
1184
struct sockaddr_in *sin;
1185
#endif
1186
#ifdef INET6
1187
struct sockaddr_in6 *sin6;
1188
#endif
1189
u_char *e_addr;
1190
1191
switch(sa->sa_family) {
1192
case AF_LINK:
1193
/*
1194
* No mapping needed. Just check that it's a valid MC address.
1195
*/
1196
sdl = (struct sockaddr_dl *)sa;
1197
e_addr = LLADDR(sdl);
1198
if (!ETHER_IS_MULTICAST(e_addr))
1199
return EADDRNOTAVAIL;
1200
*llsa = NULL;
1201
return 0;
1202
1203
#ifdef INET
1204
case AF_INET:
1205
sin = (struct sockaddr_in *)sa;
1206
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1207
return EADDRNOTAVAIL;
1208
sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1209
sdl->sdl_alen = ETHER_ADDR_LEN;
1210
e_addr = LLADDR(sdl);
1211
ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1212
*llsa = (struct sockaddr *)sdl;
1213
return 0;
1214
#endif
1215
#ifdef INET6
1216
case AF_INET6:
1217
sin6 = (struct sockaddr_in6 *)sa;
1218
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1219
/*
1220
* An IP6 address of 0 means listen to all
1221
* of the Ethernet multicast address used for IP6.
1222
* (This is used for multicast routers.)
1223
*/
1224
ifp->if_flags |= IFF_ALLMULTI;
1225
*llsa = NULL;
1226
return 0;
1227
}
1228
if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1229
return EADDRNOTAVAIL;
1230
sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1231
sdl->sdl_alen = ETHER_ADDR_LEN;
1232
e_addr = LLADDR(sdl);
1233
ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1234
*llsa = (struct sockaddr *)sdl;
1235
return 0;
1236
#endif
1237
1238
default:
1239
/*
1240
* Well, the text isn't quite right, but it's the name
1241
* that counts...
1242
*/
1243
return EAFNOSUPPORT;
1244
}
1245
}
1246
1247
static moduledata_t ether_mod = {
1248
.name = "ether",
1249
};
1250
1251
void
1252
ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1253
{
1254
struct ether_vlan_header vlan;
1255
struct mbuf mv, mb;
1256
1257
KASSERT((m->m_flags & M_VLANTAG) != 0,
1258
("%s: vlan information not present", __func__));
1259
KASSERT(m->m_len >= sizeof(struct ether_header),
1260
("%s: mbuf not large enough for header", __func__));
1261
bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1262
vlan.evl_proto = vlan.evl_encap_proto;
1263
vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1264
vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1265
m->m_len -= sizeof(struct ether_header);
1266
m->m_data += sizeof(struct ether_header);
1267
/*
1268
* If a data link has been supplied by the caller, then we will need to
1269
* re-create a stack allocated mbuf chain with the following structure:
1270
*
1271
* (1) mbuf #1 will contain the supplied data link
1272
* (2) mbuf #2 will contain the vlan header
1273
* (3) mbuf #3 will contain the original mbuf's packet data
1274
*
1275
* Otherwise, submit the packet and vlan header via bpf_mtap2().
1276
*/
1277
if (data != NULL) {
1278
mv.m_next = m;
1279
mv.m_data = (caddr_t)&vlan;
1280
mv.m_len = sizeof(vlan);
1281
mb.m_next = &mv;
1282
mb.m_data = data;
1283
mb.m_len = dlen;
1284
bpf_mtap(bp, &mb);
1285
} else
1286
bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1287
m->m_len += sizeof(struct ether_header);
1288
m->m_data -= sizeof(struct ether_header);
1289
}
1290
1291
struct mbuf *
1292
ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto)
1293
{
1294
struct ether_vlan_header *evl;
1295
1296
M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1297
if (m == NULL)
1298
return (NULL);
1299
/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1300
1301
if (m->m_len < sizeof(*evl)) {
1302
m = m_pullup(m, sizeof(*evl));
1303
if (m == NULL)
1304
return (NULL);
1305
}
1306
1307
/*
1308
* Transform the Ethernet header into an Ethernet header
1309
* with 802.1Q encapsulation.
1310
*/
1311
evl = mtod(m, struct ether_vlan_header *);
1312
bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1313
(char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1314
evl->evl_encap_proto = htons(proto);
1315
evl->evl_tag = htons(tag);
1316
return (m);
1317
}
1318
1319
void
1320
ether_bpf_mtap_if(struct ifnet *ifp, struct mbuf *m)
1321
{
1322
if (bpf_peers_present(ifp->if_bpf)) {
1323
M_ASSERTVALID(m);
1324
if ((m->m_flags & M_VLANTAG) != 0)
1325
ether_vlan_mtap(ifp->if_bpf, m, NULL, 0);
1326
else
1327
bpf_mtap(ifp->if_bpf, m);
1328
}
1329
}
1330
1331
static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1332
"IEEE 802.1Q VLAN");
1333
static SYSCTL_NODE(_net_link_vlan, PF_LINK, link,
1334
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1335
"for consistency");
1336
1337
VNET_DEFINE_STATIC(int, soft_pad);
1338
#define V_soft_pad VNET(soft_pad)
1339
SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1340
&VNET_NAME(soft_pad), 0,
1341
"pad short frames before tagging");
1342
1343
/*
1344
* For now, make preserving PCP via an mbuf tag optional, as it increases
1345
* per-packet memory allocations and frees. In the future, it would be
1346
* preferable to reuse ether_vtag for this, or similar.
1347
*/
1348
VNET_DEFINE(int, vlan_mtag_pcp) = 0;
1349
#define V_vlan_mtag_pcp VNET(vlan_mtag_pcp)
1350
SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW | CTLFLAG_VNET,
1351
&VNET_NAME(vlan_mtag_pcp), 0,
1352
"Retain VLAN PCP information as packets are passed up the stack");
1353
1354
static inline bool
1355
ether_do_pcp(struct ifnet *ifp, struct mbuf *m)
1356
{
1357
if (ifp->if_type == IFT_L2VLAN)
1358
return (false);
1359
if (ifp->if_pcp != IFNET_PCP_NONE || (m->m_flags & M_VLANTAG) != 0)
1360
return (true);
1361
if (V_vlan_mtag_pcp &&
1362
m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL) != NULL)
1363
return (true);
1364
return (false);
1365
}
1366
1367
bool
1368
ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1369
const struct ether_8021q_tag *qtag)
1370
{
1371
struct m_tag *mtag;
1372
int n;
1373
uint16_t tag;
1374
uint8_t pcp = qtag->pcp;
1375
static const char pad[8]; /* just zeros */
1376
1377
/*
1378
* Pad the frame to the minimum size allowed if told to.
1379
* This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1380
* paragraph C.4.4.3.b. It can help to work around buggy
1381
* bridges that violate paragraph C.4.4.3.a from the same
1382
* document, i.e., fail to pad short frames after untagging.
1383
* E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1384
* untagging it will produce a 62-byte frame, which is a runt
1385
* and requires padding. There are VLAN-enabled network
1386
* devices that just discard such runts instead or mishandle
1387
* them somehow.
1388
*/
1389
if (V_soft_pad && p->if_type == IFT_ETHER) {
1390
for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1391
n > 0; n -= sizeof(pad)) {
1392
if (!m_append(*mp, min(n, sizeof(pad)), pad))
1393
break;
1394
}
1395
if (n > 0) {
1396
m_freem(*mp);
1397
*mp = NULL;
1398
if_printf(ife, "cannot pad short frame");
1399
return (false);
1400
}
1401
}
1402
1403
/*
1404
* If PCP is set in mbuf, use it
1405
*/
1406
if ((*mp)->m_flags & M_VLANTAG) {
1407
pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag);
1408
}
1409
1410
/*
1411
* If underlying interface can do VLAN tag insertion itself,
1412
* just pass the packet along. However, we need some way to
1413
* tell the interface where the packet came from so that it
1414
* knows how to find the VLAN tag to use, so we attach a
1415
* packet tag that holds it.
1416
*/
1417
if (V_vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1418
MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1419
tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0);
1420
else
1421
tag = EVL_MAKETAG(qtag->vid, pcp, 0);
1422
if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) &&
1423
(qtag->proto == ETHERTYPE_VLAN)) {
1424
(*mp)->m_pkthdr.ether_vtag = tag;
1425
(*mp)->m_flags |= M_VLANTAG;
1426
} else {
1427
*mp = ether_vlanencap_proto(*mp, tag, qtag->proto);
1428
if (*mp == NULL) {
1429
if_printf(ife, "unable to prepend 802.1Q header");
1430
return (false);
1431
}
1432
(*mp)->m_flags &= ~M_VLANTAG;
1433
}
1434
return (true);
1435
}
1436
1437
/*
1438
* Allocate an address from the FreeBSD Foundation OUI. This uses a
1439
* cryptographic hash function on the containing jail's name, UUID and the
1440
* interface name to attempt to provide a unique but stable address.
1441
* Pseudo-interfaces which require a MAC address should use this function to
1442
* allocate non-locally-administered addresses.
1443
*/
1444
void
1445
ether_gen_addr_byname(const char *nameunit, struct ether_addr *hwaddr)
1446
{
1447
SHA1_CTX ctx;
1448
char *buf;
1449
char uuid[HOSTUUIDLEN + 1];
1450
uint64_t addr;
1451
int i, sz;
1452
unsigned char digest[SHA1_RESULTLEN];
1453
char jailname[MAXHOSTNAMELEN];
1454
1455
getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
1456
if (strncmp(uuid, DEFAULT_HOSTUUID, sizeof(uuid)) == 0) {
1457
/* Fall back to a random mac address. */
1458
goto rando;
1459
}
1460
1461
/* If each (vnet) jail would also have a unique hostuuid this would not
1462
* be necessary. */
1463
getjailname(curthread->td_ucred, jailname, sizeof(jailname));
1464
sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, nameunit,
1465
jailname);
1466
if (sz < 0) {
1467
/* Fall back to a random mac address. */
1468
goto rando;
1469
}
1470
1471
SHA1Init(&ctx);
1472
SHA1Update(&ctx, buf, sz);
1473
SHA1Final(digest, &ctx);
1474
free(buf, M_TEMP);
1475
1476
addr = (digest[0] << 8) | digest[1] | OUI_FREEBSD_GENERATED_LOW;
1477
for (i = 0; i < ETHER_ADDR_LEN; ++i) {
1478
hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
1479
0xFF;
1480
}
1481
1482
return;
1483
rando:
1484
arc4rand(hwaddr, sizeof(*hwaddr), 0);
1485
/* Unicast */
1486
hwaddr->octet[0] &= 0xFE;
1487
/* Locally administered. */
1488
hwaddr->octet[0] |= 0x02;
1489
}
1490
1491
void
1492
ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
1493
{
1494
ether_gen_addr_byname(if_name(ifp), hwaddr);
1495
}
1496
1497
DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1498
MODULE_VERSION(ether, 1);
1499
1500