Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/net80211/ieee80211_freebsd.c
39475 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2003-2009 Sam Leffler, Errno Consulting
5
* All rights reserved.
6
*
7
* Redistribution and use in source and binary forms, with or without
8
* modification, are permitted provided that the following conditions
9
* are met:
10
* 1. Redistributions of source code must retain the above copyright
11
* notice, this list of conditions and the following disclaimer.
12
* 2. Redistributions in binary form must reproduce the above copyright
13
* notice, this list of conditions and the following disclaimer in the
14
* documentation and/or other materials provided with the distribution.
15
*
16
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
*/
27
28
#include <sys/cdefs.h>
29
/*
30
* IEEE 802.11 support (FreeBSD-specific code)
31
*/
32
#include "opt_wlan.h"
33
34
#include <sys/param.h>
35
#include <sys/systm.h>
36
#include <sys/eventhandler.h>
37
#include <sys/kernel.h>
38
#include <sys/linker.h>
39
#include <sys/malloc.h>
40
#include <sys/mbuf.h>
41
#include <sys/module.h>
42
#include <sys/priv.h>
43
#include <sys/proc.h>
44
#include <sys/stdarg.h>
45
#include <sys/sysctl.h>
46
#include <sys/syslog.h>
47
48
#include <sys/socket.h>
49
50
#include <net/bpf.h>
51
#include <net/debugnet.h>
52
#include <net/if.h>
53
#include <net/if_var.h>
54
#include <net/if_dl.h>
55
#include <net/if_clone.h>
56
#include <net/if_media.h>
57
#include <net/if_private.h>
58
#include <net/if_types.h>
59
#include <net/ethernet.h>
60
#include <net/route.h>
61
#include <net/vnet.h>
62
63
#include <net80211/ieee80211_var.h>
64
#include <net80211/ieee80211_input.h>
65
66
DEBUGNET_DEFINE(ieee80211);
67
SYSCTL_NODE(_net, OID_AUTO, wlan, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
68
"IEEE 80211 parameters");
69
70
#ifdef IEEE80211_DEBUG
71
static int ieee80211_debug = 0;
72
SYSCTL_INT(_net_wlan, OID_AUTO, debug, CTLFLAG_RW, &ieee80211_debug,
73
0, "debugging printfs");
74
#endif
75
76
static const char wlanname[] = "wlan";
77
static struct if_clone *wlan_cloner;
78
79
/*
80
* priv(9) NET80211 checks.
81
* Return 0 if operation is allowed, E* (usually EPERM) otherwise.
82
*/
83
int
84
ieee80211_priv_check_vap_getkey(u_long cmd __unused,
85
struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
86
{
87
88
return (priv_check(curthread, PRIV_NET80211_VAP_GETKEY));
89
}
90
91
int
92
ieee80211_priv_check_vap_manage(u_long cmd __unused,
93
struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
94
{
95
96
return (priv_check(curthread, PRIV_NET80211_VAP_MANAGE));
97
}
98
99
int
100
ieee80211_priv_check_vap_setmac(u_long cmd __unused,
101
struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
102
{
103
104
return (priv_check(curthread, PRIV_NET80211_VAP_SETMAC));
105
}
106
107
int
108
ieee80211_priv_check_create_vap(u_long cmd __unused,
109
struct ieee80211vap *vap __unused, struct ifnet *ifp __unused)
110
{
111
112
return (priv_check(curthread, PRIV_NET80211_CREATE_VAP));
113
}
114
115
static int
116
wlan_clone_create(struct if_clone *ifc, char *name, size_t len,
117
struct ifc_data *ifd, struct ifnet **ifpp)
118
{
119
struct ieee80211_clone_params cp;
120
struct ieee80211vap *vap;
121
struct ieee80211com *ic;
122
int error;
123
124
error = ieee80211_priv_check_create_vap(0, NULL, NULL);
125
if (error)
126
return error;
127
128
error = ifc_copyin(ifd, &cp, sizeof(cp));
129
if (error)
130
return error;
131
ic = ieee80211_find_com(cp.icp_parent);
132
if (ic == NULL)
133
return ENXIO;
134
if (cp.icp_opmode >= IEEE80211_OPMODE_MAX) {
135
ic_printf(ic, "%s: invalid opmode %d\n", __func__,
136
cp.icp_opmode);
137
return EINVAL;
138
}
139
if ((ic->ic_caps & ieee80211_opcap[cp.icp_opmode]) == 0) {
140
ic_printf(ic, "%s mode not supported\n",
141
ieee80211_opmode_name[cp.icp_opmode]);
142
return EOPNOTSUPP;
143
}
144
if ((cp.icp_flags & IEEE80211_CLONE_TDMA) &&
145
#ifdef IEEE80211_SUPPORT_TDMA
146
(ic->ic_caps & IEEE80211_C_TDMA) == 0
147
#else
148
(1)
149
#endif
150
) {
151
ic_printf(ic, "TDMA not supported\n");
152
return EOPNOTSUPP;
153
}
154
vap = ic->ic_vap_create(ic, wlanname, ifd->unit,
155
cp.icp_opmode, cp.icp_flags, cp.icp_bssid,
156
cp.icp_flags & IEEE80211_CLONE_MACADDR ?
157
cp.icp_macaddr : ic->ic_macaddr);
158
159
if (vap == NULL)
160
return (EIO);
161
162
#ifdef DEBUGNET
163
if (ic->ic_debugnet_meth != NULL)
164
DEBUGNET_SET(vap->iv_ifp, ieee80211);
165
#endif
166
*ifpp = vap->iv_ifp;
167
168
return (0);
169
}
170
171
static int
172
wlan_clone_destroy(struct if_clone *ifc, struct ifnet *ifp, uint32_t flags)
173
{
174
struct ieee80211vap *vap = ifp->if_softc;
175
struct ieee80211com *ic = vap->iv_ic;
176
177
ic->ic_vap_delete(vap);
178
179
return (0);
180
}
181
182
void
183
ieee80211_vap_destroy(struct ieee80211vap *vap)
184
{
185
CURVNET_SET(vap->iv_ifp->if_vnet);
186
if_clone_destroyif(wlan_cloner, vap->iv_ifp);
187
CURVNET_RESTORE();
188
}
189
190
int
191
ieee80211_sysctl_msecs_ticks(SYSCTL_HANDLER_ARGS)
192
{
193
int msecs = ticks_to_msecs(*(int *)arg1);
194
int error;
195
196
error = sysctl_handle_int(oidp, &msecs, 0, req);
197
if (error || !req->newptr)
198
return error;
199
*(int *)arg1 = msecs_to_ticks(msecs);
200
return 0;
201
}
202
203
static int
204
ieee80211_sysctl_inact(SYSCTL_HANDLER_ARGS)
205
{
206
int inact = (*(int *)arg1) * IEEE80211_INACT_WAIT;
207
int error;
208
209
error = sysctl_handle_int(oidp, &inact, 0, req);
210
if (error || !req->newptr)
211
return error;
212
*(int *)arg1 = inact / IEEE80211_INACT_WAIT;
213
return 0;
214
}
215
216
static int
217
ieee80211_sysctl_parent(SYSCTL_HANDLER_ARGS)
218
{
219
struct ieee80211com *ic = arg1;
220
221
return SYSCTL_OUT_STR(req, ic->ic_name);
222
}
223
224
static int
225
ieee80211_sysctl_radar(SYSCTL_HANDLER_ARGS)
226
{
227
struct ieee80211com *ic = arg1;
228
int t = 0, error;
229
230
error = sysctl_handle_int(oidp, &t, 0, req);
231
if (error || !req->newptr)
232
return error;
233
IEEE80211_LOCK(ic);
234
ieee80211_dfs_notify_radar(ic, ic->ic_curchan);
235
IEEE80211_UNLOCK(ic);
236
return 0;
237
}
238
239
/*
240
* For now, just restart everything.
241
*
242
* Later on, it'd be nice to have a separate VAP restart to
243
* full-device restart.
244
*/
245
static int
246
ieee80211_sysctl_vap_restart(SYSCTL_HANDLER_ARGS)
247
{
248
struct ieee80211vap *vap = arg1;
249
int t = 0, error;
250
251
error = sysctl_handle_int(oidp, &t, 0, req);
252
if (error || !req->newptr)
253
return error;
254
255
ieee80211_restart_all(vap->iv_ic);
256
return 0;
257
}
258
259
void
260
ieee80211_sysctl_attach(struct ieee80211com *ic)
261
{
262
}
263
264
void
265
ieee80211_sysctl_detach(struct ieee80211com *ic)
266
{
267
}
268
269
void
270
ieee80211_sysctl_vattach(struct ieee80211vap *vap)
271
{
272
struct ifnet *ifp = vap->iv_ifp;
273
struct sysctl_ctx_list *ctx;
274
struct sysctl_oid *oid;
275
char num[14]; /* sufficient for 32 bits */
276
277
ctx = (struct sysctl_ctx_list *) IEEE80211_MALLOC(sizeof(struct sysctl_ctx_list),
278
M_DEVBUF, IEEE80211_M_NOWAIT | IEEE80211_M_ZERO);
279
if (ctx == NULL) {
280
net80211_vap_printf(vap,
281
"%s: cannot allocate sysctl context!\n", __func__);
282
return;
283
}
284
sysctl_ctx_init(ctx);
285
snprintf(num, sizeof(num), "%u", ifp->if_dunit);
286
oid = SYSCTL_ADD_NODE(ctx, &SYSCTL_NODE_CHILDREN(_net, wlan),
287
OID_AUTO, num, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "");
288
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
289
"%parent", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_NEEDGIANT,
290
vap->iv_ic, 0, ieee80211_sysctl_parent, "A", "parent device");
291
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
292
"driver_caps", CTLFLAG_RW, &vap->iv_caps, 0,
293
"driver capabilities");
294
#ifdef IEEE80211_DEBUG
295
vap->iv_debug = ieee80211_debug;
296
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
297
"debug", CTLFLAG_RW, &vap->iv_debug, 0,
298
"control debugging printfs");
299
#endif
300
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
301
"bmiss_max", CTLFLAG_RW, &vap->iv_bmiss_max, 0,
302
"consecutive beacon misses before scanning");
303
/* XXX inherit from tunables */
304
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
305
"inact_run", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
306
&vap->iv_inact_run, 0, ieee80211_sysctl_inact, "I",
307
"station inactivity timeout (sec)");
308
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
309
"inact_probe", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
310
&vap->iv_inact_probe, 0, ieee80211_sysctl_inact, "I",
311
"station inactivity probe timeout (sec)");
312
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
313
"inact_auth", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
314
&vap->iv_inact_auth, 0, ieee80211_sysctl_inact, "I",
315
"station authentication timeout (sec)");
316
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
317
"inact_init", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
318
&vap->iv_inact_init, 0, ieee80211_sysctl_inact, "I",
319
"station initial state timeout (sec)");
320
if (vap->iv_htcaps & IEEE80211_HTC_HT) {
321
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
322
"ampdu_mintraffic_bk", CTLFLAG_RW,
323
&vap->iv_ampdu_mintraffic[WME_AC_BK], 0,
324
"BK traffic tx aggr threshold (pps)");
325
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
326
"ampdu_mintraffic_be", CTLFLAG_RW,
327
&vap->iv_ampdu_mintraffic[WME_AC_BE], 0,
328
"BE traffic tx aggr threshold (pps)");
329
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
330
"ampdu_mintraffic_vo", CTLFLAG_RW,
331
&vap->iv_ampdu_mintraffic[WME_AC_VO], 0,
332
"VO traffic tx aggr threshold (pps)");
333
SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
334
"ampdu_mintraffic_vi", CTLFLAG_RW,
335
&vap->iv_ampdu_mintraffic[WME_AC_VI], 0,
336
"VI traffic tx aggr threshold (pps)");
337
}
338
339
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
340
"force_restart", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
341
vap, 0, ieee80211_sysctl_vap_restart, "I", "force a VAP restart");
342
343
if (vap->iv_caps & IEEE80211_C_DFS) {
344
SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
345
"radar", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT,
346
vap->iv_ic, 0, ieee80211_sysctl_radar, "I",
347
"simulate radar event");
348
}
349
vap->iv_sysctl = ctx;
350
vap->iv_oid = oid;
351
}
352
353
void
354
ieee80211_sysctl_vdetach(struct ieee80211vap *vap)
355
{
356
357
if (vap->iv_sysctl != NULL) {
358
sysctl_ctx_free(vap->iv_sysctl);
359
IEEE80211_FREE(vap->iv_sysctl, M_DEVBUF);
360
vap->iv_sysctl = NULL;
361
}
362
}
363
364
int
365
ieee80211_com_vincref(struct ieee80211vap *vap)
366
{
367
uint32_t ostate;
368
369
ostate = atomic_fetchadd_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
370
371
if (ostate & IEEE80211_COM_DETACHED) {
372
atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
373
return (ENETDOWN);
374
}
375
376
if (_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) ==
377
IEEE80211_COM_REF_MAX) {
378
atomic_subtract_32(&vap->iv_com_state, IEEE80211_COM_REF_ADD);
379
return (EOVERFLOW);
380
}
381
382
return (0);
383
}
384
385
void
386
ieee80211_com_vdecref(struct ieee80211vap *vap)
387
{
388
uint32_t ostate;
389
390
ostate = atomic_fetchadd_32(&vap->iv_com_state, -IEEE80211_COM_REF_ADD);
391
392
KASSERT(_IEEE80211_MASKSHIFT(ostate, IEEE80211_COM_REF) != 0,
393
("com reference counter underflow"));
394
395
(void) ostate;
396
}
397
398
void
399
ieee80211_com_vdetach(struct ieee80211vap *vap)
400
{
401
int sleep_time;
402
403
sleep_time = msecs_to_ticks(250);
404
atomic_set_32(&vap->iv_com_state, IEEE80211_COM_DETACHED);
405
while (_IEEE80211_MASKSHIFT(atomic_load_32(&vap->iv_com_state),
406
IEEE80211_COM_REF) != 0)
407
pause("comref", sleep_time);
408
}
409
410
int
411
ieee80211_node_dectestref(struct ieee80211_node *ni)
412
{
413
/* XXX need equivalent of atomic_dec_and_test */
414
atomic_subtract_int(&ni->ni_refcnt, 1);
415
return atomic_cmpset_int(&ni->ni_refcnt, 0, 1);
416
}
417
418
void
419
ieee80211_drain_ifq(struct ifqueue *ifq)
420
{
421
struct ieee80211_node *ni;
422
struct mbuf *m;
423
424
for (;;) {
425
IF_DEQUEUE(ifq, m);
426
if (m == NULL)
427
break;
428
429
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
430
KASSERT(ni != NULL, ("frame w/o node"));
431
ieee80211_free_node(ni);
432
m->m_pkthdr.rcvif = NULL;
433
434
m_freem(m);
435
}
436
}
437
438
void
439
ieee80211_flush_ifq(struct ifqueue *ifq, struct ieee80211vap *vap)
440
{
441
struct ieee80211_node *ni;
442
struct mbuf *m, **mprev;
443
444
IF_LOCK(ifq);
445
mprev = &ifq->ifq_head;
446
while ((m = *mprev) != NULL) {
447
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
448
if (ni != NULL && ni->ni_vap == vap) {
449
*mprev = m->m_nextpkt; /* remove from list */
450
ifq->ifq_len--;
451
452
m_freem(m);
453
ieee80211_free_node(ni); /* reclaim ref */
454
} else
455
mprev = &m->m_nextpkt;
456
}
457
/* recalculate tail ptr */
458
m = ifq->ifq_head;
459
for (; m != NULL && m->m_nextpkt != NULL; m = m->m_nextpkt)
460
;
461
ifq->ifq_tail = m;
462
IF_UNLOCK(ifq);
463
}
464
465
/*
466
* As above, for mbufs allocated with m_gethdr/MGETHDR
467
* or initialized by M_COPY_PKTHDR.
468
*/
469
#define MC_ALIGN(m, len) \
470
do { \
471
(m)->m_data += rounddown2(MCLBYTES - (len), sizeof(long)); \
472
} while (/* CONSTCOND */ 0)
473
474
/*
475
* Allocate and setup a management frame of the specified
476
* size. We return the mbuf and a pointer to the start
477
* of the contiguous data area that's been reserved based
478
* on the packet length. The data area is forced to 32-bit
479
* alignment and the buffer length to a multiple of 4 bytes.
480
* This is done mainly so beacon frames (that require this)
481
* can use this interface too.
482
*/
483
struct mbuf *
484
ieee80211_getmgtframe(uint8_t **frm, int headroom, int pktlen)
485
{
486
struct mbuf *m;
487
u_int len;
488
489
/*
490
* NB: we know the mbuf routines will align the data area
491
* so we don't need to do anything special.
492
*/
493
len = roundup2(headroom + pktlen, 4);
494
KASSERT(len <= MCLBYTES, ("802.11 mgt frame too large: %u", len));
495
if (len < MINCLSIZE) {
496
m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
497
/*
498
* Align the data in case additional headers are added.
499
* This should only happen when a WEP header is added
500
* which only happens for shared key authentication mgt
501
* frames which all fit in MHLEN.
502
*/
503
if (m != NULL)
504
M_ALIGN(m, len);
505
} else {
506
m = m_getcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
507
if (m != NULL)
508
MC_ALIGN(m, len);
509
}
510
if (m != NULL) {
511
m->m_data += headroom;
512
*frm = m->m_data;
513
}
514
return m;
515
}
516
517
#ifndef __NO_STRICT_ALIGNMENT
518
/*
519
* Re-align the payload in the mbuf. This is mainly used (right now)
520
* to handle IP header alignment requirements on certain architectures.
521
*/
522
struct mbuf *
523
ieee80211_realign(struct ieee80211vap *vap, struct mbuf *m, size_t align)
524
{
525
int pktlen, space;
526
struct mbuf *n;
527
528
pktlen = m->m_pkthdr.len;
529
space = pktlen + align;
530
if (space < MINCLSIZE)
531
n = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
532
else {
533
n = m_getjcl(IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR,
534
space <= MCLBYTES ? MCLBYTES :
535
#if MJUMPAGESIZE != MCLBYTES
536
space <= MJUMPAGESIZE ? MJUMPAGESIZE :
537
#endif
538
space <= MJUM9BYTES ? MJUM9BYTES : MJUM16BYTES);
539
}
540
if (__predict_true(n != NULL)) {
541
m_move_pkthdr(n, m);
542
n->m_data = (caddr_t)(ALIGN(n->m_data + align) - align);
543
m_copydata(m, 0, pktlen, mtod(n, caddr_t));
544
n->m_len = pktlen;
545
} else {
546
IEEE80211_DISCARD(vap, IEEE80211_MSG_ANY,
547
mtod(m, const struct ieee80211_frame *), NULL,
548
"%s", "no mbuf to realign");
549
vap->iv_stats.is_rx_badalign++;
550
}
551
m_freem(m);
552
return n;
553
}
554
#endif /* !__NO_STRICT_ALIGNMENT */
555
556
int
557
ieee80211_add_callback(struct mbuf *m,
558
void (*func)(struct ieee80211_node *, void *, int), void *arg)
559
{
560
struct m_tag *mtag;
561
struct ieee80211_cb *cb;
562
563
mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_CALLBACK,
564
sizeof(struct ieee80211_cb), IEEE80211_M_NOWAIT);
565
if (mtag == NULL)
566
return 0;
567
568
cb = (struct ieee80211_cb *)(mtag+1);
569
cb->func = func;
570
cb->arg = arg;
571
m_tag_prepend(m, mtag);
572
m->m_flags |= M_TXCB;
573
return 1;
574
}
575
576
int
577
ieee80211_add_xmit_params(struct mbuf *m,
578
const struct ieee80211_bpf_params *params)
579
{
580
struct m_tag *mtag;
581
struct ieee80211_tx_params *tx;
582
583
mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
584
sizeof(struct ieee80211_tx_params), IEEE80211_M_NOWAIT);
585
if (mtag == NULL)
586
return (0);
587
588
tx = (struct ieee80211_tx_params *)(mtag+1);
589
memcpy(&tx->params, params, sizeof(struct ieee80211_bpf_params));
590
m_tag_prepend(m, mtag);
591
return (1);
592
}
593
594
int
595
ieee80211_get_xmit_params(struct mbuf *m,
596
struct ieee80211_bpf_params *params)
597
{
598
struct m_tag *mtag;
599
struct ieee80211_tx_params *tx;
600
601
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_XMIT_PARAMS,
602
NULL);
603
if (mtag == NULL)
604
return (-1);
605
tx = (struct ieee80211_tx_params *)(mtag + 1);
606
memcpy(params, &tx->params, sizeof(struct ieee80211_bpf_params));
607
return (0);
608
}
609
610
void
611
ieee80211_process_callback(struct ieee80211_node *ni,
612
struct mbuf *m, int status)
613
{
614
struct m_tag *mtag;
615
616
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_CALLBACK, NULL);
617
if (mtag != NULL) {
618
struct ieee80211_cb *cb = (struct ieee80211_cb *)(mtag+1);
619
cb->func(ni, cb->arg, status);
620
}
621
}
622
623
/*
624
* Add RX parameters to the given mbuf.
625
*
626
* Returns 1 if OK, 0 on error.
627
*/
628
int
629
ieee80211_add_rx_params(struct mbuf *m, const struct ieee80211_rx_stats *rxs)
630
{
631
struct m_tag *mtag;
632
struct ieee80211_rx_params *rx;
633
634
mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
635
sizeof(struct ieee80211_rx_stats), IEEE80211_M_NOWAIT);
636
if (mtag == NULL)
637
return (0);
638
639
rx = (struct ieee80211_rx_params *)(mtag + 1);
640
memcpy(&rx->params, rxs, sizeof(*rxs));
641
m_tag_prepend(m, mtag);
642
return (1);
643
}
644
645
int
646
ieee80211_get_rx_params(struct mbuf *m, struct ieee80211_rx_stats *rxs)
647
{
648
struct m_tag *mtag;
649
struct ieee80211_rx_params *rx;
650
651
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
652
NULL);
653
if (mtag == NULL)
654
return (-1);
655
rx = (struct ieee80211_rx_params *)(mtag + 1);
656
memcpy(rxs, &rx->params, sizeof(*rxs));
657
return (0);
658
}
659
660
const struct ieee80211_rx_stats *
661
ieee80211_get_rx_params_ptr(struct mbuf *m)
662
{
663
struct m_tag *mtag;
664
struct ieee80211_rx_params *rx;
665
666
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_RECV_PARAMS,
667
NULL);
668
if (mtag == NULL)
669
return (NULL);
670
rx = (struct ieee80211_rx_params *)(mtag + 1);
671
return (&rx->params);
672
}
673
674
/*
675
* Add TOA parameters to the given mbuf.
676
*/
677
int
678
ieee80211_add_toa_params(struct mbuf *m, const struct ieee80211_toa_params *p)
679
{
680
struct m_tag *mtag;
681
struct ieee80211_toa_params *rp;
682
683
mtag = m_tag_alloc(MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
684
sizeof(struct ieee80211_toa_params), IEEE80211_M_NOWAIT);
685
if (mtag == NULL)
686
return (0);
687
688
rp = (struct ieee80211_toa_params *)(mtag + 1);
689
memcpy(rp, p, sizeof(*rp));
690
m_tag_prepend(m, mtag);
691
return (1);
692
}
693
694
int
695
ieee80211_get_toa_params(struct mbuf *m, struct ieee80211_toa_params *p)
696
{
697
struct m_tag *mtag;
698
struct ieee80211_toa_params *rp;
699
700
mtag = m_tag_locate(m, MTAG_ABI_NET80211, NET80211_TAG_TOA_PARAMS,
701
NULL);
702
if (mtag == NULL)
703
return (0);
704
rp = (struct ieee80211_toa_params *)(mtag + 1);
705
if (p != NULL)
706
memcpy(p, rp, sizeof(*p));
707
return (1);
708
}
709
710
/*
711
* @brief Transmit a frame to the parent interface.
712
*
713
* Transmit an 802.11 or 802.3 frame to the parent interface.
714
*
715
* This is called as part of 802.11 processing to enqueue a frame
716
* from net80211 into the device for transmit.
717
*
718
* If the interface is marked as 802.3 via IEEE80211_C_8023ENCAP
719
* (ie, doing offload), then an 802.3 frame will be sent and the
720
* driver will need to understand what to do.
721
*
722
* If the interface is marked as 802.11 (ie, no offload), then
723
* an encapsulated 802.11 frame will be queued. In the case
724
* of an 802.11 fragmented frame this will be a list of frames
725
* representing the fragments making up the 802.11 frame, linked
726
* via m_nextpkt.
727
*
728
* A fragmented frame list will consist of:
729
* + only the first frame with M_SEQNO_SET() assigned the sequence number;
730
* + only the first frame with the node reference and node in rcvif;
731
* + all frames will have the sequence + fragment number populated in
732
* the 802.11 header.
733
*
734
* The driver must ensure it doesn't try releasing a node reference
735
* for each fragment in the list.
736
*
737
* The provided mbuf/list is consumed both upon success and error.
738
*
739
* @param ic struct ieee80211com device to enqueue frame to
740
* @param m struct mbuf chain / packet list to enqueue
741
* @returns 0 if successful, errno if error.
742
*/
743
int
744
ieee80211_parent_xmitpkt(struct ieee80211com *ic, struct mbuf *m)
745
{
746
int error;
747
748
/*
749
* Assert the IC TX lock is held - this enforces the
750
* processing -> queuing order is maintained
751
*/
752
IEEE80211_TX_LOCK_ASSERT(ic);
753
error = ic->ic_transmit(ic, m);
754
if (error) {
755
struct ieee80211_node *ni;
756
757
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
758
759
/* XXX number of fragments */
760
if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
761
762
/* Note: there's only one node reference for a fragment list */
763
ieee80211_free_node(ni);
764
ieee80211_free_mbuf(m);
765
}
766
return (error);
767
}
768
769
/*
770
* @brief Transmit an 802.3 frame to the VAP interface.
771
*
772
* This is the entry point for the wifi stack to enqueue 802.3
773
* encapsulated frames for transmit to the given vap/ifnet instance.
774
* This is used in paths where 802.3 frames have been received
775
* or queued, and need to be pushed through the VAP encapsulation
776
* and transmit processing pipeline.
777
*
778
* The provided mbuf/list is consumed both upon success and error.
779
*
780
* @param vap struct ieee80211vap instance to transmit frame to
781
* @param m mbuf to transmit
782
* @returns 0 if OK, errno if error
783
*/
784
int
785
ieee80211_vap_xmitpkt(struct ieee80211vap *vap, struct mbuf *m)
786
{
787
struct ifnet *ifp = vap->iv_ifp;
788
789
/*
790
* When transmitting via the VAP, we shouldn't hold
791
* any IC TX lock as the VAP TX path will acquire it.
792
*/
793
IEEE80211_TX_UNLOCK_ASSERT(vap->iv_ic);
794
795
return (ifp->if_transmit(ifp, m));
796
797
}
798
799
#include <sys/libkern.h>
800
801
void
802
net80211_get_random_bytes(void *p, size_t n)
803
{
804
uint8_t *dp = p;
805
806
while (n > 0) {
807
uint32_t v = arc4random();
808
size_t nb = n > sizeof(uint32_t) ? sizeof(uint32_t) : n;
809
bcopy(&v, dp, n > sizeof(uint32_t) ? sizeof(uint32_t) : n);
810
dp += sizeof(uint32_t), n -= nb;
811
}
812
}
813
814
/*
815
* Helper function for events that pass just a single mac address.
816
*/
817
static void
818
notify_macaddr(struct ifnet *ifp, int op, const uint8_t mac[IEEE80211_ADDR_LEN])
819
{
820
struct ieee80211_join_event iev;
821
822
CURVNET_SET(ifp->if_vnet);
823
memset(&iev, 0, sizeof(iev));
824
IEEE80211_ADDR_COPY(iev.iev_addr, mac);
825
rt_ieee80211msg(ifp, op, &iev, sizeof(iev));
826
CURVNET_RESTORE();
827
}
828
829
void
830
ieee80211_notify_node_join(struct ieee80211_node *ni, int newassoc)
831
{
832
struct ieee80211vap *vap = ni->ni_vap;
833
struct ifnet *ifp = vap->iv_ifp;
834
835
CURVNET_SET_QUIET(ifp->if_vnet);
836
IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode join",
837
(ni == vap->iv_bss) ? "bss " : "");
838
839
if (ni == vap->iv_bss) {
840
notify_macaddr(ifp, newassoc ?
841
RTM_IEEE80211_ASSOC : RTM_IEEE80211_REASSOC, ni->ni_bssid);
842
if_link_state_change(ifp, LINK_STATE_UP);
843
} else {
844
notify_macaddr(ifp, newassoc ?
845
RTM_IEEE80211_JOIN : RTM_IEEE80211_REJOIN, ni->ni_macaddr);
846
}
847
CURVNET_RESTORE();
848
}
849
850
void
851
ieee80211_notify_node_leave(struct ieee80211_node *ni)
852
{
853
struct ieee80211vap *vap = ni->ni_vap;
854
struct ifnet *ifp = vap->iv_ifp;
855
856
CURVNET_SET_QUIET(ifp->if_vnet);
857
IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%snode leave",
858
(ni == vap->iv_bss) ? "bss " : "");
859
860
if (ni == vap->iv_bss) {
861
rt_ieee80211msg(ifp, RTM_IEEE80211_DISASSOC, NULL, 0);
862
if_link_state_change(ifp, LINK_STATE_DOWN);
863
} else {
864
/* fire off wireless event station leaving */
865
notify_macaddr(ifp, RTM_IEEE80211_LEAVE, ni->ni_macaddr);
866
}
867
CURVNET_RESTORE();
868
}
869
870
void
871
ieee80211_notify_scan_done(struct ieee80211vap *vap)
872
{
873
struct ifnet *ifp = vap->iv_ifp;
874
875
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SCAN, "%s\n", "notify scan done");
876
877
/* dispatch wireless event indicating scan completed */
878
CURVNET_SET(ifp->if_vnet);
879
rt_ieee80211msg(ifp, RTM_IEEE80211_SCAN, NULL, 0);
880
CURVNET_RESTORE();
881
}
882
883
void
884
ieee80211_notify_replay_failure(struct ieee80211vap *vap,
885
const struct ieee80211_frame *wh, const struct ieee80211_key *k,
886
u_int64_t rsc, int tid)
887
{
888
struct ifnet *ifp = vap->iv_ifp;
889
890
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
891
"%s replay detected tid %d <rsc %ju (%jx), csc %ju (%jx), keyix %u rxkeyix %u>",
892
k->wk_cipher->ic_name, tid,
893
(intmax_t) rsc,
894
(intmax_t) rsc,
895
(intmax_t) k->wk_keyrsc[tid],
896
(intmax_t) k->wk_keyrsc[tid],
897
k->wk_keyix, k->wk_rxkeyix);
898
899
if (ifp != NULL) { /* NB: for cipher test modules */
900
struct ieee80211_replay_event iev;
901
902
IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
903
IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
904
iev.iev_cipher = k->wk_cipher->ic_cipher;
905
if (k->wk_rxkeyix != IEEE80211_KEYIX_NONE)
906
iev.iev_keyix = k->wk_rxkeyix;
907
else
908
iev.iev_keyix = k->wk_keyix;
909
iev.iev_keyrsc = k->wk_keyrsc[tid];
910
iev.iev_rsc = rsc;
911
CURVNET_SET(ifp->if_vnet);
912
rt_ieee80211msg(ifp, RTM_IEEE80211_REPLAY, &iev, sizeof(iev));
913
CURVNET_RESTORE();
914
}
915
}
916
917
void
918
ieee80211_notify_michael_failure(struct ieee80211vap *vap,
919
const struct ieee80211_frame *wh, ieee80211_keyix keyix)
920
{
921
struct ifnet *ifp = vap->iv_ifp;
922
923
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, wh->i_addr2,
924
"michael MIC verification failed <keyix %u>", keyix);
925
vap->iv_stats.is_rx_tkipmic++;
926
927
if (ifp != NULL) { /* NB: for cipher test modules */
928
struct ieee80211_michael_event iev;
929
930
IEEE80211_ADDR_COPY(iev.iev_dst, wh->i_addr1);
931
IEEE80211_ADDR_COPY(iev.iev_src, wh->i_addr2);
932
iev.iev_cipher = IEEE80211_CIPHER_TKIP;
933
iev.iev_keyix = keyix;
934
CURVNET_SET(ifp->if_vnet);
935
rt_ieee80211msg(ifp, RTM_IEEE80211_MICHAEL, &iev, sizeof(iev));
936
CURVNET_RESTORE();
937
}
938
}
939
940
void
941
ieee80211_notify_wds_discover(struct ieee80211_node *ni)
942
{
943
struct ieee80211vap *vap = ni->ni_vap;
944
struct ifnet *ifp = vap->iv_ifp;
945
946
notify_macaddr(ifp, RTM_IEEE80211_WDS, ni->ni_macaddr);
947
}
948
949
void
950
ieee80211_notify_csa(struct ieee80211com *ic,
951
const struct ieee80211_channel *c, int mode, int count)
952
{
953
struct ieee80211_csa_event iev;
954
struct ieee80211vap *vap;
955
struct ifnet *ifp;
956
957
memset(&iev, 0, sizeof(iev));
958
iev.iev_flags = c->ic_flags;
959
iev.iev_freq = c->ic_freq;
960
iev.iev_ieee = c->ic_ieee;
961
iev.iev_mode = mode;
962
iev.iev_count = count;
963
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
964
ifp = vap->iv_ifp;
965
CURVNET_SET(ifp->if_vnet);
966
rt_ieee80211msg(ifp, RTM_IEEE80211_CSA, &iev, sizeof(iev));
967
CURVNET_RESTORE();
968
}
969
}
970
971
void
972
ieee80211_notify_radar(struct ieee80211com *ic,
973
const struct ieee80211_channel *c)
974
{
975
struct ieee80211_radar_event iev;
976
struct ieee80211vap *vap;
977
struct ifnet *ifp;
978
979
memset(&iev, 0, sizeof(iev));
980
iev.iev_flags = c->ic_flags;
981
iev.iev_freq = c->ic_freq;
982
iev.iev_ieee = c->ic_ieee;
983
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
984
ifp = vap->iv_ifp;
985
CURVNET_SET(ifp->if_vnet);
986
rt_ieee80211msg(ifp, RTM_IEEE80211_RADAR, &iev, sizeof(iev));
987
CURVNET_RESTORE();
988
}
989
}
990
991
void
992
ieee80211_notify_cac(struct ieee80211com *ic,
993
const struct ieee80211_channel *c, enum ieee80211_notify_cac_event type)
994
{
995
struct ieee80211_cac_event iev;
996
struct ieee80211vap *vap;
997
struct ifnet *ifp;
998
999
memset(&iev, 0, sizeof(iev));
1000
iev.iev_flags = c->ic_flags;
1001
iev.iev_freq = c->ic_freq;
1002
iev.iev_ieee = c->ic_ieee;
1003
iev.iev_type = type;
1004
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1005
ifp = vap->iv_ifp;
1006
CURVNET_SET(ifp->if_vnet);
1007
rt_ieee80211msg(ifp, RTM_IEEE80211_CAC, &iev, sizeof(iev));
1008
CURVNET_RESTORE();
1009
}
1010
}
1011
1012
void
1013
ieee80211_notify_node_deauth(struct ieee80211_node *ni)
1014
{
1015
struct ieee80211vap *vap = ni->ni_vap;
1016
struct ifnet *ifp = vap->iv_ifp;
1017
1018
IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node deauth");
1019
1020
notify_macaddr(ifp, RTM_IEEE80211_DEAUTH, ni->ni_macaddr);
1021
}
1022
1023
void
1024
ieee80211_notify_node_auth(struct ieee80211_node *ni)
1025
{
1026
struct ieee80211vap *vap = ni->ni_vap;
1027
struct ifnet *ifp = vap->iv_ifp;
1028
1029
IEEE80211_NOTE(vap, IEEE80211_MSG_NODE, ni, "%s", "node auth");
1030
1031
notify_macaddr(ifp, RTM_IEEE80211_AUTH, ni->ni_macaddr);
1032
}
1033
1034
void
1035
ieee80211_notify_country(struct ieee80211vap *vap,
1036
const uint8_t bssid[IEEE80211_ADDR_LEN], const uint8_t cc[2])
1037
{
1038
struct ifnet *ifp = vap->iv_ifp;
1039
struct ieee80211_country_event iev;
1040
1041
memset(&iev, 0, sizeof(iev));
1042
IEEE80211_ADDR_COPY(iev.iev_addr, bssid);
1043
iev.iev_cc[0] = cc[0];
1044
iev.iev_cc[1] = cc[1];
1045
CURVNET_SET(ifp->if_vnet);
1046
rt_ieee80211msg(ifp, RTM_IEEE80211_COUNTRY, &iev, sizeof(iev));
1047
CURVNET_RESTORE();
1048
}
1049
1050
void
1051
ieee80211_notify_radio(struct ieee80211com *ic, int state)
1052
{
1053
struct ieee80211_radio_event iev;
1054
struct ieee80211vap *vap;
1055
struct ifnet *ifp;
1056
1057
memset(&iev, 0, sizeof(iev));
1058
iev.iev_state = state;
1059
TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1060
ifp = vap->iv_ifp;
1061
CURVNET_SET(ifp->if_vnet);
1062
rt_ieee80211msg(ifp, RTM_IEEE80211_RADIO, &iev, sizeof(iev));
1063
CURVNET_RESTORE();
1064
}
1065
}
1066
1067
void
1068
ieee80211_notify_ifnet_change(struct ieee80211vap *vap, int if_flags_mask)
1069
{
1070
struct ifnet *ifp = vap->iv_ifp;
1071
1072
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, "%s\n",
1073
"interface state change");
1074
1075
CURVNET_SET(ifp->if_vnet);
1076
rt_ifmsg(ifp, if_flags_mask);
1077
CURVNET_RESTORE();
1078
}
1079
1080
void
1081
ieee80211_load_module(const char *modname)
1082
{
1083
1084
#ifdef notyet
1085
(void)kern_kldload(curthread, modname, NULL);
1086
#else
1087
printf("%s: load the %s module by hand for now.\n", __func__, modname);
1088
#endif
1089
}
1090
1091
static eventhandler_tag wlan_bpfevent;
1092
static eventhandler_tag wlan_ifllevent;
1093
1094
static void
1095
bpf_track(void *arg, struct ifnet *ifp, int dlt, int attach)
1096
{
1097
/* NB: identify vap's by if_init */
1098
if (dlt == DLT_IEEE802_11_RADIO &&
1099
ifp->if_init == ieee80211_init) {
1100
struct ieee80211vap *vap = ifp->if_softc;
1101
/*
1102
* Track bpf radiotap listener state. We mark the vap
1103
* to indicate if any listener is present and the com
1104
* to indicate if any listener exists on any associated
1105
* vap. This flag is used by drivers to prepare radiotap
1106
* state only when needed.
1107
*/
1108
if (attach) {
1109
ieee80211_syncflag_ext(vap, IEEE80211_FEXT_BPF);
1110
if (vap->iv_opmode == IEEE80211_M_MONITOR)
1111
atomic_add_int(&vap->iv_ic->ic_montaps, 1);
1112
} else if (!bpf_peers_present(vap->iv_rawbpf)) {
1113
ieee80211_syncflag_ext(vap, -IEEE80211_FEXT_BPF);
1114
if (vap->iv_opmode == IEEE80211_M_MONITOR)
1115
atomic_subtract_int(&vap->iv_ic->ic_montaps, 1);
1116
}
1117
}
1118
}
1119
1120
/*
1121
* Change MAC address on the vap (if was not started).
1122
*/
1123
static void
1124
wlan_iflladdr(void *arg __unused, struct ifnet *ifp)
1125
{
1126
/* NB: identify vap's by if_init */
1127
if (ifp->if_init == ieee80211_init &&
1128
(ifp->if_flags & IFF_UP) == 0) {
1129
struct ieee80211vap *vap = ifp->if_softc;
1130
1131
IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1132
}
1133
}
1134
1135
/*
1136
* Fetch the VAP name.
1137
*
1138
* This returns a const char pointer suitable for debugging,
1139
* but don't expect it to stick around for much longer.
1140
*/
1141
const char *
1142
ieee80211_get_vap_ifname(struct ieee80211vap *vap)
1143
{
1144
if (vap->iv_ifp == NULL)
1145
return "(none)";
1146
return (if_name(vap->iv_ifp));
1147
}
1148
1149
#ifdef DEBUGNET
1150
static void
1151
ieee80211_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize)
1152
{
1153
struct ieee80211vap *vap;
1154
struct ieee80211com *ic;
1155
1156
vap = if_getsoftc(ifp);
1157
ic = vap->iv_ic;
1158
1159
IEEE80211_LOCK(ic);
1160
ic->ic_debugnet_meth->dn8_init(ic, nrxr, ncl, clsize);
1161
IEEE80211_UNLOCK(ic);
1162
}
1163
1164
static void
1165
ieee80211_debugnet_event(struct ifnet *ifp, enum debugnet_ev ev)
1166
{
1167
struct ieee80211vap *vap;
1168
struct ieee80211com *ic;
1169
1170
vap = if_getsoftc(ifp);
1171
ic = vap->iv_ic;
1172
1173
IEEE80211_LOCK(ic);
1174
ic->ic_debugnet_meth->dn8_event(ic, ev);
1175
IEEE80211_UNLOCK(ic);
1176
}
1177
1178
static int
1179
ieee80211_debugnet_transmit(struct ifnet *ifp, struct mbuf *m)
1180
{
1181
return (ieee80211_vap_transmit(ifp, m));
1182
}
1183
1184
static int
1185
ieee80211_debugnet_poll(struct ifnet *ifp, int count)
1186
{
1187
struct ieee80211vap *vap;
1188
struct ieee80211com *ic;
1189
1190
vap = if_getsoftc(ifp);
1191
ic = vap->iv_ic;
1192
1193
return (ic->ic_debugnet_meth->dn8_poll(ic, count));
1194
}
1195
#endif
1196
1197
/**
1198
* @brief Check if the MAC address was changed by the upper layer.
1199
*
1200
* This is specifically to handle cases like the MAC address
1201
* being changed via an ioctl (eg SIOCSIFLLADDR).
1202
*
1203
* @param vap VAP to sync MAC address for
1204
*/
1205
void
1206
ieee80211_vap_sync_mac_address(struct ieee80211vap *vap)
1207
{
1208
struct epoch_tracker et;
1209
const struct ifnet *ifp = vap->iv_ifp;
1210
1211
/*
1212
* Check if the MAC address was changed
1213
* via SIOCSIFLLADDR ioctl.
1214
*
1215
* NB: device may be detached during initialization;
1216
* use if_ioctl for existence check.
1217
*/
1218
NET_EPOCH_ENTER(et);
1219
if (ifp->if_ioctl == ieee80211_ioctl &&
1220
(ifp->if_flags & IFF_UP) == 0 &&
1221
!IEEE80211_ADDR_EQ(vap->iv_myaddr, IF_LLADDR(ifp)))
1222
IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(ifp));
1223
NET_EPOCH_EXIT(et);
1224
}
1225
1226
/**
1227
* @brief Initial MAC address setup for a VAP.
1228
*
1229
* @param vap VAP to sync MAC address for
1230
*/
1231
void
1232
ieee80211_vap_copy_mac_address(struct ieee80211vap *vap)
1233
{
1234
struct epoch_tracker et;
1235
1236
NET_EPOCH_ENTER(et);
1237
IEEE80211_ADDR_COPY(vap->iv_myaddr, IF_LLADDR(vap->iv_ifp));
1238
NET_EPOCH_EXIT(et);
1239
}
1240
1241
/**
1242
* @brief Deliver data into the upper ifp of the VAP interface
1243
*
1244
* This delivers an 802.3 frame from net80211 up to the operating
1245
* system network interface layer.
1246
*
1247
* @param vap the current VAP
1248
* @param m the 802.3 frame to pass up to the VAP interface
1249
*
1250
* Note: this API consumes the mbuf.
1251
*/
1252
void
1253
ieee80211_vap_deliver_data(struct ieee80211vap *vap, struct mbuf *m)
1254
{
1255
struct epoch_tracker et;
1256
1257
NET_EPOCH_ENTER(et);
1258
if_input(vap->iv_ifp, m);
1259
NET_EPOCH_EXIT(et);
1260
}
1261
1262
/**
1263
* @brief Return whether the VAP is configured with monitor mode
1264
*
1265
* This checks the operating system layer for whether monitor mode
1266
* is enabled.
1267
*
1268
* @param vap the current VAP
1269
* @retval true if the underlying interface is in MONITOR mode, false otherwise
1270
*/
1271
bool
1272
ieee80211_vap_ifp_check_is_monitor(struct ieee80211vap *vap)
1273
{
1274
return ((if_getflags(vap->iv_ifp) & IFF_MONITOR) != 0);
1275
}
1276
1277
/**
1278
* @brief Return whether the VAP is configured in simplex mode.
1279
*
1280
* This checks the operating system layer for whether simplex mode
1281
* is enabled.
1282
*
1283
* @param vap the current VAP
1284
* @retval true if the underlying interface is in SIMPLEX mode, false otherwise
1285
*/
1286
bool
1287
ieee80211_vap_ifp_check_is_simplex(struct ieee80211vap *vap)
1288
{
1289
return ((if_getflags(vap->iv_ifp) & IFF_SIMPLEX) != 0);
1290
}
1291
1292
/**
1293
* @brief Return if the VAP underlying network interface is running
1294
*
1295
* @param vap the current VAP
1296
* @retval true if the underlying interface is running; false otherwise
1297
*/
1298
bool
1299
ieee80211_vap_ifp_check_is_running(struct ieee80211vap *vap)
1300
{
1301
return ((if_getdrvflags(vap->iv_ifp) & IFF_DRV_RUNNING) != 0);
1302
}
1303
1304
/**
1305
* @brief Change the VAP underlying network interface state
1306
*
1307
* @param vap the current VAP
1308
* @param state true to mark the interface as RUNNING, false to clear
1309
*/
1310
void
1311
ieee80211_vap_ifp_set_running_state(struct ieee80211vap *vap, bool state)
1312
{
1313
if (state)
1314
if_setdrvflagbits(vap->iv_ifp, IFF_DRV_RUNNING, 0);
1315
else
1316
if_setdrvflagbits(vap->iv_ifp, 0, IFF_DRV_RUNNING);
1317
}
1318
1319
/**
1320
* @brief Return the broadcast MAC address.
1321
*
1322
* @param vap The current VAP
1323
* @retval a uint8_t array representing the ethernet broadcast address
1324
*/
1325
const uint8_t *
1326
ieee80211_vap_get_broadcast_address(struct ieee80211vap *vap)
1327
{
1328
return (if_getbroadcastaddr(vap->iv_ifp));
1329
}
1330
1331
/**
1332
* @brief net80211 printf() (not vap/ic related)
1333
*/
1334
void
1335
net80211_printf(const char *fmt, ...)
1336
{
1337
va_list ap;
1338
1339
va_start(ap, fmt);
1340
vprintf(fmt, ap);
1341
va_end(ap);
1342
}
1343
1344
/**
1345
* @brief VAP specific printf()
1346
*/
1347
void
1348
net80211_vap_printf(const struct ieee80211vap *vap, const char *fmt, ...)
1349
{
1350
char if_fmt[256];
1351
va_list ap;
1352
1353
va_start(ap, fmt);
1354
snprintf(if_fmt, sizeof(if_fmt), "%s: %s", if_name(vap->iv_ifp), fmt);
1355
vlog(LOG_INFO, if_fmt, ap);
1356
va_end(ap);
1357
}
1358
1359
/**
1360
* @brief ic specific printf()
1361
*/
1362
void
1363
net80211_ic_printf(const struct ieee80211com *ic, const char *fmt, ...)
1364
{
1365
va_list ap;
1366
1367
/*
1368
* TODO: do the vap_printf stuff above, use vlog(LOG_INFO, ...)
1369
*/
1370
printf("%s: ", ic->ic_name);
1371
va_start(ap, fmt);
1372
vprintf(fmt, ap);
1373
va_end(ap);
1374
}
1375
1376
/*
1377
* Module glue.
1378
*
1379
* NB: the module name is "wlan" for compatibility with NetBSD.
1380
*/
1381
static int
1382
wlan_modevent(module_t mod, int type, void *unused)
1383
{
1384
switch (type) {
1385
case MOD_LOAD:
1386
if (bootverbose)
1387
printf("wlan: <802.11 Link Layer>\n");
1388
wlan_bpfevent = EVENTHANDLER_REGISTER(bpf_track,
1389
bpf_track, 0, EVENTHANDLER_PRI_ANY);
1390
wlan_ifllevent = EVENTHANDLER_REGISTER(iflladdr_event,
1391
wlan_iflladdr, NULL, EVENTHANDLER_PRI_ANY);
1392
struct if_clone_addreq req = {
1393
.create_f = wlan_clone_create,
1394
.destroy_f = wlan_clone_destroy,
1395
.flags = IFC_F_AUTOUNIT,
1396
};
1397
wlan_cloner = ifc_attach_cloner(wlanname, &req);
1398
return 0;
1399
case MOD_UNLOAD:
1400
ifc_detach_cloner(wlan_cloner);
1401
EVENTHANDLER_DEREGISTER(bpf_track, wlan_bpfevent);
1402
EVENTHANDLER_DEREGISTER(iflladdr_event, wlan_ifllevent);
1403
return 0;
1404
}
1405
return EINVAL;
1406
}
1407
1408
static moduledata_t wlan_mod = {
1409
wlanname,
1410
wlan_modevent,
1411
0
1412
};
1413
DECLARE_MODULE(wlan, wlan_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
1414
MODULE_VERSION(wlan, 1);
1415
MODULE_DEPEND(wlan, ether, 1, 1, 1);
1416
#ifdef IEEE80211_ALQ
1417
MODULE_DEPEND(wlan, alq, 1, 1, 1);
1418
#endif /* IEEE80211_ALQ */
1419
1420