Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
freebsd
GitHub Repository: freebsd/freebsd-src
Path: blob/main/sys/net80211/ieee80211_output.c
39475 views
1
/*-
2
* SPDX-License-Identifier: BSD-2-Clause
3
*
4
* Copyright (c) 2001 Atsushi Onoe
5
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6
* All rights reserved.
7
*
8
* Redistribution and use in source and binary forms, with or without
9
* modification, are permitted provided that the following conditions
10
* are met:
11
* 1. Redistributions of source code must retain the above copyright
12
* notice, this list of conditions and the following disclaimer.
13
* 2. Redistributions in binary form must reproduce the above copyright
14
* notice, this list of conditions and the following disclaimer in the
15
* documentation and/or other materials provided with the distribution.
16
*
17
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
*/
28
29
#include <sys/cdefs.h>
30
#include "opt_inet.h"
31
#include "opt_inet6.h"
32
#include "opt_wlan.h"
33
34
#include <sys/param.h>
35
#include <sys/systm.h>
36
#include <sys/kernel.h>
37
#include <sys/malloc.h>
38
#include <sys/mbuf.h>
39
#include <sys/endian.h>
40
41
#include <sys/socket.h>
42
43
#include <net/bpf.h>
44
#include <net/ethernet.h>
45
#include <net/if.h>
46
#include <net/if_var.h>
47
#include <net/if_llc.h>
48
#include <net/if_media.h>
49
#include <net/if_private.h>
50
#include <net/if_vlan_var.h>
51
52
#include <net80211/ieee80211_var.h>
53
#include <net80211/ieee80211_regdomain.h>
54
#ifdef IEEE80211_SUPPORT_SUPERG
55
#include <net80211/ieee80211_superg.h>
56
#endif
57
#ifdef IEEE80211_SUPPORT_TDMA
58
#include <net80211/ieee80211_tdma.h>
59
#endif
60
#include <net80211/ieee80211_wds.h>
61
#include <net80211/ieee80211_mesh.h>
62
#include <net80211/ieee80211_vht.h>
63
64
#if defined(INET) || defined(INET6)
65
#include <netinet/in.h>
66
#endif
67
68
#ifdef INET
69
#include <netinet/if_ether.h>
70
#include <netinet/in_systm.h>
71
#include <netinet/ip.h>
72
#endif
73
#ifdef INET6
74
#include <netinet/ip6.h>
75
#endif
76
77
#include <security/mac/mac_framework.h>
78
79
#define ETHER_HEADER_COPY(dst, src) \
80
memcpy(dst, src, sizeof(struct ether_header))
81
82
static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
83
u_int hdrsize, u_int ciphdrsize, u_int mtu);
84
static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
85
86
#ifdef IEEE80211_DEBUG
87
/*
88
* Decide if an outbound management frame should be
89
* printed when debugging is enabled. This filters some
90
* of the less interesting frames that come frequently
91
* (e.g. beacons).
92
*/
93
static __inline int
94
doprint(struct ieee80211vap *vap, int subtype)
95
{
96
switch (subtype) {
97
case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
98
return (vap->iv_opmode == IEEE80211_M_IBSS);
99
}
100
return 1;
101
}
102
#endif
103
104
/*
105
* Transmit a frame to the given destination on the given VAP.
106
*
107
* It's up to the caller to figure out the details of who this
108
* is going to and resolving the node.
109
*
110
* This routine takes care of queuing it for power save,
111
* A-MPDU state stuff, fast-frames state stuff, encapsulation
112
* if required, then passing it up to the driver layer.
113
*
114
* This routine (for now) consumes the mbuf and frees the node
115
* reference; it ideally will return a TX status which reflects
116
* whether the mbuf was consumed or not, so the caller can
117
* free the mbuf (if appropriate) and the node reference (again,
118
* if appropriate.)
119
*/
120
int
121
ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
122
struct ieee80211_node *ni)
123
{
124
struct ieee80211com *ic = vap->iv_ic;
125
struct ifnet *ifp = vap->iv_ifp;
126
int mcast;
127
int do_ampdu = 0;
128
#ifdef IEEE80211_SUPPORT_SUPERG
129
int do_amsdu = 0;
130
int do_ampdu_amsdu = 0;
131
int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
132
int do_ff = 0;
133
#endif
134
135
if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
136
(m->m_flags & M_PWR_SAV) == 0) {
137
/*
138
* Station in power save mode; pass the frame
139
* to the 802.11 layer and continue. We'll get
140
* the frame back when the time is right.
141
* XXX lose WDS vap linkage?
142
*/
143
if (ieee80211_pwrsave(ni, m) != 0)
144
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
145
ieee80211_free_node(ni);
146
147
/*
148
* We queued it fine, so tell the upper layer
149
* that we consumed it.
150
*/
151
return (0);
152
}
153
/* calculate priority so drivers can find the tx queue */
154
if (ieee80211_classify(ni, m)) {
155
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
156
ni->ni_macaddr, NULL,
157
"%s", "classification failure");
158
vap->iv_stats.is_tx_classify++;
159
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
160
m_freem(m);
161
ieee80211_free_node(ni);
162
163
/* XXX better status? */
164
return (0);
165
}
166
/*
167
* Stash the node pointer. Note that we do this after
168
* any call to ieee80211_dwds_mcast because that code
169
* uses any existing value for rcvif to identify the
170
* interface it (might have been) received on.
171
*/
172
MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
173
m->m_pkthdr.rcvif = (void *)ni;
174
mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
175
176
BPF_MTAP(ifp, m); /* 802.3 tx */
177
178
/*
179
* Figure out if we can do A-MPDU, A-MSDU or FF.
180
*
181
* A-MPDU depends upon vap/node config.
182
* A-MSDU depends upon vap/node config.
183
* FF depends upon vap config, IE and whether
184
* it's 11abg (and not 11n/11ac/etc.)
185
*
186
* Note that these flags indiciate whether we can do
187
* it at all, rather than the situation (eg traffic type.)
188
*/
189
do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
190
(vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
191
#ifdef IEEE80211_SUPPORT_SUPERG
192
do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
193
(vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
194
do_ff =
195
((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
196
((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
197
(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
198
#endif
199
200
/*
201
* Check if A-MPDU tx aggregation is setup or if we
202
* should try to enable it. The sta must be associated
203
* with HT and A-MPDU enabled for use. When the policy
204
* routine decides we should enable A-MPDU we issue an
205
* ADDBA request and wait for a reply. The frame being
206
* encapsulated will go out w/o using A-MPDU, or possibly
207
* it might be collected by the driver and held/retransmit.
208
* The default ic_ampdu_enable routine handles staggering
209
* ADDBA requests in case the receiver NAK's us or we are
210
* otherwise unable to establish a BA stream.
211
*
212
* Don't treat group-addressed frames as candidates for aggregation;
213
* net80211 doesn't support 802.11aa-2012 and so group addressed
214
* frames will always have sequence numbers allocated from the NON_QOS
215
* TID.
216
*/
217
if (!IEEE80211_CONF_AMPDU_OFFLOAD(ic) && do_ampdu) {
218
if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
219
int tid = WME_AC_TO_TID(M_WME_GETAC(m));
220
struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
221
222
ieee80211_txampdu_count_packet(tap);
223
if (IEEE80211_AMPDU_RUNNING(tap)) {
224
/*
225
* Operational, mark frame for aggregation.
226
*
227
* XXX do tx aggregation here
228
*/
229
m->m_flags |= M_AMPDU_MPDU;
230
} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
231
ic->ic_ampdu_enable(ni, tap)) {
232
/*
233
* Not negotiated yet, request service.
234
*/
235
ieee80211_ampdu_request(ni, tap);
236
/* XXX hold frame for reply? */
237
}
238
/*
239
* Now update the no-ampdu flag. A-MPDU may have been
240
* started or administratively disabled above; so now we
241
* know whether we're running yet or not.
242
*
243
* This will let us know whether we should be doing A-MSDU
244
* at this point. We only do A-MSDU if we're either not
245
* doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
246
* is available.
247
*
248
* Whilst here, update the amsdu-ampdu flag. The above may
249
* have also set or cleared the amsdu-in-ampdu txa_flags
250
* combination so we can correctly do A-MPDU + A-MSDU.
251
*/
252
#ifdef IEEE80211_SUPPORT_SUPERG
253
no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
254
|| (IEEE80211_AMPDU_NACKED(tap)));
255
do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
256
#endif
257
}
258
}
259
260
#ifdef IEEE80211_SUPPORT_SUPERG
261
/*
262
* Check for AMSDU/FF; queue for aggregation
263
*
264
* Note: we don't bother trying to do fast frames or
265
* A-MSDU encapsulation for 802.3 drivers. Now, we
266
* likely could do it for FF (because it's a magic
267
* atheros tunnel LLC type) but I don't think we're going
268
* to really need to. For A-MSDU we'd have to set the
269
* A-MSDU QoS bit in the wifi header, so we just plain
270
* can't do it.
271
*/
272
if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
273
if ((! mcast) &&
274
(do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
275
ieee80211_amsdu_tx_ok(ni)) {
276
m = ieee80211_amsdu_check(ni, m);
277
if (m == NULL) {
278
/* NB: any ni ref held on stageq */
279
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
280
"%s: amsdu_check queued frame\n",
281
__func__);
282
return (0);
283
}
284
} else if ((! mcast) && do_ff) {
285
m = ieee80211_ff_check(ni, m);
286
if (m == NULL) {
287
/* NB: any ni ref held on stageq */
288
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
289
"%s: ff_check queued frame\n",
290
__func__);
291
return (0);
292
}
293
}
294
}
295
#endif /* IEEE80211_SUPPORT_SUPERG */
296
297
/*
298
* Grab the TX lock - serialise the TX process from this
299
* point (where TX state is being checked/modified)
300
* through to driver queue.
301
*/
302
IEEE80211_TX_LOCK(ic);
303
304
/*
305
* XXX make the encap and transmit code a separate function
306
* so things like the FF (and later A-MSDU) path can just call
307
* it for flushed frames.
308
*/
309
if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
310
/*
311
* Encapsulate the packet in prep for transmission.
312
*/
313
m = ieee80211_encap(vap, ni, m);
314
if (m == NULL) {
315
/* NB: stat+msg handled in ieee80211_encap */
316
IEEE80211_TX_UNLOCK(ic);
317
ieee80211_free_node(ni);
318
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
319
return (ENOBUFS);
320
}
321
}
322
(void) ieee80211_parent_xmitpkt(ic, m);
323
324
/*
325
* Unlock at this point - no need to hold it across
326
* ieee80211_free_node() (ie, the comlock)
327
*/
328
IEEE80211_TX_UNLOCK(ic);
329
ic->ic_lastdata = ticks;
330
331
return (0);
332
}
333
334
/*
335
* Send the given mbuf through the given vap.
336
*
337
* This consumes the mbuf regardless of whether the transmit
338
* was successful or not.
339
*
340
* This does none of the initial checks that ieee80211_start()
341
* does (eg CAC timeout, interface wakeup) - the caller must
342
* do this first.
343
*/
344
static int
345
ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
346
{
347
#define IS_DWDS(vap) \
348
(vap->iv_opmode == IEEE80211_M_WDS && \
349
(vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
350
struct ieee80211com *ic = vap->iv_ic;
351
struct ifnet *ifp = vap->iv_ifp;
352
struct ieee80211_node *ni;
353
struct ether_header *eh;
354
355
/*
356
* Cancel any background scan.
357
*/
358
if (ic->ic_flags & IEEE80211_F_SCAN)
359
ieee80211_cancel_anyscan(vap);
360
/*
361
* Find the node for the destination so we can do
362
* things like power save and fast frames aggregation.
363
*
364
* NB: past this point various code assumes the first
365
* mbuf has the 802.3 header present (and contiguous).
366
*/
367
ni = NULL;
368
if (m->m_len < sizeof(struct ether_header) &&
369
(m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
370
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
371
"discard frame, %s\n", "m_pullup failed");
372
vap->iv_stats.is_tx_nobuf++; /* XXX */
373
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
374
return (ENOBUFS);
375
}
376
eh = mtod(m, struct ether_header *);
377
if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
378
if (IS_DWDS(vap)) {
379
/*
380
* Only unicast frames from the above go out
381
* DWDS vaps; multicast frames are handled by
382
* dispatching the frame as it comes through
383
* the AP vap (see below).
384
*/
385
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
386
eh->ether_dhost, "mcast", "%s", "on DWDS");
387
vap->iv_stats.is_dwds_mcast++;
388
m_freem(m);
389
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
390
/* XXX better status? */
391
return (ENOBUFS);
392
}
393
if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
394
/*
395
* Spam DWDS vap's w/ multicast traffic.
396
*/
397
/* XXX only if dwds in use? */
398
ieee80211_dwds_mcast(vap, m);
399
}
400
}
401
#ifdef IEEE80211_SUPPORT_MESH
402
if (vap->iv_opmode != IEEE80211_M_MBSS) {
403
#endif
404
ni = ieee80211_find_txnode(vap, eh->ether_dhost);
405
if (ni == NULL) {
406
/* NB: ieee80211_find_txnode does stat+msg */
407
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
408
m_freem(m);
409
/* XXX better status? */
410
return (ENOBUFS);
411
}
412
if (ni->ni_associd == 0 &&
413
(ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
414
IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
415
eh->ether_dhost, NULL,
416
"sta not associated (type 0x%04x)",
417
htons(eh->ether_type));
418
vap->iv_stats.is_tx_notassoc++;
419
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
420
m_freem(m);
421
ieee80211_free_node(ni);
422
/* XXX better status? */
423
return (ENOBUFS);
424
}
425
#ifdef IEEE80211_SUPPORT_MESH
426
} else {
427
if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
428
/*
429
* Proxy station only if configured.
430
*/
431
if (!ieee80211_mesh_isproxyena(vap)) {
432
IEEE80211_DISCARD_MAC(vap,
433
IEEE80211_MSG_OUTPUT |
434
IEEE80211_MSG_MESH,
435
eh->ether_dhost, NULL,
436
"%s", "proxy not enabled");
437
vap->iv_stats.is_mesh_notproxy++;
438
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
439
m_freem(m);
440
/* XXX better status? */
441
return (ENOBUFS);
442
}
443
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
444
"forward frame from DS SA(%6D), DA(%6D)\n",
445
eh->ether_shost, ":",
446
eh->ether_dhost, ":");
447
ieee80211_mesh_proxy_check(vap, eh->ether_shost);
448
}
449
ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
450
if (ni == NULL) {
451
/*
452
* NB: ieee80211_mesh_discover holds/disposes
453
* frame (e.g. queueing on path discovery).
454
*/
455
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
456
/* XXX better status? */
457
return (ENOBUFS);
458
}
459
}
460
#endif
461
462
/*
463
* We've resolved the sender, so attempt to transmit it.
464
*/
465
466
if (vap->iv_state == IEEE80211_S_SLEEP) {
467
/*
468
* In power save; queue frame and then wakeup device
469
* for transmit.
470
*/
471
ic->ic_lastdata = ticks;
472
if (ieee80211_pwrsave(ni, m) != 0)
473
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
474
ieee80211_free_node(ni);
475
ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
476
return (0);
477
}
478
479
if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
480
return (ENOBUFS);
481
return (0);
482
#undef IS_DWDS
483
}
484
485
/*
486
* Start method for vap's. All packets from the stack come
487
* through here. We handle common processing of the packets
488
* before dispatching them to the underlying device.
489
*
490
* if_transmit() requires that the mbuf be consumed by this call
491
* regardless of the return condition.
492
*/
493
int
494
ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
495
{
496
struct ieee80211vap *vap = ifp->if_softc;
497
struct ieee80211com *ic = vap->iv_ic;
498
499
/*
500
* No data frames go out unless we're running.
501
* Note in particular this covers CAC and CSA
502
* states (though maybe we should check muting
503
* for CSA).
504
*/
505
if (vap->iv_state != IEEE80211_S_RUN &&
506
vap->iv_state != IEEE80211_S_SLEEP) {
507
IEEE80211_LOCK(ic);
508
/* re-check under the com lock to avoid races */
509
if (vap->iv_state != IEEE80211_S_RUN &&
510
vap->iv_state != IEEE80211_S_SLEEP) {
511
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
512
"%s: ignore queue, in %s state\n",
513
__func__, ieee80211_state_name[vap->iv_state]);
514
vap->iv_stats.is_tx_badstate++;
515
IEEE80211_UNLOCK(ic);
516
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
517
m_freem(m);
518
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
519
return (ENETDOWN);
520
}
521
IEEE80211_UNLOCK(ic);
522
}
523
524
/*
525
* Sanitize mbuf flags for net80211 use. We cannot
526
* clear M_PWR_SAV or M_MORE_DATA because these may
527
* be set for frames that are re-submitted from the
528
* power save queue.
529
*
530
* NB: This must be done before ieee80211_classify as
531
* it marks EAPOL in frames with M_EAPOL.
532
*/
533
m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
534
535
/*
536
* Bump to the packet transmission path.
537
* The mbuf will be consumed here.
538
*/
539
return (ieee80211_start_pkt(vap, m));
540
}
541
542
void
543
ieee80211_vap_qflush(struct ifnet *ifp)
544
{
545
546
/* Empty for now */
547
}
548
549
/*
550
* 802.11 raw output routine.
551
*
552
* XXX TODO: this (and other send routines) should correctly
553
* XXX keep the pwr mgmt bit set if it decides to call into the
554
* XXX driver to send a frame whilst the state is SLEEP.
555
*
556
* Otherwise the peer may decide that we're awake and flood us
557
* with traffic we are still too asleep to receive!
558
*/
559
int
560
ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
561
struct mbuf *m, const struct ieee80211_bpf_params *params)
562
{
563
struct ieee80211com *ic = vap->iv_ic;
564
int error;
565
566
/*
567
* Set node - the caller has taken a reference, so ensure
568
* that the mbuf has the same node value that
569
* it would if it were going via the normal path.
570
*/
571
MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
572
m->m_pkthdr.rcvif = (void *)ni;
573
574
/*
575
* Attempt to add bpf transmit parameters.
576
*
577
* For now it's ok to fail; the raw_xmit api still takes
578
* them as an option.
579
*
580
* Later on when ic_raw_xmit() has params removed,
581
* they'll have to be added - so fail the transmit if
582
* they can't be.
583
*/
584
if (params)
585
(void) ieee80211_add_xmit_params(m, params);
586
587
error = ic->ic_raw_xmit(ni, m, params);
588
if (error) {
589
if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
590
ieee80211_free_node(ni);
591
}
592
return (error);
593
}
594
595
static int
596
ieee80211_validate_frame(struct mbuf *m,
597
const struct ieee80211_bpf_params *params)
598
{
599
struct ieee80211_frame *wh;
600
int type;
601
602
if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
603
return (EINVAL);
604
605
wh = mtod(m, struct ieee80211_frame *);
606
if (!IEEE80211_IS_FC0_CHECK_VER(wh, IEEE80211_FC0_VERSION_0))
607
return (EINVAL);
608
609
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
610
if (type != IEEE80211_FC0_TYPE_DATA) {
611
if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
612
IEEE80211_FC1_DIR_NODS)
613
return (EINVAL);
614
615
if (type != IEEE80211_FC0_TYPE_MGT &&
616
(wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
617
return (EINVAL);
618
619
/* XXX skip other field checks? */
620
}
621
622
if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
623
(IEEE80211_IS_PROTECTED(wh))) {
624
int subtype;
625
626
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
627
628
/*
629
* See IEEE Std 802.11-2012,
630
* 8.2.4.1.9 'Protected Frame field'
631
*/
632
/* XXX no support for robust management frames yet. */
633
if (!(type == IEEE80211_FC0_TYPE_DATA ||
634
(type == IEEE80211_FC0_TYPE_MGT &&
635
subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
636
return (EINVAL);
637
638
wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
639
}
640
641
if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
642
return (EINVAL);
643
644
return (0);
645
}
646
647
static int
648
ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
649
{
650
struct ieee80211com *ic = ni->ni_ic;
651
652
if (IEEE80211_IS_HT_RATE(rate)) {
653
if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
654
return (EINVAL);
655
656
rate = IEEE80211_RV(rate);
657
if (rate <= 31) {
658
if (rate > ic->ic_txstream * 8 - 1)
659
return (EINVAL);
660
661
return (0);
662
}
663
664
if (rate == 32) {
665
if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
666
return (EINVAL);
667
668
return (0);
669
}
670
671
if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
672
return (EINVAL);
673
674
switch (ic->ic_txstream) {
675
case 0:
676
case 1:
677
return (EINVAL);
678
case 2:
679
if (rate > 38)
680
return (EINVAL);
681
682
return (0);
683
case 3:
684
if (rate > 52)
685
return (EINVAL);
686
687
return (0);
688
case 4:
689
default:
690
if (rate > 76)
691
return (EINVAL);
692
693
return (0);
694
}
695
}
696
697
if (!ieee80211_isratevalid(ic->ic_rt, rate))
698
return (EINVAL);
699
700
return (0);
701
}
702
703
static int
704
ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
705
const struct ieee80211_bpf_params *params)
706
{
707
int error;
708
709
if (!params)
710
return (0); /* nothing to do */
711
712
/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
713
if (params->ibp_rate0 != 0) {
714
error = ieee80211_validate_rate(ni, params->ibp_rate0);
715
if (error != 0)
716
return (error);
717
} else {
718
/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
719
/* XXX __DECONST? */
720
(void) m;
721
}
722
723
if (params->ibp_rate1 != 0 &&
724
(error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
725
return (error);
726
727
if (params->ibp_rate2 != 0 &&
728
(error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
729
return (error);
730
731
if (params->ibp_rate3 != 0 &&
732
(error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
733
return (error);
734
735
return (0);
736
}
737
738
/*
739
* 802.11 output routine. This is (currently) used only to
740
* connect bpf write calls to the 802.11 layer for injecting
741
* raw 802.11 frames.
742
*/
743
int
744
ieee80211_output(struct ifnet *ifp, struct mbuf *m,
745
const struct sockaddr *dst, struct route *ro)
746
{
747
#define senderr(e) do { error = (e); goto bad;} while (0)
748
const struct ieee80211_bpf_params *params = NULL;
749
struct ieee80211_node *ni = NULL;
750
struct ieee80211vap *vap;
751
struct ieee80211_frame *wh;
752
struct ieee80211com *ic = NULL;
753
int error;
754
int ret;
755
756
if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
757
/*
758
* Short-circuit requests if the vap is marked OACTIVE
759
* as this can happen because a packet came down through
760
* ieee80211_start before the vap entered RUN state in
761
* which case it's ok to just drop the frame. This
762
* should not be necessary but callers of if_output don't
763
* check OACTIVE.
764
*/
765
senderr(ENETDOWN);
766
}
767
vap = ifp->if_softc;
768
ic = vap->iv_ic;
769
/*
770
* Hand to the 802.3 code if not tagged as
771
* a raw 802.11 frame.
772
*/
773
if (dst->sa_family != AF_IEEE80211)
774
return vap->iv_output(ifp, m, dst, ro);
775
#ifdef MAC
776
error = mac_ifnet_check_transmit(ifp, m);
777
if (error)
778
senderr(error);
779
#endif
780
if (ieee80211_vap_ifp_check_is_monitor(vap))
781
senderr(ENETDOWN);
782
if (!IFNET_IS_UP_RUNNING(ifp))
783
senderr(ENETDOWN);
784
if (vap->iv_state == IEEE80211_S_CAC) {
785
IEEE80211_DPRINTF(vap,
786
IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
787
"block %s frame in CAC state\n", "raw data");
788
vap->iv_stats.is_tx_badstate++;
789
senderr(EIO); /* XXX */
790
} else if (vap->iv_state == IEEE80211_S_SCAN)
791
senderr(EIO);
792
/* XXX bypass bridge, pfil, carp, etc. */
793
794
/*
795
* NB: DLT_IEEE802_11_RADIO identifies the parameters are
796
* present by setting the sa_len field of the sockaddr (yes,
797
* this is a hack).
798
* NB: we assume sa_data is suitably aligned to cast.
799
*/
800
if (dst->sa_len != 0)
801
params = (const struct ieee80211_bpf_params *)dst->sa_data;
802
803
error = ieee80211_validate_frame(m, params);
804
if (error != 0)
805
senderr(error);
806
807
wh = mtod(m, struct ieee80211_frame *);
808
809
/* locate destination node */
810
switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
811
case IEEE80211_FC1_DIR_NODS:
812
case IEEE80211_FC1_DIR_FROMDS:
813
ni = ieee80211_find_txnode(vap, wh->i_addr1);
814
break;
815
case IEEE80211_FC1_DIR_TODS:
816
case IEEE80211_FC1_DIR_DSTODS:
817
ni = ieee80211_find_txnode(vap, wh->i_addr3);
818
break;
819
default:
820
senderr(EDOOFUS);
821
}
822
if (ni == NULL) {
823
/*
824
* Permit packets w/ bpf params through regardless
825
* (see below about sa_len).
826
*/
827
if (dst->sa_len == 0)
828
senderr(EHOSTUNREACH);
829
ni = ieee80211_ref_node(vap->iv_bss);
830
}
831
832
/*
833
* Sanitize mbuf for net80211 flags leaked from above.
834
*
835
* NB: This must be done before ieee80211_classify as
836
* it marks EAPOL in frames with M_EAPOL.
837
*/
838
m->m_flags &= ~M_80211_TX;
839
m->m_flags |= M_ENCAP; /* mark encapsulated */
840
841
if (IEEE80211_IS_DATA(wh)) {
842
/* calculate priority so drivers can find the tx queue */
843
if (ieee80211_classify(ni, m))
844
senderr(EIO); /* XXX */
845
846
/* NB: ieee80211_encap does not include 802.11 header */
847
IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
848
m->m_pkthdr.len - ieee80211_hdrsize(wh));
849
} else
850
M_WME_SETAC(m, WME_AC_BE);
851
852
error = ieee80211_sanitize_rates(ni, m, params);
853
if (error != 0)
854
senderr(error);
855
856
IEEE80211_NODE_STAT(ni, tx_data);
857
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
858
IEEE80211_NODE_STAT(ni, tx_mcast);
859
m->m_flags |= M_MCAST;
860
} else
861
IEEE80211_NODE_STAT(ni, tx_ucast);
862
863
IEEE80211_TX_LOCK(ic);
864
ret = ieee80211_raw_output(vap, ni, m, params);
865
IEEE80211_TX_UNLOCK(ic);
866
return (ret);
867
bad:
868
if (m != NULL)
869
m_freem(m);
870
if (ni != NULL)
871
ieee80211_free_node(ni);
872
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
873
return error;
874
#undef senderr
875
}
876
877
/*
878
* Set the direction field and address fields of an outgoing
879
* frame. Note this should be called early on in constructing
880
* a frame as it sets i_fc[1]; other bits can then be or'd in.
881
*/
882
void
883
ieee80211_send_setup(
884
struct ieee80211_node *ni,
885
struct mbuf *m,
886
int type, int tid,
887
const uint8_t sa[IEEE80211_ADDR_LEN],
888
const uint8_t da[IEEE80211_ADDR_LEN],
889
const uint8_t bssid[IEEE80211_ADDR_LEN])
890
{
891
#define WH4(wh) ((struct ieee80211_frame_addr4 *)wh)
892
struct ieee80211vap *vap = ni->ni_vap;
893
struct ieee80211_tx_ampdu *tap;
894
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
895
896
IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
897
898
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
899
if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
900
switch (vap->iv_opmode) {
901
case IEEE80211_M_STA:
902
wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
903
IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
904
IEEE80211_ADDR_COPY(wh->i_addr2, sa);
905
IEEE80211_ADDR_COPY(wh->i_addr3, da);
906
break;
907
case IEEE80211_M_IBSS:
908
case IEEE80211_M_AHDEMO:
909
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
910
IEEE80211_ADDR_COPY(wh->i_addr1, da);
911
IEEE80211_ADDR_COPY(wh->i_addr2, sa);
912
IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
913
break;
914
case IEEE80211_M_HOSTAP:
915
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
916
IEEE80211_ADDR_COPY(wh->i_addr1, da);
917
IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
918
IEEE80211_ADDR_COPY(wh->i_addr3, sa);
919
break;
920
case IEEE80211_M_WDS:
921
wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
922
IEEE80211_ADDR_COPY(wh->i_addr1, da);
923
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
924
IEEE80211_ADDR_COPY(wh->i_addr3, da);
925
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
926
break;
927
case IEEE80211_M_MBSS:
928
#ifdef IEEE80211_SUPPORT_MESH
929
if (IEEE80211_IS_MULTICAST(da)) {
930
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
931
/* XXX next hop */
932
IEEE80211_ADDR_COPY(wh->i_addr1, da);
933
IEEE80211_ADDR_COPY(wh->i_addr2,
934
vap->iv_myaddr);
935
} else {
936
wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
937
IEEE80211_ADDR_COPY(wh->i_addr1, da);
938
IEEE80211_ADDR_COPY(wh->i_addr2,
939
vap->iv_myaddr);
940
IEEE80211_ADDR_COPY(wh->i_addr3, da);
941
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
942
}
943
#endif
944
break;
945
case IEEE80211_M_MONITOR: /* NB: to quiet compiler */
946
break;
947
}
948
} else {
949
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
950
IEEE80211_ADDR_COPY(wh->i_addr1, da);
951
IEEE80211_ADDR_COPY(wh->i_addr2, sa);
952
#ifdef IEEE80211_SUPPORT_MESH
953
if (vap->iv_opmode == IEEE80211_M_MBSS)
954
IEEE80211_ADDR_COPY(wh->i_addr3, sa);
955
else
956
#endif
957
IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
958
}
959
*(uint16_t *)&wh->i_dur[0] = 0;
960
961
/*
962
* XXX TODO: this is what the TX lock is for.
963
* Here we're incrementing sequence numbers, and they
964
* need to be in lock-step with what the driver is doing
965
* both in TX ordering and crypto encap (IV increment.)
966
*
967
* If the driver does seqno itself, then we can skip
968
* assigning sequence numbers here, and we can avoid
969
* requiring the TX lock.
970
*/
971
tap = &ni->ni_tx_ampdu[tid];
972
if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
973
m->m_flags |= M_AMPDU_MPDU;
974
975
/* NB: zero out i_seq field (for s/w encryption etc) */
976
*(uint16_t *)&wh->i_seq[0] = 0;
977
} else if (!IEEE80211_CONF_SEQNO_OFFLOAD(ni->ni_ic))
978
ieee80211_output_seqno_assign(ni, tid, m);
979
980
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
981
m->m_flags |= M_MCAST;
982
#undef WH4
983
}
984
985
/*
986
* Send a management frame to the specified node. The node pointer
987
* must have a reference as the pointer will be passed to the driver
988
* and potentially held for a long time. If the frame is successfully
989
* dispatched to the driver, then it is responsible for freeing the
990
* reference (and potentially free'ing up any associated storage);
991
* otherwise deal with reclaiming any reference (on error).
992
*/
993
int
994
ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
995
struct ieee80211_bpf_params *params)
996
{
997
struct ieee80211vap *vap = ni->ni_vap;
998
struct ieee80211com *ic = ni->ni_ic;
999
struct ieee80211_frame *wh;
1000
int ret;
1001
1002
KASSERT(ni != NULL, ("null node"));
1003
1004
if (vap->iv_state == IEEE80211_S_CAC) {
1005
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1006
ni, "block %s frame in CAC state",
1007
ieee80211_mgt_subtype_name(type));
1008
vap->iv_stats.is_tx_badstate++;
1009
ieee80211_free_node(ni);
1010
m_freem(m);
1011
return EIO; /* XXX */
1012
}
1013
1014
M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
1015
if (m == NULL) {
1016
ieee80211_free_node(ni);
1017
return ENOMEM;
1018
}
1019
1020
IEEE80211_TX_LOCK(ic);
1021
1022
wh = mtod(m, struct ieee80211_frame *);
1023
ieee80211_send_setup(ni, m,
1024
IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1025
vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1026
if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1027
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1028
"encrypting frame (%s)", __func__);
1029
wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1030
}
1031
m->m_flags |= M_ENCAP; /* mark encapsulated */
1032
1033
KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1034
M_WME_SETAC(m, params->ibp_pri);
1035
1036
#ifdef IEEE80211_DEBUG
1037
/* avoid printing too many frames */
1038
if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1039
ieee80211_msg_dumppkts(vap)) {
1040
ieee80211_note(vap, "[%s] send %s on channel %u\n",
1041
ether_sprintf(wh->i_addr1),
1042
ieee80211_mgt_subtype_name(type),
1043
ieee80211_chan2ieee(ic, ic->ic_curchan));
1044
}
1045
#endif
1046
IEEE80211_NODE_STAT(ni, tx_mgmt);
1047
1048
ret = ieee80211_raw_output(vap, ni, m, params);
1049
IEEE80211_TX_UNLOCK(ic);
1050
return (ret);
1051
}
1052
1053
static void
1054
ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1055
int status)
1056
{
1057
struct ieee80211vap *vap = ni->ni_vap;
1058
1059
wakeup(vap);
1060
}
1061
1062
/*
1063
* Send a null data frame to the specified node. If the station
1064
* is setup for QoS then a QoS Null Data frame is constructed.
1065
* If this is a WDS station then a 4-address frame is constructed.
1066
*
1067
* NB: the caller is assumed to have setup a node reference
1068
* for use; this is necessary to deal with a race condition
1069
* when probing for inactive stations. Like ieee80211_mgmt_output
1070
* we must cleanup any node reference on error; however we
1071
* can safely just unref it as we know it will never be the
1072
* last reference to the node.
1073
*/
1074
int
1075
ieee80211_send_nulldata(struct ieee80211_node *ni)
1076
{
1077
struct ieee80211vap *vap = ni->ni_vap;
1078
struct ieee80211com *ic = ni->ni_ic;
1079
struct mbuf *m;
1080
struct ieee80211_frame *wh;
1081
int hdrlen;
1082
uint8_t *frm;
1083
int ret;
1084
1085
/* Don't send NULL frames if we've been configured not to do so. */
1086
if ((ic->ic_flags_ext & IEEE80211_FEXT_NO_NULLDATA) != 0) {
1087
ieee80211_node_decref(ni);
1088
return (0);
1089
}
1090
1091
if (vap->iv_state == IEEE80211_S_CAC) {
1092
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1093
ni, "block %s frame in CAC state", "null data");
1094
ieee80211_node_decref(ni);
1095
vap->iv_stats.is_tx_badstate++;
1096
return EIO; /* XXX */
1097
}
1098
1099
if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1100
hdrlen = sizeof(struct ieee80211_qosframe);
1101
else
1102
hdrlen = sizeof(struct ieee80211_frame);
1103
/* NB: only WDS vap's get 4-address frames */
1104
if (vap->iv_opmode == IEEE80211_M_WDS)
1105
hdrlen += IEEE80211_ADDR_LEN;
1106
if (ic->ic_flags & IEEE80211_F_DATAPAD)
1107
hdrlen = roundup(hdrlen, sizeof(uint32_t));
1108
1109
m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1110
if (m == NULL) {
1111
/* XXX debug msg */
1112
ieee80211_node_decref(ni);
1113
vap->iv_stats.is_tx_nobuf++;
1114
return ENOMEM;
1115
}
1116
KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1117
("leading space %zd", M_LEADINGSPACE(m)));
1118
M_PREPEND(m, hdrlen, IEEE80211_M_NOWAIT);
1119
if (m == NULL) {
1120
/* NB: cannot happen */
1121
ieee80211_free_node(ni);
1122
return ENOMEM;
1123
}
1124
1125
IEEE80211_TX_LOCK(ic);
1126
1127
wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */
1128
if (ni->ni_flags & IEEE80211_NODE_QOS) {
1129
const int tid = WME_AC_TO_TID(WME_AC_BE);
1130
uint8_t *qos;
1131
1132
ieee80211_send_setup(ni, m,
1133
IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1134
tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1135
1136
if (vap->iv_opmode == IEEE80211_M_WDS)
1137
qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1138
else
1139
qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1140
qos[0] = tid & IEEE80211_QOS_TID;
1141
if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1142
qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1143
qos[1] = 0;
1144
} else {
1145
ieee80211_send_setup(ni, m,
1146
IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1147
IEEE80211_NONQOS_TID,
1148
vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1149
}
1150
if (vap->iv_opmode != IEEE80211_M_WDS) {
1151
/* NB: power management bit is never sent by an AP */
1152
if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1153
vap->iv_opmode != IEEE80211_M_HOSTAP)
1154
wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1155
}
1156
if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1157
(ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1158
ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1159
NULL);
1160
}
1161
m->m_len = m->m_pkthdr.len = hdrlen;
1162
m->m_flags |= M_ENCAP; /* mark encapsulated */
1163
1164
M_WME_SETAC(m, WME_AC_BE);
1165
1166
IEEE80211_NODE_STAT(ni, tx_data);
1167
1168
IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1169
"send %snull data frame on channel %u, pwr mgt %s",
1170
ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1171
ieee80211_chan2ieee(ic, ic->ic_curchan),
1172
wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1173
1174
ret = ieee80211_raw_output(vap, ni, m, NULL);
1175
IEEE80211_TX_UNLOCK(ic);
1176
return (ret);
1177
}
1178
1179
/*
1180
* Assign priority to a frame based on any vlan tag assigned
1181
* to the station and/or any Diffserv setting in an IP header.
1182
* Finally, if an ACM policy is setup (in station mode) it's
1183
* applied.
1184
*/
1185
int
1186
ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1187
{
1188
const struct ether_header *eh = NULL;
1189
uint16_t ether_type;
1190
int v_wme_ac, d_wme_ac, ac;
1191
1192
if (__predict_false(m->m_flags & M_ENCAP)) {
1193
struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1194
struct llc *llc;
1195
int hdrlen, subtype;
1196
1197
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1198
if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1199
ac = WME_AC_BE;
1200
goto done;
1201
}
1202
1203
hdrlen = ieee80211_hdrsize(wh);
1204
if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1205
return 1;
1206
1207
llc = (struct llc *)mtodo(m, hdrlen);
1208
if (llc->llc_dsap != LLC_SNAP_LSAP ||
1209
llc->llc_ssap != LLC_SNAP_LSAP ||
1210
llc->llc_control != LLC_UI ||
1211
llc->llc_snap.org_code[0] != 0 ||
1212
llc->llc_snap.org_code[1] != 0 ||
1213
llc->llc_snap.org_code[2] != 0)
1214
return 1;
1215
1216
ether_type = llc->llc_snap.ether_type;
1217
} else {
1218
eh = mtod(m, struct ether_header *);
1219
ether_type = eh->ether_type;
1220
}
1221
1222
/*
1223
* Always promote PAE/EAPOL frames to high priority.
1224
*/
1225
if (ether_type == htons(ETHERTYPE_PAE)) {
1226
/* NB: mark so others don't need to check header */
1227
m->m_flags |= M_EAPOL;
1228
ac = WME_AC_VO;
1229
goto done;
1230
}
1231
/*
1232
* Non-qos traffic goes to BE.
1233
*/
1234
if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1235
ac = WME_AC_BE;
1236
goto done;
1237
}
1238
1239
/*
1240
* If node has a vlan tag then all traffic
1241
* to it must have a matching tag.
1242
*/
1243
v_wme_ac = 0;
1244
if (ni->ni_vlan != 0) {
1245
if ((m->m_flags & M_VLANTAG) == 0) {
1246
IEEE80211_NODE_STAT(ni, tx_novlantag);
1247
return 1;
1248
}
1249
if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1250
EVL_VLANOFTAG(ni->ni_vlan)) {
1251
IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1252
return 1;
1253
}
1254
/* map vlan priority to AC */
1255
v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1256
}
1257
1258
if (eh == NULL)
1259
goto no_eh;
1260
1261
/* XXX m_copydata may be too slow for fast path */
1262
switch (ntohs(eh->ether_type)) {
1263
#ifdef INET
1264
case ETHERTYPE_IP:
1265
{
1266
uint8_t tos;
1267
/*
1268
* IP frame, map the DSCP bits from the TOS field.
1269
*/
1270
/* NB: ip header may not be in first mbuf */
1271
m_copydata(m, sizeof(struct ether_header) +
1272
offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1273
tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
1274
d_wme_ac = TID_TO_WME_AC(tos);
1275
break;
1276
}
1277
#endif
1278
#ifdef INET6
1279
case ETHERTYPE_IPV6:
1280
{
1281
uint32_t flow;
1282
uint8_t tos;
1283
/*
1284
* IPv6 frame, map the DSCP bits from the traffic class field.
1285
*/
1286
m_copydata(m, sizeof(struct ether_header) +
1287
offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1288
(caddr_t) &flow);
1289
tos = (uint8_t)(ntohl(flow) >> 20);
1290
tos >>= 5; /* NB: ECN + low 3 bits of DSCP */
1291
d_wme_ac = TID_TO_WME_AC(tos);
1292
break;
1293
}
1294
#endif
1295
default:
1296
no_eh:
1297
d_wme_ac = WME_AC_BE;
1298
break;
1299
}
1300
1301
/*
1302
* Use highest priority AC.
1303
*/
1304
if (v_wme_ac > d_wme_ac)
1305
ac = v_wme_ac;
1306
else
1307
ac = d_wme_ac;
1308
1309
/*
1310
* Apply ACM policy.
1311
*/
1312
if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1313
static const int acmap[4] = {
1314
WME_AC_BK, /* WME_AC_BE */
1315
WME_AC_BK, /* WME_AC_BK */
1316
WME_AC_BE, /* WME_AC_VI */
1317
WME_AC_VI, /* WME_AC_VO */
1318
};
1319
struct ieee80211com *ic = ni->ni_ic;
1320
1321
while (ac != WME_AC_BK &&
1322
ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1323
ac = acmap[ac];
1324
}
1325
done:
1326
M_WME_SETAC(m, ac);
1327
return 0;
1328
}
1329
1330
/*
1331
* Insure there is sufficient contiguous space to encapsulate the
1332
* 802.11 data frame. If room isn't already there, arrange for it.
1333
* Drivers and cipher modules assume we have done the necessary work
1334
* and fail rudely if they don't find the space they need.
1335
*/
1336
struct mbuf *
1337
ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1338
struct ieee80211_key *key, struct mbuf *m)
1339
{
1340
#define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc))
1341
int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1342
1343
if (key != NULL) {
1344
/* XXX belongs in crypto code? */
1345
needed_space += key->wk_cipher->ic_header;
1346
/* XXX frags */
1347
/*
1348
* When crypto is being done in the host we must insure
1349
* the data are writable for the cipher routines; clone
1350
* a writable mbuf chain.
1351
* XXX handle SWMIC specially
1352
*/
1353
if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1354
m = m_unshare(m, IEEE80211_M_NOWAIT);
1355
if (m == NULL) {
1356
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1357
"%s: cannot get writable mbuf\n", __func__);
1358
vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1359
return NULL;
1360
}
1361
}
1362
}
1363
/*
1364
* We know we are called just before stripping an Ethernet
1365
* header and prepending an LLC header. This means we know
1366
* there will be
1367
* sizeof(struct ether_header) - sizeof(struct llc)
1368
* bytes recovered to which we need additional space for the
1369
* 802.11 header and any crypto header.
1370
*/
1371
/* XXX check trailing space and copy instead? */
1372
if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1373
struct mbuf *n = m_gethdr(IEEE80211_M_NOWAIT, m->m_type);
1374
if (n == NULL) {
1375
IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1376
"%s: cannot expand storage\n", __func__);
1377
vap->iv_stats.is_tx_nobuf++;
1378
m_freem(m);
1379
return NULL;
1380
}
1381
KASSERT(needed_space <= MHLEN,
1382
("not enough room, need %u got %d\n", needed_space, MHLEN));
1383
/*
1384
* Setup new mbuf to have leading space to prepend the
1385
* 802.11 header and any crypto header bits that are
1386
* required (the latter are added when the driver calls
1387
* back to ieee80211_crypto_encap to do crypto encapsulation).
1388
*/
1389
/* NB: must be first 'cuz it clobbers m_data */
1390
m_move_pkthdr(n, m);
1391
n->m_len = 0; /* NB: m_gethdr does not set */
1392
n->m_data += needed_space;
1393
/*
1394
* Pull up Ethernet header to create the expected layout.
1395
* We could use m_pullup but that's overkill (i.e. we don't
1396
* need the actual data) and it cannot fail so do it inline
1397
* for speed.
1398
*/
1399
/* NB: struct ether_header is known to be contiguous */
1400
n->m_len += sizeof(struct ether_header);
1401
m->m_len -= sizeof(struct ether_header);
1402
m->m_data += sizeof(struct ether_header);
1403
/*
1404
* Replace the head of the chain.
1405
*/
1406
n->m_next = m;
1407
m = n;
1408
}
1409
return m;
1410
#undef TO_BE_RECLAIMED
1411
}
1412
1413
/*
1414
* Return the transmit key to use in sending a unicast frame.
1415
* If a unicast key is set we use that. When no unicast key is set
1416
* we fall back to the default transmit key.
1417
*/
1418
static __inline struct ieee80211_key *
1419
ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1420
struct ieee80211_node *ni)
1421
{
1422
if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1423
if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1424
IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1425
return NULL;
1426
return &vap->iv_nw_keys[vap->iv_def_txkey];
1427
} else {
1428
return &ni->ni_ucastkey;
1429
}
1430
}
1431
1432
/*
1433
* Return the transmit key to use in sending a multicast frame.
1434
* Multicast traffic always uses the group key which is installed as
1435
* the default tx key.
1436
*/
1437
static __inline struct ieee80211_key *
1438
ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1439
struct ieee80211_node *ni)
1440
{
1441
if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1442
IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1443
return NULL;
1444
return &vap->iv_nw_keys[vap->iv_def_txkey];
1445
}
1446
1447
/*
1448
* Encapsulate an outbound data frame. The mbuf chain is updated.
1449
* If an error is encountered NULL is returned. The caller is required
1450
* to provide a node reference and pullup the ethernet header in the
1451
* first mbuf.
1452
*
1453
* NB: Packet is assumed to be processed by ieee80211_classify which
1454
* marked EAPOL frames w/ M_EAPOL.
1455
*/
1456
struct mbuf *
1457
ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1458
struct mbuf *m)
1459
{
1460
#define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh))
1461
#define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc)
1462
struct ieee80211com *ic = ni->ni_ic;
1463
#ifdef IEEE80211_SUPPORT_MESH
1464
struct ieee80211_mesh_state *ms = vap->iv_mesh;
1465
struct ieee80211_meshcntl_ae10 *mc;
1466
struct ieee80211_mesh_route *rt = NULL;
1467
int dir = -1;
1468
#endif
1469
struct ether_header eh;
1470
struct ieee80211_frame *wh;
1471
struct ieee80211_key *key;
1472
struct llc *llc;
1473
int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1474
int meshhdrsize, meshae;
1475
uint8_t *qos;
1476
int is_amsdu = 0;
1477
1478
IEEE80211_TX_LOCK_ASSERT(ic);
1479
1480
is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1481
1482
/*
1483
* Copy existing Ethernet header to a safe place. The
1484
* rest of the code assumes it's ok to strip it when
1485
* reorganizing state for the final encapsulation.
1486
*/
1487
KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1488
ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1489
1490
/*
1491
* Insure space for additional headers. First identify
1492
* transmit key to use in calculating any buffer adjustments
1493
* required. This is also used below to do privacy
1494
* encapsulation work. Then calculate the 802.11 header
1495
* size and any padding required by the driver.
1496
*
1497
* Note key may be NULL if we fall back to the default
1498
* transmit key and that is not set. In that case the
1499
* buffer may not be expanded as needed by the cipher
1500
* routines, but they will/should discard it.
1501
*/
1502
if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1503
if (vap->iv_opmode == IEEE80211_M_STA ||
1504
!IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1505
(vap->iv_opmode == IEEE80211_M_WDS &&
1506
(vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1507
key = ieee80211_crypto_getucastkey(vap, ni);
1508
} else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
1509
(! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1510
/*
1511
* Use ucastkey for DWDS transmit nodes, multicast
1512
* or otherwise.
1513
*
1514
* This is required to ensure that multicast frames
1515
* from a DWDS AP to a DWDS STA is encrypted with
1516
* a key that can actually work.
1517
*
1518
* There's no default key for multicast traffic
1519
* on a DWDS WDS VAP node (note NOT the DWDS enabled
1520
* AP VAP, the dynamically created per-STA WDS node)
1521
* so encap fails and transmit fails.
1522
*/
1523
key = ieee80211_crypto_getucastkey(vap, ni);
1524
} else {
1525
key = ieee80211_crypto_getmcastkey(vap, ni);
1526
}
1527
if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1528
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1529
eh.ether_dhost,
1530
"no default transmit key (%s) deftxkey %u",
1531
__func__, vap->iv_def_txkey);
1532
vap->iv_stats.is_tx_nodefkey++;
1533
goto bad;
1534
}
1535
} else
1536
key = NULL;
1537
/*
1538
* XXX Some ap's don't handle QoS-encapsulated EAPOL
1539
* frames so suppress use. This may be an issue if other
1540
* ap's require all data frames to be QoS-encapsulated
1541
* once negotiated in which case we'll need to make this
1542
* configurable.
1543
*
1544
* Don't send multicast QoS frames.
1545
* Technically multicast frames can be QoS if all stations in the
1546
* BSS are also QoS.
1547
*
1548
* NB: mesh data frames are QoS, including multicast frames.
1549
*/
1550
addqos =
1551
(((is_mcast == 0) && (ni->ni_flags &
1552
(IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1553
(vap->iv_opmode == IEEE80211_M_MBSS)) &&
1554
(m->m_flags & M_EAPOL) == 0;
1555
1556
if (addqos)
1557
hdrsize = sizeof(struct ieee80211_qosframe);
1558
else
1559
hdrsize = sizeof(struct ieee80211_frame);
1560
#ifdef IEEE80211_SUPPORT_MESH
1561
if (vap->iv_opmode == IEEE80211_M_MBSS) {
1562
/*
1563
* Mesh data frames are encapsulated according to the
1564
* rules of Section 11B.8.5 (p.139 of D3.0 spec).
1565
* o Group Addressed data (aka multicast) originating
1566
* at the local sta are sent w/ 3-address format and
1567
* address extension mode 00
1568
* o Individually Addressed data (aka unicast) originating
1569
* at the local sta are sent w/ 4-address format and
1570
* address extension mode 00
1571
* o Group Addressed data forwarded from a non-mesh sta are
1572
* sent w/ 3-address format and address extension mode 01
1573
* o Individually Address data from another sta are sent
1574
* w/ 4-address format and address extension mode 10
1575
*/
1576
is4addr = 0; /* NB: don't use, disable */
1577
if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1578
rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1579
KASSERT(rt != NULL, ("route is NULL"));
1580
dir = IEEE80211_FC1_DIR_DSTODS;
1581
hdrsize += IEEE80211_ADDR_LEN;
1582
if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1583
if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1584
vap->iv_myaddr)) {
1585
IEEE80211_NOTE_MAC(vap,
1586
IEEE80211_MSG_MESH,
1587
eh.ether_dhost,
1588
"%s", "trying to send to ourself");
1589
goto bad;
1590
}
1591
meshae = IEEE80211_MESH_AE_10;
1592
meshhdrsize =
1593
sizeof(struct ieee80211_meshcntl_ae10);
1594
} else {
1595
meshae = IEEE80211_MESH_AE_00;
1596
meshhdrsize =
1597
sizeof(struct ieee80211_meshcntl);
1598
}
1599
} else {
1600
dir = IEEE80211_FC1_DIR_FROMDS;
1601
if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1602
/* proxy group */
1603
meshae = IEEE80211_MESH_AE_01;
1604
meshhdrsize =
1605
sizeof(struct ieee80211_meshcntl_ae01);
1606
} else {
1607
/* group */
1608
meshae = IEEE80211_MESH_AE_00;
1609
meshhdrsize = sizeof(struct ieee80211_meshcntl);
1610
}
1611
}
1612
} else {
1613
#endif
1614
/*
1615
* 4-address frames need to be generated for:
1616
* o packets sent through a WDS vap (IEEE80211_M_WDS)
1617
* o packets sent through a vap marked for relaying
1618
* (e.g. a station operating with dynamic WDS)
1619
*/
1620
is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1621
((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1622
!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1623
if (is4addr)
1624
hdrsize += IEEE80211_ADDR_LEN;
1625
meshhdrsize = meshae = 0;
1626
#ifdef IEEE80211_SUPPORT_MESH
1627
}
1628
#endif
1629
/*
1630
* Honor driver DATAPAD requirement.
1631
*/
1632
if (ic->ic_flags & IEEE80211_F_DATAPAD)
1633
hdrspace = roundup(hdrsize, sizeof(uint32_t));
1634
else
1635
hdrspace = hdrsize;
1636
1637
if (__predict_true((m->m_flags & M_FF) == 0)) {
1638
/*
1639
* Normal frame.
1640
*/
1641
m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1642
if (m == NULL) {
1643
/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1644
goto bad;
1645
}
1646
/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1647
m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1648
llc = mtod(m, struct llc *);
1649
llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1650
llc->llc_control = LLC_UI;
1651
llc->llc_snap.org_code[0] = 0;
1652
llc->llc_snap.org_code[1] = 0;
1653
llc->llc_snap.org_code[2] = 0;
1654
llc->llc_snap.ether_type = eh.ether_type;
1655
} else {
1656
#ifdef IEEE80211_SUPPORT_SUPERG
1657
/*
1658
* Aggregated frame. Check if it's for AMSDU or FF.
1659
*
1660
* XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1661
* anywhere for some reason. But, since 11n requires
1662
* AMSDU RX, we can just assume "11n" == "AMSDU".
1663
*/
1664
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1665
if (ieee80211_amsdu_tx_ok(ni)) {
1666
m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1667
is_amsdu = 1;
1668
} else {
1669
m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1670
}
1671
if (m == NULL)
1672
#endif
1673
goto bad;
1674
}
1675
datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */
1676
1677
M_PREPEND(m, hdrspace + meshhdrsize, IEEE80211_M_NOWAIT);
1678
if (m == NULL) {
1679
vap->iv_stats.is_tx_nobuf++;
1680
goto bad;
1681
}
1682
wh = mtod(m, struct ieee80211_frame *);
1683
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1684
*(uint16_t *)wh->i_dur = 0;
1685
qos = NULL; /* NB: quiet compiler */
1686
if (is4addr) {
1687
wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1688
IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1689
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1690
IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1691
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1692
} else switch (vap->iv_opmode) {
1693
case IEEE80211_M_STA:
1694
wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1695
IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1696
IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1697
IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1698
break;
1699
case IEEE80211_M_IBSS:
1700
case IEEE80211_M_AHDEMO:
1701
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1702
IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1703
IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1704
/*
1705
* NB: always use the bssid from iv_bss as the
1706
* neighbor's may be stale after an ibss merge
1707
*/
1708
IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1709
break;
1710
case IEEE80211_M_HOSTAP:
1711
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1712
IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1713
IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1714
IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1715
break;
1716
#ifdef IEEE80211_SUPPORT_MESH
1717
case IEEE80211_M_MBSS:
1718
/* NB: offset by hdrspace to deal with DATAPAD */
1719
mc = (struct ieee80211_meshcntl_ae10 *)
1720
(mtod(m, uint8_t *) + hdrspace);
1721
wh->i_fc[1] = dir;
1722
switch (meshae) {
1723
case IEEE80211_MESH_AE_00: /* no proxy */
1724
mc->mc_flags = 0;
1725
if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1726
IEEE80211_ADDR_COPY(wh->i_addr1,
1727
ni->ni_macaddr);
1728
IEEE80211_ADDR_COPY(wh->i_addr2,
1729
vap->iv_myaddr);
1730
IEEE80211_ADDR_COPY(wh->i_addr3,
1731
eh.ether_dhost);
1732
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1733
eh.ether_shost);
1734
qos =((struct ieee80211_qosframe_addr4 *)
1735
wh)->i_qos;
1736
} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1737
/* mcast */
1738
IEEE80211_ADDR_COPY(wh->i_addr1,
1739
eh.ether_dhost);
1740
IEEE80211_ADDR_COPY(wh->i_addr2,
1741
vap->iv_myaddr);
1742
IEEE80211_ADDR_COPY(wh->i_addr3,
1743
eh.ether_shost);
1744
qos = ((struct ieee80211_qosframe *)
1745
wh)->i_qos;
1746
}
1747
break;
1748
case IEEE80211_MESH_AE_01: /* mcast, proxy */
1749
wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1750
IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1751
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1752
IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1753
mc->mc_flags = 1;
1754
IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1755
eh.ether_shost);
1756
qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1757
break;
1758
case IEEE80211_MESH_AE_10: /* ucast, proxy */
1759
KASSERT(rt != NULL, ("route is NULL"));
1760
IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1761
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1762
IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1763
IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1764
mc->mc_flags = IEEE80211_MESH_AE_10;
1765
IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1766
IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1767
qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1768
break;
1769
default:
1770
KASSERT(0, ("meshae %d", meshae));
1771
break;
1772
}
1773
mc->mc_ttl = ms->ms_ttl;
1774
ms->ms_seq++;
1775
le32enc(mc->mc_seq, ms->ms_seq);
1776
break;
1777
#endif
1778
case IEEE80211_M_WDS: /* NB: is4addr should always be true */
1779
default:
1780
goto bad;
1781
}
1782
if (m->m_flags & M_MORE_DATA)
1783
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1784
if (addqos) {
1785
int ac, tid;
1786
1787
if (is4addr) {
1788
qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1789
/* NB: mesh case handled earlier */
1790
} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1791
qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1792
ac = M_WME_GETAC(m);
1793
/* map from access class/queue to 11e header priorty value */
1794
tid = WME_AC_TO_TID(ac);
1795
qos[0] = tid & IEEE80211_QOS_TID;
1796
if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1797
qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1798
#ifdef IEEE80211_SUPPORT_MESH
1799
if (vap->iv_opmode == IEEE80211_M_MBSS)
1800
qos[1] = IEEE80211_QOS_MC;
1801
else
1802
#endif
1803
qos[1] = 0;
1804
wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS_DATA;
1805
1806
/*
1807
* If this is an A-MSDU then ensure we set the
1808
* relevant field.
1809
*/
1810
if (is_amsdu)
1811
qos[0] |= IEEE80211_QOS_AMSDU;
1812
1813
/*
1814
* XXX TODO TX lock is needed for atomic updates of sequence
1815
* numbers. If the driver does it, then don't do it here;
1816
* and we don't need the TX lock held.
1817
*/
1818
if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1819
if (!IEEE80211_CONF_SEQNO_OFFLOAD(ic))
1820
ieee80211_output_seqno_assign(ni, tid, m);
1821
} else {
1822
/*
1823
* NB: don't assign a sequence # to potential
1824
* aggregates; we expect this happens at the
1825
* point the frame comes off any aggregation q
1826
* as otherwise we may introduce holes in the
1827
* BA sequence space and/or make window accouting
1828
* more difficult.
1829
*
1830
* XXX may want to control this with a driver
1831
* capability; this may also change when we pull
1832
* aggregation up into net80211
1833
*/
1834
/* NB: zero out i_seq field (for s/w encryption etc) */
1835
*(uint16_t *)wh->i_seq = 0;
1836
}
1837
} else {
1838
if (!IEEE80211_CONF_SEQNO_OFFLOAD(ic))
1839
ieee80211_output_seqno_assign(ni, IEEE80211_NONQOS_TID,
1840
m);
1841
/*
1842
* XXX TODO: we shouldn't allow EAPOL, etc that would
1843
* be forced to be non-QoS traffic to be A-MSDU encapsulated.
1844
*/
1845
if (is_amsdu)
1846
net80211_vap_printf(vap,
1847
"%s: XXX ERROR: is_amsdu set; not QoS!\n",
1848
__func__);
1849
}
1850
1851
/*
1852
* Check if xmit fragmentation is required.
1853
*
1854
* If the hardware does fragmentation offload, then don't bother
1855
* doing it here.
1856
*
1857
* Don't send AMPDU/FF/AMSDU through fragmentation.
1858
*
1859
* 802.11-2016 10.2.7 (Fragmentation/defragmentation overview)
1860
*/
1861
if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1862
txfrag = 0;
1863
else
1864
txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1865
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1866
(vap->iv_caps & IEEE80211_C_TXFRAG) &&
1867
(m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1868
1869
if (key != NULL) {
1870
/*
1871
* IEEE 802.1X: send EAPOL frames always in the clear.
1872
* WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1873
*/
1874
if ((m->m_flags & M_EAPOL) == 0 ||
1875
((vap->iv_flags & IEEE80211_F_WPA) &&
1876
(vap->iv_opmode == IEEE80211_M_STA ?
1877
!IEEE80211_KEY_UNDEFINED(key) :
1878
!IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1879
wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1880
if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1881
IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1882
eh.ether_dhost,
1883
"%s", "enmic failed, discard frame");
1884
vap->iv_stats.is_crypto_enmicfail++;
1885
goto bad;
1886
}
1887
}
1888
}
1889
if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1890
key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1891
goto bad;
1892
1893
m->m_flags |= M_ENCAP; /* mark encapsulated */
1894
1895
IEEE80211_NODE_STAT(ni, tx_data);
1896
if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1897
IEEE80211_NODE_STAT(ni, tx_mcast);
1898
m->m_flags |= M_MCAST;
1899
} else
1900
IEEE80211_NODE_STAT(ni, tx_ucast);
1901
IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1902
1903
return m;
1904
bad:
1905
if (m != NULL)
1906
m_freem(m);
1907
return NULL;
1908
#undef WH4
1909
#undef MC01
1910
}
1911
1912
/**
1913
* @brief Free an 802.11 frame mbuf.
1914
*
1915
* Note that since a "frame" may consist of an mbuf packet
1916
* list containing the 802.11 fragments that make up said
1917
* frame, it will free everything in the mbuf packet list.
1918
*
1919
* @param m mbuf packet list to free
1920
*/
1921
void
1922
ieee80211_free_mbuf(struct mbuf *m)
1923
{
1924
struct mbuf *next;
1925
1926
if (m == NULL)
1927
return;
1928
1929
do {
1930
next = m->m_nextpkt;
1931
m->m_nextpkt = NULL;
1932
m_freem(m);
1933
} while ((m = next) != NULL);
1934
}
1935
1936
/**
1937
* @brief Fragment the frame according to the specified mtu.
1938
*
1939
* This implements the fragmentation part of 802.11-2016 10.2.7
1940
* (Fragmentation/defragmentation overview.)
1941
*
1942
* The size of the 802.11 header (w/o padding) is provided
1943
* so we don't need to recalculate it. We create a new
1944
* mbuf for each fragment and chain it through m_nextpkt;
1945
* we might be able to optimize this by reusing the original
1946
* packet's mbufs but that is significantly more complicated.
1947
*
1948
* A node reference is NOT acquired for each fragment in
1949
* the list - the caller is assumed to have taken a node
1950
* reference for the whole list. The fragment mbufs do not
1951
* have a node pointer.
1952
*
1953
* Fragments will have the sequence number and fragment numbers
1954
* assigned. However, Fragments will NOT have a sequence number
1955
* assigned via M_SEQNO_SET.
1956
*
1957
* This must be called after assigning sequence numbers; it
1958
* modifies the i_seq field in the 802.11 header to include
1959
* the fragment number.
1960
*
1961
* @param vap ieee80211vap interface
1962
* @param m0 pointer to mbuf list to fragment
1963
* @param hdrsize header size to reserver
1964
* @param ciphdrsize crypto cipher header size to reserve
1965
* @param mtu maximum fragment size
1966
* @retval 1 if successful, with the mbuf pointed at by m0
1967
* turned into an mbuf list of fragments (with the original
1968
* mbuf being truncated.)
1969
* @retval 0 if failure, the mbuf needs to be freed by the caller
1970
*/
1971
static int
1972
ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1973
u_int hdrsize, u_int ciphdrsize, u_int mtu)
1974
{
1975
struct ieee80211com *ic = vap->iv_ic;
1976
struct ieee80211_frame *wh, *whf;
1977
struct mbuf *m, *prev;
1978
u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1979
u_int hdrspace;
1980
1981
KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1982
KASSERT(m0->m_pkthdr.len > mtu,
1983
("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1984
1985
/*
1986
* Honor driver DATAPAD requirement.
1987
*/
1988
if (ic->ic_flags & IEEE80211_F_DATAPAD)
1989
hdrspace = roundup(hdrsize, sizeof(uint32_t));
1990
else
1991
hdrspace = hdrsize;
1992
1993
wh = mtod(m0, struct ieee80211_frame *);
1994
/* NB: mark the first frag; it will be propagated below */
1995
wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1996
totalhdrsize = hdrspace + ciphdrsize;
1997
fragno = 1;
1998
off = mtu - ciphdrsize;
1999
remainder = m0->m_pkthdr.len - off;
2000
prev = m0;
2001
do {
2002
fragsize = MIN(totalhdrsize + remainder, mtu);
2003
m = m_get2(fragsize, IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
2004
if (m == NULL)
2005
goto bad;
2006
/* leave room to prepend any cipher header */
2007
m_align(m, fragsize - ciphdrsize);
2008
2009
/*
2010
* Form the header in the fragment. Note that since
2011
* we mark the first fragment with the MORE_FRAG bit
2012
* it automatically is propagated to each fragment; we
2013
* need only clear it on the last fragment (done below).
2014
* NB: frag 1+ dont have Mesh Control field present.
2015
*/
2016
whf = mtod(m, struct ieee80211_frame *);
2017
memcpy(whf, wh, hdrsize);
2018
#ifdef IEEE80211_SUPPORT_MESH
2019
if (vap->iv_opmode == IEEE80211_M_MBSS)
2020
ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
2021
#endif
2022
*(uint16_t *)&whf->i_seq[0] |= htole16(
2023
(fragno & IEEE80211_SEQ_FRAG_MASK) <<
2024
IEEE80211_SEQ_FRAG_SHIFT);
2025
fragno++;
2026
2027
payload = fragsize - totalhdrsize;
2028
/* NB: destination is known to be contiguous */
2029
2030
m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
2031
m->m_len = hdrspace + payload;
2032
m->m_pkthdr.len = hdrspace + payload;
2033
m->m_flags |= M_FRAG;
2034
2035
/* chain up the fragment */
2036
prev->m_nextpkt = m;
2037
prev = m;
2038
2039
/* deduct fragment just formed */
2040
remainder -= payload;
2041
off += payload;
2042
} while (remainder != 0);
2043
2044
/* set the last fragment */
2045
m->m_flags |= M_LASTFRAG;
2046
whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
2047
2048
/* strip first mbuf now that everything has been copied */
2049
m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
2050
m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2051
2052
vap->iv_stats.is_tx_fragframes++;
2053
vap->iv_stats.is_tx_frags += fragno-1;
2054
2055
return 1;
2056
bad:
2057
/* reclaim fragments but leave original frame for caller to free */
2058
ieee80211_free_mbuf(m0->m_nextpkt);
2059
m0->m_nextpkt = NULL;
2060
return 0;
2061
}
2062
2063
/*
2064
* Add a supported rates element id to a frame.
2065
*/
2066
uint8_t *
2067
ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2068
{
2069
int nrates;
2070
2071
*frm++ = IEEE80211_ELEMID_RATES;
2072
nrates = rs->rs_nrates;
2073
if (nrates > IEEE80211_RATE_SIZE)
2074
nrates = IEEE80211_RATE_SIZE;
2075
*frm++ = nrates;
2076
memcpy(frm, rs->rs_rates, nrates);
2077
return frm + nrates;
2078
}
2079
2080
/*
2081
* Add an extended supported rates element id to a frame.
2082
*/
2083
uint8_t *
2084
ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2085
{
2086
/*
2087
* Add an extended supported rates element if operating in 11g mode.
2088
*/
2089
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2090
int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2091
*frm++ = IEEE80211_ELEMID_XRATES;
2092
*frm++ = nrates;
2093
memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2094
frm += nrates;
2095
}
2096
return frm;
2097
}
2098
2099
/*
2100
* Add an ssid element to a frame.
2101
*/
2102
uint8_t *
2103
ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2104
{
2105
*frm++ = IEEE80211_ELEMID_SSID;
2106
*frm++ = len;
2107
memcpy(frm, ssid, len);
2108
return frm + len;
2109
}
2110
2111
/*
2112
* Add an erp element to a frame.
2113
*/
2114
static uint8_t *
2115
ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
2116
{
2117
struct ieee80211com *ic = vap->iv_ic;
2118
uint8_t erp;
2119
2120
*frm++ = IEEE80211_ELEMID_ERP;
2121
*frm++ = 1;
2122
erp = 0;
2123
2124
/*
2125
* TODO: This uses the global flags for now because
2126
* the per-VAP flags are fine for per-VAP, but don't
2127
* take into account which VAPs share the same channel
2128
* and which are on different channels.
2129
*
2130
* ERP and HT/VHT protection mode is a function of
2131
* how many stations are on a channel, not specifically
2132
* the VAP or global. But, until we grow that status,
2133
* the global flag will have to do.
2134
*/
2135
if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
2136
erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2137
2138
/*
2139
* TODO: same as above; these should be based not
2140
* on the vap or ic flags, but instead on a combination
2141
* of per-VAP and channels.
2142
*/
2143
if (ic->ic_flags & IEEE80211_F_USEPROT)
2144
erp |= IEEE80211_ERP_USE_PROTECTION;
2145
if (ic->ic_flags & IEEE80211_F_USEBARKER)
2146
erp |= IEEE80211_ERP_LONG_PREAMBLE;
2147
*frm++ = erp;
2148
return frm;
2149
}
2150
2151
/*
2152
* Add a CFParams element to a frame.
2153
*/
2154
static uint8_t *
2155
ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2156
{
2157
#define ADDSHORT(frm, v) do { \
2158
le16enc(frm, v); \
2159
frm += 2; \
2160
} while (0)
2161
*frm++ = IEEE80211_ELEMID_CFPARMS;
2162
*frm++ = 6;
2163
*frm++ = 0; /* CFP count */
2164
*frm++ = 2; /* CFP period */
2165
ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */
2166
ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */
2167
return frm;
2168
#undef ADDSHORT
2169
}
2170
2171
static __inline uint8_t *
2172
add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2173
{
2174
memcpy(frm, ie->ie_data, ie->ie_len);
2175
return frm + ie->ie_len;
2176
}
2177
2178
static __inline uint8_t *
2179
add_ie(uint8_t *frm, const uint8_t *ie)
2180
{
2181
memcpy(frm, ie, 2 + ie[1]);
2182
return frm + 2 + ie[1];
2183
}
2184
2185
#define WME_OUI_BYTES 0x00, 0x50, 0xf2
2186
/*
2187
* Add a WME information element to a frame.
2188
*/
2189
uint8_t *
2190
ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
2191
struct ieee80211_node *ni)
2192
{
2193
static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
2194
struct ieee80211vap *vap = ni->ni_vap;
2195
2196
*frm++ = IEEE80211_ELEMID_VENDOR;
2197
*frm++ = sizeof(struct ieee80211_wme_info) - 2;
2198
memcpy(frm, oui, sizeof(oui));
2199
frm += sizeof(oui);
2200
*frm++ = WME_INFO_OUI_SUBTYPE;
2201
*frm++ = WME_VERSION;
2202
2203
/* QoS info field depends upon operating mode */
2204
switch (vap->iv_opmode) {
2205
case IEEE80211_M_HOSTAP:
2206
*frm = wme->wme_bssChanParams.cap_info;
2207
if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
2208
*frm |= WME_CAPINFO_UAPSD_EN;
2209
frm++;
2210
break;
2211
case IEEE80211_M_STA:
2212
/*
2213
* NB: UAPSD drivers must set this up in their
2214
* VAP creation method.
2215
*/
2216
*frm++ = vap->iv_uapsdinfo;
2217
break;
2218
default:
2219
*frm++ = 0;
2220
break;
2221
}
2222
2223
return frm;
2224
}
2225
2226
/*
2227
* Add a WME parameters element to a frame.
2228
*/
2229
static uint8_t *
2230
ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
2231
int uapsd_enable)
2232
{
2233
#define ADDSHORT(frm, v) do { \
2234
le16enc(frm, v); \
2235
frm += 2; \
2236
} while (0)
2237
/* NB: this works 'cuz a param has an info at the front */
2238
static const struct ieee80211_wme_info param = {
2239
.wme_id = IEEE80211_ELEMID_VENDOR,
2240
.wme_len = sizeof(struct ieee80211_wme_param) - 2,
2241
.wme_oui = { WME_OUI_BYTES },
2242
.wme_type = WME_OUI_TYPE,
2243
.wme_subtype = WME_PARAM_OUI_SUBTYPE,
2244
.wme_version = WME_VERSION,
2245
};
2246
int i;
2247
2248
memcpy(frm, &param, sizeof(param));
2249
frm += __offsetof(struct ieee80211_wme_info, wme_info);
2250
*frm = wme->wme_bssChanParams.cap_info; /* AC info */
2251
if (uapsd_enable)
2252
*frm |= WME_CAPINFO_UAPSD_EN;
2253
frm++;
2254
*frm++ = 0; /* reserved field */
2255
/* XXX TODO - U-APSD bits - SP, flags below */
2256
for (i = 0; i < WME_NUM_AC; i++) {
2257
const struct wmeParams *ac =
2258
&wme->wme_bssChanParams.cap_wmeParams[i];
2259
*frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
2260
| _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
2261
| _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
2262
;
2263
*frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
2264
WME_PARAM_LOGCWMAX)
2265
| _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
2266
WME_PARAM_LOGCWMIN)
2267
;
2268
ADDSHORT(frm, ac->wmep_txopLimit);
2269
}
2270
return frm;
2271
#undef ADDSHORT
2272
}
2273
#undef WME_OUI_BYTES
2274
2275
/*
2276
* Add an 11h Power Constraint element to a frame.
2277
*/
2278
static uint8_t *
2279
ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2280
{
2281
const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2282
/* XXX per-vap tx power limit? */
2283
int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2284
2285
frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2286
frm[1] = 1;
2287
frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0;
2288
return frm + 3;
2289
}
2290
2291
/*
2292
* Add an 11h Power Capability element to a frame.
2293
*/
2294
static uint8_t *
2295
ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2296
{
2297
frm[0] = IEEE80211_ELEMID_PWRCAP;
2298
frm[1] = 2;
2299
frm[2] = c->ic_minpower;
2300
frm[3] = c->ic_maxpower;
2301
return frm + 4;
2302
}
2303
2304
/*
2305
* Add an 11h Supported Channels element to a frame.
2306
*/
2307
static uint8_t *
2308
ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2309
{
2310
static const int ielen = 26;
2311
2312
frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2313
frm[1] = ielen;
2314
/* XXX not correct */
2315
memcpy(frm+2, ic->ic_chan_avail, ielen);
2316
return frm + 2 + ielen;
2317
}
2318
2319
/*
2320
* Add an 11h Quiet time element to a frame.
2321
*/
2322
static uint8_t *
2323
ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2324
{
2325
struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2326
2327
quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2328
quiet->len = 6;
2329
2330
/*
2331
* Only update every beacon interval - otherwise probe responses
2332
* would update the quiet count value.
2333
*/
2334
if (update) {
2335
if (vap->iv_quiet_count_value == 1)
2336
vap->iv_quiet_count_value = vap->iv_quiet_count;
2337
else if (vap->iv_quiet_count_value > 1)
2338
vap->iv_quiet_count_value--;
2339
}
2340
2341
if (vap->iv_quiet_count_value == 0) {
2342
/* value 0 is reserved as per 802.11h standerd */
2343
vap->iv_quiet_count_value = 1;
2344
}
2345
2346
quiet->tbttcount = vap->iv_quiet_count_value;
2347
quiet->period = vap->iv_quiet_period;
2348
quiet->duration = htole16(vap->iv_quiet_duration);
2349
quiet->offset = htole16(vap->iv_quiet_offset);
2350
return frm + sizeof(*quiet);
2351
}
2352
2353
/*
2354
* Add an 11h Channel Switch Announcement element to a frame.
2355
* Note that we use the per-vap CSA count to adjust the global
2356
* counter so we can use this routine to form probe response
2357
* frames and get the current count.
2358
*/
2359
static uint8_t *
2360
ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2361
{
2362
struct ieee80211com *ic = vap->iv_ic;
2363
struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2364
2365
csa->csa_ie = IEEE80211_ELEMID_CSA;
2366
csa->csa_len = 3;
2367
csa->csa_mode = 1; /* XXX force quiet on channel */
2368
csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2369
csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2370
return frm + sizeof(*csa);
2371
}
2372
2373
/*
2374
* Add an 11h country information element to a frame.
2375
*/
2376
static uint8_t *
2377
ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2378
{
2379
2380
if (ic->ic_countryie == NULL ||
2381
ic->ic_countryie_chan != ic->ic_bsschan) {
2382
/*
2383
* Handle lazy construction of ie. This is done on
2384
* first use and after a channel change that requires
2385
* re-calculation.
2386
*/
2387
if (ic->ic_countryie != NULL)
2388
IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2389
ic->ic_countryie = ieee80211_alloc_countryie(ic);
2390
if (ic->ic_countryie == NULL)
2391
return frm;
2392
ic->ic_countryie_chan = ic->ic_bsschan;
2393
}
2394
return add_appie(frm, ic->ic_countryie);
2395
}
2396
2397
uint8_t *
2398
ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2399
{
2400
if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2401
return (add_ie(frm, vap->iv_wpa_ie));
2402
else {
2403
/* XXX else complain? */
2404
return (frm);
2405
}
2406
}
2407
2408
uint8_t *
2409
ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2410
{
2411
if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2412
return (add_ie(frm, vap->iv_rsn_ie));
2413
else {
2414
/* XXX else complain? */
2415
return (frm);
2416
}
2417
}
2418
2419
uint8_t *
2420
ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2421
{
2422
if (ni->ni_flags & IEEE80211_NODE_QOS) {
2423
*frm++ = IEEE80211_ELEMID_QOS;
2424
*frm++ = 1;
2425
*frm++ = 0;
2426
}
2427
2428
return (frm);
2429
}
2430
2431
/*
2432
* ieee80211_send_probereq(): send a probe request frame with the specified ssid
2433
* and any optional information element data; some helper functions as FW based
2434
* HW scans need some of that information passed too.
2435
*/
2436
static uint32_t
2437
ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic)
2438
{
2439
const struct ieee80211_rateset *rs;
2440
2441
rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2442
2443
/*
2444
* prreq frame format
2445
* [tlv] ssid
2446
* [tlv] supported rates
2447
* [tlv] extended supported rates (if needed)
2448
* [tlv] HT cap (optional)
2449
* [tlv] VHT cap (optional)
2450
* [tlv] WPA (optional)
2451
* [tlv] user-specified ie's
2452
*/
2453
return ( 2 + IEEE80211_NWID_LEN
2454
+ 2 + IEEE80211_RATE_SIZE
2455
+ ((rs->rs_nrates > IEEE80211_RATE_SIZE) ?
2456
2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0)
2457
+ (((vap->iv_opmode == IEEE80211_M_IBSS) &&
2458
(vap->iv_flags_ht & IEEE80211_FHT_HT)) ?
2459
sizeof(struct ieee80211_ie_htcap) : 0)
2460
#ifdef notyet
2461
+ sizeof(struct ieee80211_ie_htinfo) /* XXX not needed? */
2462
+ 2 + sizeof(struct ieee80211_vht_cap)
2463
#endif
2464
+ ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ?
2465
vap->iv_wpa_ie[1] : 0)
2466
+ (vap->iv_appie_probereq != NULL ?
2467
vap->iv_appie_probereq->ie_len : 0)
2468
);
2469
}
2470
2471
int
2472
ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic,
2473
uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen,
2474
bool alloc)
2475
{
2476
const struct ieee80211_rateset *rs;
2477
uint8_t *frm;
2478
uint32_t len;
2479
2480
if (!alloc && (frmp == NULL || frmlen == NULL))
2481
return (EINVAL);
2482
2483
len = ieee80211_probereq_ie_len(vap, ic);
2484
if (!alloc && len > *frmlen)
2485
return (ENOBUFS);
2486
2487
/* For HW scans we usually do not pass in the SSID as IE. */
2488
if (ssidlen == -1)
2489
len -= (2 + IEEE80211_NWID_LEN);
2490
2491
if (alloc) {
2492
frm = IEEE80211_MALLOC(len, M_80211_VAP,
2493
IEEE80211_M_WAITOK | IEEE80211_M_ZERO);
2494
*frmp = frm;
2495
*frmlen = len;
2496
} else
2497
frm = *frmp;
2498
2499
if (ssidlen != -1)
2500
frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2501
rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2502
frm = ieee80211_add_rates(frm, rs);
2503
frm = ieee80211_add_xrates(frm, rs);
2504
2505
/*
2506
* Note: we can't use bss; we don't have one yet.
2507
*
2508
* So, we should announce our capabilities
2509
* in this channel mode (2g/5g), not the
2510
* channel details itself.
2511
*/
2512
if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2513
(vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2514
struct ieee80211_channel *c;
2515
2516
/*
2517
* Get the HT channel that we should try upgrading to.
2518
* If we can do 40MHz then this'll upgrade it appropriately.
2519
*/
2520
c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2521
vap->iv_flags_ht);
2522
frm = ieee80211_add_htcap_ch(frm, vap, c);
2523
}
2524
2525
/*
2526
* XXX TODO: need to figure out what/how to update the
2527
* VHT channel.
2528
*/
2529
#ifdef notyet
2530
if (vap->iv_vht_flags & IEEE80211_FVHT_VHT) {
2531
struct ieee80211_channel *c;
2532
2533
c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2534
vap->iv_flags_ht);
2535
c = ieee80211_vht_adjust_channel(ic, c, vap->iv_vht_flags);
2536
frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2537
}
2538
#endif
2539
2540
frm = ieee80211_add_wpa(frm, vap);
2541
if (vap->iv_appie_probereq != NULL)
2542
frm = add_appie(frm, vap->iv_appie_probereq);
2543
2544
if (!alloc) {
2545
*frmp = frm;
2546
*frmlen = len;
2547
}
2548
2549
return (0);
2550
}
2551
2552
int
2553
ieee80211_send_probereq(struct ieee80211_node *ni,
2554
const uint8_t sa[IEEE80211_ADDR_LEN],
2555
const uint8_t da[IEEE80211_ADDR_LEN],
2556
const uint8_t bssid[IEEE80211_ADDR_LEN],
2557
const uint8_t *ssid, size_t ssidlen)
2558
{
2559
struct ieee80211vap *vap = ni->ni_vap;
2560
struct ieee80211com *ic = ni->ni_ic;
2561
struct ieee80211_node *bss;
2562
const struct ieee80211_txparam *tp;
2563
struct ieee80211_bpf_params params;
2564
struct mbuf *m;
2565
uint8_t *frm;
2566
uint32_t frmlen;
2567
int ret;
2568
2569
bss = ieee80211_ref_node(vap->iv_bss);
2570
2571
if (vap->iv_state == IEEE80211_S_CAC) {
2572
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2573
"block %s frame in CAC state", "probe request");
2574
vap->iv_stats.is_tx_badstate++;
2575
ieee80211_free_node(bss);
2576
return EIO; /* XXX */
2577
}
2578
2579
/*
2580
* Hold a reference on the node so it doesn't go away until after
2581
* the xmit is complete all the way in the driver. On error we
2582
* will remove our reference.
2583
*/
2584
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2585
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2586
__func__, __LINE__,
2587
ni, ether_sprintf(ni->ni_macaddr),
2588
ieee80211_node_refcnt(ni)+1);
2589
ieee80211_ref_node(ni);
2590
2591
/* See comments above for entire frame format. */
2592
frmlen = ieee80211_probereq_ie_len(vap, ic);
2593
m = ieee80211_getmgtframe(&frm,
2594
ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen);
2595
if (m == NULL) {
2596
vap->iv_stats.is_tx_nobuf++;
2597
ieee80211_free_node(ni);
2598
ieee80211_free_node(bss);
2599
return ENOMEM;
2600
}
2601
2602
ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen,
2603
false);
2604
KASSERT(ret == 0,
2605
("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret));
2606
2607
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2608
KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2609
("leading space %zd", M_LEADINGSPACE(m)));
2610
M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
2611
if (m == NULL) {
2612
/* NB: cannot happen */
2613
ieee80211_free_node(ni);
2614
ieee80211_free_node(bss);
2615
return ENOMEM;
2616
}
2617
2618
IEEE80211_TX_LOCK(ic);
2619
ieee80211_send_setup(ni, m,
2620
IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2621
IEEE80211_NONQOS_TID, sa, da, bssid);
2622
/* XXX power management? */
2623
m->m_flags |= M_ENCAP; /* mark encapsulated */
2624
2625
M_WME_SETAC(m, WME_AC_BE);
2626
2627
IEEE80211_NODE_STAT(ni, tx_probereq);
2628
IEEE80211_NODE_STAT(ni, tx_mgmt);
2629
2630
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2631
"send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2632
ieee80211_chan2ieee(ic, ic->ic_curchan),
2633
ether_sprintf(bssid),
2634
sa, ":",
2635
da, ":",
2636
ssidlen, ssid);
2637
2638
memset(&params, 0, sizeof(params));
2639
params.ibp_pri = M_WME_GETAC(m);
2640
tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2641
params.ibp_rate0 = tp->mgmtrate;
2642
if (IEEE80211_IS_MULTICAST(da)) {
2643
params.ibp_flags |= IEEE80211_BPF_NOACK;
2644
params.ibp_try0 = 1;
2645
} else
2646
params.ibp_try0 = tp->maxretry;
2647
params.ibp_power = ni->ni_txpower;
2648
ret = ieee80211_raw_output(vap, ni, m, &params);
2649
IEEE80211_TX_UNLOCK(ic);
2650
ieee80211_free_node(bss);
2651
return (ret);
2652
}
2653
2654
/*
2655
* Calculate capability information for mgt frames.
2656
*
2657
* This fills out the 16 bit capability field in various management
2658
* frames for non-DMG STAs. DMG STAs are not supported.
2659
*
2660
* See 802.11-2020 9.4.1.4 (Capability Information Field) for the
2661
* field definitions.
2662
*/
2663
uint16_t
2664
ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2665
{
2666
uint16_t capinfo;
2667
2668
KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2669
2670
if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2671
capinfo = IEEE80211_CAPINFO_ESS;
2672
else if (vap->iv_opmode == IEEE80211_M_IBSS)
2673
capinfo = IEEE80211_CAPINFO_IBSS;
2674
else
2675
capinfo = 0;
2676
if (vap->iv_flags & IEEE80211_F_PRIVACY)
2677
capinfo |= IEEE80211_CAPINFO_PRIVACY;
2678
if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2679
IEEE80211_IS_CHAN_2GHZ(chan))
2680
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2681
if (vap->iv_flags & IEEE80211_F_SHSLOT)
2682
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2683
if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2684
capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2685
return capinfo;
2686
}
2687
2688
/*
2689
* Send a management frame. The node is for the destination (or ic_bss
2690
* when in station mode). Nodes other than ic_bss have their reference
2691
* count bumped to reflect our use for an indeterminant time.
2692
*/
2693
int
2694
ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2695
{
2696
#define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2697
#define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2698
struct ieee80211vap *vap = ni->ni_vap;
2699
struct ieee80211com *ic = ni->ni_ic;
2700
struct ieee80211_node *bss = vap->iv_bss;
2701
struct ieee80211_bpf_params params;
2702
struct mbuf *m;
2703
uint8_t *frm;
2704
uint16_t capinfo;
2705
int has_challenge, is_shared_key, ret, status;
2706
2707
KASSERT(ni != NULL, ("null node"));
2708
2709
/*
2710
* Hold a reference on the node so it doesn't go away until after
2711
* the xmit is complete all the way in the driver. On error we
2712
* will remove our reference.
2713
*/
2714
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2715
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2716
__func__, __LINE__,
2717
ni, ether_sprintf(ni->ni_macaddr),
2718
ieee80211_node_refcnt(ni)+1);
2719
ieee80211_ref_node(ni);
2720
2721
memset(&params, 0, sizeof(params));
2722
switch (type) {
2723
case IEEE80211_FC0_SUBTYPE_AUTH:
2724
status = arg >> 16;
2725
arg &= 0xffff;
2726
has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2727
arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2728
ni->ni_challenge != NULL);
2729
2730
/*
2731
* Deduce whether we're doing open authentication or
2732
* shared key authentication. We do the latter if
2733
* we're in the middle of a shared key authentication
2734
* handshake or if we're initiating an authentication
2735
* request and configured to use shared key.
2736
*/
2737
is_shared_key = has_challenge ||
2738
arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2739
(arg == IEEE80211_AUTH_SHARED_REQUEST &&
2740
bss->ni_authmode == IEEE80211_AUTH_SHARED);
2741
2742
m = ieee80211_getmgtframe(&frm,
2743
ic->ic_headroom + sizeof(struct ieee80211_frame),
2744
3 * sizeof(uint16_t)
2745
+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2746
sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0));
2747
if (m == NULL)
2748
senderr(ENOMEM, is_tx_nobuf);
2749
2750
((uint16_t *)frm)[0] =
2751
(is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2752
: htole16(IEEE80211_AUTH_ALG_OPEN);
2753
((uint16_t *)frm)[1] = htole16(arg); /* sequence number */
2754
((uint16_t *)frm)[2] = htole16(status);/* status */
2755
2756
if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2757
((uint16_t *)frm)[3] =
2758
htole16((IEEE80211_CHALLENGE_LEN << 8) |
2759
IEEE80211_ELEMID_CHALLENGE);
2760
memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2761
IEEE80211_CHALLENGE_LEN);
2762
m->m_pkthdr.len = m->m_len =
2763
4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2764
if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2765
IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2766
"request encrypt frame (%s)", __func__);
2767
/* mark frame for encryption */
2768
params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2769
}
2770
} else
2771
m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2772
2773
/* XXX not right for shared key */
2774
if (status == IEEE80211_STATUS_SUCCESS)
2775
IEEE80211_NODE_STAT(ni, tx_auth);
2776
else
2777
IEEE80211_NODE_STAT(ni, tx_auth_fail);
2778
2779
if (vap->iv_opmode == IEEE80211_M_STA)
2780
ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2781
(void *) vap->iv_state);
2782
break;
2783
2784
case IEEE80211_FC0_SUBTYPE_DEAUTH:
2785
IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2786
"send station deauthenticate (reason: %d (%s))", arg,
2787
ieee80211_reason_to_string(arg));
2788
m = ieee80211_getmgtframe(&frm,
2789
ic->ic_headroom + sizeof(struct ieee80211_frame),
2790
sizeof(uint16_t));
2791
if (m == NULL)
2792
senderr(ENOMEM, is_tx_nobuf);
2793
*(uint16_t *)frm = htole16(arg); /* reason */
2794
m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2795
2796
IEEE80211_NODE_STAT(ni, tx_deauth);
2797
IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2798
2799
ieee80211_node_unauthorize(ni); /* port closed */
2800
break;
2801
2802
case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2803
case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2804
/*
2805
* asreq frame format
2806
* [2] capability information
2807
* [2] listen interval
2808
* [6*] current AP address (reassoc only)
2809
* [tlv] ssid
2810
* [tlv] supported rates
2811
* [tlv] extended supported rates
2812
* [4] power capability (optional)
2813
* [28] supported channels (optional)
2814
* [tlv] HT capabilities
2815
* [tlv] VHT capabilities
2816
* [tlv] WME (optional)
2817
* [tlv] Vendor OUI HT capabilities (optional)
2818
* [tlv] Atheros capabilities (if negotiated)
2819
* [tlv] AppIE's (optional)
2820
*/
2821
m = ieee80211_getmgtframe(&frm,
2822
ic->ic_headroom + sizeof(struct ieee80211_frame),
2823
sizeof(uint16_t)
2824
+ sizeof(uint16_t)
2825
+ IEEE80211_ADDR_LEN
2826
+ 2 + IEEE80211_NWID_LEN
2827
+ 2 + IEEE80211_RATE_SIZE
2828
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2829
+ 4
2830
+ 2 + 26
2831
+ sizeof(struct ieee80211_wme_info)
2832
+ sizeof(struct ieee80211_ie_htcap)
2833
+ 2 + sizeof(struct ieee80211_vht_cap)
2834
+ 4 + sizeof(struct ieee80211_ie_htcap)
2835
#ifdef IEEE80211_SUPPORT_SUPERG
2836
+ sizeof(struct ieee80211_ath_ie)
2837
#endif
2838
+ (vap->iv_appie_wpa != NULL ?
2839
vap->iv_appie_wpa->ie_len : 0)
2840
+ (vap->iv_appie_assocreq != NULL ?
2841
vap->iv_appie_assocreq->ie_len : 0)
2842
);
2843
if (m == NULL)
2844
senderr(ENOMEM, is_tx_nobuf);
2845
2846
KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2847
("wrong mode %u", vap->iv_opmode));
2848
capinfo = IEEE80211_CAPINFO_ESS;
2849
if (vap->iv_flags & IEEE80211_F_PRIVACY)
2850
capinfo |= IEEE80211_CAPINFO_PRIVACY;
2851
/*
2852
* NB: Some 11a AP's reject the request when
2853
* short preamble is set.
2854
*/
2855
if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2856
IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2857
capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2858
if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2859
(ic->ic_caps & IEEE80211_C_SHSLOT))
2860
capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2861
if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2862
(vap->iv_flags & IEEE80211_F_DOTH))
2863
capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2864
*(uint16_t *)frm = htole16(capinfo);
2865
frm += 2;
2866
2867
KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2868
*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2869
bss->ni_intval));
2870
frm += 2;
2871
2872
if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2873
IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2874
frm += IEEE80211_ADDR_LEN;
2875
}
2876
2877
frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2878
frm = ieee80211_add_rates(frm, &ni->ni_rates);
2879
frm = ieee80211_add_rsn(frm, vap);
2880
frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2881
if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2882
frm = ieee80211_add_powercapability(frm,
2883
ic->ic_curchan);
2884
frm = ieee80211_add_supportedchannels(frm, ic);
2885
}
2886
2887
/*
2888
* Check the channel - we may be using an 11n NIC with an
2889
* 11n capable station, but we're configured to be an 11b
2890
* channel.
2891
*/
2892
if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2893
IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2894
ni->ni_ies.htcap_ie != NULL &&
2895
ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2896
frm = ieee80211_add_htcap(frm, ni);
2897
}
2898
2899
if ((vap->iv_vht_flags & IEEE80211_FVHT_VHT) &&
2900
IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2901
ni->ni_ies.vhtcap_ie != NULL &&
2902
ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2903
frm = ieee80211_add_vhtcap(frm, ni);
2904
}
2905
2906
frm = ieee80211_add_wpa(frm, vap);
2907
if ((vap->iv_flags & IEEE80211_F_WME) &&
2908
ni->ni_ies.wme_ie != NULL)
2909
frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
2910
2911
/*
2912
* Same deal - only send HT info if we're on an 11n
2913
* capable channel.
2914
*/
2915
if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2916
IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2917
ni->ni_ies.htcap_ie != NULL &&
2918
ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2919
frm = ieee80211_add_htcap_vendor(frm, ni);
2920
}
2921
#ifdef IEEE80211_SUPPORT_SUPERG
2922
if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2923
frm = ieee80211_add_ath(frm,
2924
IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2925
((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2926
ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2927
vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2928
}
2929
#endif /* IEEE80211_SUPPORT_SUPERG */
2930
if (vap->iv_appie_assocreq != NULL)
2931
frm = add_appie(frm, vap->iv_appie_assocreq);
2932
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2933
2934
ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2935
(void *) vap->iv_state);
2936
break;
2937
2938
case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2939
case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2940
/*
2941
* asresp frame format
2942
* [2] capability information
2943
* [2] status
2944
* [2] association ID
2945
* [tlv] supported rates
2946
* [tlv] extended supported rates
2947
* [tlv] HT capabilities (standard, if STA enabled)
2948
* [tlv] HT information (standard, if STA enabled)
2949
* [tlv] VHT capabilities (standard, if STA enabled)
2950
* [tlv] VHT information (standard, if STA enabled)
2951
* [tlv] WME (if configured and STA enabled)
2952
* [tlv] HT capabilities (vendor OUI, if STA enabled)
2953
* [tlv] HT information (vendor OUI, if STA enabled)
2954
* [tlv] Atheros capabilities (if STA enabled)
2955
* [tlv] AppIE's (optional)
2956
*/
2957
m = ieee80211_getmgtframe(&frm,
2958
ic->ic_headroom + sizeof(struct ieee80211_frame),
2959
sizeof(uint16_t)
2960
+ sizeof(uint16_t)
2961
+ sizeof(uint16_t)
2962
+ 2 + IEEE80211_RATE_SIZE
2963
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2964
+ sizeof(struct ieee80211_ie_htcap) + 4
2965
+ sizeof(struct ieee80211_ie_htinfo) + 4
2966
+ 2 + sizeof(struct ieee80211_vht_cap)
2967
+ 2 + sizeof(struct ieee80211_vht_operation)
2968
+ sizeof(struct ieee80211_wme_param)
2969
#ifdef IEEE80211_SUPPORT_SUPERG
2970
+ sizeof(struct ieee80211_ath_ie)
2971
#endif
2972
+ (vap->iv_appie_assocresp != NULL ?
2973
vap->iv_appie_assocresp->ie_len : 0)
2974
);
2975
if (m == NULL)
2976
senderr(ENOMEM, is_tx_nobuf);
2977
2978
capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2979
*(uint16_t *)frm = htole16(capinfo);
2980
frm += 2;
2981
2982
*(uint16_t *)frm = htole16(arg); /* status */
2983
frm += 2;
2984
2985
if (arg == IEEE80211_STATUS_SUCCESS) {
2986
*(uint16_t *)frm = htole16(ni->ni_associd);
2987
IEEE80211_NODE_STAT(ni, tx_assoc);
2988
} else
2989
IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2990
frm += 2;
2991
2992
frm = ieee80211_add_rates(frm, &ni->ni_rates);
2993
frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2994
/* NB: respond according to what we received */
2995
if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2996
frm = ieee80211_add_htcap(frm, ni);
2997
frm = ieee80211_add_htinfo(frm, ni);
2998
}
2999
if ((vap->iv_flags & IEEE80211_F_WME) &&
3000
ni->ni_ies.wme_ie != NULL)
3001
frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3002
!! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3003
if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
3004
frm = ieee80211_add_htcap_vendor(frm, ni);
3005
frm = ieee80211_add_htinfo_vendor(frm, ni);
3006
}
3007
if (ni->ni_flags & IEEE80211_NODE_VHT) {
3008
frm = ieee80211_add_vhtcap(frm, ni);
3009
frm = ieee80211_add_vhtinfo(frm, ni);
3010
}
3011
#ifdef IEEE80211_SUPPORT_SUPERG
3012
if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
3013
frm = ieee80211_add_ath(frm,
3014
IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
3015
((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
3016
ni->ni_authmode != IEEE80211_AUTH_8021X) ?
3017
vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
3018
#endif /* IEEE80211_SUPPORT_SUPERG */
3019
if (vap->iv_appie_assocresp != NULL)
3020
frm = add_appie(frm, vap->iv_appie_assocresp);
3021
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3022
break;
3023
3024
case IEEE80211_FC0_SUBTYPE_DISASSOC:
3025
IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
3026
"send station disassociate (reason: %d (%s))", arg,
3027
ieee80211_reason_to_string(arg));
3028
m = ieee80211_getmgtframe(&frm,
3029
ic->ic_headroom + sizeof(struct ieee80211_frame),
3030
sizeof(uint16_t));
3031
if (m == NULL)
3032
senderr(ENOMEM, is_tx_nobuf);
3033
*(uint16_t *)frm = htole16(arg); /* reason */
3034
m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
3035
3036
IEEE80211_NODE_STAT(ni, tx_disassoc);
3037
IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
3038
break;
3039
3040
default:
3041
IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
3042
"invalid mgmt frame type %u", type);
3043
senderr(EINVAL, is_tx_unknownmgt);
3044
/* NOTREACHED */
3045
}
3046
3047
/* NB: force non-ProbeResp frames to the highest queue */
3048
params.ibp_pri = WME_AC_VO;
3049
params.ibp_rate0 = bss->ni_txparms->mgmtrate;
3050
/* NB: we know all frames are unicast */
3051
params.ibp_try0 = bss->ni_txparms->maxretry;
3052
params.ibp_power = bss->ni_txpower;
3053
return ieee80211_mgmt_output(ni, m, type, &params);
3054
bad:
3055
ieee80211_free_node(ni);
3056
return ret;
3057
#undef senderr
3058
#undef HTFLAGS
3059
}
3060
3061
/*
3062
* Return an mbuf with a probe response frame in it.
3063
* Space is left to prepend and 802.11 header at the
3064
* front but it's left to the caller to fill in.
3065
*/
3066
struct mbuf *
3067
ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
3068
{
3069
struct ieee80211vap *vap = bss->ni_vap;
3070
struct ieee80211com *ic = bss->ni_ic;
3071
const struct ieee80211_rateset *rs;
3072
struct mbuf *m;
3073
uint16_t capinfo;
3074
uint8_t *frm;
3075
3076
/*
3077
* probe response frame format
3078
* [8] time stamp
3079
* [2] beacon interval
3080
* [2] cabability information
3081
* [tlv] ssid
3082
* [tlv] supported rates
3083
* [tlv] parameter set (FH/DS)
3084
* [tlv] parameter set (IBSS)
3085
* [tlv] country (optional)
3086
* [3] power control (optional)
3087
* [5] channel switch announcement (CSA) (optional)
3088
* [tlv] extended rate phy (ERP)
3089
* [tlv] extended supported rates
3090
* [tlv] RSN (optional)
3091
* [tlv] HT capabilities
3092
* [tlv] HT information
3093
* [tlv] VHT capabilities
3094
* [tlv] VHT information
3095
* [tlv] WPA (optional)
3096
* [tlv] WME (optional)
3097
* [tlv] Vendor OUI HT capabilities (optional)
3098
* [tlv] Vendor OUI HT information (optional)
3099
* [tlv] Atheros capabilities
3100
* [tlv] AppIE's (optional)
3101
* [tlv] Mesh ID (MBSS)
3102
* [tlv] Mesh Conf (MBSS)
3103
*/
3104
m = ieee80211_getmgtframe(&frm,
3105
ic->ic_headroom + sizeof(struct ieee80211_frame),
3106
8
3107
+ sizeof(uint16_t)
3108
+ sizeof(uint16_t)
3109
+ 2 + IEEE80211_NWID_LEN
3110
+ 2 + IEEE80211_RATE_SIZE
3111
+ 7 /* max(7,3) */
3112
+ IEEE80211_COUNTRY_MAX_SIZE
3113
+ 3
3114
+ sizeof(struct ieee80211_csa_ie)
3115
+ sizeof(struct ieee80211_quiet_ie)
3116
+ 3
3117
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3118
+ sizeof(struct ieee80211_ie_wpa)
3119
+ sizeof(struct ieee80211_ie_htcap)
3120
+ sizeof(struct ieee80211_ie_htinfo)
3121
+ sizeof(struct ieee80211_ie_wpa)
3122
+ sizeof(struct ieee80211_wme_param)
3123
+ 4 + sizeof(struct ieee80211_ie_htcap)
3124
+ 4 + sizeof(struct ieee80211_ie_htinfo)
3125
+ 2 + sizeof(struct ieee80211_vht_cap)
3126
+ 2 + sizeof(struct ieee80211_vht_operation)
3127
#ifdef IEEE80211_SUPPORT_SUPERG
3128
+ sizeof(struct ieee80211_ath_ie)
3129
#endif
3130
#ifdef IEEE80211_SUPPORT_MESH
3131
+ 2 + IEEE80211_MESHID_LEN
3132
+ sizeof(struct ieee80211_meshconf_ie)
3133
#endif
3134
+ (vap->iv_appie_proberesp != NULL ?
3135
vap->iv_appie_proberesp->ie_len : 0)
3136
);
3137
if (m == NULL) {
3138
vap->iv_stats.is_tx_nobuf++;
3139
return NULL;
3140
}
3141
3142
memset(frm, 0, 8); /* timestamp should be filled later */
3143
frm += 8;
3144
*(uint16_t *)frm = htole16(bss->ni_intval);
3145
frm += 2;
3146
capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
3147
*(uint16_t *)frm = htole16(capinfo);
3148
frm += 2;
3149
3150
frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
3151
rs = ieee80211_get_suprates(ic, bss->ni_chan);
3152
frm = ieee80211_add_rates(frm, rs);
3153
3154
if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
3155
*frm++ = IEEE80211_ELEMID_FHPARMS;
3156
*frm++ = 5;
3157
*frm++ = bss->ni_fhdwell & 0x00ff;
3158
*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
3159
*frm++ = IEEE80211_FH_CHANSET(
3160
ieee80211_chan2ieee(ic, bss->ni_chan));
3161
*frm++ = IEEE80211_FH_CHANPAT(
3162
ieee80211_chan2ieee(ic, bss->ni_chan));
3163
*frm++ = bss->ni_fhindex;
3164
} else {
3165
*frm++ = IEEE80211_ELEMID_DSPARMS;
3166
*frm++ = 1;
3167
*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3168
}
3169
3170
if (vap->iv_opmode == IEEE80211_M_IBSS) {
3171
*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3172
*frm++ = 2;
3173
*frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
3174
}
3175
if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3176
(vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3177
frm = ieee80211_add_countryie(frm, ic);
3178
if (vap->iv_flags & IEEE80211_F_DOTH) {
3179
if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3180
frm = ieee80211_add_powerconstraint(frm, vap);
3181
if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3182
frm = ieee80211_add_csa(frm, vap);
3183
}
3184
if (vap->iv_flags & IEEE80211_F_DOTH) {
3185
if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3186
(vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3187
if (vap->iv_quiet)
3188
frm = ieee80211_add_quiet(frm, vap, 0);
3189
}
3190
}
3191
if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3192
frm = ieee80211_add_erp(frm, vap);
3193
frm = ieee80211_add_xrates(frm, rs);
3194
frm = ieee80211_add_rsn(frm, vap);
3195
/*
3196
* NB: legacy 11b clients do not get certain ie's.
3197
* The caller identifies such clients by passing
3198
* a token in legacy to us. Could expand this to be
3199
* any legacy client for stuff like HT ie's.
3200
*/
3201
if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3202
legacy != IEEE80211_SEND_LEGACY_11B) {
3203
frm = ieee80211_add_htcap(frm, bss);
3204
frm = ieee80211_add_htinfo(frm, bss);
3205
}
3206
if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3207
legacy != IEEE80211_SEND_LEGACY_11B) {
3208
frm = ieee80211_add_vhtcap(frm, bss);
3209
frm = ieee80211_add_vhtinfo(frm, bss);
3210
}
3211
frm = ieee80211_add_wpa(frm, vap);
3212
if (vap->iv_flags & IEEE80211_F_WME)
3213
frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3214
!! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3215
if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3216
(vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3217
legacy != IEEE80211_SEND_LEGACY_11B) {
3218
frm = ieee80211_add_htcap_vendor(frm, bss);
3219
frm = ieee80211_add_htinfo_vendor(frm, bss);
3220
}
3221
#ifdef IEEE80211_SUPPORT_SUPERG
3222
if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3223
legacy != IEEE80211_SEND_LEGACY_11B)
3224
frm = ieee80211_add_athcaps(frm, bss);
3225
#endif
3226
if (vap->iv_appie_proberesp != NULL)
3227
frm = add_appie(frm, vap->iv_appie_proberesp);
3228
#ifdef IEEE80211_SUPPORT_MESH
3229
if (vap->iv_opmode == IEEE80211_M_MBSS) {
3230
frm = ieee80211_add_meshid(frm, vap);
3231
frm = ieee80211_add_meshconf(frm, vap);
3232
}
3233
#endif
3234
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3235
3236
return m;
3237
}
3238
3239
/*
3240
* Send a probe response frame to the specified mac address.
3241
* This does not go through the normal mgt frame api so we
3242
* can specify the destination address and re-use the bss node
3243
* for the sta reference.
3244
*/
3245
int
3246
ieee80211_send_proberesp(struct ieee80211vap *vap,
3247
const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3248
{
3249
struct ieee80211_node *bss = vap->iv_bss;
3250
struct ieee80211com *ic = vap->iv_ic;
3251
struct mbuf *m;
3252
int ret;
3253
3254
if (vap->iv_state == IEEE80211_S_CAC) {
3255
IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3256
"block %s frame in CAC state", "probe response");
3257
vap->iv_stats.is_tx_badstate++;
3258
return EIO; /* XXX */
3259
}
3260
3261
/*
3262
* Hold a reference on the node so it doesn't go away until after
3263
* the xmit is complete all the way in the driver. On error we
3264
* will remove our reference.
3265
*/
3266
IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3267
"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3268
__func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3269
ieee80211_node_refcnt(bss)+1);
3270
ieee80211_ref_node(bss);
3271
3272
m = ieee80211_alloc_proberesp(bss, legacy);
3273
if (m == NULL) {
3274
ieee80211_free_node(bss);
3275
return ENOMEM;
3276
}
3277
3278
M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3279
KASSERT(m != NULL, ("no room for header"));
3280
3281
IEEE80211_TX_LOCK(ic);
3282
ieee80211_send_setup(bss, m,
3283
IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3284
IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3285
/* XXX power management? */
3286
m->m_flags |= M_ENCAP; /* mark encapsulated */
3287
3288
M_WME_SETAC(m, WME_AC_BE);
3289
3290
IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3291
"send probe resp on channel %u to %s%s\n",
3292
ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3293
legacy ? " <legacy>" : "");
3294
IEEE80211_NODE_STAT(bss, tx_mgmt);
3295
3296
ret = ieee80211_raw_output(vap, bss, m, NULL);
3297
IEEE80211_TX_UNLOCK(ic);
3298
return (ret);
3299
}
3300
3301
/*
3302
* Allocate and build a RTS (Request To Send) control frame.
3303
*/
3304
struct mbuf *
3305
ieee80211_alloc_rts(struct ieee80211com *ic,
3306
const uint8_t ra[IEEE80211_ADDR_LEN],
3307
const uint8_t ta[IEEE80211_ADDR_LEN],
3308
uint16_t dur)
3309
{
3310
struct ieee80211_frame_rts *rts;
3311
struct mbuf *m;
3312
3313
/* XXX honor ic_headroom */
3314
m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3315
if (m != NULL) {
3316
rts = mtod(m, struct ieee80211_frame_rts *);
3317
rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3318
IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3319
rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3320
*(u_int16_t *)rts->i_dur = htole16(dur);
3321
IEEE80211_ADDR_COPY(rts->i_ra, ra);
3322
IEEE80211_ADDR_COPY(rts->i_ta, ta);
3323
3324
m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3325
}
3326
return m;
3327
}
3328
3329
/*
3330
* Allocate and build a CTS (Clear To Send) control frame.
3331
*/
3332
struct mbuf *
3333
ieee80211_alloc_cts(struct ieee80211com *ic,
3334
const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3335
{
3336
struct ieee80211_frame_cts *cts;
3337
struct mbuf *m;
3338
3339
/* XXX honor ic_headroom */
3340
m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3341
if (m != NULL) {
3342
cts = mtod(m, struct ieee80211_frame_cts *);
3343
cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3344
IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3345
cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3346
*(u_int16_t *)cts->i_dur = htole16(dur);
3347
IEEE80211_ADDR_COPY(cts->i_ra, ra);
3348
3349
m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3350
}
3351
return m;
3352
}
3353
3354
/*
3355
* Wrapper for CTS/RTS frame allocation.
3356
*/
3357
struct mbuf *
3358
ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3359
uint8_t rate, int prot)
3360
{
3361
struct ieee80211com *ic = ni->ni_ic;
3362
struct ieee80211vap *vap = ni->ni_vap;
3363
const struct ieee80211_frame *wh;
3364
struct mbuf *mprot;
3365
uint16_t dur;
3366
int pktlen, isshort;
3367
3368
KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3369
prot == IEEE80211_PROT_CTSONLY,
3370
("wrong protection type %d", prot));
3371
3372
wh = mtod(m, const struct ieee80211_frame *);
3373
pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3374
isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
3375
dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3376
+ ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3377
3378
if (prot == IEEE80211_PROT_RTSCTS) {
3379
/* NB: CTS is the same size as an ACK */
3380
dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3381
mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3382
} else
3383
mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
3384
3385
return (mprot);
3386
}
3387
3388
static void
3389
ieee80211_tx_mgt_timeout(void *arg)
3390
{
3391
struct ieee80211vap *vap = arg;
3392
3393
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3394
"vap %p mode %s state %s flags %#x & %#x\n", vap,
3395
ieee80211_opmode_name[vap->iv_opmode],
3396
ieee80211_state_name[vap->iv_state],
3397
vap->iv_ic->ic_flags, IEEE80211_F_SCAN);
3398
3399
IEEE80211_LOCK(vap->iv_ic);
3400
if (vap->iv_state != IEEE80211_S_INIT &&
3401
(vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3402
/*
3403
* NB: it's safe to specify a timeout as the reason here;
3404
* it'll only be used in the right state.
3405
*/
3406
ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3407
IEEE80211_SCAN_FAIL_TIMEOUT);
3408
}
3409
IEEE80211_UNLOCK(vap->iv_ic);
3410
}
3411
3412
/*
3413
* This is the callback set on net80211-sourced transmitted
3414
* authentication request frames.
3415
*
3416
* This does a couple of things:
3417
*
3418
* + If the frame transmitted was a success, it schedules a future
3419
* event which will transition the interface to scan.
3420
* If a state transition _then_ occurs before that event occurs,
3421
* said state transition will cancel this callout.
3422
*
3423
* + If the frame transmit was a failure, it immediately schedules
3424
* the transition back to scan.
3425
*/
3426
static void
3427
ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3428
{
3429
struct ieee80211vap *vap = ni->ni_vap;
3430
enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
3431
3432
/*
3433
* Frame transmit completed; arrange timer callback. If
3434
* transmit was successfully we wait for response. Otherwise
3435
* we arrange an immediate callback instead of doing the
3436
* callback directly since we don't know what state the driver
3437
* is in (e.g. what locks it is holding). This work should
3438
* not be too time-critical and not happen too often so the
3439
* added overhead is acceptable.
3440
*
3441
* XXX what happens if !acked but response shows up before callback?
3442
*/
3443
if (vap->iv_state == ostate) {
3444
IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3445
"ni %p mode %s state %s arg %p status %d\n", ni,
3446
ieee80211_opmode_name[vap->iv_opmode],
3447
ieee80211_state_name[vap->iv_state], arg, status);
3448
3449
callout_reset(&vap->iv_mgtsend,
3450
status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3451
ieee80211_tx_mgt_timeout, vap);
3452
}
3453
}
3454
3455
static void
3456
ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3457
struct ieee80211_node *ni)
3458
{
3459
struct ieee80211vap *vap = ni->ni_vap;
3460
struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3461
struct ieee80211com *ic = ni->ni_ic;
3462
struct ieee80211_rateset *rs = &ni->ni_rates;
3463
uint16_t capinfo;
3464
3465
/*
3466
* beacon frame format
3467
*
3468
* TODO: update to 802.11-2012; a lot of stuff has changed;
3469
* vendor extensions should be at the end, etc.
3470
*
3471
* [8] time stamp
3472
* [2] beacon interval
3473
* [2] cabability information
3474
* [tlv] ssid
3475
* [tlv] supported rates
3476
* [3] parameter set (DS)
3477
* [8] CF parameter set (optional)
3478
* [tlv] parameter set (IBSS/TIM)
3479
* [tlv] country (optional)
3480
* [3] power control (optional)
3481
* [5] channel switch announcement (CSA) (optional)
3482
* XXX TODO: Quiet
3483
* XXX TODO: IBSS DFS
3484
* XXX TODO: TPC report
3485
* [tlv] extended rate phy (ERP)
3486
* [tlv] extended supported rates
3487
* [tlv] RSN parameters
3488
* XXX TODO: BSSLOAD
3489
* (XXX EDCA parameter set, QoS capability?)
3490
* XXX TODO: AP channel report
3491
*
3492
* [tlv] HT capabilities
3493
* [tlv] HT information
3494
* XXX TODO: 20/40 BSS coexistence
3495
* Mesh:
3496
* XXX TODO: Meshid
3497
* XXX TODO: mesh config
3498
* XXX TODO: mesh awake window
3499
* XXX TODO: beacon timing (mesh, etc)
3500
* XXX TODO: MCCAOP Advertisement Overview
3501
* XXX TODO: MCCAOP Advertisement
3502
* XXX TODO: Mesh channel switch parameters
3503
* VHT:
3504
* XXX TODO: VHT capabilities
3505
* XXX TODO: VHT operation
3506
* XXX TODO: VHT transmit power envelope
3507
* XXX TODO: channel switch wrapper element
3508
* XXX TODO: extended BSS load element
3509
*
3510
* XXX Vendor-specific OIDs (e.g. Atheros)
3511
* [tlv] WPA parameters
3512
* [tlv] WME parameters
3513
* [tlv] Vendor OUI HT capabilities (optional)
3514
* [tlv] Vendor OUI HT information (optional)
3515
* [tlv] Atheros capabilities (optional)
3516
* [tlv] TDMA parameters (optional)
3517
* [tlv] Mesh ID (MBSS)
3518
* [tlv] Mesh Conf (MBSS)
3519
* [tlv] application data (optional)
3520
*/
3521
3522
memset(bo, 0, sizeof(*bo));
3523
3524
memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */
3525
frm += 8;
3526
*(uint16_t *)frm = htole16(ni->ni_intval);
3527
frm += 2;
3528
capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3529
bo->bo_caps = (uint16_t *)frm;
3530
*(uint16_t *)frm = htole16(capinfo);
3531
frm += 2;
3532
*frm++ = IEEE80211_ELEMID_SSID;
3533
if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3534
*frm++ = ni->ni_esslen;
3535
memcpy(frm, ni->ni_essid, ni->ni_esslen);
3536
frm += ni->ni_esslen;
3537
} else
3538
*frm++ = 0;
3539
frm = ieee80211_add_rates(frm, rs);
3540
if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3541
*frm++ = IEEE80211_ELEMID_DSPARMS;
3542
*frm++ = 1;
3543
*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3544
}
3545
if (ic->ic_flags & IEEE80211_F_PCF) {
3546
bo->bo_cfp = frm;
3547
frm = ieee80211_add_cfparms(frm, ic);
3548
}
3549
bo->bo_tim = frm;
3550
if (vap->iv_opmode == IEEE80211_M_IBSS) {
3551
*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3552
*frm++ = 2;
3553
*frm++ = 0; *frm++ = 0; /* TODO: ATIM window */
3554
bo->bo_tim_len = 0;
3555
} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3556
vap->iv_opmode == IEEE80211_M_MBSS) {
3557
/* TIM IE is the same for Mesh and Hostap */
3558
struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3559
3560
tie->tim_ie = IEEE80211_ELEMID_TIM;
3561
tie->tim_len = 4; /* length */
3562
tie->tim_count = 0; /* DTIM count */
3563
tie->tim_period = vap->iv_dtim_period; /* DTIM period */
3564
tie->tim_bitctl = 0; /* bitmap control */
3565
tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */
3566
frm += sizeof(struct ieee80211_tim_ie);
3567
bo->bo_tim_len = 1;
3568
}
3569
bo->bo_tim_trailer = frm;
3570
if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3571
(vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3572
frm = ieee80211_add_countryie(frm, ic);
3573
if (vap->iv_flags & IEEE80211_F_DOTH) {
3574
if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3575
frm = ieee80211_add_powerconstraint(frm, vap);
3576
bo->bo_csa = frm;
3577
if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3578
frm = ieee80211_add_csa(frm, vap);
3579
} else
3580
bo->bo_csa = frm;
3581
3582
bo->bo_quiet = NULL;
3583
if (vap->iv_flags & IEEE80211_F_DOTH) {
3584
if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3585
(vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3586
(vap->iv_quiet == 1)) {
3587
/*
3588
* We only insert the quiet IE offset if
3589
* the quiet IE is enabled. Otherwise don't
3590
* put it here or we'll just overwrite
3591
* some other beacon contents.
3592
*/
3593
if (vap->iv_quiet) {
3594
bo->bo_quiet = frm;
3595
frm = ieee80211_add_quiet(frm,vap, 0);
3596
}
3597
}
3598
}
3599
3600
if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3601
bo->bo_erp = frm;
3602
frm = ieee80211_add_erp(frm, vap);
3603
}
3604
frm = ieee80211_add_xrates(frm, rs);
3605
frm = ieee80211_add_rsn(frm, vap);
3606
if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3607
frm = ieee80211_add_htcap(frm, ni);
3608
bo->bo_htinfo = frm;
3609
frm = ieee80211_add_htinfo(frm, ni);
3610
}
3611
3612
if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3613
frm = ieee80211_add_vhtcap(frm, ni);
3614
bo->bo_vhtinfo = frm;
3615
frm = ieee80211_add_vhtinfo(frm, ni);
3616
/* Transmit power envelope */
3617
/* Channel switch wrapper element */
3618
/* Extended bss load element */
3619
}
3620
3621
frm = ieee80211_add_wpa(frm, vap);
3622
if (vap->iv_flags & IEEE80211_F_WME) {
3623
bo->bo_wme = frm;
3624
frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3625
!! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3626
}
3627
if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3628
(vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3629
frm = ieee80211_add_htcap_vendor(frm, ni);
3630
frm = ieee80211_add_htinfo_vendor(frm, ni);
3631
}
3632
3633
#ifdef IEEE80211_SUPPORT_SUPERG
3634
if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3635
bo->bo_ath = frm;
3636
frm = ieee80211_add_athcaps(frm, ni);
3637
}
3638
#endif
3639
#ifdef IEEE80211_SUPPORT_TDMA
3640
if (vap->iv_caps & IEEE80211_C_TDMA) {
3641
bo->bo_tdma = frm;
3642
frm = ieee80211_add_tdma(frm, vap);
3643
}
3644
#endif
3645
if (vap->iv_appie_beacon != NULL) {
3646
bo->bo_appie = frm;
3647
bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3648
frm = add_appie(frm, vap->iv_appie_beacon);
3649
}
3650
3651
/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3652
#ifdef IEEE80211_SUPPORT_MESH
3653
if (vap->iv_opmode == IEEE80211_M_MBSS) {
3654
frm = ieee80211_add_meshid(frm, vap);
3655
bo->bo_meshconf = frm;
3656
frm = ieee80211_add_meshconf(frm, vap);
3657
}
3658
#endif
3659
bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3660
bo->bo_csa_trailer_len = frm - bo->bo_csa;
3661
m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3662
}
3663
3664
/*
3665
* Allocate a beacon frame and fillin the appropriate bits.
3666
*/
3667
struct mbuf *
3668
ieee80211_beacon_alloc(struct ieee80211_node *ni)
3669
{
3670
struct ieee80211vap *vap = ni->ni_vap;
3671
struct ieee80211com *ic = ni->ni_ic;
3672
struct ieee80211_frame *wh;
3673
struct mbuf *m;
3674
int pktlen;
3675
uint8_t *frm;
3676
3677
/*
3678
* Update the "We're putting the quiet IE in the beacon" state.
3679
*/
3680
if (vap->iv_quiet == 1)
3681
vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3682
else if (vap->iv_quiet == 0)
3683
vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3684
3685
/*
3686
* beacon frame format
3687
*
3688
* Note: This needs updating for 802.11-2012.
3689
*
3690
* [8] time stamp
3691
* [2] beacon interval
3692
* [2] cabability information
3693
* [tlv] ssid
3694
* [tlv] supported rates
3695
* [3] parameter set (DS)
3696
* [8] CF parameter set (optional)
3697
* [tlv] parameter set (IBSS/TIM)
3698
* [tlv] country (optional)
3699
* [3] power control (optional)
3700
* [5] channel switch announcement (CSA) (optional)
3701
* [tlv] extended rate phy (ERP)
3702
* [tlv] extended supported rates
3703
* [tlv] RSN parameters
3704
* [tlv] HT capabilities
3705
* [tlv] HT information
3706
* [tlv] VHT capabilities
3707
* [tlv] VHT operation
3708
* [tlv] Vendor OUI HT capabilities (optional)
3709
* [tlv] Vendor OUI HT information (optional)
3710
* XXX Vendor-specific OIDs (e.g. Atheros)
3711
* [tlv] WPA parameters
3712
* [tlv] WME parameters
3713
* [tlv] TDMA parameters (optional)
3714
* [tlv] Mesh ID (MBSS)
3715
* [tlv] Mesh Conf (MBSS)
3716
* [tlv] application data (optional)
3717
* NB: we allocate the max space required for the TIM bitmap.
3718
* XXX how big is this?
3719
*/
3720
pktlen = 8 /* time stamp */
3721
+ sizeof(uint16_t) /* beacon interval */
3722
+ sizeof(uint16_t) /* capabilities */
3723
+ 2 + ni->ni_esslen /* ssid */
3724
+ 2 + IEEE80211_RATE_SIZE /* supported rates */
3725
+ 2 + 1 /* DS parameters */
3726
+ 2 + 6 /* CF parameters */
3727
+ 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */
3728
+ IEEE80211_COUNTRY_MAX_SIZE /* country */
3729
+ 2 + 1 /* power control */
3730
+ sizeof(struct ieee80211_csa_ie) /* CSA */
3731
+ sizeof(struct ieee80211_quiet_ie) /* Quiet */
3732
+ 2 + 1 /* ERP */
3733
+ 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3734
+ (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */
3735
2*sizeof(struct ieee80211_ie_wpa) : 0)
3736
/* XXX conditional? */
3737
+ 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3738
+ 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3739
+ 2 + sizeof(struct ieee80211_vht_cap)/* VHT caps */
3740
+ 2 + sizeof(struct ieee80211_vht_operation)/* VHT info */
3741
+ (vap->iv_caps & IEEE80211_C_WME ? /* WME */
3742
sizeof(struct ieee80211_wme_param) : 0)
3743
#ifdef IEEE80211_SUPPORT_SUPERG
3744
+ sizeof(struct ieee80211_ath_ie) /* ATH */
3745
#endif
3746
#ifdef IEEE80211_SUPPORT_TDMA
3747
+ (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */
3748
sizeof(struct ieee80211_tdma_param) : 0)
3749
#endif
3750
#ifdef IEEE80211_SUPPORT_MESH
3751
+ 2 + ni->ni_meshidlen
3752
+ sizeof(struct ieee80211_meshconf_ie)
3753
#endif
3754
+ IEEE80211_MAX_APPIE
3755
;
3756
m = ieee80211_getmgtframe(&frm,
3757
ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3758
if (m == NULL) {
3759
IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3760
"%s: cannot get buf; size %u\n", __func__, pktlen);
3761
vap->iv_stats.is_tx_nobuf++;
3762
return NULL;
3763
}
3764
ieee80211_beacon_construct(m, frm, ni);
3765
3766
M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3767
KASSERT(m != NULL, ("no space for 802.11 header?"));
3768
wh = mtod(m, struct ieee80211_frame *);
3769
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3770
IEEE80211_FC0_SUBTYPE_BEACON;
3771
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3772
*(uint16_t *)wh->i_dur = 0;
3773
IEEE80211_ADDR_COPY(wh->i_addr1,
3774
ieee80211_vap_get_broadcast_address(vap));
3775
IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3776
IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3777
*(uint16_t *)wh->i_seq = 0;
3778
3779
return m;
3780
}
3781
3782
/*
3783
* Update the dynamic parts of a beacon frame based on the current state.
3784
*/
3785
int
3786
ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3787
{
3788
struct ieee80211vap *vap = ni->ni_vap;
3789
struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3790
struct ieee80211com *ic = ni->ni_ic;
3791
int len_changed = 0;
3792
uint16_t capinfo;
3793
3794
IEEE80211_LOCK(ic);
3795
/*
3796
* Handle 11h channel change when we've reached the count.
3797
* We must recalculate the beacon frame contents to account
3798
* for the new channel. Note we do this only for the first
3799
* vap that reaches this point; subsequent vaps just update
3800
* their beacon state to reflect the recalculated channel.
3801
*/
3802
if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3803
vap->iv_csa_count == ic->ic_csa_count) {
3804
vap->iv_csa_count = 0;
3805
/*
3806
* Effect channel change before reconstructing the beacon
3807
* frame contents as many places reference ni_chan.
3808
*/
3809
if (ic->ic_csa_newchan != NULL)
3810
ieee80211_csa_completeswitch(ic);
3811
/*
3812
* NB: ieee80211_beacon_construct clears all pending
3813
* updates in bo_flags so we don't need to explicitly
3814
* clear IEEE80211_BEACON_CSA.
3815
*/
3816
ieee80211_beacon_construct(m,
3817
mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3818
3819
/* XXX do WME aggressive mode processing? */
3820
IEEE80211_UNLOCK(ic);
3821
return 1; /* just assume length changed */
3822
}
3823
3824
/*
3825
* Handle the quiet time element being added and removed.
3826
* Again, for now we just cheat and reconstruct the whole
3827
* beacon - that way the gap is provided as appropriate.
3828
*
3829
* So, track whether we have already added the IE versus
3830
* whether we want to be adding the IE.
3831
*/
3832
if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3833
(vap->iv_quiet == 0)) {
3834
/*
3835
* Quiet time beacon IE enabled, but it's disabled;
3836
* recalc
3837
*/
3838
vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3839
ieee80211_beacon_construct(m,
3840
mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3841
/* XXX do WME aggressive mode processing? */
3842
IEEE80211_UNLOCK(ic);
3843
return 1; /* just assume length changed */
3844
}
3845
3846
if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3847
(vap->iv_quiet == 1)) {
3848
/*
3849
* Quiet time beacon IE disabled, but it's now enabled;
3850
* recalc
3851
*/
3852
vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3853
ieee80211_beacon_construct(m,
3854
mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3855
/* XXX do WME aggressive mode processing? */
3856
IEEE80211_UNLOCK(ic);
3857
return 1; /* just assume length changed */
3858
}
3859
3860
/*
3861
* XXX TODO Strictly speaking this should be incremented with the TX
3862
* lock held so as to serialise access to the non-qos TID sequence
3863
* number space.
3864
*
3865
* If the driver identifies it does its own TX seqno management then
3866
* we can skip this (and still not do the TX seqno.)
3867
*/
3868
3869
/* TODO: IEEE80211_CONF_SEQNO_OFFLOAD() */
3870
ieee80211_output_beacon_seqno_assign(ni, m);
3871
3872
/* XXX faster to recalculate entirely or just changes? */
3873
capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3874
*bo->bo_caps = htole16(capinfo);
3875
3876
if (vap->iv_flags & IEEE80211_F_WME) {
3877
struct ieee80211_wme_state *wme = &ic->ic_wme;
3878
3879
/*
3880
* Check for aggressive mode change. When there is
3881
* significant high priority traffic in the BSS
3882
* throttle back BE traffic by using conservative
3883
* parameters. Otherwise BE uses aggressive params
3884
* to optimize performance of legacy/non-QoS traffic.
3885
*/
3886
if (wme->wme_flags & WME_F_AGGRMODE) {
3887
if (wme->wme_hipri_traffic >
3888
wme->wme_hipri_switch_thresh) {
3889
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3890
"%s: traffic %u, disable aggressive mode\n",
3891
__func__, wme->wme_hipri_traffic);
3892
wme->wme_flags &= ~WME_F_AGGRMODE;
3893
ieee80211_wme_updateparams_locked(vap);
3894
wme->wme_hipri_traffic =
3895
wme->wme_hipri_switch_hysteresis;
3896
} else
3897
wme->wme_hipri_traffic = 0;
3898
} else {
3899
if (wme->wme_hipri_traffic <=
3900
wme->wme_hipri_switch_thresh) {
3901
IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3902
"%s: traffic %u, enable aggressive mode\n",
3903
__func__, wme->wme_hipri_traffic);
3904
wme->wme_flags |= WME_F_AGGRMODE;
3905
ieee80211_wme_updateparams_locked(vap);
3906
wme->wme_hipri_traffic = 0;
3907
} else
3908
wme->wme_hipri_traffic =
3909
wme->wme_hipri_switch_hysteresis;
3910
}
3911
if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3912
(void) ieee80211_add_wme_param(bo->bo_wme, wme,
3913
vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
3914
clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3915
}
3916
}
3917
3918
if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) {
3919
ieee80211_ht_update_beacon(vap, bo);
3920
clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3921
}
3922
#ifdef IEEE80211_SUPPORT_TDMA
3923
if (vap->iv_caps & IEEE80211_C_TDMA) {
3924
/*
3925
* NB: the beacon is potentially updated every TBTT.
3926
*/
3927
ieee80211_tdma_update_beacon(vap, bo);
3928
}
3929
#endif
3930
#ifdef IEEE80211_SUPPORT_MESH
3931
if (vap->iv_opmode == IEEE80211_M_MBSS)
3932
ieee80211_mesh_update_beacon(vap, bo);
3933
#endif
3934
3935
if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3936
vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/
3937
struct ieee80211_tim_ie *tie =
3938
(struct ieee80211_tim_ie *) bo->bo_tim;
3939
if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3940
u_int timlen, timoff, i;
3941
/*
3942
* ATIM/DTIM needs updating. If it fits in the
3943
* current space allocated then just copy in the
3944
* new bits. Otherwise we need to move any trailing
3945
* data to make room. Note that we know there is
3946
* contiguous space because ieee80211_beacon_allocate
3947
* insures there is space in the mbuf to write a
3948
* maximal-size virtual bitmap (based on iv_max_aid).
3949
*/
3950
/*
3951
* Calculate the bitmap size and offset, copy any
3952
* trailer out of the way, and then copy in the
3953
* new bitmap and update the information element.
3954
* Note that the tim bitmap must contain at least
3955
* one byte and any offset must be even.
3956
*/
3957
if (vap->iv_ps_pending != 0) {
3958
timoff = 128; /* impossibly large */
3959
for (i = 0; i < vap->iv_tim_len; i++)
3960
if (vap->iv_tim_bitmap[i]) {
3961
timoff = i &~ 1;
3962
break;
3963
}
3964
KASSERT(timoff != 128, ("tim bitmap empty!"));
3965
for (i = vap->iv_tim_len-1; i >= timoff; i--)
3966
if (vap->iv_tim_bitmap[i])
3967
break;
3968
timlen = 1 + (i - timoff);
3969
} else {
3970
timoff = 0;
3971
timlen = 1;
3972
}
3973
3974
/*
3975
* TODO: validate this!
3976
*/
3977
if (timlen != bo->bo_tim_len) {
3978
/* copy up/down trailer */
3979
int adjust = tie->tim_bitmap+timlen
3980
- bo->bo_tim_trailer;
3981
ovbcopy(bo->bo_tim_trailer,
3982
bo->bo_tim_trailer+adjust,
3983
bo->bo_tim_trailer_len);
3984
bo->bo_tim_trailer += adjust;
3985
bo->bo_erp += adjust;
3986
bo->bo_htinfo += adjust;
3987
bo->bo_vhtinfo += adjust;
3988
#ifdef IEEE80211_SUPPORT_SUPERG
3989
bo->bo_ath += adjust;
3990
#endif
3991
#ifdef IEEE80211_SUPPORT_TDMA
3992
bo->bo_tdma += adjust;
3993
#endif
3994
#ifdef IEEE80211_SUPPORT_MESH
3995
bo->bo_meshconf += adjust;
3996
#endif
3997
bo->bo_appie += adjust;
3998
bo->bo_wme += adjust;
3999
bo->bo_csa += adjust;
4000
bo->bo_quiet += adjust;
4001
bo->bo_tim_len = timlen;
4002
4003
/* update information element */
4004
tie->tim_len = 3 + timlen;
4005
tie->tim_bitctl = timoff;
4006
len_changed = 1;
4007
}
4008
memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
4009
bo->bo_tim_len);
4010
4011
clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
4012
4013
IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
4014
"%s: TIM updated, pending %u, off %u, len %u\n",
4015
__func__, vap->iv_ps_pending, timoff, timlen);
4016
}
4017
/* count down DTIM period */
4018
if (tie->tim_count == 0)
4019
tie->tim_count = tie->tim_period - 1;
4020
else
4021
tie->tim_count--;
4022
/* update state for buffered multicast frames on DTIM */
4023
if (mcast && tie->tim_count == 0)
4024
tie->tim_bitctl |= 1;
4025
else
4026
tie->tim_bitctl &= ~1;
4027
if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
4028
struct ieee80211_csa_ie *csa =
4029
(struct ieee80211_csa_ie *) bo->bo_csa;
4030
4031
/*
4032
* Insert or update CSA ie. If we're just starting
4033
* to count down to the channel switch then we need
4034
* to insert the CSA ie. Otherwise we just need to
4035
* drop the count. The actual change happens above
4036
* when the vap's count reaches the target count.
4037
*/
4038
if (vap->iv_csa_count == 0) {
4039
memmove(&csa[1], csa, bo->bo_csa_trailer_len);
4040
bo->bo_erp += sizeof(*csa);
4041
bo->bo_htinfo += sizeof(*csa);
4042
bo->bo_vhtinfo += sizeof(*csa);
4043
bo->bo_wme += sizeof(*csa);
4044
#ifdef IEEE80211_SUPPORT_SUPERG
4045
bo->bo_ath += sizeof(*csa);
4046
#endif
4047
#ifdef IEEE80211_SUPPORT_TDMA
4048
bo->bo_tdma += sizeof(*csa);
4049
#endif
4050
#ifdef IEEE80211_SUPPORT_MESH
4051
bo->bo_meshconf += sizeof(*csa);
4052
#endif
4053
bo->bo_appie += sizeof(*csa);
4054
bo->bo_csa_trailer_len += sizeof(*csa);
4055
bo->bo_quiet += sizeof(*csa);
4056
bo->bo_tim_trailer_len += sizeof(*csa);
4057
m->m_len += sizeof(*csa);
4058
m->m_pkthdr.len += sizeof(*csa);
4059
4060
ieee80211_add_csa(bo->bo_csa, vap);
4061
} else
4062
csa->csa_count--;
4063
vap->iv_csa_count++;
4064
/* NB: don't clear IEEE80211_BEACON_CSA */
4065
}
4066
4067
/*
4068
* Only add the quiet time IE if we've enabled it
4069
* as appropriate.
4070
*/
4071
if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
4072
(vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
4073
if (vap->iv_quiet &&
4074
(vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
4075
ieee80211_add_quiet(bo->bo_quiet, vap, 1);
4076
}
4077
}
4078
if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
4079
/*
4080
* ERP element needs updating.
4081
*/
4082
(void) ieee80211_add_erp(bo->bo_erp, vap);
4083
clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
4084
}
4085
#ifdef IEEE80211_SUPPORT_SUPERG
4086
if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) {
4087
ieee80211_add_athcaps(bo->bo_ath, ni);
4088
clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
4089
}
4090
#endif
4091
}
4092
if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
4093
const struct ieee80211_appie *aie = vap->iv_appie_beacon;
4094
int aielen;
4095
uint8_t *frm;
4096
4097
aielen = 0;
4098
if (aie != NULL)
4099
aielen += aie->ie_len;
4100
if (aielen != bo->bo_appie_len) {
4101
/* copy up/down trailer */
4102
int adjust = aielen - bo->bo_appie_len;
4103
ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
4104
bo->bo_tim_trailer_len);
4105
bo->bo_tim_trailer += adjust;
4106
bo->bo_appie += adjust;
4107
bo->bo_appie_len = aielen;
4108
4109
len_changed = 1;
4110
}
4111
frm = bo->bo_appie;
4112
if (aie != NULL)
4113
frm = add_appie(frm, aie);
4114
clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
4115
}
4116
IEEE80211_UNLOCK(ic);
4117
4118
return len_changed;
4119
}
4120
4121
/*
4122
* Do Ethernet-LLC encapsulation for each payload in a fast frame
4123
* tunnel encapsulation. The frame is assumed to have an Ethernet
4124
* header at the front that must be stripped before prepending the
4125
* LLC followed by the Ethernet header passed in (with an Ethernet
4126
* type that specifies the payload size).
4127
*/
4128
struct mbuf *
4129
ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
4130
const struct ether_header *eh)
4131
{
4132
struct llc *llc;
4133
uint16_t payload;
4134
4135
/* XXX optimize by combining m_adj+M_PREPEND */
4136
m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
4137
llc = mtod(m, struct llc *);
4138
llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
4139
llc->llc_control = LLC_UI;
4140
llc->llc_snap.org_code[0] = 0;
4141
llc->llc_snap.org_code[1] = 0;
4142
llc->llc_snap.org_code[2] = 0;
4143
llc->llc_snap.ether_type = eh->ether_type;
4144
payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */
4145
4146
M_PREPEND(m, sizeof(struct ether_header), IEEE80211_M_NOWAIT);
4147
if (m == NULL) { /* XXX cannot happen */
4148
IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
4149
"%s: no space for ether_header\n", __func__);
4150
vap->iv_stats.is_tx_nobuf++;
4151
return NULL;
4152
}
4153
ETHER_HEADER_COPY(mtod(m, void *), eh);
4154
mtod(m, struct ether_header *)->ether_type = htons(payload);
4155
return m;
4156
}
4157
4158
/*
4159
* Complete an mbuf transmission.
4160
*
4161
* For now, this simply processes a completed frame after the
4162
* driver has completed it's transmission and/or retransmission.
4163
* It assumes the frame is an 802.11 encapsulated frame.
4164
*
4165
* Later on it will grow to become the exit path for a given frame
4166
* from the driver and, depending upon how it's been encapsulated
4167
* and already transmitted, it may end up doing A-MPDU retransmission,
4168
* power save requeuing, etc.
4169
*
4170
* In order for the above to work, the driver entry point to this
4171
* must not hold any driver locks. Thus, the driver needs to delay
4172
* any actual mbuf completion until it can release said locks.
4173
*
4174
* This frees the mbuf and if the mbuf has a node reference,
4175
* the node reference will be freed.
4176
*/
4177
void
4178
ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4179
{
4180
4181
if (ni != NULL) {
4182
struct ifnet *ifp = ni->ni_vap->iv_ifp;
4183
4184
if (status == 0) {
4185
if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4186
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4187
if (m->m_flags & M_MCAST)
4188
if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4189
} else
4190
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4191
if (m->m_flags & M_TXCB) {
4192
IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
4193
"ni %p vap %p mode %s state %s m %p status %d\n", ni, ni->ni_vap,
4194
ieee80211_opmode_name[ni->ni_vap->iv_opmode],
4195
ieee80211_state_name[ni->ni_vap->iv_state], m, status);
4196
ieee80211_process_callback(ni, m, status);
4197
}
4198
ieee80211_free_node(ni);
4199
}
4200
m_freem(m);
4201
}
4202
4203
/**
4204
* @brief Assign a sequence number to the given frame.
4205
*
4206
* Check the frame type and TID and assign a suitable sequence number
4207
* from the correct sequence number space.
4208
*
4209
* This implements the components of 802.11-2020 10.3.2.14.2
4210
* (Transmitter Requirements) that net80211 currently supports.
4211
*
4212
* It assumes the mbuf has been encapsulated, and has the TID assigned
4213
* if it is a QoS frame.
4214
*
4215
* Note this also clears any existing fragment ID in the header, so it
4216
* must be called first before assigning fragment IDs.
4217
*
4218
* @param ni ieee80211_node this frame will be transmitted to
4219
* @param arg_tid A temporary check, existing callers may set
4220
* this to a TID variable they were using, and this routine
4221
* will verify it against what's in the frame and complain if
4222
* they don't match. For new callers, use -1.
4223
* @param m mbuf to populate the sequence number into
4224
*/
4225
void
4226
ieee80211_output_seqno_assign(struct ieee80211_node *ni, int arg_tid,
4227
struct mbuf *m)
4228
{
4229
struct ieee80211_frame *wh;
4230
ieee80211_seq seqno;
4231
uint8_t tid, type, subtype;
4232
4233
wh = mtod(m, struct ieee80211_frame *);
4234
tid = ieee80211_gettid(wh);
4235
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
4236
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4237
4238
/*
4239
* Find places where the passed in TID doesn't match gettid()
4240
* and log. I'll have to then go and chase those down.
4241
*
4242
* If the caller knows its already setup the TID in the frame
4243
* correctly then it can pass in -1 and this check will be
4244
* skipped.
4245
*/
4246
if (arg_tid != -1 && tid != arg_tid)
4247
ic_printf(ni->ni_vap->iv_ic,
4248
"%s: called; TID mismatch; tid=%u, arg_tid=%d\n",
4249
__func__, tid, arg_tid);
4250
4251
4252
/* 802.11-2020 10.3.2.14.2 (Transmitter Requirements) sections */
4253
4254
/* SNS7 - unicast PV1 management frame */
4255
4256
/* SNS6 - unicast PV1 data frame */
4257
4258
/* SNS5 - QoS NULL frames */
4259
if (IEEE80211_QOS_HAS_SEQ(wh) && IEEE80211_IS_QOS_NULL(wh))
4260
seqno = ieee80211_tx_seqno_fetch_incr(ni, IEEE80211_NONQOS_TID);
4261
4262
/* SNS4 - QMF STA transmitting a QMF */
4263
4264
/* SNS3 - QoS STA; Time Priority Management frame */
4265
4266
/* SNS2 - unicast QoS STA, data frame, excluding SNS5 */
4267
else if (IEEE80211_QOS_HAS_SEQ(wh) &&
4268
!IEEE80211_IS_MULTICAST(wh->i_addr1))
4269
seqno = ieee80211_tx_seqno_fetch_incr(ni, tid);
4270
4271
/* SNS1 - Baseline (everything else) */
4272
else if (IEEE80211_HAS_SEQ(type, subtype))
4273
seqno = ieee80211_tx_seqno_fetch_incr(ni, IEEE80211_NONQOS_TID);
4274
else
4275
seqno = 0;
4276
4277
/*
4278
* Assign the sequence number, clearing out any existing
4279
* sequence and fragment numbers.
4280
*/
4281
*(uint16_t *)&wh->i_seq[0] =
4282
htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4283
M_SEQNO_SET(m, seqno);
4284
}
4285
4286
/**
4287
* @brief Assign a sequence number to the given beacon frame.
4288
*
4289
* TODO: update to 802.11-2020 10.3.2.14.2 (Transmitter Requirements)
4290
*
4291
* @param ni ieee80211_node this frame will be transmitted to
4292
* @param m mbuf to populate the sequence number into
4293
*/
4294
void
4295
ieee80211_output_beacon_seqno_assign(struct ieee80211_node *ni, struct mbuf *m)
4296
{
4297
struct ieee80211_frame *wh;
4298
ieee80211_seq seqno;
4299
4300
wh = mtod(m, struct ieee80211_frame *);
4301
4302
seqno = ieee80211_tx_seqno_fetch_incr(ni, IEEE80211_NONQOS_TID);
4303
*(uint16_t *)&wh->i_seq[0] =
4304
htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
4305
M_SEQNO_SET(m, seqno);
4306
}
4307
4308