Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/net/if_ethersubr.c
39475 views
1
/*-
2
* SPDX-License-Identifier: BSD-3-Clause
3
*
4
* Copyright (c) 1982, 1989, 1993
5
* The Regents of the University of California. All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
* 3. Neither the name of the University nor the names of its contributors
16
* may be used to endorse or promote products derived from this software
17
* without specific prior written permission.
18
*
19
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29
* SUCH DAMAGE.
30
*/
31
32
#include "opt_inet.h"
33
#include "opt_inet6.h"
34
#include "opt_netgraph.h"
35
#include "opt_mbuf_profiling.h"
36
#include "opt_rss.h"
37
38
#include <sys/param.h>
39
#include <sys/systm.h>
40
#include <sys/devctl.h>
41
#include <sys/eventhandler.h>
42
#include <sys/jail.h>
43
#include <sys/kernel.h>
44
#include <sys/lock.h>
45
#include <sys/malloc.h>
46
#include <sys/mbuf.h>
47
#include <sys/module.h>
48
#include <sys/msan.h>
49
#include <sys/proc.h>
50
#include <sys/priv.h>
51
#include <sys/random.h>
52
#include <sys/socket.h>
53
#include <sys/sockio.h>
54
#include <sys/sysctl.h>
55
#include <sys/uuid.h>
56
#ifdef KDB
57
#include <sys/kdb.h>
58
#endif
59
60
#include <net/ieee_oui.h>
61
#include <net/if.h>
62
#include <net/if_var.h>
63
#include <net/if_private.h>
64
#include <net/if_arp.h>
65
#include <net/netisr.h>
66
#include <net/route.h>
67
#include <net/if_llc.h>
68
#include <net/if_dl.h>
69
#include <net/if_types.h>
70
#include <net/bpf.h>
71
#include <net/ethernet.h>
72
#include <net/if_bridgevar.h>
73
#include <net/if_vlan_var.h>
74
#include <net/if_llatbl.h>
75
#include <net/pfil.h>
76
#include <net/rss_config.h>
77
#include <net/vnet.h>
78
79
#include <netpfil/pf/pf_mtag.h>
80
81
#if defined(INET) || defined(INET6)
82
#include <netinet/in.h>
83
#include <netinet/in_var.h>
84
#include <netinet/if_ether.h>
85
#include <netinet/ip_carp.h>
86
#include <netinet/ip_var.h>
87
#endif
88
#ifdef INET6
89
#include <netinet6/nd6.h>
90
#endif
91
#include <security/mac/mac_framework.h>
92
93
#include <crypto/sha1.h>
94
95
VNET_DEFINE(pfil_head_t, link_pfil_head); /* Packet filter hooks */
96
97
/* netgraph node hooks for ng_ether(4) */
98
void (*ng_ether_input_p)(struct ifnet *ifp, struct mbuf **mp);
99
void (*ng_ether_input_orphan_p)(struct ifnet *ifp, struct mbuf *m);
100
int (*ng_ether_output_p)(struct ifnet *ifp, struct mbuf **mp);
101
void (*ng_ether_attach_p)(struct ifnet *ifp);
102
void (*ng_ether_detach_p)(struct ifnet *ifp);
103
104
/* if_bridge(4) support */
105
void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
106
bool (*bridge_same_p)(const void *, const void *);
107
void *(*bridge_get_softc_p)(struct ifnet *);
108
bool (*bridge_member_ifaddrs_p)(void);
109
110
/* if_lagg(4) support */
111
struct mbuf *(*lagg_input_ethernet_p)(struct ifnet *, struct mbuf *);
112
113
static const u_char etherbroadcastaddr[ETHER_ADDR_LEN] =
114
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
115
116
static int ether_resolvemulti(struct ifnet *, struct sockaddr **,
117
struct sockaddr *);
118
static int ether_requestencap(struct ifnet *, struct if_encap_req *);
119
120
static inline bool ether_do_pcp(struct ifnet *, struct mbuf *);
121
122
#define senderr(e) do { error = (e); goto bad;} while (0)
123
124
static void
125
update_mbuf_csumflags(struct mbuf *src, struct mbuf *dst)
126
{
127
int csum_flags = 0;
128
129
if (src->m_pkthdr.csum_flags & CSUM_IP)
130
csum_flags |= (CSUM_IP_CHECKED|CSUM_IP_VALID);
131
if (src->m_pkthdr.csum_flags & CSUM_DELAY_DATA)
132
csum_flags |= (CSUM_DATA_VALID|CSUM_PSEUDO_HDR);
133
if (src->m_pkthdr.csum_flags & CSUM_SCTP)
134
csum_flags |= CSUM_SCTP_VALID;
135
dst->m_pkthdr.csum_flags |= csum_flags;
136
if (csum_flags & CSUM_DATA_VALID)
137
dst->m_pkthdr.csum_data = 0xffff;
138
}
139
140
/*
141
* Handle link-layer encapsulation requests.
142
*/
143
static int
144
ether_requestencap(struct ifnet *ifp, struct if_encap_req *req)
145
{
146
struct ether_header *eh;
147
struct arphdr *ah;
148
uint16_t etype;
149
const u_char *lladdr;
150
151
if (req->rtype != IFENCAP_LL)
152
return (EOPNOTSUPP);
153
154
if (req->bufsize < ETHER_HDR_LEN)
155
return (ENOMEM);
156
157
eh = (struct ether_header *)req->buf;
158
lladdr = req->lladdr;
159
req->lladdr_off = 0;
160
161
switch (req->family) {
162
case AF_INET:
163
etype = htons(ETHERTYPE_IP);
164
break;
165
case AF_INET6:
166
etype = htons(ETHERTYPE_IPV6);
167
break;
168
case AF_ARP:
169
ah = (struct arphdr *)req->hdata;
170
ah->ar_hrd = htons(ARPHRD_ETHER);
171
172
switch(ntohs(ah->ar_op)) {
173
case ARPOP_REVREQUEST:
174
case ARPOP_REVREPLY:
175
etype = htons(ETHERTYPE_REVARP);
176
break;
177
case ARPOP_REQUEST:
178
case ARPOP_REPLY:
179
default:
180
etype = htons(ETHERTYPE_ARP);
181
break;
182
}
183
184
if (req->flags & IFENCAP_FLAG_BROADCAST)
185
lladdr = ifp->if_broadcastaddr;
186
break;
187
default:
188
return (EAFNOSUPPORT);
189
}
190
191
memcpy(&eh->ether_type, &etype, sizeof(eh->ether_type));
192
memcpy(eh->ether_dhost, lladdr, ETHER_ADDR_LEN);
193
memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
194
req->bufsize = sizeof(struct ether_header);
195
196
return (0);
197
}
198
199
static int
200
ether_resolve_addr(struct ifnet *ifp, struct mbuf *m,
201
const struct sockaddr *dst, struct route *ro, u_char *phdr,
202
uint32_t *pflags, struct llentry **plle)
203
{
204
uint32_t lleflags = 0;
205
int error = 0;
206
#if defined(INET) || defined(INET6)
207
struct ether_header *eh = (struct ether_header *)phdr;
208
uint16_t etype;
209
#endif
210
211
if (plle)
212
*plle = NULL;
213
214
switch (dst->sa_family) {
215
#ifdef INET
216
case AF_INET:
217
if ((m->m_flags & (M_BCAST | M_MCAST)) == 0)
218
error = arpresolve(ifp, 0, m, dst, phdr, &lleflags,
219
plle);
220
else {
221
if (m->m_flags & M_BCAST)
222
memcpy(eh->ether_dhost, ifp->if_broadcastaddr,
223
ETHER_ADDR_LEN);
224
else {
225
const struct in_addr *a;
226
a = &(((const struct sockaddr_in *)dst)->sin_addr);
227
ETHER_MAP_IP_MULTICAST(a, eh->ether_dhost);
228
}
229
etype = htons(ETHERTYPE_IP);
230
memcpy(&eh->ether_type, &etype, sizeof(etype));
231
memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
232
}
233
break;
234
#endif
235
#ifdef INET6
236
case AF_INET6:
237
if ((m->m_flags & M_MCAST) == 0) {
238
int af = RO_GET_FAMILY(ro, dst);
239
error = nd6_resolve(ifp, LLE_SF(af, 0), m, dst, phdr,
240
&lleflags, plle);
241
} else {
242
const struct in6_addr *a6;
243
a6 = &(((const struct sockaddr_in6 *)dst)->sin6_addr);
244
ETHER_MAP_IPV6_MULTICAST(a6, eh->ether_dhost);
245
etype = htons(ETHERTYPE_IPV6);
246
memcpy(&eh->ether_type, &etype, sizeof(etype));
247
memcpy(eh->ether_shost, IF_LLADDR(ifp), ETHER_ADDR_LEN);
248
}
249
break;
250
#endif
251
default:
252
if_printf(ifp, "can't handle af%d\n", dst->sa_family);
253
if (m != NULL)
254
m_freem(m);
255
return (EAFNOSUPPORT);
256
}
257
258
if (error == EHOSTDOWN) {
259
if (ro != NULL && (ro->ro_flags & RT_HAS_GW) != 0)
260
error = EHOSTUNREACH;
261
}
262
263
if (error != 0)
264
return (error);
265
266
*pflags = RT_MAY_LOOP;
267
if (lleflags & LLE_IFADDR)
268
*pflags |= RT_L2_ME;
269
270
return (0);
271
}
272
273
/*
274
* Ethernet output routine.
275
* Encapsulate a packet of type family for the local net.
276
* Use trailer local net encapsulation if enough data in first
277
* packet leaves a multiple of 512 bytes of data in remainder.
278
*/
279
int
280
ether_output(struct ifnet *ifp, struct mbuf *m,
281
const struct sockaddr *dst, struct route *ro)
282
{
283
int error = 0;
284
char linkhdr[ETHER_HDR_LEN], *phdr;
285
struct ether_header *eh;
286
struct pf_mtag *t;
287
bool loop_copy;
288
int hlen; /* link layer header length */
289
uint32_t pflags;
290
struct llentry *lle = NULL;
291
int addref = 0;
292
293
phdr = NULL;
294
pflags = 0;
295
if (ro != NULL) {
296
/* XXX BPF uses ro_prepend */
297
if (ro->ro_prepend != NULL) {
298
phdr = ro->ro_prepend;
299
hlen = ro->ro_plen;
300
} else if (!(m->m_flags & (M_BCAST | M_MCAST))) {
301
if ((ro->ro_flags & RT_LLE_CACHE) != 0) {
302
lle = ro->ro_lle;
303
if (lle != NULL &&
304
(lle->la_flags & LLE_VALID) == 0) {
305
LLE_FREE(lle);
306
lle = NULL; /* redundant */
307
ro->ro_lle = NULL;
308
}
309
if (lle == NULL) {
310
/* if we lookup, keep cache */
311
addref = 1;
312
} else
313
/*
314
* Notify LLE code that
315
* the entry was used
316
* by datapath.
317
*/
318
llentry_provide_feedback(lle);
319
}
320
if (lle != NULL) {
321
phdr = lle->r_linkdata;
322
hlen = lle->r_hdrlen;
323
pflags = lle->r_flags;
324
}
325
}
326
}
327
328
#ifdef MAC
329
error = mac_ifnet_check_transmit(ifp, m);
330
if (error)
331
senderr(error);
332
#endif
333
334
M_PROFILE(m);
335
if (ifp->if_flags & IFF_MONITOR)
336
senderr(ENETDOWN);
337
if (!((ifp->if_flags & IFF_UP) &&
338
(ifp->if_drv_flags & IFF_DRV_RUNNING)))
339
senderr(ENETDOWN);
340
341
if (phdr == NULL) {
342
/* No prepend data supplied. Try to calculate ourselves. */
343
phdr = linkhdr;
344
hlen = ETHER_HDR_LEN;
345
error = ether_resolve_addr(ifp, m, dst, ro, phdr, &pflags,
346
addref ? &lle : NULL);
347
if (addref && lle != NULL)
348
ro->ro_lle = lle;
349
if (error != 0)
350
return (error == EWOULDBLOCK ? 0 : error);
351
}
352
353
if ((pflags & RT_L2_ME) != 0) {
354
update_mbuf_csumflags(m, m);
355
return (if_simloop(ifp, m, RO_GET_FAMILY(ro, dst), 0));
356
}
357
loop_copy = (pflags & RT_MAY_LOOP) != 0;
358
359
/*
360
* Add local net header. If no space in first mbuf,
361
* allocate another.
362
*
363
* Note that we do prepend regardless of RT_HAS_HEADER flag.
364
* This is done because BPF code shifts m_data pointer
365
* to the end of ethernet header prior to calling if_output().
366
*/
367
M_PREPEND(m, hlen, M_NOWAIT);
368
if (m == NULL)
369
senderr(ENOBUFS);
370
if ((pflags & RT_HAS_HEADER) == 0) {
371
eh = mtod(m, struct ether_header *);
372
memcpy(eh, phdr, hlen);
373
}
374
375
/*
376
* If a simplex interface, and the packet is being sent to our
377
* Ethernet address or a broadcast address, loopback a copy.
378
* XXX To make a simplex device behave exactly like a duplex
379
* device, we should copy in the case of sending to our own
380
* ethernet address (thus letting the original actually appear
381
* on the wire). However, we don't do that here for security
382
* reasons and compatibility with the original behavior.
383
*/
384
if ((m->m_flags & M_BCAST) && loop_copy && (ifp->if_flags & IFF_SIMPLEX) &&
385
((t = pf_find_mtag(m)) == NULL || !t->routed)) {
386
struct mbuf *n;
387
388
/*
389
* Because if_simloop() modifies the packet, we need a
390
* writable copy through m_dup() instead of a readonly
391
* one as m_copy[m] would give us. The alternative would
392
* be to modify if_simloop() to handle the readonly mbuf,
393
* but performancewise it is mostly equivalent (trading
394
* extra data copying vs. extra locking).
395
*
396
* XXX This is a local workaround. A number of less
397
* often used kernel parts suffer from the same bug.
398
* See PR kern/105943 for a proposed general solution.
399
*/
400
if ((n = m_dup(m, M_NOWAIT)) != NULL) {
401
update_mbuf_csumflags(m, n);
402
(void)if_simloop(ifp, n, RO_GET_FAMILY(ro, dst), hlen);
403
} else
404
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
405
}
406
407
/*
408
* Bridges require special output handling.
409
*/
410
if (ifp->if_bridge) {
411
BRIDGE_OUTPUT(ifp, m, error);
412
return (error);
413
}
414
415
#if defined(INET) || defined(INET6)
416
if (ifp->if_carp &&
417
(error = (*carp_output_p)(ifp, m, dst)))
418
goto bad;
419
#endif
420
421
/* Handle ng_ether(4) processing, if any */
422
if (ifp->if_l2com != NULL) {
423
KASSERT(ng_ether_output_p != NULL,
424
("ng_ether_output_p is NULL"));
425
if ((error = (*ng_ether_output_p)(ifp, &m)) != 0) {
426
bad: if (m != NULL)
427
m_freem(m);
428
return (error);
429
}
430
if (m == NULL)
431
return (0);
432
}
433
434
/* Continue with link-layer output */
435
return ether_output_frame(ifp, m);
436
}
437
438
static bool
439
ether_set_pcp(struct mbuf **mp, struct ifnet *ifp, uint8_t pcp)
440
{
441
struct ether_8021q_tag qtag;
442
struct ether_header *eh;
443
444
eh = mtod(*mp, struct ether_header *);
445
if (eh->ether_type == htons(ETHERTYPE_VLAN) ||
446
eh->ether_type == htons(ETHERTYPE_QINQ)) {
447
(*mp)->m_flags &= ~M_VLANTAG;
448
return (true);
449
}
450
451
qtag.vid = 0;
452
qtag.pcp = pcp;
453
qtag.proto = ETHERTYPE_VLAN;
454
if (ether_8021q_frame(mp, ifp, ifp, &qtag))
455
return (true);
456
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
457
return (false);
458
}
459
460
/*
461
* Ethernet link layer output routine to send a raw frame to the device.
462
*
463
* This assumes that the 14 byte Ethernet header is present and contiguous
464
* in the first mbuf (if BRIDGE'ing).
465
*/
466
int
467
ether_output_frame(struct ifnet *ifp, struct mbuf *m)
468
{
469
if (ether_do_pcp(ifp, m) && !ether_set_pcp(&m, ifp, ifp->if_pcp))
470
return (0);
471
472
if (PFIL_HOOKED_OUT(V_link_pfil_head))
473
switch (pfil_mbuf_out(V_link_pfil_head, &m, ifp, NULL)) {
474
case PFIL_DROPPED:
475
return (EACCES);
476
case PFIL_CONSUMED:
477
return (0);
478
}
479
480
#ifdef EXPERIMENTAL
481
#if defined(INET6) && defined(INET)
482
/* draft-ietf-6man-ipv6only-flag */
483
/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
484
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
485
struct ether_header *eh;
486
487
eh = mtod(m, struct ether_header *);
488
switch (ntohs(eh->ether_type)) {
489
case ETHERTYPE_IP:
490
case ETHERTYPE_ARP:
491
case ETHERTYPE_REVARP:
492
m_freem(m);
493
return (EAFNOSUPPORT);
494
/* NOTREACHED */
495
break;
496
};
497
}
498
#endif
499
#endif
500
501
/*
502
* Queue message on interface, update output statistics if successful,
503
* and start output if interface not yet active.
504
*
505
* If KMSAN is enabled, use it to verify that the data does not contain
506
* any uninitialized bytes.
507
*/
508
kmsan_check_mbuf(m, "ether_output");
509
return ((ifp->if_transmit)(ifp, m));
510
}
511
512
/*
513
* Process a received Ethernet packet; the packet is in the
514
* mbuf chain m with the ethernet header at the front.
515
*/
516
static void
517
ether_input_internal(struct ifnet *ifp, struct mbuf *m)
518
{
519
struct ether_header *eh;
520
u_short etype;
521
522
if ((ifp->if_flags & IFF_UP) == 0) {
523
m_freem(m);
524
return;
525
}
526
#ifdef DIAGNOSTIC
527
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
528
if_printf(ifp, "discard frame at !IFF_DRV_RUNNING\n");
529
m_freem(m);
530
return;
531
}
532
#endif
533
if (__predict_false(m->m_len < ETHER_HDR_LEN)) {
534
/* Drivers should pullup and ensure the mbuf is valid */
535
if_printf(ifp, "discard frame w/o leading ethernet "
536
"header (len %d pkt len %d)\n",
537
m->m_len, m->m_pkthdr.len);
538
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
539
m_freem(m);
540
return;
541
}
542
eh = mtod(m, struct ether_header *);
543
etype = ntohs(eh->ether_type);
544
random_harvest_queue_ether(m, sizeof(*m));
545
546
#ifdef EXPERIMENTAL
547
#if defined(INET6) && defined(INET)
548
/* draft-ietf-6man-ipv6only-flag */
549
/* Catch ETHERTYPE_IP, and ETHERTYPE_[REV]ARP if we are v6-only. */
550
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IPV6_ONLY_MASK) != 0) {
551
switch (etype) {
552
case ETHERTYPE_IP:
553
case ETHERTYPE_ARP:
554
case ETHERTYPE_REVARP:
555
m_freem(m);
556
return;
557
/* NOTREACHED */
558
break;
559
};
560
}
561
#endif
562
#endif
563
564
CURVNET_SET_QUIET(ifp->if_vnet);
565
566
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
567
if (ETHER_IS_BROADCAST(eh->ether_dhost))
568
m->m_flags |= M_BCAST;
569
else
570
m->m_flags |= M_MCAST;
571
if_inc_counter(ifp, IFCOUNTER_IMCASTS, 1);
572
}
573
574
#ifdef MAC
575
/*
576
* Tag the mbuf with an appropriate MAC label before any other
577
* consumers can get to it.
578
*/
579
mac_ifnet_create_mbuf(ifp, m);
580
#endif
581
582
/*
583
* Give bpf a chance at the packet.
584
*/
585
ETHER_BPF_MTAP(ifp, m);
586
587
if (!(ifp->if_capenable & IFCAP_HWSTATS))
588
if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
589
590
/* Allow monitor mode to claim this frame, after stats are updated. */
591
if (ifp->if_flags & IFF_MONITOR) {
592
m_freem(m);
593
CURVNET_RESTORE();
594
return;
595
}
596
597
/* Handle input from a lagg(4) port */
598
if (ifp->if_type == IFT_IEEE8023ADLAG) {
599
KASSERT(lagg_input_ethernet_p != NULL,
600
("%s: if_lagg not loaded!", __func__));
601
m = (*lagg_input_ethernet_p)(ifp, m);
602
if (m != NULL)
603
ifp = m->m_pkthdr.rcvif;
604
else {
605
CURVNET_RESTORE();
606
return;
607
}
608
}
609
610
/*
611
* If the hardware did not process an 802.1Q tag, do this now,
612
* to allow 802.1P priority frames to be passed to the main input
613
* path correctly.
614
*/
615
if ((m->m_flags & M_VLANTAG) == 0 &&
616
((etype == ETHERTYPE_VLAN) || (etype == ETHERTYPE_QINQ))) {
617
struct ether_vlan_header *evl;
618
619
if (m->m_len < sizeof(*evl) &&
620
(m = m_pullup(m, sizeof(*evl))) == NULL) {
621
#ifdef DIAGNOSTIC
622
if_printf(ifp, "cannot pullup VLAN header\n");
623
#endif
624
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
625
CURVNET_RESTORE();
626
return;
627
}
628
629
evl = mtod(m, struct ether_vlan_header *);
630
m->m_pkthdr.ether_vtag = ntohs(evl->evl_tag);
631
m->m_flags |= M_VLANTAG;
632
633
bcopy((char *)evl, (char *)evl + ETHER_VLAN_ENCAP_LEN,
634
ETHER_HDR_LEN - ETHER_TYPE_LEN);
635
m_adj(m, ETHER_VLAN_ENCAP_LEN);
636
eh = mtod(m, struct ether_header *);
637
}
638
639
M_SETFIB(m, ifp->if_fib);
640
641
/* Allow ng_ether(4) to claim this frame. */
642
if (ifp->if_l2com != NULL) {
643
KASSERT(ng_ether_input_p != NULL,
644
("%s: ng_ether_input_p is NULL", __func__));
645
m->m_flags &= ~M_PROMISC;
646
(*ng_ether_input_p)(ifp, &m);
647
if (m == NULL) {
648
CURVNET_RESTORE();
649
return;
650
}
651
eh = mtod(m, struct ether_header *);
652
}
653
654
/*
655
* Allow if_bridge(4) to claim this frame.
656
*
657
* The BRIDGE_INPUT() macro will update ifp if the bridge changed it
658
* and the frame should be delivered locally.
659
*
660
* If M_BRIDGE_INJECT is set, the packet was received directly by the
661
* bridge via netmap, so "ifp" is the bridge itself and the packet
662
* should be re-examined.
663
*/
664
if (ifp->if_bridge != NULL || (m->m_flags & M_BRIDGE_INJECT) != 0) {
665
m->m_flags &= ~M_PROMISC;
666
BRIDGE_INPUT(ifp, m);
667
if (m == NULL) {
668
CURVNET_RESTORE();
669
return;
670
}
671
eh = mtod(m, struct ether_header *);
672
}
673
674
#if defined(INET) || defined(INET6)
675
/*
676
* Clear M_PROMISC on frame so that carp(4) will see it when the
677
* mbuf flows up to Layer 3.
678
* FreeBSD's implementation of carp(4) uses the inprotosw
679
* to dispatch IPPROTO_CARP. carp(4) also allocates its own
680
* Ethernet addresses of the form 00:00:5e:00:01:xx, which
681
* is outside the scope of the M_PROMISC test below.
682
* TODO: Maintain a hash table of ethernet addresses other than
683
* ether_dhost which may be active on this ifp.
684
*/
685
if (ifp->if_carp && (*carp_forus_p)(ifp, eh->ether_dhost)) {
686
m->m_flags &= ~M_PROMISC;
687
} else
688
#endif
689
{
690
/*
691
* If the frame received was not for our MAC address, set the
692
* M_PROMISC flag on the mbuf chain. The frame may need to
693
* be seen by the rest of the Ethernet input path in case of
694
* re-entry (e.g. bridge, vlan, netgraph) but should not be
695
* seen by upper protocol layers.
696
*/
697
if (!ETHER_IS_MULTICAST(eh->ether_dhost) &&
698
memcmp(IF_LLADDR(ifp), eh->ether_dhost, ETHER_ADDR_LEN) != 0)
699
m->m_flags |= M_PROMISC;
700
}
701
702
ether_demux(ifp, m);
703
CURVNET_RESTORE();
704
}
705
706
/*
707
* Ethernet input dispatch; by default, direct dispatch here regardless of
708
* global configuration. However, if RSS is enabled, hook up RSS affinity
709
* so that when deferred or hybrid dispatch is enabled, we can redistribute
710
* load based on RSS.
711
*
712
* XXXRW: Would be nice if the ifnet passed up a flag indicating whether or
713
* not it had already done work distribution via multi-queue. Then we could
714
* direct dispatch in the event load balancing was already complete and
715
* handle the case of interfaces with different capabilities better.
716
*
717
* XXXRW: Sort of want an M_DISTRIBUTED flag to avoid multiple distributions
718
* at multiple layers?
719
*
720
* XXXRW: For now, enable all this only if RSS is compiled in, although it
721
* works fine without RSS. Need to characterise the performance overhead
722
* of the detour through the netisr code in the event the result is always
723
* direct dispatch.
724
*/
725
static void
726
ether_nh_input(struct mbuf *m)
727
{
728
729
M_ASSERTPKTHDR(m);
730
KASSERT(m->m_pkthdr.rcvif != NULL,
731
("%s: NULL interface pointer", __func__));
732
ether_input_internal(m->m_pkthdr.rcvif, m);
733
}
734
735
static struct netisr_handler ether_nh = {
736
.nh_name = "ether",
737
.nh_handler = ether_nh_input,
738
.nh_proto = NETISR_ETHER,
739
#ifdef RSS
740
.nh_policy = NETISR_POLICY_CPU,
741
.nh_dispatch = NETISR_DISPATCH_DIRECT,
742
.nh_m2cpuid = rss_m2cpuid,
743
#else
744
.nh_policy = NETISR_POLICY_SOURCE,
745
.nh_dispatch = NETISR_DISPATCH_DIRECT,
746
#endif
747
};
748
749
static void
750
ether_init(__unused void *arg)
751
{
752
753
netisr_register(&ether_nh);
754
}
755
SYSINIT(ether, SI_SUB_INIT_IF, SI_ORDER_ANY, ether_init, NULL);
756
757
static void
758
vnet_ether_init(const __unused void *arg)
759
{
760
struct pfil_head_args args;
761
762
args.pa_version = PFIL_VERSION;
763
args.pa_flags = PFIL_IN | PFIL_OUT;
764
args.pa_type = PFIL_TYPE_ETHERNET;
765
args.pa_headname = PFIL_ETHER_NAME;
766
V_link_pfil_head = pfil_head_register(&args);
767
768
#ifdef VIMAGE
769
netisr_register_vnet(&ether_nh);
770
#endif
771
}
772
VNET_SYSINIT(vnet_ether_init, SI_SUB_PROTO_IF, SI_ORDER_ANY,
773
vnet_ether_init, NULL);
774
775
#ifdef VIMAGE
776
static void
777
vnet_ether_pfil_destroy(const __unused void *arg)
778
{
779
780
pfil_head_unregister(V_link_pfil_head);
781
}
782
VNET_SYSUNINIT(vnet_ether_pfil_uninit, SI_SUB_PROTO_PFIL, SI_ORDER_ANY,
783
vnet_ether_pfil_destroy, NULL);
784
785
static void
786
vnet_ether_destroy(__unused void *arg)
787
{
788
789
netisr_unregister_vnet(&ether_nh);
790
}
791
VNET_SYSUNINIT(vnet_ether_uninit, SI_SUB_PROTO_IF, SI_ORDER_ANY,
792
vnet_ether_destroy, NULL);
793
#endif
794
795
static void
796
ether_input(struct ifnet *ifp, struct mbuf *m)
797
{
798
struct epoch_tracker et;
799
struct mbuf *mn;
800
bool needs_epoch;
801
802
needs_epoch = (ifp->if_flags & IFF_NEEDSEPOCH);
803
#ifdef INVARIANTS
804
/*
805
* This temporary code is here to prevent epoch unaware and unmarked
806
* drivers to panic the system. Once all drivers are taken care of,
807
* the whole INVARIANTS block should go away.
808
*/
809
if (!needs_epoch && !in_epoch(net_epoch_preempt)) {
810
static bool printedonce;
811
812
needs_epoch = true;
813
if (!printedonce) {
814
printedonce = true;
815
if_printf(ifp, "called %s w/o net epoch! "
816
"PLEASE file a bug report.", __func__);
817
#ifdef KDB
818
kdb_backtrace();
819
#endif
820
}
821
}
822
#endif
823
824
/*
825
* The drivers are allowed to pass in a chain of packets linked with
826
* m_nextpkt. We split them up into separate packets here and pass
827
* them up. This allows the drivers to amortize the receive lock.
828
*/
829
CURVNET_SET_QUIET(ifp->if_vnet);
830
if (__predict_false(needs_epoch))
831
NET_EPOCH_ENTER(et);
832
while (m) {
833
mn = m->m_nextpkt;
834
m->m_nextpkt = NULL;
835
836
/*
837
* We will rely on rcvif being set properly in the deferred
838
* context, so assert it is correct here.
839
*/
840
MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
841
KASSERT(m->m_pkthdr.rcvif == ifp, ("%s: ifnet mismatch m %p "
842
"rcvif %p ifp %p", __func__, m, m->m_pkthdr.rcvif, ifp));
843
netisr_dispatch(NETISR_ETHER, m);
844
m = mn;
845
}
846
if (__predict_false(needs_epoch))
847
NET_EPOCH_EXIT(et);
848
CURVNET_RESTORE();
849
}
850
851
/*
852
* Upper layer processing for a received Ethernet packet.
853
*/
854
void
855
ether_demux(struct ifnet *ifp, struct mbuf *m)
856
{
857
struct ether_header *eh;
858
int i, isr;
859
u_short ether_type;
860
861
NET_EPOCH_ASSERT();
862
KASSERT(ifp != NULL, ("%s: NULL interface pointer", __func__));
863
864
/* Do not grab PROMISC frames in case we are re-entered. */
865
if (PFIL_HOOKED_IN(V_link_pfil_head) && !(m->m_flags & M_PROMISC)) {
866
i = pfil_mbuf_in(V_link_pfil_head, &m, ifp, NULL);
867
if (i != PFIL_PASS)
868
return;
869
}
870
871
eh = mtod(m, struct ether_header *);
872
ether_type = ntohs(eh->ether_type);
873
874
/*
875
* If this frame has a VLAN tag other than 0, call vlan_input()
876
* if its module is loaded. Otherwise, drop.
877
*/
878
if ((m->m_flags & M_VLANTAG) &&
879
EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 0) {
880
if (ifp->if_vlantrunk == NULL) {
881
if_inc_counter(ifp, IFCOUNTER_NOPROTO, 1);
882
m_freem(m);
883
return;
884
}
885
KASSERT(vlan_input_p != NULL,("%s: VLAN not loaded!",
886
__func__));
887
/* Clear before possibly re-entering ether_input(). */
888
m->m_flags &= ~M_PROMISC;
889
(*vlan_input_p)(ifp, m);
890
return;
891
}
892
893
/*
894
* Pass promiscuously received frames to the upper layer if the user
895
* requested this by setting IFF_PPROMISC. Otherwise, drop them.
896
*/
897
if ((ifp->if_flags & IFF_PPROMISC) == 0 && (m->m_flags & M_PROMISC)) {
898
m_freem(m);
899
return;
900
}
901
902
/*
903
* Reset layer specific mbuf flags to avoid confusing upper layers.
904
*/
905
m->m_flags &= ~M_VLANTAG;
906
m_clrprotoflags(m);
907
908
/*
909
* Dispatch frame to upper layer.
910
*/
911
switch (ether_type) {
912
#ifdef INET
913
case ETHERTYPE_IP:
914
isr = NETISR_IP;
915
break;
916
917
case ETHERTYPE_ARP:
918
if (ifp->if_flags & IFF_NOARP) {
919
/* Discard packet if ARP is disabled on interface */
920
m_freem(m);
921
return;
922
}
923
isr = NETISR_ARP;
924
break;
925
#endif
926
#ifdef INET6
927
case ETHERTYPE_IPV6:
928
isr = NETISR_IPV6;
929
break;
930
#endif
931
default:
932
goto discard;
933
}
934
935
/* Strip off Ethernet header. */
936
m_adj(m, ETHER_HDR_LEN);
937
938
netisr_dispatch(isr, m);
939
return;
940
941
discard:
942
/*
943
* Packet is to be discarded. If netgraph is present,
944
* hand the packet to it for last chance processing;
945
* otherwise dispose of it.
946
*/
947
if (ifp->if_l2com != NULL) {
948
KASSERT(ng_ether_input_orphan_p != NULL,
949
("ng_ether_input_orphan_p is NULL"));
950
(*ng_ether_input_orphan_p)(ifp, m);
951
return;
952
}
953
m_freem(m);
954
}
955
956
/*
957
* Convert Ethernet address to printable (loggable) representation.
958
* This routine is for compatibility; it's better to just use
959
*
960
* printf("%6D", <pointer to address>, ":");
961
*
962
* since there's no static buffer involved.
963
*/
964
char *
965
ether_sprintf(const u_char *ap)
966
{
967
static char etherbuf[18];
968
snprintf(etherbuf, sizeof (etherbuf), "%6D", ap, ":");
969
return (etherbuf);
970
}
971
972
/*
973
* Perform common duties while attaching to interface list
974
*/
975
void
976
ether_ifattach(struct ifnet *ifp, const u_int8_t *lla)
977
{
978
int i;
979
struct ifaddr *ifa;
980
struct sockaddr_dl *sdl;
981
982
ifp->if_addrlen = ETHER_ADDR_LEN;
983
ifp->if_hdrlen = (ifp->if_capabilities & IFCAP_VLAN_MTU) != 0 ?
984
ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN : ETHER_HDR_LEN;
985
ifp->if_mtu = ETHERMTU;
986
if_attach(ifp);
987
ifp->if_output = ether_output;
988
ifp->if_input = ether_input;
989
ifp->if_resolvemulti = ether_resolvemulti;
990
ifp->if_requestencap = ether_requestencap;
991
#ifdef VIMAGE
992
ifp->if_reassign = ether_reassign;
993
#endif
994
if (ifp->if_baudrate == 0)
995
ifp->if_baudrate = IF_Mbps(10); /* just a default */
996
ifp->if_broadcastaddr = etherbroadcastaddr;
997
998
ifa = ifp->if_addr;
999
KASSERT(ifa != NULL, ("%s: no lladdr!\n", __func__));
1000
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
1001
sdl->sdl_type = IFT_ETHER;
1002
sdl->sdl_alen = ifp->if_addrlen;
1003
bcopy(lla, LLADDR(sdl), ifp->if_addrlen);
1004
1005
if (ifp->if_hw_addr != NULL)
1006
bcopy(lla, ifp->if_hw_addr, ifp->if_addrlen);
1007
1008
bpfattach(ifp, DLT_EN10MB, ETHER_HDR_LEN);
1009
if (ng_ether_attach_p != NULL)
1010
(*ng_ether_attach_p)(ifp);
1011
1012
/* Announce Ethernet MAC address if non-zero. */
1013
for (i = 0; i < ifp->if_addrlen; i++)
1014
if (lla[i] != 0)
1015
break;
1016
if (i != ifp->if_addrlen)
1017
if_printf(ifp, "Ethernet address: %6D\n", lla, ":");
1018
1019
uuid_ether_add(LLADDR(sdl));
1020
1021
/* Add necessary bits are setup; announce it now. */
1022
EVENTHANDLER_INVOKE(ether_ifattach_event, ifp);
1023
if (IS_DEFAULT_VNET(curvnet))
1024
devctl_notify("ETHERNET", ifp->if_xname, "IFATTACH", NULL);
1025
}
1026
1027
/*
1028
* Perform common duties while detaching an Ethernet interface
1029
*/
1030
void
1031
ether_ifdetach(struct ifnet *ifp)
1032
{
1033
struct sockaddr_dl *sdl;
1034
1035
sdl = (struct sockaddr_dl *)(ifp->if_addr->ifa_addr);
1036
uuid_ether_del(LLADDR(sdl));
1037
1038
if (ifp->if_l2com != NULL) {
1039
KASSERT(ng_ether_detach_p != NULL,
1040
("ng_ether_detach_p is NULL"));
1041
(*ng_ether_detach_p)(ifp);
1042
}
1043
1044
bpfdetach(ifp);
1045
if_detach(ifp);
1046
}
1047
1048
#ifdef VIMAGE
1049
void
1050
ether_reassign(struct ifnet *ifp, struct vnet *new_vnet, char *unused __unused)
1051
{
1052
1053
if (ifp->if_l2com != NULL) {
1054
KASSERT(ng_ether_detach_p != NULL,
1055
("ng_ether_detach_p is NULL"));
1056
(*ng_ether_detach_p)(ifp);
1057
}
1058
1059
if (ng_ether_attach_p != NULL) {
1060
CURVNET_SET_QUIET(new_vnet);
1061
(*ng_ether_attach_p)(ifp);
1062
CURVNET_RESTORE();
1063
}
1064
}
1065
#endif
1066
1067
SYSCTL_DECL(_net_link);
1068
SYSCTL_NODE(_net_link, IFT_ETHER, ether, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1069
"Ethernet");
1070
1071
#if 0
1072
/*
1073
* This is for reference. We have a table-driven version
1074
* of the little-endian crc32 generator, which is faster
1075
* than the double-loop.
1076
*/
1077
uint32_t
1078
ether_crc32_le(const uint8_t *buf, size_t len)
1079
{
1080
size_t i;
1081
uint32_t crc;
1082
int bit;
1083
uint8_t data;
1084
1085
crc = 0xffffffff; /* initial value */
1086
1087
for (i = 0; i < len; i++) {
1088
for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1089
carry = (crc ^ data) & 1;
1090
crc >>= 1;
1091
if (carry)
1092
crc = (crc ^ ETHER_CRC_POLY_LE);
1093
}
1094
}
1095
1096
return (crc);
1097
}
1098
#else
1099
uint32_t
1100
ether_crc32_le(const uint8_t *buf, size_t len)
1101
{
1102
static const uint32_t crctab[] = {
1103
0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
1104
0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
1105
0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
1106
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c
1107
};
1108
size_t i;
1109
uint32_t crc;
1110
1111
crc = 0xffffffff; /* initial value */
1112
1113
for (i = 0; i < len; i++) {
1114
crc ^= buf[i];
1115
crc = (crc >> 4) ^ crctab[crc & 0xf];
1116
crc = (crc >> 4) ^ crctab[crc & 0xf];
1117
}
1118
1119
return (crc);
1120
}
1121
#endif
1122
1123
uint32_t
1124
ether_crc32_be(const uint8_t *buf, size_t len)
1125
{
1126
size_t i;
1127
uint32_t crc, carry;
1128
int bit;
1129
uint8_t data;
1130
1131
crc = 0xffffffff; /* initial value */
1132
1133
for (i = 0; i < len; i++) {
1134
for (data = *buf++, bit = 0; bit < 8; bit++, data >>= 1) {
1135
carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
1136
crc <<= 1;
1137
if (carry)
1138
crc = (crc ^ ETHER_CRC_POLY_BE) | carry;
1139
}
1140
}
1141
1142
return (crc);
1143
}
1144
1145
int
1146
ether_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1147
{
1148
struct ifaddr *ifa = (struct ifaddr *) data;
1149
struct ifreq *ifr = (struct ifreq *) data;
1150
int error = 0;
1151
1152
switch (command) {
1153
case SIOCSIFADDR:
1154
ifp->if_flags |= IFF_UP;
1155
1156
switch (ifa->ifa_addr->sa_family) {
1157
#ifdef INET
1158
case AF_INET:
1159
ifp->if_init(ifp->if_softc); /* before arpwhohas */
1160
arp_ifinit(ifp, ifa);
1161
break;
1162
#endif
1163
default:
1164
ifp->if_init(ifp->if_softc);
1165
break;
1166
}
1167
break;
1168
1169
case SIOCGIFADDR:
1170
bcopy(IF_LLADDR(ifp), &ifr->ifr_addr.sa_data[0],
1171
ETHER_ADDR_LEN);
1172
break;
1173
1174
case SIOCSIFMTU:
1175
/*
1176
* Set the interface MTU.
1177
*/
1178
if (ifr->ifr_mtu > ETHERMTU) {
1179
error = EINVAL;
1180
} else {
1181
ifp->if_mtu = ifr->ifr_mtu;
1182
}
1183
break;
1184
1185
case SIOCSLANPCP:
1186
error = priv_check(curthread, PRIV_NET_SETLANPCP);
1187
if (error != 0)
1188
break;
1189
if (ifr->ifr_lan_pcp > 7 &&
1190
ifr->ifr_lan_pcp != IFNET_PCP_NONE) {
1191
error = EINVAL;
1192
} else {
1193
ifp->if_pcp = ifr->ifr_lan_pcp;
1194
/* broadcast event about PCP change */
1195
EVENTHANDLER_INVOKE(ifnet_event, ifp, IFNET_EVENT_PCP);
1196
}
1197
break;
1198
1199
case SIOCGLANPCP:
1200
ifr->ifr_lan_pcp = ifp->if_pcp;
1201
break;
1202
1203
default:
1204
error = EINVAL; /* XXX netbsd has ENOTTY??? */
1205
break;
1206
}
1207
return (error);
1208
}
1209
1210
static int
1211
ether_resolvemulti(struct ifnet *ifp, struct sockaddr **llsa,
1212
struct sockaddr *sa)
1213
{
1214
struct sockaddr_dl *sdl;
1215
#ifdef INET
1216
struct sockaddr_in *sin;
1217
#endif
1218
#ifdef INET6
1219
struct sockaddr_in6 *sin6;
1220
#endif
1221
u_char *e_addr;
1222
1223
switch(sa->sa_family) {
1224
case AF_LINK:
1225
/*
1226
* No mapping needed. Just check that it's a valid MC address.
1227
*/
1228
sdl = (struct sockaddr_dl *)sa;
1229
e_addr = LLADDR(sdl);
1230
if (!ETHER_IS_MULTICAST(e_addr))
1231
return EADDRNOTAVAIL;
1232
*llsa = NULL;
1233
return 0;
1234
1235
#ifdef INET
1236
case AF_INET:
1237
sin = (struct sockaddr_in *)sa;
1238
if (!IN_MULTICAST(ntohl(sin->sin_addr.s_addr)))
1239
return EADDRNOTAVAIL;
1240
sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1241
sdl->sdl_alen = ETHER_ADDR_LEN;
1242
e_addr = LLADDR(sdl);
1243
ETHER_MAP_IP_MULTICAST(&sin->sin_addr, e_addr);
1244
*llsa = (struct sockaddr *)sdl;
1245
return 0;
1246
#endif
1247
#ifdef INET6
1248
case AF_INET6:
1249
sin6 = (struct sockaddr_in6 *)sa;
1250
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
1251
/*
1252
* An IP6 address of 0 means listen to all
1253
* of the Ethernet multicast address used for IP6.
1254
* (This is used for multicast routers.)
1255
*/
1256
ifp->if_flags |= IFF_ALLMULTI;
1257
*llsa = NULL;
1258
return 0;
1259
}
1260
if (!IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr))
1261
return EADDRNOTAVAIL;
1262
sdl = link_init_sdl(ifp, *llsa, IFT_ETHER);
1263
sdl->sdl_alen = ETHER_ADDR_LEN;
1264
e_addr = LLADDR(sdl);
1265
ETHER_MAP_IPV6_MULTICAST(&sin6->sin6_addr, e_addr);
1266
*llsa = (struct sockaddr *)sdl;
1267
return 0;
1268
#endif
1269
1270
default:
1271
/*
1272
* Well, the text isn't quite right, but it's the name
1273
* that counts...
1274
*/
1275
return EAFNOSUPPORT;
1276
}
1277
}
1278
1279
static moduledata_t ether_mod = {
1280
.name = "ether",
1281
};
1282
1283
void
1284
ether_vlan_mtap(struct bpf_if *bp, struct mbuf *m, void *data, u_int dlen)
1285
{
1286
struct ether_vlan_header vlan;
1287
struct mbuf mv, mb;
1288
1289
KASSERT((m->m_flags & M_VLANTAG) != 0,
1290
("%s: vlan information not present", __func__));
1291
KASSERT(m->m_len >= sizeof(struct ether_header),
1292
("%s: mbuf not large enough for header", __func__));
1293
bcopy(mtod(m, char *), &vlan, sizeof(struct ether_header));
1294
vlan.evl_proto = vlan.evl_encap_proto;
1295
vlan.evl_encap_proto = htons(ETHERTYPE_VLAN);
1296
vlan.evl_tag = htons(m->m_pkthdr.ether_vtag);
1297
m->m_len -= sizeof(struct ether_header);
1298
m->m_data += sizeof(struct ether_header);
1299
/*
1300
* If a data link has been supplied by the caller, then we will need to
1301
* re-create a stack allocated mbuf chain with the following structure:
1302
*
1303
* (1) mbuf #1 will contain the supplied data link
1304
* (2) mbuf #2 will contain the vlan header
1305
* (3) mbuf #3 will contain the original mbuf's packet data
1306
*
1307
* Otherwise, submit the packet and vlan header via bpf_mtap2().
1308
*/
1309
if (data != NULL) {
1310
mv.m_next = m;
1311
mv.m_data = (caddr_t)&vlan;
1312
mv.m_len = sizeof(vlan);
1313
mb.m_next = &mv;
1314
mb.m_data = data;
1315
mb.m_len = dlen;
1316
bpf_mtap(bp, &mb);
1317
} else
1318
bpf_mtap2(bp, &vlan, sizeof(vlan), m);
1319
m->m_len += sizeof(struct ether_header);
1320
m->m_data -= sizeof(struct ether_header);
1321
}
1322
1323
struct mbuf *
1324
ether_vlanencap_proto(struct mbuf *m, uint16_t tag, uint16_t proto)
1325
{
1326
struct ether_vlan_header *evl;
1327
1328
M_PREPEND(m, ETHER_VLAN_ENCAP_LEN, M_NOWAIT);
1329
if (m == NULL)
1330
return (NULL);
1331
/* M_PREPEND takes care of m_len, m_pkthdr.len for us */
1332
1333
if (m->m_len < sizeof(*evl)) {
1334
m = m_pullup(m, sizeof(*evl));
1335
if (m == NULL)
1336
return (NULL);
1337
}
1338
1339
/*
1340
* Transform the Ethernet header into an Ethernet header
1341
* with 802.1Q encapsulation.
1342
*/
1343
evl = mtod(m, struct ether_vlan_header *);
1344
bcopy((char *)evl + ETHER_VLAN_ENCAP_LEN,
1345
(char *)evl, ETHER_HDR_LEN - ETHER_TYPE_LEN);
1346
evl->evl_encap_proto = htons(proto);
1347
evl->evl_tag = htons(tag);
1348
return (m);
1349
}
1350
1351
void
1352
ether_bpf_mtap_if(struct ifnet *ifp, struct mbuf *m)
1353
{
1354
if (bpf_peers_present(ifp->if_bpf)) {
1355
M_ASSERTVALID(m);
1356
if ((m->m_flags & M_VLANTAG) != 0)
1357
ether_vlan_mtap(ifp->if_bpf, m, NULL, 0);
1358
else
1359
bpf_mtap(ifp->if_bpf, m);
1360
}
1361
}
1362
1363
static SYSCTL_NODE(_net_link, IFT_L2VLAN, vlan, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1364
"IEEE 802.1Q VLAN");
1365
static SYSCTL_NODE(_net_link_vlan, PF_LINK, link,
1366
CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
1367
"for consistency");
1368
1369
VNET_DEFINE_STATIC(int, soft_pad);
1370
#define V_soft_pad VNET(soft_pad)
1371
SYSCTL_INT(_net_link_vlan, OID_AUTO, soft_pad, CTLFLAG_RW | CTLFLAG_VNET,
1372
&VNET_NAME(soft_pad), 0,
1373
"pad short frames before tagging");
1374
1375
/*
1376
* For now, make preserving PCP via an mbuf tag optional, as it increases
1377
* per-packet memory allocations and frees. In the future, it would be
1378
* preferable to reuse ether_vtag for this, or similar.
1379
*/
1380
VNET_DEFINE(int, vlan_mtag_pcp) = 0;
1381
#define V_vlan_mtag_pcp VNET(vlan_mtag_pcp)
1382
SYSCTL_INT(_net_link_vlan, OID_AUTO, mtag_pcp, CTLFLAG_RW | CTLFLAG_VNET,
1383
&VNET_NAME(vlan_mtag_pcp), 0,
1384
"Retain VLAN PCP information as packets are passed up the stack");
1385
1386
static inline bool
1387
ether_do_pcp(struct ifnet *ifp, struct mbuf *m)
1388
{
1389
if (ifp->if_type == IFT_L2VLAN)
1390
return (false);
1391
if (ifp->if_pcp != IFNET_PCP_NONE || (m->m_flags & M_VLANTAG) != 0)
1392
return (true);
1393
if (V_vlan_mtag_pcp &&
1394
m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL) != NULL)
1395
return (true);
1396
return (false);
1397
}
1398
1399
bool
1400
ether_8021q_frame(struct mbuf **mp, struct ifnet *ife, struct ifnet *p,
1401
const struct ether_8021q_tag *qtag)
1402
{
1403
struct m_tag *mtag;
1404
int n;
1405
uint16_t tag;
1406
uint8_t pcp = qtag->pcp;
1407
static const char pad[8]; /* just zeros */
1408
1409
/*
1410
* Pad the frame to the minimum size allowed if told to.
1411
* This option is in accord with IEEE Std 802.1Q, 2003 Ed.,
1412
* paragraph C.4.4.3.b. It can help to work around buggy
1413
* bridges that violate paragraph C.4.4.3.a from the same
1414
* document, i.e., fail to pad short frames after untagging.
1415
* E.g., a tagged frame 66 bytes long (incl. FCS) is OK, but
1416
* untagging it will produce a 62-byte frame, which is a runt
1417
* and requires padding. There are VLAN-enabled network
1418
* devices that just discard such runts instead or mishandle
1419
* them somehow.
1420
*/
1421
if (V_soft_pad && p->if_type == IFT_ETHER) {
1422
for (n = ETHERMIN + ETHER_HDR_LEN - (*mp)->m_pkthdr.len;
1423
n > 0; n -= sizeof(pad)) {
1424
if (!m_append(*mp, min(n, sizeof(pad)), pad))
1425
break;
1426
}
1427
if (n > 0) {
1428
m_freem(*mp);
1429
*mp = NULL;
1430
if_printf(ife, "cannot pad short frame");
1431
return (false);
1432
}
1433
}
1434
1435
/*
1436
* If PCP is set in mbuf, use it
1437
*/
1438
if ((*mp)->m_flags & M_VLANTAG) {
1439
pcp = EVL_PRIOFTAG((*mp)->m_pkthdr.ether_vtag);
1440
}
1441
1442
/*
1443
* If underlying interface can do VLAN tag insertion itself,
1444
* just pass the packet along. However, we need some way to
1445
* tell the interface where the packet came from so that it
1446
* knows how to find the VLAN tag to use, so we attach a
1447
* packet tag that holds it.
1448
*/
1449
if (V_vlan_mtag_pcp && (mtag = m_tag_locate(*mp, MTAG_8021Q,
1450
MTAG_8021Q_PCP_OUT, NULL)) != NULL)
1451
tag = EVL_MAKETAG(qtag->vid, *(uint8_t *)(mtag + 1), 0);
1452
else
1453
tag = EVL_MAKETAG(qtag->vid, pcp, 0);
1454
if ((p->if_capenable & IFCAP_VLAN_HWTAGGING) &&
1455
(qtag->proto == ETHERTYPE_VLAN)) {
1456
(*mp)->m_pkthdr.ether_vtag = tag;
1457
(*mp)->m_flags |= M_VLANTAG;
1458
} else {
1459
*mp = ether_vlanencap_proto(*mp, tag, qtag->proto);
1460
if (*mp == NULL) {
1461
if_printf(ife, "unable to prepend 802.1Q header");
1462
return (false);
1463
}
1464
(*mp)->m_flags &= ~M_VLANTAG;
1465
}
1466
return (true);
1467
}
1468
1469
/*
1470
* Allocate an address from the FreeBSD Foundation OUI. This uses a
1471
* cryptographic hash function on the containing jail's name, UUID and the
1472
* interface name to attempt to provide a unique but stable address.
1473
* Pseudo-interfaces which require a MAC address should use this function to
1474
* allocate non-locally-administered addresses.
1475
*/
1476
void
1477
ether_gen_addr_byname(const char *nameunit, struct ether_addr *hwaddr)
1478
{
1479
SHA1_CTX ctx;
1480
char *buf;
1481
char uuid[HOSTUUIDLEN + 1];
1482
uint64_t addr;
1483
int i, sz;
1484
unsigned char digest[SHA1_RESULTLEN];
1485
char jailname[MAXHOSTNAMELEN];
1486
1487
getcredhostuuid(curthread->td_ucred, uuid, sizeof(uuid));
1488
if (strncmp(uuid, DEFAULT_HOSTUUID, sizeof(uuid)) == 0) {
1489
/* Fall back to a random mac address. */
1490
goto rando;
1491
}
1492
1493
/* If each (vnet) jail would also have a unique hostuuid this would not
1494
* be necessary. */
1495
getjailname(curthread->td_ucred, jailname, sizeof(jailname));
1496
sz = asprintf(&buf, M_TEMP, "%s-%s-%s", uuid, nameunit,
1497
jailname);
1498
if (sz < 0) {
1499
/* Fall back to a random mac address. */
1500
goto rando;
1501
}
1502
1503
SHA1Init(&ctx);
1504
SHA1Update(&ctx, buf, sz);
1505
SHA1Final(digest, &ctx);
1506
free(buf, M_TEMP);
1507
1508
addr = (digest[0] << 8) | digest[1] | OUI_FREEBSD_GENERATED_LOW;
1509
for (i = 0; i < ETHER_ADDR_LEN; ++i) {
1510
hwaddr->octet[i] = addr >> ((ETHER_ADDR_LEN - i - 1) * 8) &
1511
0xFF;
1512
}
1513
1514
return;
1515
rando:
1516
arc4rand(hwaddr, sizeof(*hwaddr), 0);
1517
/* Unicast */
1518
hwaddr->octet[0] &= 0xFE;
1519
/* Locally administered. */
1520
hwaddr->octet[0] |= 0x02;
1521
}
1522
1523
void
1524
ether_gen_addr(struct ifnet *ifp, struct ether_addr *hwaddr)
1525
{
1526
ether_gen_addr_byname(if_name(ifp), hwaddr);
1527
}
1528
1529
DECLARE_MODULE(ether, ether_mod, SI_SUB_INIT_IF, SI_ORDER_ANY);
1530
MODULE_VERSION(ether, 1);
1531
1532