Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/net80211/ieee80211_crypto_wep.c
39475 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
*/
27
28
#include <sys/cdefs.h>
29
/*
30
* IEEE 802.11 WEP crypto support.
31
*/
32
#include "opt_wlan.h"
33
34
#include <sys/param.h>
35
#include <sys/systm.h>
36
#include <sys/mbuf.h>
37
#include <sys/malloc.h>
38
#include <sys/kernel.h>
39
#include <sys/module.h>
40
#include <sys/endian.h>
41
42
#include <sys/socket.h>
43
44
#include <net/if.h>
45
#include <net/if_media.h>
46
#include <net/ethernet.h>
47
48
#include <net80211/ieee80211_var.h>
49
50
static void *wep_attach(struct ieee80211vap *, struct ieee80211_key *);
51
static void wep_detach(struct ieee80211_key *);
52
static int wep_setkey(struct ieee80211_key *);
53
static void wep_setiv(struct ieee80211_key *, uint8_t *);
54
static int wep_encap(struct ieee80211_key *, struct mbuf *);
55
static int wep_decap(struct ieee80211_key *, struct mbuf *, int);
56
static int wep_enmic(struct ieee80211_key *, struct mbuf *, int);
57
static int wep_demic(struct ieee80211_key *, struct mbuf *, int);
58
59
static const struct ieee80211_cipher wep = {
60
.ic_name = "WEP",
61
.ic_cipher = IEEE80211_CIPHER_WEP,
62
.ic_header = IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN,
63
.ic_trailer = IEEE80211_WEP_CRCLEN,
64
.ic_miclen = 0,
65
.ic_attach = wep_attach,
66
.ic_detach = wep_detach,
67
.ic_setkey = wep_setkey,
68
.ic_setiv = wep_setiv,
69
.ic_encap = wep_encap,
70
.ic_decap = wep_decap,
71
.ic_enmic = wep_enmic,
72
.ic_demic = wep_demic,
73
};
74
75
static int wep_encrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
76
static int wep_decrypt(struct ieee80211_key *, struct mbuf *, int hdrlen);
77
78
struct wep_ctx {
79
struct ieee80211vap *wc_vap; /* for diagnostics+statistics */
80
struct ieee80211com *wc_ic;
81
uint32_t wc_iv; /* initial vector for crypto */
82
};
83
84
/* number of references from net80211 layer */
85
static int nrefs = 0;
86
87
static void *
88
wep_attach(struct ieee80211vap *vap, struct ieee80211_key *k)
89
{
90
struct wep_ctx *ctx;
91
92
ctx = (struct wep_ctx *) IEEE80211_MALLOC(sizeof(struct wep_ctx),
93
M_80211_CRYPTO, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
94
if (ctx == NULL) {
95
vap->iv_stats.is_crypto_nomem++;
96
return NULL;
97
}
98
99
ctx->wc_vap = vap;
100
ctx->wc_ic = vap->iv_ic;
101
net80211_get_random_bytes(&ctx->wc_iv, sizeof(ctx->wc_iv));
102
nrefs++; /* NB: we assume caller locking */
103
return ctx;
104
}
105
106
static void
107
wep_detach(struct ieee80211_key *k)
108
{
109
struct wep_ctx *ctx = k->wk_private;
110
111
IEEE80211_FREE(ctx, M_80211_CRYPTO);
112
KASSERT(nrefs > 0, ("imbalanced attach/detach"));
113
nrefs--; /* NB: we assume caller locking */
114
}
115
116
static int
117
wep_setkey(struct ieee80211_key *k)
118
{
119
return k->wk_keylen >= 40/NBBY;
120
}
121
122
static void
123
wep_setiv(struct ieee80211_key *k, uint8_t *ivp)
124
{
125
struct wep_ctx *ctx = k->wk_private;
126
struct ieee80211vap *vap = ctx->wc_vap;
127
uint32_t iv;
128
uint8_t keyid;
129
130
keyid = ieee80211_crypto_get_keyid(vap, k) << 6;
131
132
/*
133
* XXX
134
* IV must not duplicate during the lifetime of the key.
135
* But no mechanism to renew keys is defined in IEEE 802.11
136
* for WEP. And the IV may be duplicated at other stations
137
* because the session key itself is shared. So we use a
138
* pseudo random IV for now, though it is not the right way.
139
*
140
* NB: Rather than use a strictly random IV we select a
141
* random one to start and then increment the value for
142
* each frame. This is an explicit tradeoff between
143
* overhead and security. Given the basic insecurity of
144
* WEP this seems worthwhile.
145
*/
146
147
/*
148
* Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
149
* (B, 255, N) with 3 <= B < 16 and 0 <= N <= 255
150
*/
151
iv = ctx->wc_iv;
152
if ((iv & 0xff00) == 0xff00) {
153
int B = (iv & 0xff0000) >> 16;
154
if (3 <= B && B < 16)
155
iv += 0x0100;
156
}
157
ctx->wc_iv = iv + 1;
158
159
/*
160
* NB: Preserve byte order of IV for packet
161
* sniffers; it doesn't matter otherwise.
162
*/
163
#if _BYTE_ORDER == _BIG_ENDIAN
164
ivp[0] = iv >> 0;
165
ivp[1] = iv >> 8;
166
ivp[2] = iv >> 16;
167
#else
168
ivp[2] = iv >> 0;
169
ivp[1] = iv >> 8;
170
ivp[0] = iv >> 16;
171
#endif
172
ivp[3] = keyid;
173
}
174
175
/*
176
* Add privacy headers appropriate for the specified key.
177
*/
178
static int
179
wep_encap(struct ieee80211_key *k, struct mbuf *m)
180
{
181
struct wep_ctx *ctx = k->wk_private;
182
struct ieee80211com *ic = ctx->wc_ic;
183
struct ieee80211_frame *wh;
184
uint8_t *ivp;
185
int hdrlen;
186
int is_mgmt;
187
188
hdrlen = ieee80211_hdrspace(ic, mtod(m, void *));
189
wh = mtod(m, struct ieee80211_frame *);
190
is_mgmt = IEEE80211_IS_MGMT(wh);
191
192
/*
193
* Check to see if IV is required.
194
*/
195
if (is_mgmt && (k->wk_flags & IEEE80211_KEY_NOIVMGT))
196
return 1;
197
if ((! is_mgmt) && (k->wk_flags & IEEE80211_KEY_NOIV))
198
return 1;
199
200
/*
201
* Copy down 802.11 header and add the IV + KeyID.
202
*/
203
M_PREPEND(m, wep.ic_header, IEEE80211_M_NOWAIT);
204
if (m == NULL)
205
return 0;
206
ivp = mtod(m, uint8_t *);
207
ovbcopy(ivp + wep.ic_header, ivp, hdrlen);
208
ivp += hdrlen;
209
210
wep_setiv(k, ivp);
211
212
/*
213
* Finally, do software encrypt if needed.
214
*/
215
if ((k->wk_flags & IEEE80211_KEY_SWENCRYPT) &&
216
!wep_encrypt(k, m, hdrlen))
217
return 0;
218
219
return 1;
220
}
221
222
/*
223
* Add MIC to the frame as needed.
224
*/
225
static int
226
wep_enmic(struct ieee80211_key *k, struct mbuf *m, int force)
227
{
228
229
return 1;
230
}
231
232
/*
233
* Validate and strip privacy headers (and trailer) for a
234
* received frame. If necessary, decrypt the frame using
235
* the specified key.
236
*/
237
static int
238
wep_decap(struct ieee80211_key *k, struct mbuf *m, int hdrlen)
239
{
240
struct wep_ctx *ctx = k->wk_private;
241
struct ieee80211vap *vap = ctx->wc_vap;
242
const struct ieee80211_rx_stats *rxs;
243
244
rxs = ieee80211_get_rx_params_ptr(m);
245
246
if ((rxs != NULL) && (rxs->c_pktflags & IEEE80211_RX_F_IV_STRIP))
247
goto finish;
248
249
/*
250
* Check if the device handled the decrypt in hardware.
251
* If so we just strip the header; otherwise we need to
252
* handle the decrypt in software.
253
*/
254
if ((k->wk_flags & IEEE80211_KEY_SWDECRYPT) &&
255
!wep_decrypt(k, m, hdrlen)) {
256
#ifdef IEEE80211_DEBUG
257
struct ieee80211_frame *wh;
258
259
wh = mtod(m, struct ieee80211_frame *);
260
#endif
261
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
262
"%s", "WEP ICV mismatch on decrypt");
263
vap->iv_stats.is_rx_wepfail++;
264
return 0;
265
}
266
267
/*
268
* Copy up 802.11 header and strip crypto bits.
269
*/
270
ovbcopy(mtod(m, void *), mtod(m, uint8_t *) + wep.ic_header, hdrlen);
271
m_adj(m, wep.ic_header);
272
273
finish:
274
/* XXX TODO: do we have to strip this for offload devices? */
275
m_adj(m, -wep.ic_trailer);
276
277
return 1;
278
}
279
280
/*
281
* Verify and strip MIC from the frame.
282
*/
283
static int
284
wep_demic(struct ieee80211_key *k, struct mbuf *skb, int force)
285
{
286
return 1;
287
}
288
289
static const uint32_t crc32_table[256] = {
290
0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
291
0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
292
0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
293
0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
294
0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
295
0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
296
0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
297
0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
298
0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
299
0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
300
0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
301
0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
302
0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
303
0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
304
0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
305
0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
306
0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
307
0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
308
0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
309
0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
310
0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
311
0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
312
0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
313
0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
314
0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
315
0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
316
0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
317
0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
318
0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
319
0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
320
0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
321
0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
322
0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
323
0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
324
0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
325
0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
326
0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
327
0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
328
0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
329
0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
330
0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
331
0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
332
0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
333
0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
334
0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
335
0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
336
0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
337
0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
338
0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
339
0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
340
0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
341
0x2d02ef8dL
342
};
343
344
static int
345
wep_encrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
346
{
347
#define S_SWAP(a,b) do { uint8_t t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
348
struct wep_ctx *ctx = key->wk_private;
349
struct ieee80211vap *vap = ctx->wc_vap;
350
struct mbuf *m = m0;
351
uint8_t rc4key[IEEE80211_WEP_IVLEN + IEEE80211_KEYBUF_SIZE];
352
uint8_t icv[IEEE80211_WEP_CRCLEN];
353
uint32_t i, j, k, crc;
354
size_t buflen, data_len;
355
uint8_t S[256];
356
uint8_t *pos;
357
u_int off, keylen;
358
359
vap->iv_stats.is_crypto_wep++;
360
361
/* NB: this assumes the header was pulled up */
362
memcpy(rc4key, mtod(m, uint8_t *) + hdrlen, IEEE80211_WEP_IVLEN);
363
memcpy(rc4key + IEEE80211_WEP_IVLEN, key->wk_key, key->wk_keylen);
364
365
/* Setup RC4 state */
366
for (i = 0; i < 256; i++)
367
S[i] = i;
368
j = 0;
369
keylen = key->wk_keylen + IEEE80211_WEP_IVLEN;
370
for (i = 0; i < 256; i++) {
371
j = (j + S[i] + rc4key[i % keylen]) & 0xff;
372
S_SWAP(i, j);
373
}
374
375
off = hdrlen + wep.ic_header;
376
data_len = m->m_pkthdr.len - off;
377
378
/* Compute CRC32 over unencrypted data and apply RC4 to data */
379
crc = ~0;
380
i = j = 0;
381
pos = mtod(m, uint8_t *) + off;
382
buflen = m->m_len - off;
383
for (;;) {
384
if (buflen > data_len)
385
buflen = data_len;
386
data_len -= buflen;
387
for (k = 0; k < buflen; k++) {
388
crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
389
i = (i + 1) & 0xff;
390
j = (j + S[i]) & 0xff;
391
S_SWAP(i, j);
392
*pos++ ^= S[(S[i] + S[j]) & 0xff];
393
}
394
if (m->m_next == NULL) {
395
if (data_len != 0) { /* out of data */
396
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
397
ether_sprintf(mtod(m0,
398
struct ieee80211_frame *)->i_addr2),
399
"out of data for WEP (data_len %zu)",
400
data_len);
401
/* XXX stat */
402
return 0;
403
}
404
break;
405
}
406
m = m->m_next;
407
pos = mtod(m, uint8_t *);
408
buflen = m->m_len;
409
}
410
crc = ~crc;
411
412
/* Append little-endian CRC32 and encrypt it to produce ICV */
413
icv[0] = crc;
414
icv[1] = crc >> 8;
415
icv[2] = crc >> 16;
416
icv[3] = crc >> 24;
417
for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
418
i = (i + 1) & 0xff;
419
j = (j + S[i]) & 0xff;
420
S_SWAP(i, j);
421
icv[k] ^= S[(S[i] + S[j]) & 0xff];
422
}
423
return m_append(m0, IEEE80211_WEP_CRCLEN, icv);
424
#undef S_SWAP
425
}
426
427
static int
428
wep_decrypt(struct ieee80211_key *key, struct mbuf *m0, int hdrlen)
429
{
430
#define S_SWAP(a,b) do { uint8_t t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
431
struct wep_ctx *ctx = key->wk_private;
432
struct ieee80211vap *vap = ctx->wc_vap;
433
struct mbuf *m = m0;
434
uint8_t rc4key[IEEE80211_WEP_IVLEN + IEEE80211_KEYBUF_SIZE];
435
uint8_t icv[IEEE80211_WEP_CRCLEN];
436
uint32_t i, j, k, crc;
437
size_t buflen, data_len;
438
uint8_t S[256];
439
uint8_t *pos;
440
u_int off, keylen;
441
442
vap->iv_stats.is_crypto_wep++;
443
444
/* NB: this assumes the header was pulled up */
445
memcpy(rc4key, mtod(m, uint8_t *) + hdrlen, IEEE80211_WEP_IVLEN);
446
memcpy(rc4key + IEEE80211_WEP_IVLEN, key->wk_key, key->wk_keylen);
447
448
/* Setup RC4 state */
449
for (i = 0; i < 256; i++)
450
S[i] = i;
451
j = 0;
452
keylen = key->wk_keylen + IEEE80211_WEP_IVLEN;
453
for (i = 0; i < 256; i++) {
454
j = (j + S[i] + rc4key[i % keylen]) & 0xff;
455
S_SWAP(i, j);
456
}
457
458
off = hdrlen + wep.ic_header;
459
data_len = m->m_pkthdr.len - (off + wep.ic_trailer);
460
461
/* Compute CRC32 over unencrypted data and apply RC4 to data */
462
crc = ~0;
463
i = j = 0;
464
pos = mtod(m, uint8_t *) + off;
465
buflen = m->m_len - off;
466
for (;;) {
467
if (buflen > data_len)
468
buflen = data_len;
469
data_len -= buflen;
470
for (k = 0; k < buflen; k++) {
471
i = (i + 1) & 0xff;
472
j = (j + S[i]) & 0xff;
473
S_SWAP(i, j);
474
*pos ^= S[(S[i] + S[j]) & 0xff];
475
crc = crc32_table[(crc ^ *pos) & 0xff] ^ (crc >> 8);
476
pos++;
477
}
478
m = m->m_next;
479
if (m == NULL) {
480
if (data_len != 0) { /* out of data */
481
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
482
mtod(m0, struct ieee80211_frame *)->i_addr2,
483
"out of data for WEP (data_len %zu)",
484
data_len);
485
return 0;
486
}
487
break;
488
}
489
pos = mtod(m, uint8_t *);
490
buflen = m->m_len;
491
}
492
crc = ~crc;
493
494
/* Encrypt little-endian CRC32 and verify that it matches with
495
* received ICV */
496
icv[0] = crc;
497
icv[1] = crc >> 8;
498
icv[2] = crc >> 16;
499
icv[3] = crc >> 24;
500
for (k = 0; k < IEEE80211_WEP_CRCLEN; k++) {
501
i = (i + 1) & 0xff;
502
j = (j + S[i]) & 0xff;
503
S_SWAP(i, j);
504
/* XXX assumes ICV is contiguous in mbuf */
505
if ((icv[k] ^ S[(S[i] + S[j]) & 0xff]) != *pos++) {
506
/* ICV mismatch - drop frame */
507
return 0;
508
}
509
}
510
return 1;
511
#undef S_SWAP
512
}
513
514
/*
515
* Module glue.
516
*/
517
IEEE80211_CRYPTO_MODULE(wep, 1);
518
519