Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/net80211/ieee80211.c
39475 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2001 Atsushi Onoe
5
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6
* All rights reserved.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
*
17
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
*/
28
29
#include <sys/cdefs.h>
30
/*
31
* IEEE 802.11 generic handler
32
*/
33
#include "opt_wlan.h"
34
35
#include <sys/param.h>
36
#include <sys/systm.h>
37
#include <sys/kernel.h>
38
#include <sys/malloc.h>
39
#include <sys/socket.h>
40
#include <sys/sbuf.h>
41
#include <sys/stdarg.h>
42
43
#include <net/if.h>
44
#include <net/if_var.h>
45
#include <net/if_dl.h>
46
#include <net/if_media.h>
47
#include <net/if_private.h>
48
#include <net/if_types.h>
49
#include <net/ethernet.h>
50
51
#include <net80211/ieee80211_var.h>
52
#include <net80211/ieee80211_regdomain.h>
53
#ifdef IEEE80211_SUPPORT_SUPERG
54
#include <net80211/ieee80211_superg.h>
55
#endif
56
#include <net80211/ieee80211_ratectl.h>
57
#include <net80211/ieee80211_vht.h>
58
59
#include <net/bpf.h>
60
61
const char *ieee80211_phymode_name[IEEE80211_MODE_MAX] = {
62
[IEEE80211_MODE_AUTO] = "auto",
63
[IEEE80211_MODE_11A] = "11a",
64
[IEEE80211_MODE_11B] = "11b",
65
[IEEE80211_MODE_11G] = "11g",
66
[IEEE80211_MODE_FH] = "FH",
67
[IEEE80211_MODE_TURBO_A] = "turboA",
68
[IEEE80211_MODE_TURBO_G] = "turboG",
69
[IEEE80211_MODE_STURBO_A] = "sturboA",
70
[IEEE80211_MODE_HALF] = "half",
71
[IEEE80211_MODE_QUARTER] = "quarter",
72
[IEEE80211_MODE_11NA] = "11na",
73
[IEEE80211_MODE_11NG] = "11ng",
74
[IEEE80211_MODE_VHT_2GHZ] = "11acg",
75
[IEEE80211_MODE_VHT_5GHZ] = "11ac",
76
};
77
/* map ieee80211_opmode to the corresponding capability bit */
78
const int ieee80211_opcap[IEEE80211_OPMODE_MAX] = {
79
[IEEE80211_M_IBSS] = IEEE80211_C_IBSS,
80
[IEEE80211_M_WDS] = IEEE80211_C_WDS,
81
[IEEE80211_M_STA] = IEEE80211_C_STA,
82
[IEEE80211_M_AHDEMO] = IEEE80211_C_AHDEMO,
83
[IEEE80211_M_HOSTAP] = IEEE80211_C_HOSTAP,
84
[IEEE80211_M_MONITOR] = IEEE80211_C_MONITOR,
85
#ifdef IEEE80211_SUPPORT_MESH
86
[IEEE80211_M_MBSS] = IEEE80211_C_MBSS,
87
#endif
88
};
89
90
const uint8_t ieee80211broadcastaddr[IEEE80211_ADDR_LEN] =
91
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
92
93
static void ieee80211_syncflag_locked(struct ieee80211com *ic, int flag);
94
static void ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag);
95
static void ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag);
96
static void ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag);
97
static int ieee80211_media_setup(struct ieee80211com *ic,
98
struct ifmedia *media, int caps, int addsta,
99
ifm_change_cb_t media_change, ifm_stat_cb_t media_stat);
100
static int media_status(enum ieee80211_opmode,
101
const struct ieee80211_channel *);
102
static uint64_t ieee80211_get_counter(struct ifnet *, ift_counter);
103
104
MALLOC_DEFINE(M_80211_VAP, "80211vap", "802.11 vap state");
105
106
/*
107
* Default supported rates for 802.11 operation (in IEEE .5Mb units).
108
*/
109
#define B(r) ((r) | IEEE80211_RATE_BASIC)
110
static const struct ieee80211_rateset ieee80211_rateset_11a =
111
{ 8, { B(12), 18, B(24), 36, B(48), 72, 96, 108 } };
112
static const struct ieee80211_rateset ieee80211_rateset_half =
113
{ 8, { B(6), 9, B(12), 18, B(24), 36, 48, 54 } };
114
static const struct ieee80211_rateset ieee80211_rateset_quarter =
115
{ 8, { B(3), 4, B(6), 9, B(12), 18, 24, 27 } };
116
static const struct ieee80211_rateset ieee80211_rateset_11b =
117
{ 4, { B(2), B(4), B(11), B(22) } };
118
/* NB: OFDM rates are handled specially based on mode */
119
static const struct ieee80211_rateset ieee80211_rateset_11g =
120
{ 12, { B(2), B(4), B(11), B(22), 12, 18, 24, 36, 48, 72, 96, 108 } };
121
#undef B
122
123
static int set_vht_extchan(struct ieee80211_channel *c);
124
125
/*
126
* Fill in 802.11 available channel set, mark
127
* all available channels as active, and pick
128
* a default channel if not already specified.
129
*/
130
void
131
ieee80211_chan_init(struct ieee80211com *ic)
132
{
133
#define DEFAULTRATES(m, def) do { \
134
if (ic->ic_sup_rates[m].rs_nrates == 0) \
135
ic->ic_sup_rates[m] = def; \
136
} while (0)
137
struct ieee80211_channel *c;
138
int i;
139
140
KASSERT(0 < ic->ic_nchans && ic->ic_nchans <= IEEE80211_CHAN_MAX,
141
("invalid number of channels specified: %u", ic->ic_nchans));
142
memset(ic->ic_chan_avail, 0, sizeof(ic->ic_chan_avail));
143
memset(ic->ic_modecaps, 0, sizeof(ic->ic_modecaps));
144
setbit(ic->ic_modecaps, IEEE80211_MODE_AUTO);
145
for (i = 0; i < ic->ic_nchans; i++) {
146
c = &ic->ic_channels[i];
147
KASSERT(c->ic_flags != 0, ("channel with no flags"));
148
/*
149
* Help drivers that work only with frequencies by filling
150
* in IEEE channel #'s if not already calculated. Note this
151
* mimics similar work done in ieee80211_setregdomain when
152
* changing regulatory state.
153
*/
154
if (c->ic_ieee == 0)
155
c->ic_ieee = ieee80211_mhz2ieee(c->ic_freq,c->ic_flags);
156
157
/*
158
* Setup the HT40/VHT40 upper/lower bits.
159
* The VHT80/... math is done elsewhere.
160
*/
161
if (IEEE80211_IS_CHAN_HT40(c) && c->ic_extieee == 0)
162
c->ic_extieee = ieee80211_mhz2ieee(c->ic_freq +
163
(IEEE80211_IS_CHAN_HT40U(c) ? 20 : -20),
164
c->ic_flags);
165
166
/* Update VHT math */
167
/*
168
* XXX VHT again, note that this assumes VHT80/... channels
169
* are legit already.
170
*/
171
set_vht_extchan(c);
172
173
/* default max tx power to max regulatory */
174
if (c->ic_maxpower == 0)
175
c->ic_maxpower = 2*c->ic_maxregpower;
176
setbit(ic->ic_chan_avail, c->ic_ieee);
177
/*
178
* Identify mode capabilities.
179
*/
180
if (IEEE80211_IS_CHAN_A(c))
181
setbit(ic->ic_modecaps, IEEE80211_MODE_11A);
182
if (IEEE80211_IS_CHAN_B(c))
183
setbit(ic->ic_modecaps, IEEE80211_MODE_11B);
184
if (IEEE80211_IS_CHAN_ANYG(c))
185
setbit(ic->ic_modecaps, IEEE80211_MODE_11G);
186
if (IEEE80211_IS_CHAN_FHSS(c))
187
setbit(ic->ic_modecaps, IEEE80211_MODE_FH);
188
if (IEEE80211_IS_CHAN_108A(c))
189
setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_A);
190
if (IEEE80211_IS_CHAN_108G(c))
191
setbit(ic->ic_modecaps, IEEE80211_MODE_TURBO_G);
192
if (IEEE80211_IS_CHAN_ST(c))
193
setbit(ic->ic_modecaps, IEEE80211_MODE_STURBO_A);
194
if (IEEE80211_IS_CHAN_HALF(c))
195
setbit(ic->ic_modecaps, IEEE80211_MODE_HALF);
196
if (IEEE80211_IS_CHAN_QUARTER(c))
197
setbit(ic->ic_modecaps, IEEE80211_MODE_QUARTER);
198
if (IEEE80211_IS_CHAN_HTA(c))
199
setbit(ic->ic_modecaps, IEEE80211_MODE_11NA);
200
if (IEEE80211_IS_CHAN_HTG(c))
201
setbit(ic->ic_modecaps, IEEE80211_MODE_11NG);
202
if (IEEE80211_IS_CHAN_VHTA(c))
203
setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ);
204
if (IEEE80211_IS_CHAN_VHTG(c))
205
setbit(ic->ic_modecaps, IEEE80211_MODE_VHT_2GHZ);
206
}
207
/* initialize candidate channels to all available */
208
memcpy(ic->ic_chan_active, ic->ic_chan_avail,
209
sizeof(ic->ic_chan_avail));
210
211
/* sort channel table to allow lookup optimizations */
212
ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
213
214
/* invalidate any previous state */
215
ic->ic_bsschan = IEEE80211_CHAN_ANYC;
216
ic->ic_prevchan = NULL;
217
ic->ic_csa_newchan = NULL;
218
/* arbitrarily pick the first channel */
219
ic->ic_curchan = &ic->ic_channels[0];
220
ic->ic_rt = ieee80211_get_ratetable(ic->ic_curchan);
221
222
/* fillin well-known rate sets if driver has not specified */
223
DEFAULTRATES(IEEE80211_MODE_11B, ieee80211_rateset_11b);
224
DEFAULTRATES(IEEE80211_MODE_11G, ieee80211_rateset_11g);
225
DEFAULTRATES(IEEE80211_MODE_11A, ieee80211_rateset_11a);
226
DEFAULTRATES(IEEE80211_MODE_TURBO_A, ieee80211_rateset_11a);
227
DEFAULTRATES(IEEE80211_MODE_TURBO_G, ieee80211_rateset_11g);
228
DEFAULTRATES(IEEE80211_MODE_STURBO_A, ieee80211_rateset_11a);
229
DEFAULTRATES(IEEE80211_MODE_HALF, ieee80211_rateset_half);
230
DEFAULTRATES(IEEE80211_MODE_QUARTER, ieee80211_rateset_quarter);
231
DEFAULTRATES(IEEE80211_MODE_11NA, ieee80211_rateset_11a);
232
DEFAULTRATES(IEEE80211_MODE_11NG, ieee80211_rateset_11g);
233
DEFAULTRATES(IEEE80211_MODE_VHT_2GHZ, ieee80211_rateset_11g);
234
DEFAULTRATES(IEEE80211_MODE_VHT_5GHZ, ieee80211_rateset_11a);
235
236
/*
237
* Setup required information to fill the mcsset field, if driver did
238
* not. Assume a 2T2R setup for historic reasons.
239
*/
240
if (ic->ic_rxstream == 0)
241
ic->ic_rxstream = 2;
242
if (ic->ic_txstream == 0)
243
ic->ic_txstream = 2;
244
245
ieee80211_init_suphtrates(ic);
246
247
/*
248
* Set auto mode to reset active channel state and any desired channel.
249
*/
250
(void) ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
251
#undef DEFAULTRATES
252
}
253
254
static void
255
null_update_mcast(struct ieee80211com *ic)
256
{
257
258
ic_printf(ic, "need multicast update callback\n");
259
}
260
261
static void
262
null_update_promisc(struct ieee80211com *ic)
263
{
264
265
ic_printf(ic, "need promiscuous mode update callback\n");
266
}
267
268
static void
269
null_update_chw(struct ieee80211com *ic)
270
{
271
272
ic_printf(ic, "%s: need callback\n", __func__);
273
}
274
275
static LIST_HEAD(, ieee80211com) ic_head = LIST_HEAD_INITIALIZER(ic_head);
276
static struct mtx ic_list_mtx;
277
MTX_SYSINIT(ic_list, &ic_list_mtx, "ieee80211com list", MTX_DEF);
278
279
static int
280
sysctl_ieee80211coms(SYSCTL_HANDLER_ARGS)
281
{
282
struct ieee80211com *ic;
283
struct sbuf sb;
284
char *sp;
285
int error;
286
287
error = sysctl_wire_old_buffer(req, 0);
288
if (error)
289
return (error);
290
sbuf_new_for_sysctl(&sb, NULL, 8, req);
291
sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
292
sp = "";
293
mtx_lock(&ic_list_mtx);
294
LIST_FOREACH(ic, &ic_head, ic_next) {
295
sbuf_printf(&sb, "%s%s", sp, ic->ic_name);
296
sp = " ";
297
}
298
mtx_unlock(&ic_list_mtx);
299
error = sbuf_finish(&sb);
300
sbuf_delete(&sb);
301
return (error);
302
}
303
304
SYSCTL_PROC(_net_wlan, OID_AUTO, devices,
305
CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0,
306
sysctl_ieee80211coms, "A", "names of available 802.11 devices");
307
308
/*
309
* Attach/setup the common net80211 state. Called by
310
* the driver on attach to prior to creating any vap's.
311
*/
312
void
313
ieee80211_ifattach(struct ieee80211com *ic)
314
{
315
316
IEEE80211_LOCK_INIT(ic, ic->ic_name);
317
IEEE80211_TX_LOCK_INIT(ic, ic->ic_name);
318
TAILQ_INIT(&ic->ic_vaps);
319
320
/* Create a taskqueue for all state changes */
321
ic->ic_tq = taskqueue_create("ic_taskq",
322
IEEE80211_M_WAITOK | IEEE80211_M_ZERO,
323
taskqueue_thread_enqueue, &ic->ic_tq);
324
taskqueue_start_threads(&ic->ic_tq, 1, PI_NET, "%s net80211 taskq",
325
ic->ic_name);
326
ic->ic_ierrors = counter_u64_alloc(IEEE80211_M_WAITOK);
327
ic->ic_oerrors = counter_u64_alloc(IEEE80211_M_WAITOK);
328
/*
329
* Fill in 802.11 available channel set, mark all
330
* available channels as active, and pick a default
331
* channel if not already specified.
332
*/
333
ieee80211_chan_init(ic);
334
335
ic->ic_update_mcast = null_update_mcast;
336
ic->ic_update_promisc = null_update_promisc;
337
ic->ic_update_chw = null_update_chw;
338
339
ic->ic_hash_key = arc4random();
340
ic->ic_bintval = IEEE80211_BINTVAL_DEFAULT;
341
ic->ic_lintval = ic->ic_bintval;
342
ic->ic_txpowlimit = IEEE80211_TXPOWER_MAX;
343
344
ieee80211_crypto_attach(ic);
345
ieee80211_node_attach(ic);
346
ieee80211_power_attach(ic);
347
ieee80211_proto_attach(ic);
348
#ifdef IEEE80211_SUPPORT_SUPERG
349
ieee80211_superg_attach(ic);
350
#endif
351
ieee80211_ht_attach(ic);
352
ieee80211_vht_attach(ic);
353
ieee80211_scan_attach(ic);
354
ieee80211_regdomain_attach(ic);
355
ieee80211_dfs_attach(ic);
356
357
ieee80211_sysctl_attach(ic);
358
359
mtx_lock(&ic_list_mtx);
360
LIST_INSERT_HEAD(&ic_head, ic, ic_next);
361
mtx_unlock(&ic_list_mtx);
362
}
363
364
/*
365
* Detach net80211 state on device detach. Tear down
366
* all vap's and reclaim all common state prior to the
367
* device state going away. Note we may call back into
368
* driver; it must be prepared for this.
369
*/
370
void
371
ieee80211_ifdetach(struct ieee80211com *ic)
372
{
373
struct ieee80211vap *vap;
374
375
/*
376
* We use this as an indicator that ifattach never had a chance to be
377
* called, e.g. early driver attach failed and ifdetach was called
378
* during subsequent detach. Never fear, for we have nothing to do
379
* here.
380
*/
381
if (ic->ic_tq == NULL)
382
return;
383
384
mtx_lock(&ic_list_mtx);
385
LIST_REMOVE(ic, ic_next);
386
mtx_unlock(&ic_list_mtx);
387
388
taskqueue_drain(taskqueue_thread, &ic->ic_restart_task);
389
390
/*
391
* The VAP is responsible for setting and clearing
392
* the VIMAGE context.
393
*/
394
while ((vap = TAILQ_FIRST(&ic->ic_vaps)) != NULL) {
395
ieee80211_com_vdetach(vap);
396
ieee80211_vap_destroy(vap);
397
}
398
ieee80211_waitfor_parent(ic);
399
400
ieee80211_sysctl_detach(ic);
401
ieee80211_dfs_detach(ic);
402
ieee80211_regdomain_detach(ic);
403
ieee80211_scan_detach(ic);
404
#ifdef IEEE80211_SUPPORT_SUPERG
405
ieee80211_superg_detach(ic);
406
#endif
407
ieee80211_vht_detach(ic);
408
ieee80211_ht_detach(ic);
409
/* NB: must be called before ieee80211_node_detach */
410
ieee80211_proto_detach(ic);
411
ieee80211_crypto_detach(ic);
412
ieee80211_power_detach(ic);
413
ieee80211_node_detach(ic);
414
415
counter_u64_free(ic->ic_ierrors);
416
counter_u64_free(ic->ic_oerrors);
417
418
taskqueue_free(ic->ic_tq);
419
IEEE80211_TX_LOCK_DESTROY(ic);
420
IEEE80211_LOCK_DESTROY(ic);
421
}
422
423
/*
424
* Called by drivers during attach to set the supported
425
* cipher set for software encryption.
426
*/
427
void
428
ieee80211_set_software_ciphers(struct ieee80211com *ic,
429
uint32_t cipher_suite)
430
{
431
ieee80211_crypto_set_supported_software_ciphers(ic, cipher_suite);
432
}
433
434
/*
435
* Called by drivers during attach to set the supported
436
* cipher set for hardware encryption.
437
*/
438
void
439
ieee80211_set_hardware_ciphers(struct ieee80211com *ic,
440
uint32_t cipher_suite)
441
{
442
ieee80211_crypto_set_supported_hardware_ciphers(ic, cipher_suite);
443
}
444
445
/*
446
* Called by drivers during attach to set the supported
447
* key management suites by the driver/hardware.
448
*/
449
void
450
ieee80211_set_driver_keymgmt_suites(struct ieee80211com *ic,
451
uint32_t keymgmt_set)
452
{
453
ieee80211_crypto_set_supported_driver_keymgmt(ic,
454
keymgmt_set);
455
}
456
457
struct ieee80211com *
458
ieee80211_find_com(const char *name)
459
{
460
struct ieee80211com *ic;
461
462
mtx_lock(&ic_list_mtx);
463
LIST_FOREACH(ic, &ic_head, ic_next)
464
if (strcmp(ic->ic_name, name) == 0)
465
break;
466
mtx_unlock(&ic_list_mtx);
467
468
return (ic);
469
}
470
471
void
472
ieee80211_iterate_coms(ieee80211_com_iter_func *f, void *arg)
473
{
474
struct ieee80211com *ic;
475
476
mtx_lock(&ic_list_mtx);
477
LIST_FOREACH(ic, &ic_head, ic_next)
478
(*f)(arg, ic);
479
mtx_unlock(&ic_list_mtx);
480
}
481
482
/*
483
* Default reset method for use with the ioctl support. This
484
* method is invoked after any state change in the 802.11
485
* layer that should be propagated to the hardware but not
486
* require re-initialization of the 802.11 state machine (e.g
487
* rescanning for an ap). We always return ENETRESET which
488
* should cause the driver to re-initialize the device. Drivers
489
* can override this method to implement more optimized support.
490
*/
491
static int
492
default_reset(struct ieee80211vap *vap, u_long cmd)
493
{
494
return ENETRESET;
495
}
496
497
/*
498
* Default for updating the VAP default TX key index.
499
*
500
* Drivers that support TX offload as well as hardware encryption offload
501
* may need to be informed of key index changes separate from the key
502
* update.
503
*/
504
static void
505
default_update_deftxkey(struct ieee80211vap *vap, ieee80211_keyix kid)
506
{
507
508
/* XXX assert validity */
509
/* XXX assert we're in a key update block */
510
vap->iv_def_txkey = kid;
511
}
512
513
/*
514
* Add underlying device errors to vap errors.
515
*/
516
static uint64_t
517
ieee80211_get_counter(struct ifnet *ifp, ift_counter cnt)
518
{
519
struct ieee80211vap *vap = ifp->if_softc;
520
struct ieee80211com *ic = vap->iv_ic;
521
uint64_t rv;
522
523
rv = if_get_counter_default(ifp, cnt);
524
switch (cnt) {
525
case IFCOUNTER_OERRORS:
526
rv += counter_u64_fetch(ic->ic_oerrors);
527
break;
528
case IFCOUNTER_IERRORS:
529
rv += counter_u64_fetch(ic->ic_ierrors);
530
break;
531
default:
532
break;
533
}
534
535
return (rv);
536
}
537
538
/*
539
* Prepare a vap for use. Drivers use this call to
540
* setup net80211 state in new vap's prior attaching
541
* them with ieee80211_vap_attach (below).
542
*/
543
int
544
ieee80211_vap_setup(struct ieee80211com *ic, struct ieee80211vap *vap,
545
const char name[IFNAMSIZ], int unit, enum ieee80211_opmode opmode,
546
int flags, const uint8_t bssid[IEEE80211_ADDR_LEN])
547
{
548
struct ifnet *ifp;
549
550
ifp = if_alloc(IFT_ETHER);
551
if_initname(ifp, name, unit);
552
ifp->if_softc = vap; /* back pointer */
553
if_setflags(ifp, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST);
554
ifp->if_transmit = ieee80211_vap_transmit;
555
ifp->if_qflush = ieee80211_vap_qflush;
556
ifp->if_ioctl = ieee80211_ioctl;
557
ifp->if_init = ieee80211_init;
558
ifp->if_get_counter = ieee80211_get_counter;
559
560
vap->iv_ifp = ifp;
561
vap->iv_ic = ic;
562
vap->iv_flags = ic->ic_flags; /* propagate common flags */
563
vap->iv_flags_ext = ic->ic_flags_ext;
564
vap->iv_flags_ven = ic->ic_flags_ven;
565
vap->iv_caps = ic->ic_caps &~ IEEE80211_C_OPMODE;
566
567
/* 11n capabilities - XXX methodize */
568
vap->iv_htcaps = ic->ic_htcaps;
569
vap->iv_htextcaps = ic->ic_htextcaps;
570
571
/* 11ac capabilities - XXX methodize */
572
vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info;
573
vap->iv_vhtextcaps = ic->ic_vhtextcaps;
574
575
vap->iv_opmode = opmode;
576
vap->iv_caps |= ieee80211_opcap[opmode];
577
IEEE80211_ADDR_COPY(vap->iv_myaddr, ic->ic_macaddr);
578
switch (opmode) {
579
case IEEE80211_M_WDS:
580
/*
581
* WDS links must specify the bssid of the far end.
582
* For legacy operation this is a static relationship.
583
* For non-legacy operation the station must associate
584
* and be authorized to pass traffic. Plumbing the
585
* vap to the proper node happens when the vap
586
* transitions to RUN state.
587
*/
588
IEEE80211_ADDR_COPY(vap->iv_des_bssid, bssid);
589
vap->iv_flags |= IEEE80211_F_DESBSSID;
590
if (flags & IEEE80211_CLONE_WDSLEGACY)
591
vap->iv_flags_ext |= IEEE80211_FEXT_WDSLEGACY;
592
break;
593
#ifdef IEEE80211_SUPPORT_TDMA
594
case IEEE80211_M_AHDEMO:
595
if (flags & IEEE80211_CLONE_TDMA) {
596
/* NB: checked before clone operation allowed */
597
KASSERT(ic->ic_caps & IEEE80211_C_TDMA,
598
("not TDMA capable, ic_caps 0x%x", ic->ic_caps));
599
/*
600
* Propagate TDMA capability to mark vap; this
601
* cannot be removed and is used to distinguish
602
* regular ahdemo operation from ahdemo+tdma.
603
*/
604
vap->iv_caps |= IEEE80211_C_TDMA;
605
}
606
break;
607
#endif
608
default:
609
break;
610
}
611
/* auto-enable s/w beacon miss support */
612
if (flags & IEEE80211_CLONE_NOBEACONS)
613
vap->iv_flags_ext |= IEEE80211_FEXT_SWBMISS;
614
/* auto-generated or user supplied MAC address */
615
if (flags & (IEEE80211_CLONE_BSSID|IEEE80211_CLONE_MACADDR))
616
vap->iv_flags_ext |= IEEE80211_FEXT_UNIQMAC;
617
/*
618
* Enable various functionality by default if we're
619
* capable; the driver can override us if it knows better.
620
*/
621
if (vap->iv_caps & IEEE80211_C_WME)
622
vap->iv_flags |= IEEE80211_F_WME;
623
if (vap->iv_caps & IEEE80211_C_BURST)
624
vap->iv_flags |= IEEE80211_F_BURST;
625
/* NB: bg scanning only makes sense for station mode right now */
626
if (vap->iv_opmode == IEEE80211_M_STA &&
627
(vap->iv_caps & IEEE80211_C_BGSCAN))
628
vap->iv_flags |= IEEE80211_F_BGSCAN;
629
vap->iv_flags |= IEEE80211_F_DOTH; /* XXX no cap, just ena */
630
/* NB: DFS support only makes sense for ap mode right now */
631
if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
632
(vap->iv_caps & IEEE80211_C_DFS))
633
vap->iv_flags_ext |= IEEE80211_FEXT_DFS;
634
/* NB: only flip on U-APSD for hostap/sta for now */
635
if ((vap->iv_opmode == IEEE80211_M_STA)
636
|| (vap->iv_opmode == IEEE80211_M_HOSTAP)) {
637
if (vap->iv_caps & IEEE80211_C_UAPSD)
638
vap->iv_flags_ext |= IEEE80211_FEXT_UAPSD;
639
}
640
641
vap->iv_des_chan = IEEE80211_CHAN_ANYC; /* any channel is ok */
642
vap->iv_bmissthreshold = IEEE80211_HWBMISS_DEFAULT;
643
vap->iv_dtim_period = IEEE80211_DTIM_DEFAULT;
644
/*
645
* Install a default reset method for the ioctl support;
646
* the driver can override this.
647
*/
648
vap->iv_reset = default_reset;
649
650
/*
651
* Install a default crypto key update method, the driver
652
* can override this.
653
*/
654
vap->iv_update_deftxkey = default_update_deftxkey;
655
656
ieee80211_sysctl_vattach(vap);
657
ieee80211_crypto_vattach(vap);
658
ieee80211_node_vattach(vap);
659
ieee80211_power_vattach(vap);
660
ieee80211_proto_vattach(vap);
661
#ifdef IEEE80211_SUPPORT_SUPERG
662
ieee80211_superg_vattach(vap);
663
#endif
664
ieee80211_ht_vattach(vap);
665
ieee80211_vht_vattach(vap);
666
ieee80211_scan_vattach(vap);
667
ieee80211_regdomain_vattach(vap);
668
ieee80211_radiotap_vattach(vap);
669
ieee80211_vap_reset_erp(vap);
670
ieee80211_ratectl_set(vap, IEEE80211_RATECTL_NONE);
671
672
return 0;
673
}
674
675
/*
676
* Activate a vap. State should have been prepared with a
677
* call to ieee80211_vap_setup and by the driver. On return
678
* from this call the vap is ready for use.
679
*/
680
int
681
ieee80211_vap_attach(struct ieee80211vap *vap, ifm_change_cb_t media_change,
682
ifm_stat_cb_t media_stat, const uint8_t macaddr[IEEE80211_ADDR_LEN])
683
{
684
struct ifnet *ifp = vap->iv_ifp;
685
struct ieee80211com *ic = vap->iv_ic;
686
struct ifmediareq imr;
687
int maxrate;
688
689
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
690
"%s: %s parent %s flags 0x%x flags_ext 0x%x\n",
691
__func__, ieee80211_opmode_name[vap->iv_opmode],
692
ic->ic_name, vap->iv_flags, vap->iv_flags_ext);
693
694
/*
695
* Do late attach work that cannot happen until after
696
* the driver has had a chance to override defaults.
697
*/
698
ieee80211_node_latevattach(vap);
699
ieee80211_power_latevattach(vap);
700
701
maxrate = ieee80211_media_setup(ic, &vap->iv_media, vap->iv_caps,
702
vap->iv_opmode == IEEE80211_M_STA, media_change, media_stat);
703
ieee80211_media_status(ifp, &imr);
704
/* NB: strip explicit mode; we're actually in autoselect */
705
ifmedia_set(&vap->iv_media,
706
imr.ifm_active &~ (IFM_MMASK | IFM_IEEE80211_TURBO));
707
if (maxrate)
708
ifp->if_baudrate = IF_Mbps(maxrate);
709
710
ether_ifattach(ifp, macaddr);
711
/* Do initial MAC address sync */
712
ieee80211_vap_copy_mac_address(vap);
713
/* hook output method setup by ether_ifattach */
714
vap->iv_output = ifp->if_output;
715
ifp->if_output = ieee80211_output;
716
/* NB: if_mtu set by ether_ifattach to ETHERMTU */
717
718
IEEE80211_LOCK(ic);
719
TAILQ_INSERT_TAIL(&ic->ic_vaps, vap, iv_next);
720
ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
721
#ifdef IEEE80211_SUPPORT_SUPERG
722
ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
723
#endif
724
ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
725
ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
726
ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
727
ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
728
729
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
730
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
731
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
732
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
733
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
734
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
735
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
736
IEEE80211_UNLOCK(ic);
737
738
return 1;
739
}
740
741
/*
742
* Tear down vap state and reclaim the ifnet.
743
* The driver is assumed to have prepared for
744
* this; e.g. by turning off interrupts for the
745
* underlying device.
746
*/
747
void
748
ieee80211_vap_detach(struct ieee80211vap *vap)
749
{
750
struct ieee80211com *ic = vap->iv_ic;
751
struct ifnet *ifp = vap->iv_ifp;
752
int i;
753
754
CURVNET_SET(ifp->if_vnet);
755
756
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s parent %s\n",
757
__func__, ieee80211_opmode_name[vap->iv_opmode], ic->ic_name);
758
759
/* NB: bpfdetach is called by ether_ifdetach and claims all taps */
760
ether_ifdetach(ifp);
761
762
ieee80211_stop(vap);
763
764
/*
765
* Flush any deferred vap tasks.
766
*/
767
for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
768
ieee80211_draintask(ic, &vap->iv_nstate_task[i]);
769
ieee80211_draintask(ic, &vap->iv_swbmiss_task);
770
ieee80211_draintask(ic, &vap->iv_wme_task);
771
ieee80211_draintask(ic, &ic->ic_parent_task);
772
773
/* XXX band-aid until ifnet handles this for us */
774
taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
775
776
IEEE80211_LOCK(ic);
777
KASSERT(vap->iv_state == IEEE80211_S_INIT , ("vap still running"));
778
TAILQ_REMOVE(&ic->ic_vaps, vap, iv_next);
779
ieee80211_syncflag_locked(ic, IEEE80211_F_WME);
780
#ifdef IEEE80211_SUPPORT_SUPERG
781
ieee80211_syncflag_locked(ic, IEEE80211_F_TURBOP);
782
#endif
783
ieee80211_syncflag_locked(ic, IEEE80211_F_PCF);
784
ieee80211_syncflag_locked(ic, IEEE80211_F_BURST);
785
ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_HT);
786
ieee80211_syncflag_ht_locked(ic, IEEE80211_FHT_USEHT40);
787
788
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_VHT);
789
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT40);
790
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80);
791
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT160);
792
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_USEVHT80P80);
793
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_TX);
794
ieee80211_syncflag_vht_locked(ic, IEEE80211_FVHT_STBC_RX);
795
796
/* NB: this handles the bpfdetach done below */
797
ieee80211_syncflag_ext_locked(ic, IEEE80211_FEXT_BPF);
798
if (vap->iv_ifflags & IFF_PROMISC)
799
ieee80211_promisc(vap, false);
800
if (vap->iv_ifflags & IFF_ALLMULTI)
801
ieee80211_allmulti(vap, false);
802
IEEE80211_UNLOCK(ic);
803
804
ifmedia_removeall(&vap->iv_media);
805
806
ieee80211_radiotap_vdetach(vap);
807
ieee80211_regdomain_vdetach(vap);
808
ieee80211_scan_vdetach(vap);
809
#ifdef IEEE80211_SUPPORT_SUPERG
810
ieee80211_superg_vdetach(vap);
811
#endif
812
ieee80211_vht_vdetach(vap);
813
ieee80211_ht_vdetach(vap);
814
/* NB: must be before ieee80211_node_vdetach */
815
ieee80211_proto_vdetach(vap);
816
ieee80211_crypto_vdetach(vap);
817
ieee80211_power_vdetach(vap);
818
ieee80211_node_vdetach(vap);
819
ieee80211_sysctl_vdetach(vap);
820
821
if_free(ifp);
822
823
CURVNET_RESTORE();
824
}
825
826
/*
827
* Count number of vaps in promisc, and issue promisc on
828
* parent respectively.
829
*/
830
void
831
ieee80211_promisc(struct ieee80211vap *vap, bool on)
832
{
833
struct ieee80211com *ic = vap->iv_ic;
834
835
IEEE80211_LOCK_ASSERT(ic);
836
837
if (on) {
838
if (++ic->ic_promisc == 1)
839
ieee80211_runtask(ic, &ic->ic_promisc_task);
840
} else {
841
KASSERT(ic->ic_promisc > 0, ("%s: ic %p not promisc",
842
__func__, ic));
843
if (--ic->ic_promisc == 0)
844
ieee80211_runtask(ic, &ic->ic_promisc_task);
845
}
846
}
847
848
/*
849
* Count number of vaps in allmulti, and issue allmulti on
850
* parent respectively.
851
*/
852
void
853
ieee80211_allmulti(struct ieee80211vap *vap, bool on)
854
{
855
struct ieee80211com *ic = vap->iv_ic;
856
857
IEEE80211_LOCK_ASSERT(ic);
858
859
if (on) {
860
if (++ic->ic_allmulti == 1)
861
ieee80211_runtask(ic, &ic->ic_mcast_task);
862
} else {
863
KASSERT(ic->ic_allmulti > 0, ("%s: ic %p not allmulti",
864
__func__, ic));
865
if (--ic->ic_allmulti == 0)
866
ieee80211_runtask(ic, &ic->ic_mcast_task);
867
}
868
}
869
870
/*
871
* Synchronize flag bit state in the com structure
872
* according to the state of all vap's. This is used,
873
* for example, to handle state changes via ioctls.
874
*/
875
static void
876
ieee80211_syncflag_locked(struct ieee80211com *ic, int flag)
877
{
878
struct ieee80211vap *vap;
879
int bit;
880
881
IEEE80211_LOCK_ASSERT(ic);
882
883
bit = 0;
884
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
885
if (vap->iv_flags & flag) {
886
bit = 1;
887
break;
888
}
889
if (bit)
890
ic->ic_flags |= flag;
891
else
892
ic->ic_flags &= ~flag;
893
}
894
895
void
896
ieee80211_syncflag(struct ieee80211vap *vap, int flag)
897
{
898
struct ieee80211com *ic = vap->iv_ic;
899
900
IEEE80211_LOCK(ic);
901
if (flag < 0) {
902
flag = -flag;
903
vap->iv_flags &= ~flag;
904
} else
905
vap->iv_flags |= flag;
906
ieee80211_syncflag_locked(ic, flag);
907
IEEE80211_UNLOCK(ic);
908
}
909
910
/*
911
* Synchronize flags_ht bit state in the com structure
912
* according to the state of all vap's. This is used,
913
* for example, to handle state changes via ioctls.
914
*/
915
static void
916
ieee80211_syncflag_ht_locked(struct ieee80211com *ic, int flag)
917
{
918
struct ieee80211vap *vap;
919
int bit;
920
921
IEEE80211_LOCK_ASSERT(ic);
922
923
bit = 0;
924
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
925
if (vap->iv_flags_ht & flag) {
926
bit = 1;
927
break;
928
}
929
if (bit)
930
ic->ic_flags_ht |= flag;
931
else
932
ic->ic_flags_ht &= ~flag;
933
}
934
935
void
936
ieee80211_syncflag_ht(struct ieee80211vap *vap, int flag)
937
{
938
struct ieee80211com *ic = vap->iv_ic;
939
940
IEEE80211_LOCK(ic);
941
if (flag < 0) {
942
flag = -flag;
943
vap->iv_flags_ht &= ~flag;
944
} else
945
vap->iv_flags_ht |= flag;
946
ieee80211_syncflag_ht_locked(ic, flag);
947
IEEE80211_UNLOCK(ic);
948
}
949
950
/*
951
* Synchronize flags_vht bit state in the com structure
952
* according to the state of all vap's. This is used,
953
* for example, to handle state changes via ioctls.
954
*/
955
static void
956
ieee80211_syncflag_vht_locked(struct ieee80211com *ic, int flag)
957
{
958
struct ieee80211vap *vap;
959
int bit;
960
961
IEEE80211_LOCK_ASSERT(ic);
962
963
bit = 0;
964
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
965
if (vap->iv_vht_flags & flag) {
966
bit = 1;
967
break;
968
}
969
if (bit)
970
ic->ic_vht_flags |= flag;
971
else
972
ic->ic_vht_flags &= ~flag;
973
}
974
975
void
976
ieee80211_syncflag_vht(struct ieee80211vap *vap, int flag)
977
{
978
struct ieee80211com *ic = vap->iv_ic;
979
980
IEEE80211_LOCK(ic);
981
if (flag < 0) {
982
flag = -flag;
983
vap->iv_vht_flags &= ~flag;
984
} else
985
vap->iv_vht_flags |= flag;
986
ieee80211_syncflag_vht_locked(ic, flag);
987
IEEE80211_UNLOCK(ic);
988
}
989
990
/*
991
* Synchronize flags_ext bit state in the com structure
992
* according to the state of all vap's. This is used,
993
* for example, to handle state changes via ioctls.
994
*/
995
static void
996
ieee80211_syncflag_ext_locked(struct ieee80211com *ic, int flag)
997
{
998
struct ieee80211vap *vap;
999
int bit;
1000
1001
IEEE80211_LOCK_ASSERT(ic);
1002
1003
bit = 0;
1004
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1005
if (vap->iv_flags_ext & flag) {
1006
bit = 1;
1007
break;
1008
}
1009
if (bit)
1010
ic->ic_flags_ext |= flag;
1011
else
1012
ic->ic_flags_ext &= ~flag;
1013
}
1014
1015
void
1016
ieee80211_syncflag_ext(struct ieee80211vap *vap, int flag)
1017
{
1018
struct ieee80211com *ic = vap->iv_ic;
1019
1020
IEEE80211_LOCK(ic);
1021
if (flag < 0) {
1022
flag = -flag;
1023
vap->iv_flags_ext &= ~flag;
1024
} else
1025
vap->iv_flags_ext |= flag;
1026
ieee80211_syncflag_ext_locked(ic, flag);
1027
IEEE80211_UNLOCK(ic);
1028
}
1029
1030
static __inline int
1031
mapgsm(u_int freq, u_int flags)
1032
{
1033
freq *= 10;
1034
if (flags & IEEE80211_CHAN_QUARTER)
1035
freq += 5;
1036
else if (flags & IEEE80211_CHAN_HALF)
1037
freq += 10;
1038
else
1039
freq += 20;
1040
/* NB: there is no 907/20 wide but leave room */
1041
return (freq - 906*10) / 5;
1042
}
1043
1044
static __inline int
1045
mappsb(u_int freq, u_int flags)
1046
{
1047
return 37 + ((freq * 10) + ((freq % 5) == 2 ? 5 : 0) - 49400) / 5;
1048
}
1049
1050
/*
1051
* Convert MHz frequency to IEEE channel number.
1052
*/
1053
int
1054
ieee80211_mhz2ieee(u_int freq, u_int flags)
1055
{
1056
#define IS_FREQ_IN_PSB(_freq) ((_freq) > 4940 && (_freq) < 4990)
1057
if (flags & IEEE80211_CHAN_GSM)
1058
return mapgsm(freq, flags);
1059
if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
1060
if (freq == 2484)
1061
return 14;
1062
if (freq < 2484)
1063
return ((int) freq - 2407) / 5;
1064
else
1065
return 15 + ((freq - 2512) / 20);
1066
} else if (flags & IEEE80211_CHAN_5GHZ) { /* 5Ghz band */
1067
if (freq <= 5000) {
1068
/* XXX check regdomain? */
1069
if (IS_FREQ_IN_PSB(freq))
1070
return mappsb(freq, flags);
1071
return (freq - 4000) / 5;
1072
} else
1073
return (freq - 5000) / 5;
1074
} else { /* either, guess */
1075
if (freq == 2484)
1076
return 14;
1077
if (freq < 2484) {
1078
if (907 <= freq && freq <= 922)
1079
return mapgsm(freq, flags);
1080
return ((int) freq - 2407) / 5;
1081
}
1082
if (freq < 5000) {
1083
if (IS_FREQ_IN_PSB(freq))
1084
return mappsb(freq, flags);
1085
else if (freq > 4900)
1086
return (freq - 4000) / 5;
1087
else
1088
return 15 + ((freq - 2512) / 20);
1089
}
1090
return (freq - 5000) / 5;
1091
}
1092
#undef IS_FREQ_IN_PSB
1093
}
1094
1095
/*
1096
* Convert channel to IEEE channel number.
1097
*/
1098
int
1099
ieee80211_chan2ieee(struct ieee80211com *ic, const struct ieee80211_channel *c)
1100
{
1101
if (c == NULL) {
1102
ic_printf(ic, "invalid channel (NULL)\n");
1103
return 0; /* XXX */
1104
}
1105
return (c == IEEE80211_CHAN_ANYC ? IEEE80211_CHAN_ANY : c->ic_ieee);
1106
}
1107
1108
/*
1109
* Convert IEEE channel number to MHz frequency.
1110
*/
1111
u_int
1112
ieee80211_ieee2mhz(u_int chan, u_int flags)
1113
{
1114
if (flags & IEEE80211_CHAN_GSM)
1115
return 907 + 5 * (chan / 10);
1116
if (flags & IEEE80211_CHAN_2GHZ) { /* 2GHz band */
1117
if (chan == 14)
1118
return 2484;
1119
if (chan < 14)
1120
return 2407 + chan*5;
1121
else
1122
return 2512 + ((chan-15)*20);
1123
} else if (flags & IEEE80211_CHAN_5GHZ) {/* 5Ghz band */
1124
if (flags & (IEEE80211_CHAN_HALF|IEEE80211_CHAN_QUARTER)) {
1125
chan -= 37;
1126
return 4940 + chan*5 + (chan % 5 ? 2 : 0);
1127
}
1128
return 5000 + (chan*5);
1129
} else { /* either, guess */
1130
/* XXX can't distinguish PSB+GSM channels */
1131
if (chan == 14)
1132
return 2484;
1133
if (chan < 14) /* 0-13 */
1134
return 2407 + chan*5;
1135
if (chan < 27) /* 15-26 */
1136
return 2512 + ((chan-15)*20);
1137
return 5000 + (chan*5);
1138
}
1139
}
1140
1141
static __inline void
1142
set_extchan(struct ieee80211_channel *c)
1143
{
1144
1145
/*
1146
* IEEE Std 802.11-2012, page 1738, subclause 20.3.15.4:
1147
* "the secondary channel number shall be 'N + [1,-1] * 4'
1148
*/
1149
if (c->ic_flags & IEEE80211_CHAN_HT40U)
1150
c->ic_extieee = c->ic_ieee + 4;
1151
else if (c->ic_flags & IEEE80211_CHAN_HT40D)
1152
c->ic_extieee = c->ic_ieee - 4;
1153
else
1154
c->ic_extieee = 0;
1155
}
1156
1157
/*
1158
* Populate the freq1/freq2 fields as appropriate for VHT channels.
1159
*
1160
* This for now uses a hard-coded list of 80MHz wide channels.
1161
*
1162
* For HT20/HT40, freq1 just is the centre frequency of the 40MHz
1163
* wide channel we've already decided upon.
1164
*
1165
* For VHT80 and VHT160, there are only a small number of fixed
1166
* 80/160MHz wide channels, so we just use those.
1167
*
1168
* This is all likely very very wrong - both the regulatory code
1169
* and this code needs to ensure that all four channels are
1170
* available and valid before the VHT80 (and eight for VHT160) channel
1171
* is created.
1172
*/
1173
1174
struct vht_chan_range {
1175
uint16_t freq_start;
1176
uint16_t freq_end;
1177
};
1178
1179
struct vht_chan_range vht80_chan_ranges[] = {
1180
{ 5170, 5250 },
1181
{ 5250, 5330 },
1182
{ 5490, 5570 },
1183
{ 5570, 5650 },
1184
{ 5650, 5730 },
1185
{ 5735, 5815 },
1186
{ 5815, 5895 },
1187
{ 0, 0 }
1188
};
1189
1190
struct vht_chan_range vht160_chan_ranges[] = {
1191
{ 5170, 5330 },
1192
{ 5490, 5650 },
1193
{ 5735, 5895 },
1194
{ 0, 0 }
1195
};
1196
1197
static int
1198
set_vht_extchan(struct ieee80211_channel *c)
1199
{
1200
int i;
1201
1202
if (! IEEE80211_IS_CHAN_VHT(c))
1203
return (0);
1204
1205
if (IEEE80211_IS_CHAN_VHT80P80(c)) {
1206
net80211_printf("%s: TODO VHT80+80 channel (ieee=%d, flags=0x%08x)\n",
1207
__func__, c->ic_ieee, c->ic_flags);
1208
}
1209
1210
if (IEEE80211_IS_CHAN_VHT160(c)) {
1211
for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1212
if (c->ic_freq >= vht160_chan_ranges[i].freq_start &&
1213
c->ic_freq < vht160_chan_ranges[i].freq_end) {
1214
int midpoint;
1215
1216
midpoint = vht160_chan_ranges[i].freq_start + 80;
1217
c->ic_vht_ch_freq1 =
1218
ieee80211_mhz2ieee(midpoint, c->ic_flags);
1219
c->ic_vht_ch_freq2 = 0;
1220
#if 0
1221
net80211_printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1222
__func__, c->ic_ieee, c->ic_freq, midpoint,
1223
c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1224
#endif
1225
return (1);
1226
}
1227
}
1228
return (0);
1229
}
1230
1231
if (IEEE80211_IS_CHAN_VHT80(c)) {
1232
for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1233
if (c->ic_freq >= vht80_chan_ranges[i].freq_start &&
1234
c->ic_freq < vht80_chan_ranges[i].freq_end) {
1235
int midpoint;
1236
1237
midpoint = vht80_chan_ranges[i].freq_start + 40;
1238
c->ic_vht_ch_freq1 =
1239
ieee80211_mhz2ieee(midpoint, c->ic_flags);
1240
c->ic_vht_ch_freq2 = 0;
1241
#if 0
1242
net80211_printf("%s: %d, freq=%d, midpoint=%d, freq1=%d, freq2=%d\n",
1243
__func__, c->ic_ieee, c->ic_freq, midpoint,
1244
c->ic_vht_ch_freq1, c->ic_vht_ch_freq2);
1245
#endif
1246
return (1);
1247
}
1248
}
1249
return (0);
1250
}
1251
1252
if (IEEE80211_IS_CHAN_VHT40(c)) {
1253
if (IEEE80211_IS_CHAN_HT40U(c))
1254
c->ic_vht_ch_freq1 = c->ic_ieee + 2;
1255
else if (IEEE80211_IS_CHAN_HT40D(c))
1256
c->ic_vht_ch_freq1 = c->ic_ieee - 2;
1257
else
1258
return (0);
1259
return (1);
1260
}
1261
1262
if (IEEE80211_IS_CHAN_VHT20(c)) {
1263
c->ic_vht_ch_freq1 = c->ic_ieee;
1264
return (1);
1265
}
1266
1267
net80211_printf("%s: unknown VHT channel type (ieee=%d, flags=0x%08x)\n",
1268
__func__, c->ic_ieee, c->ic_flags);
1269
1270
return (0);
1271
}
1272
1273
/*
1274
* Return whether the current channel could possibly be a part of
1275
* a VHT80/VHT160 channel.
1276
*
1277
* This doesn't check that the whole range is in the allowed list
1278
* according to regulatory.
1279
*/
1280
static bool
1281
is_vht160_valid_freq(uint16_t freq)
1282
{
1283
int i;
1284
1285
for (i = 0; vht160_chan_ranges[i].freq_start != 0; i++) {
1286
if (freq >= vht160_chan_ranges[i].freq_start &&
1287
freq < vht160_chan_ranges[i].freq_end)
1288
return (true);
1289
}
1290
return (false);
1291
}
1292
1293
static int
1294
is_vht80_valid_freq(uint16_t freq)
1295
{
1296
int i;
1297
for (i = 0; vht80_chan_ranges[i].freq_start != 0; i++) {
1298
if (freq >= vht80_chan_ranges[i].freq_start &&
1299
freq < vht80_chan_ranges[i].freq_end)
1300
return (1);
1301
}
1302
return (0);
1303
}
1304
1305
static int
1306
addchan(struct ieee80211_channel chans[], int maxchans, int *nchans,
1307
uint8_t ieee, uint16_t freq, int8_t maxregpower, uint32_t flags)
1308
{
1309
struct ieee80211_channel *c;
1310
1311
if (*nchans >= maxchans)
1312
return (ENOBUFS);
1313
1314
#if 0
1315
net80211_printf("%s: %d of %d: ieee=%d, freq=%d, flags=0x%08x\n",
1316
__func__, *nchans, maxchans, ieee, freq, flags);
1317
#endif
1318
1319
c = &chans[(*nchans)++];
1320
c->ic_ieee = ieee;
1321
c->ic_freq = freq != 0 ? freq : ieee80211_ieee2mhz(ieee, flags);
1322
c->ic_maxregpower = maxregpower;
1323
c->ic_maxpower = 2 * maxregpower;
1324
c->ic_flags = flags;
1325
c->ic_vht_ch_freq1 = 0;
1326
c->ic_vht_ch_freq2 = 0;
1327
set_extchan(c);
1328
set_vht_extchan(c);
1329
1330
return (0);
1331
}
1332
1333
static int
1334
copychan_prev(struct ieee80211_channel chans[], int maxchans, int *nchans,
1335
uint32_t flags)
1336
{
1337
struct ieee80211_channel *c;
1338
1339
KASSERT(*nchans > 0, ("channel list is empty\n"));
1340
1341
if (*nchans >= maxchans)
1342
return (ENOBUFS);
1343
1344
#if 0
1345
net80211_printf("%s: %d of %d: flags=0x%08x\n",
1346
__func__, *nchans, maxchans, flags);
1347
#endif
1348
1349
c = &chans[(*nchans)++];
1350
c[0] = c[-1];
1351
c->ic_flags = flags;
1352
c->ic_vht_ch_freq1 = 0;
1353
c->ic_vht_ch_freq2 = 0;
1354
set_extchan(c);
1355
set_vht_extchan(c);
1356
1357
return (0);
1358
}
1359
1360
/*
1361
* XXX VHT-2GHz
1362
*/
1363
static void
1364
getflags_2ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1365
{
1366
int nmodes;
1367
1368
nmodes = 0;
1369
if (isset(bands, IEEE80211_MODE_11B))
1370
flags[nmodes++] = IEEE80211_CHAN_B;
1371
if (isset(bands, IEEE80211_MODE_11G))
1372
flags[nmodes++] = IEEE80211_CHAN_G;
1373
if (isset(bands, IEEE80211_MODE_11NG))
1374
flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT20;
1375
if (cbw_flags & NET80211_CBW_FLAG_HT40) {
1376
flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40U;
1377
flags[nmodes++] = IEEE80211_CHAN_G | IEEE80211_CHAN_HT40D;
1378
}
1379
flags[nmodes] = 0;
1380
}
1381
1382
static void
1383
getflags_5ghz(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1384
{
1385
int nmodes;
1386
1387
/*
1388
* The addchan_list() function seems to expect the flags array to
1389
* be in channel width order, so the VHT bits are interspersed
1390
* as appropriate to maintain said order.
1391
*
1392
* It also assumes HT40U is before HT40D.
1393
*/
1394
nmodes = 0;
1395
1396
/* 20MHz */
1397
if (isset(bands, IEEE80211_MODE_11A))
1398
flags[nmodes++] = IEEE80211_CHAN_A;
1399
if (isset(bands, IEEE80211_MODE_11NA))
1400
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20;
1401
if (isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1402
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT20 |
1403
IEEE80211_CHAN_VHT20;
1404
}
1405
1406
/* 40MHz */
1407
if (cbw_flags & NET80211_CBW_FLAG_HT40)
1408
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U;
1409
if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1410
isset(bands, IEEE80211_MODE_VHT_5GHZ))
1411
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1412
IEEE80211_CHAN_VHT40U;
1413
if (cbw_flags & NET80211_CBW_FLAG_HT40)
1414
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D;
1415
if ((cbw_flags & NET80211_CBW_FLAG_HT40) &&
1416
isset(bands, IEEE80211_MODE_VHT_5GHZ))
1417
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1418
IEEE80211_CHAN_VHT40D;
1419
1420
/* 80MHz */
1421
if ((cbw_flags & NET80211_CBW_FLAG_VHT80) &&
1422
isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1423
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1424
IEEE80211_CHAN_VHT80;
1425
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1426
IEEE80211_CHAN_VHT80;
1427
}
1428
1429
/* VHT160 */
1430
if ((cbw_flags & NET80211_CBW_FLAG_VHT160) &&
1431
isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1432
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1433
IEEE80211_CHAN_VHT160;
1434
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1435
IEEE80211_CHAN_VHT160;
1436
}
1437
1438
/* VHT80+80 */
1439
if ((cbw_flags & NET80211_CBW_FLAG_VHT80P80) &&
1440
isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1441
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40U |
1442
IEEE80211_CHAN_VHT80P80;
1443
flags[nmodes++] = IEEE80211_CHAN_A | IEEE80211_CHAN_HT40D |
1444
IEEE80211_CHAN_VHT80P80;
1445
}
1446
1447
flags[nmodes] = 0;
1448
}
1449
1450
static void
1451
getflags(const uint8_t bands[], uint32_t flags[], int cbw_flags)
1452
{
1453
1454
flags[0] = 0;
1455
if (isset(bands, IEEE80211_MODE_11A) ||
1456
isset(bands, IEEE80211_MODE_11NA) ||
1457
isset(bands, IEEE80211_MODE_VHT_5GHZ)) {
1458
if (isset(bands, IEEE80211_MODE_11B) ||
1459
isset(bands, IEEE80211_MODE_11G) ||
1460
isset(bands, IEEE80211_MODE_11NG) ||
1461
isset(bands, IEEE80211_MODE_VHT_2GHZ))
1462
return;
1463
1464
getflags_5ghz(bands, flags, cbw_flags);
1465
} else
1466
getflags_2ghz(bands, flags, cbw_flags);
1467
}
1468
1469
/*
1470
* Add one 20 MHz channel into specified channel list.
1471
* You MUST NOT mix bands when calling this. It will not add 5ghz
1472
* channels if you have any B/G/N band bit set.
1473
* The _cbw() variant does also support HT40/VHT80/160/80+80.
1474
*/
1475
int
1476
ieee80211_add_channel_cbw(struct ieee80211_channel chans[], int maxchans,
1477
int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1478
uint32_t chan_flags, const uint8_t bands[], int cbw_flags)
1479
{
1480
uint32_t flags[IEEE80211_MODE_MAX];
1481
int i, error;
1482
1483
getflags(bands, flags, cbw_flags);
1484
KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1485
1486
error = addchan(chans, maxchans, nchans, ieee, freq, maxregpower,
1487
flags[0] | chan_flags);
1488
for (i = 1; flags[i] != 0 && error == 0; i++) {
1489
error = copychan_prev(chans, maxchans, nchans,
1490
flags[i] | chan_flags);
1491
}
1492
1493
return (error);
1494
}
1495
1496
int
1497
ieee80211_add_channel(struct ieee80211_channel chans[], int maxchans,
1498
int *nchans, uint8_t ieee, uint16_t freq, int8_t maxregpower,
1499
uint32_t chan_flags, const uint8_t bands[])
1500
{
1501
1502
return (ieee80211_add_channel_cbw(chans, maxchans, nchans, ieee, freq,
1503
maxregpower, chan_flags, bands, 0));
1504
}
1505
1506
static struct ieee80211_channel *
1507
findchannel(struct ieee80211_channel chans[], int nchans, uint16_t freq,
1508
uint32_t flags)
1509
{
1510
struct ieee80211_channel *c;
1511
int i;
1512
1513
flags &= IEEE80211_CHAN_ALLTURBO;
1514
/* brute force search */
1515
for (i = 0; i < nchans; i++) {
1516
c = &chans[i];
1517
if (c->ic_freq == freq &&
1518
(c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1519
return c;
1520
}
1521
return NULL;
1522
}
1523
1524
/*
1525
* Add 40 MHz channel pair into specified channel list.
1526
*/
1527
/* XXX VHT */
1528
int
1529
ieee80211_add_channel_ht40(struct ieee80211_channel chans[], int maxchans,
1530
int *nchans, uint8_t ieee, int8_t maxregpower, uint32_t flags)
1531
{
1532
struct ieee80211_channel *cent, *extc;
1533
uint16_t freq;
1534
int error;
1535
1536
freq = ieee80211_ieee2mhz(ieee, flags);
1537
1538
/*
1539
* Each entry defines an HT40 channel pair; find the
1540
* center channel, then the extension channel above.
1541
*/
1542
flags |= IEEE80211_CHAN_HT20;
1543
cent = findchannel(chans, *nchans, freq, flags);
1544
if (cent == NULL)
1545
return (EINVAL);
1546
1547
extc = findchannel(chans, *nchans, freq + 20, flags);
1548
if (extc == NULL)
1549
return (ENOENT);
1550
1551
flags &= ~IEEE80211_CHAN_HT;
1552
error = addchan(chans, maxchans, nchans, cent->ic_ieee, cent->ic_freq,
1553
maxregpower, flags | IEEE80211_CHAN_HT40U);
1554
if (error != 0)
1555
return (error);
1556
1557
error = addchan(chans, maxchans, nchans, extc->ic_ieee, extc->ic_freq,
1558
maxregpower, flags | IEEE80211_CHAN_HT40D);
1559
1560
return (error);
1561
}
1562
1563
/*
1564
* Fetch the center frequency for the primary channel.
1565
*/
1566
uint32_t
1567
ieee80211_get_channel_center_freq(const struct ieee80211_channel *c)
1568
{
1569
1570
return (c->ic_freq);
1571
}
1572
1573
/*
1574
* Fetch the center frequency for the primary BAND channel.
1575
*
1576
* For 5, 10, 20MHz channels it'll be the normally configured channel
1577
* frequency.
1578
*
1579
* For 40MHz, 80MHz, 160MHz channels it will be the centre of the
1580
* wide channel, not the centre of the primary channel (that's ic_freq).
1581
*
1582
* For 80+80MHz channels this will be the centre of the primary
1583
* 80MHz channel; the secondary 80MHz channel will be center_freq2().
1584
*/
1585
uint32_t
1586
ieee80211_get_channel_center_freq1(const struct ieee80211_channel *c)
1587
{
1588
1589
/*
1590
* VHT - use the pre-calculated centre frequency
1591
* of the given channel.
1592
*/
1593
if (IEEE80211_IS_CHAN_VHT(c))
1594
return (ieee80211_ieee2mhz(c->ic_vht_ch_freq1, c->ic_flags));
1595
1596
if (IEEE80211_IS_CHAN_HT40U(c)) {
1597
return (c->ic_freq + 10);
1598
}
1599
if (IEEE80211_IS_CHAN_HT40D(c)) {
1600
return (c->ic_freq - 10);
1601
}
1602
1603
return (c->ic_freq);
1604
}
1605
1606
/*
1607
* For now, no 80+80 support; it will likely always return 0.
1608
*/
1609
uint32_t
1610
ieee80211_get_channel_center_freq2(const struct ieee80211_channel *c)
1611
{
1612
1613
if (IEEE80211_IS_CHAN_VHT(c) && (c->ic_vht_ch_freq2 != 0))
1614
return (ieee80211_ieee2mhz(c->ic_vht_ch_freq2, c->ic_flags));
1615
1616
return (0);
1617
}
1618
1619
/*
1620
* Adds channels into specified channel list (ieee[] array must be sorted).
1621
* Channels are already sorted.
1622
*/
1623
static int
1624
add_chanlist(struct ieee80211_channel chans[], int maxchans, int *nchans,
1625
const uint8_t ieee[], int nieee, uint32_t flags[])
1626
{
1627
uint16_t freq;
1628
int i, j, error;
1629
int is_vht;
1630
1631
for (i = 0; i < nieee; i++) {
1632
freq = ieee80211_ieee2mhz(ieee[i], flags[0]);
1633
for (j = 0; flags[j] != 0; j++) {
1634
/*
1635
* Notes:
1636
* + HT40 and VHT40 channels occur together, so
1637
* we need to be careful that we actually allow that.
1638
* + VHT80, VHT160 will coexist with HT40/VHT40, so
1639
* make sure it's not skipped because of the overlap
1640
* check used for (V)HT40.
1641
*/
1642
is_vht = !! (flags[j] & IEEE80211_CHAN_VHT);
1643
1644
/* XXX TODO FIXME VHT80P80. */
1645
1646
/* Test for VHT160 analogue to the VHT80 below. */
1647
if (is_vht && flags[j] & IEEE80211_CHAN_VHT160)
1648
if (! is_vht160_valid_freq(freq))
1649
continue;
1650
1651
/*
1652
* Test for VHT80.
1653
* XXX This is all very broken right now.
1654
* What we /should/ do is:
1655
*
1656
* + check that the frequency is in the list of
1657
* allowed VHT80 ranges; and
1658
* + the other 3 channels in the list are actually
1659
* also available.
1660
*/
1661
if (is_vht && flags[j] & IEEE80211_CHAN_VHT80)
1662
if (! is_vht80_valid_freq(freq))
1663
continue;
1664
1665
/*
1666
* Test for (V)HT40.
1667
*
1668
* This is also a fall through from VHT80; as we only
1669
* allow a VHT80 channel if the VHT40 combination is
1670
* also valid. If the VHT40 form is not valid then
1671
* we certainly can't do VHT80..
1672
*/
1673
if (flags[j] & IEEE80211_CHAN_HT40D)
1674
/*
1675
* Can't have a "lower" channel if we are the
1676
* first channel.
1677
*
1678
* Can't have a "lower" channel if it's below/
1679
* within 20MHz of the first channel.
1680
*
1681
* Can't have a "lower" channel if the channel
1682
* below it is not 20MHz away.
1683
*/
1684
if (i == 0 || ieee[i] < ieee[0] + 4 ||
1685
freq - 20 !=
1686
ieee80211_ieee2mhz(ieee[i] - 4, flags[j]))
1687
continue;
1688
if (flags[j] & IEEE80211_CHAN_HT40U)
1689
/*
1690
* Can't have an "upper" channel if we are
1691
* the last channel.
1692
*
1693
* Can't have an "upper" channel be above the
1694
* last channel in the list.
1695
*
1696
* Can't have an "upper" channel if the next
1697
* channel according to the math isn't 20MHz
1698
* away. (Likely for channel 13/14.)
1699
*/
1700
if (i == nieee - 1 ||
1701
ieee[i] + 4 > ieee[nieee - 1] ||
1702
freq + 20 !=
1703
ieee80211_ieee2mhz(ieee[i] + 4, flags[j]))
1704
continue;
1705
1706
if (j == 0) {
1707
error = addchan(chans, maxchans, nchans,
1708
ieee[i], freq, 0, flags[j]);
1709
} else {
1710
error = copychan_prev(chans, maxchans, nchans,
1711
flags[j]);
1712
}
1713
if (error != 0)
1714
return (error);
1715
}
1716
}
1717
1718
return (0);
1719
}
1720
1721
int
1722
ieee80211_add_channel_list_2ghz(struct ieee80211_channel chans[], int maxchans,
1723
int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1724
int cbw_flags)
1725
{
1726
uint32_t flags[IEEE80211_MODE_MAX];
1727
1728
/* XXX no VHT for now */
1729
getflags_2ghz(bands, flags, cbw_flags);
1730
KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1731
1732
return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1733
}
1734
1735
int
1736
ieee80211_add_channels_default_2ghz(struct ieee80211_channel chans[],
1737
int maxchans, int *nchans, const uint8_t bands[], int cbw_flags)
1738
{
1739
const uint8_t default_chan_list[] =
1740
{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 };
1741
1742
return (ieee80211_add_channel_list_2ghz(chans, maxchans, nchans,
1743
default_chan_list, nitems(default_chan_list), bands, cbw_flags));
1744
}
1745
1746
int
1747
ieee80211_add_channel_list_5ghz(struct ieee80211_channel chans[], int maxchans,
1748
int *nchans, const uint8_t ieee[], int nieee, const uint8_t bands[],
1749
int cbw_flags)
1750
{
1751
/*
1752
* XXX-BZ with HT and VHT there is no 1:1 mapping anymore. Review all
1753
* uses of IEEE80211_MODE_MAX and add a new #define name for array size.
1754
*/
1755
uint32_t flags[2 * IEEE80211_MODE_MAX];
1756
1757
getflags_5ghz(bands, flags, cbw_flags);
1758
KASSERT(flags[0] != 0, ("%s: no correct mode provided\n", __func__));
1759
1760
return (add_chanlist(chans, maxchans, nchans, ieee, nieee, flags));
1761
}
1762
1763
/*
1764
* Locate a channel given a frequency+flags. We cache
1765
* the previous lookup to optimize switching between two
1766
* channels--as happens with dynamic turbo.
1767
*/
1768
struct ieee80211_channel *
1769
ieee80211_find_channel(struct ieee80211com *ic, int freq, int flags)
1770
{
1771
struct ieee80211_channel *c;
1772
1773
flags &= IEEE80211_CHAN_ALLTURBO;
1774
c = ic->ic_prevchan;
1775
if (c != NULL && c->ic_freq == freq &&
1776
(c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1777
return c;
1778
/* brute force search */
1779
return (findchannel(ic->ic_channels, ic->ic_nchans, freq, flags));
1780
}
1781
1782
/*
1783
* Locate a channel given a channel number+flags. We cache
1784
* the previous lookup to optimize switching between two
1785
* channels--as happens with dynamic turbo.
1786
*/
1787
struct ieee80211_channel *
1788
ieee80211_find_channel_byieee(struct ieee80211com *ic, int ieee, int flags)
1789
{
1790
struct ieee80211_channel *c;
1791
int i;
1792
1793
flags &= IEEE80211_CHAN_ALLTURBO;
1794
c = ic->ic_prevchan;
1795
if (c != NULL && c->ic_ieee == ieee &&
1796
(c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1797
return c;
1798
/* brute force search */
1799
for (i = 0; i < ic->ic_nchans; i++) {
1800
c = &ic->ic_channels[i];
1801
if (c->ic_ieee == ieee &&
1802
(c->ic_flags & IEEE80211_CHAN_ALLTURBO) == flags)
1803
return c;
1804
}
1805
return NULL;
1806
}
1807
1808
/*
1809
* Lookup a channel suitable for the given rx status.
1810
*
1811
* This is used to find a channel for a frame (eg beacon, probe
1812
* response) based purely on the received PHY information.
1813
*
1814
* For now it tries to do it based on R_FREQ / R_IEEE.
1815
* This is enough for 11bg and 11a (and thus 11ng/11na)
1816
* but it will not be enough for GSM, PSB channels and the
1817
* like. It also doesn't know about legacy-turbog and
1818
* legacy-turbo modes, which some offload NICs actually
1819
* support in weird ways.
1820
*
1821
* Takes the ic and rxstatus; returns the channel or NULL
1822
* if not found.
1823
*
1824
* XXX TODO: Add support for that when the need arises.
1825
*/
1826
struct ieee80211_channel *
1827
ieee80211_lookup_channel_rxstatus(struct ieee80211vap *vap,
1828
const struct ieee80211_rx_stats *rxs)
1829
{
1830
struct ieee80211com *ic = vap->iv_ic;
1831
uint32_t flags;
1832
struct ieee80211_channel *c;
1833
1834
if (rxs == NULL)
1835
return (NULL);
1836
1837
/*
1838
* Strictly speaking we only use freq for now,
1839
* however later on we may wish to just store
1840
* the ieee for verification.
1841
*/
1842
if ((rxs->r_flags & IEEE80211_R_FREQ) == 0)
1843
return (NULL);
1844
if ((rxs->r_flags & IEEE80211_R_IEEE) == 0)
1845
return (NULL);
1846
if ((rxs->r_flags & IEEE80211_R_BAND) == 0)
1847
return (NULL);
1848
1849
/*
1850
* If the rx status contains a valid ieee/freq, then
1851
* ensure we populate the correct channel information
1852
* in rxchan before passing it up to the scan infrastructure.
1853
* Offload NICs will pass up beacons from all channels
1854
* during background scans.
1855
*/
1856
1857
/* Determine a band */
1858
switch (rxs->c_band) {
1859
case IEEE80211_CHAN_2GHZ:
1860
flags = IEEE80211_CHAN_G;
1861
break;
1862
case IEEE80211_CHAN_5GHZ:
1863
flags = IEEE80211_CHAN_A;
1864
break;
1865
default:
1866
if (rxs->c_freq < 3000) {
1867
flags = IEEE80211_CHAN_G;
1868
} else {
1869
flags = IEEE80211_CHAN_A;
1870
}
1871
break;
1872
}
1873
1874
/* Channel lookup */
1875
c = ieee80211_find_channel(ic, rxs->c_freq, flags);
1876
1877
IEEE80211_DPRINTF(vap, IEEE80211_MSG_INPUT,
1878
"%s: freq=%d, ieee=%d, flags=0x%08x; c=%p\n",
1879
__func__, (int) rxs->c_freq, (int) rxs->c_ieee, flags, c);
1880
1881
return (c);
1882
}
1883
1884
static void
1885
addmedia(struct ifmedia *media, int caps, int addsta, int mode, int mword)
1886
{
1887
#define ADD(_ic, _s, _o) \
1888
ifmedia_add(media, \
1889
IFM_MAKEWORD(IFM_IEEE80211, (_s), (_o), 0), 0, NULL)
1890
static const u_int mopts[IEEE80211_MODE_MAX] = {
1891
[IEEE80211_MODE_AUTO] = IFM_AUTO,
1892
[IEEE80211_MODE_11A] = IFM_IEEE80211_11A,
1893
[IEEE80211_MODE_11B] = IFM_IEEE80211_11B,
1894
[IEEE80211_MODE_11G] = IFM_IEEE80211_11G,
1895
[IEEE80211_MODE_FH] = IFM_IEEE80211_FH,
1896
[IEEE80211_MODE_TURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1897
[IEEE80211_MODE_TURBO_G] = IFM_IEEE80211_11G|IFM_IEEE80211_TURBO,
1898
[IEEE80211_MODE_STURBO_A] = IFM_IEEE80211_11A|IFM_IEEE80211_TURBO,
1899
[IEEE80211_MODE_HALF] = IFM_IEEE80211_11A, /* XXX */
1900
[IEEE80211_MODE_QUARTER] = IFM_IEEE80211_11A, /* XXX */
1901
[IEEE80211_MODE_11NA] = IFM_IEEE80211_11NA,
1902
[IEEE80211_MODE_11NG] = IFM_IEEE80211_11NG,
1903
[IEEE80211_MODE_VHT_2GHZ] = IFM_IEEE80211_VHT2G,
1904
[IEEE80211_MODE_VHT_5GHZ] = IFM_IEEE80211_VHT5G,
1905
};
1906
u_int mopt;
1907
1908
mopt = mopts[mode];
1909
if (addsta)
1910
ADD(ic, mword, mopt); /* STA mode has no cap */
1911
if (caps & IEEE80211_C_IBSS)
1912
ADD(media, mword, mopt | IFM_IEEE80211_ADHOC);
1913
if (caps & IEEE80211_C_HOSTAP)
1914
ADD(media, mword, mopt | IFM_IEEE80211_HOSTAP);
1915
if (caps & IEEE80211_C_AHDEMO)
1916
ADD(media, mword, mopt | IFM_IEEE80211_ADHOC | IFM_FLAG0);
1917
if (caps & IEEE80211_C_MONITOR)
1918
ADD(media, mword, mopt | IFM_IEEE80211_MONITOR);
1919
if (caps & IEEE80211_C_WDS)
1920
ADD(media, mword, mopt | IFM_IEEE80211_WDS);
1921
if (caps & IEEE80211_C_MBSS)
1922
ADD(media, mword, mopt | IFM_IEEE80211_MBSS);
1923
#undef ADD
1924
}
1925
1926
/*
1927
* Setup the media data structures according to the channel and
1928
* rate tables.
1929
*/
1930
static int
1931
ieee80211_media_setup(struct ieee80211com *ic,
1932
struct ifmedia *media, int caps, int addsta,
1933
ifm_change_cb_t media_change, ifm_stat_cb_t media_stat)
1934
{
1935
int i, j, rate, maxrate, mword, r;
1936
enum ieee80211_phymode mode;
1937
const struct ieee80211_rateset *rs;
1938
struct ieee80211_rateset allrates;
1939
struct ieee80211_node_txrate tn;
1940
1941
/*
1942
* Fill in media characteristics.
1943
*/
1944
ifmedia_init(media, 0, media_change, media_stat);
1945
maxrate = 0;
1946
/*
1947
* Add media for legacy operating modes.
1948
*/
1949
memset(&allrates, 0, sizeof(allrates));
1950
for (mode = IEEE80211_MODE_AUTO; mode < IEEE80211_MODE_11NA; mode++) {
1951
if (isclr(ic->ic_modecaps, mode))
1952
continue;
1953
addmedia(media, caps, addsta, mode, IFM_AUTO);
1954
if (mode == IEEE80211_MODE_AUTO)
1955
continue;
1956
rs = &ic->ic_sup_rates[mode];
1957
for (i = 0; i < rs->rs_nrates; i++) {
1958
rate = rs->rs_rates[i];
1959
tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rate);
1960
mword = ieee80211_rate2media(ic, &tn, mode);
1961
if (mword == 0)
1962
continue;
1963
addmedia(media, caps, addsta, mode, mword);
1964
/*
1965
* Add legacy rate to the collection of all rates.
1966
*/
1967
r = rate & IEEE80211_RATE_VAL;
1968
for (j = 0; j < allrates.rs_nrates; j++)
1969
if (allrates.rs_rates[j] == r)
1970
break;
1971
if (j == allrates.rs_nrates) {
1972
/* unique, add to the set */
1973
allrates.rs_rates[j] = r;
1974
allrates.rs_nrates++;
1975
}
1976
rate = (rate & IEEE80211_RATE_VAL) / 2;
1977
if (rate > maxrate)
1978
maxrate = rate;
1979
}
1980
}
1981
for (i = 0; i < allrates.rs_nrates; i++) {
1982
tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(allrates.rs_rates[i]);
1983
mword = ieee80211_rate2media(ic, &tn, IEEE80211_MODE_AUTO);
1984
if (mword == 0)
1985
continue;
1986
/* NB: remove media options from mword */
1987
addmedia(media, caps, addsta,
1988
IEEE80211_MODE_AUTO, IFM_SUBTYPE(mword));
1989
}
1990
/*
1991
* Add HT/11n media. Note that we do not have enough
1992
* bits in the media subtype to express the MCS so we
1993
* use a "placeholder" media subtype and any fixed MCS
1994
* must be specified with a different mechanism.
1995
*/
1996
for (; mode <= IEEE80211_MODE_11NG; mode++) {
1997
if (isclr(ic->ic_modecaps, mode))
1998
continue;
1999
addmedia(media, caps, addsta, mode, IFM_AUTO);
2000
addmedia(media, caps, addsta, mode, IFM_IEEE80211_MCS);
2001
}
2002
if (isset(ic->ic_modecaps, IEEE80211_MODE_11NA) ||
2003
isset(ic->ic_modecaps, IEEE80211_MODE_11NG)) {
2004
addmedia(media, caps, addsta,
2005
IEEE80211_MODE_AUTO, IFM_IEEE80211_MCS);
2006
i = ic->ic_txstream * 8 - 1;
2007
if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40) &&
2008
(ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI40))
2009
rate = ieee80211_htrates[i].ht40_rate_400ns;
2010
else if ((ic->ic_htcaps & IEEE80211_HTCAP_CHWIDTH40))
2011
rate = ieee80211_htrates[i].ht40_rate_800ns;
2012
else if ((ic->ic_htcaps & IEEE80211_HTCAP_SHORTGI20))
2013
rate = ieee80211_htrates[i].ht20_rate_400ns;
2014
else
2015
rate = ieee80211_htrates[i].ht20_rate_800ns;
2016
if (rate > maxrate)
2017
maxrate = rate;
2018
}
2019
2020
/*
2021
* Add VHT media.
2022
* XXX-BZ skip "VHT_2GHZ" for now.
2023
*/
2024
for (mode = IEEE80211_MODE_VHT_5GHZ; mode <= IEEE80211_MODE_VHT_5GHZ;
2025
mode++) {
2026
if (isclr(ic->ic_modecaps, mode))
2027
continue;
2028
addmedia(media, caps, addsta, mode, IFM_AUTO);
2029
addmedia(media, caps, addsta, mode, IFM_IEEE80211_VHT);
2030
}
2031
if (isset(ic->ic_modecaps, IEEE80211_MODE_VHT_5GHZ)) {
2032
addmedia(media, caps, addsta,
2033
IEEE80211_MODE_AUTO, IFM_IEEE80211_VHT);
2034
2035
/* XXX TODO: VHT maxrate */
2036
}
2037
2038
return maxrate;
2039
}
2040
2041
/* XXX inline or eliminate? */
2042
const struct ieee80211_rateset *
2043
ieee80211_get_suprates(struct ieee80211com *ic, const struct ieee80211_channel *c)
2044
{
2045
/* XXX does this work for 11ng basic rates? */
2046
return &ic->ic_sup_rates[ieee80211_chan2mode(c)];
2047
}
2048
2049
/* XXX inline or eliminate? */
2050
const struct ieee80211_htrateset *
2051
ieee80211_get_suphtrates(struct ieee80211com *ic,
2052
const struct ieee80211_channel *c)
2053
{
2054
return &ic->ic_sup_htrates;
2055
}
2056
2057
void
2058
ieee80211_announce(struct ieee80211com *ic)
2059
{
2060
int i, rate, mword;
2061
enum ieee80211_phymode mode;
2062
const struct ieee80211_rateset *rs;
2063
struct ieee80211_node_txrate tn;
2064
2065
/* NB: skip AUTO since it has no rates */
2066
for (mode = IEEE80211_MODE_AUTO+1; mode < IEEE80211_MODE_11NA; mode++) {
2067
if (isclr(ic->ic_modecaps, mode))
2068
continue;
2069
ic_printf(ic, "%s rates: ", ieee80211_phymode_name[mode]);
2070
rs = &ic->ic_sup_rates[mode];
2071
for (i = 0; i < rs->rs_nrates; i++) {
2072
tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(rs->rs_rates[i]);
2073
mword = ieee80211_rate2media(ic, &tn, mode);
2074
if (mword == 0)
2075
continue;
2076
rate = ieee80211_media2rate(mword);
2077
net80211_printf("%s%d%sMbps", (i != 0 ? " " : ""),
2078
rate / 2, ((rate & 0x1) != 0 ? ".5" : ""));
2079
}
2080
net80211_printf("\n");
2081
}
2082
ieee80211_ht_announce(ic);
2083
ieee80211_vht_announce(ic);
2084
}
2085
2086
void
2087
ieee80211_announce_channels(struct ieee80211com *ic)
2088
{
2089
const struct ieee80211_channel *c;
2090
char type;
2091
int i, cw;
2092
2093
net80211_printf("Chan Freq CW RegPwr MinPwr MaxPwr\n");
2094
for (i = 0; i < ic->ic_nchans; i++) {
2095
c = &ic->ic_channels[i];
2096
if (IEEE80211_IS_CHAN_ST(c))
2097
type = 'S';
2098
else if (IEEE80211_IS_CHAN_108A(c))
2099
type = 'T';
2100
else if (IEEE80211_IS_CHAN_108G(c))
2101
type = 'G';
2102
else if (IEEE80211_IS_CHAN_HT(c))
2103
type = 'n';
2104
else if (IEEE80211_IS_CHAN_A(c))
2105
type = 'a';
2106
else if (IEEE80211_IS_CHAN_ANYG(c))
2107
type = 'g';
2108
else if (IEEE80211_IS_CHAN_B(c))
2109
type = 'b';
2110
else
2111
type = 'f';
2112
if (IEEE80211_IS_CHAN_HT40(c) || IEEE80211_IS_CHAN_TURBO(c))
2113
cw = 40;
2114
else if (IEEE80211_IS_CHAN_HALF(c))
2115
cw = 10;
2116
else if (IEEE80211_IS_CHAN_QUARTER(c))
2117
cw = 5;
2118
else
2119
cw = 20;
2120
net80211_printf("%4d %4d%c %2d%c %6d %4d.%d %4d.%d\n"
2121
, c->ic_ieee, c->ic_freq, type
2122
, cw
2123
, IEEE80211_IS_CHAN_HT40U(c) ? '+' :
2124
IEEE80211_IS_CHAN_HT40D(c) ? '-' : ' '
2125
, c->ic_maxregpower
2126
, c->ic_minpower / 2, c->ic_minpower & 1 ? 5 : 0
2127
, c->ic_maxpower / 2, c->ic_maxpower & 1 ? 5 : 0
2128
);
2129
}
2130
}
2131
2132
static int
2133
media2mode(const struct ifmedia_entry *ime, uint32_t flags, uint16_t *mode)
2134
{
2135
switch (IFM_MODE(ime->ifm_media)) {
2136
case IFM_IEEE80211_11A:
2137
*mode = IEEE80211_MODE_11A;
2138
break;
2139
case IFM_IEEE80211_11B:
2140
*mode = IEEE80211_MODE_11B;
2141
break;
2142
case IFM_IEEE80211_11G:
2143
*mode = IEEE80211_MODE_11G;
2144
break;
2145
case IFM_IEEE80211_FH:
2146
*mode = IEEE80211_MODE_FH;
2147
break;
2148
case IFM_IEEE80211_11NA:
2149
*mode = IEEE80211_MODE_11NA;
2150
break;
2151
case IFM_IEEE80211_11NG:
2152
*mode = IEEE80211_MODE_11NG;
2153
break;
2154
case IFM_IEEE80211_VHT2G:
2155
*mode = IEEE80211_MODE_VHT_2GHZ;
2156
break;
2157
case IFM_IEEE80211_VHT5G:
2158
*mode = IEEE80211_MODE_VHT_5GHZ;
2159
break;
2160
case IFM_AUTO:
2161
*mode = IEEE80211_MODE_AUTO;
2162
break;
2163
default:
2164
return 0;
2165
}
2166
/*
2167
* Turbo mode is an ``option''.
2168
* XXX does not apply to AUTO
2169
*/
2170
if (ime->ifm_media & IFM_IEEE80211_TURBO) {
2171
if (*mode == IEEE80211_MODE_11A) {
2172
if (flags & IEEE80211_F_TURBOP)
2173
*mode = IEEE80211_MODE_TURBO_A;
2174
else
2175
*mode = IEEE80211_MODE_STURBO_A;
2176
} else if (*mode == IEEE80211_MODE_11G)
2177
*mode = IEEE80211_MODE_TURBO_G;
2178
else
2179
return 0;
2180
}
2181
/* XXX HT40 +/- */
2182
return 1;
2183
}
2184
2185
/*
2186
* Handle a media change request on the vap interface.
2187
*/
2188
int
2189
ieee80211_media_change(struct ifnet *ifp)
2190
{
2191
struct ieee80211vap *vap = ifp->if_softc;
2192
struct ifmedia_entry *ime = vap->iv_media.ifm_cur;
2193
uint16_t newmode;
2194
2195
if (!media2mode(ime, vap->iv_flags, &newmode))
2196
return EINVAL;
2197
if (vap->iv_des_mode != newmode) {
2198
vap->iv_des_mode = newmode;
2199
/* XXX kick state machine if up+running */
2200
}
2201
return 0;
2202
}
2203
2204
/*
2205
* Common code to calculate the media status word
2206
* from the operating mode and channel state.
2207
*/
2208
static int
2209
media_status(enum ieee80211_opmode opmode, const struct ieee80211_channel *chan)
2210
{
2211
int status;
2212
2213
status = IFM_IEEE80211;
2214
switch (opmode) {
2215
case IEEE80211_M_STA:
2216
break;
2217
case IEEE80211_M_IBSS:
2218
status |= IFM_IEEE80211_ADHOC;
2219
break;
2220
case IEEE80211_M_HOSTAP:
2221
status |= IFM_IEEE80211_HOSTAP;
2222
break;
2223
case IEEE80211_M_MONITOR:
2224
status |= IFM_IEEE80211_MONITOR;
2225
break;
2226
case IEEE80211_M_AHDEMO:
2227
status |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
2228
break;
2229
case IEEE80211_M_WDS:
2230
status |= IFM_IEEE80211_WDS;
2231
break;
2232
case IEEE80211_M_MBSS:
2233
status |= IFM_IEEE80211_MBSS;
2234
break;
2235
}
2236
if (IEEE80211_IS_CHAN_VHT_5GHZ(chan)) {
2237
status |= IFM_IEEE80211_VHT5G;
2238
} else if (IEEE80211_IS_CHAN_VHT_2GHZ(chan)) {
2239
status |= IFM_IEEE80211_VHT2G;
2240
} else if (IEEE80211_IS_CHAN_HTA(chan)) {
2241
status |= IFM_IEEE80211_11NA;
2242
} else if (IEEE80211_IS_CHAN_HTG(chan)) {
2243
status |= IFM_IEEE80211_11NG;
2244
} else if (IEEE80211_IS_CHAN_A(chan)) {
2245
status |= IFM_IEEE80211_11A;
2246
} else if (IEEE80211_IS_CHAN_B(chan)) {
2247
status |= IFM_IEEE80211_11B;
2248
} else if (IEEE80211_IS_CHAN_ANYG(chan)) {
2249
status |= IFM_IEEE80211_11G;
2250
} else if (IEEE80211_IS_CHAN_FHSS(chan)) {
2251
status |= IFM_IEEE80211_FH;
2252
}
2253
/* XXX else complain? */
2254
2255
if (IEEE80211_IS_CHAN_TURBO(chan))
2256
status |= IFM_IEEE80211_TURBO;
2257
#if 0
2258
if (IEEE80211_IS_CHAN_HT20(chan))
2259
status |= IFM_IEEE80211_HT20;
2260
if (IEEE80211_IS_CHAN_HT40(chan))
2261
status |= IFM_IEEE80211_HT40;
2262
#endif
2263
return status;
2264
}
2265
2266
void
2267
ieee80211_media_status(struct ifnet *ifp, struct ifmediareq *imr)
2268
{
2269
struct ieee80211vap *vap = ifp->if_softc;
2270
struct ieee80211com *ic = vap->iv_ic;
2271
enum ieee80211_phymode mode;
2272
struct ieee80211_node_txrate tn;
2273
2274
imr->ifm_status = IFM_AVALID;
2275
/*
2276
* NB: use the current channel's mode to lock down a xmit
2277
* rate only when running; otherwise we may have a mismatch
2278
* in which case the rate will not be convertible.
2279
*/
2280
if (vap->iv_state == IEEE80211_S_RUN ||
2281
vap->iv_state == IEEE80211_S_SLEEP) {
2282
imr->ifm_status |= IFM_ACTIVE;
2283
mode = ieee80211_chan2mode(ic->ic_curchan);
2284
} else
2285
mode = IEEE80211_MODE_AUTO;
2286
imr->ifm_active = media_status(vap->iv_opmode, ic->ic_curchan);
2287
/*
2288
* Calculate a current rate if possible.
2289
*/
2290
if (vap->iv_txparms[mode].ucastrate != IEEE80211_FIXED_RATE_NONE) {
2291
/*
2292
* A fixed rate is set, report that.
2293
*/
2294
tn = IEEE80211_NODE_TXRATE_INIT_LEGACY(
2295
vap->iv_txparms[mode].ucastrate);
2296
imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode);
2297
} else if (vap->iv_opmode == IEEE80211_M_STA) {
2298
/*
2299
* In station mode report the current transmit rate.
2300
*/
2301
ieee80211_node_get_txrate(vap->iv_bss, &tn);
2302
imr->ifm_active |= ieee80211_rate2media(ic, &tn, mode);
2303
} else
2304
imr->ifm_active |= IFM_AUTO;
2305
if (imr->ifm_status & IFM_ACTIVE)
2306
imr->ifm_current = imr->ifm_active;
2307
}
2308
2309
/*
2310
* Set the current phy mode and recalculate the active channel
2311
* set based on the available channels for this mode. Also
2312
* select a new default/current channel if the current one is
2313
* inappropriate for this mode.
2314
*/
2315
int
2316
ieee80211_setmode(struct ieee80211com *ic, enum ieee80211_phymode mode)
2317
{
2318
/*
2319
* Adjust basic rates in 11b/11g supported rate set.
2320
* Note that if operating on a hal/quarter rate channel
2321
* this is a noop as those rates sets are different
2322
* and used instead.
2323
*/
2324
if (mode == IEEE80211_MODE_11G || mode == IEEE80211_MODE_11B)
2325
ieee80211_setbasicrates(&ic->ic_sup_rates[mode], mode);
2326
2327
ic->ic_curmode = mode;
2328
ieee80211_reset_erp(ic); /* reset global ERP state */
2329
2330
return 0;
2331
}
2332
2333
/*
2334
* Return the phy mode for with the specified channel.
2335
*/
2336
enum ieee80211_phymode
2337
ieee80211_chan2mode(const struct ieee80211_channel *chan)
2338
{
2339
2340
if (IEEE80211_IS_CHAN_VHT_2GHZ(chan))
2341
return IEEE80211_MODE_VHT_2GHZ;
2342
else if (IEEE80211_IS_CHAN_VHT_5GHZ(chan))
2343
return IEEE80211_MODE_VHT_5GHZ;
2344
else if (IEEE80211_IS_CHAN_HTA(chan))
2345
return IEEE80211_MODE_11NA;
2346
else if (IEEE80211_IS_CHAN_HTG(chan))
2347
return IEEE80211_MODE_11NG;
2348
else if (IEEE80211_IS_CHAN_108G(chan))
2349
return IEEE80211_MODE_TURBO_G;
2350
else if (IEEE80211_IS_CHAN_ST(chan))
2351
return IEEE80211_MODE_STURBO_A;
2352
else if (IEEE80211_IS_CHAN_TURBO(chan))
2353
return IEEE80211_MODE_TURBO_A;
2354
else if (IEEE80211_IS_CHAN_HALF(chan))
2355
return IEEE80211_MODE_HALF;
2356
else if (IEEE80211_IS_CHAN_QUARTER(chan))
2357
return IEEE80211_MODE_QUARTER;
2358
else if (IEEE80211_IS_CHAN_A(chan))
2359
return IEEE80211_MODE_11A;
2360
else if (IEEE80211_IS_CHAN_ANYG(chan))
2361
return IEEE80211_MODE_11G;
2362
else if (IEEE80211_IS_CHAN_B(chan))
2363
return IEEE80211_MODE_11B;
2364
else if (IEEE80211_IS_CHAN_FHSS(chan))
2365
return IEEE80211_MODE_FH;
2366
2367
/* NB: should not get here */
2368
net80211_printf("%s: cannot map channel to mode; freq %u flags 0x%x\n",
2369
__func__, chan->ic_freq, chan->ic_flags);
2370
return IEEE80211_MODE_11B;
2371
}
2372
2373
struct ratemedia {
2374
u_int match; /* rate + mode */
2375
u_int media; /* if_media rate */
2376
};
2377
2378
static int
2379
findmedia(const struct ratemedia rates[], int n, u_int match)
2380
{
2381
int i;
2382
2383
for (i = 0; i < n; i++)
2384
if (rates[i].match == match)
2385
return rates[i].media;
2386
return IFM_AUTO;
2387
}
2388
2389
/*
2390
* Convert IEEE80211 rate value to ifmedia subtype.
2391
* Rate is either a legacy rate in units of 0.5Mbps
2392
* or an MCS index.
2393
*/
2394
int
2395
ieee80211_rate2media(struct ieee80211com *ic,
2396
const struct ieee80211_node_txrate *tr, enum ieee80211_phymode mode)
2397
{
2398
static const struct ratemedia rates[] = {
2399
{ 2 | IFM_IEEE80211_FH, IFM_IEEE80211_FH1 },
2400
{ 4 | IFM_IEEE80211_FH, IFM_IEEE80211_FH2 },
2401
{ 2 | IFM_IEEE80211_11B, IFM_IEEE80211_DS1 },
2402
{ 4 | IFM_IEEE80211_11B, IFM_IEEE80211_DS2 },
2403
{ 11 | IFM_IEEE80211_11B, IFM_IEEE80211_DS5 },
2404
{ 22 | IFM_IEEE80211_11B, IFM_IEEE80211_DS11 },
2405
{ 44 | IFM_IEEE80211_11B, IFM_IEEE80211_DS22 },
2406
{ 12 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM6 },
2407
{ 18 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM9 },
2408
{ 24 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM12 },
2409
{ 36 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM18 },
2410
{ 48 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM24 },
2411
{ 72 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM36 },
2412
{ 96 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM48 },
2413
{ 108 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM54 },
2414
{ 2 | IFM_IEEE80211_11G, IFM_IEEE80211_DS1 },
2415
{ 4 | IFM_IEEE80211_11G, IFM_IEEE80211_DS2 },
2416
{ 11 | IFM_IEEE80211_11G, IFM_IEEE80211_DS5 },
2417
{ 22 | IFM_IEEE80211_11G, IFM_IEEE80211_DS11 },
2418
{ 12 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM6 },
2419
{ 18 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM9 },
2420
{ 24 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM12 },
2421
{ 36 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM18 },
2422
{ 48 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM24 },
2423
{ 72 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM36 },
2424
{ 96 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM48 },
2425
{ 108 | IFM_IEEE80211_11G, IFM_IEEE80211_OFDM54 },
2426
{ 6 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM3 },
2427
{ 9 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM4 },
2428
{ 54 | IFM_IEEE80211_11A, IFM_IEEE80211_OFDM27 },
2429
/* NB: OFDM72 doesn't really exist so we don't handle it */
2430
};
2431
static const struct ratemedia htrates[] = {
2432
{ 0, IFM_IEEE80211_MCS },
2433
{ 1, IFM_IEEE80211_MCS },
2434
{ 2, IFM_IEEE80211_MCS },
2435
{ 3, IFM_IEEE80211_MCS },
2436
{ 4, IFM_IEEE80211_MCS },
2437
{ 5, IFM_IEEE80211_MCS },
2438
{ 6, IFM_IEEE80211_MCS },
2439
{ 7, IFM_IEEE80211_MCS },
2440
{ 8, IFM_IEEE80211_MCS },
2441
{ 9, IFM_IEEE80211_MCS },
2442
{ 10, IFM_IEEE80211_MCS },
2443
{ 11, IFM_IEEE80211_MCS },
2444
{ 12, IFM_IEEE80211_MCS },
2445
{ 13, IFM_IEEE80211_MCS },
2446
{ 14, IFM_IEEE80211_MCS },
2447
{ 15, IFM_IEEE80211_MCS },
2448
{ 16, IFM_IEEE80211_MCS },
2449
{ 17, IFM_IEEE80211_MCS },
2450
{ 18, IFM_IEEE80211_MCS },
2451
{ 19, IFM_IEEE80211_MCS },
2452
{ 20, IFM_IEEE80211_MCS },
2453
{ 21, IFM_IEEE80211_MCS },
2454
{ 22, IFM_IEEE80211_MCS },
2455
{ 23, IFM_IEEE80211_MCS },
2456
{ 24, IFM_IEEE80211_MCS },
2457
{ 25, IFM_IEEE80211_MCS },
2458
{ 26, IFM_IEEE80211_MCS },
2459
{ 27, IFM_IEEE80211_MCS },
2460
{ 28, IFM_IEEE80211_MCS },
2461
{ 29, IFM_IEEE80211_MCS },
2462
{ 30, IFM_IEEE80211_MCS },
2463
{ 31, IFM_IEEE80211_MCS },
2464
{ 32, IFM_IEEE80211_MCS },
2465
{ 33, IFM_IEEE80211_MCS },
2466
{ 34, IFM_IEEE80211_MCS },
2467
{ 35, IFM_IEEE80211_MCS },
2468
{ 36, IFM_IEEE80211_MCS },
2469
{ 37, IFM_IEEE80211_MCS },
2470
{ 38, IFM_IEEE80211_MCS },
2471
{ 39, IFM_IEEE80211_MCS },
2472
{ 40, IFM_IEEE80211_MCS },
2473
{ 41, IFM_IEEE80211_MCS },
2474
{ 42, IFM_IEEE80211_MCS },
2475
{ 43, IFM_IEEE80211_MCS },
2476
{ 44, IFM_IEEE80211_MCS },
2477
{ 45, IFM_IEEE80211_MCS },
2478
{ 46, IFM_IEEE80211_MCS },
2479
{ 47, IFM_IEEE80211_MCS },
2480
{ 48, IFM_IEEE80211_MCS },
2481
{ 49, IFM_IEEE80211_MCS },
2482
{ 50, IFM_IEEE80211_MCS },
2483
{ 51, IFM_IEEE80211_MCS },
2484
{ 52, IFM_IEEE80211_MCS },
2485
{ 53, IFM_IEEE80211_MCS },
2486
{ 54, IFM_IEEE80211_MCS },
2487
{ 55, IFM_IEEE80211_MCS },
2488
{ 56, IFM_IEEE80211_MCS },
2489
{ 57, IFM_IEEE80211_MCS },
2490
{ 58, IFM_IEEE80211_MCS },
2491
{ 59, IFM_IEEE80211_MCS },
2492
{ 60, IFM_IEEE80211_MCS },
2493
{ 61, IFM_IEEE80211_MCS },
2494
{ 62, IFM_IEEE80211_MCS },
2495
{ 63, IFM_IEEE80211_MCS },
2496
{ 64, IFM_IEEE80211_MCS },
2497
{ 65, IFM_IEEE80211_MCS },
2498
{ 66, IFM_IEEE80211_MCS },
2499
{ 67, IFM_IEEE80211_MCS },
2500
{ 68, IFM_IEEE80211_MCS },
2501
{ 69, IFM_IEEE80211_MCS },
2502
{ 70, IFM_IEEE80211_MCS },
2503
{ 71, IFM_IEEE80211_MCS },
2504
{ 72, IFM_IEEE80211_MCS },
2505
{ 73, IFM_IEEE80211_MCS },
2506
{ 74, IFM_IEEE80211_MCS },
2507
{ 75, IFM_IEEE80211_MCS },
2508
{ 76, IFM_IEEE80211_MCS },
2509
};
2510
static const struct ratemedia vhtrates[] = {
2511
{ 0, IFM_IEEE80211_VHT },
2512
{ 1, IFM_IEEE80211_VHT },
2513
{ 2, IFM_IEEE80211_VHT },
2514
{ 3, IFM_IEEE80211_VHT },
2515
{ 4, IFM_IEEE80211_VHT },
2516
{ 5, IFM_IEEE80211_VHT },
2517
{ 6, IFM_IEEE80211_VHT },
2518
{ 7, IFM_IEEE80211_VHT },
2519
{ 8, IFM_IEEE80211_VHT }, /* Optional. */
2520
{ 9, IFM_IEEE80211_VHT }, /* Optional. */
2521
#if 0
2522
/* Some QCA and BRCM seem to support this; offspec. */
2523
{ 10, IFM_IEEE80211_VHT },
2524
{ 11, IFM_IEEE80211_VHT },
2525
#endif
2526
};
2527
int m, rate;
2528
2529
/*
2530
* Check 11ac/11n rates first for match as an MCS.
2531
*/
2532
if (mode == IEEE80211_MODE_VHT_5GHZ) {
2533
if (tr->type == IEEE80211_NODE_TXRATE_VHT) {
2534
m = findmedia(vhtrates, nitems(vhtrates), tr->mcs);
2535
if (m != IFM_AUTO)
2536
return (m | IFM_IEEE80211_VHT);
2537
}
2538
} else if (mode == IEEE80211_MODE_11NA) {
2539
/* NB: 12 is ambiguous, it will be treated as an MCS */
2540
if (tr->type == IEEE80211_NODE_TXRATE_HT) {
2541
m = findmedia(htrates, nitems(htrates),
2542
tr->dot11rate & ~IEEE80211_RATE_MCS);
2543
if (m != IFM_AUTO)
2544
return m | IFM_IEEE80211_11NA;
2545
}
2546
} else if (mode == IEEE80211_MODE_11NG) {
2547
/* NB: 12 is ambiguous, it will be treated as an MCS */
2548
if (tr->type == IEEE80211_NODE_TXRATE_HT) {
2549
m = findmedia(htrates, nitems(htrates),
2550
tr->dot11rate & ~IEEE80211_RATE_MCS);
2551
if (m != IFM_AUTO)
2552
return m | IFM_IEEE80211_11NG;
2553
}
2554
}
2555
2556
/*
2557
* At this point it needs to be a dot11rate (legacy/HT) for the
2558
* rest of the logic to work.
2559
*/
2560
if ((tr->type != IEEE80211_NODE_TXRATE_LEGACY) &&
2561
(tr->type != IEEE80211_NODE_TXRATE_HT))
2562
return (IFM_AUTO);
2563
rate = tr->dot11rate & IEEE80211_RATE_VAL;
2564
2565
switch (mode) {
2566
case IEEE80211_MODE_11A:
2567
case IEEE80211_MODE_HALF: /* XXX good 'nuf */
2568
case IEEE80211_MODE_QUARTER:
2569
case IEEE80211_MODE_11NA:
2570
case IEEE80211_MODE_TURBO_A:
2571
case IEEE80211_MODE_STURBO_A:
2572
return findmedia(rates, nitems(rates),
2573
rate | IFM_IEEE80211_11A);
2574
case IEEE80211_MODE_11B:
2575
return findmedia(rates, nitems(rates),
2576
rate | IFM_IEEE80211_11B);
2577
case IEEE80211_MODE_FH:
2578
return findmedia(rates, nitems(rates),
2579
rate | IFM_IEEE80211_FH);
2580
case IEEE80211_MODE_AUTO:
2581
/* NB: ic may be NULL for some drivers */
2582
if (ic != NULL && ic->ic_phytype == IEEE80211_T_FH)
2583
return findmedia(rates, nitems(rates),
2584
rate | IFM_IEEE80211_FH);
2585
/* NB: hack, 11g matches both 11b+11a rates */
2586
/* fall thru... */
2587
case IEEE80211_MODE_11G:
2588
case IEEE80211_MODE_11NG:
2589
case IEEE80211_MODE_TURBO_G:
2590
return findmedia(rates, nitems(rates), rate | IFM_IEEE80211_11G);
2591
case IEEE80211_MODE_VHT_2GHZ:
2592
case IEEE80211_MODE_VHT_5GHZ:
2593
/* XXX TODO: need to figure out mapping for VHT rates */
2594
return IFM_AUTO;
2595
}
2596
return IFM_AUTO;
2597
}
2598
2599
int
2600
ieee80211_media2rate(int mword)
2601
{
2602
static const int ieeerates[] = {
2603
-1, /* IFM_AUTO */
2604
0, /* IFM_MANUAL */
2605
0, /* IFM_NONE */
2606
2, /* IFM_IEEE80211_FH1 */
2607
4, /* IFM_IEEE80211_FH2 */
2608
2, /* IFM_IEEE80211_DS1 */
2609
4, /* IFM_IEEE80211_DS2 */
2610
11, /* IFM_IEEE80211_DS5 */
2611
22, /* IFM_IEEE80211_DS11 */
2612
44, /* IFM_IEEE80211_DS22 */
2613
12, /* IFM_IEEE80211_OFDM6 */
2614
18, /* IFM_IEEE80211_OFDM9 */
2615
24, /* IFM_IEEE80211_OFDM12 */
2616
36, /* IFM_IEEE80211_OFDM18 */
2617
48, /* IFM_IEEE80211_OFDM24 */
2618
72, /* IFM_IEEE80211_OFDM36 */
2619
96, /* IFM_IEEE80211_OFDM48 */
2620
108, /* IFM_IEEE80211_OFDM54 */
2621
144, /* IFM_IEEE80211_OFDM72 */
2622
0, /* IFM_IEEE80211_DS354k */
2623
0, /* IFM_IEEE80211_DS512k */
2624
6, /* IFM_IEEE80211_OFDM3 */
2625
9, /* IFM_IEEE80211_OFDM4 */
2626
54, /* IFM_IEEE80211_OFDM27 */
2627
-1, /* IFM_IEEE80211_MCS */
2628
-1, /* IFM_IEEE80211_VHT */
2629
};
2630
return IFM_SUBTYPE(mword) < nitems(ieeerates) ?
2631
ieeerates[IFM_SUBTYPE(mword)] : 0;
2632
}
2633
2634
/*
2635
* The following hash function is adapted from "Hash Functions" by Bob Jenkins
2636
* ("Algorithm Alley", Dr. Dobbs Journal, September 1997).
2637
*/
2638
#define mix(a, b, c) \
2639
do { \
2640
a -= b; a -= c; a ^= (c >> 13); \
2641
b -= c; b -= a; b ^= (a << 8); \
2642
c -= a; c -= b; c ^= (b >> 13); \
2643
a -= b; a -= c; a ^= (c >> 12); \
2644
b -= c; b -= a; b ^= (a << 16); \
2645
c -= a; c -= b; c ^= (b >> 5); \
2646
a -= b; a -= c; a ^= (c >> 3); \
2647
b -= c; b -= a; b ^= (a << 10); \
2648
c -= a; c -= b; c ^= (b >> 15); \
2649
} while (/*CONSTCOND*/0)
2650
2651
uint32_t
2652
ieee80211_mac_hash(const struct ieee80211com *ic,
2653
const uint8_t addr[IEEE80211_ADDR_LEN])
2654
{
2655
uint32_t a = 0x9e3779b9, b = 0x9e3779b9, c = ic->ic_hash_key;
2656
2657
b += addr[5] << 8;
2658
b += addr[4];
2659
a += addr[3] << 24;
2660
a += addr[2] << 16;
2661
a += addr[1] << 8;
2662
a += addr[0];
2663
2664
mix(a, b, c);
2665
2666
return c;
2667
}
2668
#undef mix
2669
2670
char
2671
ieee80211_channel_type_char(const struct ieee80211_channel *c)
2672
{
2673
if (IEEE80211_IS_CHAN_ST(c))
2674
return 'S';
2675
if (IEEE80211_IS_CHAN_108A(c))
2676
return 'T';
2677
if (IEEE80211_IS_CHAN_108G(c))
2678
return 'G';
2679
if (IEEE80211_IS_CHAN_VHT(c))
2680
return 'v';
2681
if (IEEE80211_IS_CHAN_HT(c))
2682
return 'n';
2683
if (IEEE80211_IS_CHAN_A(c))
2684
return 'a';
2685
if (IEEE80211_IS_CHAN_ANYG(c))
2686
return 'g';
2687
if (IEEE80211_IS_CHAN_B(c))
2688
return 'b';
2689
return 'f';
2690
}
2691
2692
/*
2693
* Determine whether the given key in the given VAP is a global key.
2694
* (key index 0..3, shared between all stations on a VAP.)
2695
*
2696
* This is either a WEP key or a GROUP key.
2697
*
2698
* Note this will NOT return true if it is a IGTK key.
2699
*/
2700
bool
2701
ieee80211_is_key_global(const struct ieee80211vap *vap,
2702
const struct ieee80211_key *key)
2703
{
2704
return (&vap->iv_nw_keys[0] <= key &&
2705
key < &vap->iv_nw_keys[IEEE80211_WEP_NKID]);
2706
}
2707
2708
/*
2709
* Determine whether the given key in the given VAP is a unicast key.
2710
*/
2711
bool
2712
ieee80211_is_key_unicast(const struct ieee80211vap *vap,
2713
const struct ieee80211_key *key)
2714
{
2715
/*
2716
* This is a short-cut for now; eventually we will need
2717
* to support multiple unicast keys, IGTK, etc) so we
2718
* will absolutely need to fix the key flags.
2719
*/
2720
return (!ieee80211_is_key_global(vap, key));
2721
}
2722
2723
/**
2724
* Determine whether the given control frame is from a known node
2725
* and destined to us.
2726
*
2727
* In some instances a control frame won't have a TA (eg ACKs), so
2728
* we should only verify the RA for those.
2729
*
2730
* @param ni ieee80211_node representing the sender, or BSS node
2731
* @param m0 mbuf representing the 802.11 frame.
2732
* @returns false if the frame is not a CTL frame (with a warning logged);
2733
* true if the frame is from a known sender / valid recipient,
2734
* false otherwise.
2735
*/
2736
bool
2737
ieee80211_is_ctl_frame_for_vap(struct ieee80211_node *ni, const struct mbuf *m0)
2738
{
2739
const struct ieee80211vap *vap = ni->ni_vap;
2740
const struct ieee80211_frame *wh;
2741
uint8_t subtype;
2742
2743
wh = mtod(m0, const struct ieee80211_frame *);
2744
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
2745
2746
/* Verify it's a ctl frame. */
2747
KASSERT(IEEE80211_IS_CTL(wh), ("%s: not a CTL frame (fc[0]=0x%04x)",
2748
__func__, wh->i_fc[0]));
2749
if (!IEEE80211_IS_CTL(wh)) {
2750
net80211_vap_printf(vap,
2751
"%s: not a control frame (fc[0]=0x%04x)\n",
2752
__func__, wh->i_fc[0]);
2753
return (false);
2754
}
2755
2756
/* Verify the TA if present. */
2757
switch (subtype) {
2758
case IEEE80211_FC0_SUBTYPE_CTS:
2759
case IEEE80211_FC0_SUBTYPE_ACK:
2760
/* No TA. */
2761
break;
2762
default:
2763
/*
2764
* Verify TA matches ni->ni_macaddr; for unknown
2765
* sources it will be the BSS node and ni->ni_macaddr
2766
* will the BSS MAC.
2767
*/
2768
if (!IEEE80211_ADDR_EQ(wh->i_addr2, ni->ni_macaddr))
2769
return (false);
2770
break;
2771
}
2772
2773
/* Verify the RA */
2774
return (IEEE80211_ADDR_EQ(wh->i_addr1, vap->iv_myaddr));
2775
}
2776
2777